
Altair Accelerator Software 2024.1.1

Tutorials

Contents

Art of Flows Example Guide..5

Example 1... 6

Example 2... 9

Example 2 with Scripts.. 9

Altair Accelerator User Tutorials.. 17

Use Accelerator Help... 18

Enable CLI Access on UNIX.. 20

Troubleshooting the UNIX Setup...22

Enable CLI Access on Windows...23

Verify Context Is Working...24

Run Basic Jobs... 26

Get Summary Information... 28

Run Jobs with Various Options...31

Submit Multiple Jobs at Once: -f <file>... 31

Use Environments: -e <env>..31

Use of Resources: -r <res1 res2 ...>.. 32

Wait for Jobs...32

Specify Name of logfile: -l <logfile>.. 33

Job Control... 34

Rerun Jobs.. 36

Get Detailed Information about a Job... 37

Monitor Jobs, Taskers and Resources... 39

Invoke the GUI...41

Use the Web Browser.. 43

Troubleshooting.. 44

Altair Accelerator Administrator Tutorials...45

Start a Test Queue..46

Start/Stop Accelerator...49

Browser-based Setup.. 51

Configure Policy - FairShare and Other Parameters...52

Server Configuration Parameters..53

Advanced Policy Configuration... 54

Configure Resources...56

Configure Security..58

Configure Taskers...60

Configure an Environment...65

2

Logical Names (Equivalences)...70

Resource Management..73

Altair Monitor-Basic Setup...73

Configure and Manage Monitor-basic... 74

vtk_flexlm_monitor Procedures..75

Resource Throttling...75

Upgrade Accelerator...76

Case Study...79

EDA Automation Tutorial... 82

EDA Demo Part 1: Run the Demo... 83

Setup.. 83

Start the Project.. 83

Customize the Project...84

Check Out the Data.. 84

Start the Browser Interface...85

EDA Demo Part 2: Dissect the Demo.. 91

The Chip Structure File and cdt Script..91

The Capsules... 91

The Flow Description BlockFlow.tcl... 92

The CGI script edademo.cgi...94

FlowTracer Beginner's Tutorials..101

Create a FlowTracer Project.. 102

Set Command Line Environment... 102

Create a Project...103

Enable a Shell... 104

Restore the Shell Prompt..104

Check Project Information..104

Start the GUI Console.. 105

Use the Set Browser... 106

Add a Job Interactively.. 106

GUI Job Views... 119

Navigate the Graph...123

Command Line Interface.. 127

Flow Description Language... 132

Remove Older Sets... 132

The Flow.tcl File...133

Build the Flow.. 134

Run the Flow Interactively...135

Run a Flow from the Command Line... 136

Batch Process to Define and Run a Flow..137

3

Create a Complex Flow..138

EDA Flows..140

Stop the Project.. 142

FlowTracer Advanced Tutorials... 143

Create Efficient VOV Scripts.. 144

Write Flows.. 146

The Flow.tcl file... 146

Build the Flow.. 146

Execute the Flow.. 147

Build a More Complex Flow... 147

EDA Flows..147

Generate Custom HTML Reports Using CGI Tutorial... 149

Job Reports: List.. 151

Job Reports: Table..152

Legal Notices.. 153
Intellectual Property Rights Notice..154

Technical Support...160

Index...162

4

Art of Flows Example Guide 1

Art of Flows Example Guide

This chapter covers the following:

• Example 1 (p. 6)

• Example 2 (p. 9)

The examples described in The Art Of Flows book are available in the $VOVDIR/training/art_of_flows directory. The

Art Of Flows is available in the documentation bookshelf in PDF form. This section describes how to run the examples.

To begin, please point to the new environments directory and switch to the environment EDA1:

% setenv VOV_ENV_DIR $VOVDIR/training/art_of_flows/environments
% ves EDA1

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.6

Example 1

% mkdir aof_ex1
% cd aof_ex1
% date > Block.v

1. To run Example 1, create a directory and create a file called Block.v.

% mkdir aof_ex1
% cd aof_ex1
% date > Block.v

2. Start a FlowTracer project and start a GUI:

% vovproject create art_of_flows
% vovproject enable art_of_flows
% vovconsole -view graph -set All:nodes &

Example 1 with Scripts

The first script is "naked", the second has more frills.

% $VOVDIR/training/art_of_flows/example1/script1_1.csh Block.v Block.vg
% $VOVDIR/training/art_of_flows/example1/script1_2.csh Block.v Block.vg

Example 1 with make

The first makefile is simple, the second tries to augment the information about how the job is executed by printing additional

information on stdout.

% make -f $VOVDIR/training/art_of_flows/example1/Makefile1_1
% make -f $VOVDIR/training/art_of_flows/example1/Makefile1_2

If you have Accelerator, you can also try a makefile that has hard-coded links to a specific scheduler:

% make -f $VOVDIR/training/art_of_flows/example1/Makefile1_3

Example 1 with FlowTracer

The two flow descriptions yield exactly the same result.

% vovbuild -f $VOVDIR/training/art_of_flows/example1/Flow1_1.tcl
% vovbuild -f $VOVDIR/training/art_of_flows/example1/Flow1_2.tcl

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.7

Figure 1: Flow is Built

Figure 2: Flow is done

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.8

Figure 3: Flow has been changed

Figure 4: Flow is failing

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.9

Example 2

To run Example 2, create a directory and initialize it with the script create_example_2

 % mkdir ex2run
% cd ex2run
% create_example_2

Example 2 with Scripts

Example 2 with Scripts

The first script is trivial, the second has a bit of error checking:

% $VOVDIR/training/art_of_flows/example2/script2_1.csh
% $VOVDIR/training/art_of_flows/example2/script2_2.csh

Example 2 with make

This is an example of a recursive makefile system:

% make all

Example 2 with FlowTracer

The Flow.tcl file creates a multi-directory flow that is easy to manage.

% vovbuild
% vsr -all

To create a Makefile or a script from the flow, you can use vovexport:

% vovexport -make
% vovexport -csh

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.10

Figure 5: Flow is built

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.11

Figure 6: Flow is running

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.12

Figure 7:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.13

Figure 8: Flow is done

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.14

Figure 9: Flow is changed

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.15

Figure 10: Flow is failing

Example 2 with Makefile and FlowTracer

To convert the Makefile into a flow, you can use vovmake. The behavior of vovmake is controlled by

vovmake.config.tcl. In this case the configuration file simply requests:

• The skipping of the targets 'all' and 'run'

• The use of the wrapper vw for most other targets

• The use of the environment EDA1

% vovforget -allnodes ; if necessary, to cleanup the old flow.
% vovmake

You can then create a new makefile using vovexport

% vovexport -make

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Art of Flows Example Guide p.16

% make -f Makefile.vov clean
% make -f Makefile.vov all

Proprietary Information of Altair Engineering

Altair Accelerator User Tutorials 2

Altair Accelerator User Tutorials

In the following User Tutorials, you will experiment with Accelerator on most topics that a user would be most interested in,

including submitting jobs, tracking job information, analyzing and solving common problems, etc.

This chapter covers the following:

• Use Accelerator Help (p. 18)

• Enable CLI Access on UNIX (p. 20)

• Enable CLI Access on Windows (p. 23)

• Run Basic Jobs (p. 26)

• Get Summary Information (p. 28)

• Run Jobs with Various Options (p. 31)

• Job Control (p. 34)

• Rerun Jobs (p. 36)

• Get Detailed Information about a Job (p. 37)

• Monitor Jobs, Taskers and Resources (p. 39)

• Invoke the GUI (p. 41)

• Use the Web Browser (p. 43)

• Troubleshooting (p. 44)

Also in This Section

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.18

Use Accelerator Help
Accelerator documentation is available in HTML and PDF format.

Access the Help when Accelerator is Running

When Accelerator is running, it displays the documentation through its browser interface. To access it from browser, you need to

know which host and port Accelerator is running on. Ask your administrator, or find the URL for Accelerator with the following

command:

% Accelerator cmd vovbrowser
http://comet:6271/project

In the example below, assume Accelerator is running on host comet, port 6271. The URL for Accelerator is:

http://comet:6271

To get the entire suite of Altair Accelerator documents, including FlowTracer™, Accelerator™, Monitor™ and the VOV

subsystem, use the following URL:

http://comet:6271/doc/html/bookshelf/index.htm

Access the Help when Accelerator is not Running

All the documentation files are in the Altair Accelerator install directory, so you can access them even if vovserver is not running.

To do this, open /installation_directory/common/doc/html/bookshelf/index.htm in your browser.

Tip: Bookmark the above URL for future reference.

Access the Help PDF Files

Altair Accelerator also provides PDF files for each of the guides. All the PDF files are in the directory /

installation_directory/common/doc/pdf

Access the Help via the Command Line

The main commands of Accelerator are nc and ncmgr, with some subcommands and options. You can get usage help, descriptions

and examples of the commands by running the command without any options, or with the -h option. For example,

% nc info -h
nc:
nc: NC INFO:
nc: Get information about a specific job or list of jobs.
nc: USAGE:
nc: % nc info <jobId> [options]...
nc: -h -- Show this message
nc: -l -- Show the log file
nc:

Access the Help via the vovshow Command

Another source of live information is using the command vovshowvovshow. The following options are often useful:

Proprietary Information of Altair Engineering

../../../commands/topics/commands/vovshow.htm

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.19

vovshow -env RX Displays the environment variables that match the regular expression RX provided.

vovshow -fields Shows the fields known to the version of VOV in use.

vovshow -failcodes Shows the table of known failure codes.

For example, to find a variable that controls the name of the stdout/stderr files, without knowing the exact name of that variable,

the following command can be used:

% vovshow -env STD
VOV_STDOUT_SPEC Control the names of file used to save stdout and
 stderr. The value is computed by substituting
 the substrings @OUT@ and @UNIQUE@ and @ID@.
 Examples: % setenv VOV_STDOUT_SPEC
 .std@OUT@.@UNIQUE@ % setenv VOV_STDOUT_SPEC
 .std@OUT@.@ID@

The output provides a description of all the variables used by the FlowTracer system that include the substring "STD". In this

example, the output resultVOV_STDOUT_SPEC.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.20

Enable CLI Access on UNIX
This section explains how to set up a UNIX user's shell environment to have a proper context for the user to run installed Altair

Accelerator programs from the command line. The programs that are run from the command line are called the CLI commands.

When a UNIX user logs into the system, a login script is executed which sets up their working environment. The default shell for

the user determines what login script will run. A csh shell uses a .cshrc login script. A bash shell uses a .profile login script.

The best way to set up a user's shell environment to run Altair Accelerator programs is to change the login script to properly set the

user's working environment.

Altair Accelerator products require that the PATH environment variable be set to include the directories in the Altair Accelerator

release which hold programs that will be run from the command line. Also, there are two environment variables that need to be

set so that when an Altair Accelerator program is run, it will know where the release is installed and know what type machine it is

running on. These two environment variables are VOVDIR and VOVARCH.

The Altair Accelerator product installation provides a helper file that can be sourced in order to set the needed environment

variables to values that are appropriate for the local situation.

The intended use of the helper file is to have it sourced from a user's shell login script so that the user gets a proper environment

without doing anything extra.

There is one helper file for each of the shell types that exist on UNIX. One helper script file is in the csh syntax and the other is in

the shell syntax.

• vovrc.csh

• vovrc.sh

You can change each user's shell login script to source the file that is appropriate for the particular shell that they use.

Shell Instructions

C-shell, tcsh Add the following line to your .cshrc csh login script file:

source /<install_path>/<version>/<platform>/etc/
vovrc.csh

sh, ksh, bash, zsh Add the following line to your .profile shell login script file:

. /<install_path>/<version>/<platform>/etc/
vovrc.sh

Verify Access to Altair Accelerator Products

After making the changes to source the helper files, and then logging in, you can check that needed environment variables are

set properly by looking at environment variables to note that the PATH value contains a reference to the folders in the release

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.21

which hold programs, and to note that VOVDIR and VOVARCH are set. VOVDIR should contain the path to the installation.

VOVARCH should contain the name that matches the machine type it is running on.

1. At the command prompt, enter the following:

% echo $PATH
% echo $VOVDIR
% echo $VOVARCH

Beyond just looking, you can try running a Altair Accelerator product program as a positive test that the context is set up properly.

One program that is simple to run and is available with all Altair Accelerator products is vovarch. This program reports on

the machine type on which it is running. A side effect is that it tests that needed environment variables are set properly. If the

environment is valid, the program will run and report the correct machine type. If the environment is not valid, the program will

not work.

2. From the shell prompt, run the command vovarch.

% vovarch

You should get a response that is similar to one of the following, "linux64", or "macosx". This indicates the program

was found, it ran, and it produced an expected output that matches your UNIX environment.

You have successfully set up the environment and verified it is correct.

3. If the response is Command not found, then the working environment does not have a VOVARCH setting for the

programs in the Altair Accelerator products install area. If this is the case, review the steps to make sure the helper file from

Altair Accelerator is being sourced correctly.

% vovarch
linux64
 ... or ...
macosx

or

% vovarch
vovarch: Command not found.

Enable Altair Accelerator for Non-Interactive Shells

It is possible to have the shell login script build a different working environment for interactive and non-interactive shells. The

non-interactive environment is used when you run a batch script.

A common way this is done is to do an early exit from the login script file for non-interactive shells. For CSH, this can be done by

testing for the existence of the shell variable "prompt".

Early exit from non-interactive shell login CSH script:

This is a fragment of .cshrc.
 :
Batch scripts can skip doing actions needed by interactive scripts.
if (! $?prompt) then exit
 :

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.22

Below are actions needed by interactive scripts.
 :

If this exit happens early in the script, before sourcing the Altair Accelerator helper file, then the environment variables will not be

set for the non-interactive shell.

A batch script needs access to Altair Accelerator products. This means that the non-interactive shell needs to have the needed

environment variables set.

You should place the code that sources the helper file from Altair Accelerator early in the shell login script, before any logic causes

the script to differ between interactive and batch shells.

Source helper file before exit in login CSH script:

This is a fragment of .cshrc.
 :
Altair Accelerator env vars are needed by batch scripts.
source /<install_path>/<version>/<platform>/vovrc.csh
 :
Batch scripts can skip doing actions needed by interactive scripts.
if (! $?prompt) then exit
 :
Below are actions needed by interactive scripts.
:

Enable the Shell to Communicate With a Running Product Server

If you need to issue commands that will communicate to a running product instance, the instance will need to be "enabled", which

involves setting certain environment variables that point the commands to the location of the running vovserver.

% vovproject enable instance-name

Some common instance names are "licmon" (for Monitor), "vnc" (for Accelerator), and "wx" (for Accelerator Plus). Instance

names can be anything though since they are user-definable upon first start of each product.

Troubleshooting the UNIX Setup

An earlier section of this manual explained the importance of editing the .cshrc file so that batch shells would have the proper

environment for running Altair Accelerator products.

The following is a command line to verify that the .cshrc file is set properly for batch shells. This runs the vovarch command

within a batch context.

% csh -c vovarch

If this fails, the .cshrc file is not edited properly to enable access for batch shells. Review the details of the earlier topic on

editing the .cshrc to enable access to batch shells.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.23

Enable CLI Access on Windows
This section explains how to set up a Window user's command prompt environment to have the proper context for the user to run

installed Altair Accelerator programs from the command line. The programs that are run from the command line are called the CLI

commands.

Altair Accelerator products require that the PATH environment variable be set to include the directories in the Altair Accelerator

release which hold programs that will be run from the command line. Also, there are two environment variables that need to be set

so that when an Altair Accelerator program is run, it will know where the release is installed and know what type of machine it is

running on. These two environment variables are VOVDIR and VOVARCH.

There are two methods for setting the correct environment. Both involve running the same context-setting bat script. This context-

setting bat script establishes the correct environment variables for the local situation, reflecting where Altair Accelerator products

are installed.

Note: This operation to set the environment is not required to use every Altair Accelerator feature on Windows.

This operation is only needed to enable using the CLI commands from the command prompt.

Method 1: Use Windows Explorer to Set Command Line Environment

1. Using Windows Explorer, navigate to the Altair Accelerator installation directory.

2. Enter the win64/startup folder and double-click the vovcmd.bat script to run it.

This will open a command prompt with the proper environment settings for the Altair Accelerator and scripts to work.

When vovcmd.bat runs, it will execute the win64/bat/vovinit.bat script as part of what it does. The following section

covering Method 2 explains what win64/bat/vovinit.bat does when it runs. It does the same thing when run by either

method.

Method 2: Using Windows Command Prompt to Set Command Line
Environment

1. In a command prompt window, navigate to the Altair Accelerator installation directory using the cd command.

2. Change directory to the win64/bat folder with cd and run the vovinit.bat script.

This will establish the needed environment for the open command prompt.

When win64/bat/vovinit.bat runs, it figures out needed environment variables and sets them, based upon where it is

located. In particular, it sets VOVDIR to be the path to where Altair Accelerator is installed. It then executes another initialization

script, $VOVDIR/win64/local/vovinit.bat, if it exists.

This is an initialization script that you can create and modify to perform site specific activities customized for your local

configuration and usage. You can add commands to the local/vovinit.bat file that you want to run whenever a user starts

up a command prompt.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.24

After running both vovinit.bat scripts, the context of the command prompt has the correct environment needed so that CLI

commands will work correctly with the installed Altair Accelerator.

Customize Actions Needed to Enable Access to Altair Accelerator Products
on Windows

You can add commands to the win64/local/vovinit.bat file that perform specific operations that enable your Windows

users to access Altair Accelerator programs properly, or to set up things on the machine to follow a standard convention.

You could add operations that perform actions such as these, and others:

• Mounting network drives

• Setting environment variables for local needs

• Establishing time synchronization

Example of a custom $VOVDIR/win64/local/vovinit.bat

rem -- Mount network drives:
rem -- In this example we mount the Altair Accelerator installation on drive v:
if not exist v:\nul net use v: \\somehost\altair

rem -- Set locally useful environment variables.
set VNCSWD=v:\vnc
set DLOG=d:\dailylog

rem -- Set Windows time from server on local network
rem -- Put this last; it may fail if lacking time set privilege
net time \\timehost /set /y

Verify Context Is Working

When you have a command prompt open and expect that it has a context for accessing Altair Accelerator programs, check that

the environment is set by looking at environment variables to note that the PATH value contains a reference to the folders in

the release which hold programs, and to note that VOVDIR and VOVARCH are set. VOVDIR should contain the path to the

installation. VOVARCH should contain the name that matches the machine it is running on.

Beyond just looking, you can try running a program as a positive test that the context is set up properly. One program that is simple

to run and is available with all Altair Accelerator products is vovarch. This program reports on the machine type on which it is

running. A side effect is that it tests that needed environment variables are set properly. If the environment is valid, the program

will run and report the correct machine type. If the environment is not valid, the program will not work.

Run vovarch to verify the environment is set ok:

c:\ > vovarch
win64

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.25

Note: The output will always show win64 when running on any of the Microsoft Windows operating systems.

This result is expected. It reports that we are on a generic "windows" architecture and indicates that the context is

working.

If you are not able to verify that the context is valid, check the details within the <installation_directory>/

<version>/<platform>/bat/vovinit.bat file.

Enable the Command Prompt to Communicate With a Running Product
Server

If you need to issue commands that will communicate to a running product instance, the instance will need to be "enabled", which

involves setting certain environment variables that point the commands to the location of the running vovserver.

 c:\ > vovproject enable instance-name

Some common instance names are "licmon" (for Monitor), "vnc" (for Accelerator), and "wx" (for Accelerator Plus). Instance

names can be anything though since they are user-definable upon first start of each product.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.26

Run Basic Jobs
Submitting jobs to Accelerator is quite simple: just use nc run followed by the command you would use without Accelerator.

Run a Sleep Job

% cd # Go to your home directory
% nc run sleep 10
Resources= linux
Env = D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Command = vw vwrap sleep 10
Logfile = vnc_logs/20021230/103409.13784
JobId = 04194422
nc: message: Scheduled jobs: 1 Total estimated time: 0s

Run Sleep Job with -r Option to Override Default Resources

By default, nc run takes the architecture of the machine from which the job is submitted as the job's resource. This can be

overriden with -r option when needed.

This job requires no resource.

% nc run -r "" -- sleep 10
Resources=
Env = D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Command = vw vwrap sleep 10
Logfile = vnc_logs/20021230/103653.13794
JobId = 04194459
nc: message: Scheduled jobs: 1 Total estimated time: 0s

Note: Since the -r option accepts multiple arguments, you need to terminate the resource list explicitly with another

option, or "--" if no other options are needed.

This job requires spice_license.

% nc run -r spice_license -- sleep 10
Resources= spice_license
Env = D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Command = vw vwrap sleep 10
Logfile = vnc_logs/20021230/103948.13803
JobId = 04194497
nc: message: Scheduled jobs: 1 Total estimated time: 0s

Run Job with -e Option to Override Default Environment

By default, nc run takes a snapshot of the environment as the job's environment and uses this to run your job. You can override

this with -e option to use a named environment.

% nc run -e BASE sleep 10
Resources= linux
Env = BASE
Command = vw vwrap sleep 10
Logfile = vnc_logs/20021230/122737.14946
JobId = 04195924

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.27

nc: message: Scheduled jobs: 1 Total estimated time: 0s

Use the command vel to list all the available environments:

% vel
vel: message: Environment directories:
1 /remote/release/VOV/7.0u3/linux64/local/environments
1 . tcl BASE UNIX utilities, X windows, and VOV.
1 . tcl D Define variables: Usage: ves "+D(VAR1=value1,...)"
1 * tcl DEFAULT Just a name for whatever you already have.
1 . tcl HSIM Fake Nassda hsim env for Virage testing
1 . csh SYNOPSYS Synopsys tools

Scripts that implement named environments may be written in csh, sh, or Tcl syntax. Cross-platform environments between

Windows and UNIX/Linux must be written in Tcl. You can use named environments from the command line using the command

ves.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.28

Get Summary Information
nc summary, nc list and nc info jobId will be the three commands that you use frequently to get information about the jobs

managed by Accelerator.

Get Summary of All My Jobs: nc summary

% nc summary
NC Summary For User dexin
TOTAL JOBS 11 Duration: 23s
 Done 1
 Idle 0
 Queued 5
 Running 2
 Failed 3

 JOBS GROUP TOOL WAITING FOR...
 1 alpha sleep 'aa'
 3 alpha sleep 'linux'

In the above example, the command displays summary information for user dexin. There are a total of 11 jobs, 1 of which is Done,

2 Running, 3 Failed, etc. In the bottom part, it shows the summary for jobs that are queued, that is, there is 1 sleep job queued

because it is waiting for resource 'aa', and there are 3 sleep jobs waiting for resource 'linux'.

To get an idea of what is going on in the whole Accelerator system, the following shows all the jobs and what the jobqueue buckets

are waiting for. Note that Accelerator subcommands may be abbreviated.

% nc sum -a -b

Get a List of My Jobs: nc list

This command, without any option, displays the last 20 of your jobs in the format of "jobId status command".

% nc list
04193437 Done sleep 1
04193911 Done sleep 5
04193913 Failed sleep 10
04193917 Failed sleep 20
04193919 Idle sleep 60
04193937 Running sleep 10
04193943 Queued sleep 56

Status Meaning

In Accelerator, each job is assigned an "Accelerator Computing Status" which is defined as follows:

Status Color * Explanation

Queued Cyan The job is scheduled to be executed.

Running Orange The job is currently executing

Done Green The job ran successfully

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.29

Status Color * Explanation

Failed Red The job ran and failed.

Idle BlueViolet The job needs to be run, but it is not

scheduled.

*(Colors may look different on some systems)

Some Options about nc list

The nc list command has several useful options. They include:

Get detailed usage of this command:

% nc list -h

List all jobs, including others' jobs:

% nc list -a
04193437 Done alpha dexin rhino sleep 1
04193898 Done users integ rhino sleep 2
04193939 Done alpha dexin rhino sleep 15
04193941 Done alpha dexin rhino sleep 20
04193943 Done alpha dexin rhino sleep 60

Control output format, show job Id the (first) tool of job only:

% nc list -O "@ID@ @TOOL@"
04193437 sleep
04193898 sleep
04193939 sleep
04193941 sleep
04193943 sleep

In the above example, we use "fields", i.e., ID and TOOL, surrounded by two "@" signs, to format strings.

Get Detailed Information About a Job: nc info jobId

Without options, this command displays the basic information about the job, like user, group, directory, command, environment,

queue time, etc.

