
Altair FlowTracer 2024.1.1

Tutorials

Contents

FlowTracer Beginner's Tutorials..3

Create a FlowTracer Project.. 4

Set Command Line Environment...4

Create a Project...5

Enable a Shell... 6

Restore the Shell Prompt..6

Check Project Information..6

Start the GUI Console.. 7

Use the Set Browser...8

Add a Job Interactively.. 8

GUI Job Views... 21

Navigate the Graph...25

Command Line Interface.. 29

Flow Description Language... 34

Remove Older Sets... 34

The Flow.tcl File...35

Build the Flow.. 36

Run the Flow Interactively...37

Run a Flow from the Command Line... 38

Batch Process to Define and Run a Flow..39

Create a Complex Flow..40

EDA Flows..42

Stop the Project.. 44

FlowTracer Advanced Tutorials... 45

Create Efficient VOV Scripts.. 46

Write Flows.. 48

The Flow.tcl file... 48

Build the Flow.. 48

Execute the Flow.. 49

Build a More Complex Flow... 49

EDA Flows..49

Legal Notices.. 51
Intellectual Property Rights Notice..52

Technical Support...58

Index...60

2

FlowTracer Beginner's Tutorials 1

FlowTracer Beginner's Tutorials

This chapter covers the following:

• Create a FlowTracer Project (p. 4)

• Flow Description Language (p. 34)

• Stop the Project (p. 44)

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.4

Create a FlowTracer Project
The purpose of this tutorial is to guide one through the creation and use of a small FlowTracer project using a combination of the

Command Line Interface (CLI) and the Graphical User Interface (GUI).

Preliminaries

• Read the overview section to become familiar with some of the FlowTracer terminology: files, jobs, nodes, sets, etc.

• Install FlowTracer (if it hasn't already been done).

When you're ready, start the tutorial in the next section.

Goals

At the end of the tutorial, you will know how to fire up a FlowTracer project and to register a set of jobs into FlowTracer to create

a dependency graph that you can view in the console.

The intention is to become comfortable with creating projects, adding nodes to the dependency graph by registering programs and

files into FlowTracer, viewing the dependency graph in the console, and running the project. And finally, stopping the project and

clearing out the dependency graph and the project.

Tasks in This Tutorial

Set Command Line Environment

You need to have your shell command line environment set properly in order to use FlowTracer.

This includes changing your PATH environment variable so you can run the installed executables, and adding two environment

variables that are used by the Altair Accelerator programs.

You can set your command line environment by sourcing a setup file created by the installation. You will source the setup file that

matches your platform and shell.

Assuming that FlowTracer is installed at the path \opt\altair\vov\1212.10, this table shows the way to source the setup file so that

your shell environment is correct.

Platform Type Shell Command to Source File

csh tcsh source /opt/altair/vov/1212.10

platform/etc/vovrc.csh

UNIX

bash sh ksh zsh source /opt/altair/vov/1212.10

platform/etc/vovrc.sh

Windows DOS \opt\altair\vov\1212.10\win64\bat

\vovinit.bat

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.5

Create a Project

FlowTracer keeps track of the files and jobs that make up the flow you want managed. The collection of such files and jobs

constitutes a "project". Each project has one dependency graph that encodes the runtime trace of the jobs and files in the project.

Each dependency graph of a runtime trace has one running server process that manages it.

You begin using FlowTracer by creating a project and starting its server. If a project was already created but not running, then

starting its server would be all that was needed.

To create a project, you must choose at least:

• a name for the project; any alphanumeric string can be used

• a host to run the server

Optionally, you may also specify

• a directory that will hold the "server working directory" (.swd) for the project. This .swd directory will contain the system

control files used by FlowTracer. The default location that holds the FlowTracer server working directory is inside the vov

directory in your home directory (~/vov) on UNIX, and in $VOVDIR/local/swd on Windows.

For this tutorial, we will use the default location for holding the .swd directory.

1. To create and start a project, use vovproject create as shown here:

denby1 (no project) DEFAULT+P4+P4 ~/Perforce > cd ..
denby1 (no project) DEFAULT+P4+P4 ~ > vovproject create tutorial_denby
Creating a new project:
 Directory /home/denby/vov
 Type generic
 Product auto
 Name tutorial_denby
 Port any
 Web port 0
 Guest port 0
vovproject 11/22/2019 05:45:21: message: Creating server directory "/home/denby/
vov/tutorial_denby.swd/."
vovproject 11/22/2019 05:45:21: message: Created setup file '/home/denby/vov/
tutorial_denby.swd/setup.tcl'
vovproject 11/22/2019 05:45:21: message: Copy all files from /remote/release/
VOV/2019.01_71758_Apr25/linux64/etc/ProjectTypes/generic
vovproject 11/22/2019 05:45:21: message: Updating autostart/
start_vovnginxd.tcl...
vovproject 11/22/2019 05:45:21: message: Warning: the path permissions
 for taskers are 040777 instead of 0777
vovproject 11/22/2019 05:45:21: message: Starting a VOV server
 for project tutorial_denby@denby1
 PORT=any,WEB_PORT=0,READONLY_PORT=0

This command creates all necessary project control files in the server working directory and starts the server process for the

project.

2. You can use the list option of the vovproject command to see what projects are available and see their status. At this

point, you will see that the tutorial project is running.

% vovproject list

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.6

Enable a Shell

To be able to work with the newly created project and the running server, you need to enable your shell with:

denby1 (no project) DEFAULT+P4+P4 ~ > vovproject enable tutorial_denby
vovproject 11/22/2019 05:48:25: message: Enabling project 'tutorial_denby'...

This command essentially sets two important environment variables:

• VOV_HOST_NAME

• VOV_PROJECT_NAME

Restore the Shell Prompt

There is another change that happens when you enable a project. Running vovproject enable changes your shell prompt.

The new prompt contains the name of the local host, name and host of the current project, the current environment, and the last two

components of the current directory.

For example:

[orange]% vep
orange tutorial@apple BASE john/test > _

The effect of this command is purely cosmetic; its purpose is to make you aware of the current environment and of the current

project. Since it modifies the current shell, it is implemented as an alias for csh/tcsh users, and as a shell function for sh/ksh/bash.

To restore your original prompt, use the command veprestore:

orange tutorial@apple BASE john/test > veprestore
[orange]% _

Check Project Information

For basic information about the status of the server, use either the command vovproject info (or the shorter equivalent vsi).

[denby@denby1 ~]$ vsi

Vov Server Information - 11/22/2019 05:50:19

tutorial_denby@denby1:10813 | URL: http://denby1:10813
--
 Jobs: 0 | Workload:
 Files: 0 | - running: 0
 Sets: 15 | - queued: 0
 Retraces: 0 | - done: 0
 | - failed: 0
--
 Taskers: 1 | Buckets: 0
 - ready: 1 | Duration: 0s
 Slots: 8 | SchedulerTime: 0.00s

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.7

--
 TotalResources: 10 | Pid: 59021
 | Saved: 4m58s ago
 | Size: 27.00MB
 | TimeTolerance: 1s
--

For now, do not be concerned about the information returned by this command; it is being used here to check that the server

process was started correctly.

Start the GUI Console

Now that you have created the project and started the server, you can being to use FlowTracer. For this tutorial, you will use the

GUI console, and commands from the shell. Be aware that the console functionality can also be accessed from a browser using

the flow management web application. The GUI is visually oriented compared to the browser interaction which is list and text

oriented.

Start the graphical user interface (or GUI) with the command vovconsole.

% vovconsole &

Figure 1: Initial console screen

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.8

The program "vovconsole" stays running while the GUI console is active so it is best to run it in the background to let the

command line be available for more commands.

At this point, as no files or jobs are yet registered, the console will show a grey background with an empty Set Viewer on the right

side, and two top-level elements in the navigation list in the Set Browser panel on the left.

Use the Set Browser

In this section you will learn how to navigate around sets using the set browsing control. Later, when there are interesting sets

defined, the Set Browser will be used to choose which set of nodes to view in the Set Viewer.

1. Click on the Sets tab.

2. Open the Predefined folder in the navigation control by clicking on the right-arrow control icon.

3. Double-click on the set stuff to do to display it.

At this point, you should be seeing the string "Predefined:stuff to do" as the tab label above the Set Viewer. This set is empty, so

no nodes appear in the Set Viewer. With no jobs or files registered with FlowTracer yet, viewing of different sets is not interesting

- they are all empty sets. The important point is to notice the names of the System and Predefined sets, and how to navigate to

them.

4. Expand the System folder in the Set Browser.

5. Double-click on the set nodes to display it.

Leave this set on display. Later, when jobs are registered with FlowTracer, this display will show added nodes that represent

the added jobs.

Note: The display will show changed states of nodes in the display but it will not change the group of nodes

on display unless you click the Refresh icon.

Add a Job Interactively

In this tutorial, we will build a simple flow graph one job at a time, interactively from the command line. This is to demonstrate

the basic building blocks for adding jobs to a flow graph, and how we can monitor a flow using the FlowTracer GUI program

"vovconsole". This is not to demonstrate production techniques for building a flow.

