
Altair Accelerator 2024.1.1

Administrator Guide

Contents

Altair Accelerator Administrator Guide... 6

Use Accelerator Help... 9

Accelerator Quick Start..11

Command Line Interface..14

Quick Reference... 16

Accelerator Server and System Customization... 18

Configure Accelerator...18

Server Error Conditions..76

Configure a Failover Server Replacement... 77

Accelerator Daemons.. 81

Access Control List.. 82

Client Limitation and Tuning...87

Enabling Time Series Data Stream.. 88

Start and Stop Accelerator... 92

Job Management...95

Job Status.. 95

Job Persistence.. 96

Autoforget Jobs... 97

Schedule Jobs..99

Job Cohorts... 100

Database.. 102

Daemon..102

Tasker.. 102

Set Up..102

Configure the Database from the Command Line...104

Database Engine Versions and Upgrades.. 107

Load Data..107

Export Data... 108

Database Backup...110

Track Job Commands... 111

Plot Jobs.. 112

Generate Custom Reports... 113

Database Schema.. 115

FairShare... 116

Configure FairShare via the vovfsgroup Utility.. 120

Configure FairShare via File.. 125

FairShare Weights Control Methods..127

Multiple Tokens in FairShare...127

FairShare Recommendations.. 128

Disable FairShare.. 129

FairShare Parameters.. 130

2

Control FairShare Tree Access.. 131

Jobclasses.. 135

Create Jobclasses...135

Use Additional Jobclass Directories...136

Define a Default Jobclass...137

Reconcile Unused Resources..138

Define Jobclasses.. 139

Use Jobclasses...141

Resources That Change Over Time... 142

Jobclass Examples...143

Preemption.. 144

Set Up the Optional Preemption Ruler Compiler Daemon... 145

Preemption Rules.. 147

Preemption Examples..160

Preemption Methods... 163

Preemption Plans...165

Web-Based Interface for Preemption... 167

Preemption Rules to Speed Up FairShare... 171

Preemption Over Altair Allocator.. 174

Preempt Jobs with Unrequested Resources..174

Control Whether a Job is Preemptable.. 175

Preemption Timing..176

Start the Preemption Rule Compiler Daemon vovpreemptd... 178

Manual Preemption... 180

Preempting Tokens..182

Remove Licenses from a Preempted Job...184

Resource Management..186

Hardware Resources..187

Wildcard Tasker Resources.. 191

Resource Mapping.. 192

Resources Representing the Sum of Others...194

Commas vs. ORs in Resources.. 194

Automatic Resource Limits.. 195

Resource Daemon Configuration..196

Manage Resources with the CLI..197

Reconciliation Daemon Configuration... 198

Add Resources.. 201

License-based Resources.. 202

License Sharing Support...207

Automatic Setting of LM_LICENSE_FILE...208

Limit Users..210

License Overbooking.. 212

License Overbooking in vovresourced...213

Resource Management with RDS..215

Configuring RDS.. 215

Switching From Classic Resource Management Mode to RDS Mode..227

Revert from RDS Mode to Classic Resource Management Mode..228

3

Monitoring RDS Function and Performance... 228

Accelerator CLI Command Syntax.. 229

Wildcard-Capable Attributes.. 229

Configure Container Integration.. 231

Streaming Data Service..235

SDS Configuration.. 235

Environment Management..241

Parameterized Environments.. 242

Composite Environments.. 243

Environment Examples... 244

Refresh Environments...245

Develop Environments..245

Pre-Command and Post-Command Job Conditions...249

Manage Umask... 250

Environment Debugging... 252

Environment Management: Limits... 252

The SNAPSHOT and SNAPPROP Environments...255

Directories and Files.. 259

Working Directories and Equivalences.. 259

Canonical and Logical File Names.. 259

Define Equivalences for File Names... 260

Historical Job Data Files.. 262

Journals..264

Alerts and Notifications... 265

Notification daemon: vovnotifyd..265

Configure Email Addresses.. 268

Write Localized Health Checks..268

Alternate Method of Sending Email.. 269

Notification of Job Status...269

Job Status Triggers... 270

Alerts... 272

System Tasks.. 275

Run Periodic Tasks with vovliveness.. 275

Run Periodic Tasks with vovcrontab... 276

vovgetnetinfo... 278

vovinfo...279

Manage Processes... 280

Job Fostering... 282

Query the vovserver..284

Upgrade Accelerator...291

Cold Upgrade.. 291

Hot Upgrade..293

Rolling Hot Upgrade.. 294

Stop Accelerator Job Acceptance...294

Suspend Accelerator Job Dispatch... 294

Run Multiple Versions of Altair Accelerator.. 295

Storage Aware Scheduling...296

4

Storage Aware Grid Acceleration (SAGA) with vovfilerd..296

Start and Configure the Daemon..296

vovfilerd Behavior.. 298

Tuning vovfilerd..300

Frequently Asked Questions and Troubleshooting Tips... 302

HPC Advice.. 305

NVIDIA™ GPUs Support in Accelerator.. 307

Simulation Scripts... 309

Sanity Check for vovserver.. 310

Disable Regular User Login...311

Auxiliary Group Membership...313

Troubleshooting...314

Backwards Compatibility and Migrating from Previous Versions... 317

Tasker Resources.. 317

Pre and Post Conditions... 319

Configure FairShare via the policy.tcl File..319

Migration of Preemption from 2013.03 and Prior Versions..320

Convert Old VovPreemptPolicy into VovPreemptRule...321

FairShare Groups.. 322

Legal Notices.. 323
Intellectual Property Rights Notice..324

Technical Support...330

Index...332

5

Altair Accelerator Administrator Guide 1

Altair Accelerator Administrator Guide

This manual is written for the Accelerator system administrator who needs to configure and manage the use of this Altair

Accelerator product after it is installed. This guide describes basic tasks, including submitting jobs, tracking job information, and

analyzing and solving common problems.

This chapter covers the following:

• Use Accelerator Help (p. 9)

• Accelerator Quick Start (p. 11)

• Command Line Interface (p. 14)

• Quick Reference (p. 16)

• Accelerator Server and System Customization (p. 18)

• Start and Stop Accelerator (p. 92)

• Job Management (p. 95)

• Database (p. 102)

• FairShare (p. 116)

• Jobclasses (p. 135)

• Preemption (p. 144)

• Resource Management (p. 186)

• Resource Management with RDS (p. 215)

• Configure Container Integration (p. 231)

• Streaming Data Service (p. 235)

• Environment Management (p. 241)

• Directories and Files (p. 259)

• Alerts and Notifications (p. 265)

• System Tasks (p. 275)

• Upgrade Accelerator (p. 291)

• Storage Aware Scheduling (p. 296)

• Frequently Asked Questions and Troubleshooting Tips (p. 302)

• Backwards Compatibility and Migrating from Previous Versions (p. 317)

The administrator is expected to understand UNIX system processes, the dynamics of UNIX interactive shells, shell scripting

techniques and general trouble shooting concepts. As configuration is part of the role of the Accelerator administrator, knowledge

of schedulers is also expected.

For details about the usage and capabilities of using Accelerator, refer to the Altair Accelerator User Guide and Altair Accelerator

User Tutorials.

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.7

Note:

The terminology in this release has changed from the previous one.

The Accelerator products are built on platform called vov using a client-server architecture with remote-procedure-

calls (RPC). The server software module is called vovserver. It communicates to clients using the vov protocol;

vovservers can also be configured to respond to http requests: the REST API is implemented on top of http. There

are several different client types, those that make requests to the vovserver are typically implemented using vovsh

(the vov shell - a Tcl interpreter); those that respond to vovserver requests to run jobs or tasks are taskers and the

software here is called vovtasker. The vovtasker can run on the same host as the vovserver or on a separate host;

these hosts are typically referred to as compute nodes, compute hosts or execution hosts.

The architecture allows for multiple vovservers to communicate with each other via a vovagent. Examples of

vovagents include vovwxd, indirect taskers and vovlad.

In the 2021.1.0 release, the term slave has been deprecated and has been replaced with the term tasker. The web user

interface and the online documentation have been updated to reflect this change, as has the majority of the code base.

Subsequent releases will complete the transition.

Accelerator Features

Accelerator is a high-performance, enterprise grade job scheduler designed for distributed High Performance Computing (HPC)

environments. Accelerator provides a cost-effective, highly adaptable solution capable of managing compute infrastructures from

small dedicated server farms to complex distributed HPC environments.

A full-featured scheduler, Accelerator is equipped with a comprehensive set of policy management features including FairShare,

Preemption, and Reservations, which can be customized per organizational requirements to maximize resource utilization and

throughput.

The services provided by Accelerator include job prioritization, automatic job queuing, license management, resource management

and reporting the status of jobs as well as the usage and availability of resources.

The fields of application include hardware and software engineering, running calculations on a farm, electronic design automation

(EDA) and other industries.

Accessing Accelerator

Accelerator can be accessed via the following media:

• Web UI. Configuring Accelerator properties, and viewing job status, configurations, available resources and more is

available through the web user interface.

• GUI. Graphical user interface, independent of the web is also available for graphical views of current job and resource

statuses.

• CLI Command. Commands are also available for configuration, viewing the status of jobs and resources. GUI and WebUI

can be invoked through CLI commands.

Theory of Operation

During the initial setup, the Accelerator host server, vovserver, establishes a main port for communication and addition ports for

web access and read-only access. The main process for the Accelerator vovserver is establishing a main port for communication

plus additional ports for web and read-only access. Afterwards, the vovserver waits for and responds to incoming connection

requests from clients.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.8

Clients consist of regular clients that request a particular service, taskers (server farms) that provide resources, and notify clients

that listen for events). As well as tasker-based resources, some clients provide central resources, which are stored in and accounted

by the vovserver.

Regular clients can define jobs, or query data about jobs or system status. When a job is defined, it is normally placed in a

scheduled state. Scheduled jobs are sorted into buckets. Jobs that have the same characteristics go in the same bucket. Buckets are

placed in prioritized order for dispatching. This prioritization is based on FairShare, an allocation system. The top priority job in

each bucket is dispatched when each of the defined resources (requests) for that job is available. The job requests can be fulfilled

from the central pool as well as the tasker resources. When a tasker is found that completes the job's resource request, the job is

dispatched to that tasker and the job status changes to running.

When the job has completed, the tasker notifies the vovserver. The resources, both tasker-based and central, are recovered, which

allows subsequent jobs (queued in the buckets) to be dispatched. When completed, the job status is normally updated to either valid

or failed.

As previously stated, in addition to dispatching jobs and processing their statuses, the vovserver responds to queries about system

and job requests, publish events to notify clients, and continue to process incoming job requests.

Known Limitations

In the Windows environment, PowerShell is not supported; it is strongly recommend to avoid using PowerShell.

Related Documents
The following documents provide additional information that is related to using and configuring Accelerator:

• Altair Accelerator User Guide

• Altair Accelerator Training Guide

• Altair Accelerator Installation Guide

• Altair Monitor User Guide

• VOV Subsystem Reference Guide

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.9

Use Accelerator Help
Accelerator documentation is available in HTML and PDF format.

Access the Help when Accelerator is Running

When Accelerator is running, it displays the documentation through its browser interface. To access it from browser, you need to

know which host and port Accelerator is running on. Ask your administrator, or find the URL for Accelerator with the following

command:

% Accelerator cmd vovbrowser
http://comet:6271/project

In the example below, assume Accelerator is running on host comet, port 6271. The URL for Accelerator is:

http://comet:6271

To get the entire suite of Altair Accelerator documents, including FlowTracer™, Accelerator™, Monitor™ and the VOV

subsystem, use the following URL:

http://comet:6271/doc/html/bookshelf/index.htm

Access the Help when Accelerator is not Running

All the documentation files are in the Altair Accelerator install directory, so you can access them even if vovserver is not running.

To do this, open /installation_directory/common/doc/html/bookshelf/index.htm in your browser.

Tip: Bookmark the above URL for future reference.

Access the Help PDF Files

Altair Accelerator also provides PDF files for each of the guides. All the PDF files are in the directory /

installation_directory/common/doc/pdf

Access the Help via the Command Line

The main commands of Accelerator are nc and ncmgr, with some subcommands and options. You can get usage help, descriptions

and examples of the commands by running the command without any options, or with the -h option. For example,

% nc info -h
nc:
nc: NC INFO:
nc: Get information about a specific job or list of jobs.
nc: USAGE:
nc: % nc info <jobId> [options]...
nc: -h -- Show this message
nc: -l -- Show the log file
nc:

Access the Help via the vovshow Command

Another source of live information is using the command vovshow. The following options are often useful:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.10

vovshow -env RX Displays the environment variables that match the regular expression RX provided.

vovshow -fields Shows the fields known to the version of VOV in use.

vovshow -failcodes Shows the table of known failure codes.

For example, to find a variable that controls the name of the stdout/stderr files, without knowing the exact name of that variable,

the following command can be used:

% vovshow -env STD
VOV_STDOUT_SPEC Control the names of file used to save stdout and
 stderr. The value is computed by substituting
 the substrings @OUT@ and @UNIQUE@ and @ID@.
 Examples: % setenv VOV_STDOUT_SPEC
 .std@OUT@.@UNIQUE@ % setenv VOV_STDOUT_SPEC
 .std@OUT@.@ID@

The output provides a description of all the variables used by the FlowTracer system that include the substring "STD". In this

example, the output resultVOV_STDOUT_SPEC.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.11

Accelerator Quick Start
Accelerator has two main commands, nc and ncmgr.

• nc is used to submit, query, and stop jobs. This command can also be invoked as vnc.

• ncmgr is used to start a queue: ncmgr start. By default, the queue (vnc) starts in a server working directory (SWD) that

is a subdirectory in $VOVDIR/../../vnc.

The output of ncmgr start/stop is logged in ${VOVDIR}/local/logs/nc, if it exists.

This page shows the usage messages that are generated by the nc and ncmgr commands.

nc

vnc: Usage Message
 Usage: nc [-q queuename] <command> [command options]

 Queue selection:
 The default queue is called "vnc".

 You can specify a different queue with the option -q <queuename>
 or by setting the environment variable NC_QUEUE.

 Commands:
 clean Cleanup log files and env files.
 debug Show how to run the same job without Accelerator.
 dispatch Force dispatch of a job to a specific tasker.
 forget Forget old jobs from the system.
 getfield Get a field for a job.
 gui Start a simple graphical interface.
 help This help message.
 hosts Show farm hosts (also called taskers).
 info Get information about a job and its outputs.
 list List the jobs in the system.
 jobclass List the available job classes.
 kerberos Interface to Kerberos (experimental).
 modify Modify attributes of scheduled jobs.
 monitor Monitor network activity.
 rerun Rerun a job already known to the system.
 resources Shows resource list and current statistics.
 resume Resume a job previously suspended.
 run <job> Run a new job (also called 'submit').
 preempt Preempt a job.
 stop Stop jobs.
 submit <job> Same as 'run'.
 summary Get a summary report for all my jobs.
 suspend Suspend the execution of a job.
 taskerlist Show available tasker lists.
 wait Wait for a job to complete.
 who Report on who is using the system.
 why Analyze job status reasons.