% nc info 04193937
Id,User,Group 04193937,dexin,alpha
Environment D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Directory ${HOMES}/dexin
Command sleep 10
Status Done
 Host rhino
 QueueTime 1s
 Duration 10s
 Age 20m37s
 AutoForget 1

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.30

With option -l, this command shows the contents of the log file.

% nc info -l 04193937
Log file is: '${HOMES}/dexin/vnc_logs/20021230/095337.13512.3'
vwrap: message: Start date: Mon Dec 30 09:53:38 PST 2002
vwrap: message: On host: rhino
vwrap: message: Sourcing environment vnc_logs/envdexin36362.env
vwrap: message: Running: 'sleep 10'
vwrap: message: Exit status: 0
vwrap: message: End date : Mon Dec 30 09:53:48 PST 2002

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.31

Run Jobs with Various Options
In this section, we will exercise some options in nc run command.

To get the detailed usage, use the following command:

% nc run -h

Submit Multiple Jobs at Once: -f <file>

1. Prepare a file with one command on each line. Empty lines are ignored and lines that begin with # are considered

comments.

Example of file used to submit multiple jobs at once.
sleep 10
sleep 11
sleep 12
sleep 13

2. Use the option -f to specify the command file, as in the following example:

% nc run -f commandFile

All jobs submitted with this method share the same environment, the same resources, and are scheduled at the same priority

level. Each job has its own ID.

Use Environments: -e <env>

1. Get a list of all available environments:

% vel
vel: message: Environment directories:
1 /<install_path>/local/environments
1 . tcl BASE UNIX utilities, X windows, and Flowtracer.
1 . tcl D Define vars: Usage: ves "+D(VAR1=value1,...)"
1 . tcl DEFAULT Just a name for whatever you already have.
1 . csh SPICE The Analog simulator SPICE3.
1 . csh JAVA JAVA Development Environment (1.2.2)

2. Use proper environment(s) to submit jobs, for example:

% nc run -e BASE sleep 10
% nc run -e BASE+SPICE spice chip.spi

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.32

Use of Resources: -r <res1 res2 ...>

Note: Since this option accepts multiple arguments, you need to terminate the resource list explicitly with another

option, or "--" if no other option is needed.

1. Submit a job that only runs on Linux machine:

% nc run -r os=linux64 -- sleep 10

2. Submit a job that requires resources "License:spicy" and "hspice":

% nc run -r License:spicy -- sleep 10

Wait for Jobs

Waiting for jobs is especially useful for scripts. By default, nc run returns immediately after you submit a job. This allows you

to submit multiple jobs at once. There could be times when you want to run jobs in sequence, in which case option -w is very

useful. With this option, nc run waits for the job(s) to finish (Done or Failed).

% nc run -w sleep 10
Resources= linux
Env = D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Command = vw vwrap sleep 10
Logfile = vnc_logs/20021231/111314.21781
JobId = 04211346
vnc: message: Scheduled jobs: 1 Total estimated time: 0s

Wait for Jobs and Show Log File of the last job: -wl

With this option, nc run waits for the job(s) and shows the log file of the last job.

% nc run -wl date
Resources= linux
Env = D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Command = vw vwrap date
Logfile = vnc_logs/20021231/111530.21819
JobId = 04211392
nc: message: Scheduled jobs: 1 Total estimated time: 0s
<<<STARTING ON rhino>>>
Tue Dec 31 11:15:31 PST 2002
<<<END OF LOG>>>
<<<EXIT STATUS 0>>>

Please only use -wl for jobs where you are actively monitoring the output. Such jobs listen to the vovservers event stream and are

called 'notify clients'. They are more resource-intensive than plain batch jobs.

Wait for Jobs Using nc wait

You can also wait for jobs using the command nc wait. We will cover that in next tutorial "Job Control".

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.33

Specify Name of logfile: -l <logfile>

The default logfile name has the form of ./vnc_logs/date/time. You can explicitly specify the logfile of the jobs you

submitted by this option, for example:

% nc run -l /home/john/logs/log1.log sleep 10

Warning: Conflicts may occur if same log file is used for multiple jobs. New users are not recommended to use this

option.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.34

Job Control
Accelerator provides several commands of job controls, including wait, stop and forget.

Wait for Jobs

Besides option -w and -wl with nc run command, you can also wait for job(s) to finish (Done or Failed) after they are submitted

using the command nc wait. Here are some examples:

Get usage help

% nc wait -h

Wait for a job

% nc run sleep 10
Resources= linux
Env = D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Command = vw vwrap sleep 10
Logfile = vnc_logs/20021231/140024.23307
JobId = 04213283
nc: message: Scheduled jobs: 1 Total estimated time: 0s

% nc wait 04213283

Wait for all jobs in current directory

% nc wait -dir .
nc: message: Job 04193913 is already FAILED
nc: message: Job 04193915 is already FAILED
nc: message: Job 04193917 is already FAILED
nc: message: Job 04193919 is not scheduled
nc: message: Job 04194308 is not scheduled
nc: message: Job 04211259 is already FAILED
nc: message: Job 04211268 is not scheduled
nc: message: Job 04213283 is already VALID
nc: message: Job 04213297 is already VALID
nc: message: Exiting with status 2 (Failed jobs)

Wait for all jobs using tool spice

% nc wait -select "tool==spice"

In the above example we use "Selection Rules" to perform a "wait" on those jobs that satisfy that rule. This could be useful

for other commands as well, including nc list, nc forget, etc. Refer to the Altair Accelerator User Guide for more

information.

Forget Jobs

The Accelerator server remembers the jobs you submitted for some configurable time. You can explicitly forget them by nc

forget command, which will delete all job information from the server database.

Get a list of jobs

% nc list
04146420 Done sleep 1 #in the form of "jobId status command"

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.35

04146425 Done sleep 5
04146427 Running sleep 10
04146429 Running sleep 15
04146431 Queued sleep 20
04146433 Queued sleep 60

Forget some of them

% nc forget 04146420 04146425
nc: message: Forgetting 2 jobs

List jobs again (notice those two are gone)

% nc list
04146427 Done sleep 10
04146429 Done sleep 15
04146431 Done sleep 20
04146433 Done sleep 60

Forget all my jobs

% nc forget -mine
nc: message: Forgetting 4 jobs

Stop Jobs

A job can be stopped when it is either Running or Queued. Stopping a job does not forget it from the server database. "Running"

jobs will exit, and "Queued" jobs will be dequeued when you stop them.

Stop some jobs

% nc run sleep 60
Resources= linux
Env = D(VOV_ENV_SOURCE=vnc_logs/envdexin36362.env)
Command = vw vwrap sleep 60
Logfile = vnc_logs/20021231/140803.23386
JobId = 04213393
nc: message: Scheduled jobs: 1 Total estimated time: 0s

nc stop 04213393
nc: message: Stopping RETRACING job 04213393

Stop all my jobs

% nc stop -mine
nc: message: Stopping RETRACING job 04146627
nc: message: Stopping RETRACING job 04146629
nc: message: De-queuing job 04146631
nc: message: De-queuing job 04146633

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.36

Rerun Jobs

The nc rerun command initiates the scheduling and execution of jobs that are already in the server database. By default, only

the jobs that are Idle or Queued are affected by this command. If you want to force the rerunning of jobs that are either Done or

Failed, use the option -F.

Rerun a "Done" job won't do anything

% nc rerun 04146622
nc: message: Not rerun: 04146622

Force rerunning a "Done" job

% nc rerun -F 04146622
nc: message: Job 04146622 is already VALID.
nc: message: Scheduled jobs: 1 Total estimated time: 1s

Rerun "Idle" jobs

% nc rerun 04146631 04146633
nc: message: Scheduled jobs: 1 Total estimated time: 0s
nc: message: Scheduled jobs: 1 Total estimated time: 0s

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.37

Get Detailed Information about a Job
The command ncwx displays information about a job.

Get Detailed Information About a Job

The command nc getfieldwx getfield also gives information about a job, but in an undecorated form that is in scripts.

nc: Usage Message

NC GETFIELD:
 Get one or all fields of one or more Accelerator jobs. Specify the jobID
 or use '!' for the most recent job in the current working directory.

 If the -J jobName option is given, only the first match
 is reported. If there is no match, an error is reported.

OPTIONS:
 -f field -- Specify field when giving multiple jobIDs.
 -h -- Help usage message. You can also get the usage message by
 specifying no option at all.
 -J JOBNAME -- Find first job with given JOBNAME. The search is restricted
 to the jobs that belong to the current user. This is
 significantly more expensive than using jobIds. Use
 sparingly.
 -s -- Same as -showid.
 -sep STRING -- Use STRING as separator (default is a single space).
 -showid -- Show jobId.
 -tab -- Use a TAB character as separator.
 -v -- Increase verbosity.

EXAMPLES:
 % nc getfield -h
 % nc getfield 01234455
 % nc getfield 00123445 jobclass
 % nc getfield ! status
 % nc getfield -J JOBNAME
 % nc getfield 01234455 0123458 -f jobclass
 % nc getfield -s 01234455 0123458 -f jobclass

wx: Usage Message

WX GETFIELD:
 Get one or all fields of one or more Accelerator jobs. Specify the jobID
 or use '!' for the most recent job in the current working directory.

 If the -J jobName option is given, only the first match
 is reported. If there is no match, an error is reported.

OPTIONS:
 -f field -- Specify field when giving multiple jobIDs.
 -h -- Help usage message. You can also get the usage message by
 specifying no option at all.
 -J JOBNAME -- Find first job with given JOBNAME. The search is restricted
 to the jobs that belong to the current user. This is
 significantly more expensive than using jobIds. Use

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.38

 sparingly.
 -s -- Same as -showid.
 -sep STRING -- Use STRING as separator (default is a single space).
 -showid -- Show jobId.
 -tab -- Use a TAB character as separator.
 -v -- Increase verbosity.

EXAMPLES:
 % wx getfield -h
 % wx getfield 01234455
 % wx getfield 00123445 jobclass
 % wx getfield ! status
 % wx getfield -J JOBNAME
 % wx getfield 01234455 0123458 -f jobclass
 % wx getfield -s 01234455 0123458 -f jobclass

Examples:

% nc getfield 00012345 jobclass
normal
% nc getfield 00012345 cputime
7.125
% nc getfield 00012345
... get list of all known fields (more than 100 of them)...

% wx getfield 00012345 jobclass
normal
% wx getfield 00012345 cputime
7.125
% wx getfield 00012345
... get list of all known fields (more than 100 of them)...

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.39

Monitor Jobs, Taskers and Resources
The activity of Accelerator can be monitored with a dialog.

The dialog is invoked with:

% ncwx monitor

The following is a list of the tabs available in the dialog:

TaskersGroups The activity of tasker groups.

Taskers The activity of taskers.

Taskers HW The hardware offered by taskers.

Taskers Resources The resources offered by taskers.

Who Who is running jobs.

Running Jobs The progress of running jobs.

Running Commands The details of running commands.

Running Details The details of running jobs.

Resources The usage and availability of resources.

Queued Jobs The jobs in the job queue.

Queue Buckets The jobs in the job queue organized by groups of similar jobs (called 'buckets').

FairShare The FairShare statistics.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.40

Figure 11:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.41

Invoke the GUI
Job execution can be monitored with nc guiwx gui.

This command opens a monitoring tool; no interactive capabilities (such as configuration or running jobs) are provided. Interactive

capabilities are available with nc cmd vovconsolewx cmd vovconsole.

nc gui
Show a grid view of the jobs in a specified set.

nc: Usage Message

NC GUI:
 Show a grid view of the jobs in a specified set.
USAGE:
 % nc gui [OPTIONS] &
OPTIONS:
 With no options, the GUI shows all jobs of the current
 user.

 -all
 -a -- Show all jobs.
 -u <user> -- Show jobs for specified user.
 -s <SETNAME>
 -set <SETNAME>
 -setname <SETNAME> -- Show specified set.
 -timeout <TIMESPEC> -- Stop async update after this time (default 2h).
 -submit -- Activate job submission dialog
 -limitGui <N> -- Override the limit of 3 max GUI per user.

 -batch <file> -- Execute specified file after the GUI is ready

 -metrics -- Show scheduler metrics.
 -metricsConfig <file> -- Use specified metrics configuration file.
 -taskers -- Show compact taskers monitor.
 -fontsize <size> -- Specify the normal font size. Default is 10.
 Legal range is 3 to 36.

 -title <title> -- Choose title of X11 window.
 -ioprofile <jobId> -- Show job I/O profiling timeseries statistics
 plots. The job must have been submitted with
 the -ioprofile option. (preview feature)

EXAMPLES:
 % nc gui & -- Show all my jobs
 % nc gui -all & -- Show all jobs.
 % nc gui -set SomeSetName -- Show specified set.

 % nc gui -submit -- Job submission dialog.
 % nc gui -limitGui 5 -- Allow you to run up to 5 "nc gui" (default 3)

 % nc gui -metrics & -- Show the scheduler metrics.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.42

Figure 12: GUI that opens after entering nc cmd vovconsole &

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.43

Use the Web Browser

Find the URL for Accelerator

% nc cmd vovbrowser
http://comet:6271/project

Use the Browser Interface

Enter the URL found above into your browser's location box. You will need to login unless your administrator has turned off

authentication.

http://your_host:your_port_number/project is the home page of Accelerator. From this page, you can easily navigate to many other

useful pages. Here we list some monitor pages that are similar to the ones from the GUI monitors.

Tasker page From the home page, click Taskers

Workload pages (job queue and running
jobs):

From the home page, click Workload

For running jobs, under Workload, click Running jobs

Resources page From the home page, click Resources

FairShare page From the home page, under Workload, click Fairshare

Among the many useful pages, two report pages may be especially helpful.

Job queue report From the home page, click Workload > Job Queue Reports

Resources reports From the home page, click Resources > Resource Reports

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator User Tutorials p.44

Troubleshooting

This section covers typical problems that come up in Accelerator. The command nc summary will be useful here, as it tells you

how many jobs are failed, queued, or idle, and what the queued jobs are waiting for. For example:

% nc summary
NC Summary For User bkring
TOTAL JOBS 0 Duration: 0s
Done 0
Idle 0
Queued 0
Running 0
Failed 0

My job won't start!

Often, your job won't start because it is waiting for a resource, usually a license, CPU, or memory.

To diagnose this, use the command:

nc info jobid

A job will only start if all resources requested by the job are available. If any resource is missing, the job will not start. You can

look at the resources of all available vovtaskers to see if there is any that can run the job with the command:

nc host

Additionally, a vovtaskers must either be READY or WRKNG (have a free job slot) to accept jobs. Any other condition will

prevent the vovtaskers from taking the job.

My job failed!

You can find the reason for job failure with the command:

nc info jobid

Some common failure conditions include:

• The job failure has nothing to do with Accelerator. Run the job without Accelerator to verify this.

• The job command doesn't exist, possibly because of a typo.

• You are using a wrong, nonexistent, or incomplete environment with the -e. In this case, nc info jobid will tell you that

it cannot switch to the environment.

• You have failed to specify (or specified the wrong) architecture or memory usage. This can be done with the -r option. For

example, -r linux64 for Linux 64 bit or -r RAM/2000 for 2GB of ram.

Proprietary Information of Altair Engineering

Altair Accelerator Administrator
Tutorials 3

Altair Accelerator Administrator Tutorials

In the following tutorial, you will experiment with most issues that an Accelerator administrator will need to address, including

starting/stopping the server, configuring FairShare, resources, taskers and environments.

This chapter covers the following:

• Start a Test Queue (p. 46)

• Start/Stop Accelerator (p. 49)

• Browser-based Setup (p. 51)

• Configure Policy - FairShare and Other Parameters (p. 52)

• Advanced Policy Configuration (p. 54)

• Configure Resources (p. 56)

• Configure Security (p. 58)

• Configure Taskers (p. 60)

• Configure an Environment (p. 65)

• Logical Names (Equivalences) (p. 70)

• Resource Management (p. 73)

• Upgrade Accelerator (p. 76)

You will start a test queue to make the experiment non-disruptive to the default Accelerator queue.

Also in This Section

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.46

Start a Test Queue

At a given site, a single queue is recommended, such as a single Accelerator setup, by default called "vnc". Such a setup is called a

cluster by other systems. The scheduler in Accelerator does not have queues in the sense used by other batch systems.

In this tutorial, you will start a temporary Accelerator queue for our testing. This allows you to experiment with most of the

administration tasks without disturbing your production Accelerator queue.

Find the Server Working Directory

The Accelerator configuration directory for the default queue named "vnc" is in the product hierarchy. The server working

directory for this queue is:

$VOVDIR/../../vnc/vnc.swd

This directory contains the server configuration files and server/tasker logs, etc.

Start a Queue

The command to start a queue is ncmgr start. By default, this command will start the default queue in the directory of

$VOVDIR/../../vnc.

1. Get usage of this command:

vncmgr: Usage Message

USAGE:
 % ncmgr start [options]
OPTIONS:
 -h This help.
 -force Do not ask confirmation.
 -block Do not return to the shell or command prompt
 after starting. This is only useful, and
 required, when starting Accelerator as a
 Windows service.
 -port <port|mode> Specify port number, port number list (colon
 separated) or port mode. Modes are:
 automatic - hash queue name into port number,
 do not start if port is
 unavailable. The default queue
 name 'vnc' hashes to port
 6271.
 any - hash queue name into port number, try
 additional ports in increments of 1
 until an available one is found. The
 default queue name 'vnc' hashes to
 beginning port 11437.
 Default: any
 -eventport <port[:port]> Colon separated update port list wherein each
 element may be of the form:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.47

 N - An integer specifying the exact
 port number to use.
 automatic - Calculates hash of project name
 to derive a single port number.
 any - Calculates hash of project name
 to derive starting port number.
 Ports are checked sequentially
 up to 30000.
 Event port will be non-functional if there is a
 conflict with specified ports (default 5559).
 -webport <port|mode> Specify a dedicated web interface port for
 HTTP and HTTPS protocols. This port must be
 configured to enable REST API v3 interface,
 to enable the dashboard web UI page,
 and to enable SSL. A value of 0 directs
 VovServer not to open a web interface port.
 Specify port number, port number list (colon
 separated) or port mode. Modes are:
 automatic - hash queue name into port number,
 do not start if port is
 unavailable. The default queue
 name 'vnc' hashes to web port
 6271.
 any - hash queue name into port number, try
 additional ports in increments of 1
 until an available one is found. The
 default queue name 'vnc' hashes to
 beginning web port 9695.
 Default: Any
 -webprovider <provider> Specify the provider for
 HTTP and HTTPS protocols.
 This must be either "internal" or "nginx".
 Default: "internal"
 -roport <port|mode> Specify read-only guest access web interface
 port. A value of 0 disables this interface,
 requiring all web interface users to log in.
 Default: 0
 -q, -queue <name> Name for queue (default is $NC_QUEUE if set,
 and otherwise vnc).

 -dir <dir> Directory of the server
 (default $VOVDIR/../../vnc).
 -dbhost <host> Host for database.
 -dbroot <path> Path on database host for database files.
 -dbport <port> Port of the database to listen for
 connections.
 -v Increase verbosity.
EXAMPLES:
 % ncmgr start -port 6271
 % ncmgr start -port 6271:6272:6273:any -force
 % ncmgr start -q bigqueue -dir /remote/queues

2. Start the test queue in the home directory.

3. Name your queue vncdexin (make sure you pick a name that does not conflict with any existing queue). The first three

letters of the queue name should be formed by prefixing your login with vnc

For example, if your login is 'danny', use the name 'vncdanny' for your queue.

+ start a shell on the machine where your NC vovserver should run
% cd # Go to your home directory
% mkdir ncadmin # Create a directory for our testing queue
% ncmgr start -dir ncadmin -queue vncdexin

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.48

 message: Checking the license...
 message: ... the license is good.
 message: Starting NC
 message: with name vncdexin
 message: on host alpaca
 message: in directory /home/dexin/ncadmin
 message: as user dexin
Do you want to proceed? (yes/[no]) > yes
 message: Updating config file '/remote/release/VOV/2013.09/linux64/local/
vncConfig/vncdexin.tcl' message: Waiting for server to be ready ...
 message: Sanity check...
 message: NC vncdexin@alpaca is ready.

Note: Make sure the directory $VOVDIR/local/vncConfig is writable to you, because a config file

needs to be written in that directory to start a new queue. The Altair Accelerator installer should have set this.

Use a Specific Queue

Now that you have started a new queue, you have at least two Accelerator queues in your system. There are two ways to use a

particular queue.

1. Use -q or -queue option:

Submit a job to queue "vncdexin"
% nc -q vncdexin run sleep 60

List my jobs in queue "vncdexin"
% nc -q vncdexin list

Get info about queue "vncdexin"
% ncmgr info -queue vncdexin

Reset all taskers for queue "vncdexin"
% ncmgr reset -queue vncdexin -taskers

2. Alternatively, you can set the environment variable NC_QUEUE:

You can also set an environment variable NC_QUEUE to the name of queue you want. Then you can execute all your nc

and ncmgr commands in the context of that queue without having to use -q or -queue options.

% setenv NC_QUEUE vncdexin

Now submit a job to queue "vncdexin"
% nc run sleep 61

etc.

This way, you can easily switch between all the queues you have.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.49

Start/Stop Accelerator

The commands involved in this tutorial are ncmgr info, ncmgr start and ncmgr stop.

You should use ncmgr, especially when starting Accelerator, because it checks for and applies any daemon and DB schema

changes when moving to a new version.

Note: Please remember to uses the shell where you set the NC_QUEUE environment variable to the name of your

training tutorial queue.

View Accelerator Status

Use command ncmgr info to get a summary information of all taskers and current running jobs.

% ncmgr info
ncmgr: message: NC vncdexin@alpaca
1 001 alpaca 1/0 146198 Unlim. IDLE
2 002 cheetah 1/0 235294 Unlim. IDLE
3 004 bison 1/1 99206 Unlim FULL
 2s: vw vwrap sleep 60 > vnc long
4 000 pluto 1/0 75312 Unlim. IDLE
5 003 rhino 1/0 181818 Unlim. IDLE

Start Accelerator

1. Execute ncmgr to see if Accelerator is already running.

% ncmgr start
ncmgr: USER ERROR: NC vncdexin@alpaca already running.

2. If not already running, start Accelerator. In production use, it is important to check the number of file descriptors available

to vovserver.

% ncmgr start
ncmgr: message: Checking the license...
ncmgr: message: ... the license is good.
ncmgr: message: Starting NC
ncmgr: message: with name vncdexin
ncmgr: message: on host alpaca
ncmgr: message: in directory /home/dexin/ftadmin
ncmgr: message: as user dexin
ncmgr: message: with 1024 file descriptors
Do you want to proceed? (yes/[no]) > yes
ncmgr: message: Waiting for server to be ready ...
ncmgr: message: Sanity check...
ncmgr: message: NC vncdexin@alpaca is ready.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.50

Stop Accelerator

Run the following:

% ncmgr stop
ncmgr: message: Checking if NC vncdexin@alpaca is running...
ncmgr: message:
You are about to stop NC vncdexin@alpaca in directory /home/dexin/ftadmin
 Would you like to proceed (yes/[no]) ? > yes
ncmgr: message: Stopping taskers and server ...
ncmgr: message: NC vncdexin@alpaca has been stopped.

Restart Your Accelerator Queue

You should restart your queue so that it will be running for later exercises.

Run the following:

% ncmgr start
ncmgr: message: Checking the license...
ncmgr: message: Checking the license...
ncmgr: message: ... the license is good.
ncmgr: message: Starting NC
ncmgr: message: with name vncdexin
ncmgr: message: on host alpaca
ncmgr: message: in directory /home/dexin/ftadmin
ncmgr: message: as user dexin
 Do you want to proceed? (yes/[no]) > yes
ncmgr: message: Waiting for server to be ready ...
ncmgr: message: Sanity check...
ncmgr: message: NC vncdexin@alpaca is ready.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.51

Browser-based Setup

Accelerator provides a simplified user-friendly browser-based setup, which is especially useful for new users. To use this browser-

base setup page, please first make sure Accelerator is running.

Find the URL

First find the Accelerator URL, using vovbrowser or vsi:

% nc cmd vovbrowser
http://yourhost:6295/project
% nc cmd vsi
(more detailed output, including the Accelerator vovserver URL)

The setup script is available at the URL /cgi/setup.cgi (for example, in this case, it is http://alpaca:6295/cgi/

setup.cgi).

