
Fraunhofer CDTire

User Manual for CDTire

Version 2023.1.1

Contents

1	Intr	roduction	3
	1.1	Tire Model Background	3
		1.1.1 CDTire Model Family	3
		1.1.2 CDTire ADD-ONs	6
	1.2	Road Surface Models	7
		1.2.1 CDTire Road Surface Models (RSMs) $\ldots \ldots \ldots$	7
		1.2.2 MBS Road Surface Models (RSMs)	7
2	Mo	del Implementation	8
	2.1	Modelling with CDTire	8
3	Mo	del Usage	9
	3.1	Road Surface Model 1000	9
		3.1.1 Header (Road Surface Model 1000)	9
		3.1.2 Data Part (Road Surface Model 1000)	11
	3.2	Road Surface Model 1002	14
		3.2.1 Header (Road Surface Model 1002)	14
		3.2.2 Header (Road Surface Model 1002)	15
	3.3	Road Surface Model 1008	18
	3.4	Road Surface Model 2000	19
		3.4.1 CDTire Setup for Road Surface Model 2000	19
	3.5	Customizing CDTire	25
4	App	pendix	26
5	Tire	e Parameter File - CDTire/MF++	27
6	Tire	e Parameter File - CDTire/Realtime	36
7	Tire	e Parameter File - CDTire/3D	49
	7.1	Control-File Options	73
8	Roa	ad Parameters	76
	8.1	Example for Equidistant Track Data (Data Type 2)	76
	8.2	Example for Non-Equidistant Track Data (Data Type 3)	77
	8.3	Warning and Errors	79

8.4	Extended Support		•	•														•								•			•	•		•					•				•	•	•	•		1	79)
-----	------------------	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	---	--	--	---	---	--	---	--	--	--	--	---	--	--	--	---	---	---	---	--	---	----	---

Introduction

The *Comfort and Durability Tire* (*CDTire*) is a tire model family to be used with MBS software systems like *Adams*. It focuses on comfort and durability applications but also allows for handling analysis.

Remark: In the further text Comfort and Durability Tire will be referenced as CDTire.

1.1 Tire Model Background

CDTire is a tire model for passenger car and light truck tires that allows engineers to do full vehicle ride comfort and durability analysis in respective MBS software systems, taking into account tire belt dynamics and interaction with 3D road surfaces. During the multi-body simulation CDTire computes the spindle forces and moments acting on each wheel in the model as well as the local contact forces while driving on a 3D road surface. CDTire accurately captures the vibrations in frequency range for durability and comfort studies up to 150 Hz.

1.1.1 CDTire Model Family

CDTire offers 3 basic tire models:

- CDTire/3D
- CDTire/Realtime
- CDTire/MF++

The following models are considered CDTire/Legacy and are not actively developed any-more:

• CDTire 20, CDTire 30, CDTire 40, 2030, 2040

However, existing model 30 and model 40 parameter files can be used as they are automatically converted to CDTire/RealItime and CDTire/3D, respectively. The following paragraphs give some general background information to the sub-models. See *CDTire User Manual* for a detailed description of the corresponding parameter files and their function.

CDTire/3D

The structural tire model CDTire/3D has been developed at Fraunhofer ITWM [1]. It is used in the automotive industry for comfort, durability, and advanced vehicle dynamics (handling) scenarios. The model is based on a spatial finite difference (FD) formulation of the tire, which is modeled from different shell elements (figure 1).

The functional plies of the tire such as the carcasses, belt plies, and bandages are accumulated into these shell properties during the generation of the tire model. The properties of these plies are adjustable and accessible through the material parameters and geometry using parameterization. The modeling of the individual plies also includes a non-linear component within the elastic material description of the fiber reinforced plies. This is necessary due to a different behavior in tension and compression. The dissipative part of the material description combines visco-elastic properties and considers internal friction. The tread of the tire is formulated as a brushlike contact. This type of modeling allows stick-slip effects in the tire to be well represented. The model is also characterized by a strict separation between material and geometric properties. The geometric formulation of the material behavior also allows large deformations to be modeled. The air pressure is applied to the inner liner of the tire.

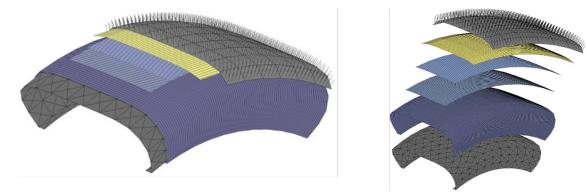


Figure 1.1: Structure of CDTire/3D

Tire Model Structure:

- belt is a flexible shell (default: 6x3x50 dof's)
- both sidewalls are flexible shells (default: 8x3x50 dof's)

Contact Formulation:

- brush type contact
- local static stick-slip ability

Performance:

- substantial effort
- can be arbitrary
- full obstacle enveloping

CDTire/Realtime

CDTire/Realtime model is derived from a CDTire/3D. The belt is modelled as a flexible beam. As in CDTire/3D, the structural properties of the different plies are combined into global bending and deformation properties (stiffness, damping). The sidewall is modelled using discrete force elements (stiffnesses and damping) with no internal degrees of freedom. Just like CDTire/3D, the model has a brush-like contact formulation. Locally, the model of a bristle is even identical. The stick-slip effects already mentioned can also be captured locally in the areas of the contact zone.

5

The offline version of this tire model has been used in comfort and durability applications for many years. In recent years, the model has been improved and also qualified for complex vehicle dynamics applications, with simulation quality very close to that of the parent model CDTire/3D. However, the real-time model CDTire/Realtime does not have the same predictive capabilities with respect to internal pressure changes or size changes of tires and rims as CDTire/3D.

For use within hard real-time applications, a dedicated implicit solver of type "NEWMARK" was developed and implemented. The solution is done - as usual for implicit solvers - by using a JACOBI matrix in combination with NEWTON's method. The main computational cost of such a scheme lies in the generation of the JACOBI matrix and in the linear algebra associated with solving the linear problem at each iteration.

To avoid this, Fraunhofer ITWM has developed a special method for setting up the projector for the Newton iteration, which is very well adapted to the physics of the equation. This advancement makes it possible to accelerate the Newton iteration immensely and to guarantee hard real-time computational performance.

Tire Model Structure:

- belt is modelled as a flexible ring (default: 3x50 dof's)
- sidewall is local viscoelastic foundation

Contact Formulation:

- brush type contact
- local static stick-slip ability

Performance:

- hard real time capable
- road surface wavelength λ_{road} can be arbitrary in tire in-plane direction
- restriction: only in-plane obstacle enveloping, as lateral extension of in-plane tire-road intersection is considered constant for each tire

CDTire/MF++

CDTire/MF++ is a temperature enhanced Magic Formula for coupling to CDTire/Thermal in advanced handling applications.

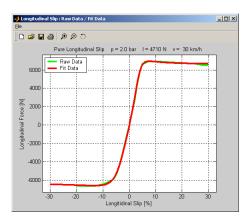


Figure 1.2: CDTire/MF++

Tire Model Structure:

- MF 5.2 / PAC2002
- Coupled with CDTire/Thermal

Contact Formulation:

- Estimation of contact patch shape, location and stick/slip zones
- Temperature dependent friction and grip levels

Performance:

• hard real time capable

1.1.2 CDTire ADD-ONs

The following CDTire modules are additional add-ons and are not included in the delivery and the license of standard CDTire for the Adams (MSC Software) product suite. To get access to these options an additional license is needed.

CDTire/Thermal

- detailed thermo-dynamical model to predict temperature creation and propagation in a tire
- fully 3D finite volume based description
- scalable resolution in all dimensions
- auto-meshing functionality
- runs with real time factor below 0.1
- easy to parameterize

Fromplo

• can be coupled with CDTire/3D, CDTire/MF++

CDTire with resizing capability

If the Resizing capability is licensed, the customer can add an additional resizing section into the parameter file by using the following keyword [$TIRE_AND_RIM_RESIZING$]. This section allows for resizing of a given tire size to a target tire size. The base tire needs to be specified (e.g. 205\55 R 16.0). Also the reference rim (e.g. 16.0 x 6.0) needs to be specified (reference dimensions). The desired tire size (e.g. 195\65 R 16.0) and rim size (e.g. 16.0 x 5.5) dimensions need to be specified as target dimensions. Assuming the material properties remain the same, CDTire now automatically resizes the tire to fit the new dimensions.

Example:	
$[TIRE_AND_RIM_RESIZING]$	
$TIRE_REF = 205/50R16$	#Reference tire specification*
$RIM_REF = 16x6$	#Reference rim specification*
$TIRE_NEW = 225/45R17$	#Target tire specification*
$RIM_NEW = 17x7$	#Target rim specification*

1.2 Road Surface Models

Technically, the Road Surface Model is a software library through which *CDTire* can interrogate road surfaces in order to sense contact. Three mechanisms for road surface definitions are supported with the Road Surface Model:

- CDTire internal road surface models (RSM 1000, 1002, 1008, 2000, 3000)
- User defined road surface model (RSM 1100)
- MBS dependent road surface models may be available, see the corresponding *CDTireMBSManual* for more information.

1.2.1 CDTire Road Surface Models (RSMs)

See the chapter 3 for detailed information on the single models.

CDTire now also supports the OpenCRG® road format as Road Surface Model 3000. This part of the software and the respective data is licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-press or implied. See the License for the specific language governing permissions and limita-tions under the License. More Information on OpenCRG® open file formats and tools can be found at http://www.opencrg.org.

1.2.2 MBS Road Surface Models (RSMs)

Some MBS systems allow CDTire to utilize their own road surface models. See the respective *CDTire MBS Guide* for detailed information on the these models and how to use them.

Model Implementation

The implementation is done by using a dedicated element to include *CDTire* in your vehicle or testrig model.

2.1 Modelling with CDTire

The *CDTire* element is a dedicated element in the modeling process and supports various commercially available MBS software packages :

- Altair MotionSolve
- Dassault Systemes SIMPACK
- IPG CarMaker
- LMS Samtech Samcef Mecano
- MATLAB / Simulink
- Mechanical Simulation CarSim
- MSC ADAMS
- Siemens Simcenter Amesim
- Siemens Simcenter 3D Motion
- VI-grade VI-CarRealTime

Please see the *CDTire MBS Guide* documentation of the specific guides on how to model with CDTire.

2

Model Usage

To include the CDTire in a MBS model also road data is required. This data can, in the simplest form, describe a plain surface without any obstacles or tracks. More complex data gives an analytical description of a road surface with obstacles or tracks, digitized measured data, a combination of those or of a drum surface.

CDTire supports several road surface models:

3

Road Surface Model	Surface Type
1000	Parametric road surface description
1002	Rolling drum with or without a cleat
1008	3D Surface
1100	User road model (ADAMS only)
2000	Parametric and Digitized Road Data
3000	OpenCRG®(1.1.1) Road Data

3.1 Road Surface Model 1000

The Road Surface Model 1000 is adapted for an analytical description of the road surface. A number of different obstacle types and tracks are available to model the road. It will generate a surface Z(X,Y) with respect to the coordinate system representing the surface origin as defined in the MBS model (P5).

A road definition file for the Road Surface Model 1000 is structured as follows:

- **Header:** This part specifies the additional translation and the used data type (obstacles, equidistant tracks or non-equidistant tracks).
- Data Part: For each obstacle or track the corresponding data is defined.

3.1.1 Header (Road Surface Model 1000)

- # HEADER ROAD MODEL 1000
- # X0_ROAD Y0_ROAD Z0_ROAD MU_ROAD 200.0 200.0 100.0 0.9
- # DATA TYPE: (2, 3 OR 4)2

The first line is a comment line starting with a hash (#). You may use it for specifying a short description or general comment to the road definition file. This line is required but all contents will be ignored by CDTire.

The second and the fourth lines are comment lines starting with a hash (#), too. Here you should enter "placeholders" for the data in the following lines. *CDTire* ignores these lines but the file will be easier to read for all users.

The third line contains the data defining the additional translation. The data type is defined by the entry in the fifth line.

Additional Translation

You may define a translation of the road coordinate system (X0) from the road origin marker (P5) of the MBS model.

Figure 3.1: Additional Translation

The additional translation is defined in the third line:

Line 1:	#	HEADER RO.	EADER ROAD MODEL 1000						
Line 2:	#	X0_ROAD	Y0_ROAD	Z0_ROAD	MU_ROAD				
Line 3:		200.0	200.0	100.0	0.9				
Line 4:	#	DATA TYPE:	(2, 3 OR 4)						
Line 5:		2							

with:

X0_ROAD	Translation in x-direction
Y0_ROAD	Translation in y-direction
Z0_ROAD	Translation in z-direction
MU_ROAD	Road friction coefficient

The parameters X0_ROAD, Y0_ROAD and Z0_ROAD determine the position of the subsequent definitions with respect to the coordinate system representing the surface origin as defined in the MBS model.

The friction coefficient of the road defines the friction of the defined plane except for all explicitly defined parts like tracks or obstacles, as these must specify their own friction coefficient.

Data Type

The data type defines the surface structure in general. It is given in the 5th line of the road definition file:

Line 1:	#	HEADER R	OAD MODEL	1000	
Line 2:	#	X0_ROAD	Y0_ROAD	Z0_ROAD	MU_ROAD
Line 3:		200.0	200.0	100.0	0.9
Line 4:	#	DATA TYI	PE: (2, 3 OR	4)	
Line 5:		2			

with:

The previously available **Data Type 1** road surface description is not supported anymore and will generate an error message.

3.1.2 Data Part (Road Surface Model 1000)

Depending on the data type defined in the header the data part contains one or more definitions of either obstacles or equidistant tracks or non-equidistant tracks. Mixing the data types is not possible.

Equidistant Track Data (DATA TYPE 2)

This is the preferred data type to construct track surfaces Z(X) on equidistant data (DATA TYPE = 2).

Figure 3.2: Road Surface Model 1000: Equidistant Track Data

The direction of the track will be the x-direction of the coordinate system representing the surface origin as defined in the MBS model. Interpolation of the track data will be linear. There can be several tracks defined in one file. Therefore the header of a road definition file for equidistant track data contains two additional lines:

Line 6: # **NTRACKS** Line 7: 3

with

NTRACKS Total number of Tracks

For each of the **NTRACKS** tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 +**NDATA** lines:

#	NDATA	X0_TRACK	Y0_TRACK	HALF_WIDTH	DX	MU_TRACK
	4.0	0.0	0.0	300.0	10.0	1.0
	0.0					
	10.0					
	10.0					
	0.0					

with:

NDATA	Number of Data points of the Track
X0_TRACK	Track origin x-coordinate w.r.t. the road data origin
Y0_TRACK	Track origin y-coordinate w.r.t. the road data origin
HALF_WIDTH	Half width of the track
DX	Equidistant spacing delta x on the track data
MU_TRACK	Friction coefficient of the track surface
Line 10	These lines contain the surdate of the single tracks (less) beights)
Line 9 + NDATA	These lines contain the zu data of the single tracks (local heights)

The total width of the track is 2*HALF_WIDTH, i.e. HALF_WIDTH is applied in the positive and the negative Y-direction, starting at Y0_TRACK.

Line 3 starts with the first data value. This value does not need to be zero, allowing for discontinuous surfaces. All further data must be on consecutive lines, one value each, as specified by NDATA.

See the chapter **Example for Equidistant Track Data (Data Type 2)** in the Appendix for a detailed example.

Non - Equidistant Track Data (DATA TYPE 3)

This data type (**DATA TYPE** = 3) is used to construct track surfaces with non-equidistant data (based on pairs of (X,Z) data). For certain types of street profiles the use of this data type would be much more efficient than equidistant data (e.g. a ramp). The direction of the track is the same as for the equidistant data. Again, several tracks can be defined in one file.

As for equidistant track data, the header is extended by the lines

Line 6: # **NTRACKS** Line 7: 3

with:

NTRACKS Total number of Tracks

For each of the **NTRACKS** tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 +**NDATA** lines:

NDATA X0_TRACK Y0_TRACK HALF_WIDTH MU_TRACK 3 300.0 0.00.01.00 0 30000 1000 50000 0

with:

NDATA X0_TRACK Y0_TRACK	Number of Data points of the Track Track origin x-coordinate w.r.t. the road data origin Track origin y-coordinate w.r.t. the road data origin
HALF_WIDTH	Half width of the track
MU_TRACK Line 10	Friction coefficient of the track surface
Line $9 + \mathbf{NDATA}$	These lines contain the zu data of the single tracks (local heights)

See the chapter **Example for Non - Equidistant Track Data (Data Type 3)** in the Appendix for a detailed example.

Matrix Track Data (DATA TYPE 4)

This data type (**DATA TYPE** = 4) is used to construct track surfaces with matrix data. The di-rection of the track is the same as for the equidistant data. Again, several tracks can be defined in one file.

Line 6: # **NTRACKS** Line 7: 3

with:

NTRACKS Total number of Tracks

For each of the **NTRACKS** tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 +**NDATA** lines:

#	$\mathbf{N}\mathbf{X}$	NY	$\mathbf{X0}$	$\mathbf{Y0}$	$\mathbf{D}\mathbf{X}$	DY	\mathbf{MU}	ZSCALE	$\mathbf{Z0}$
	3	5	-10.0	-10.0	10.0	5.0	0.9	1.0	0.0
	6.0	6.0	6.0	6.0	6.0				
	6.0	3.0	0.0	3.0	6.0				
	6.0	6.0	6.0	6.0	6.0				

with:

NX	Number of Matrix rows of the track matrix
NY	Number of matrix columns of the track matrix
X0	Track origin x-coordinate w.r.t. the road data origin (upper left point)
Y0	Track origin y-coordinate w.r.t. the road data origin (upper left point)
DX	(Signed) spacing x direction (between rows)
DY	(Signed) spacing y direction (between columns)
\mathbf{MU}	Friction coefficient of the track matrix
ZSCALE	Scaling of matrix values (z values)
Z 0	Additive offset of matrix values (z values)

3.2 Road Surface Model 1002

The Road Surface Model 1002 adapts an analytical description of a drum surface. A number of different obstacle types and tracks are available to model the drum. It will generate a surface dR(phi,Y) with respect to the coordinate system representing the surface origin as defined in the MBS model (P5).

A road definition file for the Road Surface Model 1002 is structured as follows:

- Header: This part specifies the additional translation and the used data type (obstacles, equidistant tracks or non-equidistant tracks).
- Data Part: For each obstacle or track the corresponding data is defined

3.2.1 Header (Road Surface Model 1002)

Line 1:	#	DESCRIPTION LI	NE	
Line 2:	#	RADIUS_DRUM	MU_DRUM	PERIODIC
Line 3:		1000.0	1.0	1
Line 4:	#	SURFACE TYPE		
Line 5:		1		

The first line is a comment line starting with a hash (#). You may use it for specifying a short description or general comment to the drum definition file. This line is required but all contents will be ignored by CDTire.