 Unique abbreviations for commands are accepted.

 Advanced features:
 cmd <command> Execute an arbitrary VOV command in the

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.12

 context of the $product server.
 source <file.tcl> Source the given Tcl file.
 - Accept commands from stdin.

 For more help type:
 % $::command <command> -h

 Copyright (c) 1998-2021, Altair Engineering.

ncmgr
This program manages the vovserver for Accelerator.

Usage

vncmgr: Usage Message

 This program manages the vovserver for Accelerator.
 Copyright (c) 1998-2022, Altair Engineering.

USAGE:
 ncmgr help|info|rehost|reset|start|stop|cm [OPTIONS]

ACTIONS:
 info [-queue|-q <name>] [-v]
 reset [-soft | -hard | -h]
 rehost [-force] [-queue|-q <name>] -host <host>
 start [-dir <server_working_dir>] [-force] [-queue|-q <name>]
 [-port <port>] [-webport <port>] [-roport <port>]
 [-dbhost <host>] [-dbroot <path>] [-dbport <port>]
 [-prod nc|wx|he] [-basequeue <name>] [-dd]
 The default <server_working_dir> is
 <...>/vnc.
 This is the parent of the configuration (.swd) directory for
 the queue.
 stop [-force] [-freeze] [-freeze_nocpr] [-queue|-q <name>]
 [-writeprdir <dirname>]
 -force Do not prompt for confirmation
 -freeze Instruct taskers to keep running and wait for a
 new server
 -freeze_nocpr Instruct taskers to keep running and wait for a
 new server, and do not compress PR file
 -writeprdir Writes the PR file to the specified directory
 (which is created if necessary)
 cm [-queue|-q name] <ACTION> [ARGUMENTS]
 Configuration Management. Pass "help" for detailed usage.

EXAMPLES:
 % ncmgr
 % ncmgr -h
 % ncmgr start -queue vnc2
 % ncmgr start -port 6699 -queue vnc99
 % ncmgr info
 % ncmgr reset -soft
 % ncmgr reset -hard
 % ncmgr cm help

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.13

EXAMPLE TO STOP AND RESTART SERVER:

 % ncmgr stop -freeze
 % ncmgr start -force
 % ncmgr stop -freeze -force -writeprdir /tmp/abc123

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.14

Command Line Interface

All user commands have the following structure:

% nc [-q qname] subcommand [options]

The command plus the subcommand is one of the following:

• nc clean

• cmd

• nc debug

• dispatch

• nc forget

• nc gui

• help

• nc hosts

• nc info

• nc list

• nc jobclass

• nc modify

• monitor

• nc rerun

• resume

• nc run

• source

• nc stop

• nc summary

• suspend

• nc wait

For example:

% nc help
% nc run sleep 10
% nc list
% nc forget -mine

The Exclamation Point (!) Special Operator

Some Accelerator subcommands accept a single exclamation point, and interpret it to mean 'most-recent job run in the current

directory'. This is meant for interactive use to avoid typing or copying the nine digit job ID.

This is not recommend for use in scripts, because it involves a scan of the jobs in the system. Instead, save the job ID returned

when submitting the job and use the ID in queries.

The Accelerator subcommands that support this are:

• info

• getfield

• rerun

For example:

% nc info !

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.15

% nc info -l !

Some VOV commands that support this may sometimes be useful in Accelerator context, by preceding them with nc cmd:

• vovset

• vovfire

• vsx, vsy

Any unique prefix for the subcommand is accepted, which allows abbreviated forms of commands to be used. For example:

% nc l
% nc li
% nc lis
% nc list

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.16

Quick Reference

Common Commands

help Getting Accelerator help.

nc forget Remove jobs from Accelerator queue.

nc getfield Get detailed information on a job.

nc info Get information on jobs.

nc list Get a formatted list of jobs.

nc modify Modifying jobs in the system.

monitor Monitoring jobs and tasker machines.

notify Email notification.

policy Setting policy.

nc rerun Re-running jobs.

nc run Submitting jobs in Accelerator.

interactive Running interactive jobs in Accelerator.

status Getting status info in Accelerator.

nc stop Stopping jobs in Accelerator.

Information Pages

Altair Accelerator User Guide Introduction to Accelerator.

Installation Guide Installation of Accelerator.

Manage Managing Accelerator.

Test Testing Accelerator after installation.

Troubleshoot Troubleshooting Accelerator.

Administrative

Advanced Information Advanced command usage.

Clean Up Log Files Clean up log files.

Cross-platform Cross-platform runs.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.17

Environment Control Controlling the VNC environment.

FairShare Groups Setting up groups.

vnc_policy.tcl VOV policy setup file.

Resource Management Accelerator resource management.

Scheduled Jobs Accelerator job queue.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.18

Accelerator Server and System Customization

Configure Accelerator

Server Configuration

vovserver configuration parameter values may be changed in a running vovserver using the CLI, or prior to the starting the server

via the policy.tcl file. An administator can configure the parameters in the running vovserver using the vovservermgr

command or the vtk_server_config procedure.

Note: In usage, all commands and parameters are case insensitive.

Using vovservermgr:

% nc cmd vovservermgr config PARAMETER_NAME PARAMETER_VALUE

Using vtk_server_config:

% nc cmd vovsh -x 'vtk_server_config PARAMETER_NAME PARAMETER_VALUE'

Example of a configuration:

% nc cmd vovsh -x 'vtk_server_config timeTolerance 4'
% nc cmd vovsh -x 'vtk_server_config timeTolerance 4'

Note: A complete list of the current server configuration parameters is provided in the Server Configuration page.

Server configuration can be controlled by setting variables in the policy.tcl file. The variable can be set directly in the

"config()" associative array, but it is best to set them with the procedure VovServerConfig as in:

VovServerConfig VARNAME VALUE

In either case, the name of the parameter VARNAME is case insensitive.

Example

The following is part of the policy.tcl file.

This is part of the policy.tcl file.

Example of parameters set with the procedure VovServerConfig
VovServerConfig readonlyPort 7111
VovServerConfig httpSecure 1

Example of parameters set by assignment to array config().
set config(timeTolerance) 0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.19

set config(maxBufferSize) 16000000
set config(maxNotifyBufferSize) 400000
set config(maxNotifyClients) 40;
set config(maxNormalClients) 400;

set config(maxAgeRecentJobs) 60;
set config(saveToDiskPeriod) 2h;
set config(autoShutdown) 2w; # Shut down after 2 weeks of inactivity.
set config(autoLogout) 1h; # Logout from browser interface.
set config(netInfo) 0; # Do not collect net information (fs,
 hosts)

Used by Accelerator for autoforget.
set config(autoForgetValid) 1h
set config(autoForgetFailed) 2d
set config(autoForgetOthers) 2d

set config(autoRescheduleThreshold) 2s

set config(preemptionPeriod) 3s

Below is an example of parameters set with the procedure VovServerConfig:

VovServerConfig readonlyPort 7111
VovServerConfig httpSecure 1

Tasker Configuration

Taskers

A tasker is a VOV client that provides computing resources, specifically CPU cycles, to the vovserver.

There are two types of taskers:

• Direct taskers: agents that offer for computation all the resources of the machine on which they are running

• Indirect taskers: agents that interface between a VOV project and a scheduler such as Accelerator.

A project can have a mix of direct and indirect taskers. Normally, Accelerator and Monitor use only direct taskers, while

FlowTracer projects often interface to schedulers using one or more indirect taskers.

The list of taskers connected to a project is described in the file taskers.tcl, and the main utility to start and stop taskers is

vovtaskermgr. Additional configuration can be specified with the taskerClass.table file.

Types of vovtasker Binaries

The main tasker client is called vovtasker but there are other variations of it:

• vovtasker can run jobs for more than one user; the success depends on file permissions.

• vovtaskerroot has the ability of switching user identity.

Note: Accelerator is the only Altair Accelerator product that needs vovtaskerroot.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.20

• vovtasker.exe has the ability of impersonating users on Windows, subject to a set of rules explained in Vov Windows

Impersonation.

• vovagent is a temporary vovtasker that terminates upon a set of timeouts, and is used mostly in conjunction with LSF or

SGE.

• ftlm_agent is a "thin-client" version of a vovtasker and can be used by Monitor to start and stop license daemons on

remote machines.

vovtasker States

The vovtaskers will change states based on workload and operating environment. Generally, the tasker state will accompany the

tasker name when displayed in the various user interfaces (CLI, GUI, WUI). The possible states are as follows:

• BLACKHOLE: temporarily paused due to a burst of job failures and cannot accept jobs

• BUSY: busy with internal operations

• DEAD: has disconnected and cannot accept jobs

• DONE: exiting after completing current jobs

• FULL: full and cannot accept more jobs

• OVRLD: overloaded and cannot accept jobs

• NOLIC: unlicensed and cannot accept jobs

• NOSLOT: configured to not accept job

• OK: idle and ready for jobs

• PAUSED: paused and cannot accept jobs

• READY: idle and ready for jobs

• REQUESTED: has been requested to start

• SICK: sick and possibly disconnected

• SUSP: suspended and cannot accept jobs

• WARN: in a warning state and should be checked

• WRKNG: working and can accept more job

Create a Tasker on Windows

1. Copy the vovtsd single file distributable (SFD) for Windows (vovtsd.exe) onto the Windows host that will be running

one or more taskers.

2. Start vovtsd (use default port or specify a different one). Optionally, configure as a Windows service (see vovtsd

documentation).

3. Register the Windows path to the server working directory. The server working directory is the parent of the <queue-

name>.swd directory (aka SWD). The default queue name is “vnc”, so the default SWD is named vnc.swd. Registration

is done via the SWD/policy.tcl file.

vtk_swd_set windows <full path to server working directory>

For example:

vtk_swd_set windows n:/altair/vnc

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.21

4. After making the change, reread the policy via:

nc cmd vovproject reread

5. Update the following in SWD/taskers.tcl:

vtk_tasker_set_defaults \
 -rshcmd vovssd \
 -vovssdport 16666 \
 -executable vovtasker \
 -vovdir default \
 -logfile default \
 -serverdir n:/altair/vnc

vtk_tasker_define <windows host name>

The default tasker name will be equal to the host name.

6. Start the newly defined tasker:

nc cmd vovtaskermgr start <tasker name>

7. Verify the tasker using this command:

nc hosts

The Windows tasker will be remotely started via vovtsd and will enter a “ready” state once it is able to accept jobs:

TASKER LOAD STATUS JOBS HB RESERVE MESSAGE
1 win16-1 0.00 ready 0/2 20s None Licensed for 2 slots

8. Submit the job:

nc run -e BASE -rundir <valid windows path> -l "'<log file in valid windows
 path>'" -r ARCH=win64 -- <cmd>

For example:

nc run -e BASE -rundir c:/ -l "'c:/@JOBID@.log'" -r ARCH=win64 -- hostname

The @JOBID@ keyword will be automatically substituted with the job’s ID, resulting in a uniquely-named log file.

UNIX User Impersonation

A normal vovtasker has the privileges and limitations of the account in which it runs. When a normal vovtasker executes a

command, the effect is the same as when the vovtasker's owner runs the command.

For Accelerator, jobs may be submitted by many users. To obtain the correct permissions with respect to files needed by the

job, the vovtasker must be able to switch to the account of the submitter. On UNIX and Linux machines, this is done by having

vovtasker run with root privilege. A simple method is creating a copy of vovtasker called vovtaskerroot, which is owned by root

and has the setuid flag set. vovtaskerroot can be set up by running the script SETTASKERUID.csh.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.22

To verify that vovtaskerroot is properly installed, go to the $VOVDIR/bin directory and check the access flags of vovtaskerroot.

Verify the "s" character is in the fourth column (instead of the "x" character) as shown below:

% cd $VOVDIR/bin
% ls -l vovtaskerroot
 -rwsr-sr-x 1 root other 875092 Jan 5 11:57 vovtaskerroot

For security reasons:

• The USER field for each job cannot be edited by any user, including ADMIN.

• The vovtasker itself never executes any process as root. Instead, each job is executed as the user that first executed the job. If

the user account does not exist on the tasker host, the job cannot be executed.

Other Methods of Starting vovtasker with Root Capability

Some sites may have security policies that prohibit setuid-root binaries, or prohibit setuid binaries from being mounted over NFS.

Following are alternate methods to start vovtasker with root capability:

• To start vovtasker from a boot file, use the available example .bat files as a guide to create a script, and place it in the

appropriate directory. Example startup files are provided in $VOVDIR/etc/boot. Choose the one that best fits your

scenario.

• Use a setuid vovtaskerroot on a local disk.

Use a setuid vovtaskerroot Binary on a Local Disk

If the NFS filesystem (including the Altair Accelerator) is exported with the nosuid option, the vovtaskermgr command can

still be used via a local setuid-root binary on each farm host.

Note: This method will add the cost of having to update the hosts individually when changing versions.

For example, the binary can be put at /opt/rtda/some-version/linux/bin/vovtaskerroot. It is helpful but not

necessary if this path is the same on all farm hosts.

In this case, the setuid-root binaries must be created manually (the regular script is not useful. Following is an example of creating

the setuid-root binary:

% ssh some-farm-host% /bin/su -
cd /opt; mkdir -p rtda/CURRENT/linux/bin
cd /opt/rtda/CURRENT/linux/bin
cp /network-path-to-rtda/CURRENT/linux/bin/vovtasker ./vovtaskerroot
chown root: ./vovtaskerroot
chmod u+s ./vovtaskerroot

After creating the local vovtaskerroot, set up the taskers configuration file of the Accelerator to use the local vovtaskerroot. The

file is located in $VOVDIR/../../vnc/vnc.swd/taskers.tcl.

If the path to the local vovtaskerroot binary is the same on all farm hosts, change the defaults at the beginning of the file as shown

below:

if { [file executable /opt/rtda/CURRENT/linux/bin/vovtaskerroot] } {
 # Use vovtaskerroot from the local disk
 vtk_tasker_set_default -executable /opt/rtda/CURRENT/linux/bin/vovtaskerroot
} else if { [file executable $env(VOVDIR)/bin/vovtaskerroot] } {
 vtk_tasker_set_default -executable vovtaskerroot
} else {

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.23

 vtk_tasker_set_default -executable vovtasker
}

If the path to the vovtaskerroot varies from host to host, add the -executable option to the definition for each host (instead of

changing the default).

The taskers.tcl File

The taskers.tcl file describes the taskers for a project.