Setup Using the Web Page

1. Follow the instructions on the web page to finish the basic setup.

2. On the Taskers setup page, try to add at least one tasker for each type (Server, Workstation, Offhours).

3. View the tasker statuses at URL /taskers.

4. Try out some test jobs.

Note: You need a working remote-shell setup to start non-local vovtaskers for this step.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.52

Configure Policy - FairShare and Other Parameters

Accelerator has a time-windowing multi-level FairShare mechanism. This allocates CPU cycles to the fsgroups at each level

according to the assigned weights of each group until the leaf nodes of the FairShare tree are reached. Each node of the FairShare

tree may have a separate time window. The word 'fsgroup' is used as an abbreviation here.

To configure FairShare, use the vovfsgroup command.

Access to FairShare groups is controlled by ACLs (Access Control Lists), which means you can configure them so only designated

users can submit jobs in an fsgroup.

Locate Server Configuration Directory to Find policy.tcl

The test queue was start in vncdexin in directory ~/ncadmin. So the server configuration directory for this Accelerator queue

is ~/ncadmin/vncdexin.swd. By default, the server configuration directory is $VOVDIR/../../vnc/vnc.swd.

If you forget, you can find it out by this command:

% nc cmd vovserverdir
/home/dexin/ncadmin

In this case, you will find policy.tcl file at /home/dexin/ncadmin/vncdexin.swd/policy.tcl.

You will find other configuration files in the same directory, for example, taskers.tcl, resources.tcl.

Configure policy.tcl for FairShare

In the following example, two groups, production and regression, are configured.

Execute the following:

in policy.tcl
% vovfsgroup create /production -weight 400 -window 8h
% vovfsgroup create /regression -weight 100 -window 8h

Two groups are defined: /production and /regression. When there are jobs from both the production group and

regression group, the target share ratio of CPUs will be 400:100.

Save the New Configuration

Changes made by the vovfsgroup command are only in the vovserver's memory until the next save, and may be lost if the

vovserver is restarted before then.

Save the configuration to a file so it can be reloaded.

% nc cmd vovfsgroup genconfig myfsconfig.tcl

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.53

Test the New Fairshare Configuration

1. You use -g option in command nc run to submit a job from a particular group.

% nc run -g regression -f listOfJobs
% nc run -g production -f listOfJobs

2. Use the Monitors GUI or browser page to monitor the dynamic changes of FairShare.

• Use the monitors: use command nc monitor to bring up the monitors and click on the FairShare tab.

• Use the browser: use command nc cmd vovbrowser to find the Accelerator URL, then find the FairShare page at

URL /cgi/fairshare.cgi.

Server Configuration Parameters

Certain parameters of the Accelerator vovserver are also configurable by means of entries in the policy.tcl file. The Server

Configuration page describes these in detail.)

Here are some examples:

This is part of the policy.tcl file.
set config(maxQueueLength) 8000
set config(httpSecure) 1
set config(saveToDiskPeriod) 2h;
set config(autoLogout) 1h; # Logout from browser interface

Used by Accelerator for autoforget.
set config(autoForgetValid) 1h
set config(autoForgetFailed) 2d
set config(autoForgetOthers) 2d
set config(autoRescheduleThreshold) 2s

Proprietary Information of Altair Engineering

../../../vov/topics/shared/server_configuration.htm
../../../vov/topics/shared/server_configuration.htm

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.54

Advanced Policy Configuration

Besides the vovserver configuration file policy.tcl, the behavior of job submission to Accelerator can also be controlled by

the file $VOVDIR/local/vnc_policy.tcl, which is used to define the following procedures:

VncPolicyDefaultResources The default resources required by a job.

VncPolicyValidateResources Make sure that the resource list for a job obeys any number of

rules.

VncPolicyDefaultPriority { user } Assign the default priority to a job based on the user.

VncPolicyMaxPriority { user priority } Limit the priority based on the maximum allowed to the user.

In this tutorial, you will configure VncPolicyDefaultResources and VncPolicyValidateResources.

Configure Default Resources

By default, Accelerator takes machine architecture as the resource of the job that you submit from a particular machine. This is

controlled by the default setting of VncPolicyDefaultResources:

proc VncPolicyDefaultResources {} {
 global env
return "$env(VOVARCH)"
}

To change this behavior, you can create or edit the file $VOVDIR/local/vnc_policy.tcl, and add or edit the procedure

that follows. This procedure will set the default resources to be the architecture and 50mb of memory. If you have more than one

Accelerator setup, you can place the vnc_policy.tcl file in the .swd and it will apply only to that one.

proc VncPolicyDefaultResources {} {
 global env
return "$env(VOVARCH) RAM/50"
}

Enforce Job Resource Rules

You can also enforce some rules of job resources by overriding the procedure VncPolicyValidateResources. Here is the

default behavior:

proc VncPolicyValidateResources { resList } {
 return $resList
}

But this process does nothing. Try the process described below:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.55

To enforce a rule so that all jobs require a minimum RAM of 512 MB, create or edit the file $VOVDIR/local/

vnc_policy.tcl and add or edit VncPolicyValidateResources procedure as follows:

proc VncPolicyValidateResources { resList } {
#
This policy adds a minimum RAM requirement
for all submitted jobs.
#

if [regexp "RAM/" $resList] {
 # Already a RAM constaints.
} else {
 lappend resList "RAM/512"
}
return $resList
}

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.56

Configure Resources

Accelerator includes a sophisticated subsystem for the management of computing resources, which allows the design team to take

into account all sorts of constraints regarding hardware and software resources, as well as site policy constraints. This mechanism

is based on:

• The resources required by jobs

• The resources offered by taskers

• The ResourceMap, as described in the file resources.tcl

Next, you will configure the resource map in resources.tcl.

Find and View the resources.tcl File

You can find this file in the server configuration directory. For default vnc queue, it is $VOVDIR/../../vnc/vnc.swd. For

the test queue, it is in directory ~/ncadmin/vncdexin.swd/.

% cd ~/ncadmin/vncdexin.swd
% vi resources.tcl ; # Use the editor of your choice

... here we only show part of this file ...
vtk_resourcemap_set PRIORITY_LOW 1
vtk_resourcemap_set PRIORITY_NORMAL 10
vtk_resourcemap_set PRIORITY_HIGH 20
vtk_resourcemap_set PRIORITY_TOP UNLIMITED

With above default configuration, there will be at most 1 low priority job running at any time, 10 for normal, 20 for high, and any

number of top priority jobs could be running.

1. Run a simple test to verify that the above information is correct:

% nc run -f $VOVDIR/training/vnc/cmdlist.unix

2. You can use the Monitors window to monitor the "Running Jobs" and "Resources" to see the running jobs and resources

usage. You can also use browser to get similar information from "Running Jobs" page and "Resources" page.

Configuration Examples

Example 1

For example, if you decide that no more than 4 normal priority jobs should be running at any time, you can edit resources.tcl

and modify the value for normal priority to 4.

... here we only show part of this file ...
vtk_resourcemap_set PRIORITY_LOW 1

Now we change this value to 4
vtk_resourcemap_set PRIORITY_NORMAL 4

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.57

vtk_resourcemap_set PRIORITY_HIGH 20
vtk_resourcemap_set PRIORITY_TOP UNLIMITED

Save your change and do a reread and test the new configuration:

% nc cmd vovproject reread
% nc run -f $VOVDIR/training/vnc/cmdlist.unix

Example 2

You can configure your resources similarly. For example, you have 10 calibre license, you can configure this by adding the

following line in resources.tcl:

In resources.tcl
vtk_resourcemap_set calibre_license 10

You can also associate a resource to other resource(s). For example, you have 4 licenses of spice that are only available on Linux.

You can configure this by add the following line in resources.tcl:

In resources.tcl
vtk_resourcemap_set hspice_license 4 linux

Resource Monitor

To monitor resource activity, call a GUI monitor with the command:

nc mon

Figure 13:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.58

Configure Security
Accelerator has 4 privilege levels: READONLY, USER, LEADER, ADMIN.

For detailed information about security, please refer to Security.

Locate the Security Configuration File: security.tcl

This file is in the server configuration directory, default $VOVDIR/../../vnc/vnc.swd/security.tcl and in our test

setup, that is ~/ncadmin/vncdexin.swd/security.tcl.

Security Configuration Examples

Least Restrictive Security

The least restrictive security grants everybody full access from any host. This should not be used in production.

All users (+) are administrators from all hosts (+).
vtk_security + ADMIN +

Alternatively, a VovUserGroup may be utilized, to assign individuals in a group the ADMIN privilege.

Members of mygroup are administrators from all hosts (+).
vtk_security -group mygroup ADMIN +

Most Restrictive Security

No rule defined gives only the owner of the project ADMIN privileges
on the server host.

Typical Case

The following example shows a typical security file, in which different privileges are granted to different users. Also notice the use

of variables and VovUserGroups in this example.

In the example, mary is an administrator for any host, and dan is an administrator only for reno and milano. The user pat is a

LEADER for her machine elko, and fred has USER privileges for 4 machines listed in the variable $allhosts. Members of

the VovUserGroup "operators" have ADMIN rights on $allHosts.

set servers { reno milano }
set allhostsset { reno milano elko tahoe}

vtk_security mary ADMIN +
vtk_security john ADMIN tahoe
vtk_security dan ADMIN $servers
vtk_security pat LEADER elko
vtk_security fred USER $allhosts

Proprietary Information of Altair Engineering

../../../vov/topics/shared/security.htm

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.59

vtk_security -group operators ADMIN $allHosts

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.60

Configure Taskers
The file taskers.tcl describes the vovtaskers for Accelerator.

vovtasker Configuration

You can find the file taskers.tcl in server configuration directory, default at $VOVDIR/../../vnc/vnc.swd/

taskers.tcl, and in our test case at ~/ncadmin/vncdexin.swd/taskers.tcl.

This file is based on two commands (Tcl procedures), vtk_tasker_define and vtk_tasker_set_default:

Set default behavior of vovtaskers
vtk_tasker_set_default [options]

Define a vovtasker
vtk_tasker_define hostname [options]

If you set some options with vtk_tasker_set_default command, all the following vtk_tasker_define

commands will use those options implicitly, and options set explicitly in vtk_tasker_define overwrite those set in

vtk_tasker_set_default.

For example, to declare 3 vovtaskers on the hosts apple, orange, and pear, use:

In taskers.tcl
vtk_tasker_define apple
vtk_tasker_define orange
vtk_tasker_define pear

or some equivalent code:

In taskers.tcl
foreach host {apple orange pear} {
 vtk_tasker_define $host
}

To understand the use of vtk_tasker_set_default, define 3 vovtaskers as follows:

vtk_tasker_define apple -resources "@STD@ big_memory" -CPUS 2
vtk_tasker_define orange -resources "@STD@ big_memory" -CPUS 2
vtk_tasker_define pear -resources "@STD@ big_memory" -CPUS 4

vtk_tasker_set_default does the following:

vtk_tasker_set_defaults -resources "@STD@ big_memory" -CPUS 2
vtk_tasker_define apple
vtk_tasker_define orange
vtk_tasker_define pear -CPUS 4

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.61

Tasker Configuration Examples

The default taskers.tcl provides pretty good examples of configuring vovtaskers. Most of the time, you just need to plug in

some host names in brackets to define vovtaskers. For example, here is one piece of code in taskers.tcl.

ADD THE NAMES OF THE COMPUTE SERVERS TO THE FOLLOWING LIST
set mainComputeServers {}

foreach host $mainComputeServers {
 vtk_tasker_define $host -resources "VovResources::Standard @RAMTOTAL@ @SWAPFREE@"
}

Note: -resources "VovResources::Standard" is equivalent to -resources"@STD@"

To add some "Server" class vovtaskers, you just need to add the names of those hosts into the list mainComputerServers, like

the following:

set mainComputeServers { apple orange pear }

You can certainly add or modify the vovtasker definition as you want (subject to license restriction). For example, you have many

dual CPU machines, and you would like to make the maxload of these vovtasker machines bigger, say, equal to 1.5 times of the

CPUs, for example 3.0. Then you can do this:

set myDualCpuServers {}

foreach host $myDualCpuServers {
 vtk_tasker_define $host -maxload 3.0 -resources "VovResources::Standard
 @RAMTOTAL@ @SWAPFREE@"
}

Add Workstation/Offhours vovtaskers

Add a Workstation vovtasker that will only start to accept
job after 10 minutes of ilde and will only accept jobs
with expected duration no longer than 5 minutes
vtk_tasker_define ftcsun44 -resources "VovResources::Workstation -minIdle 10m -
maxtime 5m @RAMTOTAL@"

Add a Offhours vovtasker that's only available from 7pm to 6am
every weekday and on weekends
vtk_tasker_define ftcsun66 -resources "VovResources::Offhours"

Start Newly Defined vovtaskers

Like other configurations, Accelerator will pick up the changes in taskers.tcl when the server is stopped and restarted. This

is often too disruptive and not favorable, especially when there are jobs running in Accelerator. Here are some other ways to apply

your changes:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.62

1. To start the vovtaskers that you just defined, use command:

% ncmgr reset -taskers

2. To start vovtaskers that you just modified, you must stop and start them.

Start/Stop vovtaskers (Advanced)

You can start/stop vovtaskers from the GUI and the browser.

The following is an advanced command of FlowTracer vovtaskermgr and how to run any command in the context of

Accelerator using nc cmd.

List all vovtaskers defined in taskers.tcl
Also checks the taskers.tcl file for syntax errors
% nc cmd vovtaskermgr list

Start all vovtaskers defined in taskers.tcl
% nc cmd vovtaskermgr start

Start some vovtasker(s)
% nc cmd vovtaskermgr start tasker1 tasker2

Stop all vovtaskers
% nc cmd vovtaskermgr stop

Stop some vovtasker(s)
% nc cmd vovtaskermgr stop tasker1 tasker2

Show detail information of all vovtaskers
% nc cmd vovtaskermgr show

Get usage of all vovtaskermgr commands
% nc cmd vovtaskermgr

Start a vovtasker from Command Line (Advanced)

You can also start a vovtasker on the fly from the command line using the vovtasker binary. This can sometimes be handy,

for example, for debugging. This is the command that Accelerator uses to start the vovtaskers after it reads the taskers.tcl

configuration file.

1. To start a vovtasker on a particular host, you need to go to that host and use command nc cmd vovtasker with

appropriate options, which are similar to the options of vtk_tasker_define.

2. Try the following examples and monitor the vovtaskers using the Monitor GUI or browser Tasker page.

• Get usage of this command:

% nc cmd vovtasker
usage: vovtasker [-A startupLogFile] [-a name] [-b capabilities] [-B]
 [-c coefficient] [-C cpus] [-d] [-D integer] [-e reserveExpr]
 [-E] [-f tclfile][-F <file>]
 [-g taskergroup] [-G group] [-h host] [-H HEALTHCHECKFLAGS]
 [-I 0|1] [-I tclfile] [-j] [-k d|n|v] [-l rootofDailyLogFile]

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.63

 [-L <loadSensor>] [-m <integer>][-M max_load] [-n <integer>]
 [-N] [-o local resource] [-p project]
 [-P <double>] [-r resources] [-R resources] [-s] [-S
 resources] [-t timeout] [-T capacity/max_capacity]
 [-U updateInterval] [-v number] [-V ncName@ncHost[:port]]
 [-w WX properties] [-z <timeSpec>] [-Z <timeSpec>] [-g name]
 [-u name]

 -A: The name of the startup log file
 -a: Name this tasker. The name may contain only letters, numbers,
 dash(-) and underscore(_), or the expressions @HOST@ and @PID@ that get
 expanded on the fly
 -b: Comma-separated list of capabilites, case insensitive:
 symbolic: FULL NC LM
 normal: PROCINFO NC LM
 short: P N X R
 -B: Show BPS tasker objects. Default to not show.
 -c: Tasker coefficient (positive, default 1.0)
 -C: Number of CPU's in this machine (automatic on win64). Use 0
 to specify default value

...OMITTED...

• Start a normal vovtasker (with all default settings):

% nc cmd vovtasker -N
vovtasker Jan 10 13:44:42
Copyright © 1995-2020, Altair Engineering Linux/7.1 Jan 10 2019 10:00:59
vnc@alpaca
vovtasker Jan 10 13:44:42 Test 1: INTEGER OPS W= 1.00 Reps= 500 T= 5.00ms
vovtasker Jan 10 13:44:42 Test 1: DOUBLE OPS W= 1.00 Reps= 25 T= 10.00ms
vovtasker Jan 10 13:44:42 Test 1: CHAR OPS W= 0.10 Reps= 10 T= 10.00ms
vovtasker Jan 10 13:44:42 ---- Weighted time: 16.00ms
vovtasker Jan 10 13:44:42 Test 2: INTEGER OPS W= 1.00 Reps= 500 T= 5.00ms
vovtasker Jan 10 13:44:42 Test 2: DOUBLE OPS W= 1.00 Reps= 25 T= 10.00ms
vovtasker Jan 10 13:44:42 Test 2: CHAR OPS W= 0.10 Reps= 10 T= 20.00ms
vovtasker Jan 10 13:44:42 ---- Weighted time: 17.00ms
vovtasker Jan 10 13:44:42 Test 3: INTEGER OPS W= 1.00 Reps= 500 T= 5.00ms
vovtasker Jan 10 13:44:42 Test 3: DOUBLE OPS W= 1.00 Reps= 25 T= 10.00ms
vovtasker Jan 10 13:44:42 Test 3: CHAR OPS W= 0.10 Reps= 10 T= 20.00ms
vovtasker Jan 10 13:44:42 ---- Weighted time: 17.00ms
vovtasker Jan 10 13:44:42 Best weighted time: 16.00ms

• Start a vovtasker with name "myvovtasker", max load 4.0, and offers standard resources "@STD@" and resource

"special_license":

% nc cmd vovtasker -a myvovtasker -M 4.0 -r "@STD@ special_license"
vovtasker Jan 10 13:51:00
Copyright © 1995-2020, Altair Engineering Linux/7.1 Jan 10 2019 10:00:59
vnc@alpaca
vovtasker Jan 10 13:51:00 Test 1: INTEGER OPS W= 1.00 Reps= 500 T= 5.00ms
vovtasker Jan 10 13:51:00 Test 1: DOUBLE OPS W= 1.00 Reps= 25 T= 5.00ms
vovtasker Jan 10 13:51:00 Test 1: CHAR OPS W= 0.10 Reps= 10 T=
 20.00ms
vovtasker Jan 10 13:51:00 ---- Weighted time: 12.00ms
vovtasker Jan 10 13:51:00 Test 2: INTEGER OPS W= 1.00 Reps= 500 T= 5.00ms
vovtasker Jan 10 13:51:00 Test 2: DOUBLE OPS W= 1.00 Reps= 25 T= 5.00ms
vovtasker Jan 10 13:51:00 Test 2: CHAR OPS W= 0.10 Reps= 10 T=
 20.00ms
vovtasker Jan 10 13:51:00 ---- Weighted time: 12.00ms
vovtasker Jan 10 13:51:00 Test 3: INTEGER OPS W= 1.00 Reps= 500 T= 5.00ms
vovtasker Jan 10 13:51:00 Test 3: DOUBLE OPS W= 1.00 Reps= 25 T= 5.00ms

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.64

vovtasker Jan 10 13:51:00 Test 3: CHAR OPS W= 0.10 Reps= 10 T=
 20.00ms
vovtasker Jan 10 13:51:00 ---- Weighted time: 12.00ms

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.65

Configure an Environment

VOV includes a sophisticated subsystem to manage environments. In Accelerator, an environment is a named collection of

environment variables and their values. Many tools expect certain environment variables to be set for correct operation, and the

variable PATH is used by most UNIX shells to locate executable programs.

A VOV environment definition consists of three scripts defined in either Tcl, C-shell, or Bourne-shell syntax. Environments that

will be used on both UNIX and Windows must be written in Tcl. The names of these scripts must follow a naming convention. For

example, an environment named ENV would use these three scripts:

• ENV.start.tcl

• ENV.end.tcl

• ENV.doc

The 'start' script is used when entering the environment, the 'end' script is used when leaving the environment, and the 'doc' script

contains a one-line summary of the environment's purpose.

VOV provides commands for using environments from the command line:

vel List available environments

vesENV Switch to environment ENV

vep Change prompt to show environment name

veprestore Return to original prompt

Find and View Example Environment Scripts

It is interesting and instructive to examine some of the environment definitions which are shipped with VOV. One of the most

important is the BASE environment.

The most common place for environment scripts is $VOVDIR/local/environments, but you can also specify additional

directories where VOV will search. We will discuss this in more detail later in the lab.

The BASE definition is in the 'local' directory of the VOV software installation, at $VOVDIR/local/environments/

BASE.start.tcl

% pushd $VOVDIR/local/environments
% view BASE.start.tcl

--
-- Completely reset the environment to bare bones.
-- We assume that VOVDIR and VOVARCH are set.
--

set VOVDIR $env(VOVDIR)

if { $::tcl_platform(platform) eq "windows" } {
 #

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.66

 # --
 #
 nt_preprocess_env
 # set vovenv(debug) 1 set WINDIR $env(WINDIR)
 setenv PATH "$WINDIR\\system32;$WINDIR"

 set MKSDIR "c:/mksdemo"
 if [file exists $MKSDIR] {
 setenv ROOTDIR $MKSDIR
 vovenv PATH ";" APPEND $MKSDIR/mksnt
}
#
Depending on the installation, the binaries can be in
different directories.
#
foreach b { bin bin-O bin-g bat local/bat } {
 set p "$VOVDIR/$b"
 #
 # Eliminate double // as in w://bat
 #
 regsub -nocase {^([a-z])://} $p {\1:/} p

 if [file exists $p] {
 vovenv PATH ";" APPEND $p
 }
}

set version [exec vovversion]
vovenv PATH ";" PREPEND c:/temp/vov/execache$version

vovenv PATH ";" PREPEND c:/temp/vov/execache

} else {
 #
 # -- Unix BASE environment.
 #

 setenv PATH ""
 foreach b { bin bin-O bin-g } {
 if [file exists $VOVDIR/$b] {
 vovenv PATH : APPEND $VOVDIR/$b
 break
 }
}
vovenv PATH : APPEND $VOVDIR/scripts
vovenv PATH : APPEND $VOVDIR/local/scripts

setenv MANPATH ""
foreach mp [list /usr/man /usr/share/man /usr/local/man /usr/openwin/man $VOVDIR/man]
 {
 if [file isdirectory $mp] {
 vovenv MANPATH : APPEND $mp
 }
}

setenv LD_LIBRARY_PATH ""
foreach lp [list /lib /usr/lib /usr/local/lib /usr/openwin/lib $VOVDIR/lib] {
 if [file isdirectory $lp] {
 vovenv LD_LIBRARY_PATH : APPEND $lp
 }
}

foreach xapp { /usr/openwin/lib/app-defaults /usr/lib/X11/app-defaults } {

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.67

 if [file isdirectory $xapp] {
 vovenv XFILESEARCHPATH : APPEND "$xapp/%N"
 }
}

foreach p {
 /bin /usr/ucb /usr/bin /usr/local/bin
 /usr/X11/bin
 /usr/dt/bin
 /usr/openwin/bin /usr/bin/X11
} {
 if [file isdirectory $p] {
 vovenv PATH : APPEND $p
 }
 }
}

The BASE environment includes just the regular system commands and VOV. This is an example of a complex environment setup

script; most of the ones you will need to define will be much simpler.

A simple test to verify that:

% vep

Notice that the prompt has changed to show that you are in the DEFAULT environment. This is the environment which is defined

by your regular system setup files, for example, .cshrc.

% ves BASE
% printenv PATH

Notice that the PATH environment variable is now (probably) much shorter, and contains the VOV software directories.

% veprestore

Notice that the prompt has been changed back to the original.

Note: This only changes the prompt. Your shell still has whatever environment was set most recently using vep.

Add Additional Environment Directories

When you are testing and developing environments, or when you want to have project-specific ones which are not put in the

system wide directory at $VOVDIR/local/environments, you can use the environment variable VOV_ENV_DIR to specify

additional directories.

You will use this capability in the tutorial, so that you don't need to put our environment scripts in the system's shared environment

area. You should have a ~/ncadmin directory from the previous exercises, which contains the server working directory of your

private Accelerator queue.

% setenv VOV_ENV_DIR ~/ncadmin/vnc-user-name.swd/environments
% pushd $VOV_ENV_DIR

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.68

CAUTION: The enviroments directory is generated by setup, but any user-made env-scripts placed in the

directory will not be used unless VOV_ENV_DIR includes it.

Configuration Examples

In this example, you will create an enviroment which adds your personal bin directory to the path. You will put the definitions in

your queue's environment directory.

Use Tcl for the environment scripts because it is more powerful than C-shell, and platform-independent.

