MATHC

Bulk Data Entry This material data defines honeycomb material behavior in Explicit analysis.

The material is used to describe honeycomb and foam with anisotropic behavior. The nonlinear elastoplastic material can be defined separately for all normal and shear behavior for uncompacted configuration, and isotropic material model is considered for a fully compacted model. This material is available for solid elements.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
MATHC MID E NU RHO SIGY VF
LCA LCB LCC LCAB LCBC LCCA
EAAU EBBU ECCU GABU GBCU GCAU

Definitions

Field Contents SI Unit Example
MID Material identification number.

No default (Integer > 0)

E Young's Modulus for the compacted honeycomb material

No Default (Real > 0)

Nu Poisson’s ratio for the compacted honeycomb material.

No Default (Real > 0)

RHO Mass Density.

No Default (Real > 0)

SIGY Yield stress for the fully compacted honeycomb material.

No Default (Real > 0)

VF The relative volume at which the honeycomb material is fully compacted.

No Default (0 < Real < 1)

LCA Identification number of function for sigaa versus volumetric strain.

No Default (Integer > 0)

LCB Identification number of function for sigbb versus volumetric strain.

No Default (Integer > 0)

LCC Identification number of function for sigcc versus volumetric strain.

No Default (Integer > 0)

LCAB Identification number of function for sigab versus volumetric strain.

No Default (Integer > 0)

LCBC Identification number of function for sigbc versus volumetric strain.

No Default (Integer > 0)

LCCA Identification number of function for sigca versus volumetric strain.

No Default (Integer > 0)

EAAU Initial Young's Modulus Eaa in the uncompacted configuration.

No Default (Real > 0)

EBBU Initial Young Modulus Ebb in the uncompacted configuration.

No Default (Real > 0)

ECCU Initial Young's Modulus Ecc in the uncompacted configuration.

No Default (Real > 0)

GABU Initial shear modulus Gab in the uncompacted configuration.

No Default (Real > 0)

GBCU Initial shear modulus Gbc in the uncompacted configuration.

No Default (Real > 0)

GCAU Initial shear modulus Gca in uncompacted configuration.

No Default (Real > 0)

Comments

General Nonlinear Elastoplastic Behavior
  1. Uncompacted Honeycomb Material V > VF

    The Behavior before compaction is orthotropic and the stresses are completely uncoupled. The elastic moduli by direction vary from their initial value to the isotropic fully compacted value E at Vf as:

    E a a = E a a u + β E E a a u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadggacaWGHbaapaqabaGcpeGaeyyp a0Jaamyra8aadaWgaaWcbaWdbiaadggacaWGHbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGfbGaeyOeI0Iaamyr a8aadaWgaaWcbaWdbiaadggacaWGHbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4807@
    E b b = E b b u + β E E b b u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadkgacaWGIbaapaqabaGcpeGaeyyp a0Jaamyra8aadaWgaaWcbaWdbiaadkgacaWGIbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGfbGaeyOeI0Iaamyr a8aadaWgaaWcbaWdbiaadkgacaWGIbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@480D@
    E c c = E c c u + β E E c c u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadogacaWGJbaapaqabaGcpeGaeyyp a0Jaamyra8aadaWgaaWcbaWdbiaadogacaWGJbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGfbGaeyOeI0Iaamyr a8aadaWgaaWcbaWdbiaadogacaWGJbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4813@
    G a b = G a b u + β G G a b u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaeyyp a0Jaam4ra8aadaWgaaWcbaWdbiaadggacaWGIbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGhbGaeyOeI0Iaam4r a8aadaWgaaWcbaWdbiaadggacaWGIbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4812@
    G b c = G b c u + β G G b c u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadkgacaWGJbaapaqabaGcpeGaeyyp a0Jaam4ra8aadaWgaaWcbaWdbiaadkgacaWGJbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGhbGaeyOeI0Iaam4r a8aadaWgaaWcbaWdbiaadkgacaWGJbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4818@
    G c a = G c a u + β G G c a u MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ra8aadaWgaaWcbaWdbiaadogacaWGHbaapaqabaGcpeGaeyyp a0Jaam4ra8aadaWgaaWcbaWdbiaadogacaWGHbGaamyDaaWdaeqaaO WdbiabgUcaRiabek7aInaabmaapaqaa8qacaWGhbGaeyOeI0Iaam4r a8aadaWgaaWcbaWdbiaadogacaWGHbGaamyDaaWdaeqaaaGcpeGaay jkaiaawMcaaaaa@4815@
    With β = max Min 1 V 1 V F , 0 , 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0JaciyBaiaacggacaGG4bWaamWaa8aabaWdbiaa b2eacaqGPbGaaeOBamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymai abgkHiTiaadAfaa8aabaWdbiaaigdacqGHsislcaWGwbWdamaaBaaa leaapeGaamOraaWdaeqaaaaak8qacaGGSaGaaGimaaGaayjkaiaawM caaiaacYcacaaIXaaacaGLBbGaayzxaaaaaa@4B56@ and G = E 2 1 + ν MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiabg2da9maalaaapaqaa8qacaWGfbaapaqaa8qacaaIYaWa aeWaa8aabaWdbiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaa aaaa@3EB0@