The second and fourth lines are comment lines starting with a hash (#), too. Here you should enter "placeholders" for the data in the following lines. *CDTire* ignores these lines but the file will be easier to read for all users. The third line contains the data defining the drum surface without any obstacles or data. It consists of the radius of the drum (in [mm]) and the friction coefficient (in [1]). A third para-meter is the periodic flag, and if set obstacles appear with every revolution of the drum surface. If not set, the obstacle will appear only once (depending on S_0 settings). The fifth line contains the type of obstacle data.

```
DESCRIPTION LINE
Line 1:
       #
          RADIUS_DRUM MU_DRUM
Line 2:
       #
                                         PERIODIC
Line 3:
          1000.0
                            1.0
                                          1
Line 4:
          SURFACE TYPE
       #
Line 5:
          1
```

with:

RADIUS_DRUM	Drum radius in [mm], positive for outer drum, negative for inner drum
MU_DRUM	Friction coefficient drum surface outside obstacle data
PERIODIC	Repeat cleat (1) or only once (0)
SURFACE TYPE	2 = with rectangular cleat
	3 = with chamfered cleat
	4 = matrix data

Figure 3.3: Road Surface Model 1002: Rolling Drum

3.2.2 Header (Road Surface Model 1002)

With R4.2.7, there are 3 surface types to construct drum surfaces with.

Rectangular cleat (SURFACE TYPE 2)

The road definition file for a drum surface with any rectangular cleat (SURFACE TYPE 2) has the following structure (with infinite lateral dimension):

```
#
  DESCRIPTION LINE
  RADIUS_DRUM
                   MU_DRUM
                             PERIODIC
#
                   1.0
                              1
   1000.0
   SURFACE TYPE
#
   2
   Η
        W
            S_0
                   PHI
                        MU_CLEAT
#
```

90.0

0.8

with:

10.0

20.0

-2522.2

Н	Height [mm] of cleat
\mathbf{W}	Width [mm] of cleat (length of cleat is infinite)
S_0	Arc length[mm] from top of drum to cleat origin for PERIODIC_FLAG = 1,
	this must be RADIUS_DRUM*PI $<$ S_0 $<$ RADIUS_DRUM*PI
PHI	Direction angle of cleat, measured from wheel plane, transversal cleat is 90°
MU_CLEAT	Friction coefficient on cleat

Ramped / trapezoid cleat (SURFACE TYPE 3)

The road definition file for a drum surface with any ramped or trapezoid cleat (SURFACE TYPE 3) has the following structure (with infinite lateral dimension):

```
DESCRIPTION LINE
#
   RADIUS_DRUM
#
                     MU DRUM
                                PERIODIC
   1000.0
                     1.0
                                1
#
   SURFACE TYPE
   3
   н
        W1
             W2
                  W3
                       S_0
                               PHI
                                     MU_CLEAT
#
   10.0
        20.0
             40.0
                  20.0
                       -2522.2
                               90.0
                                     0.8
```

with:

Н	Height [mm] of cleat	
$\mathbf{W1}$	Width (arclength) [mm] of leading ramp	
$\mathbf{W2}$	Width (arclength) [mm] of constant height H	
W3	Width (arclength) [mm] of trailing ramp	
S_0	Arc length $[mm]$ from top of drum to cleat origin for PERIODIC_FLAG = 1,	
	this must be RADIUS_DRUM*PI $< S_0 < RADIUS_DRUM*PI$	
PHI	Direction angle of cleat, measured from wheel plane	
MU_CLEAT	Friction coefficient on cleat	

Matrix data (SURFACE TYPE 4)

The road definition file for a drum surface with any equidistant grid or matrix data dR(phi,y) (SURFACE TYPE 4) has the following structure:

# # #	Ĺ	DESCRI RADIUS 1000.0 SURFA	_DRU	JM I	MU_DRUM 1.0	PERIOD 1	οIC			
#	<u>L</u>	4 NPHI 4	NY 2.0	PHI0 0.0	DPHISEG 3.48	Y0 -200.0	DY 400	MU 0.8	SCALE	RADIUSOFFSE

10.0	10.0
20.0	20.0
20.0	20.0
10.0	10.0

with:

NPHI	Number of circumferential data points
NY	Number of lateral (axial) data points
PHI0	Starting angle [deg] of data segment, $-180 < \mathrm{PHI0} < 180$
DPHISEG	Angular segment range [deg] of data, 360° for full drum
Y0	Starting lateral coordinate [mm] of data
DY	Lateral discretization spacing [mm] of data
MU	Friction coefficient on data
SCALE	Scaling coefficient for radial data
RADIUSOFFSET	Offset value [mm]
DATA	NPHI rows, NY columns

Above example makes up a trapeze. All lines starting with a hash (#) are comment files used to define placeholders for the data in the following lines. Even if *CDTire* will skip over them, these lines are required. Do not delete them!

3.3 Road Surface Model 1008

This road surface model is the CDTire implementation of the 3D method of MSC Adams .rdf data files. Some MBS systems can also visualize this road format in their respective Pre-/Postprocessor. This documentation lists only the required data format to work with CDTire - for visualization support of MBS systems, please refer to the respective MBS documentation.

Data structure and format

The data file is based on section / keyword format. A valid section line contains the name of the section is square brackets. A valid keyword line contains the name of the keyword, followed by the '=' character, followed by the value. A valid CDTire RSM1008 file is shown here:

[MODEL] METHOD = '3D'[UNITS] LENGTH = 'MM'[OFFSET] X = 100.0Y = 200.0Z = -10.0[NODES] NUMBER OF NODES = 4{node x value y_value z_value} -10.0 1 -200.010.0210.0-200.010.03 10.0200.010.04 -10.0200.0 10.0

[ELEMENTS]					
NUMBER	_OF_EL	EMENTS	= 2		
$\{node_1$	$node_2$	$node_3$	u}		
1	2	3	0.8		
1	3	4	0.8		

The following format details may only be valid for the CDTire implementation of .rdf files:

- Section names, keyword names and strings are case insensitive. All of "METHOD", "method", "Method" are the same valid keyword.
- Supported units are "MM" (millimeter), "CM" (centimeter), and "M" (meter)

• In node and element section, a comment line containing a left brace (curly) bracket indicates that the next line starts with the respective data matrix (nodes or elements). The successive NUMBER_OF_xxx lines must contain valid line data for each line.

3.4 Road Surface Model 2000

3.4.1 CDTire Setup for Road Surface Model 2000

CDTire needs to be set up for road surface type "2000" in order to make use of the Road Surface Model.

In order to run *CDTire* on road data, following set of files is required in the directory referred to in the *CDTire* setup:

- A global definition file that defines the boundaries of the track MasterRectangle.h
- A surface type classification file SurfacType.h that defines the friction coefficient for the different surface types as referred in the road data files
- A set of "macropatch" header files named MP_0_0.h, MP_0_1.h etc.
- A (when applicable) a set of "macropatch" binary data files named MP_0_0.d, MP_0_1.d etc.
- A (when applicable) a set of parametric road description files

Note : the mention "when applicable" relates to the fact that a track definition for CDTire may be defined either through digitized data only, parametric description files only, or a mix of both.

IMPORTANT: all the files mentioned above are *strictly required*, and need to adhere to the specified naming and format conventions. The format of the needed header files is explained in the following sections.

The fundamental idea behind the Road Format concept is that any track will be described in a rectangular grid which has three levels of discretization:

- A "master rectangle" that envelopes the complete track
- A series of "macropatches" (typically size 10 x 10 m) defined inside this master rectangle
- A series of "micropatches" per macropatch (typical size 0.5 x 0.5 m)
- A rectangular mesh in each micropatch (grid size typically 5 x 5 mm), where per grid point in the mesh the track Z-coordinate has been measured and stored

MasterRectangle.h

The structure of the file MasterRectangle.h is:

version indicator	Actual value : v002 (string)
comment	String(s) of arbitrary length beginning with $\#$
platform-flag	Specifies platform where binary data have been written (integer):
	$1 \rightarrow \text{Unix}, 2 \rightarrow \text{Windows NT}, 3 \rightarrow \text{SGI IRIX}$
Xoff Yoff Zoff	Real altitude and offset of left lower corner of the Master Rectangle (double)
indicator	To read the Macro-patches column-wise (1 char: c)
rows < space > columns	Number of rows and columns of Macro-patches (long)
width $<$ space $>$ height	Width and height of a Macro patch (double)
units	String max 17 characters – reserved for future use

$\label{eq:example for MasterRectangle.h:} Example for MasterRectangle.h:$

v002 # Master rectangle definition for Track A 2 -100.000 -100.000 15.000 c 7 1 10000.000 10000.000 mm

MacroPatch header files

File entry	Meaning
Macropatch column_nr row_n	
{	
version indicator	Actual value : v002 (string)
comment	String(s) of arbitrary length beginning with $\#$
platform-flag	Specifies platform where binary data have been written (integer):
	$1 \rightarrow \text{Unix}, 2 \rightarrow \text{Windows NT}, 3 \rightarrow \text{SGI IRIX}$
Zoff	Z-Position of left lower corner relative to origin of Master-rectangle (double)
columns < space > rows	Number of columns and rows of micro-patches (long)
width $\langle \text{space} \rangle$ height	Width and height in mm of a micro-patch (dou-ble)
indicator	To read the micro-patches column-wise (1 char: c)
}	
Micropatch 0 0	Header of micro patch section 0 0
<header info=""></header>	Header info of micro patch section 0 0
Micropatch 0 1	Header of micro patch section 0 1
<header info=""></header>	Header info of micro patch section 0 1
Micropatch 0 2	Header of micro patch section 0 2
<header info=""></header>	Header info of micro patch section 0 2

The format of the micro patch sections in the macro patch header files depends on the type of road description:

• Off Road:

File entry	Meaning
Micropatch micro_column_nr micro_row_n	Micro path header
data type	$0 \rightarrow \text{off road (integer)}$

• Digitized:

File entry	Meaning		
Micropatch micro_column_nr micro_row_n	Micro path header		
data type	$0 1 \rightarrow $ digitized (integer)		
trackclassification	Refers to a classification number in surface classification file		
	(integer)		
width $\langle \text{space} \rangle$ height	Width and height in mm of an element (double)		
$lines_h < space >$	Number of grid lines horizontally and vertically (integer)		
lines_v			
byte number	Byte number of the first micro-patch identifier index in the		
	data file		
	(unsigned integer)		
indicator	To read the micro-patches columnwise (1 char: c)		
$tiretype_proposed$	$20 \mid 30 \mid 40 \text{ (integer)}$		
flag	Reserved for future use (integer)		

• Parameterized:

File entry	Meaning
Micropatch micro_column_nr micro_row_n	Micro path header
data type	$2 \rightarrow \text{parameterized (integer)}$
trackclassification	Refers to a classification number in surface classification file
	(integer)
filename	Filename without pathname for data specification (string)
tiretype_proposed	$20 \mid 30 \mid 40 \text{ (integer)}$
flag	Reserved for future use (integer)

Example for a ${\bf MacroPatch}$ header file:

The following example contains the **3 types of micropatches**. This file shows only the first and second column.

```
Macropatch 0 0 {
{ v002
# Example 2
```

-10.0000	
20	20
500.000	500.000
с	
}	
Macropatch	0 0
1	
1	
5.000	5.000
101	101
0	
с	
20	
2030	
Macropatch	0 1
1	
1	
5.000	5.000
101	101
40812	
с	
20	
2030	
Macropatch	0 2
1	
1	
5.000	5.000
101	101
81624	
с	
20	
2030	
Macropatch	03
1	
1	
5.000	5.000
101	101
122436	
с	
20	
2030	0.4
Macropatch	04
1	
1	F 000
5.000	5.000

101	101
163248	
c 20	
20	
2030 Magnapatah	0 5
Macropatch	0 5
1	
5.000	5.000
101	101
204060	101
c	
20	
2030	
Micropatch	09
2	
1	
ParametricFile.h	
20	
2030	
Micropatch	0 10
2	
1	
ParametricFile.h	
20	
2030	0.44
Micropatch	0 11
2	
1 ParametricFile h	
ParametricFile.h 20	
2030	
Micropatch	0 12
2	0 12
1	
ParametricFile.h	
20	
2030	
Micropatch	17
1	
1	
5.000	5.000
101	101

652992	
с	
20	
2030	
Micropatch	18
1	
1	
5.000	5.000
101	101
693804	
с	
20	
2030	
Micropatch	19
0	
Micropatch	1 10
0	
Micropatch	1 11
0	
Micropatch	1 12
0	
Micropatch	1 13
0	
Micropatch	1 14
0	
Micropatch	1 15
0	
Micropatch	1 16
0	
Micropatch	1 17
0	
Micropatch	1 18
0	
Micropatch	1 19
0	

Surface type classification file

This file contains an **ascii** table defining the friction coefficient that corresponds to the surface types as specified in each micro patch header file.

Example for a surface type classification file:

17	\rightarrow	Maximum class number defined in the file
0 < tab > 1.00	\rightarrow	Surface class $<$ tab $>$ friction coefficient
5 < tab > 1.01	\rightarrow	Surface class $<$ tab $>$ friction coefficient
$12{<}{\rm tab}{>}1.05$	\rightarrow	
13 < tab > 1.1	\rightarrow	
17 < tab > 1.15	\rightarrow	

3.5 Customizing CDTire

Even though *CDTire* tries to present a setup in a plug-and-play fashion, there are several considerations for a successful simulation that cannot be tuned automatically. These include structural discretization, integrator tuning and inflation pressure.

For more information on

- Structural discretization and inflation pressure refer to the chapters in the Appendix:
 - Tire Parameter Files for CDTire/MF++
 - Tire Parameter Files for CDTire/Realtime and
 - Tire Parameter Files for CDTire/3D

Appendix

The following paragraphs explain the parameter files for the tire models CDTire/MF++, CDTire/Realtime and CDTire/3D in detail. For each tire model a listing of the corresponding parameter file and explanations to the single parameters are given.

4

Tire Parameter File - CDTire/MF++

The following listing shows the input file for a tire as used in the tire model CDTire/MF++:

'meter' 'newton' 'radians' 'kg' 'second'

[CDT10 PARAMETERS]

[UNIT]

5

LENGTH =	
FORCE =	
ANGLE =	
MASS =	
TIME =	

[MODEL]

LONGVL = 16.6	\$Measurement speed
THERMAL_MODEL_FLAG = 0	
$VELOCITY_TRESHOLD = 0.5$	\$Lower cut off velocity

[DIMENSION]

UNLOADED_RADIUS = 0.312
WIDTH $= 0.195$
$ASPECT_RATIO = 0.65$
$RIM_RADIUS = 0.19$
$RIM_WIDTH = 0.1524$

[VERTICAL]

$VERTICAL_STIFFNESS = 2e + 005$	9
$VERTICAL_DAMPING = 0$	9
BREFF = 6.1	9
DREFF = 0.45	9
FREFF = 0.01	9
FNOMIN = 4000	9

\$Free tyre radius
\$Nominal section width of tyre
\$Nominal aspect ratio
\$Nominal rim radius
\$Rim width

\$Tyre vertical stiffness		
\$Tyre vertical damping		
\$Low load stiffness e.r.r.		
\$Peak value of e.r.r.		
\$High load stiffness e.r.r.		
Nominal wheel load		

[PARAMETER]

VERTICAL STIFFNESS = $2e+005$ \$Tyre vertical sti	tiffness
---	----------

[LONG_SLIP_RANGE]

KPUMIN = -1.5	\$Minimum valid wheel slip
KPUMAX = 1.5	\$Maximum valid wheel slip

[SLIP_ANGLE_RANGE]

ALPMIN = -1.5708	\$Minimum valid slip angle
ALPMAX = 1.5708	Maximum valid slip angle

[INCLINATION_ANGLE_RANGE]

CAMMIN = -0.26181	Minimum valid camber angle
CAMMAX = 0.26181	Maximum valid camber angle

[VERTICAL_FORCE_RANGE]

FZMIN = 200	\$Minimum allowed wheel load
FZMAX = 9000	Maximum allowed wheel load

[SCALING_COEFFICIENTS]

LFZO = 1	\$Scale factor of nominal (rated) load
LCX = 1	\$Scale factor of Fx shape factor
LMUX = 1	\$Scale factor of Fx peak friction coefficient
LEX = 1	\$Scale factor of Fx curvature factor
LKX = 1	\$Scale factor of Fx slip stiffness
LHX = 1	\$Scale factor of Fx horizontal shift
LVX = 1	\$Scale factor of Fx vertical shift
LGAX = 1	\$Scale factor of camber for Fx
LCY = 1	\$Scale factor of Fy shape factor
LMUY = 1	\$Scale factor of Fy peak friction coefficient
LEY = 1	\$Scale factor of Fy curvature factor
LKY = 1	\$Scale factor of Fy cornering stiffness
LHY = 1	\$Scale factor of Fy horizontal shift
LVY = 1	\$Scale factor of Fy vertical shift
LGAY = 1	\$Scale factor of camber for Fy
LTR = 1	\$Scale factor of Peak of pneumatic trail
LRES = 1	\$Scale factor for offset of residual torque
LGAZ = 1	\$Scale factor of camber for Mz
LXAL = 1	\$Scale factor of alpha influence on Fx
LYKA = 1	\$Scale factor of alpha influence on Fx
LVYKA = 1	\$Scale factor of kappa induced Fy

Continued on the next page...