The taskers.tcl file is a Tcl script based on the procedure vtk_tasker_define. The synopsis for this procedure:

vtk_tasker_define hostname [options]

The two following examples both declare three taskers on the hosts apple orange and pear:

Fragment of taskers.tcl file
vtk_tasker_define apple
vtk_tasker_define orange
vtk_tasker_define pear

Fragment of taskers.tcl file
foreach host {apple orange pear} {
 vtk_tasker_define $host
}

The following procedure supports many options to define the characteristics of the tasker. The options include "-resources

<string>" to set the resource list offered by a tasker and -CPUS n to define the number of CPUs in a machine. In the following

example, the tasker on apple is set up to offer the resource "big_memory":

Fragment of tasker file
vtk_tasker_define apple -resources "@STD@ big_memory" -CPUS 2
vtk_tasker_define orange -resources "@STD@ big_memory" -CPUS 2
vtk_tasker_define pear -resources "@STD@ big_memory" -CPUS 4

The default value for all options can be changed with the following procedure vtk_tasker_set_defaults, as shown below:

Fragment of taskers.tcl file
vtk_tasker_set_default -resources "@STD@ big_memory" -CPUS 2
vtk_tasker_define apple
vtk_tasker_define orange
vtk_tasker_define -CPUS 4

vtk_tasker_define

There are many options that can be used with vtk_tasker_define and vtk_tasker_set_default.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.24

Option Argument Description

-capabilities string The capabilities that the tasker has. This results in license

checkout attempts for the specified capabilities. Possible

values: FULL, NC, PROCINFO, NETINFO, EXEC, RT. FULL

includes all capabilities. NC contains EXEC, PROCINFO and

NETINFO capabilities. Altair Accelerator enables runtime

tracing for FlowTracer. Default is FULL.

-capacity int The number of concurrent jobs (job slots) that the vovtasker can

handle.

-cpus int The number of CPUs in the machine, without affecting

maxload and capacity. On most platforms, the number of CPUs

is computed automatically.

-CPUS int Convenience option, equivalent to setting -cpus, -maxload and

-capacity at the same time. If N is the number of CPUs, this

options sets -cpus to N, -maxload to N+0.5 and -capacity to N.

-coeff double The tasker coefficient. It is used as a divisor in computing the

effective power of a vovtasker, e.g. a coefficient of 2.0 reduces

the power by half.

-executable string The executable to use (default is vovtasker). For Accelerator,

the default is vovtaskerroot.

-expiredate string Specifies the date and time after which the definition

of this tasker is expired, and it cannot be started

with vovtaskermgr command. The format of this

parameter is year_month_day_hour_min_sec. Example:

2018_12_31_23_59_00

-failover Passing this option will set the tasker's capacity to 0, which

prevents the tasker from accepting jobs and pulling a license.

This also acts as a flag to perform some failover configuration

testing, such as checking servercandidates.tcl to make

sure the tasker host is in the list, triggering a check to make

sure the host has at least as many file descriptors as vovserver

so it can operate at full capacity in the event of failover, and

checking that the server_election directory is empty.

-host hostname The name to be used to connect to the vovserver (e.g.

"localhost")

-indirect file Execute the jobs indirectly, using the Tasker* procedures

described in the given file. This is used in indirect taskers.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.25

Option Argument Description

-maxcapacity int The capacity of taskers can increase dynamically as a side

effect of having suspended jobs. This limits the maximum

capacity. The default value is twice the capacity.

-maxjobs int The maximum number of jobs a tasker can execute. Taskers

will become suspended when the max is reached, and will exit

once the last job is finished. Default: 0 (unlimited).

-maxidle timespec The maximum amount of time a tasker can be idle (having no

jobs). Default: - (unlimited).

-maxlife timespec The maximum amount of time a tasker is allowed to run.

Default: - (unlimited).

-maxload double The maximum load for the vovtasker. Above this, its power

becomes zero, and the vovtasker does not accept new jobs until

the load declines below this value. This helps avoid overloaded

machines.

-message string Message to set on the vovtasker at startup. Should be brief.

-mindisk number Minimum disk space, in MB (for example, 100) or in

percentage (0%-99%, for example, 10%) , on /usr/tmp

below which the vovtasker will automatically be suspended.

-name string Name of the vovtasker. The default is the leaf name of the

machine on which the vovtasker runs. May not contain the

'.' (dot) character.

-nice int Run the tasker with niceness (reduced OS priority), for UNIX

vovtasker only, ignored on Windows.

-power double The raw power to be used for this vovtasker. The default for

this is 0.0, which implies that the raw power is computed

automatically upon startup. You can use this to make machines

know to be identically- provisioned to have the same power.

-repeat int Number of identical vovtasker on a host (obsolete).

-reserve reserve expression Reserve the vovtasker upon startup. The argument is a

reservation expression.

Example 1: "-reserve /john/3w" This means create

a reservation for user john with a duration of three weeks at

vovtasker startup.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.26

Option Argument Description

Example 2: "-reserve memregr//4h" This means create

a reservation for group 'memregr' with a duration of 4h at

vovtasker startup.

-resources string The tasker resources. This could be a list of literals like

"bighost maingroup" or contain symbolic values like

"@RAM@ @CPUS@". You must restart vovtaskers after

changing values specified here. For a method that does not

require restart, read about The taskerClass.table file.

-rshcmd string The command used to start a remote shell on the tasker

machine. This is rsh by default, but it could be set, for example,

to ssh. The known values for this option are:

• rsh, the default value

• ssh, the typical value

• vovtsd

-serverdir dir Explicit path to the server directory for the tasker.

-taskergroup group Define the taskergroup in taskers.tcl. Often this is used to

group similarly-provisioned machines.

-update timespec The update cycle time (heart beat) of the vovtasker. The default

value is 60s. You can use shorter values to cause resources to

be updated more frequently when using resource procedures,

being mindful of the CPU load this brings to the vovserver.

-vovdir dir Explicit path to the VOV installation for the tasker.

-vovtsdport port Port number to be used when connecting to the VOV tasker

service daemon, vovtsd.

Tasker Attributes

A tasker is characterized by several attributes. These attributes are controllable by means of the command line arguments to the

vovtasker binary as well as by means of the procedure vtk_tasker_define in the taskers.tcl configuration file for a VOV

project.

For cases where the vovtaskers are started by submitting the binary to a separate batch queue system, the system manager may

create a copy of the vovtasker binary called vovagent. When invoked by this name, the binary will limit the values of some

attributes based on information stored in the configuration file $VOVDIR/local/vovagent.cfg.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.27

Attribute Name vovtasker options vtk_tasker_define
option

Description

name -a -name Name of the tasker. By default, it is the name of

the host on which the tasker is running. The tasker

name can contain alphanumeric characters, dashes

and underscores. It must be less than 50 characters

long.

If the name ends with a "_r", it probably indicates

a tasker that has reconnected to the tasker after a

server crash. These taskers are used to terminate

the jobs executing at the time of the crash.

The name of a running tasker can be changed with

vovtaskermgr configure -name ...

or using the API vtk_tasker_config

$TASKERID name "newname".

capability -b -capabilities The capabilities that the tasker has. This results

in license checkout attempts for the specified

capabilities. Possible values: FULL, NC,

PROCINFO, NETINFO, EXEC, RT. FULL

includes all capabilities. Accelerator contains

PROCINFO and NETINFO capabilities. Default is

FULL.

capacity -T -capacity Maximum number of jobs that can be run by the

tasker concurrently. Default is 1 slot per core

detected or specified (see -C below).

maxload -M -maxload Maximum allowed load on the tasker host (default

N+0.5, where N is the number of cores detected).

The maximum load is the point at which the host

of the tasker is too busy to accept any more jobs.

A machine is considered overloaded if its load

average for either the last minute or the last five

minutes exceeds this boundary.

loadsensor -L -loadsensor Use an SGE style load sensors to control power of

a tasker and other resources.

coefficient -c -coeff The tasker coefficient (positive floating point

number, with default 1.0). This attribute is used

to adjust the raw power. A coefficient of 1.0

indicates the actual computed power of the tasker

should be used. A coefficient of 4.0 indicates the

actual power of the tasker should be divided by 4.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.28

Attribute Name vovtasker options vtk_tasker_define
option

Description

cpus -C -cpus The number of CPUs in this machine. Default

is the number of cores reported by the operating

system. This attribute affects the computation of

the actual load on the machine and by default,

defines the capacity of the tasker (see -T above).

logfile -l -logfile The name of the file for the tasker log. The file

name is relative to the server working directory.

The file name can contain also the following

symbolic strings, which will be appropriately

substituted: @NUMBER@ @TASKERHOST@

@SERVERHOST@ @PROJECT@.

reserve -e -reserve The reservation expression for this tasker.

The argument is in the format "GROUP/

USER/DURATION", where the GROUP

and USER fields are optional. Examples: /

john/2wusers//100dregression/

john/2w

resources -r -resources The tasker resources offered by this tasker. The

resource management determines the type of jobs

the tasker may accept.

Remote Shell Command n/a -rshcmd The command used to start a remote shell tasker

on the tasker machine. The default is rsh (or

remsh). Other possible values are:

• ssh (most common value)

• vovtsd (useful for Windows taskers),

which requires vovtsd to be running on the

remote machine.

Tasker Environment n/a -taskerenv A space-separated list of VAR=VALUE elements

that specify additional environment variables that

need to be defined when starting the vovtasker.

This parameter is only active when the tasker is

started. To change the environment in a running

vovtasker you have to use the vtk_tasker_config

API.

Tasker Group n/a -taskergroup The group(s) the tasker is in for purpose of

viewing in the browser UI or the vovmonitor. This

currently has no use other than making it easier to

view groups of taskers.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.29

Attribute Name vovtasker options vtk_tasker_define
option

Description

timeleft N/A N/A The time the tasker has left before it suspends

itself. Also, the maximum expected duration for

a job dispatched to this tasker. This attribute is

available in the context of time variant resources

and is controlled only by means of the procedure

vtk_tasker_set_timeleft.

transient -i -transient A transient tasker is destroyed when the vovtasker

client is terminated. On the other hand, a non-

transient tasker persists in memory even when

vovtasker is terminated. Its status will be

"DOWN".

Use Vovfire -E -usevovfire With this option, a direct tasker may use

vovfire to execute jobs instead of the direct

execution of the job. Since vovfire does

the directory change and the setting of the

environment, the tasker does less work. The

environment caching of the tasker is disabled in

this mode. This is a development option that is

useful mostly on Windows.

update -U -update The period used by the tasker to update its status.

The argument is in seconds. The default is 60

seconds.

mindisk -D -mindisk The amount of free disk on /usr/tmp below

which the vovtasker is suspended. The default is

5MB. Many system commands and some VOV

ones depend on scratch space here.

Note: The value can be set to

0 to turn off tasker suspension,

but incorrect operation of some

commands may occur.

maxidle -z N/A After being idle for the given time, tasker does

not accept new jobs and exits after completing

active jobs. Value is a FlowTracer timespec,

for example, 2m. If unspecified, idle time is

unlimited.

maxlife -Z N/A After the specified lifetime, tasker does not accept

new jobs and exits after completing active jobs.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.30

Attribute Name vovtasker options vtk_tasker_define
option

Description

Value is a FlowTracer timespec, for example, 2H.

If unspecified, lifetime is unlimited.

maxjobs -m -maxjobs The maximum number of jobs a vovtasker will

execute during its lifetime. When the max is

reached, vovtasker self-suspends so it stops

accepting new jobs, and will exit once its last

running job finishes. Default: 0 (unlimited).

Manage Tasker Lists

A tasker list is a named, ordered list of taskers. Tasker lists can be used to enhance performance or restrict usage.

Examples include:

• Make the scheduler more efficient on large farms.

• Pack jobs more tightly on the farm machines.

• Restrict jobs to selected taskers.

Every vovserver has at least one tasker list named default, which includes all the taskers in the system. The order of the taskers

is determined by the connection order unless modified by the commands shown below. The default list cannot be deleted or

recreated; taskers can be reordered in the default list.

A tasker list can contain all taskers or a subset of taskers. A tasker list can also be empty.

Note: Typically, a small number of tasker lists are setup for a system, approximately 20. A large number of tasker

lists may result in inefficient searches for available resources.

An administrator can create, modify and delete tasker lists with the utility vovtaskerlist.

vovtaskerlist

Manipulate tasker lists.

vovtaskerlist: Usage Message

 DESCRIPTION:
 Manipulate tasker lists.

 USAGE:
 % vovtaskerlist ACTION [OPTIONS]

 OPTIONS:
 -h -- This help
 -v -- Increase verbosity

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.31

 Actions:
 create -- Create a new list
 append
 first
 last
 get -- Get taskers in a list
 list -- List all tasker lists
 delete -- Delete specified tasker list
 bigram -- Create list of taskers with a lot of ram
 smallram -- Create list of taskers with little ram

 Note: actions can also have a dash (list and -list)

 EXAMPLES:
 % vovtaskerlist create planets "pluto jupiter uranus"
 % vovtaskerlist get planets
 % vovtaskerlist list
 % vovtaskerlist first planets jupiter
 % vovtaskerlist last planets jupiter
 % vovtaskerlist delete planets
 % vovtaskerlist -bigram 10000 ;; Make a list of taskers with more
 than 10GB of RAM
 % vovtaskerlist -smallram 2000 ;; Make list of all taskers with less
 than 2GB of RAM

nc taskerlist

Any user can view the tasker lists with the nc taskerlist command.

vnc: Usage Message

 NC TASKERLIST
 Support tasker lists.
 Taskerlists are named, ordered lists of taskers.

 USAGE:
 % nc taskerlist [OPTIONS]

 OPTIONS:
 -h -- This help
 -v -- Increase verbosity,
 -list -- List all available taskerlists
 -get LIST -- Get the ordered taskers in the
 specified LIST

 ADDITIONAL INFO:
 To manage the tasker lists, you have to be ADMIN
 and you can use the vovtaskerlist utility.

 EXAMPLES:
 % nc taskerlist -list
 % nc taskerlist -get NAMEOFLIST
 % nc run -r TaskerList:NAMEOFLIST ... -- myjob

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.32

Create and Delete Taskerlists

The following example creates a taskerlist named big that contains five machines:

% vovproject enable vnc
% vovtaskerlist create big "lnxbig01 lnxbig02 lnxbig03"
% vovtaskerlist append big "lnxbig04 lnxbig05"

To delete the list, use the following command:

% vovtaskerlist delete big

A list can be reordered by moving selecting taskers first or last: to the beginning or to the end of the list, respectively. These

commands can also be used on the default list.

% vovtaskerlist first big lnxbig05
% $VOVDIR last big lnxbig01

The vtk API for Tasker Lists

vtk_taskerlist_create LISTNAME "list of taskers"
vtk_taskerlist_append LISTNAME "list of taskers"
vtk_taskerlist_first LISTNAME "list of taskers"
vtk_taskerlist_last LISTNAME "list of taskers"
vtk_taskerlist_get LISTNAME
vtk_taskerlist_delete LISTNAME
vtk_taskerlist_list

The following example uses the vtk AP to create a vovtaskerlist that is in the reverse order of the default list.

% vovsh -x 'vtk_taskerlist_create reverse [lreverse [vovtaskerlist_get default]]'

Choose a Tasker List for a Job

To choose a tasker list, use the resource "TaskerList:LISTNAME" when submitting the job.

% nc run -r TaskerList:big -- sleep 100

If the specified list does not exist, the job will not run.

