Combined Hardening of von Mises Plasticity

Combining hardening can be used for analysis with cyclic loading, in order to capture shakedown, ratcheting effect, and so on.

It consists of two nonlinear hardening rules, the nonlinear kinematic (NLKIN) and nonlinear isotropic (NLISO) hardening methods.

Generally, the isotropic part is closely related to the von Mises criteria, and the kinematic part is described by the evolution law of back stress.

Combined hardening can be activated by setting HR=6 on the MATS1 Bulk Data.

Isotropic Hardening (NLISO): Nonlinear Yield Function

The yield function of von Mises plasticity can be expressed in a general form as:

f(S,α, ε ¯ p )= 3 2 (Sα):(Sα) σ y ( ε ¯ p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWHtbGaaiilaiaahg7acaGGSaGafqyTduMbaebadaWgaaWcbaGa amiCaaqabaGccaGGPaGaeyypa0ZaaOaaaeaadaWcaaqaaiaaiodaae aacaaIYaaaaiaacIcacaWHtbGaeyOeI0IaaCySdiaacMcacaGG6aGa aiikaiaahofacqGHsislcaWHXoGaaiykaaWcbeaakiabgkHiTiabeo 8aZnaaBaaaleaacaWG5baabeaakiaacIcacuaH1oqzgaqeamaaBaaa leaacaWGWbaabeaakiaacMcaaaa@52F4@

Where,
S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uaaaa@36D2@
Deviatoric stress tensor.
α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCySdaaa@3733@
Back stress tensor.
σ y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaaaa@38E3@
Yield stress as a function of equivalent plastic strain ε ¯ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae badaWgaaWcbaGaamiCaaqabaaaaa@38D6@ .

The flow rule is defined as change of plastic strain, expressed in rate form as:

ε ˙ p = λ ˙ f σ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyTdyaaca WaaSbaaSqaaiaadchaaeqaaOGaeyypa0Jafq4UdWMbaiaadaWcaaqa aiabgkGi2kaadAgaaeaacqGHciITcaWHdpaaaaaa@4044@

Where, λ is the rate of plastic multiplier, which is also the rate of equivalent plastic strain.

The flow direction, N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtaaaa@36CD@ can be introduced which is the derivative of the yield function with respect to the stress tensor,

N = f σ = 3 2 ( S α ) | | S α | | = 3 2 η | | η | | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOtaiabg2 da9maalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kaaho8aaaGaeyyp a0ZaaOaaaeaadaWcaaqaaiaaiodaaeaacaaIYaaaaaWcbeaakmaala aabaGaaiikaiaahofacqGHsislcaWHXoGaaiykaaqaaiaacYhacaGG 8bGaaC4uaiabgkHiTiaahg7acaGG8bGaaiiFaaaacqGH9aqpdaGcaa qaamaalaaabaGaaG4maaqaaiaaikdaaaaaleqaaOWaaSaaaeaacaWH 3oaabaGaaiiFaiaacYhacaWH3oGaaiiFaiaacYhaaaaaaa@545C@

Where, η is the relative stress tensor, which is the difference between deviatoric stress and back stress.

For the nonlinear isotropic hardening, the yield stress is assumed to be a power law function of equivalent plastic strain:

σ y ( ε ¯ p )= σ y0 +Q(1 e b ε ¯ p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaOGaaiikaiqbew7aLzaaraWaaSbaaSqaaiaa dchaaeqaaOGaaiykaiabg2da9iabeo8aZnaaBaaaleaacaWG5bGaaG imaaqabaGccqGHRaWkcaWGrbGaaiikaiaaigdacqGHsislcaWGLbWa aWbaaSqabeaacqGHsislcaWGIbGafqyTduMbaebadaWgaaadbaGaam iCaaqabaaaaOGaaiykaaaa@4C76@

Where, Q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CC@ and b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CC@ are two parameters which can be directly input via the Q and B fields on the MATS1 data (HR=6, TYPISO=PARAM) or these parameters are computed by parameter fitting algorithms, based on the stress-strain curve from experiment. The isotropic part of the yield stress and the equivalent plastic stress are provided via the SIG and EPS fields on the MATS1 data (HR=6, TYPISO=TABLE).

Nonlinear isotropic hardening is based on the von Mises plasticity criteria and; therefore, is associated with the flow rule.

Kinematic Hardening (NLKIN): Evolution Law of Back Stress

Compared with traditional linear hardening (HR=1 or 2), or the mixed hardening (HR=3), the main difference of NLKIN via HR=6 is the extended evolution law of back stress, which consists of a set of evolution equations for each back stress component:

α ˙ = k = 1 m α ˙ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGajWiGhg7agG aJakaacqGH9aqpdaaeWbqaaiqcmc4HXoGbiWiGcaWaiWiGBaaaleac mcOaiWiGdUgaaeqcmciaaeaacaWGRbGaeyypa0JaaGymaaqaaiaad2 gaa0GaeyyeIuoaaaa@491E@

and

α ˙ k = 2 3 C k ε ˙ p γ k α k ε ¯ ˙ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGajWiGhg7agG aJakaadGaJaUbaaSqaiWiGcGaJao4AaaqajWiGaOGaeyypa0ZaaSaa aeaacaaIYaaabaGaaG4maaaacaWGdbWaaSbaaSqaaiaadUgaaeqaaO GabCyTdyaacaWaaSbaaSqaaiaadchaaeqaaOGaeyOeI0Iaeq4SdC2a aSbaaSqaaiaadUgaaeqaaOGaaCySdmaaBaaaleaacaWGRbaabeaaki qbew7aLzaaryaacaWaaSbaaSqaaiaadchaaeqaaaaa@4ED1@

Where,
k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CC@
Denotes the component number of the back stresses.
m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CC@
Total number of back stress components.
C k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGRbaabeaaaaa@37DA@ and γ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadUgaaeqaaaaa@38B9@
Corresponding parameter pair of component k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CC@ .
Two parameters which can be directly input via the Ci and Gi fields on the MATS1 data (HR=6, TYPKIN=PARAM) or these parameters are computed by parameter fitting algorithms, based on the stress-strain curve from experiment, which are defined via the SIG and EPS fields on the MATS1 data (HR=6, TYPKIN=HALFCYCL).

As the evolution of back stress α ˙ k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGajWiGhg7agG aJakaadGaJaUbaaSqaiWiGcGaJao4AaaqajWiGaaaa@3ED0@ depends both on the flow direction that is parallel to ε ˙ p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCyTdyaaca WaaSbaaSqaaiaadchaaeqaaaaa@3861@ and the back stress component α k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCySdmaaBa aaleaacaWGRbaabeaaaaa@384F@ itself; thus, the evolution law of back stress is non-associated. This leads to the unsymmetric elasto-plastic consistent tangent modulus. The unsymmetric solver is always turned on as long as combined hardening is active.

Time Integration Scheme

The plasticity problem is usually solved using the return mapping method, which means it is first assumed to be an elastic trial stage, and then the stress is pulled back onto the yield surface if plastic flow occurs. Backward-Euler algorithm is used during the return mapping process.

Parameter Fitting

If the stress-strain curve is provided (TYPKIN=HALFCYCL or TYPISO=TABLE), the data points provided are used to compute the optimal parameters for combined hardening. For parameter fitting, the Levenberg-Marquardt method is used, which is an extension of Newton method. The fitted parameters are printed in the .out file.

For NLISO with TYPISO=TABLE, the provided data in the continuation line is the yield stress versus equivalent plastic strain. This curve is usually generated based on the cyclic experiment with constant strain. The same curve is used for isotropic hardening (HR=1) for example, with TABLES1/TABLEG or TABLEST input.

For NLKIN with TYPKIN=HALFCYCL, the provided data is the yield stress versus equivalent plastic strain, where the yield stress is the total yield stress that is measured directly from experiment, and the equivalent plastic strain is modified by subtracting the elastic strain. For computing the parameters Ci and Gi, the isotropic part will be first subtracted from the curve, and the difference is the hardening part due to kinematic hardening. The subtracted data will be used for parameter fitting. Thus, the provided yield stress values for NLKIN with TYPKIN=HALFCYCL, should always larger than those for NLISO with TYPISO=TABLE.
Figure 1. Parameter fitting of NLKIN or NLISO (demonstration)


Temperature-dependent combined hardening

If temperature-dependent combined hardening is active, then all the parameters are temperature dependent, for example,

C k ( T ) γ k ( T ) σ y 0 ( T ) Q ( T ) b ( T ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGdb WaaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadsfacaGGPaaabaGaeq4S dC2aaSbaaSqaaiaadUgaaeqaaOGaaiikaiaadsfacaGGPaaabaGaeq 4Wdm3aaSbaaSqaaiaadMhacaaIWaaabeaakiaacIcacaWGubGaaiyk aaqaaiaadgfacaGGOaGaamivaiaacMcaaeaacaWGIbGaaiikaiaads facaGGPaaaaaa@4B23@

From experiment is only possible to test a limited number of temperatures. Interpolation is used to solving for plasticity at a temperature in between the test temperatures.

Using isotropic hardening NLISO as an example, if the parameters are provided at two temperatures T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B6@ and T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B6@ , then there are two yield stress functions for interpolation:

σ y ( ε ¯ p , T 1 ) = σ y 0 + Q ( T 1 ) ( 1 e b ( T 1 ) ε ¯ p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaOGaaiikaiqbew7aLzaaraWaaSbaaSqaaiaa dchaaeqaaOGaaiilaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGPa Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMhacaaIWaaabeaakiabgUca RiaadgfacaGGOaGaamivamaaBaaaleaacaaIXaaabeaakiaacMcacq GHflY1caGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiabgkHi TiaadkgacaGGOaGaamivamaaBaaameaacaaIXaaabeaaliaacMcacq GHflY1cuaH1oqzgaqeamaaBaaameaacaWGWbaabeaaaaGccaGGPaaa aa@59CC@
σ y ( ε ¯ p , T 2 ) = σ y 0 + Q ( T 2 ) ( 1 e b ( T 2 ) ε ¯ p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaOGaaiikaiqbew7aLzaaraWaaSbaaSqaaiaa dchaaeqaaOGaaiilaiaadsfadaWgaaWcbaGaaGOmaaqabaGccaGGPa Gaeyypa0Jaeq4Wdm3aaSbaaSqaaiaadMhacaaIWaaabeaakiabgUca RiaadgfacaGGOaGaamivamaaBaaaleaacaaIYaaabeaakiaacMcacq GHflY1caGGOaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiabgkHi TiaadkgacaGGOaGaamivamaaBaaameaacaaIYaaabeaaliaacMcacq GHflY1cuaH1oqzgaqeamaaBaaameaacaWGWbaabeaaaaGccaGGPaaa aa@59CF@

The interpolated yield stress at the current temperature T c u r r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGJbGaamyDaiaadkhacaWGYbaabeaaaaa@3ACB@ in [ T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B6@ , T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B6@ ] is then,

σ y ( ε ¯ p , T c u r r ) = f 1 σ y ( ε ¯ p , T 1 ) + f 2 σ y ( ε ¯ p , T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadMhaaeqaaOGaaiikaiqbew7aLzaaraWaaSbaaSqaaiaa dchaaeqaaOGaaiilaiaadsfadaWgaaWcbaGaam4yaiaadwhacaWGYb GaamOCaaqabaGccaGGPaGaeyypa0JaamOzamaaBaaaleaacaaIXaaa beaakiabgwSixlabeo8aZnaaBaaaleaacaWG5baabeaakiaacIcacu aH1oqzgaqeamaaBaaaleaacaWGWbaabeaakiaacYcacaWGubWaaSba aSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiaadAgadaWgaaWcbaGaaG OmaaqabaGccqGHflY1cqaHdpWCdaWgaaWcbaGaamyEaaqabaGccaGG OaGafqyTduMbaebadaWgaaWcbaGaamiCaaqabaGccaGGSaGaamivam aaBaaaleaacaaIYaaabeaakiaacMcaaaa@605D@

with two factors for different temperatures f 1 = T 2 T c u r r T 2 T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaamivamaaBaaaleaa caaIYaaabeaakiabgkHiTiaadsfaqaaaaaaaaaWdbmaaBaaaleaaca WGJbGaamyDaiaadkhacaWGYbaabeaaaOWdaeaacaWGubWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamivamaaBaaaleaacaaIXaaabeaaaa aaaa@4526@ , f 2 = T c u r r T 1 T 2 T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaamivaabaaaaaaaaa peWaaSbaaSqaaiaadogacaWG1bGaamOCaiaadkhaaeqaaOWdaiabgk HiTiaadsfadaWgaaWcbaGaaGymaaqabaaakeaacaWGubWaaSbaaSqa aiaaikdaaeqaaOGaeyOeI0IaamivamaaBaaaleaacaaIXaaabeaaaa aaaa@4526@ .

As an example, Figure 2 illustrates the principle of interpolation.

It is worthy to mention that the parameters (Q and B) are not interpolated directly. Instead, the yield functions at two temperatures are interpolated. This is the similar case for NLKIN, where the evolution laws at two temperatures are interpolated.
Figure 2. Principle of interpolation for temperature dependent NLISO


If the temperature, T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B6@ is beyond the available temperature range [ T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B6@ , T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaaIXaaabeaaaaa@37B6@ ], then closest temperature will be selected. In other words, no extrapolation of temperature is performed. Furthermore, it is suggested to provide the material parameter of NLKIN and NLISO at the same temperature.

1 Chaboche, J. L., K. Dang Van, and G. Cordier. "Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel." (1979).
2 Chaboche, Jean-Louis, and G. Rousselier. "On the plastic and viscoplastic constitutive equations—Part II: application of internal variable concepts to the 316 stainless steel." (1983): 159-164.
3 Chaboche, Jean-Louis. "Time-independent constitutive theories for cyclic plasticity." International Journal of plasticity 2.2 (1986): 149-188.
4 Chaboche, Jean-Louis. "Constitutive equations for cyclic plasticity and cyclic viscoplasticity." International journal of plasticity 5.3 (1989): 247-302.
5 Chaboche, J. L., and D. Nouailhas. "Constitutive modeling of ratchetting effects—part i: experimental facts and properties of the classical models." (1989): 384-392.
6 Chaboche, Jean-Louis. "On some modifications of kinematic hardening to improve the description of ratchetting effects." International journal of plasticity 7.7 (1991): 661-678.
7 Lemaitre, Jean, and Jean-Louis Chaboche. Mechanics of solid materials. Cambridge university press, 1994.
8 Broggiato, Giovanni B., Francesca Campana, and Luca Cortese. "The Chaboche nonlinear kinematic hardening model: calibration methodology and validation." Meccanica 43.2 (2008): 115-124.
9 Chaboche, Jean-Louis. "A review of some plasticity and viscoplasticity constitutive theories." International journal of plasticity 24.10 (2008): 1642-1693