Example 'start' script for JOHN environment

add john bin directory to path
vovenv PATH : PREPEND /home/john/bin

This script adds the element /home/john/bin to the beginning of the PATH. There is also an APPEND operator which adds

to the end of the PATH. If the exact element is already present in the path, it is left undisturbed. This avoids PATH overflow in C-

shell.

Example 'end' script for JOHN environment

remove john bin directory from path
vovenv PATH : DELETE /home/john/bin

This script removes the element /home/john/bin from the PATH.

Example 'doc' script for JOHN environment

prepend /home/john/bin to PATH

This file contains a one-line summary which is presented by the vel command.

Use the above examples to create similar files in your queue.

Compose Good Environment Scripts

There are several characteristics of a 'good' environment setup.

minimal A minimal environment only sets the variables needed to accomplish a specific

purpose.

composable A composable environment respects pre-existing values of variables, and

adds to them, rather than overwriting them. For example, when modifying

LM_LICENSE_FILE, use PREPEND and APPPEND rather than simply setting it.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.69

This allows you to use commands like ves BASE+CADENCE+NASSDA and have

both Cadence and Nassda tools work.

reversible A good environment definition uses the 'end' script to revert what it set in the 'start'

script, so that the environment does not gradually become polluted with obsolete

values.

Environments are Cached on the vovtasker

To provide very low job dispatch latency, Accelerator caches the eight most-recently used environments in the vovtasker process.

This means that jobs which run in any of those environments may start immediately without sourcing the environment definition

script. It also means that if you change an env-script, you must tell the vovtaskers by using the vovtaskermgr refresh

subcommand.

Summary

• Most environments are defined by scripts stored in $VOVDIR/local/environments

• Environment scripts are in Tcl or C-shell syntax

• You can use the VOV_ENV_DIR environment variable to specify additional directories to search for environment scripts.

• Environments are cached on the vovtasker, and refreshed using ncmgr reset -taskers, or nc cmd

vovtaskermgr refresh

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.70

Logical Names (Equivalences)

Most sites set up their machines so that they all have uniform mountpoints and view of the filee ystems. A common scheme is

to place all user home directories under a single parent directory, often called /home. The actual file system is mounted using

automount, and the physical file system is located by an NIS map.

Unlike some other batch/network computing systems, Accelerator does not require that all the compute machines have a uniform

set of mountpoints. Accelerator can use what are called logical names or equivalences, to locate the data.

The default equiv.tcl file which is shipped with the software defines a logical name for the path to VOVDIR.

The equiv.tcl file in some versions also defines a logical name HOMES for whatever the parent of your home directory as

set in the environment variable HOME. The default one shipped with an early version did not, so we will show the steps to define a

logical name using the browser-based setup.

Note: When doing the exercises, remember to give these commands from a shell where you have set the

environment variable NC_QUEUE to the name of your training tutorial queue. Otherwise, you will need to use the -

queue option.

Define a Logical HOME Directory Name

1. Use the browser-based setup to view the logical names that are defined. First, find the URL of the queue's server, and

connect a web browser to it.

% nc cmd vovbrowser --> http://host:port/project

% firefox http://host:port/cgi/setup.cgi

The initial page will have a link on the left called FileSystems.

2. Left-click on this link to display the logical names defined for the queue.

You will see VOVDIR and VNCSWD.

3. Run a job in your home directory.

% cd
% nc run sleep 10

This will often run, because the default is to require the architecture from which the job was submitted as a resource, so the

job may run on your machine.

4. Now try the job, but request an architecture different from the machine on which you are working. This job will fail,

because the directory on the remote machine does not have a logical name.

% nc run -r linux64 -e BASE pwd

Resources= linux64 Env = BASE
Command = vw vwrap pwd

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.71

Logfile = vnc_logs/20030108/143125.27906 JobId = 00000021
vnc: message: Scheduled jobs: 1 Total estimated time: 0s

% nc list
00000011 Done sleep 10
00000021 Failed pwd

% nc info -l 21

Log file is: '${VNCSWD}/vncjohn.swd/vnc_logs/20030108/143125.27906'
vnc: message: File ${VNCSWD}/vncjohn.swd/vnc_logs/20030108/143125.27906 does not
 exist (yet)
 (mapped to /usr2/home/john/ncadmin/vncjohn.swd/
vnc_logs/20030108/143125.27906)

5. Run the job in the /tmp directory.

/tmp exists on all UNIX machines, but is not usually exported to the network.

% cd /tmp
% nc run sleep 10

This fails, because /tmp is not a network path.

% nc run sleep 10

WARNING:
 The path to the current directory is not 'LOGICAL',
 i.e. it does not begin with a '$' sign.
EXPLANATION:
 The current directory
 /tmp
 may not be a valid directory path for all hosts in the network.
OPTIONS:
 (1) Continue.
 By choosing this option, you assert that the path
 is valid everywhere. If it is not, the job is likely to fail,
 because the remote host cannot reach the current directory.
 This option causes the creation of a flag file called .vnc which has
 the
 purpose of avoiding the repetition of this question for this directory
 and
 its subdirectories
 (2) Abort.
 Please ask your NetworkComputer administrator to change the equiv.tcl
 file to
 define the rules that give a logical name to the current directory.

If you respond 2, the job will not be submitted.

If you respond 1, a file named .vnc will be created in the directory, and the job will be submitted. In the future, you will

not receive the warning so long as the .vnc file exists.

The Altair Accelerator software internally uses logical names to refer to files.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.72

Advanced Commands

1. Resource the cache file.

ls ~/ncadmin/vncjohn.swd/equiv.caches
cayman pluto
cayman abbcanova@cayman DEFAULT+SUPPORT html/ftnctraining > cat !$/pluto

cat ~/ncadmin/vncjohn.swd/equiv.caches/pluto
VOVDIR /remote/release/VOV/7.0u2/linux64
VOVDIR /remote/release/VOV/7.0u2/linux64/../common

2. Run the vovequiv command.

% vovequiv -p . # show the logical name for this directory

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.73

Resource Management

This exercise will walk you through some of the more advanced and complex issues of resource management in Accelerator. You

should already be familiar with Accelerator and basic resource management, covered in the Configure Resources tutorial.

With Accelerator, Altair Accelerator includes a simplified version of our Monitor product, called Monitor-basic, which interfaces

between NC and licensing systems like FlexNet Publisher. Unlike the full LM product, LM-basic does not do history or denials.

Review

The following topics are review from the Configure Resources tutorial:

• Find and view resources.tcl file

• The vtk_resourcemap_set procedure

• Static Resource (PRIORITY_LOW) configuration example

• Configure resources map on the fly using vtk_resourcemap_set

Topics of this tutorial include:

• Monitor-basic setup

• vtk_flexlm_monitor procedure

• Browser-based setup

• Resource throttling

In this tutorial, we will start LM-basic, configure it, and use it to monitor licenses. There are two things necessary to monitor

FlexNet Publisher features:

1. Configure and start the LM-basic vovserver.

2. Accept the default vtk_flexlm_monitor_all, or add specific vtk_flexlm_monitor statements to NC's

resources.tcl

Altair Monitor-Basic Setup

Altair Accelerator uses a two-layer interface to FlexNet Publisher. There is a daemon vovresourced which is started by the

NC server whenever there are vtk_flexlm_monitor statements in the resources.tcl file. vovresourced gets license

information from licmon via HTTP, and uses it to maintain NC's License: resources.

In the case where many NC queues or FlowTracer projects are running, it greatly reduces the load on FlexNet Publisher and

improves the consistency of the license information to run Monitor or Monitor-basic. Additionally, Monitor offers a browser

interface which shows licenses in use and license utilization information. Altair Accelerator recommends that you run this

whenever you need to monitor FlexNet Publisher licenses, even in cases where you only have one server running Accelerator.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.74

Configure and Manage Monitor-basic

Both Monitor-basic and full Monitor are managed by the lmmgr command. It is essential that you use this instead of other ways

to start the LM vovserver, because it also takes care of any DB schema updates, auxiliary daemon and startup changes needed by

newer versions.

You use the configuration file of vovflexlmd in Monitor-basic to specify which FlexNet Publisher licenses you want the

daemon to monitor. You do not need to monitor all licenses. In this exercise, we will monitor one. In most cases it is easier to use

the browser UI to configure which license servers are monitored.

1. Change to the working directory of the daemon and see whether it is already running.

2. If you see an info.tcl file, then check whether the process named there exists on that system.

% cd $VOVDIR/local/vovflexlmd; ls

Example info.tcl file:

This file is created automatically by vovlmd: DO NOT EDIT
If you touch this file, the process 17400 will exit.
set host "jaguar"
set pid 17400
set port 5555
set cwd "/remote/proj9/cadmgr/licmon/licmon.swd/vovlmd"
set version "2.0"
set timestamp 1441146545; # Tue Sep 01 15:29:05 PDT 2019

Note: If this directory already contains a file named config.tcl, your site may already be running . In

this case, check for the file info.tcl. This file will contain the host name, process ID, and port of the

daemon. You can verify that it is running by pointing your web browser to the URL http://host:port

using the port and host in the info file.

Even if the daemon is not running, we will use our own subdirectory to run our instance Monitor-basic, rather than use the

default directory.

3. Create a directory to run your own Monitor-basic instance.

% mkdir ~/ncadmin/licmon
% cd ~/ncadmin/licmon

4. Start Monitor-basic, picking a port which is different from the regular one, if you are running on the Accelerator server host.

The default TCP/IP port number is 5555. You can find the ports in use by vovproject list -a -l. For this example,

we use port 5575.

% cd ~/ncadmin/licmon
% lmmgr start -name licmon<user> -dir . -port 5575

5. Prepare a configuration file with a text editor, which names one of the FlexNet Publisher license files at your site.

% vovproject enable licmon<user>
% cd `vovserverdir -p vovlmd`
% vi config.tcl

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.75

6. Edit the default configuration file config.tcl, and enter at least one license file to monitor, using the

add_LM_LICENSE_FILE procedure. The license may be in any format acceptable as a -c parameter to lmstat, that is, a

full pathname or in port@host notation. It is better to use port@host than file paths, so that NFS is not involved.

Example config.tcl file.

config.tcl -- vovflexlmd FLEXlm configuration
add_LM_LICENSE_FILE -tag CDNS /remote/vendors/cadence/license/license.dat
add_LM_LICENSE_FILE -tag SNPS /remote/vendors/synopsys/license/pluto.dat
add_LM_LICENSE_FILE -tag SUNW 1726@saturn

7. Verify that LM-basic is running and supplying license information. Examine the info.tcl file created by the vovlmd

daemon, and point your web browser to the URL as described above.

8. Stop the LM-Basic vovserver.

Most of the Accelerator daemons may be stopped by touching the info file that they create. When it starts, the daemon

records the timestamp of the file. Each cycle, the daemon examines the timestamp, and exits if it has changed.

For Monitor-basic, the auxiliary daemons like vovlmd will stop when the Monitor-basic vovserver stops.

vtk_flexlm_monitor Procedures

Your Accelerator setup will get license in-use info from your Monitor or Monitor-basic setup via HTTP on Monitor's /raw

interface. The default resources.tcl file for Accelerator includes the vtk_flexlm_monitor_all procedure. This

converts every feature monitored by Monitor into an Accelerator resource. If the resource name is specified, then this name is the

actual resource name used. If the resource name is not specified, the name defaults to License:<feature>.

If you do not wish to have a large number of resources, you can comment out the above and put calls to the

vtk_flexlm_monitor procedure in your resources.tcl file to specify which FlexNet Publisher features Accelerator

should monitor.

Resource Throttling

In some cases, you may wish to restrict the number of a feature which are consumed by Accelerator jobs, to leave some for 'fast' or

interactive use.

To accomplish this, you can use an auxiliary resource called throttle_<resource> to restrict the number of Accelerator

jobs. For example, you have 15 licenses of hsim, and want to leave 1 free for jobs that bypass the Accelerator system.

You would create a resource 'throttle_hsim' with a count of 14, by adding statements like this. Map hsim_license to

throttle_hsim, so that when the throttle resource is exhausted, jobs that need hsim will queue. Often such resources are

named Limit:<something>.

vtk_flexlm_monitor hsim hsim_license throttle_hsim
vtk_resourcemap_set throttle_hsim 14

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.76

Upgrade Accelerator

There are two types of updates for Accelerator, patches and new versions. Patches replace specific files in an installation and save

an archive of the changed files so you can revert. A new release is a complete set of files, usually installed in a directory that is a

sibling of your current version.

The simplest method to change to a different server is to use the following steps (shutdown and restart on new version):

• Install new software

• Notify users that Accelerator will be shutdown

• At an idle time, shut down the Accelerator server with ncmgr stop

• Change startup files (.vovrc) to refer to the new software installation

• Start the server, running the new version, with ncmgr start

• Notify users that Accelerator is available again

In some cases, for example, it may be impractical to shut down the Accelerator server for even a short time:

• you have a very busy installation, and Accelerator is never idle

• you have jobs running and you do not want to lose them

• you want to keep the order of jobs in the queue. In such cases you can use one of the following methods.

1. Switch vovserver and vovtaskers separately, using ncmgr stop -freeze.

2. Start a new Accelerator queue on new version, sending new jobs to it, shutting down the current Accelerator queue

after all jobs have been retired.

Here are the steps for the ncmgr stop -freeze method.

1. From a shell with your current Altair Accelerator version, stop vovserver with ncmgr stop -freeze. This instructs

vovtaskers with jobs to wait for a new vovserver and reconnect to it.

2. vovtaskers with no jobs should exit right away, and ones with jobs will enter the SUSP state. Their names will change to

indicate they are stopping (and to permit new vovtaskers to start with the regular names).

3. From a shell with the new Altair Accelerator version, start the vovserver using ncmgr start.

4. Check on the browser UI Admin page that vovserver is running the expected version.

Here are the steps for the overlapping queues method.

1. Create a new queue, running the new server software

2. Direct nc run to send new jobs to the new queue

3. After some time, all jobs in the old queue have completed

4. The old queue may be now be shut down

Overlapping Queues

Please read these steps to the end and understand them before doing the procedure. This procedure is preliminary, and may need to

be adapted to your Accelerator configuration.

1. Install and verify the new software version. The vovcheck command may be helpful.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.77

2. Start a new queue, for example with name vnc2.

% ncmgr start -queue vnc2

3. Copy configuration files (policy.tcl, resources.tcl, taskers.tcl etc.) from the configuration directory of the

old queue to that of the new queue in such a way that the two queues are functionally the same.

4. Get the new queue ready.

% ncmgr reset -queue vnc2 -full

5. In the setup.tcl file of the new queue, set the environment variables NC_OLDQUEUE and NC_OLDVERSION to

point to the old queue.

This is a fragment of the setup.tcl file for the new queue
USE THESE FOR MIGRATION FROM AN OLD QUEUE.
setenv NC_OLDQUEUE
vnc setenv NC_OLDVERSION 5.4.7

Note: This goes in the setup.tcl file so that these environment variables will always be set in the context

of vnc2.

6. Test the new queue. By setting the environment variable NC_QUEUE to vnc2,the Accelerator commands will use that as

the default queue.

% setenv NC_QUEUE "vnc2"
% nc run sleep 10
% nc list
% nc mon

Note: You may use the -queue option as an alternative to setting NC_QUEUE. For example, you might use

% nc -queue vnc list -a # Show all jobs in old queue.
% nc -queue vnc2 run sleep 10 # Submit a sleep job to new queue.
% nc -queue vnc2 list # Show your jobs (only) in new
 queue.

7. Once you are satisfied that the second queue is ready, make it the default queue. The default queue is always namedvnc,

and is where the newly-submitted jobs will be placed.

% cd $VOVDIR/local/vncConfig
% mv vnc.tcl vnc1.tcl; ln -s vnc2.tcl vnc.tcl

Note: In the example above, vnc.tcl is moved to vnc1.tcl to preserve its contents, in case you want to

reactivate the original queue. The two commands are on the same line, separated by a semicolon, so that the

file vnc.tcl will be unavailable for the shortest possible time. Check carefully!

Now all the newly-submitted jobs will go to vnc2, while commands such as nc info, nc stop, nc forget, etc. will

be run on both queues.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Altair Accelerator Administrator Tutorials p.78

8. Error messages are filtered out, because a job ID which is valid in the first queue will not be valid in the second, and

conversely. To see the results with messages, query the queues separately by using the -queue option of Accelerator

commands.

9. When all jobs in the old queue have been retired, you can shut down the old queue.

Proprietary Information of Altair Engineering

Case Study 4

Case Study

This case study provides one example of sophisticated usage of Allocator.

Assume:

• There are 3 physical locations: US, Asia and Europe

• Each location has its own installation of Accelerator

• Each location has its own set of licenses (in our example, we use calibre)

The goal of the case study is to achieve:

• Some licenses to be used locally only

• Some licenses to be shared across all locations

• Each Accelerator can continue to use its own local licenses even if Allocator goes down for any reason (such as, network

outage)

• Users do not have to know what LM_LICENSE_FILE to set before submitting jobs. The correct LM_LICENSE_FILE

environment variable is set automatically by Accelerator at run time.

Step 1: Setup Monitor on Each Site

Assume in US site, we have two license servers, namely 27001@earth and 27002@jupiter. We want to restrict calibre usage served

by 27001@earth to US local Accelerator queue, and share 27002@jupiter with the rest of the queues.

Since they serve the same feature, you need to tag the FlexNet Publisher daemon when you configure Monitor. For example, in

your config.tcl for vovlmd:

#
Example of vovlmd config.tcl
#

add_LM_LICENSE_FILE 27001@earth -tag US_LOCAL
add_LM_LICENSE_FILE 27002@jupiter -tag US_WAN

You can do a similar setup for all other locations.

Step 2: Setup resources.tcl to Monitor the License Features of Interest

Assume the feature name is calibre. In the vnc.swd/resources.tcl file of US Accelerator queue, you could add:

#
Fragment of resources.tcl for the US site
#

Use LOCAL:calibre as Accelerator resource name for calibre from 27001@earth.
vtk_flexlm_monitor US_LOCAL/calibre LOCAL:calibre

Use WAN:calibre as Accelerator resource name for calibre from 27002@jupiter.
vtk_flexlm_monitor US_WAN/calibre WAN:calibre

When user submits a job requesting License:calibre, use either LOCAL or WAN
resource, with LOCAL preferred.

Altair Accelerator Software 2024.1.1

Case Study p.80

vtk_resourcemap_set License:calibre UNLIMITED "LOCAL:calibre | WAN:calibre"

After changing resources.tcl, run ncmgr reset on the command line and use the resources monitor (nc mon) to verify

that you get the correct number of resources for both LOCAL:calibre and WAN:calibre and you have License:calibre correctly

map to "LOCAL:calibre | WAN:calibre".

The setup enables US Accelerator to use the both LOCAL and WAN calibre licenses when calibre is not managed by Allocator.

Repeat the same setup for the other sites as well.

Step 3: Setup Allocator to Manage Calibre Licenses

First we want to add all the Monitors that serve all WANable calibre licenses to Allocator.

#
Segment of vovlad/config.tcl
#

Monitor for US
LA::AddLicenseMonitor jupiter:5555

Monitor for Asia
LA::AddLicenseMonitor tiger:5555

Monitor for Europe
LA::AddLicenseMonitor queen:5555

Since the Allocator daemon checks the config file at every cycle, and reads it if it has changed, you may have to wait 1 or 2

minutes to see the changes reflected in the Allocator page.

Then you need to add the resource to be managed by Allocator.

#
Segment of vovlad/config.tcl
#

#
Manage resource 'WAN:calibre', which is derived from
the specified list of tags for the FlexNet Publisher feature 'calibre'
#
LA::DefineResourceGroup WAN:calibre {
 LA::AddResource WAN:us_calibre FlexLM/US_WAN/calibre ""
 LA::AddResource WAN:jp_calibre FlexLM/ASIA_WAN/calibre ""
 LA::AddResource WAN:eu_calibre FlexLM/EUROPE_WAN/calibre ""
}

In the above example, we assume Accelerator is running on host_us, host_asia, and host_europe in US, Asia and Europe,

respectively; and their Monitor has the corresponding tags.

We also need to use the -tags option to specify what tags are involved in Allocator. That is because, for example, we configured

both US_WAN and US_LOCAL tags in the same Monitor. When Allocator connects to this Monitor server, it needs to tell the

difference between wannable and non-wannable licenses to know which license features should be managed by Allocator.

We use WAN:calibre as the Accelerator resource name for calibre, which is the same name that we use in resources.tcl. By

doing this, the resource WAN:calibre becomes managed by Allocator rather than vovresourced since Allocator has a higher

rank than vovresourced. When Allocator goes down, the WAN:calibre resource set by Allocator will expire automatically after

a short while (about 1 minute), which enables vovresourced to become the owner of this resource once again.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Case Study p.81

You also need to define the Accelerator sites and assign relative weights on the resource for each site. For example, the following

configuration allows 5:3:2 allocation of WAN:calibre resource among US, ASIA and EUROPE queues:

#
Segment of vovlad/config.tcl
#

LA::AddSite vnc@host_us US {
 WAN:calibre 50
} -port 6271

LA::AddSite vnc@host_asia ASIA {
 WAN:calibre 30
}

LA::AddSite vnc@host_europe EU {
 WAN:calibre 20
}

After this setup, check the Allocator CGI page again. You should see the total number of calibre licenses from all sites.

Step 4: Setup Jobclasses for LM_LICENSE_FILE environment variable

Check the Jobclass documentation for details on how to setup job classes.

To set the LM_LICENSE_FILE environment variable for jobs at runtime, you need to set the VOV_LM_VARNAMES variable.

#
Example of jobclass/calibre.tcl
#

set classDescription "Calibre jobs"
set VOV_JOB_DESC(resources) "License:calibre"
set VOV_JOB_DESC(env) "BASE+CALIBRE+D(VOV_LM_VARNAMES=LM_LICENSE_FILE)"

Then when you submit jobs, you can use -C calibre option. After you submit job, you can use nc info -l <jobId> to

look at the log file of the job to make sure it does set the correct LM_LICENSE_FILE environment variable.

Proprietary Information of Altair Engineering

../../../accel/topics/shared/jobclass_use.htm
../../../accel/topics/accelerator/auto_lm_license_file.htm

EDA Automation Tutorial 5

EDA Automation Tutorial

This chapter covers the following:

• EDA Demo Part 1: Run the Demo (p. 83)

• EDA Demo Part 2: Dissect the Demo (p. 91)

The purpose of this tutorial is to illustrate how FlowTracer can be used in the context of a complex chip design. First we guide you

through a demonstration, then we analyze the components in detail.

Our assumptions are:

• The chip we are designing is called "gigalite"

• We are using CVS for revision control

• We are emphasizing the browser interface as opposed to the programmable Command Line Interface (CLI) or the dynamic

Graphical User Interface (GUI)

• We expect multiple designers to be involved in the design. Each designer has a private workspace. All information exchange

among the designers goes through the CVS vault.

• The design flow is based upon a set of (fictitious) tools with name begins with "cdt" (Chip Design Tool). For example, to

perform the synthesis of a block called "mmu" we will invoke the command:

% cdt_synth mmu

• The structure of the chip is described in a file called $VOVDIR/eda/EDADEMO/chipStruct.tcl

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.83

EDA Demo Part 1: Run the Demo

Setup

You should have already setup your account using vovsetupuser.

1. Run vovcheck to ensure that there are no problems with your installation:

% vovcheck

2. Set up the environment BASE so that you have cvs in your path:

a) Switch to the environment BASE.

% ves BASE

b) Check to ensure that CVS is in the path.

% cvs
Usage: cvs [cvs-options] command [command-options-and-arguments]
...

c) If CVS is not available, get the package as follows. You will need to have sudo or root access on your Linus box.

% sudo yum install cvs

Assuming your Linux distribution is RedHat release:

% cat /etc/redhat-release

CentOS Linux release 7.7.1908 (Core).

If you Linux distribution is another version, please consult your manual on how to access the tool.

3. If CVS is not available, access the package as shown below. You need to have sudo or root access on your Linux box to

complete this step.

 % sudo yum install cvs

Assuming your Linux distribution is RedHat release (CentOS Linux release 7.7.1908 (Core)).

% cat /etc/redhat-release

If your Linux distro is something else, then please consult your manual as how to get the tool.

