MATHC

Bulk Data Entry This material data defines honeycomb material behavior in Explicit analysis.

The material is used to describe honeycomb and foam with anisotropic behavior. The nonlinear elastoplastic material can be defined separately for all normal and shear behavior for uncompacted configuration, and isotropic material model is considered for a fully compacted model. This material is available for solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHC MID E NU RHO SIGY VF
LCA LCB LCC LCAB LCBC LCCA
EAAU EBBU ECCU GABU GBCU GCAU

Definitions

Field Contents SI Unit Example
MID Material identification number.

No default (Integer > 0)

E Young's Modulus for the compacted honeycomb material

No Default (Real > 0)

Nu Poisson’s ratio for the compacted honeycomb material.

No Default (Real > 0)

RHO Mass Density.

No Default (Real > 0)

SIGY Yield stress for the fully compacted honeycomb material.

No Default (Real > 0)

VF The relative volume at which the honeycomb material is fully compacted.

No Default (0 < Real < 1)

LCA Identification number of function for sigaa versus volumetric strain.

No Default (Integer > 0)

LCB Identification number of function for sigbb versus volumetric strain.

No Default (Integer > 0)

LCC Identification number of function for sigcc versus volumetric strain.

No Default (Integer > 0)

LCAB Identification number of function for sigab versus volumetric strain.

No Default (Integer > 0)

LCBC Identification number of function for sigbc versus volumetric strain.

No Default (Integer > 0)

LCCA Identification number of function for sigca versus volumetric strain.

No Default (Integer > 0)

EAAU Initial Young's Modulus Eaa in the uncompacted configuration.

No Default (Real > 0)

EBBU Initial Young Modulus Ebb in the uncompacted configuration.

No Default (Real > 0)

ECCU Initial Young's Modulus Ecc in the uncompacted configuration.

No Default (Real > 0)

GABU Initial shear modulus Gab in the uncompacted configuration.

No Default (Real > 0)

GBCU Initial shear modulus Gbc in the uncompacted configuration.

No Default (Real > 0)

GCAU Initial shear modulus Gca in uncompacted configuration.

No Default (Real > 0)

Comments

General Nonlinear Elastoplastic Behavior
  1. Uncompacted Honeycomb Material V > VF

    The Behavior before compaction is orthotropic and the stresses are completely uncoupled. The elastic moduli by direction vary from their initial value to the isotropic fully compacted value E at Vf as:

    Eaa=Eaau+β(EEaau)
    Ebb=Ebbu+β(EEbbu)
    Ecc=Eccu+β(EEccu)
    Gab=Gabu+β(GGabu)
    Gbc=Gbcu+β(GGbcu)
    Gca=Gcau+β(GGcau)
    With β=max[Min(1V1VF,0),1] and G=E2(1+ν)

    V is relative volume and VF is the relative volume at which the honeycomb is compacted. For the uncompacted configuration the trial stress components are updated as:

    σtrialaa(tn+1)=σtrialaa(tn)+EaaΔϵaa
    σtrialbb(tn+1)=σtrialbb(tn)+EbbΔϵbb
    σtrialcc(tn+1)=σtrialcc(tn)+EccΔϵcc
    σtrialab(tn+1)=σtrialab(tn)+2GabΔϵab
    σtrialbc(tn+1)=σtrialbc(tn)+2GbcΔϵbc
    σtrialca(tn+1)=σtrialca(tn)+2GcaΔϵbc

    Each stress component must not exceed the permissible values given by the stress versus volumetric strain defined by the curve (LCAA, LCBB, … and so on) for each component.

    |σtrialij(tn+1)|<σij(V)
    Thus,
    σij(tn+1)=σij(V)σtrialij(tn+1)|σtrialij(tn+1)|
    The σij(V) is defined for each component using LCAA, LCBB, LCCC … (see Figure 1).

  2. Compacted Honeycomb Material V < VF

    For the fully compacted honeycomb material, assume the behavior is isotropic and elastic perfectly plastic. Thus, the stress is updated using Hook Material law. So, the deviatoric stresses are given by:

    Strialij(tn+1)=Sij(tn+1)+2GΔεdevij
    Where the deviatoric strain increment is defined by:
    Δεdevij=εij13Δεkkδij

    The equivalent Von Mises stress of the fully compacted honeycomb material is compared to the SIGY. If the effective stress exceeds the yield stress, the tensor stress is simply scaled back to the yield surface using:

    Sij(tn+1)=σyStrialeq Striaij(tn+1)
    Where Strialeq=(32 Striaij Striaij)12

    The pressure is updated using the Bulk modulus as:

    P(tn+1)=P(tn)KΔεkk
    Where K=E3(12ν)

    Thus, the final Cauchy stress is computed as:

    σij(tn+1)=Sij(tn+1)P(tn+1)δij



    Figure 1. Stress versus Volumetric Strain