[SCALING_COEFFICIENTS]

LS = 1	\$Scale factor of Moment arm of Fx
LSGKP = 1	\$Scale factor of Relaxation length of Fx
LSGAL = 1	\$Scale factor of Relaxation length of Fy
LGYR = 1	\$Scale factor of gyroscopic torque
LMX = 1	\$Scale factor of overturning couple
LVMX = 1	\$Scale factor of Mx vertical shift
LMY = 1	\$Scale factor of rolling resistance torque

[LONGITUDNAL_COEFFICIENTS]

PCX1 = 1.839
PDX1 = 1.1387
PDX2 = -0.11999
PDX3 = -2.2142e-005
PEX1 = 0.62727
PEX2 = -0.12336
PEX3 = -0.03448
PEX4 = -1.5066e-005
PKX1 = 18.886
PKX2 = -3.988
PKX3 = 0.21542
PHX1 = -0.00033912
PHX2 = -8.5877e-006
PVX1 = -4.638e-006
PVX2 = 1.9874e-005
RBX1 = 5.9945
RBX2 = -8.2609
RCX1 = 1.07816
REX1 = 1.644
REX2 = -0.0064359
RHX1 = 0.008847
PTX1 = 1.85
PTX2 = 0.000109
PTX3 = 0.101

\$Shape factor Cfx for longitudinal force \$Longitudinal friction Mux at Fznom \$Variation of friction Mux with load \$Variation of friction Mux with camber \$Longitudinal curvature Efx at Fznom \$Variation of curvature Efx with load \$Variation of curvature Efx with load squared \$Factor in curvature Efx while driving \$Longitudinal slip stiffness Kfx/Fz at Fznom \$Variation of slip stiffness Kfx/Fz with load \$Exponent in slip stiffness Kfx/Fz with load \$Horizontal shift Shx at Fznom \$Variation of shift Shx with load \$Vertical shift Svx/Fz at Fznom \$Variation of shift Svx/Fz with load \$Slope factor for combined slip Fx reduction \$Variation of slope Fx reduction with kappa \$Shape factor for combined slip Fx reduction \$Curvature factor of combined Fx \$Curvature factor of combined Fx with load \$Shift factor for combined slip Fx reduction \$Relaxation length SigKap0/Fz at Fznom \$Variation of SigKap0/Fz with load \$Variation of SigKap0/Fz with exponent of load

QSX1 = 0	\$Lateral force induced overturning moment
QSX2 = 0	\$Camber induced overturning couple
QSX3 = 0	\$Fy induced overturning couple

[LATERAL_COEFFICIENTS]

PCY1 = 1.3223
PDY1 = 1.0141
PDY2 = -0.12274
PDY3 = -1.0426
PEY1 = -0.63772
PEY2 = -0.050782
PEY3 = -0.27333
PEY4 = -8.3143
PKY1 = -19.797
PKY2 = 1.7999
PKY3 = 0.0095418
PHY1 = 0.0011453
PHY2 = -6.6688e-005
PHY3 = 0.044112
PVY1 = 0.031305
PVY2 = -0.0085749
PVY3 = -0.092912
PVY4 = -0.27907
RBY1 = 6.2238
RBY2 = 3.0734
RBY3 = 0.016076
RCY1 = 1.0051
REY1 = 0.019749
REY2 = -0.0020691
RHY1 = -0.0010319
RHY2 = 7.4123e-006
RVY1 = 0.02962
RVY2 = -0.011053
RVY3 = -0.0009317
RVY4 = 11.842
RVY5 = 1.9
RVY6 = 0
PTY1 = 1.9
PTY2 = 2.25

\$Shape factor Cfy for lateral forces \$Lateral friction Muy \$Variation of friction Muy with load \$Variation of friction Muy with squared camber \$Lateral curvature Efy at Fznom \$Variation of curvature Efy with load \$Zero order camber dependency of curvature Efy \$Variation of curvature Efy with camber \$Maximum value of stiffness Kfy/Fznom \$Load at which Kfy reaches maximum value \$Variation of Kfy/Fznom with camber \$Horizontal shift Shy at Fznom \$Variation of shift Shy with load \$Variation of shift Shy with camber \$Vertical shift in Svy/Fz at Fznom \$Variation of shift Svy/Fz with load \$Variation of shift Svy/Fz with camber \$Variation of shift Svy/Fz with camber + load \$Slope factor for combined Fy reduction \$Variation of slope Fy reduction with alpha \$Shift term for alpha in slope Fy reduction \$Shape factor for combined Fy reduction \$Curvature factor of combined Fy \$Curvature factor of combined Fy with load \$Shift factor for combined Fy reduction \$Shift factor for combined Fy red. w. load \$Kappa induced side force Svyk/Muy*Fz at Fznom \$Variation of Svyk/Muy*Fz with load \$Variation of Svyk/Muy*Fz with camber \$Variation of Svyk/Muy*Fz with alpha \$Variation of Svyk/Muy*Fz with kappa \$Variation of Svyk/Muy*Fz with atan(kappa) \$Peak value of relaxation length SigAlp0/R0 \$Value of Fz/Fznom where SigAlp0 is extreme

[ROLLING_COEFFICIENTS]

QSY1 = 0.01

\$Rolling resistance torque coefficient

31

[ROLLING_COEFFICIENTS]

QSY2 = 0	\$Rolling resistance torque depending on Fx
QSY3 = 0	\$Rolling resistance torque depending on speed
QSY4 = 0	\$Rolling resistance torque depending on speed

[ALIGNING_COEFFICIENTS]

QBZ1 = 7.5088
QBZ2 = -1.9428
QBZ3 = 0.61681
QBZ4 = 0.12231
QBZ5 = 0.50016
QBZ9 = 5.5144
QBZ10 = 0
QCZ1 = 1.2237
QDZ1 = 0.062582
QDZ2 = 0.00052585
QDZ3 = -0.60661
QDZ4 = 8.634
QDZ6 = -0.0048467
QDZ7 = 0.0034983
QDZ8 = -0.11032
QDZ9 = 0.021277
QEZ1 = -5.3971
QEZ2 = 1.1207
QEZ3 = 0
QEZ4 = 0.14942
QEZ5 = -1.1429
QHZ1 = -0.00069905
QHZ2 = 0.0055192
QHZ3 = 0.065953
QHZ4 = 0.11393
SSZ1 = 0.022576
SSZ2 = 0.024754
SSZ3 = 0.0014697
SSZ4 = 0.0014801
QTZ1 = 0.2
MBELT = 4.9

\$Trail slope factor for trail Bpt at Fznom
\$Variation of slope Bpt with load
\$Variation of slope Bpt with load squared
Variation of slope Bpt with camber
\$Variation of slope Bpt with absolute camber
\$Slope factor Br of residual torque Mzr
\$Slope factor Br of residual torque Mzr
\$Shape factor Cpt for pneumatic trail
\$Peak trail
Variation of peak Dpt ["] with load
Variation of peak Dpt" with camber
Variation of peak Dpt" with camber squared
\$Peak residual torque
\$Variation of peak factor Dmr" with load
\$Variation of peak factor Dmr" with camber
$\operatorname{SVariation}$ of peak factor Dmr" w. camber+load
\$Trail curvature Ept at Fznom
\$Variation of curvature Ept with load
\$Variation of curvature Ept with load squared
\$Variation of curvature Ept w. sign of Alpha-t
\$Variation of Ept with camber and sign Alpha-t
\$Trail horizontal shift Sht at Fznom
\$Variation of shift Sht with load
\$Variation of shift Sht with camber
\$Variation of shift Sht with camber and load
Nominal value of s/R0: effect of Fx on Mz
Variation of distance s/R0 with Fy/Fznom
Variation of distance s/R0 with camber
Variation of distance s/R0 with load+camber
\$Gyration torque constant
\$Belt mass of the wheel

Parameter	Default Value Explanation	Unit	Class
[CDT10 STATIC PARAMETERS]			
LOGGING_LEVEL	0	-	MBS STATIC

Parameter	Default Value Expla- nation	- Unit	Class
	Set to 1 for verbose mod	le	
INFLATION_PRESSURE_REF	0.25 Reference inflation press vanced settings)	MPa sure (can be overruled b	MBS STATIC by ad-
INCLINATION_ANGLE_REF	0 Reference inclination ar vanced settings)	rad ngle (can be overruled b	MBS STATIC by ad-
FZW_REF	5000 Reference vertical (norm advanced settings)	N nal) load (can be overrul	MBS STATIC ed by
VERTICAL_STIFFNESS_ UNLOADED_HEIGHT	325	mm	MBS STATIC
	Minimal unloaded height IP/IA	t (surface normal) for refe	erence
VERTICAL_STIFFNESS	250 Linear vertical stiffness f	N/mm for reference IP/IA	MBS STATIC
VERTICAL_STIFFNESS_ QUADFACTOR	0.5	N/mm^2	MBS STATIC
	Quadratic vertical stiffne	ess for reference IP/IA	
LONGITUDINAL_SLIP_ ACTIVATE	0	-	MBS STATIC
	(De-)activates longitudir	al slip during statics	
LONGITUDINAL_SLIP_ KAPPA_SHIFT	0	-	MBS STATIC
	Shift (offset) for reference		
LONGITUDINAL_SLIP_ STIFFNESS	$2e^{+5}$	N/1	MBS STATIC
	Slip stiffness for reference IP/IA/FZW		
LONGITUDINAL _STIFFNESS_ACTIVATE	0	-	MBS STATIC
	· · / · · ·	al stiffness during statics	
LONGITUDINAL _STIFFNESS	400	N/mm	MBS STATIC
	Static stiffness for refere	nce IP/IA/FZW	
LATERAL_SLIP_ ACTIVATE	0	-	MBS STATIC
	(De-)activates lateral slip		
LATERAL_SLIP_CORNERING _SLIPANGLE_SHIFT	0	rad	MBS STATIC
	Shift (offset) for reference		
LATERAL_SLIP_CORNERING _STIFFNESS	$1e^{+5}$	N/rad	MBS STATIC

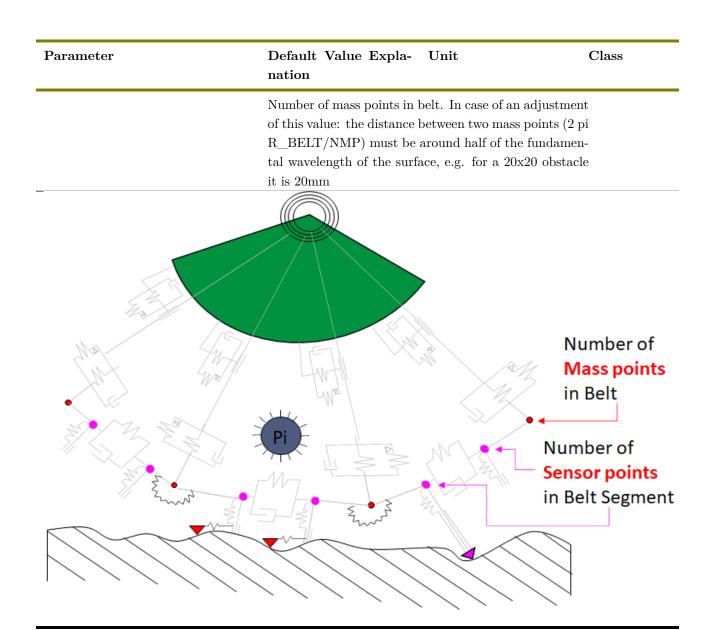
Parameter	Default Value Expla- nation	Unit	Class
	Slip stiffness for reference	IP/IA/FZW	
LATERAL_SLIP_ALIGNING _TORQUE_SLIPANGLE_SHIFT	0	rad	MBS STATIC
	Shift (offset) for reference	IP/IA/FZW	
LATERAL_SLIP_ALIGNING _TORQUE_STIFFNESS	5000	Nmm/rad	MBS STATIC
	Slip stiffness for reference	IP/IA/FZW	
LATERAL_STIFFNESS_ ACTIVATE	0	-	MBS STATIC
	(De-)activates lateral stiff	-	
LATERAL_STIFFNESS	200 Static stiffness for reference	N/mm ce IP/IA/FZW	MBS STATIC
VERTICAL_STIFFNESS _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC
	Optional reference infla CAL_STIFFNESS deriva	tion pressure for VERT tives dIP	Ί-
VERTICAL_STIFFNESS _INCLINATION_ANGLE_REF	0	rad	MBS STATIC
	Optional reference inclination angle for VERTI- CAL STIFFNESS derivatives dIA		
VERTICAL_STIFFNESS _UNLOADED_HEIGHT_dIP_dIA	[0,0]	$[mm^3/N, mm/rad]$	MBS STATIC
	First derivatives at referer	nce IP/IA	
VERTICAL_STIFFNESS _dIP_dIA	[0,0]	[mm, N/(mm rad)]	MBS STATIC
	First derivatives at referer	nce IP/IA	
VERTICAL_STIFFNESS _QUADFACTOR_dIP_dIA	[0,0]	$[1, N/(mm^2 rad)]$	MBS STATIC
	First derivatives at reference IP/IA		
VERTICAL_STIFFNESS _UNLOADED_HEIGHT dIP2 dIPdIA dIA2 HALF	[0,0,0]	$[mm^5/N^2, mm^3/(N rad), mm/rad^2]$	MBS STATIC
	One half of second derivat	tives at reference IP/IA	
VERTICAL_STIFFNESS dIP2_dIPdIA_dIA2_HALF	[0,0,0]	$\frac{[\text{mm}^3/\text{N}, \text{mm/rad},}{\text{N/(mm rad}^2)}$	MBS STATIC
	One half of second derivatives at reference IP/IA		
VERTICAL_STIFFNESS _QUADFACTOR	[0,0,0]	$\frac{[\text{mm}^2/\text{N}, 1/\text{rad},}{\text{N}/(\text{mm}^2 \text{ rad}^2)]}$	MBS STATIC
dIP2_dIPdIA_dIA2_HALF	One half of second derivat	vives at reference IP/IA	

Parameter	Default Value Expla- nation	Unit	Class	
LONGITUDINAL_SLIP _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC	
	Optional reference inflation pressure for LONGITUDI- NAL_SLIP derivatives dIP			
LONGITUDINAL_SLIP _INCLINATION_ANGLE_REF	0	MPa	MBS STATIC	
	Optional reference inclination angle for LONGITUDI- NAL_SLIP derivatives dIA			
LONGITUDINAL_SLIP FZW REF	5000	MPa	MBS STATIC	
	Optional reference vertical (normal) load for LONGI- TUDINAL_SLIP derivatives dFZW			
LONGITUDINAL_SLIP _KAPPA_SHIFT dIP_dIA_dFZW	[0,0,0]	$[\text{ mm}^2/\text{N}, 1/\text{rad}, 1/\text{N}]$	MBS STATIC	
	First derivatives at reference IP/IA/FZW			
LONGITUDINAL_SLIP _STIFFNESS	[0,0,0]	$[\text{ mm}^2, \text{N/rad}, 1]$	MBS STATIC	
dIP_dIA_dFZW				
	First derivatives at referen	1 1		
LONGITUDINAL_ STIFFNESS	[0,0,0]	[mm, N/(mm rad), 1/mm]	MBS STATIC	
dIP_dIA_dFZW	First derivatives at reference IP/IA/FZW			
LATERAL_SLIP _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC	
	Optional reference inf ERAL_SLIP derivatives of	lation pressure for LA dIP	Т-	
LATERAL_SLIP	0	rad	MBS STATIC	
_INFLATION_PRESSURE_REF				
	Optional reference inf ERAL_SLIP derivatives of	-	Τ-	
LATERAL_SLIP _FZW_REF	5000	Ν	MBS STATIC	
	Optional reference inf ERAL_SLIP derivatives of	lation pressure for LA dFZW	Т-	
LATERAL_SLIP _CORNERING_SLIPANGLE_SHI	[0,0,0]	$[\text{mm}^2 \text{ rad/N}, 1, \text{ rad/N}]$	MBS STATIC	
dIP_dIA_dFZW	First derivatives at referen	nce IP/IA/FZW		

Parameter	Default Value Expla- nation	Unit	Class
LATERAL_SLIP	[0,0,0]	[mm ² /rad, N/rad ² ,	MBS STATIC
_CORNERING_STIFFNESS		1/rad]	
dIP_dIA_dFZW			
	First derivatives at reference IP/IA/FZW		
LATERAL_SLIP	$[0,\!0,\!0]$	$[\text{ mm}^2 \text{ rad/N}, 1, \text{ rad/N}]$	MBS STATIC
_ALIGNING_TORQUE_SLIPANG	LE_SHIFT		
dIP_dIA_dFZW			
	First derivatives at reference IP/IA/FZW		
LATERAL_SLIP	$[0,\!0,\!0]$	$[mm^3/rad, Nmm/rad^2,]$	MBS STATIC
_ALIGNING_TORQUE_STIFFNE	SS	mm/rad]	
dIP_dIA_dFZW			
	First derivatives at reference IP/IA/FZW		
LATERAL_STIFFNESS	$[0,\!0,\!0]$	[mm, Nmm/rad, 1/mm	MBS STATIC
$_dIP_dIA_dFZW$]	
	First derivatives at referen	nce IP/IA/FZW	
WHEELCENTER_STIFFNESS	0	-	MBS STATIC
_ACTIVATE			
	(De-)activates wheel center	er stiffnesses during statics	
WHEELCENTER_STIFFNESS	400	N/mm	MBS STATIC
_INPLANE_TRANSLATIONAL			
	Derived (can be overuled	if specified) stiffness	
WHEELCENTER_STIFFNESS	200	N/mm	MBS STATIC
_OUTPLANE_TRANSLATIONAL			
	Derived (can be overuled if specified) stiffness		
WHEELCENTER_STIFFNESS	$2e^{+7}$	Nmm/rad	MBS STATIC
_OUTPLANE_ROTATIONAL			
	Derived (can be overuled if specified) stiffness		
WHEELCENTER_STIFFNESS	$5\mathrm{e}^{+7}$	Nmm/rad	MBS STATIC
_INPLANE_ROTATIONAL			
	Derived (can be overuled	if specified) stiffness	

Tire Parameter File - CDTire/Realtime

The following listing shows the input file structure for the tire model CDTire/Realtime. For a comprehensive list of the respective parameters of each block, look into the appended table and the example parameter files from the installation.


The unit system is fixed to [N, mm, s, t] (Newton, millimeter second, ton). The parameters are keyword based and reside in respective sections. The two mandatory sections are:

- [CDT30-HPS MODEL PARAMETERS] contains all geometric, discretization, material and other physical modelling parameters
- [CDT30-HPS SOLVER PARAMETERS] contains all numerical parameters of the internal integrator

Remark: You may edit some parameters to suit your requirements. These parameters are colored blue in the listing above and an according remark is given in the following table. The parameters colored in orange are optional and (if used) change model behavior or introduce new functionality.