    V is relative volume and VF is the relative volume at which the honeycomb is compacted. For the uncompacted configuration the trial stress components are updated as:

    σ a a t r i a l t n + 1 = σ a a t r i a l t n + E a a Δ ϵ a a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamyyaiaadggaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadggacaWGHb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaadweapaWaaSbaaSqaa8qacaWGHbGaamyy aaWdaeqaaOWdbiaabs5atuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaadggacaWGHbaapaqa baaaaa@6559@
    σ b b t r i a l t n + 1 = σ b b t r i a l t n + E b b Δ ϵ b b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamOyaiaadkgaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadkgacaWGIb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaadweapaWaaSbaaSqaa8qacaWGIbGaamOy aaWdaeqaaOWdbiaabs5atuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaadkgacaWGIbaapaqa baaaaa@6561@
    σ c c t r i a l t n + 1 = σ c c t r i a l t n + E c c Δ ϵ c c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaam4yaiaadogaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadogacaWGJb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaadweapaWaaSbaaSqaa8qacaWGJbGaam4y aaWdaeqaaOWdbiaabs5atuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0H gip5wzaGqbciab=v=aY=aadaWgaaWcbaWdbiaadogacaWGJbaapaqa baaaaa@6569@
    σ a b t r i a l t n + 1 = σ a b t r i a l t n + 2 G a b Δ ϵ a b MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamyyaiaadkgaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadggacaWGIb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaaikdacaWGhbWdamaaBaaaleaapeGaamyy aiaadkgaa8aabeaak8qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuGacqWF1pG8paWaaSbaaSqaa8qacaWGHbGaamOy aaWdaeqaaaaa@661B@
    σ b c t r i a l t n + 1 = σ b c t r i a l t n + 2 G b c Δ ϵ b c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaamOyaiaadogaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadkgacaWGJb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaaikdacaWGhbWdamaaBaaaleaapeGaamOy aiaadogaa8aabeaak8qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuGacqWF1pG8paWaaSbaaSqaa8qacaWGIbGaam4y aaWdaeqaaaaa@6623@
    σ c a t r i a l t n + 1 = σ c a t r i a l t n + 2 G c a Δ ϵ b c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaDaaaleaapeGaam4yaiaadggaa8aabaWdbiaadsha caWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo8aZ9aadaqhaaWcbaWdbiaadogacaWGHb aapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaa paqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaaWdaeqaaaGcpeGaay jkaiaawMcaaiabgUcaRiaaikdacaWGhbWdamaaBaaaleaapeGaam4y aiaadggaa8aabeaak8qacaqGuoWefv3ySLgznfgDOfdaryqr1ngBPr ginfgDObYtUvgaiuGacqWF1pG8paWaaSbaaSqaa8qacaWGIbGaam4y aaWdaeqaaaaa@6620@

    Each stress component must not exceed the permissible values given by the stress versus volumetric strain defined by the curve (LCAA, LCBB, … and so on) for each component.

    σ i j t r i a l t n + 1 < σ i j V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaqWaa8aabaWdbiabeo8aZ9aadaqhaaWcbaWdbiaadMgacaWGQbaa paqaa8qacaWG0bGaamOCaiaadMgacaWGHbGaamiBaaaakmaabmaapa qaa8qacaWG0bWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aa beaaaOWdbiaawIcacaGLPaaaaiaawEa7caGLiWoacqGH8aapcqaHdp WCpaWaaSbaaSqaa8qacaWGPbGaamOAaaWdaeqaaOWdbmaabmaapaqa a8qacaWGwbaacaGLOaGaayzkaaaaaa@4F58@
    Thus,
    σ i j t n + 1 = σ i j V σ i j t r i a l t n + 1 σ i j t r i a l t n + 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaqa daWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXa aapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaeq4Wdm3damaaBaaa leaapeGaamyAaiaadQgaa8aabeaak8qadaqadaWdaeaapeGaamOvaa GaayjkaiaawMcaamaalaaapaqaa8qacqaHdpWCpaWaa0baaSqaa8qa caWGPbGaamOAaaWdaeaapeGaamiDaiaadkhacaWGPbGaamyyaiaadY gaaaGcdaqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6gacqGH RaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaaapaqaa8qadaabda WdaeaapeGaeq4Wdm3damaaDaaaleaapeGaamyAaiaadQgaa8aabaWd biaadshacaWGYbGaamyAaiaadggacaWGSbaaaOWaaeWaa8aabaWdbi aadshapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGc peGaayjkaiaawMcaaaGaay5bSlaawIa7aaaaaaa@67D0@
    The σ i j V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaqa daWdaeaapeGaamOvaaGaayjkaiaawMcaaaaa@3CA4@ is defined for each component using LCAA, LCBB, LCCC … (see Figure 1).