Start the Project

1. Create a directory to run the demo.

% mkdir ~/EDADEMO

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.84

% cd ~/EDADEMO

2. Create a directory for the project administration and another one to do hold the design data.

% mkdir ftadmin
% mkdir work

3. Create and start the project called edademo. We want to do this in the environment BASE to make sure that the vovserver

has access to cvs:

% ves BASE
% vovproject create -dir ftadmin -type edademo edademo
% vovproject enable edademo

Customize the Project

Because the browser interface for this demo is dependent on a CGI script called edademo.cgi, we want to make sure that all the

HTML pages generated by the vovserver contain a link back to the CGI pages.

We can do this by controlling the value of the EXTLINKS property.

1. Complete the command below to control the value of the EXTLINKS property.

% vovprop set -text 1 EXTLINKS "EDADEMO /cgi/edademo.cgi"

2. The tasker list file needs to be customized as well. Open it at ftadmin/edademo.swd/taskers.tcl.

3. The default list specifies many taskers on the local host. While this is probably ok for the purposes of the demo, you are

encouraged to replace the default list with a list of real machines, as in the following example:

Example of taskers.tcl file.
vtk_tasker_set_default -resources "@STD@ @RAMTOTAL@"

vtk_tasker_define hyppo -CPUS 4
vtk_tasker_define rat -CPUS 1
vtk_tasker_define cat -CPUS 1

Check Out the Data

1. Make sure you are in the context of the project edademo using vovproject enable and switch to the environment

BASE+EDADEMO using ves.

% ves BASE+EDADEMO

2. Create a workspace for integration and check-out the data from the CVS repository:

% export CVSROOT=$VOVDIR/eda/EDADEMO/cvsVault
% cd ~/EDADEMO/work
% mkdir integration
% cd integration
% cvs co gigalite
% export CVSROOT=$VOVDIR/eda/EDADEMO/cvsVault

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.85

3. Build the flow for integration. The flow we are using is $EDADEMO/flows/BlockFlow.tcl:

% vovbuild -f $EDADEMO/flows/BlockFlow.tcl

Here are the above steps, using a designer called "Mary":

1. If necessary, setup a correct project context and a proper environment:

% vovproject enable edademo
% ves BASE+EDADEMO

2. Create a workspace for the user and check-out the data from the CVS repository:

% cd ~/EDADEMO/work
% mkdir mary
% cd mary
% cvs co gigalite

3. Here we assume that this designer does not need to work on the entire chip, but rather on just a few units.

% mkdir local
% cp $VOVDIR/eda/EDADEMO/chipStruct.tcl local/chipStruct.tcl
% vi local/chipStruct.tcl

Example of a local/chipStruct.tcl file for an individual designer
set listOfUnits {
 adder rtl
 alu rtl
 cpu rtl
 mmu rtl
}

4. Build the flow for this user:

% vovbuild -f $EDADEMO/flows/BlockFlow.tcl

5. Repeat the steps for other users as necessary.

Start the Browser Interface

1. Use vovbrowser to get the URL of the project

% vovbrowser
http://your_computer_name:6407

Here you can see a few examples of what to expect when using the browser interface. The first picture shows the summary

for all workspaces in the project, in this case 'integration' and 'mary'. The second image shows the report for the workspace

for user 'mary'.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.86

Figure 14: The summary page shows the status of the workspaces

Figure 15: The user page in this EDA-Demo shows a matrix that represents the status of jobs in a specific workspace. There is a row for

each block in the design and a column for each of the important jobs in the flow. The color of the cell shows the status of the job.

Here you can see what to expect if you use the VOV Console to run this demo. In particular, you can see the graph view for

user 'integration' and the Hi-Level Flows.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.87

Figure 16: The console shows the complexity of this flow

The Hi-Level Flow representation uses big blocks to represent large sets of jobs. Each block can be clicked on to expose the

status of the individual jobs in the set. A little histogram on the bottom left of each block shows the status distribution of the

jobs in the set.

2. From this point on, you should be able to:

a) Navigate the browser interface

b) Run either parts of the flow, or the whole flow

c) Stop running jobs

d) Monitor the execution of jobs

e) Diagnose the failure of jobs

f) Edi input files, check them into CVS, and check out any version of a file.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.88

Figure 17:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.89

Figure 18:

Figure 19:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.90

Figure 20:

Figure 21:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.91

EDA Demo Part 2: Dissect the Demo

The Chip Structure File and cdt Script

Each design organization has its own way of describing the structure of a chip. For the demo, we have chosen to describe not so

much the structure of the chip as much as the type of each block in the chip. We have RTL block, which need to be sythesized, we

have memoy blocks, and both soft and hard IP cores.

chipstruct.tcl

set listOfUnits {
 adder rtl
 alu rtl
 cpu rtl
 mmu rtl
 mmu_x rtl
 mmu_y rtl
 emu rtl
 fsu rtl
 dlu rtl

 mem12x128 memory
 mem32x512 memory
 PCI softip
 USB softip
 ring pads
 chip toplevel
}

In a similar way, each design organization has its own set of scripts to invoke the steps in the design flow.

The Capsules

We need a capsule for each tool. Basically, a capsule is just a script that figures out the inputs and outputs of an invocation of the

tool. In the following example, we show the capsule for the tool cdt_synth. The file name of a capsule should be in the form of

vov_tool_name.tcl. In this case, the capsule file for cdt_synth is named vov_cdt_synth.tcl.

The usage of this tool is:

% cdt_synth unit

It takes two files as inputs:

• rtl/unit.v

• rtl/unit.scr

and it generates four output files:

• results/unit.vg

• results/unit.timing

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.92

• results/unit.rpt

• results/unit.synth.log

So the capsule is as simple as the following:

vov_cdt_synth.tcl

set unit [shift]

VovInput rtl/$unit.v
VovInput rtl/$unit.scr

VovOutput results/$unit.vg
VovOutput results/$unit.timing
VovOutput results/$unit.rpt

VovOutput logs/$unit.synth.log

The Flow Description BlockFlow.tcl

This flow creates all jobs for each block (here called unit) described in the chipStruct.tcl file, taking into account the type

of the block. The FDL procedure S is used to define sets of jobs, which are later used to generate CGI reports.

BlockFlow.tcl: The Detailed Flow

set PROJECT $env(PROJECT)
set USER [file tail [pwd]]

source $env(EDADEMO)/chipStruct.tcl
if [file exists local/chipStruct.tcl] {
 VovMessage "Sourcing local/chipStruct.tcl"
 source local/chipStruct.tcl
}

S "CDT:$USER" {
 foreach { unit type } $listOfUnits {
 E EDADEMO
 lappend allUnits $unit
 set types($unit) $type
 S "CDT:$USER:unit:$unit" {
 indir -create $PROJECT/units/$unit {
 file mkdir netlists

 switch $type {
 "rtl" {
 indir -create synthesis {
 file mkdir results
 J vw cdt synth $unit
 J clevercopy results/$unit.vg ../netlists
 J clevercopy rtl/$unit.v ../../../data/rtl
 }
 }
 }
 switch $type {
 "rtl" - "softip" {
 indir -create place {
 J vw cdt place $unit
 J vw cdt scanins $unit

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.93

 }
 indir -create route {
 J vw cdt route $unit
 J vw cdt clocktree $unit
 J vw cdt to_gds $unit
 J clevercopy ../gds/$unit.gds ../../../data/gds/$unit.gds
 }
 indir -create verify {
 J vw cdt lvs $unit
 }
 }
 "toplevel" {
 omitted
 }
 }

 omitted

 # All units.
 indir -create verify {
 J vw cdt extract $unit
 J vw cdt sta $unit
 J vw cdt drc $unit
 J vw cdt erc $unit
 }
 }
 }
 }
}

BlockFlow.tcl: High Level Flow Definition

######## Hi-Level Flow Section ########################

H "CDT:$USER:Steps" {
 foreach step $listOfImportantSteps {
 set B$step [B "$step" SETNAME "CDT:$USER:step:$step"]
 }

 C $Bsynth $Bplace
 C $Bplace $Broute
 C $Broute $Bsta
 C $Broute [list $Bdrc $Berc]
 C $Bdrc $Blvs

 C autoplace
}

H "CDT:$USER:units" {
 set x 100
 set y 100
 foreach { unit type } $listOfUnits {
 set this [B $unit SETNAME "CDT:$USER:unit:$unit" -xy $x $y]
 if { [incr x 100] > 300 } {
 incr y 50
 set x 100
 }
 }
}

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.94

The CGI script edademo.cgi

This is the most complex piece of the demo. It is also the least necessary, given that we have already covered all pieces necessary

to efficietly completing a FlowTracer based design using the CLI and the GUI.

Let's start from the main part of the code, which looks quite similar to the CGI scripts that we have already seen in the CGI tutorial.

In bold, you can notice the parsing of QUERY_STRING, which is needed to determine which page to display, based on the values

of the "user" and "action" variables.

edademo.cgi: Main code

#!/bin/csh -f
The rest is -*- Tcl -*- \
exec vovsh -t $0 $*

Definition of all procedures

################################# MAIN CODE

VOVHTML_START

set listOfUnits {}
set listOfSteps { synth place route sta drc lvs }
set listOfUsers {}
set results() "Initialization of results array"

set opt(reload) 0
set opt(user) ""
set opt(mode) ""
set opt(action) "summary"

foreach option [split $env(QUERY_STRING) &] {
 if [regexp {(.*)=(.*)} $option all var value] {
 set var [string tolower $var]
 set opt($var) [url_decode $value]
 }
}

switch $opt(action) {
 "job" {
 showJobReport $opt(id)
 }
 "user" {
 getResultsJobs $opt(user)
 getResultsArea $opt(user)
 getResultsTiming $opt(user)
 showUserReport $opt(user) $opt(mode) $opt(reload)
 }
 default {
 showProjectSummary $opt(reload)
 }
}

VOVHTML_FINISH

getResultsArea

In the procedure getResultsArea we search the trace database for files that contain area information, which in our case

are files with a suffix area.rpt. We create a temporary set of all such files (with vtk_set_create), and then we get all

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.95

elements in the set (with vtk_set_get_elements). We look inside each of the files (with source $namex) and store the area

information in the results array, taking care of flagging whether the data up-to-date or not, by looking at the status (@STATUS@)

of the report file. Finally, we cleanup by forgetting the temporary set.

edademo.cgi: collect data from report files:

proc getResultsArea { userToReport } {
 global results
 set setName "@@@:tmp:grarp[pid]"
 set setRule "isfile name~/$userToReport/.*area.rpt$"
 set setId [vtk_set_create $setName $setRule]
 foreach fileInfo [vtk_set_get_elements $setId "@STATUS@ @NAME@"] {
 set status [shift fileInfo]
 set name [shift fileInfo]
 set namex [vtk_path_expand $name]
 if [file exists $namex] {
 set unit [file root [file root [file tail $namex]]]
 catch {source $namex}
 set results($unit,area,status) $status
 }
 }
 vtk_set_forget $setId
}

getResultsJobs

In the procedure getResultsJobs we query the trace database for information about the status, duration, etc. about each of the

CDT jobs in the flow. We store the information in the results array.

First we get a list of all the sets in the trace (with vtk_trace_list_sets). We are interested only in the sets with name

beginning with "CDT:". We get the elements of each set (with vtk_set_find and vtk_set_get_elements).

edademo.cgi: collect data from trace

proc getResultsJobs { userToReport } {
 global results
 global listOfUnits
 global listOfUsers

 foreach setName [vtk_trace_list_sets] {
 # puts '$setName'
 if [regexp {^CDT:(.*):unit:([^:]+)$} $setName all user unit] {
 lappend_no_dup listOfUnits $unit
 lappend_no_dup listOfUsers $user

 if { $user != $userToReport } continue

 set setId [vtk_set_find $setName]
 set results($unit,setId) $setId
 foreach jobInfo [vtk_set_get_elements $setId "@ID@ @STATUS@ @COMMAND@"] {
 set id [shift jobInfo]
 set st [shift jobInfo]
 set tool [lindex $jobInfo 1]

 if { $tool == "cdt" } {
 set step [lindex $jobInfo 2]
 set results($unit,$step,id) $id
 set results($unit,$step,st) $st
 }
 }

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.96

 }
 if [regexp {^CDT:(.*):step:([^:]+)$} $setName all user step] {
 if { $user != $userToReport } continue
 set setId [vtk_set_find $setName]
 set results(step,$step,setId) $setId
 }
 }

 set listOfUnits [lsort $listOfUnits]
 set listOfUsers [lsort $listOfUsers]
}

Page Layout

To give all pages a similar look and functionality, we wrote procedure EDADEMOPAGE, which takes the following arguments:

• title, which is the title of the page

• reloadMs, the value in milliseconds of the auto-reload period

• menu_script, a script to customize the menu on the left hand side of the page

• body_script, a script with the actual content of the page

The scripts are evaluated using the Tcl command uplevel.

edademo.cgi: The page layout

proc EDADEMOPAGE { title reloadMs menu_script body_script } {
 global env
 HTML {
 HEAD { omitted }
 BODY {
 TABLE CELLSPACING=0 CELLPADDING=6 BORDER=0 WIDTH="100%" {
 TR BGCOLOR="white" {
 omitted title code
 }
 TR {
 TD BGCOLOR="$bgColor" VALIGN=TOP {
 HREF "/cgi/edademo.cgi" "Summary"; BR
 if { $menu_script != {} } {
 uplevel $menu_script
 }
 }

 TD VALIGN=TOP COLSPAN=2 BGCOLOR="#BBCCBB" {
 uplevel $body_script
 }
 }
 }
 }
 }
}

Following is a collection of procedure used to render the data in HTML. Note the use of vtk_time_pp to print durations in a

human readable form and of the global array vov_color() to colorize the cells in the tables according to the status of the

node they represent.

edademo.cgi: Data rendering

proc showStepInfo { unit step displayMode } {
 global results

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.97

 global vov_color

 set st [getResult $unit,$step,st EMPTY]
 if { $st == "EMPTY" } {
 TD {}
 TD {}
 TD {}
 return
 }
 set du [getResult $unit,$step,du n/a]
 set id [getResult $unit,$step,id 0]
 set ag [getResult $unit,$step,ag 0]

 set url "/cgi/edademo.cgi?action=job&id=$id"
 if { $du >= 0 } {
 set tim [vtk_time_pp $du]
 } else {
 set tim [vtk_time_pp $ag]
 }

 if { $displayMode == "simple" } {
 TD ALIGN="right" COLSPAN="2" { SMALL { HREF $url $tim } }
 TD BGCOLOR=$vov_color($st) { OUT " " }
 } else {
 TD ALIGN="right" { SMALL { HREF $url $tim } }
 TD ALIGN="center" { SMALL { HREF $url [string tolower $st] } }
 TD BGCOLOR=$vov_color($st) { OUT " " }
 }
}

proc showResults { user { displayMode "simple"} } {
 global results
 global vov_color
 global listOfUnits
 global listOfSteps

 TABLE BORDER="0" CELLSPACING="2" CELLPADDING="5" {
 TR BGCOLOR="white" {
 TH COLSPAN=2 { OUT "Unit" }
 TH { OUT "Area" }
 TH { OUT "Slack" }
 foreach step $listOfSteps {
 set setId [getResult step,$step,setId 0]
 TH COLSPAN=3 {
 if { $setId == 0 } {
 OUT "$step"
 } else {
 HREF "/set?id=$setId&action=showgrid" $step
 if { $displayMode != "simple" } {
 BR
 SMALL {
 omitted: some links
 }
 }
 }
 }
 }
 }

 set count 0
 foreach unit $listOfUnits {
 set setName "CDT:$user:unit:$unit"
 set setId [vtk_set_find $setName]

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.98

 if { $setId != 0 } {
 set area [getResult $unit,area "n/a"]
 set areaSt [getResult $unit,area,status "INVALID"]
 set slack [getResult $unit,slack ""]
 set slackSt [getResult $unit,slack,status "INVALID"]
 TR {
 TD ALIGN="RIGHT" { OUT [incr count] }
 TH ALIGN="LEFT" { HREF "/set?id=$setId" $unit }
 TD ALIGN=RIGHT BGCOLOR=$vov_color($areaSt) {
 COLOR $vov_color($areaSt,fg) $area
 }
 TH ALIGN=RIGHT BGCOLOR=$vov_color($slackSt) {
 if { $slack != "" } {
 if { $slack %lt; 0 } {
 COLOR "#FFFF88" "($slack)"
 } else {
 COLOR $vov_color($slackSt,fg) $slack
 }
 }
 }
 foreach step $listOfSteps {
 showStepInfo $unit $step $displayMode
 }
 }
 }
 }
 }
}

proc showUserSummary { user setId } {
 global vov_color

 if { $setId == 0 } {
 set status EMPTY
 set nodes 0
 set places 0
 } else {
 set setInfo [vtk_set_statistics $setId]
 set saveSetInfo $setInfo
 set status [shift setInfo]
 set nodes [shift setInfo]
 set places [shift setInfo]
 set jobs [shift setInfo]
 set duration [shift setInfo]
 set unknown [shift setInfo]
 set placeStats [shift setInfo]
 set jobStats [shift setInfo]

 set statusList { INVALID RUNNING VALID FAILED }
 foreach s $statusList { set js($s) 0 }
 foreach { s n } $jobStats {
 set js($s) $n
 }

 TR {
 TH { print user name }
 TD ALIGN="RIGHT" { OUT [vtk_time_pp $duration] }
 TD ALIGN="RIGHT" { OUT $jobs }
 foreach s $statusList {
 omitted: show colored ball
 }
 }
 }

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.99

}

showProjectSummary

The showProjectSummary procedure displays the summary page. First we get the list of users of the project (really the list of

workspaces) by looking at the sets with name beginning with "CDT:", and then we call showUserSummary on each.

edademo.cgi: The project summary page

proc showProjectSummary { reloadMs } {
 set listOfUsers {}

 foreach setName [vtk_trace_list_sets] {
 if [regexp {CDT:(.*):step} $setName all user] {
 lappend_no_dup listOfUsers $user
 }
 }
 set listOfUsers [lsort $listOfUsers]

 EDADEMOPAGE "Project Summary $env(PROJECT)" $reloadMs {
 omitted
 } {
 TABLE WIDTH="100%" border=0 CELLPADDING=10 {
 TR BGCOLOR="#DDDDFF" {
 foreach head {
 Workspace Duration Jobs Invalid
 Running Valid Failed Actions
 } {
 TH { OUT $head }
 }
 foreach user $listOfUsers {
 showUserSummary $user [vtk_set_find "CDT:$user"]
 }
 }
 TR BGCOLOR="#DDDDFF" {
 TD COLSPAN=9 { OUT "Totals" }
 }

 showUserSummary "" [vtk_set_find "System:nodes"]
 }
 }
}

showUserReport

The procedure showUserReport generates the page showing the jobs in a user workspace. Notice the use of EDADEMOPAGE

and showResults, which have been explained above.

edademo.cgi: The user workspace report

proc showUserReport { user mode reloadMs } {
 global argv

 EDADEMOPAGE "EDA-Demo Report Workspace $user" $reloadMs {
 if { $mode != "hlf" && $mode != "llf" } {
 omitted: autoreload control
 }
 showMenu $user $mode
 } {
 switch $mode {

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

EDA Automation Tutorial p.100

 "llf" { showLowLevelFlow "$user" }
 default { showResults $use }
 }
 }
}

Proprietary Information of Altair Engineering

FlowTracer Beginner's Tutorials 6

FlowTracer Beginner's Tutorials

This chapter covers the following:

• Create a FlowTracer Project (p. 102)

• Flow Description Language (p. 132)

• Stop the Project (p. 142)

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.102

Create a FlowTracer Project
The purpose of this tutorial is to guide one through the creation and use of a small FlowTracer project using a combination of the

Command Line Interface (CLI) and the Graphical User Interface (GUI).

Preliminaries

• Read the overview section to become familiar with some of the FlowTracer terminology: files, jobs, nodes, sets, etc.

• Install FlowTracer (if it hasn't already been done).

When you're ready, start the tutorial in the next section.

Goals

At the end of the tutorial, you will know how to fire up a FlowTracer project and to register a set of jobs into FlowTracer to create

a dependency graph that you can view in the console.

The intention is to become comfortable with creating projects, adding nodes to the dependency graph by registering programs and

files into FlowTracer, viewing the dependency graph in the console, and running the project. And finally, stopping the project and

clearing out the dependency graph and the project.

Tasks in This Tutorial

Set Command Line Environment

You need to have your shell command line environment set properly in order to use FlowTracer.

This includes changing your PATH environment variable so you can run the installed executables, and adding two environment

variables that are used by the Altair Accelerator programs.

You can set your command line environment by sourcing a setup file created by the installation. You will source the setup file that

matches your platform and shell.

Assuming that FlowTracer is installed at the path \opt\altair\vov\1212.10, this table shows the way to source the setup file so that

your shell environment is correct.

Platform Type Shell Command to Source File

csh tcsh source /opt/altair/vov/1212.10

platform/etc/vovrc.csh

UNIX

bash sh ksh zsh source /opt/altair/vov/1212.10

platform/etc/vovrc.sh

Windows DOS \opt\altair\vov\1212.10\win64\bat

\vovinit.bat

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.103

Create a Project

FlowTracer keeps track of the files and jobs that make up the flow you want managed. The collection of such files and jobs

constitutes a "project". Each project has one dependency graph that encodes the runtime trace of the jobs and files in the project.

Each dependency graph of a runtime trace has one running server process that manages it.

You begin using FlowTracer by creating a project and starting its server. If a project was already created but not running, then

starting its server would be all that was needed.

To create a project, you must choose at least:

• a name for the project; any alphanumeric string can be used

• a host to run the server

Optionally, you may also specify

• a directory that will hold the "server working directory" (.swd) for the project. This .swd directory will contain the system

control files used by FlowTracer. The default location that holds the FlowTracer server working directory is inside the vov

directory in your home directory (~/vov) on UNIX, and in $VOVDIR/local/swd on Windows.

For this tutorial, we will use the default location for holding the .swd directory.

1. To create and start a project, use vovproject create as shown here:

denby1 (no project) DEFAULT+P4+P4 ~/Perforce > cd ..
denby1 (no project) DEFAULT+P4+P4 ~ > vovproject create tutorial_denby
Creating a new project:
 Directory /home/denby/vov
 Type generic
 Product auto
 Name tutorial_denby
 Port any
 Web port 0
 Guest port 0
vovproject 11/22/2019 05:45:21: message: Creating server directory "/home/denby/
vov/tutorial_denby.swd/."
vovproject 11/22/2019 05:45:21: message: Created setup file '/home/denby/vov/
tutorial_denby.swd/setup.tcl'
vovproject 11/22/2019 05:45:21: message: Copy all files from /remote/release/
VOV/2019.01_71758_Apr25/linux64/etc/ProjectTypes/generic
vovproject 11/22/2019 05:45:21: message: Updating autostart/
start_vovnginxd.tcl...
vovproject 11/22/2019 05:45:21: message: Warning: the path permissions
 for taskers are 040777 instead of 0777
vovproject 11/22/2019 05:45:21: message: Starting a VOV server
 for project tutorial_denby@denby1
 PORT=any,WEB_PORT=0,READONLY_PORT=0

This command creates all necessary project control files in the server working directory and starts the server process for the

project.

2. You can use the list option of the vovproject command to see what projects are available and see their status. At this

point, you will see that the tutorial project is running.

% vovproject list

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.104

Enable a Shell

To be able to work with the newly created project and the running server, you need to enable your shell with:

denby1 (no project) DEFAULT+P4+P4 ~ > vovproject enable tutorial_denby
vovproject 11/22/2019 05:48:25: message: Enabling project 'tutorial_denby'...

This command essentially sets two important environment variables:

• VOV_HOST_NAME

• VOV_PROJECT_NAME

Restore the Shell Prompt

There is another change that happens when you enable a project. Running vovproject enable changes your shell prompt.

The new prompt contains the name of the local host, name and host of the current project, the current environment, and the last two

components of the current directory.

For example:

[orange]% vep
orange tutorial@apple BASE john/test > _

The effect of this command is purely cosmetic; its purpose is to make you aware of the current environment and of the current

project. Since it modifies the current shell, it is implemented as an alias for csh/tcsh users, and as a shell function for sh/ksh/bash.

To restore your original prompt, use the command veprestore:

orange tutorial@apple BASE john/test > veprestore
[orange]% _

Check Project Information

For basic information about the status of the server, use either the command vovproject info (or the shorter equivalent vsi).