Parameter	Default Value Explanation	Unit	Class
[C]	DT30-HPS MODEL PA	ARAMETERS]	
CDTIRE_VERSION_USED	2021.1.0 Version of CDTire use	- ed to perform the simu	VERSION
PIN	0.25 Actual inflation press mechanism)	MPa ure (maybe overruled b	PRESSURE by interface
PREF	0.25 Reference inflation pr	MPa essure	PRESSURE
PIN_FLAG	0 Toggle pressure-deper	- dency of sidewall	PRESSURE
NMP	50	-	PRESSURE

6

R_BELT	300	mm	GEOMETRY		
	Radius of the belt (inflated)				
R_RIM	200	mm	GEOMETRY		
Radius of the rim					
W_BELT	150	mm	GEOMETRY		
Effective width of the belt					
MASS					
MASS_BELT	0.00500	t	MASS		
Mass of belt and tread					
	nicebb of boild diffe				

BD_MASS_SUB_FROM es not affect tire simulatio vice how to update mass a p t ne for MBD_IXX_xxx ca p t ne for MBD_IYY_xxx ca p t ne for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat:)	S_ADD_TO_RIM and [_WHEEL calculation on; This parameters give and and inertia of the rim body cmm ² alculation cmm ² alculation cmm ²	; n MASS MASS MASS SIDEWALL e SIDEWALL
ed for MBD_MASS BD_MASS_SUB_FROM as not affect tire simulation vice how to update mass and by the for MBD_IXX_xxx can can be for MBD_IYY_xxx can can be for MBD_IYY_xxx can by the for MBD_IZZ_xxx can SIDEWALL He turnal frequency: Translat:) He turnal frequency: Translat:)	S_ADD_TO_RIM and [_WHEEL calculation on; This parameters give and and inertia of the rim body cmm ² alculation cmm ² alculation cmm ² alculation cmm ² alculation cmm ² alculation cmm ² alculation	d ; , MASS MASS MASS MASS SIDEWALL e SIDEWALL
BD_MASS_SUB_FROM as not affect tire simulation vice how to update mass a construction of the simulation of MBD_IXX_xxx ca construction of MBD_IYY_xxx ca construction of MBD_IYY_xxx ca construction of the simulation of MBD_IZZ_xxx can construction of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation	[WHEEL calculation on; This parameters give an and inertia of the rim body mm ² alculation mm ² alculation mm ² alculation Hz	; n MASS MASS MASS SIDEWALL e SIDEWALL
es not affect tire simulatio vice how to update mass a D t ne for MBD_IXX_xxx ca D t ne for MBD_IYY_xxx ca D t ne for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat:) H tural frequency: Translat)	Hz	MASS MASS MASS SIDEWALL e SIDEWALL
vice how to update mass a D t ne for MBD_IXX_xxx ca D t ne for MBD_IYY_xxx ca D t ne for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat:) H tural frequency: Transla)	and inertia of the rim body cmm ² alculation cmm ² alculation cmm ² alculation Hz tion in x/z-direction (mode Hz	y MASS MASS MASS SIDEWALL e SIDEWALL
D t ne for MBD_IXX_xxx ca D t ne for MBD_IYY_xxx ca D t me for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat:) H tural frequency: Translat:)	mm ² alculation mm ² alculation mm ² alculation Hz Hz Hz	MASS MASS MASS SIDEWALL e SIDEWALL
ne for MBD_IXX_xxx ca) t ne for MBD_IYY_xxx ca) t SIDEWALL H tural frequency: Translat:) H tural frequency: Translat)	alculation mm ² alculation mm ² alculation Hz tion in x/z-direction (mode Hz	MASS MASS SIDEWALL e SIDEWALL
D t ne for MBD_IYY_xxx ca D t ne for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat:) H tural frequency: Transla)	mm ² alculation mm ² alculation Hz Hz Hz	MASS SIDEWALL e SIDEWALL
D t ne for MBD_IYY_xxx ca D t ne for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat:) H tural frequency: Transla)	mm ² alculation mm ² alculation Hz Hz Hz	MASS SIDEWALL e SIDEWALL
ne for MBD_IYY_xxx ca t ne for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat: H tural frequency: Translat:)	mm ² alculation Hz Gion in x/z-direction (mode Hz	MASS SIDEWALL e SIDEWALL
D t ne for MBD_IZZ_xxx ca SIDEWALL H tural frequency: Translat:) H tural frequency: Transla)	mm ² alculation Hz Gion in x/z-direction (mode Hz	SIDEWALL e SIDEWALL
ne for MBD_IZZ_xxx ca SIDEWALL F tural frequency: Translat:) H tural frequency: Transla)	Hz Hz Hz	SIDEWALL e SIDEWALL
H tural frequency: Translat) H tural frequency: Transla)	tion in x/z-direction (mode Hz	e SIDEWALL
tural frequency: Translat:) H tural frequency: Transla)	tion in x/z-direction (mode Hz	e SIDEWALL
tural frequency: Translat:) H tural frequency: Transla)	tion in x/z-direction (mode Hz	e SIDEWALL
) Etural frequency: Transla)	Hz	SIDEWALL
H tural frequency: Transla)		
tural frequency: Transla)		
)	ation in y-direction (mode	e
E		OIDDINATI
1.0		SIDEWALL
tural frequency: rotation	around y axis (mode C_0)	
8 -		SIDEWALL
mping coefficient (mode F	$R_0)$	
8 -		SIDEWALL
mping coefficient (mode L	L ₀)	
8 -		SIDEWALL
mping coefficient (mode C	C ₀)	
8 -		SIDEWALL
fness influence factor radi	ial	
-		SIDEWALL
estrain impact factor		
ADVANCED		
E	Hz	ADVANCED
~		ADVANCED
	08 - iffness influence factor rad 2 - estrain impact factor ADVANCED Introduction of circuit Il stiffness for large deflect	amping coefficient (mode C ₀) D8 - affness influence factor radial 2 - estrain impact factor

Parameter	Default Value Expla- nation	Unit	Class
	Deflection at which redu		rota-
CDV DED DEG	tional sidewall stiffness st		
CRY_RED_RES		Hz	ADVANCED
	Residual stiffness factor sidewall stiffness at full de		ional
CRX_RED_FLAG	1	ellection	ADVANCED
CITX_ITED_FEAG	Activates reduction of la	- toral rotational sidewall	
	ness for large deflections	terar rotationar sidewan	50111-
CRX RED DEF	1	mm	ADVANCED
CRX_RED_DEF	Deflection at which reduc		
	wall stiffness starts		side-
CRX RED RES	1		ADVANCED
	Residual stiffness factor	of lateral rotational side	
	stiffness at full deflection		e wan
ADVANCED	[20,3,40,1]	[rad/s, -,rad/s, -]	ADVANCED
	Scale rubber shear dampi		
	tational velocity via $[\omega_0, s]$	•	
	and constant extrapolatio		
MU_CORRECT_CAMBER_	5	_	ADVANCEI
EFFECT_SCALE	0		
	Scale factor for the friction	n of the physical camber ϵ	effect
	present in the tire		
CORRECT_WEIGHT_TO_	0	_	ADVANCEI
NOMINAL_FLAG			
	Mimic nominal tire weigh	t	
LATSCH SYSTEM FLAG	3	_	ADVANCEI
	Selection of the LATSCH	coordinate system	
	BELT		
CIRC_STIFF	$\mathbf{3.0e}^{+6}$	N	BELT
	Tensile stiffness of belt in		
CIRC_STIFF_COMPRES	0	-	BELT
SION FACTOR			
	Optional tensile stiffness	factor under compression	con-
	dition of tensile belt stiff	-	
CIRC_DAMP	$1.0e^{-5}$	1/s	BELT
	Damping factor of belt te	/	
RAD_PRESTRAIN_RED_ FACTOR	1	-	BELT
	Optional scaling of inflat	ion pre-strain distributio	on in
	radial direction of sidewal		

Parameter	Default Value Expla nation	- Unit	Class
Y_BENDING_STIFF	$\mathbf{3.0e}^{+6}$	$\rm Nmm^2$	BELT
	Bending stiffness of the	belt (around lateral axis	3)
Y_BENDING_DAMP	$1.0\mathrm{e}^{-5}$	1/s	BELT
	Damping factor of belt	bending stiffness	
MX_CORRECTION_SCALE	1	-	BELT
	Switch for the improve	nent of overturning torqu	ue (Tx)
	response of the model, ()=off, $1 = $ on.	
MX_CORRECTION_SCALE_	$[0 \ 1.3 \ 4000 \ 1.3 \ 900$	0 -	BELT
ADVANCED	0.6]		
	Optional load depende	t scale for the improve	nent of
	overturning torque (Tx)	, scale factor is decreasi	ng typ-
	ically with increasing lo	oad. Specify as [f1,s1,	, fN, sN]
	, where f1, \dots fN are th	e preloads and s1,,sN	are the
	respective scaling factor	s.Interpolation is linear a	and ex-
	trapolation is constant.		
	TREAD		
TREAD_NSEN_X	5	-	TREAD
	Number of circumferent	ial sensor points in belt s	egment
TREAD_HEIGHT	10	mm	TREAD
	Height of tread		
TREAD_SCAN_HEIGHT	150	mm	TREAD
	Height above ideal conta	ct point on surface within	n where
	contact sensors are activ	ve	
TREAD_MAX_COMPRESS	0.95	-	TREAD
	Maximum relative comp	pression of tread before a	a warn-
	ing is issued		
TREAD_RAD_D	0.0005	1/s	TREAD
	Damping factor of radia	l tread stiffness	
TREAD_RAD_D_DEGRES SION_FACTOR	1	-	TREAD
	Radial tread damping r	esidual factor (active ab	ove de-
	gression velocity)	X	
TREAD_RAD_D_DEGRES	0	mm/s	TREAD
SION_VEL			
	Radial tread damping d	egression velocity	
TREAD_TAN_D	0	1/s	TREAD
—	Tangential tread dampi	,	
TREAD TAN D DEGRES	1	-	TREAD
SION_FACTOR			

Parameter	Default Value Expla- nation	Unit	Class
	Tangential tread damping degression velocity)	g residual factor (active	e above
TREAD_TAN_D_DEGRES SION_VEL	0	mm/s	TREAD
	Tangential tread damping	degression velocity	
TREAD_EG	120	$ m Nmm^2$	TREAD
	Young's modulus of the tr per circumferential unit le		d width
TREAD_GG_X	40	Nmm ²	TREAD
	Shear modulus of the tread circumferential unit lengt		-
TREAD_GG_Y	40	Nmm ²	TREAD
	Shear modulus of the tre per circumferential unit le		
KSRED_FACTOR	-80	-	TREAD
_	Stiffness influence factor l	ateral	
KSRED_ADVANCED	[-100,1]	[N, -,]	TREAD
	Optional lookup table for	scaling of KSRED as f	unction
	of preload via $[F_0, S_0, \ldots]$, \mathbf{F}_N , \mathbf{S}_N] with linear i	nterpo-
	lation and constant extrap	polation	
PNEUMATIC_TRAIL_SCALE	2	-	TREAD
	Optional scaling of the pr	neumatic trail	
PNEUMATIC_TRAIL_SCALE ADVANCED	[-100,1]	[N, -,]	TREAD
	Optional lookup table	for scaling of	PNEU-
	MATIC_TRAIL_SCALE	as function of	preload
	via $[\mathbf{F}_0, \mathbf{S}_0, \ldots, \mathbf{F}_N, \mathbf{S}_N]$	with linear interpolati	ion and
	constant extrapolation		
	FRICTION		
MU	$[\overrightarrow{\text{Vector}}]$	-	FRICTION
	$\xrightarrow{\text{Relative friction coefficien}}$		
V_MU	$[\mathbf{Vector'}]$	m mm/s	FRICTION
	Corresponding sliding vel 10000]	ocity for MU e.g. [0.0), 1000,
MU_GLOBAL_SCALEFACTOR	1	-	FRICTION
	Optional global scaling fa	ctor of friction	
MU_X_SCALEFACTOR	1	-	FRICTION
	Optional longitudinal scal	ing factor of friction	
	• F ······ • • • • • • • • • • • • • • •		

Parameter	Default Value Expla- Unit nation	Class
	Optional preload dependent scaling of friction M F _{REF} , S, M _{MIN} , M _{MAX}] via M = 1 – S * (F / H – 1)	L
MU_ADVANCED	$ \begin{array}{ll} [\textbf{20,3,40,1}] & [rad/s, -, rad/s, -] \\ \\ Optional scaling of friction coefficient as function tational velocity via [ω_0, μ_0, ω_1, μ_1], linear interpolation \\ \\ and constant extrapolation \end{array} $	
	LDE	
LDE_FLAG	0 - Activates LDE (Large Deformation Element) ca tion for tire ground out (bottoming): 0 = OFF, LDE Type 1, 2 = LDE Type 2 (currently not ported for CDT30-HPS)	, <mark>1 =</mark>
LDE_CNL	20 Nmm ² LDE_FLAG=1; Radial stiffness of non-linear pacircumferential unit length	LDE art per
LDE_CLIN	80 Nmm ² LDE_FLAG=1; Radial stiffness of linear part p cumferential unit length	LDE er cir-
LDE_RNL	20 mm LDE_FLAG=1; Radius from rim at which non- part becomes active (must be > LDE_RLIN)	LDE -linear
LDE_RLIN	10 mm LDE_FLAG=1 ; Radius from rim at which linea becomes active	LDE r part
	STATIC	
R_EFF	300 mm Effective rolling radius used for postprocessing	STATIC
R_STAT	300 mm Radius of undeformed tire under inflation	STATIC
CR1_STAT	250 N/mm Global linear radial tire stiffness used for static	STATIC
	[CDT30-HPS SOLVER PARAMETERS]	
TOL	$1.0 E^{-4}$ - Error tolerance of internal integrator	SOLVER
TOL_EXCEPTION	0.01 -	SOLVER

Parameter	Default Value Expla- nation	Unit	Class
	Error tolerance of interna	al integrator in case of	failed
	convergence		
DTM	$5.0\mathrm{E}^{-5}$	S	SOLVER
	Maximum step size of inte	ernal integrator	
DTMIN	$1.0E^{-10}$	S	SOLVER
	Minimum step size of inte	rnal integrator	
DT_START_EXPL	$5.0\mathbf{E}^{-5}$	S	SOLVER
	Initial step size of internal	l explicit integrator	
PRE_STEP_TIME	0.05	S	SOLVER
	Duration of inflation pre-s	step before beginning of	simu-
	lation		
PRE_STEP_DEFLTIME	0.05	S	SOLVER
	Duration of deflection pre-	-step before beginning o	f sim-
	ulation (adjusted automat	cically)	
PRE_STEP_SAFETY_MARGIN	10	mm	SOLVER
	Minimal clearance (from 1	rim point) for legal initi	al de-
	flection	- ,	
PRE_STEP_LDE_MARGIN	10	mm	SOLVER
	Minimal clearance (from 1	rim point) for legal initi	al de-
	flection		
FORCE NOSUCCESS	$1.0e^{+10}$	Ν	SOLVER
	Returned force value in ca	ase of no convergence	
TYPE	1	-	SOLVER
	1 = Explicit, 2 = Implicit		
ALPHA EXPLICIT	0	-	SOLVER
	Explicit NEWMARK alph	na integrator value	
BETA EXPLICIT	0.166667	-	SOLVER
_	Explicit NEWMARK beta	a integrator value	
GAMMA_EXPLICIT	30.5	-	SOLVER
—	Explicit NEWMARK gam	nma integrator value	
ALPHA_IMPLICIT	0	-	SOLVER
	Implicit NEWMARK alph	na integrator value	
BETA_ IMPLICIT	0.25	-	SOLVER
—	Implicit NEWMARK beta	a integrator value	
GAMMA IMPLICIT	0.5	-	SOLVER
	Implicit NEWMARK gam	nma integrator value	
NMAX_IMPL_ITER	3	-	SOLVER
	Maximum number of itera	tion for the implicit integ	
IMPL_STEP_CTRL_ENABLE	1	-	SOLVER
		control of implicit integ	
	0 = OFF, 1 = ON	control of implicit meeg	

Parameter	Default Value Exp nation	la- Unit	Class
	Percentage of error tol size control	erance TOL used to act	ivate step
IMPL_STEP_CTRL_ NSUBSTEPS	3	-	SOLVER
	Subdivision of steps if step size reduction is activated		
	for implicit integrator		
IMPL_JAC_EVAL_AT_ITER	0	-	SOLVER
	Toggle update of JAC	OBIAN calculation dur	ring itera-
	tion for implicit integrator: $0 = OFF$, $1 = ON$		
UPDATE_FOR_MASTER CORRECTOR	0	-	SOLVER
	Toggle corrector or Newton iterations to be taken into		

account: 0 = OFF, 1 = ON

[CDT30-HPS STATIC PARAMETERS]

LOGGING_LEVEL	0	-	MBS STATIC
	Set to 1 for ve	rbose mode	
INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC
	Reference infla	ation pressure (can be overrul	ed by ad-
	vanced setting	s)	
INCLINATION_ANGLE_REF	0	rad	MBS STATIC
	Reference incl	ination angle (can be overrul	ed by ad-
	vanced setting	s)	
FZW_REF	5000	Ν	MBS STATIC
	Reference vert	ical (normal) load (can be ov	erruled by
	advanced setti	ngs)	
VERTICAL STIFFNESS	325	mm	MBS STATIC
UNLOADED HEIGHT			
	Minimal unloaded height (surface normal) for reference		
	IP/IA	- , , ,	
VERTICAL_STIFFNESS	250	N/mm	MBS STATIC
	Linear vertical	stiffness for reference IP/IA	
VERTICAL_STIFFNESS_	0.5	N/mm^2	MBS STATIC
QUADFACTOR			
	Quadratic vert	tical stiffness for reference IP/I	A
LONGITUDINAL_SLIP_	0	-	MBS STATIC
ACTIVATE			
	(De-)activates	longitudinal slip during statics	3
LONGITUDINAL_SLIP_	0	-	MBS STATIC
KAPPA_SHIFT			
	Shift (offset) f		

Parameter	Default Value Expla- nation	Unit	Class
LONGITUDINAL_SLIP_ STIFFNESS	$2e^{+5}$	N/1	MBS STATIC
	Slip stiffness for reference	IP/IA/FZW	
LONGITUDINAL _STIFFNESS_ACTIVATE	0	_	MBS STATIC
	(De-)activates longitudina	l stiffness during statics	
LONGITUDINAL _STIFFNESS	400	N/mm	MBS STATIC
	Static stiffness for reference	ce $IP/IA/FZW$	
LATERAL_SLIP_ ACTIVATE	0	-	MBS STATIC
	(De-)activates lateral slip	during statics	
LATERAL_SLIP_CORNERING _SLIPANGLE_SHIFT	0	rad	MBS STATIC
	Shift (offset) for reference	IP/IA/FZW	
LATERAL_SLIP_CORNERING _STIFFNESS	$1\mathrm{e}^{+5}$	N/rad	MBS STATIC
	Slip stiffness for reference	IP/IA/FZW	
LATERAL_SLIP_ALIGNING _TORQUE_SLIPANGLE_SHIFT	0	rad	MBS STATIC
	Shift (offset) for reference	1 1	
LATERAL_SLIP_ALIGNING _TORQUE_STIFFNESS	5000	Nmm/rad	MBS STATIC
	Slip stiffness for reference	IP/IA/FZW	
LATERAL_STIFFNESS_ ACTIVATE	0	-	MBS STATIC
	(De-)activates lateral stiff		
LATERAL_STIFFNESS	200 Static stiffness for reference	N/mm	MBS STATIC
		, ,	
VERTICAL_STIFFNESS _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC
	Optional reference infla CAL_STIFFNESS deriva	tion pressure for VERT tives dIP	·I-
VERTICAL_STIFFNESS _INCLINATION_ANGLE_REF	0	rad	MBS STATIC
	Optional reference incl CAL_STIFFNESS deriva	ination angle for VERT tives dIA	Ί-
VERTICAL_STIFFNESS _UNLOADED_HEIGHT_dIP_dIA	[0,0]	$[\text{ mm}^3/\text{N}, \text{ mm/rad}]$	MBS STATIC
	First derivatives at referen	nce IP/IA	
VERTICAL_STIFFNESS _dIP_dIA	[0,0]	[mm, N/(mm rad)]	MBS STATIC