Control the Capacity of Taskers: Slots and Cores

The resources of a tasker include SLOTS, SLOTSTOTAL, CORES and CORESTOTAL.

For example, a machine with 8 cores is normally assigned the following resources:

CORESTOTAL#8 The physical number of cores in the machine.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.33

CORES/8 A consumable resource to represent the number of available cores on the tasker.

SLOTSTOTAL#8 The total number of slots available. Most jobs use only 1 slot, although you can

submit jobs that request more than 1 slot.

SLOTS/8 A consumable resource indicating the number of available slots in a tasker.

A simple single-threaded job consumes 1 slot and 1 core. A multi-threaded job may consume 2 or more cores, but conventionally it

is assumed that each job consumes only 1 slot.

Persistent Capacity Configuration

The tasker capacity is normally configured prior to a tasker starting. Methods are shown below:

• -capacity or -cpus option to vtk_tasker_define

• -T or -C option to vovtasker

• Including SLOTS/N in the tasker resource specification or the vovtasker command line, where N is a positive integer

number.

Refer to Tasker Attributes for more details about these methods.

Live Capacity Configuration

The behavior of manually overriding vovtasker cores and capacity has been improved. By default, the capacity follows the core

count, but it can also be manually set via the -T option or by defining the SLOTS/N consumable resource via the -r option, where

N is a positive integer. In all cases, the capacity directly affects the number of slot licenses that will be requested.

On occasion, it can be useful to change the number of jobs that are allowed to run on a tasker while it is live. For example, if you

have an 8-core machine and you only want to run 4 jobs on it, you can configure the tasker on the fly as shown below:

% nc cmd vovtaskermgr configure -resources SLOTS/4 lnx123

Note: For backwards compatibility, the option -capacity in vovtaskermgrconfigure is still supported. This

option is a shortcut method of setting SLOTS SLOTSTOTAL CORES and CORESTOTAL all to the same amount.

% nc cmd vovtaskermgr configure -capacity 4 lnx123

is the same as

% nc cmd vovtaskermgr configure -resources "SLOTS/4 SLOTSTOTAL#4 CORES/4
 CORESTOTAL#4" lnx123

Refresher: Submit Multi-threaded Jobs

A multi-threaded job consumes more than one core. In a 4-threaded job, a complete submission could look like this:

% nc run -r SLOTS/1 CORES/4 License:abc -- my_mt_job

If it is also important to count the multiple cores towards FairShare, the -fstokens 4 option can be used:

% nc run -r SLOTS/1 CORES/4 License:abc -fstokens 4my_mt_job

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.34

Stopped Tasker's Effect on a Newly Started Tasker

When a tasker has been requested to stop gracefully (allowing jobs to finish before exiting), it is suspended from scheduler

consideration and its capacity is set to 0. If the same tasker is started on the same host before the stopped tasker exits, the slots

consumed by the still-running jobs on the stopped tasker will be counted and deducted from the total slot capacity of the newly

started tasker. This helps prevent overloading the machine on which the taskers are running.

Tasker Health Checks

By default, the vovtasker does not perform many health checks. If the jobs can be executed successfully, that is normally enough of

a check.

In some large farms, it may be useful to activate additional checks, by invoking the tasker with the option -H [PpDdWwUu], where

the lower case characters mean "disable" and the upper case characters mean "enable" of a particular check.

Built-in Checks in vovtasker

Check Name Char Description

DiskSpace d Check space in /tmp and /usr/tmp

WritePerm w Check write permissions in /tmp and /

usr/tmp

Portmap p Check that the portmap daemon is

responsive

UserScript u Check by executing an adminstrator-

created, installation-wide script (see

below)

From the command line, you can use the option -H in vovtasker, as in the following example, which activates only the DiskSpace

test:

% vovtasker -H Dwpu -a my_test_tasker

From the taskers.tcl file, you can use the option -health STRING in a similar way:

Fragment of taskers.tcl
vtk_tasker_define myHost -name my_test_tasker -health DWPU

User Created Script

When enabled, the vovtasker will run an adminstrator-created script placed in a specific location in the installation. There are

security considerations in using this check, as the script will be run by any project that enables the UserScript checks.:

1. The script must be placed at $VOVDIR/local/tasker/health_user_script.csh

2. The script should be secured appropriately to prevent unauthorized modification.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.35

3. The script will run as the user under which the project was started.

Configuration File for vovagent

For cases where the vovtaskers are started by submitting the binary to a separate batch queue system such as LSF or SGE, the

system administrator may decide to use vovagent, which is a special copy of the vovtasker binary.

When vovagent is invoked, the binary limits the values of attributes that are based on the information stored in the configuration

file $VOVDIR/local/vovagent.cfg to ensure compliance with the underlying batch queue system's FairShare policies.

The contents of the configuration file and relation to the command line and taskers.tcl file parameters are as follows:

Attribute Name vovtasker options vovagent.cfg option Description

maxidle -z maxIdleTime After being idle for the

given time, tasker does not

accept new jobs and exits

after completing active jobs.

Value is a VOV timespec, for

example, 2m. The minimum

value is 10s, and the maximum

is the value of the maxlife

parameter or 1hour, whichever

is less. If the configuration file

is absent or does not specify a

value, the default is 1m.

maxlife -Z maxLifeTime After the specified lifetime,

tasker does not accept new

jobs and exits after completing

active jobs. The value is a

VOV timespec, for example,

2H. The minimum value is

5m, and the maximum of

unlimited is specified by

giving 0 (zero) or a negative

value. If the configuration file

is absent or does not specify a

value, the default is 2H.

update -U update Specifies the update cycle

time for the vovtasker agent,

which is the interval at which

tasker resource procedures are

recalculated. The minimum

value is 5s, and the maximum

is half the value of the

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.36

Attribute Name vovtasker options vovagent.cfg option Description

maxidle parameter or 5

minutes, whichever is less. If

the configuration file is absent

or does not specify a value, the

default is 1m.

An example of the vovagent configuration file is shown below.

Note: Set access permissions to ensure that only the VOV system manager account can modify this file.

maxIdleTime = 1m
maxLifeTime = 1h
updateInterval = 15s

Tasker Load Reports

vovtasker continuously logs 1 minute, 5 minute and 10 minute load averages of the machine where the tasker is running. Tasker

load reports are available on the Tasker Load page.

Set Up Aggregation

By default, the Tasker Load page shows the reports for all live taskers, one plot for each tasker, as shown below.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.37

Figure 1:

In addition to plots of individual taskers, plots can be aggregated to show the sum of the data of a selected group of machines

(taskers). For example, the loads of the Linux machines could be aggregated and then compared to the summation of the loads of

the HPUX machines. This optional feature can be set up in the taskerload configuration file.

For the Tasker Load page, the taskerload configuration file is located at: projName.swd/taskerload_config.tcl

For Accelerator with the queue name vnc, the taskerload configuration file is located at: $VOVDIR/../../vnc/

vnc.swd/taskerload_config.tcl

In the following example, three aggregation methods are set up: Ownership, Type and Speed.

Sample of taskerload_config.tcl
set TASKERLOAD(aggregateby,Ownership) "Development Regression Marketing"
set TASKERLOAD(aggregateby,Type) "Linux"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.38

set TASKERLOAD(aggregateby,Speed) "Fast Slow"

set TASKERLOAD(taskers,Linux) "farm01 farm02 farm03 farm04 farm05"

set TASKERLOAD(taskers,Fast) "farm01 farm02 farm04 farm07 farm08"
set TASKERLOAD(taskers,Slow) "farm12 farm13 farm14"

set TASKERLOAD(taskers,Development) "farm01 farm02 farm07 farm08 farm09"
set TASKERLOAD(taskers,Regression) "farm03 farm04 farm05 farm 06 farm10 farm11
 farm13"
set TASKERLOAD(taskers,Marketing) "farm12 farm14"

Setting up Aggregation by Speed

Two categories of Speed are available: Fast and Slow. The Fast category includes machine farm01, farm02 farm04 farm07

and farm08. The Slow category includes machine farm12, farm13 and farm14. In this case, choosing to have the report aggregated

by Speed will result in two plots: one plot with the sum of the load of the machines defined in Fast category; one plot with the

sum of the loads of the Slow machines.

The following is an example of reports that were aggregated with Speed:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.39

Figure 2:

RAM Sentry

The RAM Sentry mechanism monitors the RAM utilization of the jobs and performs safety measures to prevent the tasker's

memory resources from becoming saturated.

The RAM Sentry currently has one level of protection:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.40

• Suspend at swap: For taskers that have multiple jobs running, if the tasker enters swap, the RAM Sentry suspends all jobs

other than the job with the largest RAM footprint. When the large job completes, the smaller jobs will resume. While the

RAM Sentry is active, the tasker itself is also suspended, preventing any new jobs from being accepted.

Enable RAM Sentry

To enable the RAM Sentry, set the variable VOV_RAM_SENTRY to 1 before starting a tasker. A simple choice is to add the

following line to the $VOVDIR/../../vnc/vnc.swd/setup.tcl file, so that all taskers have this functionality enabled:

Add this to the vnc.swd/setup.tcl file.
setenv VOV_RAM_SENTRY 1

After the tasker has started, you can control the mechanism for each individual tasker with vovtaskermgr configure -

ramsentry <boolean> ..., as in the following examples:

% vovtaskermgr configure -ramsentry 1 linux010
% vovtaskermgr configure -ramsentry 0 linux010

Define Policies for Taskers

Host Availability Policy

In a typical network, compute servers are available around the clock while workstations are available only during the off-hours (for

example, from 8pm to 8am and on weekends). This can be easily defined in the taskers file vnc.swd/taskers.tcl by adding

a line like the following:

vtk_tasker_define workstation1 -resources "VovResources::Offhours res1 res2"

In the above example, "workstation1" offers the resource list "res1 res2" during the off-hours. During the work-hours of the week,

such a tasker will be suspended in the sense that it will not accept any new jobs. All jobs running at the time the suspension begins

are carried out to completion.

In another scenario, a workstation is available whenever the owner is not actively using it. You can specify the following in the

vnc.swd/taskers.tcl file:

vtk_tasker_define workstation1 -resources "VovResources::Workstation 5m 30m"

Here, "5m" indicates the minimum idle time required before any job is to be dispatched to "workstation1" and "30m" indicates that

the tasker will not accept jobs with duration longer than 30 minutes.

Define a Custom Tasker Policy

You can define a custom policy for a tasker by adding a new procedure to the file $VOVDIR/local/taskerRes.tcl.

The following is an example of a simple procedure called MyNight for a tasker that behaves differently at night than

during the day. The procedure is defined in the namespace VovResources and can be used by specifying the argument

VovResources::MyNight for the option -resources of vtk_tasker_define.

Fragment from the file $VOVDIR/local/taskerRes.tcl
namespace eval VovResources {
 namespace export MyNight
 proc MyNight { args } {
 #

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.41

 # During the night, the tasker accepts jobs up to 1 hour.
 # During the day, the tasker accepts jobs up to 2 minutes.
 #
 set HH [clock format [clock seconds] -format "%H"]
 regsub {^0} $HH "" HH; # Strip leading 0.
 if { $HH >= 6 && $HH < $19 } {
 vtk_tasker_set_timeleft 120
 } else {
 vtk_tasker_set_timeleft 3600
 }
 return "@STD@"
 }
}

The following should be noted:

• The resource list for the tasker is the value returned by the procedure

• The procedure vtk_tasker_set_timeleft n controls the maximum expected duration of jobs dispatched to

the tasker. The value for n must be non negative. If the value is zero, the tasker is in the "SUSPENDED" state, that is it

temporarily refuses to accept new jobs.

Time-Variant Taskers

Time-variant taskers resources can be configured using Tcl. Any procedure can be defined in the namespace VovResources and

then used to compute the resource list.

If the first characters in the argument for the option -r is the sequence VovResources::, then the taskers resources are

computed by executing the argument as a Tcl command.

For a list of predefined procedures, refer to Predefined VovResources:: Procedures.

A special case of a resource is the local disk space on a host, which varies according to the files stored there. There may be jobs

that require a minimum amount of space to run successfully. The vovtasker implements vtk_fs_stat (see vtk_fs) to handle

such requirements. An example is provided further below.

An alternative is to use load sensor. However, in the case of free disk space, vtk_fs_stat is recommended because it is more

efficient.

For example, taskers can be set up to offer one set of resources during the day and another set of resources during the night. The

following example is a script that computes the resource "nothing" between 5am and 8pm, and the standard resources during the

night. In addition, vtk_tasker_set_timeleft is used to control the maximum expected duration of the jobs sent to the

tasker.

namespace eval VovResources {
 proc Night { args } {
 # Return the standard resources during the night and suspend the tasker
 # during the day. During the night, the tasker progressively reduces the
 # maximum length of the jobs it accept.
 set NIGHT_RESOURCES "@STD@ $args"
 set EVENING_START 19
 set MORNING_END 6
 set HH [clock format [clock seconds] -format "%H"]
 regsub {^0} $HH "" HH; # Strip leading 0.
 if { $HH >= $MORNING_END && $HH < $EVENING_START } {
 # -- During the day, suspend the tasker.
 vtk_tasker_set_timeleft 0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.42

 } else {
 # -- During the night, compute the time left.
 set hoursLeft [expr $MORNING_END - $HH]
 set hoursLeft [expr $hoursLeft >= 0 ? $hoursLeft : $hoursLeft + 24]
 set timeleft [expr $hoursLeft * 3600]
 vtk_tasker_set_timeleft $timeleft
 }
 return $NIGHT_RESOURCES
 }
}

Example:

% vovtasker -r "VovResources::Night hspice"

These procedures are evaluated:

• Every minute, or at the interval that was selected with the option -U

• After the completion of each job.

The standard procedures are defined in the script $VOVDIR/etc/tasker_scripts/taskerRes.tcl. It is recommended

to review these procedures before implementing your own procedures in $VOVDIR/local/taskerRes.tcl.

Free Disk Space

The following script monitors free disk space using vtk_fs_stat. This example script adds the resources WORK and SCRATCH;

the values of these resources will be the amount of disk space in MB on the corresponding filesystem.

namespace eval VovResources {
 proc FsCheck { args } {
 # Usage:
 # VovResources::FsCheck -fs WORK /work -fs SCRATCH /scratch -r @STD@ -r xx
 #
 set resources {}
 while { $args != {} } {
 set arg [shift args]
 switch -- $arg {
 "-fs" {
 set name [shift args]
 set dir [shift args]

 set space [vtk_fs_stat $dir]
 lappend resources "$name#$space"
 }
 "-r" {
 lappend resources [shift args]
 }
 }
 }
 return [join $resources]
 }
}

Example:

% vovtasker -r "VovResources::FsCheck WORK /work"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.43

Allocate Jobs to Machines Based on Percentages

All taskers in Accelerator offer a consumable resource called PERCENT. Every job in Accelerator requests at least PERCENT/1.

If you want a job to have exclusive access to a tasker, the job should request PERCENT/100.