You will register jobs interactively with FlowTracer to have FlowTracer build its flow graph one job at a time. This will make it

easy to see what is going on. In a production situation, jobs are not registered into the flow graph interactively. Instead, the jobs

are registered into the flow graph by way of batch scripts or by processing control files. The batch style of registering jobs will be

shown later in the tutorial.

Objective

• Verify that FlowTracer is properly setup.

• Become familiar with named environments.

• Learn more about the concept of runtime tracing.

• Become comfortable using the FlowTracer GUI for managing the jobs.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.9

Use the "cp" Program to Emulate a Tool

You will use the UNIX copy program cp to emulate a more useful tool having an input and output. The cp command comes with

UNIX, and FlowTracer supplies a script file called cp.bat which allows you to also run this tutorial on Windows.

The UNIX program cp reads an input file and copies it to an output file. It can be used for a very simple job to create a backup of a

file.

cp input-file output-file

Consider a job that is a typical computer task using a tool named TRANSFORM:

Job 1: TRANSFORM source-file expanded-file

This job is a generic one that reflects what most tools do. It reads an input file and generates an output file based on it.

We will use the cp program during this tutorial as a fast and low cost tool to demonstrate how to register jobs into the flow graph,

and how to monitor and control the work of FlowTracer, the flow manager.

Here is the above TRANSFORM job emulated using the UNIX cp command.

Job 1: cp input-file output-file

The goal of the job is to create the output file. The output file depends on the tool to generate it from the input file. If the input file

changes, then the output file is out of date, and is INVALID using flow terminology. When the input file is changed, then the job's

goal to create the output file is triggered. To reach the goal, the tool must run, process the input, and create a version of the output

that is up to date. This makes the output file VALID.

Create a Project Directory

The project directory is the area where the data files for your project are stored. When creating this directory, place it on a file

system which is available on the network. Somewhere in your home directory is usually a good starting point.

Note: Do not create the data directory inside the FlowTracer software installation, even if you have installed the

software under your home directory. By default, the files under $VOVDIR are excluded from the graph, and your

jobs will fail because they appear to have no outputs.

To create the project directory, execute the following:

% cd
% mkdir simple_test
% cd simple_test

Register One Job from the Command Line

To register a job with FlowTracer so that the inputs and outputs will be dynamically discovered as the job runs (known as runtime

tracing), it is necessary to define the job by way of a wrapper program. In this section of the tutorial, we are registering jobs with

FlowTracer interactively, from the command line.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.10

At the command line, the program vwis the wrapper to register a job. vwis a program that takes a parameter that is the command

line defining the job.

Here is the logical way of thinking about running the vw wrapper.

Usage: vw <command line that runs a job>

Next is an example of using vw to register a job to compile a C program. The job consists of running the clang tool to compile a

source file into an object file.

% vw clang myprogram.c

By using the vw wrapper, runtime tracing of the job is established as it is added to the flow. runtime tracing is the feature of

FlowTracer where it discovers and notices the resulting output file myprogam.o without you having to mention it in the

command line, and without you having to explicitly tell FlowTracer about it. It can do this because the job is run within a wrapper

that checks for implicit inputs and outputs used at runtime, and tells FlowTracer about them.

For this tutorial, you will be using cp as our emulation tool and using a file named "aa" as the primary input file. You must create

a primary input file for our emulation. Do this command to create an empty file "aa" which will be our primary input file.

1. You must create a primary input file for the emulation. Do this command to create an empty file "aa" which will be your

primary input file.

% touch aa

You will register a job that emulates transforming an input file to an output file by using the cp command. This is the job

command that will be registered.

cp aa bb

2. Do the command below to register this job, by calling the vw wrapper program and passing it the command of the job.

% vw cp aa bb

This registers the job with FlowTracer. FlowTracer then runs the job. When it executes, the wrapper sends messages to the

FlowTracer server describing the inputs and outputs of the program cp. As the job runs, you will see activity in the Set

Viewer. Make sure to be looking at the System > nodes set.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.11

Figure 2:

You will see a graph such as the one above. This shows the job node as a single green rectangle. You can see the number

"4" in the upper right of the Set Viewer. This is reporting on the number of nodes in the set on display. The file nodes are

not on display.

3. To turn on the display of file nodes, right click in the background of the Set Viewer and click Show/Hide to open a

submenu where you can toggle on the Show Files option.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.12

Figure 3:

After turning on the display of file nodes, you will see the four nodes in the flow graph. This represents the dependency

graph that is now encoded into FlowTracer's flow.

Figure 4:

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.13

Note: If your display is not showing up completely within the Set Viewer pane, you can fit the graph to the

available area by clicking on to fit the view.

4. Repeat the registering of the cp command if you missed seeing the changes to the display as it ran.

% vw cp aa bb
% vw cp aa bb

This appears to register the job again. But because the command is the same string, and we are in the same directory, it is

recognized as the same job as an existing job, and a new job is not created.

The circles represent files, the rectangle represents a job, in this case the job of copying file aa to file bb. The arcs

represent the input/output relationships between files and jobs.

The green color means that the files and the jobs are up-to-date.

In this case, there is one input file "aa" and one output file "bb". Depending on your setup, you may get additional inputs,

such as the file "cp".

This "cp" file exists as an input in the dependency graph because the program cp is a dependent element of the task. If the

version of the program changes, then the result of the task could be different. This was noted by FlowTracer even though we

did not explicitly tell FlowTracer about this dependency. This is an example of FlowTracer performing runtime tracing to

figure out all the dependencies, even if you do not register them fully.

In production you can exclude program files from the graph. For this tutorial, you will see that "cp" input file as a

dependency node. All the circles and the rectangle should be green at this point, meaning that they are all up-to-date, or,

"VALID".

Add More Jobs to the Flow

A project is normally made up of many jobs that work together toward the goal of the project. A given job may depend on the

output of another job, and in turn may create output that is needed by a downstream job. Each job must be run in the proper

sequence in order to reach the project's goal.

Next you will add more jobs to this project to emulate that aspect of dependency. Continue to use the cp program to emulate all

the various tools used in your jobs.

Consider a project having these logical job steps using four different tools:

Job 1: TRANSFORM source-file expanded-file
Job 2: TRANSLATE expanded-file translated-file
Job 3: SORT translated-file sorted-file
Job 4: ARCHIVE translated-file archived-file

This reflects a project goal of creating two final result files that are formed by running processing tools in the proper sequence,

based on a single input file.

Here it is again, using simple file names:

Job 1: TRANSFORM aa bb
Job 2: TRANSLATE bb cc
Job 3: SORT cc dd1

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.14

Job 4: ARCHIVE cc dd2

1. Emulate this project using cp with this job list:

Job 1: cp aa bb
Job 2: cp bb cc
Job 3: cp cc d1
Job 4: cp cc d2

This project has exactly the same dependency graph as the one above. We have emulated a complex project with this

technique of using cp with simple, empty files.

2. Add the extra jobs to the flow managed by FlowTracer to register this larger project. Run the vw wrapper program with the

job command parameters that define the additional jobs. Execute these commands:

% vw cp bb cc
% vw cp cc dd1
% vw cp cc dd2

This creates a flow that is getting more complex and has more dependencies for FlowTracer to manage. If file "aa" is

changed then files "bb", "cc", "d1" and "d2" all become INVALID.

FlowTracer will notice if that happens and mark the files as INVALID. FlowTracer can also schedule and dispatch the jobs

to run in the proper sequence to make the INVALID files VALID.

At this point the graph should look similar to the one in shown below. Minor differences in the horizontal position of the

nodes are to be expected.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.15

Figure 5:

What you have done in this short exercise is to register jobs into the flow for FlowTracer to manage. You did this by running the

wrapper program vw and giving it a command line that defines the job. The jobs use the program cp as an emulation of a program

that processes an input to create an output.

This demonstrates an interactive way to register jobs, but is not promoting this as the way to register jobs in a production

environment. The intent is to demonstrate what the display of the flow graph looks like as a job is added to the flow. You have

now seen how the data structure within FlowTracer holds the dependency graph between programs and files, how FlowTracer

reports on the state of files using shapes and colors. You have seen how the FlowTracer GUI helps you visualize the state of the

flow graph.

Change Dependent Input File

We have built up a dependency graph for a task that requires running four jobs in a sequence to produce two result files ("dd1"

and "dd2") based on a starting file ("aa").

This establishes a model that FlowTracer will use to schedule and deploy the jobs as the dependent input files change.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.16

1. While looking at the GUI console, touch the file "bb" to give it a timestamp of now.

Touching the file causes its timestamp to be later than the timestamps on files "dd1" and "dd2". This emulates changing

file "bb". The two output files "dd1" and "dd2" are now out of date relative to file "bb".

You will see the Set View display change. The out of date output file nodes will change color from green to purple. The

dependent jobs of copying file cc are also out of date and change color. The nodes in purple are INVALID.

