Safety Factor
Safety factor is calculated based on the endurance limit or target stress (at target life) against the stress amplitude from the working stress history.
- Mean Stress = Constant
- Stress Ratio = Constant
The safety factor (SF) based on the mean stress correction applied is given by the following equations.
- Mean Stress = Constant
-
- Goodman or Soderberg
When SN curve is of the Stress Ratio R = -1
SF=sσa=seσa0se = Target stress amplitude against the target life from the modified SN curve
σa0 = Stress amplitude after mean stress correction
Figure 1. When SN curve is of the Stress Ratio R != -1Figure 2. σa = Stress Amplitude
σm = Mean Stress
Se−R = Endurance limit obtained from SN curve with R ratio
Se−m = Mean Stress corresponding to Se−R
If R > −1 , se=Se−R1−sm−RUTS
sm−R=Se−R. 1+R1−RIf R < −1 , Se=Se−R
If σm> 0 , sa=σa1−σmUTS
If σm≤0 , sa=σa
SF= SeSa - GerberSF=sσa=seσa0
Figure 3. Figure 4. Sa=σa⋅(1−(σmUTS)2)Se=Se−R⋅(1−(sm−RUTS)2)sm−R=Se−R. 1+R1−RSF= SeSa - Gerber2
-
σm>0: SF=sσa=seσa0
-
σm≤0: SF=sσa
When SN curve is of the Stress Ratio R != -1
If R > −1
Se=Se−R⋅(1−(sm−RUTS)2)sm−R=Se−R. 1+R1−RIf R < −1 , Se=Se−R
If σm> 0 , Sa=σa(1−(σmUTS)2)
If σm≤0 , sa=σa
SF= SeSa -
- FKMSF=s'eσa
-
σm<−se1−m2 s'e=−m, (σm+se1−m2)+se1−m2
-
−se1−m2≤σm<se1+m2 s'e=−m2σm+se
-
se1+m2≤σm<3(1+m3)1+3m3 · se1+m2 s'e=−m3(σm−se1+m2)+se1+m2
-
3(1+m3)1+3m3 · se1+m2≤σm s'e=−m4(σm−3(1+m3)1+3m3 · se1+m2)+13(3(1+m2)1+3m3 · se1+m2)
Figure 5. -
- No Mean Stress CorrectionSF=seσa
- Goodman or Soderberg
- Stress Ratio = Constant
-
- Goodman
When SN curve is of the Stress Ratio R = -1
SF=OBOA=1(σase+σmUTS)Figure 6. When SN curve is of the Stress Ratio R != -1
If R > −1 , se=Se−R1−sm−RUTS
sm−R=Se−R. 1+R1−RIf R < −1 , se=Se−R
If σm> 0 , SF=1σaSe+σmUTS
If σm≤0 , SF= Seσa
- Gerber
When SN curve is of the Stress Ratio R = -1
-
If σm=0: SF=seσa
-
If σm≠0: SF=12(UTSσm)2 · σase[−1+√1+(2seσmUTS ⋅ σa)2]
When SN curve is of the Stress Ratio R != -1
Se=Se−R(1−(Sm−RUTS)2)sm−R=Se−R. 1+R1−RIf σm≠0 , SF=12(UTSσm)2⋅σeSe⋅(−1+√1+(2σmSeUTSσa)2)
If σm=0 , SF= Seσa
-
- Gerber2
-
If σm≤0: SF=seσa
-
If σm≥0: SF=12(UTSσm)2 · σase[−1+√1+(2seσmUTS ⋅ σa)2]
When SN curve is of the Stress Ratio R != -1
If R > −1
Se=Se−R⋅(1−(sm−RUTS)2)sm−R=Se−R. 1+R1−RIf R < −1 , Se=Se−R
If σm> 0 , SF=12(UTSσm)2⋅σaSe⋅(−1+√1+(2σmSeUTSσa)2)
If σm≤0 , SF= Seσa
-
- FKMSF=seσa0
σa0 = Corrected Stress Amplitude in Constant R mean stress correction
- No Mean Stress CorrectionSF=sesa
- Interpolate
- Safety Factor with Multi-Mean
- To calculate safety factor, HyperLife creates an internal
Haigh diagram for the target life using multi-mean SN
curve by finding stress amplitude-mean stress pairs at
the target life. Using the internally created Haigh
diagram, HyperLife
calculates safety factor as described in section Safety
Factor in Chapter Haigh diagram. The number of data
points of the Haigh diagram is the number of curves.
Thus the more number of curves, the better result. When
Haigh diagram is not available in mean stress ranges,
HyperLife extrapolates
the Haigh diagram.
Figure 7. Conversion of Multi-Mean Curve to Haigh Diagram - Safety Factor with Multi-Ratio
- To calculate safety factor, HyperLife create an internal
Haigh diagram for the target life using multi-mean SN
curve by finding stress amplitude-mean stress pairs at
the target life. The number of data points of the Haigh
diagram is the number of curves. Thus, the more number
of curves, the better result. When Haigh diagram is not
available in mean stress ranges, HyperLife extrapolates the Haigh
diagram.
Figure 8. Conversion of Multi-Mean Curve to Haigh Diagram - Safety Factor with Haigh
- Safety factor (SF) is calculated in the following manner
in Figure 9.
Figure 9. - Constant R : SF = OB/OA
- Constant mean : SF = OD/OC
- Goodman