By default, each tasker provides PERCENT/100, but the total percentage can be adjusted for cases when part of a tasker needs to

be pre-allocated for something outside of the queue. This is done either in The taskers.tcl File or in the taskerClass.table file by

adding PERCENT/N to the resource specification, where N is a positive integer.

SGE Style Load Sensors

vovtaskers also support SGE style load sensors. Use option -L in vovtasker/vovtaskerroot to define the command line for the load

sensor.

For example:

% cp $VOVDIR/etc/tasker_scripts/load_sensor_example.sh /tmp/myloadsensor.sh
% vovtaskerroot -L /tmp/myloadsensor.sh

For security reasons, a load sensor is accepted only if it is owned either by the user or by root.

Load sensors summary:

vovtasker option -L full_path_to_load_sensor

taskers.tcl file -loadsensor full_path_to_load_sensor

Execution

The tasker executes the load sensor:

• Every minute

• After the termination of a job

Special Variables

The implementation recognizes the following special variable names:

Variable name Description

power Overrides the effective power of the tasker.

maxload Overrides the predefined value of max load allowed by the

tasker.

All other variable names are added to the resource list for the tasker that is executing the load sensor.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.44

Example of a Load Sensor

The following example can be found in $VOVDIR/etc/tasker_scripts/load_sensor_example.sh.

#!/bin/sh
This is the classical example of a load sensor for SGE.
Usage: % vovtasker -L /full/path/to/load/sensor

myhost=`uname -n | awk -F. '{print $1}'`
myid=`id -u`

while [1]; do
 # wait for input
 read input
 result=$?
 if [$result != 0]; then
 exit 1
 fi
 if ["$input" == quit]; then
 exit 0
 fi

 echo "Computing load sensor: $input"

 #
 # Send:
 # 1. Number of users logged in
 # 2. Another number, just for fun.
 # 3. Change the power of the tasker to affect the preference
 #
 logins=`who | cut -f1 -d" " | sort | uniq | wc -l`
 logins=`/bin/echo $logins` # Trim left white space.
 echo begin
 echo "$myhost:logins:$logins"
 echo "$myhost:id:$myid"
 echo "$myhost:power:42222"
 echo end
done

We never get here.
exit 0

Start a Remote UNIX Tasker

On UNIX, the script vovtaskerstartup is used to start a tasker on a remote machine. This script ensures that the tasker runs

in a valid environment by sourcing the following scripts.

• $VOVDIR/local/scripts/vovtaskerstartup.aux, if available, to perform site specific initialization:

Example of $VOVDIR/local/scripts/vovtaskerstartup.aux
echo "This is vovtaskerstartup.aux on `uname -n`"
switch ($VOVARCH)
 case "linux*":
 unlimit openfiles
 breaksw
 default:
endsw

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.45

• $VOVDIR/etc/std.vov.aliases, to define all standard aliases (for example, ves).

• setup.tcl in the server configuration directory to initialize the project environment.

If the -view option is used, the script also starts the taskers in the given ClearCase view.

The -descriptors option triggers a check to ensure the host has at least as many descriptors as vovserver, which ensures it can

operate at full capacity in the event of failover. It also checks that the server_election directory is empty.

Note: For this function to work, the -failover option must be used with vtk_tasker_define. For more

information, refer to vtk_tasker_define.

Taskers on Windows

Accelerator can dispatch jobs to taskers running on Windows hosts. Starting the taskers on Windows hosts, however, is less

automated than on UNIX hosts.

To prepare the Windows host:

1. Mount the filesystem with the Accelerator installation on the Windows machine in the form of a drive letter. For example,

assume that the installation is mounted as f:\rtda\<version>. Enter the location depending on your network setup.

2. Start a Windows cmd shell . Initialize it by executing the vovinit.bat script that is in the installation directory under

win64/bat.

For the example, use:

% f:\rtda\<version>\win64\bat\vovinit.bat

The vovinit.bat file adds the Altair Accelerator commands to the PATH and sets other environment variables used by

the software.

You may consider adding the following shortcut to your desktop to facilitate this operation in the future:

cmd /k f:\rtda\<version>\win64\bat\vovinit.bat

Refer to the Windows documentation to learn how you can add a shortcut to the desktop.

3. Start the Tasker Server Daemon with:

% vovtsd -user vncadmin

where vncadmin should be replaced by the login name of the Accelerator administrator who is running the Accelerator

vovserver.

4. Mount all other drives required to perform the tasks.

Basically, the Windows host must be capable of performing the tasks that are about to be dispatched by the Accelerator

vovserver. This means that the filesystem with the run directory must be mounted at a drive letter, since you may not change

directory to a UNC path.

Configure Taskers on Windows

1. Define the Windows host in vnc.swd/taskers.tcl.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.46

2. Be sure to add the host to the list of Windows hosts, not the UNIX hosts. These hosts need to use special values for

the option -serverdir and -vovdir of vtk_tasker_define. All of this is also explained by comments in the sample

vnc.swd/taskers.tcl file.

3. Start the tasker using, for example, a soft reset:

% ncmgr reset -taskers

Windows User Impersonation

VOV supports Windows in addition to many UNIX variants. This section describes cross-platform jobs between UNIX/Linux and

Windows.

User Accounts that Run Jobs on Windows

The persistent Windows vovtasker runs as the user that started it, but can switch to other accounts if it is supplied with the account

credentials by the vovserver. These credentials are supplied with the job over the VOV-protocol connection between the vovserver

and the vovtasker.

Every Altair Accelerator project, including Accelerator, is a collection of jobs and files managed by a vovserver. A project may

be multi-user, and the vovserver stores information about the users who have jobs in the project. Each user has an account name

that is related to a user ID, and possibly to a Windows account name. The vovserver uses the operating system's mechanism to

authenticate users. A user must already have authenticated to the OS before being able to start a vovserver, and the vovserver runs

in that user's account.

There is no superuser identity such as root that can switch to other accounts without providing any credentials. For Accelerator on

Windows, a different method is used to run jobs as the submitter.

The vovtasker calls a Windows API to create a process with a username and password. The username is mapped from the UNIX/

Linux username, and the password is stored in encrypted form in the vovserver and passed to the vovtasker. The password is

destroyed immediately after use. It is possible for a UNIX/Linux user to run jobs as another Windows user, by logging onto the

machine locally with the account name and password.

After the Windows process is running as the correct user, it may need to point to different drive letters as, as each user has their

own set in recent Windows versions. For details, refer to Vov Windows Impersonation.

Enter the Windows Password - only needed if you want to switch the user running the job

In the vovconsole GUI, you may enter the Windows password using the Tools > Windows Password menu item. From the

command line, you can use the vovauxpasswd command.

Batch Files

In the course of running the job, the Accelerator tasker on Windows creates a batch file, and may use an optional pre- and post-job

batch file. Batch files cannot be edited by you, but the pre and post job batch files can be used for debugging purposes.

The following is an example of the pre-job batch file that if present, will be called by the vovtasker's job-bootstrap batch file. This

example records the variables and drive letters in the file pre-hook.txt.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.47

Example script that you must write and put in a directory that you have to create yourself: vovbtpre.bat that record variables

and drive letters into a file for troubleshooting:

set & pre-hook.txt
net use && pre-hook.txt

Must be in C:/tmp directory, so please create this directory

If defined, the batch file vovbtpost.bat is called after the job. Use the same technique as the pre- file to create and use this

fiile

The following example uses the choice command to keep the window visible until a key is pressed.

Example script: vovbtpost.bat:

REM Example script: vovbtpost.bat
REM Use choice cmd to make window stay around
choice /M "Press Y to finish"

echo done

Manage Remote Taskers without SSH/RSH Capabilities

The program vovtsd is a daemon written as a Tcl script that runs using the VOV vtclsh binary. This daemon can be used also

to start various types of agents on any type of Windows or UNIX machine.

In Windows, vovtsd is started from the command line and then runs in a Windows cmd shell. Each vovserver connects to

vovtsd via TCP/IP to start the vovtasker process.

vovtsd

This utility listens for requests to launch taskers for various projects, but always for the same user. The requests typically come

from vovtaskermgr.

Usage

vovtsd: Usage Message

 VOVTSD: Vov Tasker Service Daemon
 This utility listens for requests to launch taskers for
 various projects, but always for the same user.
 The requests typically come from vovtaskermgr.

 USAGE:
 % vovtsd [OPTIONS]

 OPTIONS:
 -v -- Increase verbosity.
 -h -- Print this help.
 -debug -- Generate verbose output.
 -help -- This message.
 -normal -- Start a normal daemon (for current user)
 -expire <TIMESPEC> -- Exit from vovtsd after specified time.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.48

 -user <user> -- Specify the user that should be impersonated.
 vovtsd computes the port number by
 hashing the user name.
 -port <n> -- Specify port to listen to.

 EXAMPLES:
 % vovtsd -normal
 % vovtsd -port 16666
 % vovtsd -user john -port 16000

Start a Remote vovtasker with vovtsd

To use vovtsd on Windows, follow these steps:

1. Start a command shell on the Windows workstation as the user who is supposed to run the taskers. See below if this user

needs to be different from the user logged in on the screen.

2. Set up the shell to use VOV with the vovinit command. This sets the needed environment variables, including PATH.

c:\temp> \<install_path>\win64\bat\vovinit

3. Mount all filesystems using the appropriate drive letter; these need to agree with the values of serverdir and vovdir in the

taskerRes.tcl file for the VOV project.

4. Start vovtsd, possibly using a new window. The -normal option says to use a TCP/IP port calculated from the username.

You may specify the port explicitly by using the -port option.

c:> start vovtsd -normal

Run vovtsd as a Different User

The vovtasker started by vovtsd will run as the user running vovtsd. If you need for this to be different from the user logged in

at the keyboard and screen, you have several options.

On Windows 2000 and Windows XP, you can use the runas.exe command included with the operating system. For example, on

Windows XP, logged in as 'user1', you could start a command shell using:

C:\temp> runas /user:domain-name\username cmd

Note: You may need to mount the filesystems for that user. On Windows NT, the drive letters are shared, but on

later versions, each user can mount a different filesystem on a given drive letter.

Black Hole Detection

A Black Hole is a tasker that appears healthy but is unable to execute jobs. All jobs sent to that tasker quickly fail, and the tasker

appears ready to execute the next job in queue, although all jobs submitted to that tasker fail.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.49

On a given tasker, if a number (blackholeFailedJobs) of consecutive jobs fail within a relatively short time

(blackholeDiscardTime), the tasker is potentially a black hole. The tasker is certainly a black hole only when we know

that a large fraction (blackholeFailRate) of those jobs succeed on other taskers. When a tasker is a potential back hole, it is

suspended for a short amount of time (blackholeMaybeTime), typically around 10 seconds. When a tasker is a black hole, it is

suspended for a longer period (blackholeSuspendTime) typically around 10 minutes.

To activate the functionality, use:

% nc cmd vovsh -x 'vtk_server_config blackholedetection 1'

To disable the functionality, use:

% nc cmd vovsh -x 'vtk_server_config blackholedetection 0'

To check whether black hole detection is active, use:

% nc cmd vovsh -x 'vtk_generic_get policy a; parray a' | grep blackhole

Troubleshooting a SICK Tasker

The vovserver marks a vovtasker SICK when it has not received the vovtasker's heartbeat message for three consecutive update

cycles.

Possible causes include:

• The machine has crashed

• The machine got disconnected

• The top-level vovtaskerroot process has crashed or was killed

Since there is no single solution to this problem, here is a short debugging guide.

1. Is vovtasker SICK?

If vovtasker is SICK, use:

% nc cmd vovtaskermgr stop name-of-SICK-vovtasker
% nc cmd vovtaskermgr start name-of-SICK-vovtasker

Otherwise, vovtasker will not start.

2. Is the machine running?

• No: you have a network problem: call IT

• Yes: continue

3. Is vovtasker/vovtaskerroot stuck?

a) On Linux, check the process status with:

root privilege is needed
% strace -p PID% pstack PID

where PID is the PID of the vovtasker/vovtaskerroot process.

• No: continue

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.50

• Yes: often, the output of strace and pstack help diagnose the problem (e.g. a bad NFS mount, an unresponsive

LDAP, ...).

Sometimes you may not be able to figure out what is holding up the vovtasker. Submit a support request at Altair

Community for assistance.

Tasker Reservations

A vovtasker may be reserved for one or more:

• Users

• FairShare groups

• OS groups

• Jobclasses

• Job projects

• Jobs

• Buckets

The reservation is always for a specific period of time, starting at any time and ending some time in the future. If the end time is in

the past, the reservation is ignored and removed. The reservation can be very long, for example thousands of days.

A tasker can have multiple reservations at any time. Jobs that do not match any reservation are not sent to the tasker if the tasker is

reserved. For example:

• If the tasker is reserved for a user, only jobs submitted by that user may be dispatched to that tasker.

• If the tasker is reserved for a group, only jobs from that group may be dispatched to that tasker.

• If the tasker is reserved for a user and a group, only jobs submitted by that user who belongs to that group may be dispatched

to that tasker.

Negated Reservations

Taskers may also be reserved for a negated set, in order to prevent access to the tasker by jobs that match members of the set.

To negate a tasker reservation, simply place a not symbol "!" at the beginning of the reservation expression. For example, the

command vovtaskermgr reserve -user '!john,mary' -duration 1h tasker1 will allow the tasker named

tasker1 to run jobs from any user except john and mary for 1 hour. Any valid reservation expression can be negated.

Note: If you are negating a list, use the not symbol ONLY at the beginning of the list; you should NOT place a "!"

before every item.

Persistent Reservations

Reservations are persistent. If you stop a tasker and restart another one with the same name, the new tasker will inherit the

persistent reservation of the old tasker. Expired reservations are removed frequently.

If a tasker is renamed, the corresponding reservations get updated too. So, the reservations do not get lost.

Reservation rules

Only reservations with end time later than the current time are valid.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.51

There can be multiple reservations on a vovtasker. But there is only one active reservation. If there is already an active

reservation, a new reservation overlapping time with the active reservation can be created but ignored. When the active

reservation expires (end time passes current time), a new active reservation with earliest start time is picked.

Reservation only applies to normal (direct) taskers or BPS agents. Making reservations on indirect taskers is not allowed.

Duplicate reservations

A new reservation can be created if the reservation is different from existing reservations. Two reservations are the

same if the following attributes of reservations are the same. All of these attributes can be specified when creating a

reservation using vtk_reservation_create. If a reservation is created through vovtaskermgr, vtk_tasker_reserve,

and taskers.tcl, start time and end time are not used as identifiers. The existing reservation with the same

other attributes are updated with the new start time and end time. If there is no existing reservation, a new reservation is

created.

type Always tasker if the reservation is for tasker.

what List of tasker names that this reservation is reserving

start time Reservation start time

end time Reservation end time

user Reservation is for these users

group Reservation is for these groups

osgroup Reservation is for these osgroups

jobclass Reservation is for these jobclasses

jobproj Reservation is for these jobprojects

bucketid Reservation is for these bucket IDs

id Reservation is for these job IDs

Reserve a vovtasker

There are several ways to create a new reservation.

vovtaskermgr, taskers.tcl, and vtk_tasker_reserve creates a new reservation, but if there is an overlapping reservation with

the same parameters, the existing one is updated with new start_time and end_time. These are the same with running

vtk_reservation_create with the -update option.