Figure 6:

FlowTracer has noticed the change of file "bb" (the timestamp is recent) and is aware of what nodes are INVALID and

knows what needs to happen to make them VALID.

2.
Click Run in the action bar at the top of the Set Viewer panel to request that FlowTracer brings the nodes up to date.

This will cause the "cp" programs to run. While they are running, their nodes in the display will turn yellow. When the jobs

and files become up to date, they turn back to green to indicate they are VALID.

3. Repeat this sequence, again, but touch file "aa" instead of "bb".

The display shows the dependent nodes as INVALID (purple).

4. Click Run again.

FlowTracer dispatches the jobs in sequence to bring all the nodes up to date.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.17

Remove Dependent Input File

1. Delete the file "aa" and notice the display change.

The "aa" node changes to a brown color to indicate that the file is missing.

Figure 7:

You can see the FlowTracer has changed the status of the nodes to indicate the state it has noticed - the dependent input file

does not exist.

The dependency graph does not show that dependent files are out of date (INVALID) when an input file is missing. This

is the proper response to a missing input file. The input file is not changed and dependent jobs do not need to be run to

produce new output files.

2. Touch file "aa" to put it back into existence.

This causes the file "aa" to become changed (timestamp is more recent). Notice that the display changes again. This time

the node for file "aa" changes to a slightly different hue of green and the dependent nodes turn purple.

The different colored green indicates that the file was recently changed. This subtle state is shown with a subtle color

variation.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.18

Figure 8:

3. Click Refresh > All Tabs to update the display and to change the node color of "aa" back to the normal green.

You can now see that the VALID nodes have the standard green color and the dependent nodes that are INVALID are

purple.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.19

Figure 9:

4. Click Run to see the dependent jobs get dispatched, which causes the dependent files to be created again and become

VALID.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.20

Figure 10:

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.21

Tip: You can see a table showing all the node colors and their meanings by clicking on the top menu Help >

Status Colors.

Figure 11:

This demonstrates the way in which FlowTracer manages the dependency graph in order to schedule and deploy jobs as needed to

run the trace so that all nodes become VALID. Using the GUI console, you can watch the display change to view the data structure

that FlowTracer manages and to watch progress as FlowTracer dispatches dependent jobs and dependent files are updated.

GUI Job Views
Now that you have a small flow, you can familiarize yourself with the console and its various views.

In any view that you choose, the following features are available:

• Hover the mouse over a node to display a descriptive label.

• Right click on a node to get a node operations menu.

• You can select multiple nodes with a rubber-band action: point over blank space, left-click and drag, release: all nodes

completely contained in the rectangle will be highlighted. Now, all operations in the pop-up menu apply to all selected nodes.

• Double click on a node to open the Node Editor, which displays the properties of the node.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.22

Figure 12:

• While the Node Editor is still open, select other nodes by clicking on them. You will see the information in the Node Editor

change as you select different nodes.

Vertical Graph View

Open the Vertical Graph view by clicking the or by clicking the letter G.

Figure 13:

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.23

Horizontal Graph View

Open the Horizontal Graph view by clicking the or by clicking the letter H.

Figure 14:

Grid View

Open the Grid view by clicking or by clicking the letter Q. This is an alternative graphical representation for the dependency

graph in which arcs are not shown and the nodes are compactly arranged in a non overlapping grid. This view is effective when

you have hundreds or thousands of nodes to show.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.24

Figure 15:

Stat View

Open the Stat view by clicking or by clicking the letter S.

Figure 16:

View Graph Subsets

The previous views have only shown the complete dependency graph, that is the set "nodes". It is valuable to look also at smaller

subsets of the graph.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.25

1. Select the Graph view.

2. In the Set Browser, in the System folder, double-click on the sets jobs and files.

3. Under the Predefined directory are many sets that will be useful when dealing with real life projects. The primary sets are

Stuff to do and Failed job.

These sets are currently empty. Later in the tutorial you will see how they can be used.

4. Go back to the set System:nodes.

5. Right click the node representing the file bb to show the pop-up menu.

6. Select Connectivity > Selection Alone.

7. Expand the graph around this node with the pop-up menu Connectivity > Expand Selection .

Tip: Many common commands are bound to keyboard accelerators. For example, the operation you just

performed (showing a node alone, then expanding the graph) can also be performed by typing a while the

mouse is over the node to view the node alone and by typing x to expand the node.

8. Display only the node bb. It may be useful to look at the inputs of node bb and their inputs, and their inputs and so on. The

set of all transitive inputs of a node is called the "up-cone" of the node. The accelerator for up-cone is Ctrl-u.

9. Repeat the previous exercise but get the "down-cone" this time, that is the set of all outputs of a node, and their outputs, and

so on. The accelerator for down-cone is Ctrl-d.

As you view selected subsets of the dependency graph, FlowTracer creates new sets. These are visible if you refresh the Set

Browser by clicking Set > Refresh browser.

Navigate the Graph

Make Changes to a File and Run it

Edit, modify and save aa and watch what happens to the dependency graph.

All the nodes dependent on aa change color as they are no longer up to date with respect to aa. The purple color indicates that the

nodes are invalid with respect to their inputs.

Run the Jobs

You have built the graph by executing the "tools" (emulated by cp) interactively under the control of the vw wrapper. By using

that wrapper, you have established runtime tracing. With runtime tracing turned on, FlowTracer discovers the inputs and outputs

at runtime as the program is run. It builds a dependency graph of the files related to the program. The flow holds a data set that

defines the dependency graph, the jobs, and the current state of files. FlowTracer is now ready to execute the jobs in the flow,

based on the dependency graph and the state of files in the system. It can schedule and deploy jobs that need to be run because they

use an input file that has changed. This process is called "retracing".

1. Go to the graph view.

2. Point at the node bb.

3. Right-click and hold to display the menu and select Run.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.26

A request to the FlowTracer server to bring the file bb up to date. This means re-executing the job vw cp aa bb.

To accomplish this task, the server selects the fastest tasker in the network that can execute the job. When processing a

run request, FlowTracer takes advantage of potential parallelism by sending multiple independent jobs to the available

taskers. Depending on the number of taskers connected to your project, you may or may not see parallelism in action. This

illustrates the process of bringing a particular file up-to-date. More commonly, you will want to bring the entire design up to

date, or the entire set of nodes you are looking at.

4. Select the set you are interested in; for example, choose the set "nodes" in the Systems folder.

5. Select the Graph view in the Set Viewer.

6. Click on the retrace icon to bring the current set up to date. If all elements in the set are already VALID (green) nothing

needs to be done.

Note: You can also run individual nodes using the pop-up menu, or the keyboard shortcut "r".

Navigate the Graph

Navigating the graph means moving from a node to another following the input/output dependencies. You can navigate the graph

using the Navigation dialog:

Figure 17:

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.27

Invoke the graph by right-clicking on a node and selecting Connectivity > Navigate or by clicking .

The dialog is divided into 3 parts:

1. the top shows the inputs

2. the center shows the current node

3. the bottom shows the outputs

You can select any of the rows in the Navigation dialog. When one or more rows are selected, the buttons at the top get enabled.

Using these buttons, you can either edit a selected node, create a set containing all the selected node, or clear the selections.

Further, right clicking on any node will popup a context menu which can be used for various operations on that node.

Multiple rows can be selected by holding the mouse left button down and dragging the mouse across the rows you want to select.

Note: The rows in any of the sections in the Navigation dialog can be sorted by any column by clicking on the

column header.

Determine Reason for Invalid Node Status

1. Edit file aa, save the changes and wait for the graph to turn purple.

2. Double-click on cc and in the Node Editor window select the "Why?" tab.

You will see the reason why FlowTracer thinks that the file cc is not up to date because the transitive input aa has been

changed.

Tip: You can get the same information from the command line with the command vsy.

Analyze Impact

You can analyze the consequences of changing a file with the Impact analysis function.

1. Click on a node to select it, for example, aa.

2. From the menu, click Node > Impact.
The Impact Analysis Report window opens:

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.28

Figure 18:

The impact analysis shows how many files and jobs are affected by a change in the selected file. Because FlowTracer keeps

a record of the time it has taken to run each job, FlowTracer can predict the time it will take to execute all jobs dependent on

the selected file.

You can get the same information from the command line with the command vsc:

% vsc aa
VALID NODES Files: 4 Tools: 4 Duration:1s
OTHER NODES Nothing.

TOTAL Files: 4 Tools: 4 Duration:1s

Forget Nodes and Sets from the Graph

FlowTracer remembers the jobs you execute provided you enable runtime tracing for those jobs, as you have done in this tutorial

by using the FlowTracer wrapper vw. It often becomes necessary to tell FlowTracer to forget about parts of a flow.

1. To forget a single node:

a) Point at the node.

b) Right-click, hold, and select Forget.

2. To forget multiple nodes:

a) Select the nodes you want to forget by drawing a rubber band around them.

b) Point at one of the selected nodes.

c) Right-click, hold, and select Forget from the pop-up menu.