[denby@denby1 ~]$ vsi

Vov Server Information - 11/22/2019 05:50:19

tutorial_denby@denby1:10813 | URL: http://denby1:10813
--
 Jobs: 0 | Workload:
 Files: 0 | - running: 0
 Sets: 15 | - queued: 0
 Retraces: 0 | - done: 0
 | - failed: 0
--
 Taskers: 1 | Buckets: 0
 - ready: 1 | Duration: 0s
 Slots: 8 | SchedulerTime: 0.00s

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.105

--
 TotalResources: 10 | Pid: 59021
 | Saved: 4m58s ago
 | Size: 27.00MB
 | TimeTolerance: 1s
--

For now, do not be concerned about the information returned by this command; it is being used here to check that the server

process was started correctly.

Start the GUI Console

Now that you have created the project and started the server, you can being to use FlowTracer. For this tutorial, you will use the

GUI console, and commands from the shell. Be aware that the console functionality can also be accessed from a browser using

the flow management web application. The GUI is visually oriented compared to the browser interaction which is list and text

oriented.

Start the graphical user interface (or GUI) with the command vovconsole.

% vovconsole &

Figure 22: Initial console screen

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.106

The program "vovconsole" stays running while the GUI console is active so it is best to run it in the background to let the

command line be available for more commands.

At this point, as no files or jobs are yet registered, the console will show a grey background with an empty Set Viewer on the right

side, and two top-level elements in the navigation list in the Set Browser panel on the left.

Use the Set Browser

In this section you will learn how to navigate around sets using the set browsing control. Later, when there are interesting sets

defined, the Set Browser will be used to choose which set of nodes to view in the Set Viewer.

1. Click on the Sets tab.

2. Open the Predefined folder in the navigation control by clicking on the right-arrow control icon.

3. Double-click on the set stuff to do to display it.

At this point, you should be seeing the string "Predefined:stuff to do" as the tab label above the Set Viewer. This set is empty, so

no nodes appear in the Set Viewer. With no jobs or files registered with FlowTracer yet, viewing of different sets is not interesting

- they are all empty sets. The important point is to notice the names of the System and Predefined sets, and how to navigate to

them.

4. Expand the System folder in the Set Browser.

5. Double-click on the set nodes to display it.

Leave this set on display. Later, when jobs are registered with FlowTracer, this display will show added nodes that represent

the added jobs.

Note: The display will show changed states of nodes in the display but it will not change the group of nodes

on display unless you click the Refresh icon.

Add a Job Interactively

In this tutorial, we will build a simple flow graph one job at a time, interactively from the command line. This is to demonstrate

the basic building blocks for adding jobs to a flow graph, and how we can monitor a flow using the FlowTracer GUI program

"vovconsole". This is not to demonstrate production techniques for building a flow.

You will register jobs interactively with FlowTracer to have FlowTracer build its flow graph one job at a time. This will make it

easy to see what is going on. In a production situation, jobs are not registered into the flow graph interactively. Instead, the jobs

are registered into the flow graph by way of batch scripts or by processing control files. The batch style of registering jobs will be

shown later in the tutorial.

Objective

• Verify that FlowTracer is properly setup.

• Become familiar with named environments.

• Learn more about the concept of runtime tracing.

• Become comfortable using the FlowTracer GUI for managing the jobs.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.107

Use the "cp" Program to Emulate a Tool

You will use the UNIX copy program cp to emulate a more useful tool having an input and output. The cp command comes with

UNIX, and FlowTracer supplies a script file called cp.bat which allows you to also run this tutorial on Windows.

The UNIX program cp reads an input file and copies it to an output file. It can be used for a very simple job to create a backup of a

file.

cp input-file output-file

Consider a job that is a typical computer task using a tool named TRANSFORM:

Job 1: TRANSFORM source-file expanded-file

This job is a generic one that reflects what most tools do. It reads an input file and generates an output file based on it.

We will use the cp program during this tutorial as a fast and low cost tool to demonstrate how to register jobs into the flow graph,

and how to monitor and control the work of FlowTracer, the flow manager.

Here is the above TRANSFORM job emulated using the UNIX cp command.

Job 1: cp input-file output-file

The goal of the job is to create the output file. The output file depends on the tool to generate it from the input file. If the input file

changes, then the output file is out of date, and is INVALID using flow terminology. When the input file is changed, then the job's

goal to create the output file is triggered. To reach the goal, the tool must run, process the input, and create a version of the output

that is up to date. This makes the output file VALID.

Create a Project Directory

The project directory is the area where the data files for your project are stored. When creating this directory, place it on a file

system which is available on the network. Somewhere in your home directory is usually a good starting point.

Note: Do not create the data directory inside the FlowTracer software installation, even if you have installed the

software under your home directory. By default, the files under $VOVDIR are excluded from the graph, and your

jobs will fail because they appear to have no outputs. For further information, please see Excluding Files from the

Graph.

To create the project directory, execute the following:

% cd
% mkdir simple_test
% cd simple_test

Register One Job from the Command Line

To register a job with FlowTracer so that the inputs and outputs will be dynamically discovered as the job runs (known as runtime

tracing), it is necessary to define the job by way of a wrapper program. In this section of the tutorial, we are registering jobs with

FlowTracer interactively, from the command line.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.108

At the command line, the program vwis the wrapper to register a job. vwis a program that takes a parameter that is the command

line defining the job.

Here is the logical way of thinking about running the vw wrapper.

Usage: vw <command line that runs a job>

Next is an example of using vw to register a job to compile a C program. The job consists of running the clang tool to compile a

source file into an object file.

% vw clang myprogram.c

By using the vw wrapper, runtime tracing of the job is established as it is added to the flow. runtime tracing is the feature of

FlowTracer where it discovers and notices the resulting output file myprogam.o without you having to mention it in the

command line, and without you having to explicitly tell FlowTracer about it. It can do this because the job is run within a wrapper

that checks for implicit inputs and outputs used at runtime, and tells FlowTracer about them.

For this tutorial, you will be using cp as our emulation tool and using a file named "aa" as the primary input file. You must create

a primary input file for our emulation. Do this command to create an empty file "aa" which will be our primary input file.

1. You must create a primary input file for the emulation. Do this command to create an empty file "aa" which will be your

primary input file.

% touch aa

You will register a job that emulates transforming an input file to an output file by using the cp command. This is the job

command that will be registered.

cp aa bb

2. Do the command below to register this job, by calling the vw wrapper program and passing it the command of the job.

% vw cp aa bb

This registers the job with FlowTracer. FlowTracer then runs the job. When it executes, the wrapper sends messages to the

FlowTracer server describing the inputs and outputs of the program cp. As the job runs, you will see activity in the Set

Viewer. Make sure to be looking at the System > nodes set.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.109

Figure 23:

You will see a graph such as the one above. This shows the job node as a single green rectangle. You can see the number

"4" in the upper right of the Set Viewer. This is reporting on the number of nodes in the set on display. The file nodes are

not on display.

3. To turn on the display of file nodes, right click in the background of the Set Viewer and click Show/Hide to open a

submenu where you can toggle on the Show Files option.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.110

Figure 24:

After turning on the display of file nodes, you will see the four nodes in the flow graph. This represents the dependency

graph that is now encoded into FlowTracer's flow.

Figure 25:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.111

Note: If your display is not showing up completely within the Set Viewer pane, you can fit the graph to the

available area by clicking on to fit the view.

4. Repeat the registering of the cp command if you missed seeing the changes to the display as it ran.

% vw cp aa bb
% vw cp aa bb

This appears to register the job again. But because the command is the same string, and we are in the same directory, it is

recognized as the same job as an existing job, and a new job is not created.

The circles represent files, the rectangle represents a job, in this case the job of copying file aa to file bb. The arcs

represent the input/output relationships between files and jobs.

The green color means that the files and the jobs are up-to-date.

In this case, there is one input file "aa" and one output file "bb". Depending on your setup, you may get additional inputs,

such as the file "cp".

This "cp" file exists as an input in the dependency graph because the program cp is a dependent element of the task. If the

version of the program changes, then the result of the task could be different. This was noted by FlowTracer even though we

did not explicitly tell FlowTracer about this dependency. This is an example of FlowTracer performing runtime tracing to

figure out all the dependencies, even if you do not register them fully.

In production you can exclude program files from the graph. For this tutorial, you will see that "cp" input file as a

dependency node. All the circles and the rectangle should be green at this point, meaning that they are all up-to-date, or,

"VALID".

Add More Jobs to the Flow

A project is normally made up of many jobs that work together toward the goal of the project. A given job may depend on the

output of another job, and in turn may create output that is needed by a downstream job. Each job must be run in the proper

sequence in order to reach the project's goal.

Next you will add more jobs to this project to emulate that aspect of dependency. Continue to use the cp program to emulate all

the various tools used in your jobs.

Consider a project having these logical job steps using four different tools:

Job 1: TRANSFORM source-file expanded-file
Job 2: TRANSLATE expanded-file translated-file
Job 3: SORT translated-file sorted-file
Job 4: ARCHIVE translated-file archived-file

This reflects a project goal of creating two final result files that are formed by running processing tools in the proper sequence,

based on a single input file.

Here it is again, using simple file names:

Job 1: TRANSFORM aa bb
Job 2: TRANSLATE bb cc
Job 3: SORT cc dd1

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.112

Job 4: ARCHIVE cc dd2

1. Emulate this project using cp with this job list:

Job 1: cp aa bb
Job 2: cp bb cc
Job 3: cp cc d1
Job 4: cp cc d2

This project has exactly the same dependency graph as the one above. We have emulated a complex project with this

technique of using cp with simple, empty files.

2. Add the extra jobs to the flow managed by FlowTracer to register this larger project. Run the vw wrapper program with the

job command parameters that define the additional jobs. Execute these commands:

% vw cp bb cc
% vw cp cc dd1
% vw cp cc dd2

This creates a flow that is getting more complex and has more dependencies for FlowTracer to manage. If file "aa" is

changed then files "bb", "cc", "d1" and "d2" all become INVALID.

FlowTracer will notice if that happens and mark the files as INVALID. FlowTracer can also schedule and dispatch the jobs

to run in the proper sequence to make the INVALID files VALID.

At this point the graph should look similar to the one in shown below. Minor differences in the horizontal position of the

nodes are to be expected.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.113

Figure 26:

What you have done in this short exercise is to register jobs into the flow for FlowTracer to manage. You did this by running the

wrapper program vw and giving it a command line that defines the job. The jobs use the program cp as an emulation of a program

that processes an input to create an output.

This demonstrates an interactive way to register jobs, but is not promoting this as the way to register jobs in a production

environment. The intent is to demonstrate what the display of the flow graph looks like as a job is added to the flow. You have

now seen how the data structure within FlowTracer holds the dependency graph between programs and files, how FlowTracer

reports on the state of files using shapes and colors. You have seen how the FlowTracer GUI helps you visualize the state of the

flow graph.

Change Dependent Input File

We have built up a dependency graph for a task that requires running four jobs in a sequence to produce two result files ("dd1"

and "dd2") based on a starting file ("aa").

This establishes a model that FlowTracer will use to schedule and deploy the jobs as the dependent input files change.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.114

1. While looking at the GUI console, touch the file "bb" to give it a timestamp of now.

Touching the file causes its timestamp to be later than the timestamps on files "dd1" and "dd2". This emulates changing

file "bb". The two output files "dd1" and "dd2" are now out of date relative to file "bb".

You will see the Set View display change. The out of date output file nodes will change color from green to purple. The

dependent jobs of copying file cc are also out of date and change color. The nodes in purple are INVALID.

Figure 27:

FlowTracer has noticed the change of file "bb" (the timestamp is recent) and is aware of what nodes are INVALID and

knows what needs to happen to make them VALID.

2.
Click Run in the action bar at the top of the Set Viewer panel to request that FlowTracer brings the nodes up to date.

This will cause the "cp" programs to run. While they are running, their nodes in the display will turn yellow. When the jobs

and files become up to date, they turn back to green to indicate they are VALID.

3. Repeat this sequence, again, but touch file "aa" instead of "bb".

The display shows the dependent nodes as INVALID (purple).

4. Click Run again.

FlowTracer dispatches the jobs in sequence to bring all the nodes up to date.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.115

Remove Dependent Input File

1. Delete the file "aa" and notice the display change.

The "aa" node changes to a brown color to indicate that the file is missing.

Figure 28:

You can see the FlowTracer has changed the status of the nodes to indicate the state it has noticed - the dependent input file

does not exist.

The dependency graph does not show that dependent files are out of date (INVALID) when an input file is missing. This

is the proper response to a missing input file. The input file is not changed and dependent jobs do not need to be run to

produce new output files.

2. Touch file "aa" to put it back into existence.

This causes the file "aa" to become changed (timestamp is more recent). Notice that the display changes again. This time

the node for file "aa" changes to a slightly different hue of green and the dependent nodes turn purple.

The different colored green indicates that the file was recently changed. This subtle state is shown with a subtle color

variation.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.116

Figure 29:

3. Click Refresh > All Tabs to update the display and to change the node color of "aa" back to the normal green.

You can now see that the VALID nodes have the standard green color and the dependent nodes that are INVALID are

purple.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.117

Figure 30:

4. Click Run to see the dependent jobs get dispatched, which causes the dependent files to be created again and become

VALID.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.118

Figure 31:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.119

Tip: You can see a table showing all the node colors and their meanings by clicking on the top menu Help >

Status Colors.

Figure 32:

This demonstrates the way in which FlowTracer manages the dependency graph in order to schedule and deploy jobs as needed to

run the trace so that all nodes become VALID. Using the GUI console, you can watch the display change to view the data structure

that FlowTracer manages and to watch progress as FlowTracer dispatches dependent jobs and dependent files are updated.

GUI Job Views
Now that you have a small flow, you can familiarize yourself with the console and its various views.

In any view that you choose, the following features are available:

• Hover the mouse over a node to display a descriptive label.

• Right click on a node to get a node operations menu.

• You can select multiple nodes with a rubber-band action: point over blank space, left-click and drag, release: all nodes

completely contained in the rectangle will be highlighted. Now, all operations in the pop-up menu apply to all selected nodes.

• Double click on a node to open the Node Editor, which displays the properties of the node.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.120

Figure 33:

• While the Node Editor is still open, select other nodes by clicking on them. You will see the information in the Node Editor

change as you select different nodes.

Vertical Graph View

Open the Vertical Graph view by clicking the or by clicking the letter G.

Figure 34:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.121

Horizontal Graph View

Open the Horizontal Graph view by clicking the or by clicking the letter H.

Figure 35:

Grid View

Open the Grid view by clicking or by clicking the letter Q. This is an alternative graphical representation for the dependency

graph in which arcs are not shown and the nodes are compactly arranged in a non overlapping grid. This view is effective when

you have hundreds or thousands of nodes to show.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.122

Figure 36:

Stat View

Open the Stat view by clicking or by clicking the letter S.

Figure 37:

View Graph Subsets

The previous views have only shown the complete dependency graph, that is the set "nodes". It is valuable to look also at smaller

subsets of the graph.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.123

1. Select the Graph view.

2. In the Set Browser, in the System folder, double-click on the sets jobs and files.

3. Under the Predefined directory are many sets that will be useful when dealing with real life projects. The primary sets are

Stuff to do and Failed job.

These sets are currently empty. Later in the tutorial you will see how they can be used.

4. Go back to the set System:nodes.

5. Right click the node representing the file bb to show the pop-up menu.

6. Select Connectivity > Selection Alone.

7. Expand the graph around this node with the pop-up menu Connectivity > Expand Selection .

Tip: Many common commands are bound to keyboard accelerators. For example, the operation you just

performed (showing a node alone, then expanding the graph) can also be performed by typing a while the

mouse is over the node to view the node alone and by typing x to expand the node.

8. Display only the node bb. It may be useful to look at the inputs of node bb and their inputs, and their inputs and so on. The

set of all transitive inputs of a node is called the "up-cone" of the node. The accelerator for up-cone is Ctrl-u.

9. Repeat the previous exercise but get the "down-cone" this time, that is the set of all outputs of a node, and their outputs, and

so on. The accelerator for down-cone is Ctrl-d.

As you view selected subsets of the dependency graph, FlowTracer creates new sets. These are visible if you refresh the Set

Browser by clicking Set > Refresh browser.

Navigate the Graph

Make Changes to a File and Run it

Edit, modify and save aa and watch what happens to the dependency graph.

All the nodes dependent on aa change color as they are no longer up to date with respect to aa. The purple color indicates that the

nodes are invalid with respect to their inputs.

Run the Jobs

You have built the graph by executing the "tools" (emulated by cp) interactively under the control of the vw wrapper. By using

that wrapper, you have established runtime tracing. With runtime tracing turned on, FlowTracer discovers the inputs and outputs

at runtime as the program is run. It builds a dependency graph of the files related to the program. The flow holds a data set that

defines the dependency graph, the jobs, and the current state of files. FlowTracer is now ready to execute the jobs in the flow,

based on the dependency graph and the state of files in the system. It can schedule and deploy jobs that need to be run because they

use an input file that has changed. This process is called "retracing".

1. Go to the graph view.

2. Point at the node bb.

3. Right-click and hold to display the menu and select Run.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.124

A request to the FlowTracer server to bring the file bb up to date. This means re-executing the job vw cp aa bb.

To accomplish this task, the server selects the fastest tasker in the network that can execute the job. When processing a

run request, FlowTracer takes advantage of potential parallelism by sending multiple independent jobs to the available

taskers. Depending on the number of taskers connected to your project, you may or may not see parallelism in action. This

illustrates the process of bringing a particular file up-to-date. More commonly, you will want to bring the entire design up to

date, or the entire set of nodes you are looking at.

4. Select the set you are interested in; for example, choose the set "nodes" in the Systems folder.

5. Select the Graph view in the Set Viewer.

6. Click on the retrace icon to bring the current set up to date. If all elements in the set are already VALID (green) nothing

needs to be done.

Note: You can also run individual nodes using the pop-up menu, or the keyboard shortcut "r".

Navigate the Graph

Navigating the graph means moving from a node to another following the input/output dependencies. You can navigate the graph

using the Navigation dialog:

Figure 38:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.125

Invoke the graph by right-clicking on a node and selecting Connectivity > Navigate or by clicking .

The dialog is divided into 3 parts:

1. the top shows the inputs

2. the center shows the current node

3. the bottom shows the outputs

You can select any of the rows in the Navigation dialog. When one or more rows are selected, the buttons at the top get enabled.

Using these buttons, you can either edit a selected node, create a set containing all the selected node, or clear the selections.

Further, right clicking on any node will popup a context menu which can be used for various operations on that node.

Multiple rows can be selected by holding the mouse left button down and dragging the mouse across the rows you want to select.

Note: The rows in any of the sections in the Navigation dialog can be sorted by any column by clicking on the

column header.

Determine Reason for Invalid Node Status

1. Edit file aa, save the changes and wait for the graph to turn purple.

2. Double-click on cc and in the Node Editor window select the "Why?" tab.

You will see the reason why FlowTracer thinks that the file cc is not up to date because the transitive input aa has been

changed.

Tip: You can get the same information from the command line with the command vsy.

Analyze Impact

You can analyze the consequences of changing a file with the Impact analysis function.

1. Click on a node to select it, for example, aa.

2. From the menu, click Node > Impact.
The Impact Analysis Report window opens:

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.126

Figure 39:

The impact analysis shows how many files and jobs are affected by a change in the selected file. Because FlowTracer keeps

a record of the time it has taken to run each job, FlowTracer can predict the time it will take to execute all jobs dependent on

the selected file.

You can get the same information from the command line with the command vsc:

% vsc aa
VALID NODES Files: 4 Tools: 4 Duration:1s
OTHER NODES Nothing.

TOTAL Files: 4 Tools: 4 Duration:1s

Forget Nodes and Sets from the Graph

FlowTracer remembers the jobs you execute provided you enable runtime tracing for those jobs, as you have done in this tutorial

by using the FlowTracer wrapper vw. It often becomes necessary to tell FlowTracer to forget about parts of a flow.

1. To forget a single node:

a) Point at the node.

b) Right-click, hold, and select Forget.

2. To forget multiple nodes:

a) Select the nodes you want to forget by drawing a rubber band around them.

b) Point at one of the selected nodes.

c) Right-click, hold, and select Forget from the pop-up menu.

3. To forget a set (not the elements in the set):

a) Select the set in the Set Browser.

b) Look at the sets in the "Tmp"folder. From the menu, select Set Forget Set Only.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.127

Note: System"sets cannot be forgotten. "Predefined" sets can be forgotten but they will not

be removed from the set hierarchy. Double-clicking on any of the "Predefined" set names will

automatically recreate that set.

c) You can also choose to forget a set and all the contents (nodes) of that set by using the option Forget Set & Elements
instead.

Command Line Interface

Everything that you have done with the console, you can do from the command line. We recommend that you keep up the console,

for now, so you can monitor the effect of your actions. As you learn the Command Line Interface (CLI) programs, you will be able

to use the CLI or the GUI.

In this tutorial we cover the most important commands in FlowTracer. For a complete list of commands, check the Global

Commands List.

Check File Status

1. The command vls can be used to check the status of files. First try it when all files are VALID.

% vls
VALID i aa
VALID u bb
VALID u cc
VALID o dd1
VALID o dd2

The first column shows the status of the files in the context of the flow. The second column summarizes the connectivity

information for the file: "i" indicates a primary input, "o" indicates a primary output, "u" indicates files that have both inputs

and outputs.

2. Now, change aa and check again, this time using the option -l to get more information.

% touch aa
% vls -l
1 00000582 i VALID aa
3 00000013 u INVALID bb
5 00000016 u INVALID cc
7 00000193 o INVALID dd1
7 00000265 o INVALID dd2

With the -l option you can see two more columns. The first column shows the level of the node in the graph. Level 1 is at

the top. The second column contains the VovId of the files, a unique identifier used in most FlowTracer operations.

3. Use option -h or -help to get a help message.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.128

Check Job Status

The vst command can be used to check on job status.

1. Use the command vst to check the status of jobs. The letter "t" stands for "tool invocation" which is a synonym for job.

% vst
00000638 INVALID vw cp aa bb
00000689 INVALID vw cp bb cc
00000729 INVALID vw cp cc dd2
00000749 INVALID vw cp cc dd1

This command also supports many options, which you can see using the option -h or -help. Important is the option -a, which

2. Add the -h or - help option to see what other options are supported.

3. Add the -a option to show the environment in which the jobs have been executed:

% vst -a
vst: rule is `ISJOB==1 CWD==${HOME}/simple_test'
vst: format is `@LEVEL:3@ @ID@ @STATUS:10@ @ENV:8@ @COMMAND@'
2 00000638 INVALID BASE vw cp aa bb
4 00000689 INVALID BASE vw cp bb cc
6 00000729 INVALID BASE vw cp cc dd2
6 00000749 INVALID BASE vw cp cc dd1

Rerun from the CLI

The command vsr is used to issue rerun requests. The target to update can be a file, a directory, a set, or a list of files directories

and sets.

Try the following commands:

% touch aa
% vsr bb
,---
| Retrace : tmp:retrace:to ${HOME}/simple_test/bb
| Id : 00000848
| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 1 tools
| Status : Completing in: 1s.
`---
beatty<-- vw cp aa bb
,---
| Retrace : tmp:retrace:to ${HOME}/simple_test/bb
| Id : 00000848
| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 1 tools
| Status : DONE. Expected duration: 1s Actual: 1s (100%)
`---
% vsr .
,---
| Retrace : tmp:retrace:dir ${HOME}/simple_test
| Id : 00001219

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.129

| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 3 tools
| Status : Completing in: 3s.
`---
beatty<-- vw cp bb cc
beatty<-- vw cp cc dd1
beatty<-- vw cp cc dd2
,---
| Retrace : tmp:retrace:dir ${HOME}/simple_test
| Id : 00001219
| Requested by: john@tahoe:0.0
| Priority : NORMAL
| Mode : SAFE
| Work to do : 3 tools
| Status : DONE. Expected duration: 3s Actual: 10s (333%)
`---
% vsr -all
... output omitted ...

Detect Conflicts

If you make no mistakes, FlowTracer remains invisible. However, if in your design activity you accidentally violate dependency

constraints, FlowTracer will alert you. FlowTracer will warn you if you try to execute a tool with invalid inputs.

1. Execute the following:

% touch aa
% vw cp bb cc

In this case, the modification to aa invalidated bb and therefore made the request to run the job of copying bb to cc a

wasted step because bb was no longer valid. When you request that job to be done, FlowTracer will prompt you as follows:

FlowTracer: ATTENTION! Input conflict detected! FlowTracer: ATTENTION!
FlowTracer: ATTENTION! Input conflict detected! FlowTracer: ATTENTION!
---------- User Decision Required ---------------
INPUT CONFLICT for tool
vw cp bb cc
(directory ${HOME}/tutorial)
The tool needs
FILE:${HOME}/tutorial/bb
which is currently INVALID
1 -- CONTINUE
2 -- STOP ASKING
3 -- (*) ABORT
Please choose (1--3) >>>

Here you have the chance to abort from an operation that has to be redone anyway later, or continue as you would have

without FlowTracer. At least you are aware that the computation is likely to be incorrect.