  2. Compacted Honeycomb Material V < VF

    For the fully compacted honeycomb material, assume the behavior is isotropic and elastic perfectly plastic. Thus, the stress is updated using Hook Material law. So, the deviatoric stresses are given by:

    S i j t r i a l t n + 1 = S i j t n + 1 + 2 G Δ ε i j d e v MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadMgacaWGQbaapaqaa8qacaWG0bGa amOCaiaadMgacaWGHbGaamiBaaaakmaabmaapaqaa8qacaWG0bWdam aaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaaaOWdbiaawIca caGLPaaacqGH9aqpcaWGtbWdamaaBaaaleaapeGaamyAaiaadQgaa8 aabeaak8qadaqadaWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6ga cqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaaG OmaiaadEeacaqGuoGaeqyTdu2damaaDaaaleaapeGaamyAaiaadQga a8aabaWdbiaadsgacaWGLbGaamODaaaaaaa@57A6@
    Where the deviatoric strain increment is defined by:
    Δ ε i j d e v = ε i j 1 3 Δ ε k k δ i j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeiLdiabew7aL9aadaqhaaWcbaWdbiaadMgacaWGQbaapaqaa8qa caWGKbGaamyzaiaadAhaaaGccqGH9aqpcqaH1oqzpaWaaSbaaSqaa8 qacaWGPbGaamOAaaWdaeqaaOWdbiabgkHiTmaalaaapaqaa8qacaaI Xaaapaqaa8qacaaIZaaaaiaabs5acqaH1oqzpaWaaSbaaSqaa8qaca WGRbGaam4AaaWdaeqaaOWdbiabes7aK9aadaWgaaWcbaWdbiaadMga caWGQbaapaqabaaaaa@4E90@

    The equivalent Von Mises stress of the fully compacted honeycomb material is compared to the SIGY. If the effective stress exceeds the yield stress, the tensor stress is simply scaled back to the yield surface using:

    S i j t n + 1 = σ y S e q t r i a l   S i j t r i a t n + 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeWaaeWa a8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaa WdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9maalaaapaqaa8qacqaH dpWCpaWaaSbaaSqaa8qacaWG5baapaqabaaakeaapeGaam4ua8aada qhaaWcbaWdbiaadwgacaWGXbaapaqaa8qacaWG0bGaamOCaiaadMga caWGHbGaamiBaaaaaaGccaGGGcGaam4ua8aadaqhaaWcbaWdbiaadM gacaWGQbaapaqaa8qacaWG0bGaamOCaiaadMgacaWGHbaaaOWaaeWa a8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaa WdaeqaaaGcpeGaayjkaiaawMcaaaaa@58DE@
    Where S e q t r i a l = 3 2   S i j t r i a   S i j t r i a 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4ua8aadaqhaaWcbaWdbiaadwgacaWGXbaapaqaa8qacaWG0bGa amOCaiaadMgacaWGHbGaamiBaaaakiabg2da9maabmaapaqaa8qada WcaaWdaeaapeGaaG4maaWdaeaapeGaaGOmaaaacaGGGcGaam4ua8aa daqhaaWcbaWdbiaadMgacaWGQbaapaqaa8qacaWG0bGaamOCaiaadM gacaWGHbaaaOGaaiiOaiaadofapaWaa0baaSqaa8qacaWGPbGaamOA aaWdaeaapeGaamiDaiaadkhacaWGPbGaamyyaaaaaOGaayjkaiaawM caa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaapeGa aGOmaaaaaaaaaa@5499@

    The pressure is updated using the Bulk modulus as:

    P t n + 1 = P t n K Δ ε k k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaWG0bWdamaaBaaaleaapeGaamOBaiab gUcaRiaaigdaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcaWGqb WaaeWaa8aabaWdbiaadshapaWaaSbaaSqaa8qacaWGUbaapaqabaaa k8qacaGLOaGaayzkaaGaeyOeI0Iaam4saiaabs5acqaH1oqzpaWaaS baaSqaa8qacaWGRbGaam4AaaWdaeqaaaaa@4922@
    Where K = E 3 1 2 ν MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9maalaaapaqaa8qacaWGfbaapaqaa8qacaaIZaWa aeWaa8aabaWdbiaaigdacqGHsislcaaIYaGaeqyVd4gacaGLOaGaay zkaaaaaaaa@3F7C@

    Thus, the final Cauchy stress is computed as:

    σ i j t n + 1 = S i j t n + 1 P t n + 1 δ i j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4Wdm3damaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaqa daWdaeaapeGaamiDa8aadaWgaaWcbaWdbiaad6gacqGHRaWkcaaIXa aapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaam4ua8aadaWgaaWc baWdbiaadMgacaWGQbaapaqabaGcpeWaaeWaa8aabaWdbiaadshapa WaaSbaaSqaa8qacaWGUbGaey4kaSIaaGymaaWdaeqaaaGcpeGaayjk aiaawMcaaiabgkHiTiaadcfadaqadaWdaeaapeGaamiDa8aadaWgaa WcbaWdbiaad6gacqGHRaWkcaaIXaaapaqabaaak8qacaGLOaGaayzk aaGaeqiTdq2damaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaaa@54DD@

    Figure 1. Stress versus Volumetric Strain