3. To forget a set (not the elements in the set):

a) Select the set in the Set Browser.

b) Look at the sets in the "Tmp"folder. From the menu, select Set Forget Set Only.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.29

Note: System"sets cannot be forgotten. "Predefined" sets can be forgotten but they will not

be removed from the set hierarchy. Double-clicking on any of the "Predefined" set names will

automatically recreate that set.

c) You can also choose to forget a set and all the contents (nodes) of that set by using the option Forget Set & Elements
instead.

Command Line Interface

Everything that you have done with the console, you can do from the command line. We recommend that you keep up the console,

for now, so you can monitor the effect of your actions. As you learn the Command Line Interface (CLI) programs, you will be able

to use the CLI or the GUI.

In this tutorial we cover the most important commands in FlowTracer. For a complete list of commands, check the Global

Commands List.

Check File Status

1. The command vls can be used to check the status of files. First try it when all files are VALID.

% vls
VALID i aa
VALID u bb
VALID u cc
VALID o dd1
VALID o dd2

The first column shows the status of the files in the context of the flow. The second column summarizes the connectivity

information for the file: "i" indicates a primary input, "o" indicates a primary output, "u" indicates files that have both inputs

and outputs.

2. Now, change aa and check again, this time using the option -l to get more information.

% touch aa
% vls -l
1 00000582 i VALID aa
3 00000013 u INVALID bb
5 00000016 u INVALID cc
7 00000193 o INVALID dd1
7 00000265 o INVALID dd2

With the -l option you can see two more columns. The first column shows the level of the node in the graph. Level 1 is at

the top. The second column contains the VovId of the files, a unique identifier used in most FlowTracer operations.

3. Use option -h or -help to get a help message.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.30

Check Job Status

The vst command can be used to check on job status.

1. Use the command vst to check the status of jobs. The letter "t" stands for "tool invocation" which is a synonym for job.

% vst
00000638 INVALID vw cp aa bb
00000689 INVALID vw cp bb cc
00000729 INVALID vw cp cc dd2
00000749 INVALID vw cp cc dd1

This command also supports many options, which you can see using the option -h or -help. Important is the option -a, which

2. Add the -h or - help option to see what other options are supported.

3. Add the -a option to show the environment in which the jobs have been executed:

% vst -a
vst: rule is `ISJOB==1 CWD==${HOME}/simple_test'
vst: format is `@LEVEL:3@ @ID@ @STATUS:10@ @ENV:8@ @COMMAND@'
2 00000638 INVALID BASE vw cp aa bb
4 00000689 INVALID BASE vw cp bb cc
6 00000729 INVALID BASE vw cp cc dd2
6 00000749 INVALID BASE vw cp cc dd1

Rerun from the CLI

The command vsr is used to issue rerun requests. The target to update can be a file, a directory, a set, or a list of files directories

and sets.

Try the following commands:

% touch aa
% vsr bb
,---
| Retrace : tmp:retrace:to ${HOME}/simple_test/bb
| Id : 00000848
| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 1 tools
| Status : Completing in: 1s.
`---
beatty<-- vw cp aa bb
,---
| Retrace : tmp:retrace:to ${HOME}/simple_test/bb
| Id : 00000848
| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 1 tools
| Status : DONE. Expected duration: 1s Actual: 1s (100%)
`---
% vsr .
,---
| Retrace : tmp:retrace:dir ${HOME}/simple_test
| Id : 00001219

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.31

| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 3 tools
| Status : Completing in: 3s.
`---
beatty<-- vw cp bb cc
beatty<-- vw cp cc dd1
beatty<-- vw cp cc dd2
,---
| Retrace : tmp:retrace:dir ${HOME}/simple_test
| Id : 00001219
| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 3 tools
| Status : DONE. Expected duration: 3s Actual: 10s (333%)
`---
% vsr -all
... output omitted ...

Detect Conflicts

If you make no mistakes, FlowTracer remains invisible. However, if in your design activity you accidentally violate dependency

constraints, FlowTracer will alert you. FlowTracer will warn you if you try to execute a tool with invalid inputs.

1. Execute the following:

% touch aa
% vw cp bb cc

In this case, the modification to aa invalidated bb and therefore made the request to run the job of copying bb to cc a

wasted step because bb was no longer valid. When you request that job to be done, FlowTracer will prompt you as follows:

FlowTracer: ATTENTION! Input conflict detected! FlowTracer: ATTENTION!
FlowTracer: ATTENTION! Input conflict detected! FlowTracer: ATTENTION!
---------- User Decision Required ---------------
INPUT CONFLICT for tool
vw cp bb cc
(directory ${HOME}/tutorial)
The tool needs
FILE:${HOME}/tutorial/bb
which is currently INVALID
1 -- CONTINUE
2 -- STOP ASKING
3 -- (*) ABORT
Please choose (1--3) >>>

Here you have the chance to abort from an operation that has to be redone anyway later, or continue as you would have

without FlowTracer. At least you are aware that the computation is likely to be incorrect.

2. If you try to redefine the source of a file, FlowTracer will ask you if you really want to change how the file is generated. Try

the following

% vw cp aa bb
% vw cp bb cc
% vw cp aa cc

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.32

Example of an output conflict :

FlowTracer: ATTENTION! Output conflict detected! FlowTracer: ATTENTION!
FlowTracer: ATTENTION! Output conflict detected! FlowTracer: ATTENTION!
---------- User Decision Required ---------------
OUTPUT CONFLICT caused by data item
FILE:${HOME}/tutorial/cc
Command lines are different.
Common part is 6 characters long.
'bb cc' != 'aa cc'.
^____ ^____
1 -- CONTINUE
2 -- (*) ABORT
3 -- MORE INFO
Please choose (1--3) >>>

You can see that cc is already dependent on bb.

3. Answer 2 (Abort).

FlowTracer will also prevent you from creating cyclic dependencies.

% vw cp aa bb
% vw cp bb cc
% vw cp cc aa # whoops, a cycle (aa->bb->cc->aa)

Example of an cycle conflict :

FlowTracer: ATTENTION! Cycle detected! FlowTracer: ATTENTION!
FlowTracer: ATTENTION! Cycle detected! FlowTracer: ATTENTION!
vw Mar 30 12:36:03 Failed FlowTracer call libconnect.cc,146

vw ERROR Mar 30 12:36:03 Cycle conflict for ${HOME}/tutorial/aa
vw Mar 30 12:36:03 This tool invocation is now forgotten
vw Mar 30 12:36:03 Serious dependency violation (status -3)

Repeat the Tutorial without the GUI

Rerunning in the current directory is initiated with the command vsr. Right now, the dependency graph should be up to date with

all nodes being valid (you can check this status using vls). So running vsr will do nothing.

1. Run everything with the vsr command:

% vsr
,---
| Retrace : Retrace Directory ...
`---
sparc<-- vw cp aa bb
hppa <-- vw cp bb cc
sparc<-- vw tar -cf archive.tar aa bb cc
,---
| Status : DONE. Expected duration: 2s Actual: 3s (150%)
`---

If FlowTracer has been configured to use multiple machines, you may see commands being executed on other hosts.

FlowTracer uses a technique called resource mapping to generate a list of candidate machines, then selects the machine

which can execute the command the fastest.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.33

2. Run the command vls to confirm that the system has been updated.

% vls
VALID i aa
VALID o archive.tar
VALID u bb
VALID u cc

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.34

Flow Description Language

In the earlier section, you built a flow by interactively calling the wrapper program for each job. That was a useful exercise to

understand a simple way to register a job with FlowTracer, how to establish runtime tracing for the job, and how to monitor a flow

using the GUI console. However, that is not how FlowTracer would be used for production.

The FlowTracer product does not expect a product flow to be registered by interactively registering each job one at a time from the

command line. Instead, the normal use is:

• Develop a description of the jobs to register, using the Flow Description Language (FDL)

• Register the jobs and instantiate the flow using the vovbuild command

• Request a "run" to have FlowTracer schedule and deploy jobs as necessary in parallel

In this tutorial, you will develop a few simple flows by writing a job description file and registering the jobs with vovbuild.

Tasks in This Tutorial

Remove Older Sets

Before starting, you should establish your current working directory to be the same one you used earlier "simple_test" in your

home, and you should have the GUI Console running so you can watch the effect of building the flow, as you did in the earlier

tutorial.

1. Change to your current working directory and start up vovconsole in the background.

% cd
% cd simple_test
% vovconsole &

2. From the Set Browser, click on System and then double click on Nodes.

3. Double click on a set name to display the contents of the set in the Set Viewer panel on the right.

4. Single click on a set name to highlight nodes in the Set Viewer panel if they are members of the clicked set.

For example, if a set named TOP:partition1:subset1 is clicked while showing TOP:partition1 in the Set Viewer panel,

then the contents of subset1 will be highlighted in the Set Viewer.

You should see the current state of the flow from when you stopped the earlier tutorial. The model of the flow is held in the

server, not the console. The console shows what the server is managing.