Parameter	Default Value Expla- nation	Unit	Class
	First derivatives at referen	nce IP/IA	
VERTICAL_STIFFNESS _QUADFACTOR_dIP_dIA	[0,0]	$[1, N/(mm^2 rad)]$	MBS STATIC
	First derivatives at referen		
VERTICAL_STIFFNESS _UNLOADED_HEIGHT dIP2_dIPdIA_dIA2_HALF	[0,0,0]	[mm ⁵ /N ² , mm ³ /(N rad), mm/rad ² $]$	MBS STATIC
	One half of second derivat	tives at reference IP/IA	
VERTICAL_STIFFNESS dIP2_dIPdIA_dIA2_HALF	[0,0,0]	$ \begin{bmatrix} mm^3/N, mm/rad, \\ N/(mm rad^2) \end{bmatrix} $	MBS STATIC
	One half of second derivat	,	
VERTICAL_STIFFNESS _QUADFACTOR dIP2 dIPdIA dIA2 HALF	[0,0,0]	$\begin{bmatrix} mm^2/N, & 1/rad, \\ N/(mm^2 rad^2) \end{bmatrix}$	MBS STATIC
an <u></u> an an <u>-</u>	One half of second derivation	tives at reference IP/IA	
LONGITUDINAL_SLIP _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC
	Optional reference inflation NAL_SLIP derivatives dl	on pressure for LONGITUD IP)I-
LONGITUDINAL_SLIP _INCLINATION_ANGLE_REF	0	MPa	MBS STATIC
	Optional reference inclina NAL_SLIP derivatives dl	ation angle for LONGITUE)[-
LONGITUDINAL_SLIP _FZW_REF	5000	MPa	MBS STATIC
	Optional reference vertica TUDINAL_SLIP derivati	al (normal) load for LONG ives dFZW	¦I-
LONGITUDINAL_SLIP _KAPPA_SHIFT dIP_dIA_dFZW	[0,0,0]	$[mm^2/N, 1/rad, 1/N]$	MBS STATIC
	First derivatives at referen	nce IP/IA/FZW	
LONGITUDINAL_SLIP _STIFFNESS	[0,0,0]	[mm ² , N/rad, 1]	MBS STATIC
dIP_dIA_dFZW			
	First derivatives at referen	1 1	
LONGITUDINAL	$[0,\!0,\!0]$	[mm, N/(mm rad), 1/mm]	MBS STATIC
dIP_dIA_dFZW	First derivatives at referen	nce IP/IA/FZW	
LATERAL_SLIP	0.25	MPa	MBS STATIC

Parameter	Default Value Expla- nation	Unit	Class
	Optional reference infla ERAL_SLIP derivatives d	-	- -
LATERAL_SLIP INFLATION PRESSURE REF	0	rad	MBS STATIC
	Optional reference infla ERAL_SLIP derivatives d	-	
LATERAL_SLIP _FZW_REF	5000	Ν	MBS STATIC
	Optional reference infla ERAL_SLIP derivatives d	ation pressure for LAT FZW	<u>)</u>
LATERAL_SLIP CORNERING_SLIPANGLE_SHII	[0,0,0] FT	$[\text{ mm}^2 \text{ rad/N}, 1, \text{ rad/N}]$	MBS STATIC
dIP_dIA_dFZW	First derivatives at referen	ce IP/IA/FZW	
LATERAL_SLIP _CORNERING_STIFFNESS dIP_dIA_dFZW	[0,0,0]	$\begin{bmatrix} mm^2/rad, N/rad^2, \\ 1/rad \end{bmatrix}$	MBS STATIC
	First derivatives at referen	ce $IP/IA/FZW$	
LATERAL_SLIP _ALIGNING_TORQUE_SLIPANG dIP_dIA_dFZW	[0,0,0] LE_SHIFT	$[\text{ mm}^2 \text{ rad/N}, 1, \text{ rad/N}]$	MBS STATIC
	First derivatives at referen		
LATERAL_SLIP _ALIGNING_TORQUE_STIFFNE dIP_dIA_dFZW	[0,0,0] SS	[mm ³ /rad, Nmm/rad ² , mm/rad $]$	MBS STATIC
	First derivatives at referen	ce IP/IA/FZW	
LATERAL_STIFFNESS _dIP_dIA_dFZW	[0,0,0]	[mm, Nmm/rad, 1/mm]	MBS STATIC
	First derivatives at referen	ce IP/IA/FZW	
WHEELCENTER_STIFFNESS _ACTIVATE	0	-	MBS STATIC
	(De-)activates wheel center	r stiffnesses during statics	
WHEELCENTER_STIFFNESS _INPLANE_TRANSLATIONAL	400	N/mm	MBS STATIC
	Derived (can be overuled i	f specified) stiffness	
WHEELCENTER_STIFFNESS _OUTPLANE_TRANSLATIONAL	200	N/mm	MBS STATIC
	Derived (can be overuled i	f specified) stiffness	
WHEELCENTER_STIFFNESS _OUTPLANE_ROTATIONAL	$2e^{+7}$	Nmm/rad	MBS STATIC
	Derived (can be overuled i	f specified) stiffness	

Parameter	Default Value Expla- nation	Unit	Class
WHEELCENTER_STIFFNESS _INPLANE_ROTATIONAL	$5\mathrm{e}^{+7}$	Nmm/rad	MBS STATIC
	Derived (can be overuled	if specified) stiffness	

Tire Parameter File - CDTire/3D

The following listing shows the input file structure of the tire model CDTire/3D. For a comprehensive list of the respective parameters of each block, look into the appended table and the example parameter files from the installation.

The unit system is fixed to N (newton), mm (millimeter), s (second) and t (tons). The parameters are keyword based and reside in respective sections. The two mandatory sections are:

- [CDT50-N MODEL PARAMETERS] contains all geometric, discretization, material and other physical modelling parameters (except SW_MODE=40 and cavity parameters)
- [CDT50-N SOLVER PARAMETERS] contains all numerical parameters of the internal integrator.

and seven optional sections:

- [CAVITY MODEL PARAMETERS] contains all CAVITY_MODEL_FLAG = 1 parameters for compressible Euler flow model
- [CDT40-N MODEL PARAMETERS] contains all SW_MODE = 40 parameters for analytical sidewall model
- [TIRE_AND_RIM_RESIZING] contains reference and target tire and rim specification for automatic resizing
- [FLEXRIM_S MODEL PARAMETERS] contains information for the interface to a static flexible rim.
- [CDT50-N ADVANCED OUTPUT PARAMETERS] contains advanced output options for post processing via CDTireViewer
- [WHEEL NOMINAL DATA] contains nominal tire radius, tire mass, aspect ratio, nominal width, tire inertia (I_{xx} , I_{yy} and I_{zz}) as well as nominal rim width and rim radius.
- [CDT50-N STATIC PARAMETERS] contains parameters of the static model used in MBS systems.

The parameters may contain one or two-dimensional arrays. A special emphasis in on the length of these arrays. There are three different types of entities utilizing arrays, that are explained in the following section:

Ring Entities (table length is NR (= number of rings, see table below))

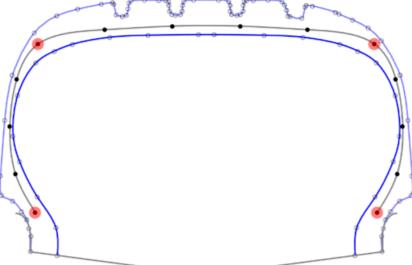
Ring entities are all entities that are associated with mass, geometry or circumferential pro-perties, e.g. MASS_W, CONTOUR_SHELL_Y or RUBBER_CIRC_EH_W.

Segment Entities (table length is NR-1)

Segment entities are all entities associated with lateral or diagonal properties, e.g. RUBBER_LAT_EH_W or

RUBBER_DIAG_EH_W.

Contact Entities


Contact entities can have two different sizes: Associated mass points (table length $NR-2^*(NRSENSTART-1)$) with linear interpolation for the sensors) or directly number of sensors (table length $(NR-2^*(NRSENSTART-1)-1)^*TREAD_NSEN_Y)$. If NRSENSTART is not set, it defaults to NRSW+1.

Additionally, many entities consist of a material property and an associated weight, e.g. $X_BENDING_STIFF$ and $X_BENDING_STIFF_W$. The local property then is a multiplication of the material property with its associated weight. In that way, it is possible to easily modify one local property or all properties simultaneously.

Remark: You may edit some parameters to suit your requirements. These parameters are colored blue in the listing above and an according remark is given in the following table. The parameters colored in orange are optional and (if used) change model behavior or introduce new functionality.

Parameter	Default Value Explanation	Unit	Class	
[1	CDT50-N MODEL PA	ARAMETERS]		
CDTIRE_VERSION_USED	2023.1.0	-	VERSION	
	Version of CDTire u	used to perform the sin	nulation	
TIRE_TYPE	10 (default)	-	DISCRETIZATION	
	Optional selection o	f the tire type of the g	iven CDTire-	
	Model:			
	$10 \rightarrow$ Passenger Ca	r Tires (default)		
	$20 \rightarrow \text{Light Truck } C$	Tires		
	$30 \rightarrow$ Truck Tires (on Drop Center Rim)			
	$31 \rightarrow$ Truck Tires			
	$40 \rightarrow$ Agricultural Tires			
	$50 \rightarrow$ Airplane Tires			
	$60 \rightarrow$ Motorcycle T	ires		
PIN	0.25	MPa	INFLATION	
	Actual inflation pres mechanism)	ssure (maybe overruled	l by interface	
ROLE	-1	-	DISCRETIZATION	
	ROLE of the tire:			
	LEFT $-> -1$ (defaul	t)		
	$RIGHT \rightarrow 1$			
	$ANY \rightarrow 0$			
SYMMETRIZE	0	-	DISCRETIZATION	
	Switch, to either	enforce a symmetric	tire (SYM-	
		ymmetric tire (SYMM		
NCS	50	*	DISCRETIZATION	

Parameter	Default Value Explanation	\mathbf{Unit}	Class	
	Number of cross sec	tions around the ci	rcumference	
NR	14	-	DISCRETIZATION	
	Number of rings			
NRSW	4	-	DISCRETIZATION	
	Number of rings in e	ither sidewall (inclu	iding bead node)	
NRSENSTART	NRSW+1	-	DISCRETIZATION	
	Index of ring from where contact calculation starts.			
	Only set to NRSW	Only set to NRSW $+1$ if not specified. Typically equal		
	to NRSW or NRSW	to NRSW or NRSW -1 for applications with higher de-		
	flection.			
SW_MODE	50	-	DISCRETIZATION	
	Materialized sidewa	ll (50) or analytical	sidewall (40)	
CONTOUR_SHELL_Y	$[\overrightarrow{\text{Vector}}]$	mm	DISCRETIZATION	
	Lateral cross section	n coordinate of refe	erence configura-	
	tion, ring entity	tion, ring entity		
CONTOUR_SHELL_Z	$\overline{[Vector]}$	mm	DISCRETIZATION	
	Radial cross section	coordinate of refe	erence configura-	
	tion, ring entity			

	MASS & I	INERTIA	
MASS_SIDEWALL	0.003	mm	MASS & INERTIA
	Mass of one side	ewall (including bead)	
MASS_BELT	0.006	t	MASS & INERTIA
	Mass of the belt		
MASS_BEAD	0.001	t	MASS & INERTIA
	Mass of one bea	d	
MASS_W	$[\overrightarrow{\text{Vector}}]$	t	MASS & INERTIA

Example of a discretized tire crosssection with inner and outer contour using 14 rings (NR) and 4 rings (NRSW) in the side-wall. The contact formulation start one ring after the sidewall, marked with a red mass point on either side.

51

Parameter	Default Value Unit Explanation	Class
	Weighting factors of mass distribution of NR), ring entity	ution (vector of length
MASS_ADD_TO_RIM	0.001 t Used for MBD_MASS_A MBD_MASS_SUB_FROM_W does not af-fect tire simulation	
IXX_ADD_TO_RIM	100 tmm ² Same for MBD_IXX_xxx calcu	MASS & INERTIA ation
IYY_ADD_TO_RIM	200 tmm ² Same for MBD_IYY_xxx calcut	MASS & INERTIA ation
ZZ_ADD_TO_RIM	100 tmm ² Same for MBD_IZZ_xxx calculation	MASS & INERTIA ation
	RUBBER	
RUBBER_CIRC_EH	40 N/mm Rubber stiffness in circumfere Young E * thickness H)	RUBBER ntial direction (think
RUBBER_LAT_EH	40 N/mm Rubber stiffness in lateral direct thick-ness H)	RUBBER tion (think Young E $*$
RUBBER_DIAG_EH	10 N/mm Rubber stiffness in diagonal direction thick-ness H)	RUBBER etion (think Young E $*$
RUBBER_SHEAR_GH	10 N/mm Rubber shear stiffness (think she ness H)	RUBBER ar modulus G * thick-
RUBBER <mark>XXX</mark> DAMP	0.0003 1/s Corresponding damping factors, by CIRC, LAT, DIAG or SHEA	
RUBBER_ <mark>XXX</mark> _EH_W	[Vector] - Corresponding weighting factors, XXX either replaced by CIRC,	
	CARCASS	
CARCASS_CORDLAYER_STIFF	300N/mmCarcass stiffness in cord an YOUNGS Modulus E * thickness	
CARCASS_CORDLAYER_DAMP	$5e^{-6}$ N/mm Carcass damping factor in cord a	CARCASS
CARCASS_CORDLAYER_ STIFF_W	[Vector] -	CARCASS

Parameter	Default Value Explanation	Unit	Class
	Carcass stiffness weigh	nting factors, segment en	tity
CARCASS_CORDLAYER_L0_ REDFACTOR	$[\overrightarrow{\text{Vector}}]$	-	CARCASS
	Carcass zero length fa	ctor relative to reference	e configu-
	ration, segment entity		
CARCASS_CORDLAYER_STIFF _COMPRESSION_FACTOR	0	-	CARCASS
	Carcass stiffness factor rect multiplication	r under compression cond	lition, di-
	BANDAGE		
BANDAGE_CORDLAYER_STIFF	1000	N/mm	BANDAGE
	Bandage stiffness in c E * thickness H)	ord angle direction (thir	ık Young
BANDAGE_CORDLAYER_DAMP	$5e^{-6}$	N/mm	BANDAGE
	Bandage damping fact	tor in cord angle directio	n
BANDAGE_CORDLAYER_ STIFF_W	$[\overrightarrow{\text{Vector}}]$	-	BANDAGE
	Bandage stiffness weig	the factors, ring entity	
BANDAGE_CORDLAYER_L0_ REDFACTOR	$[\overrightarrow{\operatorname{Vector}}]$	-	BANDAGE
	Bandage zero length f	actor relative to reference	ce config-
	uration, ring entity		
BANDAGE_CORDLAYER_STIFF _COMPRESSION_FACTOR	0	-	BANDAGE
	Bandage stiffness fact	or under compression c	ondition,
	direct multiplication		
	STEEL COR	D	
NUMB_STEEL_CORDLAYERS	2	_	STEEL CORD
	Number of steel cord	layers	
STEEL_CORDLAYER_ANGLE	[25,-25]	deg	STEEL CORD
	Angle of steel cor	• •	umferen-
	,	or with as many colu	umns as
	NUMB_STEEL_CO		
STEEL_CORDLAYER_STIFF	[5000,5000]	N/mm	STEEL CORD
	·	cord angle direction (thin	•
	, · ·	ector with as many col	umns as
	NUMB_STEEL_CO		
STEEL_CORDLAYER_DAMP	$[5\mathrm{e}^{-6},5\mathrm{e}^{-6}]$	1/s	STEEL CORD

Parameter	Default Value Explanation	Unit	Class	
	Cordlayer dampi	ng factor in o	ord angle di-	
	rection, vector NUMB_STEEL_(with as many CORDLAYERS	v columns as	
STEEL_CORDLAYER_STIFF_ COMPRESSION_FACTOR	0.2	-	STEEL CORD	
	Cordlayer stiffness direct multiplication	factor under compon	ression condition,	
STEEL_CORDLAYER_L0_ REDFACTOR	[0.998, 0.998]	-	STEEL CORD	
	Cordlayer zero le	ength factor relati	ive to reference	
	Configuration, ve NUMB_STEEL_(ector with as ma CORDLAYERS	any columns as	
NUMB_DISCRETE_STRIPES IN_STEEL_CORDLAYER	2	-	STEEL CORD	
	Number of discrete	e stripes in steel cor	d layer	
	CROSSP	LY		
NUMB_CARCASS_CROSSPLY_ CORDLAYERS	0	-	CROSSPLY	
	Number of carcass cross ply layers, (optional), per de-			
	fault deactivated to enhance computational performance			
	if no crossply layer	has been modeled.		
CARCASS_CROSSPLY_ CORDLAYERS_STIFF_ COMPRESSION_FACTOR	0.2	-	CROSSPLY	
	Global crossply sti	ffness factor under	compression con-	
	- •	iplication. Active f	-	
	layer if not set non tor is set.	individual corssply	compression fac-	
CARCASS_CROSSPLY_ CORDLAYERS_ANGLE1	88	deg	CROSSPLY	
	Crossply cord ang	le from circumferen	tial direction for	
	cross ply layer. M	ust be given explici	tly for each layer	
	_1 to _N			
CARCASS_CROSSPLY_ CORDLAYERS_STIFF1	500	N/mm	CROSSPLY	
	Crossply stiffness i	n cord angle direct	ion (think Young	
	E * thickness H). N _1 to _N	Iust be given explic	itly for each layer	
CADCACC CDOCCDIN	$\frac{1}{5}e^{-6}$	1/2	CDOCCDLV	
CARCASS_CROSSPLY_	ъе [*]	1/s	CROSSPLY	