On the Command Line: vovtaskermgr reserve

The syntax is:

% vovtaskermgr reserve [options] <taskers_list>

where the options could be:

-user Comma separated list of users

-group Comma separated list of groups

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.52

-jobproj Comma separated list of job projects

-jobclass Comma separated list of job classes

-osgroup Comma separated list of OS groups

bucketid Comma separated list of bucket IDs

-id Comma separated list of job IDs

-start Start time

-end End time

-cancel

<tasker_list> List of tasker names to reserve.

For example, the following command reserves taskers jupiter and alpaca for user john for 3 hours starting from now.

% vovtaskermgr reserve -user john -duration 3h jupiter alpaca

With -cancel option, all reservations on the specified tasker(s) will be removed.

% vovtaskermgr reserve -cancel jupiter alpaca

The following command shows all reservations for taskers.

% vovtaskermgr reserveshow

In the taskers.tcl File

This is useful to reserve a tasker from the instant it is created. Use option -reserve of vtk_tasker_define.

The reservation expression argument to the -reserve option takes space-separated list of key value pairs, where the key is one of

USER, GROUP, JOBCLASS, JOBPROJ, BUCKET, DUR, QUANTITY. If the key is DUR, the value is a time spec. If not specified,

the default duration is 1 year. For the other keys, the value is a comma-separated list.

Examples:

vtk_tasker_define jupitar -reserve "USER john,mary JOBCLASS spectre"
vtk_tasker_define alpaca -reserve "JOBPROJ chipa,chipb DUR 3w"

The old form GROUP/USER/DURATION is accepted. The GROUP and USER parts are optional, but the separators ('/', the forward-

slash character) must be present. The duration is expressed as a VOV timespec, e.g. 2d for two days. If only digits are present, the

value is interpreted as seconds.

-reserve is passed to vovtasker executable as -e option. If advanced users want to run a tasker with -e option for initial reservation,

the syntax is the same as vtk_tasker_define -reserve option.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.53

Reserving a Tasker via the Browser

Open the tasker page to reserve a particular tasker. It is at the URL /tasker/taskerId. Fill out a simple form, indicating

which user, group, OS group, job class, and/or job project for this tasker is to be reserved, as well as start time and duration. After

you select the duration, the form will be submitted.

Click Forget to cancel the tasker reservation, if you are ADMIN.

vtk_tasker_reserve Tcl Interface

With Tcl, you can use tasker reservations. The syntax is:

vtk_tasker_reserve taskerId [-user <user1,user2,...>]
 [-group <group1,group2,...>]
 [-osgroup <osgroup1,osgroup2,...>]
 [-jobclass <jobclass1,jobclass2,...>]
 [-jobproj <jobproj1,jobproj2,...>]
 [-bucketid <bucketid1,bucketid2,...>]
 [-id <jobid1,jobid2,...>]
 [-start <starttime>]
 [-end <endtime>]
 [-duration <reserved_duration>]

For example, the following line will clear (cancel) all reservations on tasker 00001230, if there is one. Otherwise, this doesn't have

any effect.

vtk_tasker_reserve 00001230

The following line reserves tasker 00001230 for user john for 3 hours starting from now.

vtk_tasker_reserve 00001230 -user john -duration 3h

This reserves tasker 00001230 for user john in group alpha for 2 weeks starting from one hour from now.

vtk_tasker_reserve 00001230 -user john -group alpha -start [clock scan "1 hour"] -
duration 2w

vtk_reservation_create Tcl Interface

You can use vtk_reservation_create in a Tcl interface. This is a new interface introduced in 2017 version to support

multiple reservations per tasker.

The syntax is:

vtk_reservation_create <type> <what> <quantity> <start_time> <end_time> [options]

where:

<what> Comma separated list of tasker names

<quantity> Not used for tasker reservations

<start_time> Reservation start time

<end_time> Reservation end time

And the options could be:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.54

-user Comma separated list of users

-group Comma separated list of groups

-osgroup Comma separated list of OS groups

-jobclass Comma separated list of jobclasses

bucketid Comma separated list of bucket IDs

-id Comma separated list of job IDs

-update

For example, the following Tcl script creates a reservation for host1 and host2. It reserves 4 slots of each host. It returns ID for the

reservation. The ID can be used to update and delete the reservation.

set now [clock seconds]
vtk_reservation_create tasker host1,host2 1 $now [expr $now+3600] -user brian

If all attributes are the same as one of existing reservations, vtk_reservation_create will return nochange.

With -update option, it looks for a reservation which has same attributes except start_time and end_time but the reservation

period is overlapping. If there is one, the existing reservation is updated with start_time and end_time.

set now [clock seconds]
set end [expr $now+3600]
set end2 [expr $now+7200]
vtk_reservation_create tasker localhost 1 $now $end -user john #creates a new
 reservation
vtk_reservation_create tasker localhost 1 $now $end -user john #returns "nochange"
vtk_reservation_create tasker localhost 1 $now $end -group g1 #creates a new
 reservation
vtk_reservation_create tasker localhost 1 $now $end2 -user john -update #updates the
 first

Manage Reservations

To show all existing reservations, use:

% vovshow -reservations

To forget all reservations, use:

% vovforget -allreservations
% vovforget <reservationId>

Reservations data is accessible with vovselect as well.

% vovselect id,reserveuser,reservestart,reserveend from reservations

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.55

vtk_reservation_get Tcl Interface

vtk_reservation_get <reservationId> <variable> provides the details about a reservation.

vtk_reservation_get 21673 info
parray info

Prints out the following information:

info(id) = 21673
info(quantity) = 1
info(reservebucketid) =
info(reservecreated) = 1513026518
info(reservedby) = jin
info(reserveend) = 1513199318
info(reservegroup) =
info(reserveid) =
info(reservejobclass) =
info(reservejobproj) =
info(reserveosgroup) =
info(reservestart) = 1513026518
info(reserveuser) = jin
info(type) = tasker
info(what) = local2

vtk_reservation_update <reservationId> <fieldname> <new_value> updates a field of reservation with a

new value. Available field names can be found by vovselect fieldname from reservations on the command line.

vtk_reservation_update 21673 RESERVEUSER robert

vtk_reservation_delete <reservationId> removes the reservation.

vtk_reservation_delete 21673

Number of Reservations and System Performance

Many reservations on each tasker may slow down the system. Upon choosing the right tasker to run a job, the algorithm

considers all reservations. It is recommended to use the limited number of reservations per tasker. By default, the maximum

number of reservations per tasker is set as 10 and this is configurable through a server parameter tasker.max.reserve in

policy.tcl.

Clean up Processes Left Behind by Completed Jobs

Some third-party software has a tendency to spawn child processes but do not ensure that they are cleaned up once the main

process ends. This behavior can lead to overloaded, and in extreme cases, unresponsive hosts. Accelerator can be configured to

enable automatic cleanup of such processes. This functionality is supported on Linux only.

Note: While automated cleanup is an effective strategy for combating this problem, the behavior should not be

considered as normal, and it is recommended to report it to the third-party software vendor when it is encountered.

If enabled, for each job that has ended, the vovtasker will parse the environment metadata for each process that exists on the

host. If the VOV_JOBID environment variable exists in the environment for a process, and its value matches that of the job that

has ended, the process will be marked as an orphan process that must be cleaned up. Since child processes inherit their parent's

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.56

environment, the vovtasker will be able to identify related child processes hierarchically. Once all orphan processes have been

identified, the vovtasker will send the KILL signal to each one and will print a corresponding message in the tasker log.

Note: Processes that create their own environment from scratch, as well as ones that explicitly remove the

VOV_JOBID variable from the environment will not be cleaned up by this feature.

1. To enable this feature, add the following line to the $SWD/policy.tcl file:

set config(tasker.childProcessCleanup) 1

2. Once the file has been edited, reread the policy via:

% nc cmd vovproject reread

3. To confirm the feature is enabled:

% nc cmd vovselect param.tasker.childProcessCleanup from server

A value of 0 indicates the feature is disabled (default), whereas a value of 1 indicates the feature is enabled.

Web Server Configuration

HTTP Access Models

There are 3 HTTP access models:

• Legacy

• Internal/External

• Nginx

Legacy Webserver

The Legacy webserver is the basic web server that is internal to vovserver and serves content directly to web browser clients.

All traffic is transmitted using HTTP protocol and is unsecured. This method is approriate for REST versions up to version 2.0.

This is the case when

• webport=0, or

• webport != 0 and webprovider=nginx

Internal Webserver

The Internal webserver is an enhanced web server that is internal to vovserver, for secure pages and all REST versions.

The Internal webserver is established when

• webport != 0 and webprovider=internal

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.57

To specify the web port at product start, refer to the product-specific documentation for startup. To change the port in an already-

running product instance, see Advanced Control of the Product Ports. To enable SSL support (HTTPS), follow the steps in

Configure the TLS/SSL Protocol.

You get REST v3 API support from this webserver, and we still transparently delegate some HTTP requests to the old web server

on the VOV port.

The Internal server securely handles all incoming traffic, decrypting it before handing it off to the locally running vovserver.

Likewise, any response that is sent back to the browser is routed through the Internal webserver, which encrypts the response and

sends it to the browser. This implementation is known as an SSL termination proxy.

nginx Webserver

The vovserver serves content to a proxy webserver (nginx), which communicates to web browser clients. Under this model, SSL

can be enabled, securing all traffic using the HTTPS protocol.

The nginx web server is enabled when the web port is configured with a non-zero value. To specify the web port at product start,

refer to the product-specific documentation for startup. To change the port in an already-running product instance, see Advanced

Control of the Product Ports. To enable SSL support (HTTPS), follow the steps in Configure the TLS/SSL Protocol.

For experts only, advanced customizations to the nginx configuration can be made by modifying its configuration template.

Configuration templates are searched for in the following locations:

Order Type Path

1. Instance-specific $SWD/vovnginxd/conf/

nginx.conf.template

2. Site-wide $VOVDIR/local/

config/vovnginxd/

nginx.conf.template

3. Installation-specific(edits not

recommended)

$VOVDIR/etc/

config/vovnginxd/

nginx.conf.template

If customizations are intended, it is recommended to start with a copy of the default configuration template shown at location 3

above and place into either location 1 or 2.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.58

Note:

• The configuration template is copied into the nginx configuration directory located at $SWD/vovnginxd/

conf, named as nginx.conf. The copy is made upon product start, as well as any time the web port or SSL

configuration is changed.

• Changes to the actual configuration file can be read into nginx via the vovdaemonmgr reread

vovnginxd command, but such changes will be overwritten the next time the configuration template is

copied.

• The configuration template contains keywords surrounded by @ signs, such as @WEBPORT@, that are

dynamically substituted with values during the copy process. Removal of these keywords is not recommended,

as it may effect the ability for nginx to be reconfigured in the event of a vovserver failover.

Configure the TLS/SSL Protocol

The internal and nginx webservers support TLS/SSL Protocol communication via "https" - prefixed URLs when configured

correctly.

The vovserver serves content to a proxy webserver (nginx), which communicates to web browser clients. Under this model, SSL

can be enabled, securing all traffic using the HTTP protocol.

When SSL is enabled, nginx will look for an SSL certificate/key pair in the following locations:

Order Type Path Files

1. Site-wide wildcard $VOVDIR/local/ssl wildcard-crt.pem

wildcard-key.pem

2. Host-specific $SWD/config/ssl hostname-crt.pem

hostname-key.pem

3. Host-specific (auto-generated

and self-signed)

$SWD/config/ssl hostname-self-

crt.pem

hostname-self-

key.pem

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.59

Note:

• For hostname, use the actual host name that will be used to access the web UI. This will be the

value of VOV_HOST_HTTP_NAME that was set in the configuration. If not defined, the value of

VOV_HOST_NAME is used instead.

To use the fully qualified domain name, the value of VOV_HOST_HTTP_NAME must be set.

• Self-signed certificates will present security warnings in most browsers.

Updating the TLS/SSL cert requires restarting the webserver so that the cert files can be re-read. For the internal webserver, see,

"Restarting the Webserver" below.

Guest Access Port

The vovserver can be configured to enable a guest-access port, also called the read-only port due to the limited privileges allowed

by the port. This port bypasses the login prompt and provides the user with a READONLY security principle, which disallows

access to writable actions as well as certain pages in the UI.

To specify the guest access port at product start, refer to the product-specific documentation for startup. To change the port in an

already-running product instance, follow the steps in Advanced Control of the Product Ports.

Transition from nginx Webserver to Internal

To transition from external (nginx) to the internal web server, follow these steps:

1. Shut down nginx with the command vovdaemonmgr stop vovnginxd.

2. Delay for 5 seconds with the command sleep 5.

3. Start the internal web server with vovservermgr config webprovider internal.

Restarting the Webserver

Complete the following steps to restart the webserver without bringing down vovserver.

1. Enter the following:

vovservermgr config webport 0

2. Wait five seconds, then enter:

vovservermgr config webport $VOV_WEB_PORT_NUMBER

Altair Accelerator Configuration

Many aspects of Accelerator behavior can be customized.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.60

• Caching of nc list results may be configured in the file $VOVDIR/local/vnclist.config.tcl

Example content of vnclist.config.tcl
enable 'nc list' local caching
set NCLIST(cache,enable) 1

Other variables used in global array NCLIST (not settable)
#set NCLIST(cache,timeout,default)
#set NCLIST(cache,cacheFile)
#set NCLIST(cache,cacheFp)

environment variables that influence 'nc list' caching
NC_LIST_FORMAT
NC_LIST_CACHE_DIR ; # default ~/.vov/vnclist.caches/<project>...
NC_LIST_CACHE_TIMEOUT

Job Submission Policy

The job submission behavior of Accelerator or Accelerator Plus can be controlled by the file vnc_policy.tcl, which resides in

the vovserver configuration directory.

This file is used to define the procedures that are listed below.

Note: vnc_policy.tcl can now reside in vnc.swd/vnc_policy.tcl as well as $VOVDIR/local/

vnc_policy.tcl.

When placed in the configuration directory, it only affects that Accelerator instance. When placed in the 'local'

directory, it affects all Accelerator instances.

Procedures for Customizing Job Submission

Procedure Args Description

VncPolicyDefaultPriority { user } Assign the default priority to a job based on the user.

VncPolicyDefaultResources {} Compute the default resources required by a job.

VncPolicyGetJobInfo { key } Retrieve job information. Following are the available key

values:

tool Tool or command name, such as hsim

command Complete command line (without

wrapper)

user Login name submitting the job

setName Name of the set in which the job is to

be placed

group The group the submitter requested

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.61

Procedure Args Description

inputs Inputs to the job

outputs Output files of the job

mailuser Email address, if notification was

requested

wrapper Name of the FT wrapper program, such

as vw

priority,default Default submission priority

priority Requested submission priority

resources Requested submission resources

env Name of requested job run environment

xdur Expected duration of job

VncPolicyUserPriority { user

schedPriority }

Limit the scheduling priority based on the maximum allowed to

the user.