5. The view of the graph can be toggled to show or not show files. We want to have the files show. If the files are not shown,

turn on display of file nodes by right clicking in the background of the Set Viewer panel to open a context menu. Click

Show/Hide to open a submenu where you can toggle on the Show Files option.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.35

Figure 19: Context menu seen when right-clicking in open area of canvas in Set Viewer

For the next exercise, you will not be using the flow from the previous steps. You can tell FlowTracer sever to drop that flow from

its memory. This will remove it from the server, and the console display will change to show that the flow was dropped.

You tell the server to forget by telling it to forget nodes. You can tell it to forget one node or groups of nodes using the

vovforget command. The easy way to refer to a group of nodes is by referencing them by set name.

6. Tell FlowTracer to forget the nodes you see when displaying the System > nodes set by telling it to forget the nodes in that

set. Enter this, typing it in at the command line:

% vovforget -elements System:nodes
message: Forgotten 10 nodes

The Set Viewer display updates to show an empty canvas since there are no longer any nodes to display, as they have all

been forgotten.

7. Remove the files from the directory simple_test. It will contain the file aa which is the primary input of the emulation,

and the files bb, cc, dd1, and dd2 which are the derived files from the emulation. Enter the following:

% rm aa bb cc dd1 dd2

You are now ready to continue with this exercise to register a new set of jobs that define a flow by way of editing a Flow

Description file and using it to build the flow.

The Flow.tcl File

The default name for a job description file is Flow.tcl. The first job description file you will write will define the same jobs that

you registered interactively in the previous tutorial.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.36

You should have a file called Flow.tcl in the simple_test directory. It will hold a Flow Description for the flow having four

jobs that was built interactively before. Recall that this tutorial is using the cp command to emulate more complicated programs

that process input to generate output.

Edit the file as follows:

% cat Flow.tcl
J vw cp bb cc
J vw cp cc dd1
J vw cp cc dd2
J vw cp aa bb

The sequence of the commands is deliberately in the "wrong" order from how you might enter them if you planned to run the

programs yourself. You do not need to enter them in their dependency order.

The token 'J' in this file is the name of a Tcl procedure, one of those that comprise the Flow Description Language. J means

to register a job into the flow. The job to register is the one whose command has been passed as an argument, (the command is

what follows on the line). The command is what was typed in interactively in the earlier tutorial. The command calls the wrapper

program "vw" to establish that runtime tracing will be used. It passes the wrapper the shell command that runs the job.

In this case we want our flow to contain 4 jobs. The jobs are in an arbitrary order, since FlowTracer has the ability to determine or

discover the correct order.

The flow description can be this simple because it need not be concerned with issues like environment setup, job scheduling,

job control, capturing of stdout and stderr, license checking, error checking, detection of parallelism, since all these services are

automatically provided by FlowTracer. This means that a flow description file is typically several times smaller than an equivalent

Makefile or shell script.

Build the Flow

Now that you have a job description, you need to build the flow with the vovbuild program.

The vovbuild program processes a flow description file and registers the described programs into the flow. It defaults to using

the file Flow.tcl as the flow description file.

% vovbuild
.... # 4 dots, one per job

Building the flow is different from running it. The jobs in the flow may take seconds or days to execute, but building the flow is

normally a rather quick step. Building the flow is building the dependency graph, not running the programs registered into the

graph.

After the vovbuild is done, you must double click the System:nodes set in the Set Browser to get the console to refresh the Set

Viewer with the current graph.

The graph you get will have a similar look to this. Minor differences in the size and position of the nodes are to be expected.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.37

Figure 20:

Notice that the dependency ordering of the jobs in the graph has been created properly, even though the jobs in the FDL file were

entered without an order.

Notice that the top node is brown, to indicate that file aa is missing. The flow building discovered that file aa is not present and

marks the file to have the MISSING status. The other nodes are purple to indicate that they are INVALID.

Run the Flow Interactively

1. You can run the flow by pressing Run in the action menu bar in the top of the Set Viewer panel.

Nothing will happen since the very first job in the dependency graph is unable to run since its input aa is missing.

2. Create a file aa in the simple_test directory.

% touch aa

The graph will change to show that file aa was just created. If this is not seen, make sure that the Set Viewer is actively

displaying the System:nodes set by double clicking on the System:nodes choice in the Set Browser.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.38

The node for file aa is green. The rest of the nodes are purple to indicate that all those dependent elements are INVALID.

Another way to see the INVALID set of nodes it to say they are ready to run.

Figure 21:

3. Click Run to have FlowTracer process the graph.

The display will change quickly to reflect the various state changes of the nodes representing the jobs and the files.

You will see nodes change to light blue to indicate they are SCHEDULED, or yellow to indicate they are RUNNING, and

finally, all of the nodes will turn bright green to show a successful run of the dependency graph. All the dependent jobs

ran successfully and all dependent files were made successfully. This is just an emulation using the cp command but if the

defined jobs had used production class programs, the result would be the same.

Running a job interactively is fun to do but it is not how FlowTracer would be used in production. This section was to show you

how the flow description language file is created and how the flow is registered with FlowTracer by using vovbuild.

Run a Flow from the Command Line

In production mode, you will use a command line request to run the flow. It's as easy as clicking the Run button.

1. Now that there is a Flow.tcl file in hand that can be given to vovbuild to create a flow as needed, remove the current

flow and register it again. Remove the dependent files too, leaving the primary file aa.

% vovforget -elements System:nodes
message: Forgotten 10 nodes
% rm bb cc dd1 dd2
% vovbuild
....

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.39

The GUI Console will have the familiar look to it as seen earlier. Note that there may be slight variation in the placement of

the nodes in the display, which is expected.

2. Enlarge the display and select the menu View > Fit or use the keyboard shortcut f to cause the placement of nodes to fit

better within the Set Viewer.

3. Resize the display smaller, which will keep the same layout but reduce the size of the nodes.

4. Use the command line to request that FlowTracer run the jobs, taking into account the dependencies of the graph, just as it

does when the run request is done by clicking the Run button. The program vsr is the command that requests FlowTracer

to run the flow.

% vsr
....
localhost <-- vw cp aa bb
localhost <-- vw cp bb cc
localhost <-- vw cp cc dd
localhost <-- vw cp cc ee

The resulting graph in the GUI Console will show various changes in node colors as the dependent programs are run in the

right order, and dependent files are created. In the end, the graph will show all green nodes, indicating a successful run.

Batch Process to Define and Run a Flow

In production mode, you will have scripts that create flows and run them. The console GUI will be one interface you will use to

monitor the flows that get run this way. The other interface is through the browser.

In these tutorials, you are using the simple command cp to emulate more complicated programs, which might take much longer

to run that a file copy does. This tutorial does not show you long running programs, as you will see in production. This means

that during this exercise you do not get to view long lasting states of an intermediate job. The intermediate jobs run too quickly to

notice their state changes. For longer lasting flows, the GUI and browser interface provide useful ways to watch the details of what

is happening.

1. The control over what is supposed to happen is in scripts that define the flows and get them running. To demonstrate this,

reset FlowTracer as you did earlier, to get rid of the current flow. It is not needed any more. Remove the dependent files and

the primary input file too.

% vovforget -elements System:nodes
message: Forgotten 10 nodes
% rm aa bb cc dd1 dd2

The console should reflect all this and show an empty Set View panel.

2. Edit the file dowork.sh in the simple_test directory to look like this:

% cat dowork.sh

rm -f aa bb cc dd1 dd2
vovforget -elements System:nodes
sleep 5
vovbuild -f Flow.tcl
sleep 5
vsr
sleep 10

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.40

touch aa
sleep 10
vsr

This shell script is going to run the commands you have been entering interactively, with sleep commands in the sequence

to emulate the time between entering the commands. This is intended to give you a chance to notice the state change in the

console's Set Viewer when the script is run.

3. Run the shell script while watching the GUI console.

% sh dowork.sh

The script starts with removing the primary and dependent files so it can be run repeatedly.

4. Run the shell script again, and then again, to get familiar with having flows defined starting from an empty canvas, seeing

the flow dependency graph before any jobs of the flow are run, seeing the jobs scheduled to run but not succeed, and then

seeing a successful run of all the jobs.

The flow is defined by FDL language statements in a flow description file. The flow is created and run by commands in a batch

shell script. You monitor the progress of the entire system by looking at the GUI console.

Create a Complex Flow

Everything done so far could have been done just as easily using make or a C-shell script. In this step you will build a flow which

neither make nor a shell script could handle efficiently. This is a flow that spans multiple directories.

This example project will dynamically create a set of subdirectories. For each subdirectory, it will run four jobs within that context

that process the same input file aa that comes from the top level main directory. The jobs are the ones we have been using to

emulate useful work.

This flow definition implements a project that has variant ways of processing, starting from a given input file, with each variant

task branch running in a different area, and each one enabled to be run in parallel or in any order, independent of work done in

another subdirectory. For this tutorial flow, all the variant task branches have the same set of four jobs which are emulated by the

same simple cp commands. In a real project, each variant task sequence could involve different programs.

