Linear Transient Heat Transfer Analysis

Calculates the temperature distribution in a system with respect to time.

The applied thermal loads can either be time-dependent or time-invariant; transient thermal analysis is used to capture the thermal behavior of a system over a specific period of time.

The basic finite element equation for transient heat transfer analysis is given by:

C T ˙ +[ K C +H ]T=f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4qaiqahs fagaGaaiabgUcaRmaadmaabaGaaC4samaaBaaaleaacaWGdbaabeaa kiabgUcaRiaahIeaaiaawUfacaGLDbaacaWHubGaeyypa0JaaCOzaa aa@40D4@

Where,
C
Heat capacity matrix
K
Conductivity matrix
H
Boundary convection matrix due to free convection
T ˙
Derivative of the nodal temperature matrix with respect to time
T
The unknown nodal temperature matrix
f
Thermal loading vector

Thermal load vector can be expressed as:

f= f B + f H + f Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHMbGaeyypa0JaaCOzamaaBaaale aacaWGcbaabeaakiabgUcaRiaahAgadaWgaaWcbaGaamisaaqabaGc cqGHRaWkcaWHMbWaaSbaaSqaaiaadgfaaeqaaaaa@3B43@

Where,
f B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHMbWaaSbaaSqaaiaadkeaaeqaaa aa@339D@
Power due to heat flux at boundary specified by QBDY1 card.
f H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHMbWaaSbaaSqaaiaadkeaaeqaaa aa@339D@
Boundary convection vector due to convection specified by CONV card.
f Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHMbWaaSbaaSqaaiaadkeaaeqaaa aa@339D@
Power vector due to internal heat generation specified by QVOL card.
Automatic free convection definition can be activated via CONVG Bulk/Subcase pair.

The differential equation is solved to find nodal temperature T at the specified time steps. The difference between the equation and the Linear Steady-State Heat Transfer Analysis equation is the term, C T ˙ , that captures the transient nature of the analysis.