VncPolicyUserPriorityExec { user

execPriority }

Limit the execution priority for a job. By default, this returns

the priority that has been passed in.

VncPolicyValidateCommand { commandLine } Make sure that the command line for a job obeys site-specific

rules.

VncPolicyValidateEnvironment { envName } Make sure that the environment name for a job obeys site-

specific rules.

VncPolicyValidateOptions { subCommand argv } Ensures the arguments obey site-specific rules. Returns a

modified list of options.

See example below.

VncPolicyValidateResources { reslist } Ensure that the resource list for a job obeys rules defined by the

Accelerator administrator.

Example for VncPolicyValidateOptions:

proc VncPolicyValidateOptions { subCommand argv } {
 set nargv []
 set maxAutoKill [VovParseTimeSpec 30d]
 while { $argv ne {} } {
 set arg [shift argv]
 switch -glob -- $arg {
 "-autokill" {
 lappend nargv $arg

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.62

 set value [VovParseTimeSpec [shift argv]]
 if { $value > $maxAutoKill } {
 lappend nargv "30d"
 } else {
 lappend nargv $value
 }
 }
 default {
 lappend nargv $arg
 }
 }
 }
 return $nargv
}

The VncPolicy* procedures are called at job submission time, and may cause the job entered into the server to have modified

resources or priority compared to what the submission requested.

The following is an example for vnc_policy.tcl:

This is an example of vnc_policy.tcl
proc VncPolicyDefaultResources {} {
 global env
 return "$env(VOVARCH) RAM/50"
}

proc VncPolicyValidateResources { resList } {
 #
 # This policy adds a minimum RAM requirement
 # for all submitted jobs.
 # global VOV_JOB_DESC
 if { $VOV_JOB_DESC(tool) == "vovresgrab" } {
Do not touch this type of jobs (see vovresreq).
 return $resList
 }

 if [regexp "RAM/" $resList] {
 # Job already has a RAM constraint.
 } else {
 # Add a RAM constraint.
 lappend resList "RAM/100"
 }
 return $resList
}

The following is an example using the tool name. This can be used to send jobs of a certain tool to specific hosts. A Tcl

catch{ } is used in case someone uses this file with an older version by mistake.

Fragment of $VOVDIR/local/vnc_policy.tcl:

This is a second example of vnc_policy.tcl
proc VncPolicyDefaultResources {} {
 global env
 return "$env(VOVARCH)"
}

proc VncPolicyValidateResources { resList } {
 #
 # This policy sends tharas jobs to vovtasker hosts offering 'tharas_host'
 # and keeps other kinds of jobs off those hosts
 #

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.63

 catch {
 set jtool [VncPolicyGetJobInfo tool]
 if { "$jtool" == "tharas" } {
 lappend_no_dup resList tharas_host
 } else {
 lappend_no_dup resList "!tharas_host"
 }
 }
 return $resList
}

Throttling Job Submission Rate

There is also a way to throttle users who have submitted a number of jobs over a configurable threshold. This was implemented

so that users trying to submit too many job in a small time frame can not overload vovserver. The process adds a delay to job

submission for users that have gone over that threshold.

Note: Although mentioned in this section because they affect job submission, these values are set in the vovserver

configuration file policy.tcl.

Procedure Args Description

hog.protection.enable () The default is 0, which means it is disabled. Add a 1 to enable it.

hog.protection.jobcountthreshold(N) N represents the number of jobs which will trigger this threshold. Default

is 100000. Min value is 1000. Max value is 999999.

hog.protection.clientdelay(S) S is the number of seconds to delay the submit of a user how has

triggered this rule. The default is 1 second. Min is 1 second. Max is 600.

nc run Command

The nc run command has built-in default features that include checking the validity of the run directory, enabling job profiling,

etc. This section describes how the Accelerator administrator can use the file $VOVDIR/local/vncrun.config.tcl to

modify some defaults.

This file does not exist by default; it must be created when needed.

The defaults for job characteristics are controlled by entries in the VOV_JOB_DESC array variable. The vncrun.config.tcl

file is loaded after the defaults are set; these defaults can be overridden.

For additional information, refer to Define Jobclasses for details about VOV_JOB_DESC.

Examples

When submitting a job, the default is to check for a logical name (equivalence) for the filesystem where the run directory is

located. This is controlled by the check,directory slot.

To change the default to not check the directory, add the following to the vncrun.config.tcl file:

set VOV_JOB_DESC(check,directory) 0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.64

When submitting a job, the default is not collecting profile information, because the data can be large, unless the -profile option is

used. To make profile collection the default setting, add following to the config file.

set VOV_JOB_DESC(profile) 1

An example file is included below that shows some other commonly-used settings:

Example content of vncrun.config.tcl
set VOV_JOB_DESC(check,directory) 0

Other settings that may be useful.
set VOV_JOB_DESC(priority,default) [VncPolicyUserPriority $username]
set VOV_JOB_DESC(priority,sched) $VOV_JOB_DESC(priority,default)
set VOV_JOB_DESC(priority,exec) $VOV_JOB_DESC(priority,default)

set VOV_JOB_DESC(autokill) 0
set VOV_JOB_DESC(autoforget) 1
set VOV_JOB_DESC(legalExit) "0"
set VOV_JOB_DESC(mailuser) ""
set VOV_JOB_DESC(wrapper) "vw"
set VOV_JOB_DESC(preemptable) 1
set VOV_JOB_DESC(profile) 0
set VOV_JOB_DESC(schedule,date) 0
set VOV_JOB_DESC(xdur) -1

Configure Callbacks with vnccallbackaction

In some jobclasses, it may make sense to call custom procedures:

• Right after a job has been created, i.e. as soon as we know its VovId

• Right after a job or set has been scheduled

This behavior is controlled by VncCallbackAction. The behavior of this procedure is documented by the following example:

Example of a jobclass with custom callback to be invoked after the
job has been created.

set VOV_JOB_DESC(resources) "unix RAM/100"
... other jobclass stuff

Callback section.
proc MySpecialProcedure { jobId } {
 vtk_transition_get $jobId jobInfo
 if { $jobInfo(env) eq "SNAPSHOT" } {
 set jobInfo(env) "MYENV"
 vtk_transition_set $jobId jobInfo
 }
}

proc MySpecialCleanup { args } {
 VncCallbackAction del run post_create MySpecialProcedure
 VncCallbackAction del run finish MySpecialCleanup
}

VncCallbackAction verbose
VncCallbackAction quiet
 VncCallbackAction add run post_create MySpecialProcedure
VncCallbackAction add run post_schedule MySomeOtherProc

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.65

 VncCallbackAction add run finish MySpecialCleanup

Speed up nc run

The overhead in the nc run commands consists mostly in the on-demand compilation of Tcl code and secondarily on the number

of round-trips to vovserver.

(Experimental feature) To amortize the Tcl compilation across multiple job submission, you can use the nc - option and then pipe a

large number of run ... commands, as in the following example:

% mkfifo /tmp/vovfifo$USER.$$
% nc - < /tmp/vovfifo$USER.$$
% echo run hostname >> /tmp/vovfifo$USER.$$

To limit the number of round trips, you can define a number of environment variables that define semi-constant values, namely:

• NC_URL: This is the main URL for the vovserver and is used to compute the full URL for each submitted job. If not defined,

the code in nc run needs to query the server about the HTTP server name and the WEB port.

• NC_DEFAULT_JOBCLASS: This is the name of the jobclass to be invoked by default. It can be set to the empty value. This

is supposed to have the same value as

`vovprop GET 1 NC_DEFAULT_JOBCLASS`

• NC_VALID_DIRECTORIES: The value is a list of directories from which it is acceptable to submit jobs, all in addition to

directories that contain the .vnc file. It can be set to the empty value. This is supposed to have the same value as

`vovprop GET 1 NC_VALID_DIRECTORIES`

These variable can be set, for example, in the setup.tcl file:

Fragment of the setup.tcl file
Used to speedup nc run
setenv NC_URL https://nchost:6271
setenv NC_DEFAULT_JOBCLASS normal
setenv NC_VALID_DIRECTORIES ""

nc list Command

This section describes how the Accelerator administrator can use the file $VOVDIR/local/vnclist.config.tcl to modify

some defaults for the nc list command. This file does not exist by default; it must be created when needed.

Enable List Cache

By default, list results are obtained from the server in real-time. In large-scale workload environments, repeated queries can impact

server performance. To reduce this impact, a list result cache can be enabled:

Example content of vnclist.config.tcl
enable 'nc list' local caching
set NCLIST(cache,enable) 1

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.66

Configure List Cache Expiration

If the list cache is enabled, list results will be written to a client-side file, and subsequent list requests will be obtained from this

file, up to the cache expiration. The default expiration is 30s from creation. After this time, the cache file will be regenerated upon

the next list request. To set the cache expiration to a different value:

set NCLIST(cache,timeout,default) 60

Other variables used in global array NCLIST (not settable)
#set NCLIST(cache,timeout,default)
#set NCLIST(cache,cacheFile)
#set NCLIST(cache,cacheFp)

Disable Listing by Job Name

Another list operation that can affect server performance in a large-scale workload environment is listing by job name. This is due

to the need to compare string values across many jobs. Listing by job name can be disabled entirely by setting:

set NCLIST(listbyjobname,enable) 0

Influential Environment Variables

Environment variables that influence nc list caching:

NC_LIST_FORMAT
NC_LIST_CACHE_DIR ; # default ~/.vov/vnclist.caches/<project>...
NC_LIST_CACHE_TIMEOUT

nc wait Command

This section describes how the Accelerator administrator can use the file $VOVDIR/local/vncwait.config.tcl to modify

some defaults for the nc wait command. This file does not exist by default; it must be created when needed.

Examples

Add Polling for Wait Calls

Use 2s polling for all wait calls instead of listening to the event stream (-
p)
set polling 2000

Show Job Info

Always show job info (-jobinfo)
set VNCWAIT(showJobInfo) 1

Register a Call-Back Command

Register a call-back command (-callback)
set VNCWAIT(callbackCmd) {$VOVDIR/local/myWaitCallback.sh}

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.67

Accelerator GUI

The Accelerator GUI is implemented in Tcl/Tk. By editing the file, the appearance can be customized and extra elements can be

added. The customization file is gui.tcl, which located in the server configuration directory (normally $VOVDIR/../../

vnc/vnc.swd/gui.tcl).

In the following example, a button is added at the bottom of the GUI, which is only available when the GUI is started with

environment variable SIMPLEDEMO set.

#
This is a fragment of vnc.swd/gui.tcl
to demonstrate the customizability of the NC GUI.
#
if [info exists env(SIMPLEDEMO)] {
 button .demo -text "Simple Customization Demo" -command {
 puts "You can run any command you want."
 }
 pack .demo -side bottom -fill x -expand 0
}

To test and verify the customization, use the following command:

% env SIMPLEDEMO=1 nc gui &

Web Interface

Some features of the Accelerator web interface can be configured by the administrator. Configuration for these items is performed

in the vnc.swd/config/web.cfg file. The complete list of customizable items is shown below.

Example Configuration: $VOVDIR/etc/config/nc/web.cfg

NODE VIEWER SETTINGS
Use a select (drop-down) menu for priority-based retrace controls
Set to 0 to disable, set to 1 or comment-out to enable (default)
set nodeviewer(retraceSelect) 1

Use a select (drop-down) menu for preemption controls
Set to 0 to disable, set to 1 or comment-out to enable (default)
set nodeviewer(preemptSelect) 1

Configuration Management (CM) Guide

It is a recommended best practice to employ change control on your project configuration files.

There are 2 primary reasons for using configuration management.

• To impose strict change control on your project configuration files, and enable the ability to revert to a previous known good

configuration.

• To quickly and efficiently model your production configuration in a test setup. Refer to Use CM in a Test Instance below.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.68

An open source utility called "Fossil" has been integrated with the ncmgr command as a set of subcommands under the "cm"

option. Keep in mind that as you are using the ncmgr utility for any capacity, you will need to first set the default queue name if it

is not "vnc". This can be accomplished by one of 2 ways:

1. Set the NC_QUEUE variable:

setenv NC_QUEUE queue_name
ncmgr cm <cm_command>

2. Use either one of the -q or -queue options to ncmgr.

ncmgr cm -q queue_name <cm_command>

There is a minimum set of files in the Server Working Directory (SWD) of your project that are best under CM control. These

include, but are not limited to the following files:

taskers.tcl

policy.tcl

equiv.tcl

exclude.tcl

resources.tcl

security.tcl

setup.tcl

Following this initial setup, additional files (or entire directories within the SWD, such as the config directory) can be added using

the command:

ncmgr cm add<filename>

Functions Available

add Add a file to the repository and commit the change immediately. The repository

must be previously initialized.

cat Show the displayable contents of a file.

commit Commit any outstanding file changes to the repository.

del Delete a file from the repository. The file in the working directory is unaffected.

diff Display any local changes that have been made to a file or files.

help Display help text.

init Initialize the CM repository for use with an Altair Accelerator project. This creates

the repository (*.cmrepo) file in the NC_CONFIG_DIR directory (usually

$VOVDIR/local/vncConfig/)

ls List project files that are currently under change control (use -v to also show file

status).

open Open a repository and check out the files to the current working directory.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.69

quickstart Initialize the repository and add the most common files (as listed in the previous

section). This is typically done on a single queue to act as master.

revert Roll back any existing local changes to a file or files.

status Show the status of the local checkout set in the working directory.

timeline Show the timeline of changes to the repository.

undo Undo previous update or revert action.

update Update local file(s) with the latest from the repository, or a specific revision.

CM Command Usage

vncmgr: Usage Message

 DESCRIPTION:
 "ncmgr cm ..." is the utility for performing configuration management
 actions. To use configuration management, you need to be in the
 server-working directory (SWD) of the current project.
 To work with a non-default queue name, either set the NC_QUEUE
 environment variable to the target queue name or use either of the
 "-queue" or "-q" arguments.

 USAGE:
 % ncmgr cm [-queue|-q QUEUE] <ACTION> [ARGUMENTS]

 ACTIONS: (arguments are either <>=required or []=optional)

 add <FILE> -- Add a file to the repository.
 cat [-r REVISION] <FILE>
 -- Display contents of a file.
 commit <-m "MSG"> [FILE]
 -- Commit changes to the repository.
 del <FILE> -- Delete a file from the repository.
 diff [-r REVISION] <FILE>
 -- Display local changes.
 help -- Display this help.
 init -- Initialize repository.
 ls [-v] <FILE>
 -- List managed files.
 Use -v to also show file status.
 open -- Open a repository and check out files to the
 current working directory.
 quickstart -- Initialize repository and add most common files.
 Typically done on a single queue to act as
 master.
 revert [FILE] -- Roll back local changes.
 status -- Show status of the local checkout.
 timeline [FILE] -- Show timeline of changes.
 undo [FILE] -- Undo previous update or revert action.
 update [-r REVISION] [FILE]
 -- Update local file(s) with the latest from the
 repository, or a specific revision.