% cat Flow2.tcl

for {set i 1 } { $i < 20 } { incr i } {
 indir -create subdir$i {
 J vw cp ../aa bb
 J vw cp bb cc
 J vw cp cc dd1
 J vw cp cc dd2
 }
}

The for construct is standard Tcl, while the procedure indir is a FlowTracer extension. In this case you want to create the

subdirectories subdirN, so you will use the option -create of indir.

1. Start the sequence with removal of files that might exist if the steps are done again.

% vovforget -elements System:nodes
% rm -rf aa subdir*
% vovbuild -f Flow2.tcl
......................................

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.41

......................................

......................................

......................................
% touch aa
% vsr -all

Figure 22:

You have to use option -all of vsr because this flow spans multiple directories and the default target of vsr is just the

current working directory.

2. As was done earlier, create a batch shell script to build the flow and run it.

% cat dowork2.sh

vovforget -elements System:nodes
rm -rf aa subdirs*
sleep 5
vovbuild -f Flow2.tcl
sleep 5
touch aa
sleep 5
vsr -all

% sh dowork2.sh

3. Rather than use a shell script to redo the commands to build and run the flow, you can work with the flow as it is defined in

FlowTracer, and try touching aa to emulate a change in the primary input file. This models an event that precedes running

all the dependent jobs. Run vsr -all to have FlowTracer schedule and dispatch all the dependent variant processes in the

task paths. Watch the state of the nodes as the activity progresses.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.42

Figure 23:

EDA Flows

In this section, some typical EDA flows that are more dynamic than the ones we have used so far are shown.

You will consider a project that implements a simulation based on calling a tool named simulate. The model is that a directory

will contain a group of stimulus files. The intent is to run one job for each stimulus file in the directory. The job will run the

simulate program within the context of a unique subdirectory for each stimulus file.

The Tcl file to define the jobs in this project will use the Tcl glob notation to discover all the stimulus files in the directory based

on their having a name with the suffix .stim. Then it will create a subdirectory using the base name of the stimulus file, and run a

job in that subdirectory.

In this example, two FDL procedures are introduced: E and R. The procedure E defines the environment in which the simulation

jobs must be executed. In this case, the environment is the combination of the BASE environment, which is part of any normal

FlowTracer installation, and the SPICE environment, which is presumably an environment that has to be setup for each site to

support the running of the SPICE tool, since the location of the simulation software varies from site to site.

The procedure R defines the resources required by the subsequent jobs in the flow. In this case, we declare that each job requires

one license of the tool 'spice' (represented by the resource 'License:spice') and at least 250MB of RAM.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.43

This is an example of how to define a group of simulation jobs for a project. These lines would be placed into a tcl file so that the

tcl file could be registered into FlowTracer by running vovbuild against it.

E "BASE+SPICE"
R "License:spice RAM/250"
foreach stimulusFile [glob *.stim] {
 set root [file root $stimulusFile]
 indir -create $root {
 J vw simulate ../$stimulusFile -o $root.log
 }
}

This shows how jobs would be defined in a production environment so that a project's flow gets defined by way of running

vovbuild against a script holding the job definitions using the FDL language and tcl.

The back-end flows for placement and routing of blocks tend to require many sequential steps, each one requiring different

resources, such as licenses and RAM. While many organization use the same tool suites, such as Cadence's Silicon Ensemble,

it is rare to see the core tools such as qp and wroute called directly. Instead, each organization has its own wrapper script to

define how those tools are to be invoked. In our example, the wrapper script is called pnr and is presumably accessible from the

environment called EDA.

Example of defining a group of jobs to do a Place & Route operation:

set block [shift]
E "BASE+EDA+CADENCE"

R "License:qp RAM/250"
J vw pnr place $block
J vw pnr scanins $block

R "License:wroute RAM/2000"
J vw pnr route $block
J vw pnr clocktree $block

R ""
J vw pnr to_gds $block

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Beginner's Tutorials p.44

Stop the Project

Server Management: Starting and Stopping

The server normally runs for the lifetime of the project. If it becomes necessary to shut down the server, use the stop option of the

vovproject command.

% vovproject stop
vovproject mm/dd/2015 hh:mm:ss: message: Checking privilege to stop project 'test'
Shut down test (yes/no)? yes
...

You can later restart the server with

% vovproject start project

Server Management: Destroying

After stopping a project, you can completely remove the project using the destroy option of the vovproject command.

% vovproject destroy project

This command removes all project files from the file system so that the project does not exist anymore and can not be started.

Proprietary Information of Altair Engineering

FlowTracer Advanced Tutorials 2

FlowTracer Advanced Tutorials

This chapter covers the following:

• Create Efficient VOV Scripts (p. 46)

• Write Flows (p. 48)

Altair FlowTracer 2024.1.1

FlowTracer Advanced Tutorials p.46

Create Efficient VOV Scripts

If your flows are small, such as a few thousands jobs, you probably do not need to worry much about efficiency of your scripts. If

you expect to operate on flows with hundreds of thousands of jobs, then this section can be useful.

While developing a VOV script, it is important to make sure that they do not needlessly make expensive calls that take a lot of

vovserver time.

One useful method is to ask the system to show the service time for all expensive calls, which is activated by setting the

environment variable VOV_SHOW_SERVICE_TIME to a positive integer that represents a time in milliseconds.

Note: The integer value is a threshold below which the times are not shown.

Here is an example with a call (i.e. "sanity") that tends to be expensive:

% setenv VOV_SHOW_SERVICE_TIME 1
% vovproject sanity
vovsh(19194) Nov 12 12:36:35 SERVICE_TIME: Service took 2027ms for 137=SanityCheck
vovsh(19194) Nov 12 12:36:35 SERVICE_TIME: Total service time for this client:
 2.027s

In this example, vovserver took a bit more than 2 seconds to complete the reply to the request "SanityCheck" (internal code 137).

This is normal for SanityCheck, and it is a reason why you do not want to run SanityCheck unless really necessary. Most VOV

services you really need should be in the low millisecond range.

This method only shows the "slow" services. To see all services requested by a script, use the variable VOV_DEBUG_FLAGS as

in this example:

% setenv VOV_DEBUG_FLAGS 16 ; ### This has to be 16 to show the RPC codes.

Experiments

#!/bin/csh -f
Try this script and compare the load on the server
Assume it is called "my_test_script"

set id = `vovsh -x 'FDL_INIT; VovUtils:init; set vovutils(feedback) quiet; puts [J vw
 hostname]'
vovselect status from jobs where id==$id ; ######## A common mistake
vovselect status from $id

NC variants
nc info $id | grep Status | awk '{print $2}'
nc list | grep $id | awk '{print $2}' ;;; ## Another horrible yet common mistake
nc getfield $id status ;;; ## BEST way!

####### NOTE: This experiment run with 500,000 jobs in the flow.
% setenv VOV_SHOW_SERVICE_TIME 1
% unsetenv VOV_DEBUG_FLAGS
% ./my_test_script
vovsh(9612) Nov 12 15:19:48 SERVICE_TIME: Total service time for this client:
 0.000s
vovsh(9617) Nov 12 15:19:48 SERVICE_TIME: Service took 8ms for 307=CreateQuery
 select:fieldname from:jobs

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Advanced Tutorials p.47

vovsh(9617) Nov 12 15:19:48 SERVICE_TIME: Service took 707ms for 307=CreateQuery
 select:status from:jobs where:id==002233767
INVALID
vovsh(9617) Nov 12 15:19:48 SERVICE_TIME: Total service time for this client:
 0.715s
INVALID
vovsh(9671) Nov 12 15:19:49 SERVICE_TIME: Total service time for this client:
 0.000s
vovsh(9698) Nov 12 15:19:49 SERVICE_TIME: Service took 1ms for 208=GetInfoMap
 project
vovsh(9698) Nov 12 15:19:49 SERVICE_TIME: Total service time for this client:
 0.001s
Idle
vovsh(9724) Nov 12 15:19:52 SERVICE_TIME: Service took 2607ms for
 296=ListElementsEnh id:000001041 format:@ID@ @STATUSNC:9@ @PRIORITYPP:6@ @HOST:14@
 @COMMAND:40@ range:0--1
vovsh(9724) Nov 12 15:19:54 SERVICE_TIME: Total service time for this client:
 2.607s
Idle
INVALID
vovsh(9928) Nov 12 15:19:55 SERVICE_TIME: Total service time for this client:
 0.000s

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Advanced Tutorials p.48

Write Flows

In Create a FlowTracer Project, you built a flow by executing one tool at a time. That was a useful exercise to understand the

fundamentals of runtime tracing. However, that is not the usage model for FlowTracer.

The flow developer rarely has to enter any shell command. In the normal usage of FlowTracer, developers use the FDL and tool

integration to build flows

In this tutorial, you will write a few simple flows.