2. If you try to redefine the source of a file, FlowTracer will ask you if you really want to change how the file is generated. Try

the following

% vw cp aa bb
% vw cp bb cc
% vw cp aa cc

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.130

Example of an output conflict :

FlowTracer: ATTENTION! Output conflict detected! FlowTracer: ATTENTION!
FlowTracer: ATTENTION! Output conflict detected! FlowTracer: ATTENTION!
---------- User Decision Required ---------------
OUTPUT CONFLICT caused by data item
FILE:${HOME}/tutorial/cc
Command lines are different.
Common part is 6 characters long.
'bb cc' != 'aa cc'.
^____ ^____
1 -- CONTINUE
2 -- (*) ABORT
3 -- MORE INFO
Please choose (1--3) >>>

You can see that cc is already dependent on bb.

3. Answer 2 (Abort).

FlowTracer will also prevent you from creating cyclic dependencies.

% vw cp aa bb
% vw cp bb cc
% vw cp cc aa # whoops, a cycle (aa->bb->cc->aa)

Example of an cycle conflict :

FlowTracer: ATTENTION! Cycle detected! FlowTracer: ATTENTION!
FlowTracer: ATTENTION! Cycle detected! FlowTracer: ATTENTION!
vw Mar 30 12:36:03 Failed FlowTracer call libconnect.cc,146

vw ERROR Mar 30 12:36:03 Cycle conflict for ${HOME}/tutorial/aa
vw Mar 30 12:36:03 This tool invocation is now forgotten
vw Mar 30 12:36:03 Serious dependency violation (status -3)

Repeat the Tutorial without the GUI

Rerunning in the current directory is initiated with the command vsr. Right now, the dependency graph should be up to date with

all nodes being valid (you can check this status using vls). So running vsr will do nothing.

1. Run everything with the vsr command:

% vsr
,---
| Retrace : Retrace Directory ...
`---
sparc<-- vw cp aa bb
hppa <-- vw cp bb cc
sparc<-- vw tar -cf archive.tar aa bb cc
,---
| Status : DONE. Expected duration: 2s Actual: 3s (150%)
`---

If FlowTracer has been configured to use multiple machines, you may see commands being executed on other hosts.

FlowTracer uses a technique called resource mapping to generate a list of candidate machines, then selects the machine

which can execute the command the fastest.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.131

2. Run the command vls to confirm that the system has been updated.

% vls
VALID i aa
VALID o archive.tar
VALID u bb
VALID u cc

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.132

Flow Description Language

In the earlier section, you built a flow by interactively calling the wrapper program for each job. That was a useful exercise to

understand a simple way to register a job with FlowTracer, how to establish runtime tracing for the job, and how to monitor a flow

using the GUI console. However, that is not how FlowTracer would be used for production.

The FlowTracer product does not expect a product flow to be registered by interactively registering each job one at a time from the

command line. Instead, the normal use is:

• Develop a description of the jobs to register, using the Flow Description Language (FDL)

• Register the jobs and instantiate the flow using the vovbuild command

• Request a "run" to have FlowTracer schedule and deploy jobs as necessary in parallel

In this tutorial, you will develop a few simple flows by writing a job description file and registering the jobs with vovbuild.

Tasks in This Tutorial

Remove Older Sets

Before starting, you should establish your current working directory to be the same one you used earlier "simple_test" in your

home, and you should have the GUI Console running so you can watch the effect of building the flow, as you did in the earlier

tutorial.

1. Change to your current working directory and start up vovconsole in the background.

% cd
% cd simple_test
% vovconsole &

2. From the Set Browser, click on System and then double click on Nodes.

3. Double click on a set name to display the contents of the set in the Set Viewer panel on the right.

4. Single click on a set name to highlight nodes in the Set Viewer panel if they are members of the clicked set.

For example, if a set named TOP:partition1:subset1 is clicked while showing TOP:partition1 in the Set Viewer panel,

then the contents of subset1 will be highlighted in the Set Viewer.

You should see the current state of the flow from when you stopped the earlier tutorial. The model of the flow is held in the

server, not the console. The console shows what the server is managing.

5. The view of the graph can be toggled to show or not show files. We want to have the files show. If the files are not shown,

turn on display of file nodes by right clicking in the background of the Set Viewer panel to open a context menu. Click

Show/Hide to open a submenu where you can toggle on the Show Files option.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.133

Figure 40: Context menu seen when right-clicking in open area of canvas in Set Viewer

For the next exercise, you will not be using the flow from the previous steps. You can tell FlowTracer sever to drop that flow from

its memory. This will remove it from the server, and the console display will change to show that the flow was dropped.

You tell the server to forget by telling it to forget nodes. You can tell it to forget one node or groups of nodes using the

vovforget command. The easy way to refer to a group of nodes is by referencing them by set name.

6. Tell FlowTracer to forget the nodes you see when displaying the System > nodes set by telling it to forget the nodes in that

set. Enter this, typing it in at the command line:

% vovforget -elements System:nodes
message: Forgotten 10 nodes

The Set Viewer display updates to show an empty canvas since there are no longer any nodes to display, as they have all

been forgotten.

7. Remove the files from the directory simple_test. It will contain the file aa which is the primary input of the emulation,

and the files bb, cc, dd1, and dd2 which are the derived files from the emulation. Enter the following:

% rm aa bb cc dd1 dd2

You are now ready to continue with this exercise to register a new set of jobs that define a flow by way of editing a Flow

Description file and using it to build the flow.

The Flow.tcl File

The default name for a job description file is Flow.tcl. The first job description file you will write will define the same jobs that

you registered interactively in the previous tutorial.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.134

You should have a file called Flow.tcl in the simple_test directory. It will hold a Flow Description for the flow having four

jobs that was built interactively before. Recall that this tutorial is using the cp command to emulate more complicated programs

that process input to generate output.

Edit the file as follows:

% cat Flow.tcl
J vw cp bb cc
J vw cp cc dd1
J vw cp cc dd2
J vw cp aa bb

The sequence of the commands is deliberately in the "wrong" order from how you might enter them if you planned to run the

programs yourself. You do not need to enter them in their dependency order.

The token 'J' in this file is the name of a Tcl procedure, one of those that comprise the Flow Description Language. J means

to register a job into the flow. The job to register is the one whose command has been passed as an argument, (the command is

what follows on the line). The command is what was typed in interactively in the earlier tutorial. The command calls the wrapper

program "vw" to establish that runtime tracing will be used. It passes the wrapper the shell command that runs the job.

In this case we want our flow to contain 4 jobs. The jobs are in an arbitrary order, since FlowTracer has the ability to determine or

discover the correct order.

The flow description can be this simple because it need not be concerned with issues like environment setup, job scheduling,

job control, capturing of stdout and stderr, license checking, error checking, detection of parallelism, since all these services are

automatically provided by FlowTracer. This means that a flow description file is typically several times smaller than an equivalent

Makefile or shell script.

Build the Flow

Now that you have a job description, you need to build the flow with the vovbuild program.

The vovbuild program processes a flow description file and registers the described programs into the flow. It defaults to using

the file Flow.tcl as the flow description file.

% vovbuild
.... # 4 dots, one per job

Building the flow is different from running it. The jobs in the flow may take seconds or days to execute, but building the flow is

normally a rather quick step. Building the flow is building the dependency graph, not running the programs registered into the

graph.

After the vovbuild is done, you must double click the System:nodes set in the Set Browser to get the console to refresh the Set

Viewer with the current graph.

The graph you get will have a similar look to this. Minor differences in the size and position of the nodes are to be expected.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.135

Figure 41:

Notice that the dependency ordering of the jobs in the graph has been created properly, even though the jobs in the FDL file were

entered without an order.

Notice that the top node is brown, to indicate that file aa is missing. The flow building discovered that file aa is not present and

marks the file to have the MISSING status. The other nodes are purple to indicate that they are INVALID.

Run the Flow Interactively

1. You can run the flow by pressing Run in the action menu bar in the top of the Set Viewer panel.

Nothing will happen since the very first job in the dependency graph is unable to run since its input aa is missing.

2. Create a file aa in the simple_test directory.

% touch aa

The graph will change to show that file aa was just created. If this is not seen, make sure that the Set Viewer is actively

displaying the System:nodes set by double clicking on the System:nodes choice in the Set Browser.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.136

The node for file aa is green. The rest of the nodes are purple to indicate that all those dependent elements are INVALID.

Another way to see the INVALID set of nodes it to say they are ready to run.

Figure 42:

3. Click Run to have FlowTracer process the graph.

The display will change quickly to reflect the various state changes of the nodes representing the jobs and the files.

You will see nodes change to light blue to indicate they are SCHEDULED, or yellow to indicate they are RUNNING, and

finally, all of the nodes will turn bright green to show a successful run of the dependency graph. All the dependent jobs

ran successfully and all dependent files were made successfully. This is just an emulation using the cp command but if the

defined jobs had used production class programs, the result would be the same.

Running a job interactively is fun to do but it is not how FlowTracer would be used in production. This section was to show you

how the flow description language file is created and how the flow is registered with FlowTracer by using vovbuild.

Run a Flow from the Command Line

In production mode, you will use a command line request to run the flow. It's as easy as clicking the Run button.

1. Now that there is a Flow.tcl file in hand that can be given to vovbuild to create a flow as needed, remove the current

flow and register it again. Remove the dependent files too, leaving the primary file aa.

% vovforget -elements System:nodes
message: Forgotten 10 nodes
% rm bb cc dd1 dd2
% vovbuild
....

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.137

The GUI Console will have the familiar look to it as seen earlier. Note that there may be slight variation in the placement of

the nodes in the display, which is expected.

2. Enlarge the display and select the menu View > Fit or use the keyboard shortcut f to cause the placement of nodes to fit

better within the Set Viewer.

3. Resize the display smaller, which will keep the same layout but reduce the size of the nodes.

4. Use the command line to request that FlowTracer run the jobs, taking into account the dependencies of the graph, just as it

does when the run request is done by clicking the Run button. The program vsr is the command that requests FlowTracer

to run the flow.

% vsr
....
localhost <-- vw cp aa bb
localhost <-- vw cp bb cc
localhost <-- vw cp cc dd
localhost <-- vw cp cc ee

The resulting graph in the GUI Console will show various changes in node colors as the dependent programs are run in the

right order, and dependent files are created. In the end, the graph will show all green nodes, indicating a successful run.

Batch Process to Define and Run a Flow

In production mode, you will have scripts that create flows and run them. The console GUI will be one interface you will use to

monitor the flows that get run this way. The other interface is through the browser.

In these tutorials, you are using the simple command cp to emulate more complicated programs, which might take much longer

to run that a file copy does. This tutorial does not show you long running programs, as you will see in production. This means

that during this exercise you do not get to view long lasting states of an intermediate job. The intermediate jobs run too quickly to

notice their state changes. For longer lasting flows, the GUI and browser interface provide useful ways to watch the details of what

is happening.

1. The control over what is supposed to happen is in scripts that define the flows and get them running. To demonstrate this,

reset FlowTracer as you did earlier, to get rid of the current flow. It is not needed any more. Remove the dependent files and

the primary input file too.

% vovforget -elements System:nodes
message: Forgotten 10 nodes
% rm aa bb cc dd1 dd2

The console should reflect all this and show an empty Set View panel.

2. Edit the file dowork.sh in the simple_test directory to look like this:

% cat dowork.sh

rm -f aa bb cc dd1 dd2
vovforget -elements System:nodes
sleep 5
vovbuild -f Flow.tcl
sleep 5
vsr
sleep 10

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.138

touch aa
sleep 10
vsr

This shell script is going to run the commands you have been entering interactively, with sleep commands in the sequence

to emulate the time between entering the commands. This is intended to give you a chance to notice the state change in the

console's Set Viewer when the script is run.

3. Run the shell script while watching the GUI console.

% sh dowork.sh

The script starts with removing the primary and dependent files so it can be run repeatedly.

4. Run the shell script again, and then again, to get familiar with having flows defined starting from an empty canvas, seeing

the flow dependency graph before any jobs of the flow are run, seeing the jobs scheduled to run but not succeed, and then

seeing a successful run of all the jobs.

The flow is defined by FDL language statements in a flow description file. The flow is created and run by commands in a batch

shell script. You monitor the progress of the entire system by looking at the GUI console.

Create a Complex Flow

Everything done so far could have been done just as easily using make or a C-shell script. In this step you will build a flow which

neither make nor a shell script could handle efficiently. This is a flow that spans multiple directories.

This example project will dynamically create a set of subdirectories. For each subdirectory, it will run four jobs within that context

that process the same input file aa that comes from the top level main directory. The jobs are the ones we have been using to

emulate useful work.

This flow definition implements a project that has variant ways of processing, starting from a given input file, with each variant

task branch running in a different area, and each one enabled to be run in parallel or in any order, independent of work done in

another subdirectory. For this tutorial flow, all the variant task branches have the same set of four jobs which are emulated by the

same simple cp commands. In a real project, each variant task sequence could involve different programs.

% cat Flow2.tcl

for {set i 1 } { $i < 20 } { incr i } {
 indir -create subdir$i {
 J vw cp ../aa bb
 J vw cp bb cc
 J vw cp cc dd1
 J vw cp cc dd2
 }
}

The for construct is standard Tcl, while the procedure indir is a FlowTracer extension. In this case you want to create the

subdirectories subdirN, so you will use the option -create of indir.

1. Start the sequence with removal of files that might exist if the steps are done again.

% vovforget -elements System:nodes
% rm -rf aa subdir*
% vovbuild -f Flow2.tcl
......................................

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.139

......................................

......................................

......................................
% touch aa
% vsr -all

Figure 43:

You have to use option -all of vsr because this flow spans multiple directories and the default target of vsr is just the

current working directory.

2. As was done earlier, create a batch shell script to build the flow and run it.

% cat dowork2.sh

vovforget -elements System:nodes
rm -rf aa subdirs*
sleep 5
vovbuild -f Flow2.tcl
sleep 5
touch aa
sleep 5
vsr -all

% sh dowork2.sh

3. Rather than use a shell script to redo the commands to build and run the flow, you can work with the flow as it is defined in

FlowTracer, and try touching aa to emulate a change in the primary input file. This models an event that precedes running

all the dependent jobs. Run vsr -all to have FlowTracer schedule and dispatch all the dependent variant processes in the

task paths. Watch the state of the nodes as the activity progresses.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.140

Figure 44:

EDA Flows

In this section, some typical EDA flows that are more dynamic than the ones we have used so far are shown.

You will consider a project that implements a simulation based on calling a tool named simulate. The model is that a directory

will contain a group of stimulus files. The intent is to run one job for each stimulus file in the directory. The job will run the

simulate program within the context of a unique subdirectory for each stimulus file.

The Tcl file to define the jobs in this project will use the Tcl glob notation to discover all the stimulus files in the directory based

on their having a name with the suffix .stim. Then it will create a subdirectory using the base name of the stimulus file, and run a

job in that subdirectory.

In this example, two FDL procedures are introduced: E and R. The procedure E defines the environment in which the simulation

jobs must be executed. In this case, the environment is the combination of the BASE environment, which is part of any normal

FlowTracer installation, and the SPICE environment, which is presumably an environment that has to be setup for each site to

support the running of the SPICE tool, since the location of the simulation software varies from site to site.

The procedure R defines the resources required by the subsequent jobs in the flow. In this case, we declare that each job requires

one license of the tool 'spice' (represented by the resource 'License:spice') and at least 250MB of RAM.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.141

This is an example of how to define a group of simulation jobs for a project. These lines would be placed into a tcl file so that the

tcl file could be registered into FlowTracer by running vovbuild against it.

E "BASE+SPICE"
R "License:spice RAM/250"
foreach stimulusFile [glob *.stim] {
 set root [file root $stimulusFile]
 indir -create $root {
 J vw simulate ../$stimulusFile -o $root.log
 }
}

This shows how jobs would be defined in a production environment so that a project's flow gets defined by way of running

vovbuild against a script holding the job definitions using the FDL language and tcl.

The back-end flows for placement and routing of blocks tend to require many sequential steps, each one requiring different

resources, such as licenses and RAM. While many organization use the same tool suites, such as Cadence's Silicon Ensemble,

it is rare to see the core tools such as qp and wroute called directly. Instead, each organization has its own wrapper script to

define how those tools are to be invoked. In our example, the wrapper script is called pnr and is presumably accessible from the

environment called EDA.

Example of defining a group of jobs to do a Place & Route operation:

set block [shift]
E "BASE+EDA+CADENCE"

R "License:qp RAM/250"
J vw pnr place $block
J vw pnr scanins $block

R "License:wroute RAM/2000"
J vw pnr route $block
J vw pnr clocktree $block

R ""
J vw pnr to_gds $block

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Beginner's Tutorials p.142

Stop the Project

Server Management: Starting and Stopping

The server normally runs for the lifetime of the project. If it becomes necessary to shut down the server, use the stop option of the

vovproject command.

% vovproject stop
vovproject mm/dd/2015 hh:mm:ss: message: Checking privilege to stop project 'test'
Shut down test (yes/no)? yes
...

You can later restart the server with

% vovproject start project

Server Management: Destroying

After stopping a project, you can completely remove the project using the destroy option of the vovproject command.

% vovproject destroy project

This command removes all project files from the file system so that the project does not exist anymore and can not be started.

Proprietary Information of Altair Engineering

FlowTracer Advanced Tutorials 7

FlowTracer Advanced Tutorials

This chapter covers the following:

• Create Efficient VOV Scripts (p. 144)

• Write Flows (p. 146)

Altair Accelerator Software 2024.1.1

FlowTracer Advanced Tutorials p.144

Create Efficient VOV Scripts

If your flows are small, such as a few thousands jobs, you probably do not need to worry much about efficiency of your scripts. If

you expect to operate on flows with hundreds of thousands of jobs, then this section can be useful.

While developing a VOV script, it is important to make sure that they do not needlessly make expensive calls that take a lot of

vovserver time.

One useful method is to ask the system to show the service time for all expensive calls, which is activated by setting the

environment variable VOV_SHOW_SERVICE_TIME to a positive integer that represents a time in milliseconds.

Note: The integer value is a threshold below which the times are not shown.

Here is an example with a call (i.e. "sanity") that tends to be expensive:

% setenv VOV_SHOW_SERVICE_TIME 1
% vovproject sanity
vovsh(19194) Nov 12 12:36:35 SERVICE_TIME: Service took 2027ms for 137=SanityCheck
vovsh(19194) Nov 12 12:36:35 SERVICE_TIME: Total service time for this client:
 2.027s

In this example, vovserver took a bit more than 2 seconds to complete the reply to the request "SanityCheck" (internal code 137).

This is normal for SanityCheck, and it is a reason why you do not want to run SanityCheck unless really necessary. Most VOV

services you really need should be in the low millisecond range.

This method only shows the "slow" services. To see all services requested by a script, use the variable VOV_DEBUG_FLAGS as

in this example:

% setenv VOV_DEBUG_FLAGS 16 ; ### This has to be 16 to show the RPC codes.

Experiments

#!/bin/csh -f
Try this script and compare the load on the server
Assume it is called "my_test_script"

set id = `vovsh -x 'FDL_INIT; VovUtils:init; set vovutils(feedback) quiet; puts [J vw
 hostname]'
vovselect status from jobs where id==$id ; ######## A common mistake
vovselect status from $id

NC variants
nc info $id | grep Status | awk '{print $2}'
nc list | grep $id | awk '{print $2}' ;;; ## Another horrible yet common mistake
nc getfield $id status ;;; ## BEST way!

####### NOTE: This experiment run with 500,000 jobs in the flow.
% setenv VOV_SHOW_SERVICE_TIME 1
% unsetenv VOV_DEBUG_FLAGS
% ./my_test_script
vovsh(9612) Nov 12 15:19:48 SERVICE_TIME: Total service time for this client:
 0.000s
vovsh(9617) Nov 12 15:19:48 SERVICE_TIME: Service took 8ms for 307=CreateQuery
 select:fieldname from:jobs

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Advanced Tutorials p.145

vovsh(9617) Nov 12 15:19:48 SERVICE_TIME: Service took 707ms for 307=CreateQuery
 select:status from:jobs where:id==002233767
INVALID
vovsh(9617) Nov 12 15:19:48 SERVICE_TIME: Total service time for this client:
 0.715s
INVALID
vovsh(9671) Nov 12 15:19:49 SERVICE_TIME: Total service time for this client:
 0.000s
vovsh(9698) Nov 12 15:19:49 SERVICE_TIME: Service took 1ms for 208=GetInfoMap
 project
vovsh(9698) Nov 12 15:19:49 SERVICE_TIME: Total service time for this client:
 0.001s
Idle
vovsh(9724) Nov 12 15:19:52 SERVICE_TIME: Service took 2607ms for
 296=ListElementsEnh id:000001041 format:@ID@ @STATUSNC:9@ @PRIORITYPP:6@ @HOST:14@
 @COMMAND:40@ range:0--1
vovsh(9724) Nov 12 15:19:54 SERVICE_TIME: Total service time for this client:
 2.607s
Idle
INVALID
vovsh(9928) Nov 12 15:19:55 SERVICE_TIME: Total service time for this client:
 0.000s

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Advanced Tutorials p.146

Write Flows

In Create a FlowTracer Project, you built a flow by executing one tool at a time. That was a useful exercise to understand the

fundamentals of runtime tracing. However, that is not the usage model for FlowTracer.

The flow developer rarely has to enter any shell command. In the normal usage of FlowTracer, developers use the FDL and tool

integration to build flows

In this tutorial, you will write a few simple flows.

The Flow.tcl file

The normal name for a flow description is Flow.tcl. The first flow you will write will reproduce the flow created in the user

tutorial:

This is the first Flow.tcl
J vw cp bb cc
J vw cp cc dd
J vw cp cc ee
J vw cp aa bb ;# Deliberately out of order.

The token J in this file is the name of a Tcl procedure, one of those that comprise the Flow Description Language. J means that we

want our flow to include the job whose command line has been passed as argument.

In this case we want our flow to contain 4 jobs. We list the jobs in arbitrary order, since FlowTracer has the ability to determine or

discover the correct order anyway.

The flow description can be this simple because it need not be concerned with issues like environment setup, job scheduling,

job control, capturing of stdout and stderr, license checking, error checking, detection of parallelism, since all these services are

automatically provided by FlowTracer. This means that a flow description file is typically several times smaller than an equivalent

Makefile or shell script.

Build the Flow

Now that we have a flow description, we need to build the flow with vovbuild. Before we do that, however, we recommend

that you use the GUI to monitor what is happening, as you have learned in the user tutorial. Also, in case you still have the flow

generated in the user tutorial, you should tell FlowTracer to forget it.

% vovconsole &
% vovforget -elements System:nodes
% vovbuild
.... # 4 dots, one per job.

Building the flow is different from running it. The jobs in the flow may take hours or days to execute, but building the flow is

normally a rather quick step.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Advanced Tutorials p.147

Execute the Flow

Now you can ask FlowTracer to run the jobs for you, taking into account dependencies and parallelism.

% vsr
....
localhost <-- vw cp aa bb
localhost <-- vw cp bb cc
localhost <-- vw cp cc dd
localhost <-- vw cp cc ee

Build a More Complex Flow

Everything done so far could have been done just as easily using make or a C-shell script. In this step we build a flow which

neither make nor a shell script could handle efficiently. This is a flow that spans multiple directories.

This is Flow2.tcl
for {set i 1 } { $i < 20 } { incr i } {
 indir -create subdir$i {
 J vw cp ../aa bb
 J vw cp bb cc
 J vw cp cc dd
 J vw cp cc ee
 }
}

The for construct is standard Tcl, while the procedure indir is a FlowTracer extension. In this case we want to create the

subdirectories subdirN, so we use the option -create of indir.

% vovbuild -f Flow2.tcl
......................................
......................................
......................................
......................................
% vsr -all

You have to use option -all of vsr because this flow spans multiple directories and the default target of vsr is just the current

working directory.

EDA Flows

In this section we show some typical EDA flows. We start with a simulation flow, where we want to execute one job for each

stimulus file in a directory. We use glob to find all stimuli, that is, the files with suffix ".stim", then we create a subdirectory

for each file and we define a job to run in such directory.