Parameter	Default Value Explanation	\mathbf{Unit}	Class
	Crossply damping fa	0	
	be given explicitly for	or each layer $_1$ to	
CARCASS_CROSSPLY_	[Vector $]$	-	CROSSPLY
CORDLAYERS_STIFF_W1			
	Local crossply stiff	ness factor in cord	angle direction
	(think Young $E * th$,	e given explicitly
	$for each layer _1 to$	_N	
CARCASS_CROSSPLY_	[Vector]	-	CROSSPLY
CORDLAYERS_L0_			
REDFACTOR1			
	Local crossply zero	-	
	configuration. Mus	t be given explicit.	ly for each layer
	1 toN		CD O CODIN
CARCASS_CROSSPLY_	0.2	-	CROSSPLY
CORDLAYERS_STIFF_			
COMPRESSION_FACTOR1		. 1	• 1••
	Crossply stiffness fa		ession condition,
	direct multiplication		
	BENDIN	G	
X_BENDING_STIFF	6000	Nmm	BENDING
	Bending stiffness in	lateral direction (think YOUNGS
	Modulus E $*$ thickn	$ess H^3/12)$	
X_BENDING_DAMP	0.0005	1/s	BENDING
	Bending damping fa	ctor in lateral dire	ation
V DENDING OTHER W			etion
X_BENDING_STIFF_W	[Vector $]$	-	BENDING
X_BENDING_STIFF_W	[Vector] Bending stiffness we	-	BENDING
		-	BENDING lateral direction,
	Bending stiffness we ring entity 0	- Prighting factors in rad	BENDING lateral direction, BENDING
	Bending stiffness we ring entity 0 Angle where non-lin	- Prighting factors in rad	BENDING lateral direction, BENDING
X_BENDING_STIFF_W X_BENDING_ALPHANL	Bending stiffness we ring entity 0 Angle where non-lin angle 0)	- Prighting factors in rad	BENDING lateral direction, BENDING carts (it ends at
X_BENDING_ALPHANL	Bending stiffness we ring entity 0 Angle where non-lin angle 0) 1	- eighting factors in rad near progression st	BENDING lateral direction, BENDING carts (it ends at BENDING
X_BENDING_ALPHANL	Bending stiffness we ring entity 0 Angle where non-lin angle 0)	- eighting factors in rad near progression st - -linear progressio	BENDING lateral direction, BENDING carts (it ends at BENDING
X_BENDING_ALPHANL X_BENDING_EXPNL	Bending stiffness we ring entity 0 Angle where non-lin angle 0) 1 Exponent of non	- eighting factors in rad near progression st - -linear progressio	BENDING lateral direction, BENDING carts (it ends at BENDING
	Bending stiffness we ring entity 0 Angle where non-lin angle 0) 1 Exponent of non $\mathbf{x0}$ ^Y _BENDING_F	- eighting factors in rad near progression st - linear progressio EXPNL)) rad	BENDING lateral direction, BENDING carts (it ends at BENDING n (c * (x- BENDING
X_BENDING_ALPHANL X_BENDING_EXPNL X_BENDING_PREANGLE X_BENDING_STIFF_UNILAT_	Bending stiffness we ring entity 0 Angle where non-lin angle 0) 1 Exponent of non $\mathbf{x}0)^{Y}$ _BENDING_F [Vector]	- eighting factors in rad near progression st - linear progressio EXPNL)) rad	BENDING lateral direction, BENDING carts (it ends at BENDING n (c * (x- BENDING
X_BENDING_ALPHANL X_BENDING_EXPNL X_BENDING_PREANGLE	Bending stiffness we ring entity 0 Angle where non-lin angle 0) 1 Exponent of non $\mathbf{x}0)^{Y}$ _BENDING_F [Vector] Local zero angle relation	- eighting factors in rad near progression st - -linear progressio EXPNL)) rad ative to reference c -	BENDING lateral direction, BENDING tarts (it ends at BENDING n (c * (x- BENDING onfiguration

Parameter	Default Value Explanation	Unit	Class
	0	circumferential direct	tion (think
	YOUNGS Modulus H	1 /	
Y_BENDING_DAMP	0.0005	1/s	BENDING
	Bending damping fac	tor in circumferential d	lirection
Y_BENDING_STIFF_W	[Vector $]$	-	BENDING
	~ ~ ~	shting factors in circum	ferential di-
	rection, segment enti-	ty	
Y_BENDING_ALPHANL	0	rad	BENDING
	Angle where non-line	ear progression starts	(it ends at
	angle 0)		
Y_BENDING_EXPNL	1	-	BENDING
	-	inear progression (c * (x-
	$x0)^{Y}$ _BENDING_E	XPNL))	
XY_DIAG_BENDING_STIFF	10000	Nmm	BENDING
	0	iagonal direction (think	« YOUNGS
	Modulus E $*$ thickness	ss $H^{3/12}$)	
XY_DIAG_BENDING_DAMP	0.0005	1/s	BENDING
		tor in diagonal directio	
XY_DIAG_BENDING_STIFF_W	$[$ Vector $^{'}]$	-	BENDING
		shting factors in diagona	al direction,
	segment entity		
XY_DIAG_BENDING_ALPHANL	0	rad	BENDING
	ũ.	ear progression starts	(it ends at
	angle 0)		
XY_DIAG_BENDING_EXPNL	1	-	BENDING
	Exponent of non-l x_0) ^Y _BENDING_E	inear progression (XPNL))	c * (x-
	TREAD		
TREAD_NSEN_X	7	-	TREAD
	Number of sensors pe	er element in circumfere	ential direc-
	tion		
TREAD_NSEN_Y	5	-	TREAD
	Number of sensors pe	er element in lateral dir	rection
TREAD_HEIGHT_ALL	[Vector]	mm	TREAD
	Height of tread senso	rs of full cross section	
SENSOR_LENGTH	[Vector]	mm	TREAD
	Length of the single	sensors arrows in the t	read region
	contact zone. This pa	arameter is just and inf	formation.
TREAD_SCAN_HEIGHT	200	mm	TREAD

Parameter	Default Value Explanation	\mathbf{Unit}	Class
	Height above ideal c	ontact point on surfa	ace within where
	contact sensors are	active	
TREAD_RAD_NL_TYPE	1	-	TREAD
	Type of progression	of radial tread stiff	ness: $0 = \text{linear},$
	1 = Shape function	n type I (NEO-HO	OKE-like), $2 =$
	Shape function type	e II, $3 =$ Shape func	tion type III
TREAD_MAX_COMPRESS	0.95	-	TREAD
	Maximum relative	compression of trea	ad (capped and
	warning is issued)		
TREAD_RAD_NL_GAIN_MAX	1	-	TREAD
	Cut-off factor for no	on-linear progression	1
TREAD_RAD_D	0.0001	1/s	TREAD
	Radial tread dampi	ng factor	
TREAD_RAD_D_	1	-	TREAD
DEGRESSION_FACTOR			
	Radial tread dampi	ng residual factor (a	active above de-
	gression velocity		
TREAD_RAD_D_	0	mm/s	TREAD
DEGRESSION_VEL			
	Radial tread dampi	ng degression veloci	ty
TREAD_TAN_D	0	1/s	TREAD
	Tangential tread da	mping factor	
TREAD_TAN_D_	1	-	TREAD
DEGRESSION_FACTOR			
	Tangential tread da	mping residual fact	or (active above
	degression velocity)		
TREAD_TAN_D_	0	mm/s	TREAD
DEGRESSION_VEL			
	Tangential tread da		elocity
TREAD_E/H	0.3	N/mm^3	TREAD
	Radial tread stiffne	ess (think YOUNG	S Modulus E $/$
	thickness H)		
TREAD_Gx/H	0.1	$\rm N/mm^3$	TREAD
	Tread shear stiffnes	s in circumferential	direction (think
	shear modulus G $/$,	
TREAD_Gy/H	0.1	N/mm^3	TREAD
	Tread shear stiffnes	s in lateral direction	on (think shear
	modulus G / thickn	ess H)	
TREAD_E/H_W	[Vector]	-	TREAD
	Local tread rubber	stiffness modification	on, direct multi-
	plication, (optional)		
TREAD_Gx/H_W	[Vector]		TREAD

Parameter	Default Value Unit Explanation	\mathbf{Class}	
	Local tread rubber stiffness modi plication, (optional)	fication, direct multi-	
TREAD_Gy/H_W	[Vector] -	TREAD	
	Local tread rubber stiffness modi		
	plication, (optional)		
TREAD HEIGHT REF	\mathbf{H}_{MAX} mm	TREAD	
	Optional scaling of tread stiffness	properties with H_{REF}	
	$/ H_i$		
	FRICTION		
MU	$[\overrightarrow{ ext{Vector}}]$ -	FRICTION	
	Relative friction coefficient e.g. [1	.2, 1.2, 1.0]	
V_MUV_MU	$[\overrightarrow{\mathbf{Vector}}]$ mm/s	FRICTION	
	Corresponding sliding velocity for	r MU e.g. [0.0, 1000,	
	10000]		
MU_GLOBAL_SCALEFACTOR	1 -	FRICTION	
	Optional global scaling factor of f	riction	
MU_X_SCALEFACTOR	1 -	FRICTION	
	Optional longitudinal scaling fact	or of friction	
MU_LOCAL_W	$[\overrightarrow{\text{Vector}}]$ -	FRICTION	
	Optional local scaling of friction of a single brush ele-		
	ment (to adapt for different tread	rubber materials)	
MU_NSTRESS_DEPENDENCY	[0.35,0.3 , 0.7,1.3] [MPa, -, -		
	Optional normal stress dependent	~	
	from $[n_{REF}, S, M_{MIN}, M_{MAX}]$	via M = 1 – S * (n /	
	n_{REF} - 1)		
	$n_{REF} \rightarrow$ reference normal contact	t stress [MPa]	
	$S \rightarrow slope of modification$		
	$M_{MIN} \rightarrow M_{MIN}, M_{MAX}$		
	$M_{MAX} \rightarrow minimum, maximum$	n triction coefficient	
	threshold		
	ADVANCED		
LOSSENERGY_FLAG	0 -	ADVANCED	
	Toggle energy loss post-processing	r 2	
THERMAL_MODEL_FLAG	0 -	ADVANCED	
	Toggle CDTire/Thermal usage: 0	= OFF, 1 = ON	
CAVITY_MODEL_FLAG	0 -	ADVANCED	
	Select cavity simulation model: 0	= contant pressure, 1	
	= euler flow, $2 =$ ideal gas		
FLEXRIM_S_MODEL_FLAG	0 -	ADVANCED	

Parameter	Default Value Explanation	\mathbf{Unit}	Class
	Flag for the activatic face a flexible rim (st	-	
FLEXRIM_M_MODEL_FLAG	0	-	ADVANCED
	Flag for the activatio		
	cidated MBS solvers CDTireVersion > R 2		= ON, Requires
CORRECT_WEIGHT_TO_	0	2023.0.0	ADVANCED
NOMINAL_FLAG	0	-	ADVANCED
	Flag to mimic nomin	al tire weight	
ADVANCED	$[20,\!3,\!40,\!1]$	[rad/s, -, rad/s,	-] ADVANCED
	Scale rubber shear		
	rotatio-nal velocity v	ia $[\omega_0, s_0, \omega_1, s_1],$	linear interpo-
	lation and constant e	xtrapolation	
MASS_UPDATE_NOCAVITY	0	\mathbf{t}	ADVANCED
	Add mass to belt to	* -	
	mass, in case of CAV	/ITY_MODEL_F	
PCF	1 Pressure correction fa	- etor (multiplicatio	ADVANCED
SENSOR_NORMAL_FLAG		-	ADVANCED
		entation of the trea	
	Adjustment of the orientation of the tread sensors in the shoulder-segment of the tire normal to that ring-section		
	only (only recomema		-
CONSTRUCT_ALL_	1	-	ADVANCED
SENSORS_FLAG			
	Can be set so that all	contact sensors (re	egardless of con-
	tact or not) are calc	,	
	expensive, it is recor		
	case the animation re	sults are of interes	t. The parame-
	ter can be set in para	ameter file as well a	as control file.
	LDE		
LDE_FLAG	0	-	LDE
-	Select large deform	nation element	to investigate
	tire ground out:		= LDE Type 1,
	2 = LDE Type 2	/	
LDE_Y_COORD	[Vector]	mm	LDE
	Lateral coordinate o		
	LDE_W,	,	
LDE_W	[0,1,1,0,0,1,1,0]	_	LDE
	LDE weighting sp	line, has a m	
	LDE_Y_COORD	-,	· · · · · · ·

Parameter	Default Value Explanation	Unit	Class
LDE_CNL	0.1	$\rm Nmm^{-3}$	LDE
	LDE_FLAG=1	; Radial LDE progression	stiffness
LDE_CLIN	0.6	$\rm Nmm^{-3}$	LDE
	LDE_FLAG=1	; Radial LDE final stiffne	SS
LDE_RNL	10	mm	LDE
	LDE_FLAG=1 where LDE start	; Radius (from 'bead' no s	de locations)
LDE_RLIN	5	mm	LDE
	LDE_FLAG=1 LDE fully active	; Radius (from last rim	point) where
LDE_RIM_FLANGE_RADIUS	0	mm	LDE
—	LDE_FLAG=2	; absolute radius of the ri	m flange
LDE_C	0.3	Nmm ⁻³	LDE
	LDE_FLAG=2	; Radial LDE stiffness	
LDE_D	$5e^{-6}$	1/s	LDE
	LDE_FLAG=2	; LDE Damping factor	
LDE_C_SHAPE_FACTOR	1	-	LDE
	$LDE_FLAG=2$; Exponent of LDE_C	
LDE_C_GAIN_MAX	1	-	LDE
	$LDE_FLAG=2$; Stiffness factor cut-off	
LDE_HEIGHT	30	mm	LDE
	$LDE_FLAG=2$; height of the rubber in	the contact
	zone between rim	flange and the shell midp	lane contour.
LDE_SCAN_RADIUS	30	mm	LDE
	Enable LDE sear to $LDE_RNL +$	$ \begin{array}{l} \text{cch (from rim point)} = \text{ty} \\ 20 \text{ mm} \end{array} $	pically equal
LDE_ACTIVE_RADIUS	10	mm	LDE
	Signal LDE is act	tive (from rim point) = ty	pically equal
	to LDE_RNL		
LDE_FRICTION_FLAG	0	-	LDE
	$LDE_FLAG=2$;Switch for modeling	of rate-
	independent dissipation during LDE, $0 = \text{off}, 1 =$		
	on: The paramet	terFRICTION_FLAG	=1 activates
	the inner friction	n modeled parallel to the	ne respective
	viscous-elastic pr	operty.	
LDE_ FRICTIONELEMENT _STIFF_FACTOR	0	-	LDE
	LDE_FLAG=2	TheFRICTIONELEM	ENT
		OR set the added paralle	
		e to 1) of its respective v	
	,	ues must be scalar.	

Parameter	Default Value Explanation	\mathbf{Unit}	Class
LDE_ FRICTIONELEMENT MAXDEFL	0	-	LDE
	LDE_FLAG=2 ; The _FRICTIONELEMENT _MAXDEFL specifies the respective activation de- formation (in [1] for LDE as factor relative to LDE_HEIGHT. All values must be scalar.		
	DESIGN	T	
STEEL_CORDLAYER_STIFF _GLOBAL_SCALEFACTOR	1.0	-	DESIGN
	Optional scaling for	r STEEL_CORI	DLAYER_STIFF.
	Intended to be use		ol-File. Obsolete
	for CDT50 Paramet	er File.	
TREAD_E/H_GLOBAL _SCALEFACTOR	1.0	-	DESIGN
	Optional scaling for	1	via Control-File.
	Obsolete for CDT50	Parameter File.	
TREAD_Gx/H_GLOBAL _SCALEFACTOR	1.0	-	DESIGN
	Optional scaling for	,	via Control-File.
	Obsolete for CDT50	Parameter File.	
TREAD_Gy/H_GLOBAL _SCALEFACTOR	1.0	-	DESIGN
	Optional scaling for	- • /	via Control-File.
	Obsolete for CDT50	Parameter File.	
RUBBER_STIFF_GLOBAL _SCALEFACTOR	1.0	-	DESIGN
		-	r the RUBBER
	base material (appli		
	BER_LAT_EH, R		
	BER_DIAG_EH)		
	CDT50 Parameter 1		
	not reflected equival the tire.	entry into the ben	ang properties of
NC	ONUNIFORMITY F	ARAMETERS	
NONUNIFORMITY_FLAG	0	_	NONUNIFORM

Parameter	Default Value Explanation	\mathbf{Unit}	Class
	Switch for geometric quires the following All three parameter set. As this make a geometric non-unifo	three parameters, s must be present Fourier series, any	0 = off, 1 = on. , if the FLAG is (circumferential) eled
NONUNIFORMITY_K	[1,2] Specification of the negative), can be sc		
NONUNIFORMITY_PHASE	[0,1] Specification of the (non-negative), can		,
NONUNIFORMITY_AMP	[0.5,0.25] Specification of the tude(s) (non-negative	mm cirumferential wa	NONUNIFORMI ave order ampli-
INN	ER FRICTION P	ARAMETERS	
X_BENDING_FRICTION_FLAG	0 Switch for modelling the X_BENDING, terFRICTION modeled parallel to erty.	0 = off, 1 = or FLAG=1 activates	h: The parame- the inner friction
X_BENDING_FRICTIONELEMEN _STIFF_FACTOR	•	-	INNER FRICTIO
	The _FRICTIONI the added parallel of its respective viso		or (relative to 1)
X_BENDING_FRICTIONELEMEN _MAXDEFL	T 0.01	rad ELEMENT_MAX	INNER FRICTIO DEFL specifies
Y_BENDING_FRICTION_FLAG Y BENDING FRICTIONELEMEN	0 Switch for modeling the Y_BENDING, terFRICTION_ modeled parallel to erty.All values must	0 = off, 1 = or FLAG=1 activates the respective viso	h: The parame- the inner friction

Parameter	Default Value Explanation	${f Unit}$	Class
	The _FRICTION	NELEMENT_STIF	F_FACTOR set
	the added parallel	stiffness as a fact	or (relative to 1)
	of its respective vis	scous-elastic proper	ty.All values must
	be scalar.		
Y_BENDING_FRICTIONELEMEN′ _MAXDEFL	Г0.01	rad	INNER FRICTIO
	The _FRICTIO	NELEMENT_MAX	KDEFL specifies
	the respective ac	tivation deformati	on (in [rad] for
	-	values must be scal	
RUBBER DIAG FRICTION FLAC		_	INNER FRICTIO
		ng of rate-independ	
		ff, $1 = \text{on: The particular}$	-
		activates the inner	
		pective viscous-elast	
RUBBER_DIAG_	$\frac{1}{2}$	Jective viscous-clast	INNER FRICTIO
	2	-	INNER FRICTIO
FRICTIONELEMENT			
_STIFF_FACTOR			
		VELEMENT_STIF	
	-	stiffness as a factor	· · · ·
		ous-elastic property	. All values must
	be scalar.		
RUBBER_DIAG_	0.01	rad	INNER FRICTIO
FRICTIONELEMENT			
_MAXDEFL			
	The _FRICTIONI	ELEMENT_MAXI	DEFL specifies the
	respective activation	on deformation (in [rad] for Rubber as
	factor relative to 1	. All values must b	e scalar.
FREAD_NFRICTION_Z	0	-	INNER FRICTIO
	Switch for modelin	ng of rate-independ	ent dissipation in
	the tread, $0 = \text{off}$	\tilde{c} , 1 = on: The par	rameterFRIC-
	TION_FLAG=1 a	activates the inner	friction modeled
	parallel to the resp	pective viscous-elast	cic property.
TREAD_FRICTIONELEMENT	[0.5]	-	INNER FRICTIO
_STIFF_FACTOR_Z		a	
		fness as factor in tr	
		ive to the respective	
	All values must be	scalars or vectors,	
FREAD_	[0.5]	-	INNER FRICTIO
FRICTIONELEMENT			