The Flow.tcl file

The normal name for a flow description is Flow.tcl. The first flow you will write will reproduce the flow created in the user

tutorial:

This is the first Flow.tcl
J vw cp bb cc
J vw cp cc dd
J vw cp cc ee
J vw cp aa bb ;# Deliberately out of order.

The token J in this file is the name of a Tcl procedure, one of those that comprise the Flow Description Language. J means that we

want our flow to include the job whose command line has been passed as argument.

In this case we want our flow to contain 4 jobs. We list the jobs in arbitrary order, since FlowTracer has the ability to determine or

discover the correct order anyway.

The flow description can be this simple because it need not be concerned with issues like environment setup, job scheduling,

job control, capturing of stdout and stderr, license checking, error checking, detection of parallelism, since all these services are

automatically provided by FlowTracer. This means that a flow description file is typically several times smaller than an equivalent

Makefile or shell script.

Build the Flow

Now that we have a flow description, we need to build the flow with vovbuild. Before we do that, however, we recommend

that you use the GUI to monitor what is happening, as you have learned in the user tutorial. Also, in case you still have the flow

generated in the user tutorial, you should tell FlowTracer to forget it.

% vovconsole &
% vovforget -elements System:nodes
% vovbuild
.... # 4 dots, one per job.

Building the flow is different from running it. The jobs in the flow may take hours or days to execute, but building the flow is

normally a rather quick step.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Advanced Tutorials p.49

Execute the Flow

Now you can ask FlowTracer to run the jobs for you, taking into account dependencies and parallelism.

% vsr
....
localhost <-- vw cp aa bb
localhost <-- vw cp bb cc
localhost <-- vw cp cc dd
localhost <-- vw cp cc ee

Build a More Complex Flow

Everything done so far could have been done just as easily using make or a C-shell script. In this step we build a flow which

neither make nor a shell script could handle efficiently. This is a flow that spans multiple directories.

This is Flow2.tcl
for {set i 1 } { $i < 20 } { incr i } {
 indir -create subdir$i {
 J vw cp ../aa bb
 J vw cp bb cc
 J vw cp cc dd
 J vw cp cc ee
 }
}

The for construct is standard Tcl, while the procedure indir is a FlowTracer extension. In this case we want to create the

subdirectories subdirN, so we use the option -create of indir.

% vovbuild -f Flow2.tcl
......................................
......................................
......................................
......................................
% vsr -all

You have to use option -all of vsr because this flow spans multiple directories and the default target of vsr is just the current

working directory.

EDA Flows

In this section we show some typical EDA flows. We start with a simulation flow, where we want to execute one job for each

stimulus file in a directory. We use glob to find all stimuli, that is, the files with suffix ".stim", then we create a subdirectory

for each file and we define a job to run in such directory.

In this example we introduce two FDL procedures: E and R. The procedure E defines the environment in which the simulation

jobs mut be executed. In this case, the environment is the combination of the BASE environment, which is part of any normal

FlowTracer installation, and the SPICE environment, which is presumably an environment that has to be setup for each site, since

the location of the simulation software varies from site to site.

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

FlowTracer Advanced Tutorials p.50

The procedure R defines the resources required by the subsequent jobs in the flow. In this case, we declare that each job requires

one license of the tool 'spice' (represented by the resource 'License:spice') and at least 250MB of RAM.

A simulation flow:

E "BASE+SPICE"
R "License:spice RAM/250"
foreach stimulusFile [glob *.stim] {
 set root [file root $stimulusFile]
 indir -create $root {
 J vw simulate ../$stimulusFile -o $root.log
 }
}

The back-end flows for placement and routing of blocks tend to require many sequential steps, each one requiring different

resources, such as licenses and RAM. While many organizations use the same tool suites, such as Cadence's Silicon Ensemble, it is

rare to see the core tools such as qp and wroute called directly. Instead, each organization has its own wrapper script to define how

those tools are to be invoked. In our example, the wrapper script is called pnr and is presumably accessible from the environment

called EDA.

A Place & Route flow

set block [shift]
E "BASE+EDA+CADENCE"

R "License:qp RAM/250"
J vw pnr place $block
J vw pnr scanins $block

R "License:wroute RAM/2000"
J vw pnr route $block
J vw pnr clocktree $block

R ""
J vw pnr to_gds $block

Proprietary Information of Altair Engineering

Legal Notices

Altair FlowTracer 2024.1.1

Legal Notices p.52

Intellectual Property Rights Notice
Copyrights, trademarks, trade secrets, patents and third party software licenses.

Copyright ©1986-2024 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of the intellectual property rights held by

Altair Engineering Inc. or its affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are

protected under laws of the United States and laws of other jurisdictions.

In addition to intellectual property rights indicated herein, such software, other products, and materials of Altair Engineering Inc.

or its affiliates may be further protected by patents, additional copyrights, additional trademarks, trade secrets, and additional other

intellectual property rights. For avoidance of doubt, copyright notice does not imply publication. Copyrights in the below are held

by Altair Engineering Inc. or its affiliates. Additionally, all non-Altair marks are the property of their respective owners. If you

have any questions regarding trademarks or registrations, please contact marketing and legal.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual

property rights of Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates

is governed by and dependent on a valid license agreement.