In this example we introduce two FDL procedures: E and R. The procedure E defines the environment in which the simulation

jobs mut be executed. In this case, the environment is the combination of the BASE environment, which is part of any normal

FlowTracer installation, and the SPICE environment, which is presumably an environment that has to be setup for each site, since

the location of the simulation software varies from site to site.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

FlowTracer Advanced Tutorials p.148

The procedure R defines the resources required by the subsequent jobs in the flow. In this case, we declare that each job requires

one license of the tool 'spice' (represented by the resource 'License:spice') and at least 250MB of RAM.

A simulation flow:

E "BASE+SPICE"
R "License:spice RAM/250"
foreach stimulusFile [glob *.stim] {
 set root [file root $stimulusFile]
 indir -create $root {
 J vw simulate ../$stimulusFile -o $root.log
 }
}

The back-end flows for placement and routing of blocks tend to require many sequential steps, each one requiring different

resources, such as licenses and RAM. While many organizations use the same tool suites, such as Cadence's Silicon Ensemble, it is

rare to see the core tools such as qp and wroute called directly. Instead, each organization has its own wrapper script to define how

those tools are to be invoked. In our example, the wrapper script is called pnr and is presumably accessible from the environment

called EDA.

A Place & Route flow

set block [shift]
E "BASE+EDA+CADENCE"

R "License:qp RAM/250"
J vw pnr place $block
J vw pnr scanins $block

R "License:wroute RAM/2000"
J vw pnr route $block
J vw pnr clocktree $block

R ""
J vw pnr to_gds $block

Proprietary Information of Altair Engineering

Generate Custom HTML Reports Using
CGI Tutorial 8

Generate Custom HTML Reports Using CGI Tutorial

This chapter covers the following:

• Job Reports: List (p. 151)

• Job Reports: Table (p. 152)

Every vovserver has a built-in HTTP interface, which includes the ability to quickly generate customized reports using the CGI

(Common-Gateway-Interface) mechanism. This tutorial guides you through the first simple CGI script.

You will write a CGI script that is project specific, and install it in the cgi subdirectory of the server configuration directory:

% set cgidir = `vovserverdir -p cgi`
% echo $cgidir
/home/someuser/vov/test.swd/cgi # Or similar
% mkdir $cgidir
% cd $cgidir
% vi tutorial.cgi

File tutorial.cgi

#!/bin/csh -f
The rest is -*- Tcl -*- exec vovsh -f $0 $*

This is file tutorial.cgi

VOVHTML_START
HTML {
 HEAD { TITLE "CGI Tutorial" }
 BODY {
 OUT "Hello World"
 }
}
VOVHTML_FINISH

The first 3 lines are a common UNIX technique to make this script executable by vovsh, which is the main FlowTracer client.

Notice that this script is written in Tcl syntax.

The commands VOVHTML_START and VOVHTML_FINISH are required.

The procedures HTML, HEAD, BODY, and OUT, are defined in the file $VOVDIR/tcl/vtcl/vovhtmlgen.html and are a

convenient way to generate well formed HTML code. You are not required to write the CGI script in Tcl, only we believe you will

find it extremely more convenient to do, especially considering that the FlowTracer API is itself in Tcl.

To satisfy the curious, here is how the same script could have been written without Tcl.

#!/bin/csh -f

This is the hard way to write a CGI script.
echo "\r" # Important empty line!
echo "<html>"

Altair Accelerator Software 2024.1.1

Generate Custom HTML Reports Using CGI Tutorial p.150

echo "<head><title>CGI Tutorial</title></head>"
echo "<body>Hello World</body>"
echo "</html>"
exit 0

Make the script executable and use a browser to visit the URL given to you by the command vovbrowser.

% chmod a+x tutorial.cgi
% vovbrowser -url /cgi/tutorial.cgi
http://host:port/cgi/tutorial.cgi

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Generate Custom HTML Reports Using CGI Tutorial p.151

Job Reports: List

Use an ordered list

#!/bin/csh -f
The rest is -*- Tcl -*- exec vovsh -f $0 $*

This is file tutorial.cgi

VOVHTML_START
HTML {
 HEAD { TITLE "CGI Tutorial" }
 BODY {
 set setId [vtk_set_find "System:jobs"]
 OL {
 foreach job [vtk_set_get_elements $setId "@ID@ @STATUS@ @HOST@"] {
 LI { OUT $job }
 }
 }
 }
}
VOVHTML_FINISH

In this example we introduce two vtk procedures:

1. vtk_set_find takes a set name and returns its the set id. In this case, the name of the set is "System:jobs" which is a

system set.

2. vtk_set_get_elements which takes 2 arguments, namely the id of a set and a format string. In this case, the format

string asks for the job id, its status, and the host on which the job was executed.

We also show two more HTML procedures, that is OL and LI, which are used to build ordered lists.

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Generate Custom HTML Reports Using CGI Tutorial p.152

Job Reports: Table

Use a table.

#!/bin/csh -f
The rest is -*- Tcl -*- exec vovsh -f $0 $*

This is file tutorial.cgi

VOVHTML_START
HTML {
 HEAD { TITLE "CGI Tutorial" }
 BODY {
 set setId [vtk_set_find "System:jobs"]
 TABLE border="1" align="center" {
 foreach job [vtk_set_get_elements $setId "@ID@ @STATUS@ @HOST@"] {
 set id [shift job]
 set status [shift job]
 set host [shift job]
 TR {
 TH { OUT $host }
 TD { HREF "/node/$id" $id }
 TD { OUT $status }
 }
 }
 }
 }
}
VOVHTML_FINISH

In this example we introduce the HTML procedures TABLE, TR, TH and TD, which are used to create tables. The procedure

HREF is used to introduce a hyperlink. In this case, the page "/node/XXX" has a detailed description of the node with id XXX.

Finally, in this example we introduce the Tcl procedure shift which is really an Altair Accelerator extension and is used to take the

first element from a list while shifting the list left by one.

Proprietary Information of Altair Engineering

Legal Notices

Altair Accelerator Software 2024.1.1

Legal Notices p.154

Intellectual Property Rights Notice
Copyrights, trademarks, trade secrets, patents and third party software licenses.

Copyright ©1986-2024 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of the intellectual property rights held by

Altair Engineering Inc. or its affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are

protected under laws of the United States and laws of other jurisdictions.

In addition to intellectual property rights indicated herein, such software, other products, and materials of Altair Engineering Inc.

or its affiliates may be further protected by patents, additional copyrights, additional trademarks, trade secrets, and additional other

intellectual property rights. For avoidance of doubt, copyright notice does not imply publication. Copyrights in the below are held

by Altair Engineering Inc. or its affiliates. Additionally, all non-Altair marks are the property of their respective owners. If you

have any questions regarding trademarks or registrations, please contact marketing and legal.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual

property rights of Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates

is governed by and dependent on a valid license agreement.

Altair HyperWorks®, a Design & Simulation Platform

Altair® AcuSolve® ©1997-2024

Altair® Activate®©1989-2024

Altair® Automated Reporting Director™ ©2008-2022

Altair® Battery Damage Identifier™©2019-2024

Altair® Battery Designer™ ©2019-2024

Altair® CFD™ ©1990-2024

Altair Compose®©2007-2024

Altair® ConnectMe™ ©2014-2024

Altair® DesignAI™ ©2022-2024

Altair® EDEM™ ©2005-2024

Altair® EEvision™ ©2018-2024

Altair® ElectroFlo™ ©1992-2024

Altair Embed® ©1989-2024

Altair Embed® SE ©1989-2024

Altair Embed®/Digital Power Designer ©2012-2024

Altair Embed®/eDrives ©2012-2024

Altair Embed® Viewer ©1996-2024

Altair® e-Motor Director™ ©2019-2024

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Legal Notices p.155

Altair® ESAComp® ©1992-2024

Altair® expertAI™ ©2020-2024

Altair® Feko® ©1999-2024

Altair® Flow Simulator™ ©2016-2024

Altair® Flux® ©1983-2024

Altair® FluxMotor® ©2017-2024

Altair® GateVision PRO™ ©2002-2024

Altair® Geomechanics Director™ ©2011-2022

Altair® HyperCrash® ©2001-2023

Altair® HyperGraph® ©1995-2024

Altair® HyperLife® ©1990-2024

Altair® HyperMesh® ©1990-2024

Altair® HyperMesh® CFD ©1990-2024

Altair® HyperMesh ® NVH ©1990-2024

Altair® HyperSpice™ ©2017-2024

Altair® HyperStudy® ©1999-2024

Altair® HyperView® ©1999-2024

Altair® HyperView Player® ©2022-2024

Altair® HyperWorks® ©1990-2024

Altair® HyperWorks® Design Explorer ©1990-2024

Altair® HyperXtrude® ©1999-2024

Altair® Impact Simulation Director™ ©2010-2022

Altair® Inspire™ ©2009-2024

Altair® Inspire™ Cast ©2011-2024

Altair® Inspire™ Extrude Metal ©1996-2024

Altair® Inspire™ Extrude Polymer ©1996-2024

Altair® Inspire™ Form ©1998-2024

Altair® Inspire™ Mold ©2009-2024

Altair® Inspire™ PolyFoam ©2009-2024

Altair® Inspire™ Print3D ©2021-2024

Altair® Inspire™ Render©1993-2024

Altair® Inspire™ Studio ©1993-2024

Altair® Material Data Center™ ©2019-2024

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Legal Notices p.156

Altair® Material Modeler™©2019-2024

Altair® Model Mesher Director™ ©2010-2024

Altair® MotionSolve® ©2002-2024

Altair® MotionView® ©1993-2024

Altair® Multi-Disciplinary Optimization Director™ ©2012-2024

Altair® Multiscale Designer® ©2011-2024

Altair® newFASANT™©2010-2020

Altair® nanoFluidX® ©2013-2024

Altair® NVH Director™ ©2010-2024

Altair® NVH Full Vehicle™ ©2022-2024

Altair® NVH Standard™ ©2022-2024

Altair® OmniV™ ©2015-2024

Altair® OptiStruct® ©1996-2024

Altair® physicsAI™ ©2021-2024

Altair® PollEx™ ©2003-2024

Altair® PSIM™ ©1994-2024

Altair® Pulse™ ©2020-2024

Altair® Radioss® ©1986-2024

Altair® romAI™ ©2022-2024

Altair® RTLvision PRO™ ©2002-2024

Altair® S-CALC™ ©1995-2024

Altair® S-CONCRETE™ ©1995-2024

Altair® S-FRAME® ©1995-2024

Altair® S-FOUNDATION™ ©1995-2024

Altair® S-LINE™ ©1995-2024

Altair® S-PAD™ © 1995-2024

Altair® S-STEEL™ ©1995-2024

Altair® S-TIMBER™ ©1995-2024

Altair® S-VIEW™ ©1995-2024

Altair® SEAM® ©1985-2024

Altair® shapeAI™ ©2021-2024

Altair® signalAI™ ©2020-2024

Altair® Silicon Debug Tools™ ©2018-2024

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Legal Notices p.157

Altair® SimLab® ©2004-2024

Altair® SimLab® ST ©2019-2024

Altair® SimSolid® ©2015-2024

Altair® SpiceVision PRO™ ©2002-2024

Altair® Squeak and Rattle Director™ ©2012-2024

Altair® StarVision PRO™ ©2002-2024

Altair® Structural Office™ ©2022-2024

Altair® Sulis™©2018-2024

Altair® Twin Activate®©1989-2024

Altair® ultraFluidX® ©2010-2024

Altair® Virtual Gauge Director™ ©2012-2024

Altair® Virtual Wind Tunnel™ ©2012-2024

Altair® Weight Analytics™ ©2013-2022

Altair® Weld Certification Director™ ©2014-2024

Altair® WinProp™ ©2000-2024

Altair® WRAP™ ©1998-2024

Altair HPCWorks®, a HPC & Cloud Platform

Altair® Allocator™ ©1995-2024

Altair® Access™ ©2008-2024

Altair® Accelerator™ ©1995-2024

Altair® Accelerator™ Plus ©1995-2024

Altair® Breeze™ ©2022-2024

Altair® Cassini™ ©2015-2024

Altair® Control™ ©2008-2024

Altair® Desktop Software Usage Analytics™ (DSUA) ©2022-2024

Altair® FlowTracer™ ©1995-2024

Altair® Grid Engine® ©2001, 2011-2024

Altair® InsightPro™ ©2023-2024

Altair® Hero™ ©1995-2024

Altair® Liquid Scheduling™©2023-2024

Altair® Mistral™ ©2022-2024

Altair® Monitor™ ©1995-2024

Altair® NavOps® ©2022-2024

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Legal Notices p.158

Altair® PBS Professional® ©1994-2024

Altair® PBS Works™ ©2022-2024

Altair® Software Asset Optimization (SAO) ©2007-2024

Altair® Unlimited™ ©2022-2024

Altair® Unlimited Data Analytics Appliance™ ©2022-2024

Altair® Unlimited Virtual Appliance™ ©2022-2024

Altair RapidMiner®, a Data Analytics & AI Platform

Altair® AI Hub ©2001-2023

Altair® AI Edge ©2001-2023

Altair® AI Cloud ©2001-2023

Altair® AI Studio ©2001-2023

Altair® Analytics Workbench™ ©2002-2024

Altair® Knowledge Hub™ ©2017-2024

Altair® Knowledge Studio® ©1994-2024

Altair® Knowledge Studio®for Apache Spark ©1994-2024

Altair® Knowledge Seeker™ ©1994-2024

Altair® IoT Studio™ ©2002-2024

Altair® Monarch® ©1996-2024

Altair® Monarch® Classic ©1996-2024

Altair® Monarch® Complete™©1996-2024

Altair® Monarch® Data Prep Studio ©2015-2024

Altair® Monarch Server™©1996-2024

Altair® Panopticon™ ©2004-2024

Altair® Panopticon™ BI ©2011-2024

Altair® SLC™ ©2002-2024

Altair® SLC Hub™ ©2002-2024

Altair® SmartWorks™ ©2002-2024

Altair® RapidMiner® ©2001-2023

Altair One® ©1994-2024

Altair® License Utility™ ©2010-2024

Altair® TheaRender® ©2010-2024

Altair® OpenMatrixTM©2007-2024

Proprietary Information of Altair Engineering

Altair Accelerator Software 2024.1.1

Legal Notices p.159

Altair® OpenPBS® ©1994-2024

Altair® OpenRadiossTM ©1986-2024

Third Party Software Licenses

For a complete list of Altair Accelerator Third Party Software Licenses, please click herehere.

Proprietary Information of Altair Engineering

../../../../pdf/third_party_licenses.pdf
third_party_licenses.pdf

Altair Accelerator Software 2024.1.1

Legal Notices p.160

Technical Support
Altair provides comprehensive software support via web FAQs, tutorials, training classes, telephone and e-mail.

Altair One Customer Portal

Altair One (https://altairone.com/) is Altair’s customer portal giving you access to product downloads, Knowledge Base and

customer support. We strongly recommend that all users create an Altair One account and use it as their primary means of

requesting technical support.

Once your customer portal account is set up, you can directly get to your support page via this link: www.altair.com/customer-

support/.

Altair Training Classes

Altair training courses provide a hands-on introduction to our products, focusing on overall functionality. Courses are conducted

at our main and regional offices or at your facility. If you are interested in training at your facility, please contact your account

manager for more details. If you do not know who your account manager is, e-mail your local support office and your account

manager will contact you

Telephone and E-mail

If you are unable to contact Altair support via the customer portal, you may reach out to the technical support desk via phone or e-

mail. You can use the following table as a reference to locate the support office for your region.

When contacting Altair support, please specify the product and version number you are using along with a detailed description

of the problem. It is beneficial for the support engineer to know what type of workstation, operating system, RAM, and graphics

board you have, so please include that in your communication.

Location Telephone E-mail

Australia +61 3 9866 5557

+61 4 1486 0829

anz-pbssupport@altair.com

China +86 21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Proprietary Information of Altair Engineering

https://altairone.com/Dashboard
https://www.altair.com/customer-support/
https://www.altair.com/customer-support/
mailto:anz-pbssupport@india.altair.com
mailto:es@altair.com.cn
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs@altairjp.co.jp
mailto:support@altair.co.kr

Altair Accelerator Software 2024.1.1

Legal Notices p.161

Location Telephone E-mail

Malaysia +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0) 46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

United Kingdom +44 (0)1926 468 600 pbssupport@europe.altair.com

See www.altair.com for complete information on Altair, our team and our products.

Proprietary Information of Altair Engineering

mailto:pbs-support@india.altair.com
mailto:pbssupport@altair.com
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:br_support@altair.com
mailto:pbssupport@europe.altair.com
http://www.altair.com/

Index

Special Characters

.cshrc 20

.profile 20

A

Accelerator Administrator Tutorials 45

access to help 18

add a job interactively 106

add additional environment directories 67

add more jobs to the flow 111

add workstation/offhours vovtaskers 61

advanced commands 72

advanced policy configuration 54

Allocator Case Study 79

analyze impact 125

Art of Flows Example 1 6

Art of Flows Example 1 with Scripts 6

Art of Flows Example 2 9

Art of Flows Example 2 with scripts 9

Art of Flows Example Guide 5

B

batch process to define and run a flow 137

bin/bash 20

bin/csh 20

bin/tcsh 20

browser-based setup 51

build a more complex flow 147

build the flow 134, 146

C

change dependent input file 113

check file status 127

check job status 128

check project information 104

command line interface 127

compose good enviornment scripts 68

configuration examples 56, 68

configure an environment 65

configure and manage Monitor-basic 74

configure default resources 54

configure FairShare 52

configure policy.tcl for FairShare 52

162

configure resources 56

configure security 58

configure taskers 60

create a complex flow 138

create a FlowTracer project 102

create a project 103

create a project directory 107

create efficient VOV scripts 144

customize actions needed to enable access to Altair Accelerator products on Windows 24

D

define a logical HOME directory name 70

detect conflicts 129

determine reason for invalid node status 125

E

EDA Automation Tutorial 82

EDA Demo Part 1 83

EDA Demo Part 1 - check out the data 84

EDA Demo Part 1 - customize the project 84

EDA Demo Part 1 - setup 83

EDA Demo Part 1 - start the browser interface 85

EDA Demo Part 1 - start the project 83

EDA Demo Part 2 91

EDA Demo Part 2 - blockflow.tcl 92

EDA Demo Part 2 - chip structure file and cdt script 91

EDA Demo Part 2 - edademo.cgi 94

EDA Demo Part 2 - the capsules 91

EDA flows 140, 147

enable a shell 104

enable Altair Accelerator for non-interactive shells 21

enable CLI access on UNIX 20

enable CLI access on Windows 23

enable the command prompt to communicate with a running product server 25

enable the shell to communicate with a running product server 22

enforce job resource rules 54

execute the flow 147

F

find and view example environment scripts 65

find and view resources.tcl file 56

find the server working directory 46

find the URL 51

flow description language 132

flow.tcl file 133, 146

163

FlowTracer Advanced Tutorials 143

FlowTracer Beginner's Tutorial 101

forget nodes and sets from the graph 126

G

generate custom HTML reports using CGI tutorials 149

get detailed information about a job 37

get summary information 28

grid view 121

GUI job views 119

H

help, Accelerator 18

horizontal graph view 121

I

invoke the GUI 41

J

job control 34

job reports: list 151

job reports: table 152

jobs, show current information 41

L

locate server configuration directory to find policy.tcl 52

locate the security configuration file: security.tcl 58

logical names (equivalences 70

M

make changes to a file and run it 123

method 1: use windows explorer to set command line environment 23

method 2: using Windows command prompt to set command line environment 23

metrics, scheduler 41

Monitor Basic setup 73

monitoring jobs, taskers and resources 39

N

navigate the graph 123, 124

nc_gui 41

O

online help 18

164

overlapping queues 76

P

PDF, access 18

R

register one job from the command line 107

remove depended input file 115

remove older sets 132

repeat the tutorial without the GUI 130

rerun from the CLI 128

rerun jobs 36

resource management 73

resource monitor 57

resource throttling 75

restart the Accelerator queue 50

restore the shell prompt 104

run a flow from the command line 136

run basic jobs 26

run jobs with various options 31

run the flow interactively 135

run the jobs 123

S

save the new configuration 52

scheduler metrics 41

security configuration examples 58

server configuration parameters 53

set command line environment 102

setup using the web page 51

specify name of logfile: -l <logfile> 33

start a queue 46

start a test queue 46

start a vovtasker from the command line 62

start Accelerator 49

start newly defined vovtaskers 61

start the GUI console 105

start/stop Accelerator 49

start/stop vovtaskers 62

stat view 122

stop Accelerator 50

stop the project 142

submit multiple jobs at once 31

165

T

test the new FairShare configuration 53

troubleshooting 44

troubleshooting the UNIX setup 22

U

upgrade Accelerator 76

use a specific queue 48

use Accelerator help 18

use environments: -e <env> 31

use of resources: -r <res1 res2 ...> 32

use the set browser 106

use the web browser 43

V

verify access to Altair Accelerator products 20

verify context is working 24

vertical graph view 120

view Accelerator status 49

view graph subsets 122

VOV_STDOUT_SPEC 18

vovbrowser 18

vovbuild 18

vovconsole 41

vovdoc 18, 18

vovid 18

vovserver 18

vovtasker configuration 60

vtk_flexlm_monitor procedures 75

W

wait for jobs 32

write flows 146

166

	Contents
	Art of Flows Example Guide
	Example 1
	Example 2
	Example 2 with Scripts

	Altair Accelerator User Tutorials
	Use Accelerator Help
	Enable CLI Access on UNIX
	Troubleshooting the UNIX Setup

	Enable CLI Access on Windows
	Verify Context Is Working

	Run Basic Jobs
	Get Summary Information
	Run Jobs with Various Options
	Submit Multiple Jobs at Once: -f <file>
	Use Environments: -e <env>
	Use of Resources: -r <res1 res2 ...>
	Wait for Jobs
	Specify Name of logfile: -l <logfile>

	Job Control
	Rerun Jobs
	Get Detailed Information about a Job
	Monitor Jobs, Taskers and Resources
	Invoke the GUI
	Use the Web Browser
	Troubleshooting

	Altair Accelerator Administrator Tutorials
	Start a Test Queue
	Start/Stop Accelerator
	Browser-based Setup
	Configure Policy - FairShare and Other Parameters
	Server Configuration Parameters

	Advanced Policy Configuration
	Configure Resources
	Configure Security
	Configure Taskers
	Configure an Environment
	Logical Names (Equivalences)
	Resource Management
	Altair Monitor-Basic Setup
	Configure and Manage Monitor-basic
	vtk_flexlm_monitor Procedures
	Resource Throttling

	Upgrade Accelerator

	Case Study
	EDA Automation Tutorial
	EDA Demo Part 1: Run the Demo
	Setup
	Start the Project
	Customize the Project
	Check Out the Data
	Start the Browser Interface

	EDA Demo Part 2: Dissect the Demo
	The Chip Structure File and cdt Script
	The Capsules
	The Flow Description BlockFlow.tcl
	The CGI script edademo.cgi

	FlowTracer Beginner's Tutorials
	Create a FlowTracer Project
	Set Command Line Environment
	Create a Project
	Enable a Shell
	Restore the Shell Prompt
	Check Project Information
	Start the GUI Console
	Use the Set Browser
	Add a Job Interactively
	Create a Project Directory
	Register One Job from the Command Line
	Add More Jobs to the Flow
	Change Dependent Input File
	Remove Dependent Input File

	GUI Job Views
	Vertical Graph View
	Horizontal Graph View
	Grid View
	Stat View
	View Graph Subsets

	Navigate the Graph
	Make Changes to a File and Run it
	Run the Jobs
	Navigate the Graph
	Determine Reason for Invalid Node Status
	Analyze Impact
	Forget Nodes and Sets from the Graph

	Command Line Interface
	Check File Status
	Check Job Status
	Rerun from the CLI
	Detect Conflicts
	Repeat the Tutorial without the GUI

	Flow Description Language
	Remove Older Sets
	The Flow.tcl File
	Build the Flow
	Run the Flow Interactively
	Run a Flow from the Command Line
	Batch Process to Define and Run a Flow
	Create a Complex Flow
	EDA Flows

	Stop the Project

	FlowTracer Advanced Tutorials
	Create Efficient VOV Scripts
	Write Flows
	The Flow.tcl file
	Build the Flow
	Execute the Flow
	Build a More Complex Flow
	EDA Flows

	Generate Custom HTML Reports Using CGI Tutorial
	Job Reports: List
	Job Reports: Table

	Legal Notices
	Intellectual Property Rights Notice
	Technical Support

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