Parameter	Default Value Explanation	Unit	Class
	The _FRICTIONEL respective activation factor relative to trea or vectors, set by <r< td=""><td>deformation (in [1] d height. All values</td><td>] for Rubber as</td></r<>	deformation (in [1] d height. All values] for Rubber as
	STATIC		
R_EFF	320 Effective rolling radi	mm us used for postpro-	STATIC
R_STAT	320 Radius of undeforme	mm ed tire under inflatio	STATIC
CR1_STAT	250 Global linear radial	N/mm tire stiffness used fo	STATIC r static
['	CAVITY MODEL PA	RAMETERS]	
RADIUS_EFFECTIVE	260 Radius of gas CAVITY MODEL	mm column; (only	CAVITY y active if
SOUND_VELOCITY	340000 soundvelocity of the for air; need to be ac if CAVITY_MODE	ljusted for other me	
CFL_FACTOR	0.3 Courant number LEWY condition CAVITY MODEL	from COURAN	CAVITY I-FIEDRICHS- active if
DX_RESAMPLE_FACTOR	5 Number of cavity depactive if CAVITY	- gree of freedoms per	<u> </u>
A_RIM	0 Cross section area of i.e. the area below th face; (only active if	ne first node of CDT	fire the rim sur-
ACF_TIRE	1 Scaling of the dyna mode acting on the i CAVITY_MODEL	amic pressure effect nner liner of the tir	CAVITY t of the cavity
ACF_RIM	1 Scaling of the dynam acting on the rim su CAVITY_MODEL	urface of the wheel;	•

arameter	Default Value Explanation	\mathbf{Unit}	Class
	[CDT40-N MODEL PA	ARAMETERS]	
REF	0.25	MPa	CDT40
	Reference inflation]	oressure	
'IN_FLAG	0	-	CDT40
	Toggle pressure-dep	endency of sidewall	
IASS_ADD_TO_BELT	0.0001	t	CDT40
		case off analytica	
	dynamic mass of		
	MASS_ADD_TO_	-	
	take a part of the sid		
	the same model proj		, , _
	tional) parameter to	accommodate the	massless sidewall
	modeling		
MASS_ADD_TO_RIM	0.0001	tmm^2	CDT40
	Used for MBI	D_MASS_ADD_7	CO_RIM and
	MBD_MASS_SUB	_FROM_WHEEL	calculation;
	does not affect tire s	simulation	
XX_ADD_TO_RIM	100	tmm^2	CDT40
	Same for MBD_IXX	K_xxx calculation	
Y_ADD_TO_RIM	200	tmm^2	CDT40
	Same for MBD_IY	_xxx calculation	
ZZ_ADD_TO_RIM	100	tmm^2	CDT40
	Same for MBD_IZZ	_xxx calculation	
SEAD_OFFSET_Y	0	mm	CDT40
	Same for MBD_IZZ	_xxx calculation	
EAD_OFFSET_Z	20	mm	CDT40
	Same for MBD_IZZ	_xxx calculation	
NPUT_MODE	0	-	CDT40
	Optionally switches	sidewall model (0,1	1,2,3)
TX	89.5	Hz	CDT40
	Natural frequency:	Translation in x/z	direction (mode
	R_1)	1	`
TY	45.7	Hz	CDT40
	Natural frequency:		
RY	65.4	Hz	CDT40
	Natural frequency:		
TX	0.05	-	CDT40
	Damping coefficient	$(mode B_1)$	02110
OTY	0.05	-	CDT40
. T T	Damping coefficient	(mode Lc)	
RY	0.05		CDT40
61	0.00	-	UD140

Parameter	Default Value Unit Explanation	Class
	Damping coefficient (mode C_04)	
SW_ANGLE	28 deg Reference sidewall angle for INPUT_MO	CDT40 $DE = 1,2,3$
CRX	$5.5e^{6}$ Nmm Lateral rotational foundational sidewall INPUT_MODE =2	CDT40 stiffness for
CRY	7.0e ⁶ Nmm Circumferential rotational foundational such as ness for INPUT_MODE=2	CDT40 idewall stiff-
CRX_S	3.2e⁶ Nmm Lateral rotational structural sidewall INPUT_MODE=3	CDT40 stiffness for
CRY_S	4.5e ⁶ Nmm Circumferential rotational structural sider for INPUT_MODE=3	CDT40 wall stiffness
SWBEND	20 % Percent radial stiffness due to bending	CDT40
CRY_RED_DEF	0 mm Deflection value at which reduction of cir rotational sidewall stiffness starts	CDT40 cumferential
CRY_RED_RES	1 - Residual stiffness factor of circumferentia sidewall stiffness at full deflection	CDT40 al rotational
CRX_RED_DEF	0 mm Deflection value at which reduction of later sidewall stiffness starts	CDT40 ral rotational
CRX_RED_RES	1 - Residual stiffness factor of lateral rotation stiffness CRY at full deflection	CDT40 onal sidewall
LDE_AUTO_ADAPT	0 - Automatically adapts the LDE_Y_COOR alytical sidewall model	CDT40 D for the an-
LDE_SCALE_FACTOR	1 - Scales the LDE_W in case of analytical side	CDT40 dewall model
ADVANCED	$[20,3,40,1] \qquad [rad/s, -, rad/s, -]$ Scale rubber shear damping as function of r locity via [ω_0 , s ₀ , ω_1 , s ₁], linear interpolat stant extrapolation (same functionality as ω_1 while SW_Mode = 50)	ion and con-

[CDT50-N SOLVER PARAMETERS]

Parameter	Default Value Explanation	Unit	Class
TOL	$1.0\mathrm{E}^{-4}$	_	SOLVER
	Error tolerance of in	ternal integrator	
TTOL_EXCEPTION	0.01	-	SOLVER
—	Error tolerance of i	nternal integrator in cas	e of failed
	convergence		
TDTM	$\mathbf{5.0E}^{-5}$	S	SOLVER
	Maximum step size	of internal integrator	
TDTMIN	$1.0\mathrm{E}^{-10}$	S	SOLVER
	Minimum step size o	of internal integrator	
TDT_START_EXPL	$5.0\mathrm{E}^{-5}$	S	SOLVER
	Initial step size of in	ternal explicit integrator	
TPRE_STEP_TIME	0.05	S	SOLVER
	Duration of inflation	pre-step before beginnin	ng of simu-
	lation		
TPRE_STEP_DEFLTIME	0.2	S	SOLVER
	Duration of deflection	n pre-step before beginn	ing of sim-
	ulation (adjusted au	tomatically)	
TPRE_STEP_SAFETY_MARGIN	10	mm	SOLVER
	Height above ideal phase	contact point for initia	l inflation
TPRE_STEP_LDE_MARGIN	10	mm	SOLVER
	Minimal clearance (from rim point) for legal	initial de-
	flection		
TFORCE_NOSUCCESS	$\mathbf{1.0E}^{+10}$	Ν	SOLVER
	Returned force value	e in case of no convergen	ce
TYPE	1	-	SOLVER
	1 = Explicit; 2 = Im	plicit	
ALPHA_EXPLICIT	0	-	SOLVER
	Explicit Newmark a	lpha integrator value	
BETA_EXPLICIT	0.166667	-	SOLVER
	Explicit Newmark b	eta integrator value	
GAMMA_EXPLICIT	0.5	-	SOLVER
	Explicit Newmark g	amma integrator value	
UPDATE_FOR_MASTER	0	-	SOLVER
CORRECTOR			
	Toggle corrector or account: $0 = OFF;$	Newton iterations to be $1 = ON$	taken into
[TIRE AND RIM H	RESIZING]	
	$205/50\mathrm{R16}$		RESIZING
TIRE_REFT	205/ 501(10	-	ILDSIZING

Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion FLEXRIM ICDT50-N ADVANCED OUTPUT PARAMETERS] T_START 0 s OUTPUT Start of output simulation time T_END 100 s OUTPUT End of output simulation time	Parameter	Default Value Unit Explanation	Class	
TIRE_NEW 225/45R17 · RESIZING RIM_NEW 17x7 - RESIZING Target trin specification - RESIZING USE_RESIZING_FROM_VERSION.e.g. 2021.2.0 - RESIZING Switch to enable resizing from a previous CDTire version. If not set the resizing mechanism associated with the current CDTire binary will be used. - RESIZING FLEXRIM_S MODEL PARAMETER RIMFILENAME Flextim.dat - FLEXRIM Name of the file containing the compliance. Please contact Fraunhofer ITWM for further information on how to use this functionality. - FLEXRIM MODE 0 - FLEXRIM ACTIVE_FLAG 1 - FLEXRIM SWtich for activation of the flexible rim (redundant) SIDE -1 - SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. - ORIENTATION -1 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM TITER_KMIN <	RIM_REF		RESIZING	
Target tire specification RESIZING RESIZING Target rim specification USE_RESIZING_FROM_VERSION RESIZING Switch to enable resizing from a previous CDTire version. If not set the resizing mechanism associated with the current CDTire binary will be used. FLEXRIM_S MODEL PARAMETERS RIMFILENAME FLEXRIM SMODEL PARAMETERS RIMFILENAME FLEXRIM Name of the file containing the compliance. Please contact Fraumhofer ITWM for further information on how to use this functionality. MODE 0 FLEXRIM ACTIVE_FLAG 1 FLEXRIM Switch for activation of the flexible rim (redundant) SIDE -1 FLEXRIM Selection of the fixible rim (redundant) SIDE -1 FLEXRIM Selection of the orientation of the rim e.g. face outside cor face inside. ITER_KMAX 40 FLEXRIM Solver Parameter: Maximum number of iterations. <td></td> <td></td> <td></td>				
RIM_NEW 17x7 - RESIZING Target rim specification Target rim specification RESIZING USE_RESIZING_FROM_VERSIONe.g. 2021.2.0 - RESIZING Switch to enable resizing from a previous CDTire version. If not set the resizing mechanism associated with the current CDTire binary will be used. [FLEXRIM_S MODEL PARAMETER] RIMFILENAME Flextim.dat - FLEXRIM Name of the file containing the compliance. Please contact Fraunhofer ITWM for further information on how to use this functionality MODE 0 - FLEXRIM MODE 0 - FLEXRIM Switch for activation of the flexible rim (redundant) SIDE -1 - FLEXRIM SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL -	TIRE_NEW		RESIZING	
Target rim specification USE_RESIZING_FROM_VERSIONe.g. 2021.2.0 RESIZING Switch to enable resizing from a previous CDTire version. If not set the resizing mechanism associated with the current CDTire binary will be used. [FLEXRIM_S MODEL PARAMETER] RIMFILENAME Flextim.dat FLEXRIM Name of the file containing the compliance. Please contact Fraunhofer ITWM for further information on how to use this functionality. MODE 0 FLEXRIM ACTIVE_FLAG 1 FLEXRIM ACTIVE_FLAG 1 FLEXRIM Switch for activation of the flexible rim (redundant) SIDE 1 FLEXRIM Switch for activation of the fixelible rim (redundant) SWIED of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION 1 FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. ITER_KMAX 40 FLEXRIM <th co<="" td=""><td></td><td>a a a a a a a a a a a a a a a a a a a</td><td>DEGIZING</td></th>	<td></td> <td>a a a a a a a a a a a a a a a a a a a</td> <td>DEGIZING</td>		a a a a a a a a a a a a a a a a a a a	DEGIZING
USE_RESIZING_FROM_VERSION e.g. 2021.2.0 - RESIZING Switch to enable resizing from a previous CDTire ver- sion. If not set the resizing mechanism associated with the current CDTire binary will be used. [FLEXRIM_S MODEL PARAMETER] RIMFILENAME Flextim.dat - FLEXRIM Name of the file containing the compliance. Please con- tact Fraunhofer ITWM for further information on how to use this functionality. MODE 0 - FLEXRIM ACTIVE_FLAG 1 - FLEXRIM SUDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_KMIN 0.2 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_KMIN 0.2 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_TOL 1 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: Relaxing for actor ITER_TOL 1 - FLEXRIM Solver Parameter: Relaxing for actor ITER_TOL 1 - FLEXRIM Solver Parameter: Relaxing factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion	RIM_NEW		RESIZING	
Switch to enable resizing from a previous CDTire version. If not set the resizing mechanism associated with the current CDTire binary will be used. [FLEXRIM_S MODEL PARAMETER] RIMFILENAME Flextim.dat - FLEXRIM Name of the file containing the compliance. Please contact Fraunhofer ITWM for further information on how to use this functionality. MODE 0 - FLEXRIM ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) SUDE - FLEXRIM SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. - ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM TITECAIN 4 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM TITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion - FLEXRIM	USE RESIZING FROM	and a second	RESIZING	
sion. If not set the resizing mechanism associated with the current CDTire binary will be used. [FLEXRIM_S MODEL PARAMETER] RIMFILENAME Flextim.dat - FLEXRIM Name of the file containing the compliance. Please con- tact Frauhofer ITWM for further information on how to use this functionality. NODE 0 - FLEXRIM MODE 0 - FLEXRIM - FLEXRIM ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) - FLEXRIM SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. - ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM TITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM TITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM </td <td></td> <td>-</td> <td></td>		-		
the current CDTire binary will be used. [FLEXRIM_S MODEL PARAMETER] RIMFILENAME Flextin.dat · FLEXRIM Name of the file containing the compliance. Please contact Fraunhofer ITWM for further information on how to use this functionality. MODE 0 - FLEXRIM MODE 0 - FLEXRIM FLEXRIM ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) SUDE -1 - FLEXRIM SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM TITER_CAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Par			-	
RIMFILENAME Flextim.dat - FLEXRIM Name of the file containing the compliance. Please con- tact Fraunhofer ITWM for further information on how to use this functionality. MODE 0 - FLEXRIM MODE 0 - FLEXRIM FLEXRIM ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) SUDE -1 - FLEXRIM SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Parameter: abort criterion <td></td> <td></td> <td></td>				
Name of the file containing the compliance. Please contact Fraunhofer ITWM for further information on how to use this functionality. MODE 0 - FLEXRIM required, but no functionality ACTIVE_FLAG 1 - FLEXRIM ACTIVE_FLAG 1 - FLEXRIM SWICH for activation of the flexible rim (redundant) SUBE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. - ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM - FLEXRIM Solver Parameter: Minimum number of iterations. - FLEXRIM - FLEXRIM Solver Parameter: Minimum number of iterations. - FLEXRIM - FLEXRIM Solver Parameter: Advance DOUTPUT PARAMETERS - FLEXRIM - FLEXRIM Solver Parameter: abort criterion - FLEXRIM - FLEXRIM Solver Parameter: abort criterion - FLEXRIM - FLEXRI		[FLEXRIM_S MODEL PARAMET	'ER]	
MODE 0 - FLEXRIM required, but no functionality ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) SIDE - FLEXRIM SIDE -1 - FLEXRIM ORIENTATION -1 - FLEXRIM Solver Parameter of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM TTER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - TTER_KMIN 4 - FLEXRIM Solver Parameter: Minum number of iterations. - TTER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor - TTER_TOL 1 - FLEXRIM Solver Parameter: abort criterion - T_START 0	RIMFILENAME	Flextim.dat -	FLEXRIM	
to use this functionality. MODE 0 - FLEXRIM required, but no functionality ACTIVE_FLAG 1 - FLEXRIM ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM ITER_KMIN 4 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM TIER_CAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Parameter: abort criterion - <td></td> <td>Name of the file containing the co</td> <td>mpliance. Please con-</td>		Name of the file containing the co	mpliance. Please con-	
MODE 0 - FLEXRIM required, but no functionality ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) S S FLEXRIM SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. TITER_KMAX 40 - ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KIIN 4 - ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion T_START 0 s OUTPUT T_END 100 s OUTPUT End of output simulation time OUTPUT		tact Fraunhofer ITWM for furthe	r information on how	
required, but no functionality ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) Swtich for activation of the flexible rim (redundant) SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. - ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM TER_KMIN 4 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM TITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Parameter: abort criterion - FLEXRIM T_START 0 s OUTPUT T_END 100 s OUTPUT End of output simulation time - End of output simulation time		to use this functionality.		
ACTIVE_FLAG 1 - FLEXRIM Swtich for activation of the flexible rim (redundant) SWtich for activation of the flexible rim (redundant) SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM Solver Parameter: Minimum number of iterations. - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM Solver Parameter: abort criterion - FLEXRIM T_START 0 s OUTPUT Start of output simulation time - - - T_END 100 s OUTPUT End of output simulation time - - </td <td>MODE</td> <td>0 -</td> <td>FLEXRIM</td>	MODE	0 -	FLEXRIM	
Swtich for activation of the flexible rim (redundant) SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. - ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM TTER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM TTER_GAIN 4 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM TTER_TOL 1 - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Parameter: abort criterion - FLEXRIM T_START 0 s OUTPUT Start of output simulation time - - T_END 100 s OUTPUT End of output simulation time - - -		required, but no functionality		
SIDE -1 - FLEXRIM ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. - FLEXRIM ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM Solver Parameter: Minimum number of iterations. - FLEXRIM TIER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM TITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion - FLEXRIM Solver Parameter: abort criterion - FLEXRIM T_START 0 s OUTPUT Start of output simulation time - - T_END 100 s OUTPUT End of output simulation time - - -	ACTIVE_FLAG	1 -	FLEXRIM	
ROLE of the rim: LEFT -> -1, RIGHT -> 1, ANY -> 0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. or face inside. - ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. - FLEXRIM ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. - FLEXRIM Solver Parameter: Relaxation factor - FLEXRIM ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion - - T_START 0 s OUTPUT T_END 100 s OUTPUT End of output simulation time - - -		Swtich for activation of the flexible	le rim (redundant)	
0, same as the ROLE Parameter of the tire. ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. or face outside or face outside ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM ITER_KMIN 4 - FLEXRIM FLEXRIM Solver Parameter: Minimum number of iterations. ITER_GAIN Solver Parameter: Minimum number of iterations. ITER_CAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion FLEXRIM Solver Parameter: abort criterion ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion ITER_TOL Iter of output simulation time Iter of output simulation time	SIDE	-1 -	FLEXRIM	
ORIENTATION -1 - FLEXRIM Selection of the orientation of the rim e.g. face outside or face inside. ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion CDT50-N ADVANCED OUTPUT PARAMETERS] T_START 0 s OUTPUT Start of output simulation time T_END 100 s OUTPUT End of output simulation time		ROLE of the rim: LEFT $\rightarrow -1$, R	$IGHT \rightarrow 1$, ANY \rightarrow	
Selection of the orientation of the rim e.g. face outside or face inside. ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion T_START 0 s OUTPUT T_END 100 s OUTPUT End of output simulation time		0, same as the ROLE Parameter of	of the tire.	
in face inside. ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion FLEXRIM CDT50-N ADVANCED OUTPUT PARAMETERS T_START 0 s OUTPUT T_START 0 s OUTPUT Start of output simulation time OUTPUT T_END 100 s OUTPUT End of output simulation time OUTPUT	ORIENTATION	-1 -	FLEXRIM	
ITER_KMAX 40 - FLEXRIM Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion CDT50-N ADVANCED OUTPUT PARAMETERS CDT50-N ADVANCED OUTPUT PARAMETERS T_START 0 s OUTPUT Start of output simulation time T_END 100 s OUTPUT End of output simulation time			e rim e.g. face outside	
Solver Parameter: Maximum number of iterations. ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. Solver Parameter: Minimum number of iterations. ITER_GAIN 0.2 - FLEXRIM ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion CDT50-N ADVANCED OUTPUT PARAMETERS T_START 0 s OUTPUT Start of output simulation time T_END 100 s OUTPUT	ITER KMAX	40 -	FLEXRIM	
ITER_KMIN 4 - FLEXRIM Solver Parameter: Minimum number of iterations. ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion ICDT50-N ADVANCED OUTPUT PARAMETERS ICDT50-N ADVANCED OUTPUT PARAMETERS T_START 0 s OUTPUT Start of output simulation time T_END 100 s OUTPUT End of output simulation time		Solver Parameter: Maximum num	ber of iterations.	
ITER_GAIN 0.2 - FLEXRIM Solver Parameter: Relaxation factor I FLEXRIM ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion FLEXRIM ICDT50-N ADVANCED OUTPUT PARAMETERS] T_START 0 s OUTPUT Start of output simulation time OUTPUT End of output simulation time	ITER_KMIN	4 -	FLEXRIM	
Solver Parameter: Relaxation factor ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion FLEXRIM ICDT50-N ADVANCED OUTPUT PARAMETERS] T_START 0 s OUTPUT Start of output simulation time T_END 100 s OUTPUT End of output simulation time		Solver Parameter: Minimum num	ber of iterations.	
ITER_TOL 1 - FLEXRIM Solver Parameter: abort criterion Solver Parameter: abort criterion FLEXRIM ICDT50-N ADVANCED OUTPUT PARAMETERS] OUTPUT T_START 0 s OUTPUT Start of output simulation time OUTPUT End of output simulation time	ITER_GAIN	0.2 -	FLEXRIM	
Solver Parameter: abort criterion [CDT50-N ADVANCED OUTPUT PARAMETERS] T_START 0 s OUTPUT Start of output simulation time OUTPUT S OUTPUT T_END 100 s OUTPUT End of output simulation time End of output simulation time		Solver Parameter: Relaxation fact	tor	
ICDT50-N ADVANCED OUTPUT PARAMETERS] T_START 0 s OUTPUT Start of output simulation time 5 OUTPUT T_END 100 s OUTPUT End of output simulation time 5 OUTPUT	ITER_TOL	1 -	FLEXRIM	
T_START 0 s OUTPUT Start of output simulation time Start of output simulation time T_END 100 s OUTPUT End of output simulation time End of output simulation time		Solver Parameter: abort criterion		
Start of output simulation time T_END 100 s OUTPUT End of output simulation time OUTPUT	[CD	T50-N ADVANCED OUTPUT PARA	METERS]	
T_END 100 s OUTPUT End of output simulation time End of output simulation time	T_START	0 s	OUTPUT	
End of output simulation time		Start of output simulation time		
-	T_END	100 s	OUTPUT	
DT_OUT 0.001 s OUTPUT		End of output simulation time		
	DT_OUT	0.001 s	OUTPUT	