Altair HyperWorks®, a Design & Simulation Platform

Altair® AcuSolve® ©1997-2024

Altair® Activate®©1989-2024

Altair® Automated Reporting Director™ ©2008-2022

Altair® Battery Damage Identifier™©2019-2024

Altair® Battery Designer™ ©2019-2024

Altair® CFD™ ©1990-2024

Altair Compose®©2007-2024

Altair® ConnectMe™ ©2014-2024

Altair® DesignAI™ ©2022-2024

Altair® EDEM™ ©2005-2024

Altair® EEvision™ ©2018-2024

Altair® ElectroFlo™ ©1992-2024

Altair Embed® ©1989-2024

Altair Embed® SE ©1989-2024

Altair Embed®/Digital Power Designer ©2012-2024

Altair Embed®/eDrives ©2012-2024

Altair Embed® Viewer ©1996-2024

Altair® e-Motor Director™ ©2019-2024

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

Legal Notices p.53

Altair® ESAComp® ©1992-2024

Altair® expertAI™ ©2020-2024

Altair® Feko® ©1999-2024

Altair® Flow Simulator™ ©2016-2024

Altair® Flux® ©1983-2024

Altair® FluxMotor® ©2017-2024

Altair® GateVision PRO™ ©2002-2024

Altair® Geomechanics Director™ ©2011-2022

Altair® HyperCrash® ©2001-2023

Altair® HyperGraph® ©1995-2024

Altair® HyperLife® ©1990-2024

Altair® HyperMesh® ©1990-2024

Altair® HyperMesh® CFD ©1990-2024

Altair® HyperMesh ® NVH ©1990-2024

Altair® HyperSpice™ ©2017-2024

Altair® HyperStudy® ©1999-2024

Altair® HyperView® ©1999-2024

Altair® HyperView Player® ©2022-2024

Altair® HyperWorks® ©1990-2024

Altair® HyperWorks® Design Explorer ©1990-2024

Altair® HyperXtrude® ©1999-2024

Altair® Impact Simulation Director™ ©2010-2022

Altair® Inspire™ ©2009-2024

Altair® Inspire™ Cast ©2011-2024

Altair® Inspire™ Extrude Metal ©1996-2024

Altair® Inspire™ Extrude Polymer ©1996-2024

Altair® Inspire™ Form ©1998-2024

Altair® Inspire™ Mold ©2009-2024

Altair® Inspire™ PolyFoam ©2009-2024

Altair® Inspire™ Print3D ©2021-2024

Altair® Inspire™ Render©1993-2024

Altair® Inspire™ Studio ©1993-2024

Altair® Material Data Center™ ©2019-2024

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

Legal Notices p.54

Altair® Material Modeler™©2019-2024

Altair® Model Mesher Director™ ©2010-2024

Altair® MotionSolve® ©2002-2024

Altair® MotionView® ©1993-2024

Altair® Multi-Disciplinary Optimization Director™ ©2012-2024

Altair® Multiscale Designer® ©2011-2024

Altair® newFASANT™©2010-2020

Altair® nanoFluidX® ©2013-2024

Altair® NVH Director™ ©2010-2024

Altair® NVH Full Vehicle™ ©2022-2024

Altair® NVH Standard™ ©2022-2024

Altair® OmniV™ ©2015-2024

Altair® OptiStruct® ©1996-2024

Altair® physicsAI™ ©2021-2024

Altair® PollEx™ ©2003-2024

Altair® PSIM™ ©1994-2024

Altair® Pulse™ ©2020-2024

Altair® Radioss® ©1986-2024

Altair® romAI™ ©2022-2024

Altair® RTLvision PRO™ ©2002-2024

Altair® S-CALC™ ©1995-2024

Altair® S-CONCRETE™ ©1995-2024

Altair® S-FRAME® ©1995-2024

Altair® S-FOUNDATION™ ©1995-2024

Altair® S-LINE™ ©1995-2024

Altair® S-PAD™ © 1995-2024

Altair® S-STEEL™ ©1995-2024

Altair® S-TIMBER™ ©1995-2024

Altair® S-VIEW™ ©1995-2024

Altair® SEAM® ©1985-2024

Altair® shapeAI™ ©2021-2024

Altair® signalAI™ ©2020-2024

Altair® Silicon Debug Tools™ ©2018-2024

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

Legal Notices p.55

Altair® SimLab® ©2004-2024

Altair® SimLab® ST ©2019-2024

Altair® SimSolid® ©2015-2024

Altair® SpiceVision PRO™ ©2002-2024

Altair® Squeak and Rattle Director™ ©2012-2024

Altair® StarVision PRO™ ©2002-2024

Altair® Structural Office™ ©2022-2024

Altair® Sulis™©2018-2024

Altair® Twin Activate®©1989-2024

Altair® ultraFluidX® ©2010-2024

Altair® Virtual Gauge Director™ ©2012-2024

Altair® Virtual Wind Tunnel™ ©2012-2024

Altair® Weight Analytics™ ©2013-2022

Altair® Weld Certification Director™ ©2014-2024

Altair® WinProp™ ©2000-2024

Altair® WRAP™ ©1998-2024

Altair HPCWorks®, a HPC & Cloud Platform

Altair® Allocator™ ©1995-2024

Altair® Access™ ©2008-2024

Altair® Accelerator™ ©1995-2024

Altair® Accelerator™ Plus ©1995-2024

Altair® Breeze™ ©2022-2024

Altair® Cassini™ ©2015-2024

Altair® Control™ ©2008-2024

Altair® Desktop Software Usage Analytics™ (DSUA) ©2022-2024

Altair® FlowTracer™ ©1995-2024

Altair® Grid Engine® ©2001, 2011-2024

Altair® InsightPro™ ©2023-2024

Altair® Hero™ ©1995-2024

Altair® Liquid Scheduling™©2023-2024

Altair® Mistral™ ©2022-2024

Altair® Monitor™ ©1995-2024

Altair® NavOps® ©2022-2024

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

Legal Notices p.56

Altair® PBS Professional® ©1994-2024

Altair® PBS Works™ ©2022-2024

Altair® Software Asset Optimization (SAO) ©2007-2024

Altair® Unlimited™ ©2022-2024

Altair® Unlimited Data Analytics Appliance™ ©2022-2024

Altair® Unlimited Virtual Appliance™ ©2022-2024

Altair RapidMiner®, a Data Analytics & AI Platform

Altair® AI Hub ©2001-2023

Altair® AI Edge ©2001-2023

Altair® AI Cloud ©2001-2023

Altair® AI Studio ©2001-2023

Altair® Analytics Workbench™ ©2002-2024

Altair® Knowledge Hub™ ©2017-2024

Altair® Knowledge Studio® ©1994-2024

Altair® Knowledge Studio®for Apache Spark ©1994-2024

Altair® Knowledge Seeker™ ©1994-2024

Altair® IoT Studio™ ©2002-2024

Altair® Monarch® ©1996-2024

Altair® Monarch® Classic ©1996-2024

Altair® Monarch® Complete™©1996-2024

Altair® Monarch® Data Prep Studio ©2015-2024

Altair® Monarch Server™©1996-2024

Altair® Panopticon™ ©2004-2024

Altair® Panopticon™ BI ©2011-2024

Altair® SLC™ ©2002-2024

Altair® SLC Hub™ ©2002-2024

Altair® SmartWorks™ ©2002-2024

Altair® RapidMiner® ©2001-2023

Altair One® ©1994-2024

Altair® License Utility™ ©2010-2024

Altair® TheaRender® ©2010-2024

Altair® OpenMatrixTM©2007-2024

Proprietary Information of Altair Engineering

Altair FlowTracer 2024.1.1

Legal Notices p.57

Altair® OpenPBS® ©1994-2024

Altair® OpenRadiossTM ©1986-2024

Third Party Software Licenses

For a complete list of Altair Accelerator Third Party Software Licenses, please click here.

Proprietary Information of Altair Engineering

third_party_licenses.pdf

Altair FlowTracer 2024.1.1

Legal Notices p.58

Technical Support
Altair provides comprehensive software support via web FAQs, tutorials, training classes, telephone and e-mail.

Altair One Customer Portal

Altair One (https://altairone.com/) is Altair’s customer portal giving you access to product downloads, Knowledge Base and

customer support. We strongly recommend that all users create an Altair One account and use it as their primary means of

requesting technical support.

Once your customer portal account is set up, you can directly get to your support page via this link: www.altair.com/customer-

support/.

Altair Training Classes

Altair training courses provide a hands-on introduction to our products, focusing on overall functionality. Courses are conducted

at our main and regional offices or at your facility. If you are interested in training at your facility, please contact your account

manager for more details. If you do not know who your account manager is, e-mail your local support office and your account

manager will contact you

Telephone and E-mail

If you are unable to contact Altair support via the customer portal, you may reach out to the technical support desk via phone or e-

mail. You can use the following table as a reference to locate the support office for your region.

When contacting Altair support, please specify the product and version number you are using along with a detailed description

of the problem. It is beneficial for the support engineer to know what type of workstation, operating system, RAM, and graphics

board you have, so please include that in your communication.

Location Telephone E-mail

Australia +61 3 9866 5557

+61 4 1486 0829

anz-pbssupport@altair.com

China +86 21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Proprietary Information of Altair Engineering

https://altairone.com/Dashboard
https://www.altair.com/customer-support/
https://www.altair.com/customer-support/
mailto:anz-pbssupport@india.altair.com
mailto:es@altair.com.cn
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs@altairjp.co.jp
mailto:support@altair.co.kr

Altair FlowTracer 2024.1.1

Legal Notices p.59

Location Telephone E-mail

Malaysia +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0) 46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

United Kingdom +44 (0)1926 468 600 pbssupport@europe.altair.com

See www.altair.com for complete information on Altair, our team and our products.

Proprietary Information of Altair Engineering

mailto:pbs-support@india.altair.com
mailto:pbssupport@altair.com
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:br_support@altair.com
mailto:pbssupport@europe.altair.com
http://www.altair.com/

Index

A

add a job interactively 8

add more jobs to the flow 13

analyze impact 27

B

batch process to define and run a flow 39

build a more complex flow 49

build the flow 36, 48

C

change dependent input file 15

check file status 29

check job status 30

check project information 6

command line interface 29

create a complex flow 40

create a FlowTracer project 4

create a project 5

create a project directory 9

create efficient VOV scripts 46

D

detect conflicts 31

determine reason for invalid node status 27

E

EDA flows 42, 49

enable a shell 6

execute the flow 49

F

flow description language 34

flow.tcl file 35, 48

FlowTracer Advanced Tutorials 45

FlowTracer Beginner's Tutorial 3

forget nodes and sets from the graph 28

G

grid view 23

GUI job views 21

60

H

horizontal graph view 23

M

make changes to a file and run it 25

N

navigate the graph 25, 26

R

register one job from the command line 9

remove depended input file 17

remove older sets 34

repeat the tutorial without the GUI 32

rerun from the CLI 30

restore the shell prompt 6

run a flow from the command line 38

run the flow interactively 37

run the jobs 25

S

set command line environment 4

start the GUI console 7

stat view 24

stop the project 44

U

use the set browser 8

V

vertical graph view 22

view graph subsets 24

W

write flows 48

61

	Contents
	FlowTracer Beginner's Tutorials
	Create a FlowTracer Project
	Set Command Line Environment
	Create a Project
	Enable a Shell
	Restore the Shell Prompt
	Check Project Information
	Start the GUI Console
	Use the Set Browser
	Add a Job Interactively
	Create a Project Directory
	Register One Job from the Command Line
	Add More Jobs to the Flow
	Change Dependent Input File
	Remove Dependent Input File

	GUI Job Views
	Vertical Graph View
	Horizontal Graph View
	Grid View
	Stat View
	View Graph Subsets

	Navigate the Graph
	Make Changes to a File and Run it
	Run the Jobs
	Navigate the Graph
	Determine Reason for Invalid Node Status
	Analyze Impact
	Forget Nodes and Sets from the Graph

	Command Line Interface
	Check File Status
	Check Job Status
	Rerun from the CLI
	Detect Conflicts
	Repeat the Tutorial without the GUI

	Flow Description Language
	Remove Older Sets
	The Flow.tcl File
	Build the Flow
	Run the Flow Interactively
	Run a Flow from the Command Line
	Batch Process to Define and Run a Flow
	Create a Complex Flow
	EDA Flows

	Stop the Project

	FlowTracer Advanced Tutorials
	Create Efficient VOV Scripts
	Write Flows
	The Flow.tcl file
	Build the Flow
	Execute the Flow
	Build a More Complex Flow
	EDA Flows

	Legal Notices
	Intellectual Property Rights Notice
	Technical Support

	Index