Parameter	Default Value Explanation	Unit	Class
	Output step size		
OUTPUT_TIRESTATES	0 Flag to output the t	- ire states (0 = off, 1 =	OUTPUT = on)
OUTPUT_ROAD CONTACTFORCES	0	-	OUTPUT
TAKE_LOGFILENAME_AS_ PREFIX	Flag to output the r -	bad contact forces (0 = -	$\frac{\text{off, } 1 = \text{on}}{\text{OUTPUT}}$
	Naming convention	of resulting output file	2
[C	DT50-N STATIC PA	RAMETERS]	
LOGGING_LEVEL	0	_	MBS STATIC
	Set to 1 for verbose		
INFLATION_PRESSURE_REF	0.25 Reference inflation vanced settings)	MPa pressure (can be over	MBS STATIC cruled by ad-
INCLINATION_ANGLE_REF	0 Reference inclinatio vanced settings)	rad n angle (can be over	MBS STATIC ruled by ad-
FZW_REF	5000	N	MBS STATIC
	Reference vertical (normal) load (can be overruled by advanced settings)		
VERTICAL_STIFFNESS_ UNLOADED_HEIGHT	325	mm	MBS STATIC
	Minimal unloaded h IP/IA	eight (surface normal)	for reference
VERTICAL_STIFFNESS	250	N/mm ess for reference IP/IA	MBS STATIC
VERTICAL_STIFFNESS_ QUADFACTOR	0.5	N/mm ²	MBS STATIC
	Quadratic vertical st	iffness for reference II	,
LONGITUDINAL_SLIP_ ACTIVATE	0	-	MBS STATIC
		udinal slip during sta	
LONGITUDINAL_SLIP_ KAPPA_SHIFT	0	-	MBS STATIC
	Shift (offset) for refe	1 1	
LONGITUDINAL_SLIP_ STIFFNESS	$2\mathrm{e}^{+5}$	N/1	MBS STATIC
		rence IP/IA/FZW	

Parameter	Default Value Explanation	Unit	Class
LONGITUDINAL _STIFFNESS_ACTIVATE	0	-	MBS STATIC
	(De-)activates longitu	idinal stiffness during sta	atics
LONGITUDINAL _STIFFNESS	400	m N/mm	MBS STATIC
	Static stiffness for rel	ference IP/IA/FZW	
LATERAL_SLIP_ ACTIVATE	0	-	MBS STATIC
	(De-)activates lateral		
LATERAL_SLIP_CORNERING _SLIPANGLE_SHIFT	0	rad	MBS STATIC
	Shift (offset) for refer	1 1	
LATERAL_SLIP_CORNERING _STIFFNESS	$1\mathrm{e}^{+5}$	N/rad	MBS STATIC
	Slip stiffness for refer	ence IP/IA/FZW	
LATERAL_SLIP_ALIGNING _TORQUE_SLIPANGLE_SHIFT	0	rad	MBS STATIC
	Shift (offset) for refer	rence IP/IA/FZW	
LATERAL_SLIP_ALIGNING _TORQUE_STIFFNESS	5000	Nmm/rad	MBS STATIC
	Slip stiffness for refer	ence IP/IA/FZW	
LATERAL_STIFFNESS_ ACTIVATE	0	-	MBS STATIC
	(De-)activates lateral	stiffness during statics	
LATERAL_STIFFNESS	200 Static stiffness for rel	N/mm Ference IP/IA/FZW	MBS STATIC
VERTICAL_STIFFNESS _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC
	Optional reference CAL STIFFNESS d	inflation pressure for erivatives dIP	VERTI-
VERTICAL_STIFFNESS _INCLINATION_ANGLE_REF	0	rad	MBS STATIC
	Optional reference CAL STIFFNESS d	inclination angle for erivatives dIA	VERTI-
VERTICAL_STIFFNESS UNLOADED HEIGHT dIP dIA	[0,0]	[mm ³ /N, mm/rad]	MBS STATIC
	First derivatives at re	eference IP/IA	
VERTICAL_STIFFNESS _dIP_dIA	[0,0]	[mm, N/(mm rad)]	MBS STATIC
	First derivatives at re	eference IP/IA	
VERTICAL_STIFFNESS _QUADFACTOR_dIP_dIA	[0,0]	$[1, N/(mm^2 rad)]$	MBS STATIC

Parameter	Default Value Explanation	\mathbf{Unit}	Class	
	First derivatives at :	reference IP/IA		
VERTICAL_STIFFNESS _UNLOADED_HEIGHT dIP2_dIPdIA_dIA2_HALF	[0,0,0]	$[mm^5/N^2, mm^3/(N rad), mm/rad^2]$	MBS STATIC	
	One half of second of	lerivatives at reference IP/2	IA	
VERTICAL_STIFFNESS dIP2_dIPdIA_dIA2_HALF	[0,0,0]	[mm ³ /N, mm/rad, N/(mm rad ²) $]$	MBS STATIC	
VERTICAL_STIFFNESS _QUADFACTOR dIP2_dIPdIA_dIA2_HALF	[0,0,0]	$\frac{\text{lerivatives at reference IP/2}}{[\text{ mm}^2/\text{N}, 1/\text{rad}, \text{N/(mm}^2 \text{ rad}^2)]}$		
	One half of second derivatives at reference IP/IA			
LONGITUDINAL_SLIP _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC	
	Optional reference i NAL_SLIP derivati	GITUDI-		
LONGITUDINAL_SLIP _INCLINATION_ANGLE_REF	0	MPa	MBS STATIC	
	Optional reference inclination angle for LONGITUDI- NAL_SLIP derivatives dIA			
LONGITUDINAL_SLIP _FZW_REF	5000	MPa	MBS STATIC	
	Optional reference TUDINAL_SLIP de	vertical (normal) load for erivatives dFZW	LONGI-	
LONGITUDINAL_SLIP _KAPPA_SHIFT dIP_dIA_dFZW	[0,0,0]	[mm ² /N, 1/rad, 1/N]	MBS STATIC	
	First derivatives at :	reference IP/IA/FZW		
LONGITUDINAL_SLIP _STIFFNESS dIP_dIA_dFZW	[0,0,0]	[mm ² , N/rad, 1]	MBS STATIC	
	First derivatives at :	reference IP/IA/FZW		
LONGITUDINAL_ STIFFNESS dIP dIA dFZW	[0,0,0]	[mm, N/(mm rad), 1/mm]	MBS STATIC	
un _un _ur zw	First derivatives at reference IP/IA/FZW			
LATERAL_SLIP _INFLATION_PRESSURE_REF	0.25	MPa	MBS STATIC	
	Optional reference ERAL_SLIP deriva	e inflation pressure for tives dIP	: LAT-	

Parameter	Default Value Explanation	Unit	Class
LATERAL_SLIP _INFLATION_PRESSURE_REF	0	rad	MBS STATIC
	Optional reference ERAL_SLIP derivati	inflation pressure for ves dIA	LAT-
LATERAL_SLIP _FZW_REF	5000	Ν	MBS STATIC
	Optional reference ERAL_SLIP derivati	inflation pressure for ves dFZW	LAT-
LATERAL_SLIP _CORNERING_SLIPANGLE_SHIP dIP_dIA_dFZW	[0 , 0 , 0] FT	$\begin{bmatrix} mm^2 & rad/N, & 1, \\ rad/N \end{bmatrix}$	MBS STATIC
	First derivatives at re	eference IP/IA/FZW	
LATERAL_SLIP _CORNERING_STIFFNESS dIP dIA dFZW	[0,0,0]	[mm ² /rad, N/rad ² , 1/rad $]$	MBS STATIC
	First derivatives at re	eference IP/IA/FZW	
LATERAL_SLIP _ALIGNING_TORQUE_SLIPANG dIP_dIA_dFZW	[0,0,0]	[mm ² rad/N, 1, rad/N $]$	MBS STATIC
	First derivatives at re	eference IP/IA/FZW	
LATERAL_SLIP ALIGNING_TORQUE_STIFFNE dIP_dIA_dFZW	[0,0,0] SS	$[mm^3/rad, Nmm/rad^2, mm/rad]$	MBS STATIC
	First derivatives at re	eference IP/IA/FZW	
LATERAL_STIFFNESS _dIP_dIA_dFZW	[0,0,0]	[mm, Nmm/rad, $1/mm$ $]$	MBS STATIC
	First derivatives at re	eference IP/IA/FZW	
WHEELCENTER_STIFFNESS _ACTIVATE	0	-	MBS STATIC
	(De-)activates wheel	center stiffnesses during st	tatics
WHEELCENTER_STIFFNESS _INPLANE_TRANSLATIONAL	400	m N/mm	MBS STATIC
	Derived (can be over	uled if specified) stiffness	
WHEELCENTER_STIFFNESS _OUTPLANE_TRANSLATIONAL	200	N/mm	MBS STATIC
		uled if specified) stiffness	
WHEELCENTER_STIFFNESS _OUTPLANE_ROTATIONAL	$2\mathrm{e}^{+7}$	Nmm/rad	MBS STATIC
	Derived (can be over	uled if specified) stiffness	
WHEELCENTER_STIFFNESS _INPLANE_ROTATIONAL	$5\mathrm{e}^{+7}$	Nmm/rad	MBS STATIC

Parameter	Default Value Explanation	Unit	Class	
	Derived (can be overuled if specified) stiffness			

7.1 Control-File Options

Selected CDTire/3D parameters can also be modified using the control-file. The control-file option does overrule the parameter file values. This option is especially of interest when dealing with crypted parameter files. The following list shows all parameters that can be modified using the control file. Beside this all solver parameter can be modified as well.

- ROLE
- SYMMETRIZE
- NCS
- NRSENSTART
- SW_MODE
- RUBBER_LAT_DAMP
- RUBBER_CIRC_DAMP
- RUBBER_SHEAR_DAMP
- RUBBER_DIAG_DAMP
- STEEL_CORDLAYER_STIFF_GLOBAL_SCALEFACTOR (DEFAULT = 1.0)
- X_BENDING_DAMP
- Y_BENDING_DAMP
- XY_DIAG_BENDING_DAMP

- TREAD_HEIGHT_REF
- TREAD_SCAN_HEIGHT
- TREAD_RAD_D
- TREAD_TAN_D
- TREAD_E/H_GLOBAL_SCALEFACTOR (DEFAULT = 1.0)
- TREAD_Gx/H_GLOBAL_SCALEFACTOR (DEFAULT = 1.0)
- TREAD_Gy/H_GLOBAL_SCALEFACTOR (DEFAULT = 1.0)
- RUBBER_STIFF_GLOBAL_SCALEFACTOR (DEFAULT = 1.0)
- MU_GLOBAL_SCALEFACTOR
- MU_X_SCALEFACTOR
- ADVANCED
- MASS_UPDATE_NOCAVITY
- CORRECT_WEIGHT_TO_NOMINAL_FLAG
- LDE_FLAG
- LDE_Y_COORD
- LDE_W
- LDE_RIM_FLANGE_RADIUS
- LDE_HEIGHT
- LDE_C

- LDE_C_SHAPE_FACTOR
- LDE_C_GAIN_MAX
- LDE_CNL
- LDE_CLIN
- LDE_RNL
- LDE_RLIN
- LDE_SCAN_RADIUS
- LDE_ACTIVE_RADIUS
- CAVITY_MODEL_FLAG
- FLEXRIM_S_MODEL_FLAG
- R_EFF
- R_STAT
- $CR1_STAT$

Road Parameters

The following paragraphs show detailed examples for:

- Equidistant track data and
- Non-equidistant track data.

Each example contains a road definition file and a figure displaying the defined road surface.

8.1 Example for Equidistant Track Data (Data Type 2)

#	EXAMPLE EQUIDISTANT TRACK DATA					
#	X0_ROAD	Y0_ROAD	Z0_ROAD	MU_ROAD		
	200.0	200.0	50.0	1.0		
#	DATA TYPI	E : EQUIDISTA	NT TRACK D.	ATA		
	2					
#	NTRACKS					
	2					
#	NDATA	X0_TRACK	Y0_TRACK	HALF_WIDTH	$\mathbf{D}\mathbf{X}$	MU_TRACK
	21	-300	-150	150	25	1.0
	0.0000					
	-9.5492					
	-34.5492					
	-65.4508					
	-90.4508					
	-100.0000					
	-90.4508					
	-65.4508					
	-34.5492					
	-9.5492					
	0.0000					

8

#	-9.5492 -34.5492 -65.4508 -90.4508 -100.0000 -90.4508 -65.4508 -34.5492 -9.5492 0.0000 NDATA 4 50.0000	X0_TRACK -100	Y0_TRACK 350	HALF_WIDTH 150	DX 200	MU_TRACK 1.0
	50.0000					
	100.0000					
	100.0000					
	50.0000					
END						

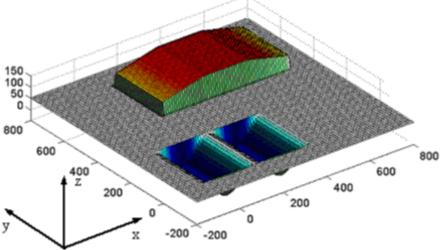


Figure 8.1: Road Surface Model 1000: equidistant track

8.2 Example for Non-Equidistant Track Data (Data Type 3)

- # EXAMPLE NON-EQUIDISTANT TRACK DATA
- $\# X0_ROAD Y0_ROAD Z0_ROAD MU_ROAD$
 - 200.0 200.0 50.0 1.0
- # $\;$ DATA TYPE : NON-EQUIDISTANT TRACK DATA $\;$

MU_TRACK

1.0

	3			
#	NTRACKS			
	1			
#	NDATA	X0_TRACK	Y0_TRACK	HALF_WIDTH
	24	-300	100	400
	0.0000	0.0000		
	25.0000	-9.5492		
	50.0000	-34.5492		
	75.0000	-65.4508		
	100.0000	-90.4508		
	125.0000	-100.0000		
	225.0000	-100.0000		
	250.0000	-90.4508		
	275.0000	-65.4508		
	300.0000	-34.5492		
	325.0000	-9.5492		
	350.0000	0.0000		
	450.0000	0.0000		
	475.0000	9.5492		
	500.0000	34.5492		
	525.0000	65.4508		
	550.0000	90.4508		
	575.0000	100.0000		
	675.0000	100.0000		
	700.0000	90.4508		
	725.0000	65.4508		
	750.0000	34.5492		
	775.0000	9.5492		

END

800.0000

0.0000

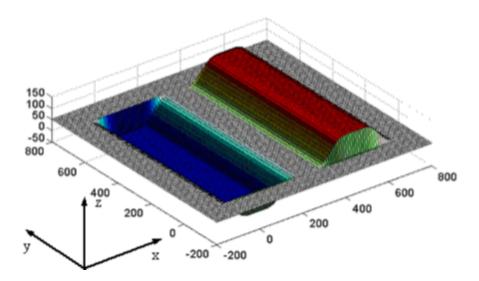


Figure 8.2: Road Surface Model 1000: non-equidistant track

8.3 Warning and Errors

For errors and warnings, please see the CDTire log files and/or the log files of the respective MBS solver run.

8.4 Extended Support

- For technical questions please contact cdtire@itwm.fraunhofer.de
- For question referring to licensing setup and license extrension please contact <u>license.cdtire@itwm.fraunhofer.de</u>