 NOTE: For configuration management, you must be in the server working
 directory (SWD) of the project being managed.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.70

 If you are unsure of this, please run the following commands:
 % vovproject enable <project_name>
 % cd `vovserverdir -p .`

 EXAMPLES
 % ncmgr cm quickstart
 % ncmgr cm init
 % ncmgr cm add policy.tcl
 % ncmgr cm commit -m "Added new tasker." taskers.tcl
 % ncmgr cm add scripts/myscript.tcl
 % ncmgr cm commit -m "Added custom script to CM"
 scripts/myscript.tcl

Use CM in a Test Instance

Implementing a configuration management process for your testing workflow can save a lot of time and hassle in keeping

configuration files synchronized.

An example follows with a production instance called "vnc" and a test instance called "vnctest". For purposes of this example it

is assumed that the repository has been previously set up, all desired config files have been added, and that two files have been

modified and need to be synced to the test instance. The process consists of the following 2 steps:

1. Enable the production instance.

Snapshot the selected production config files with the ncmgr cm commit command.

vovproject enable vnc
cd `vovserverdir -p .`
ncmgr commit -m 'save changes to taskers.tcl and policy.tcl' taskers.tcl
 policy.tcl

2. Enable the test instance.

Restore (synchronize) the same config files to the test setup using the ncmgr cm open command.

Use the production instance as the path to the repository.

vovproject enable vnctest
cd `vovserverdir -p .`
ncmgr cm -q vnc open

Browser-based Setup

Once the Accelerator vovserver has been started, you can view and manage it using your web browser.

The Setup Page

The URL for the Accelerator vovserver can be found with the following command:

% nc cmd vovbrowser
http://somehostname:6271/project

The setup page is available at the URL /cgi/setup.cgi.

% nc cmd vovbrowser -url /cgi/setup.cgi

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.71

http://hostname:6271/cgi/setup.cgi

Web Interface Screens

The Introduction page provide an overview of the available information. As indicated in the left column, menus and guidelines

are available for setting up and using the Accelerator features. More detailed information and advanced methods are provided in

this document in other chapters.

Figure 3:

Regulate Access to Accelerator

To regulate access to Accelerator, the security file vnc.swd/security.tcl must be edited. To deploy the changes after

editing the file, Accelerator must be reset.

The format of the security file is:

vtk_security username|-group vovusergroupsecurity-levelhost1 ...

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.72

The security levels are USER, LEADER, and ADMIN. Security-level roles can be assigned to users or groups of users

(VovUserGroups). VovUserGroups are created from user lists manually, or by associating them with existing UNIX or LDAP

groups. For more information about VovUserGroups, refer to VovUserGroups in the VOV Subsystem Administrator Guide.

Both the administrator and root should be granted the ADMIN role; all others should be granted the USER role.

Note: For vovtaskers to work correctly, root must also be granted the ADMIN role.

Disable Security

Security can be disabled by allowing unrestricted access to all users to Accelerator; assign everyone ADMIN privileges from all

hosts.

This is the vnc.swd/security.tcl file needed to disable security.
The first + means "everybody"
The second + means "from all hosts"
vtk_security + ADMIN +

Enable Security

To control access to Accelerator, activate security. The minimum requirement is that both the administrator and the root of

Accelerator must have the ADMIN level of privilege from all hosts.

Shown below is an example of a security file. In this example, the system uses five computers. User "john" can only use the

system from host ws1, and user "susie" can use the system from hosts ws1 and ws2. Users in the VovUserGroup mygroup have

ADMIN rights on the set of hosts known as $allHosts.

Example of vnc.swd/security.tcl file
set allHosts { ws1 ws2 apple orange pear }
vtk_security vncadmin ADMIN $allHosts
vtk_security root ADMIN $allHosts
vtk_security john LEADER ws1
vtk_security susie LEADER ws1 ws2
vtk_security -group mygroup ADMIN $allHosts
vtk_security + USER +

After configuring the security file, Accelerator must be reset to apply those the changes:

% ncmgr reset

Autostart Directory

With the command vovautostart, on vovserver startup, scripts can be specified to execute automatically.

In UNIX, the scripts can be written in either C-shell or Tcl syntax.

Note: For the script to work in Windows, Tcl syntax must be used. Guidelines follow:

• Create a directory named autostart in the server working directory.

• For both UNIX and Windows:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.73

Create a script with the suffix .tcl in the autostart directory.

• For UNIX only, CSH scripts are also supported:

Create a script with the suffix .csh in the autostart directory.

Ensure the script has the appropriate executable permissions.

Each script in the autostart directory is called with one argument, which is the word start. This argument is usually ignored

in OEM scripts, but can be used to in custom scripts to enforce different behaviors between a manual call on the CLI versus an

automated call by the vovserver.

Examples are available in the directory $VOVDIR/etc/autostart.

vovautostart

The scripts are launched by the utility vovautostart. To repeat the execution of the autostart scripts, vovautostart

can be executed from the command line.

vovautostart: Usage Message

 DESCRIPTION:
 Execute the scripts in the *.swd/autostart directory.
 There are two types of scripts that get executed:
 1. Scripts that match *.csh are executed directly (Unix only)
 2. Scripts that match *.tcl are executed by vovsh.

 The scripts are executed in alphabetical order in the background, with a 5s
 delay between successive scripts.

 This utility is normally invoked by vovserver upon launching.

 USAGE:
 % vovautostart [optional directory spec]

 EXAMPLES:
 % vovautostart

Autostop Directory

With the command vovautostop, on vovserver shutdown, scripts can be specified to execute automatically.

In UNIX, the scripts can be written in either C-shell or Tcl syntax.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.74

Note: For the script to work in Windows, Tcl syntax must be used. Guidelines follow:

• Create a directory named autostop in the server working directory.

• For both UNIX and Windows:

Create a script with the suffix .tcl in the autostop directory.

• For UNIX only, CSH scripts are also supported:

Create a script with the suffix .csh in the autostop directory.

Ensure the script has the appropriate executable permissions.

Each script in the autostop directory is called with one argument, which is the word stop. This argument is usually ignored

in OEM scripts, but can be used to in custom scripts to enforce different behaviors between a manual call on the CLI versus an

automated call by the vovserver.

Examples are available in the directory $VOVDIR/etc/autostop.

The vovautostop Command

The scripts are launched by the utility vovautostop. To repeat the execution of the autostop scripts, vovautostop can be

executed from the command line.

vovautostop: Usage Message

 DESCRIPTION:
 Execute the scripts in the *.swd/autostop directory.
 There are two types of scripts that get executed:
 1. Scripts that match *.csh are executed directly (Unix only)
 2. Scripts that match *.tcl are executed by vovsh.

 The scripts are executed in alphabetical order,
 in the background, and
 with a 5s delay between successive scripts.

 This utility is normally invoked by vovserver upon shutdown.

 USAGE:
 % vovautostop [OPTIONS] [optional directory spec]

 OPTIONS:
 -v Increase verbosity.
 -h This usage message.

 EXAMPLES:
 % vovautostop

Test Altair Accelerator

You may wish to run a few simple jobs to confirm that the system is running properly.

1. Submit a simple job with the following commands:

% nc run sleep 30

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.75

Resources= linux
Env = SNAPSHOT(vnc_logs/envjohn36829.csh)
Command = sleep 30
Logfile = vnc_logs/20020602/105731.27873
JobId = 00002539
nc: message: Scheduled jobs: 1 Total estimated time: 0s

• The JobId in this example is 2539. The leading zeros are insignificant.

• The environment used for the job execution is a snapshot of the current environment, stored in the file vnc_logs/

envjohn36829.csh

• The default resource list for the job is linux which, in this example, is the platform from which the job was

submitted. Later, you will learn how to control the resources assigned to a job.

Note: If the following dialog appears, see Qualify the Working Directory of Jobs in the Altair Accelerator

Administrator Guide.

 WARNING:
 The current directory '/export/scratch/john' may not be a valid
 directory path for all hosts in the cluster.

 EXPLANATION:

 If the job runs on a host other than the local node, and the current
 directory is not shared on that host, unpredictable results may occur.

 OPTIONS:
 (1) Continue.
 By choosing this option, you assert that the path
 is valid everywhere. If it is not, the job is likely
 to fail, because the remote host cannot reach
 the current directory.
 This option causes the creation of a flag file
 called .vnc which has the purpose of
 avoiding the repetition of this question for this
 directory and its subdirectories
 (2) Abort.
 Please ask your Accelerator administrator to
 change the equiv.tcl file to define the rules that
 give a logical name to the current directory.

 Please reply: [1,2] >

2. Check the status of the job:

% nc list
00002539 Done sleep 10
% nc summary
...output omitted
% nc info 2539
Id,User,Group 00002539,john,users
Environment SNAPSHOT(vnc_logs/envjohn36829.csh)
Directory ${HOMES}/john
Command sleep 10
Status Running
Host alpaca
Resources linux
QueueTime 0s

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.76

RunningTime 9s

3. Check the output of the job, which in this case is empty, since it is the output of sleep.

% nc info -l 2539
Log file is: '${HOMES}/john/vnc_logs/20020602/105731.27873'

4. Rerun the job.

The first time Accelerator notices that the job is already Done (=VALID) so it does not run it again. The second time, the

option -f forces Accelerator to rerun the job even if it is already Done.

% nc rerun 2539
nc rerun 00002539
nc: message: Not rerun: 00002539
% nc rerun -f 2539
nc: message: Job 00002539 is already VALID.
nc: message: Scheduled jobs: 1 Total estimated time: 15s

5. Stop the running job. The job will fail.

% nc stop 2539

6. Forget the job:

% nc forget 2539
nc: message: Forgetting 1 jobs

7. Get a quick report:

% nc summary
Accelerator Summary For User john
TOTAL JOBS 105 Duration: 4m17s
Failed 53
Queued 50
Idle 2

JOBS GROUP TOOL WAITING FOR...
50 pi vtclsh 'hpux#1 '

Server Error Conditions
VOV and the jobs it runs depend on external resources such as available licenses, RAM, swap, tmp and disk space, which may

become exhausted, damaged or otherwise unavailable. When users are subject to disk quotas, writes may fail when the disk is not

completely full.

VOV License Violation

Listed below are possible causes for a license violation:

• Invalid license file, such as wrong version or damaged

• Expired license file

• License server never started

• No license server running, deliberately stopped or crashed

• Licensed quantities exceeded, such as too many vovtaskers

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.77

Server License Violation Behavior

When a violation is detected, retracing and dispatching new jobs are stopped.

Disk Full and Quota - vovserver

The vovserver program tracks the free disk space on the file system where its working directory (such as

PROJECTNAME.swd) is placed, and also on /usr/tmp where some temporary files are stored. The vovserver issues loud alerts

when disk resources are exhausted.

The vovserver disk full warning is sticky, and persists after the disk has been cleaned up and has free space. The warning is sent to

any client that tries to connect to the vovserver until the warning state has been cleared. The disk full warning causes most vovsh-

based commands, such as vovconsole, to fail.

Because disk full is a severe error and can cause many cascading errors, to ensure the issue is noticed and addressed, this warning

is deliberately sticky; this prevents a potentially critical alert from becoming a static message that is buried and unnoticed in a

vovserver log file.

The vovproject sanity command can be used to clear the warning and return to normal operation. An example is shown

below.

To clear disk full warning:

% vovproject enable your-project
thishost your-project@srvhost ENV dir> vovproject sanity

For Accelerator:

% /bin/su - FT-admin # login as the owner of Accelerator
% nc cmd vovproject sanity

Disk Full and Quota - vovtasker

The vovtasker program also checks for free space on /usr/tmp on the host where it runs, and suspends itself (refuses to accept

new jobs) if the amount falls below a configurable amount. The default is 5MB, which can be configured using the -mindisk option

of vtk_tasker_define.

The tasker suspended condition is not sticky. After the tasker host disk has been cleaned up so that free space is above the

threshold, the vovtasker will automatically resume and enter the ready state.

Configure a Failover Server Replacement
If a server crashes suddenly, VOV has the capability to start a replacement server on a pre-selected host. This capability requires

that the pre-selected host is configured as a failover server.

The configuration instructions follow.

Note: The vovserverdir command only works from a VOV-enabled shell when the project server is running.

1. Edit or create the file servercandidates.tcl in the server configuration directory. Use the vovserverdir

command with the -p option to find the pathname to this file.

% vovserverdir -p servercandidates.tcl

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.78

/home/john/vov/myProject.swd/servercandidates.tcl

The servercandidates.tcl file should set the Tcl variable ServerCandidates to a list of possible failover hosts. This

list may include the original host on which the server was started.

set ServerCandidates {
 host1
 host2
 host3
}

2. Install the autostart/failover.csh script as follows:

% cd `vovserverdir -p .`
% mkdir autostart
% cp $VOVDIR/etc/autostart/failover.csh autostart/failover.csh
% chmod a+x autostart/failover.csh

3. Activate the failover facility by running vovautostart.

% vovautostart

For example:

% vovtaskermgr show -taskergroups
ID taskername hostname taskergroup
000404374 localhost-2 titanus g1
000404375 localhost-1 titanus g1
000404376 localhost-5 titanus g1
000404377 localhost-3 titanus g1
000404378 localhost-4 titanus g1
000404391 failover titanus failover

Note: Each machine listed as a server candidate must be a vovtasker machine; the vovtasker running on

that machine acts as its agent in selecting a new server host. Taskers can be configured as dedicated failover

candidates that are not allowed to run jobs by using the -failover option in the taskers definition.

Preventing jobs from running on the candidate machine eliminates the risks of machine stability being affected by

demanding jobs. The -failover option also enables some failover configuration validation checks. Finally, failover taskers

are started before the regular queue taskers, which helps ensure a failover tasker is available as soon as possible for future

failover events.

Refer to the tasker definition documentation for details on the -failover option.

How vovserver Failover Works

If the vovserver crashes, after a period of time, the vovtasker process on each machine notices that it has had no contact from the

server, and it initiates a server machine election.

In this election, each vovtasker votes for itself (precisely, the host that this particular tasker runs on) as a server candidate. The

election is conducted by running the script vovservsel.tcl.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.79

After the time interval during which the vovtaskers vote expires, (default 60 seconds) the host that appears earliest on the list will

be selected to start a new vovserver.

In the following example, the servercandidates.tcl, file contains three hosts:

set ServerCandidates {
 host1
 host2
 host3
}

When the server crashes, if there are vovtaskers running on host1, host2 and host3, then these hosts will be voted as server

candidates. Then host2 will be the best candidate and a new vovserver will be started on host2. This server will start in crash

recovery mode.

Note: For failover recovery to be successful, an active vovtasker process must be running on at least one of

the hosts named in the ServerCandidates list. Usually, these vovtaskers have been defined with the -failover

option so they can not accept any jobs, and are members of the failover taskergroup.

The failover vovserver will read the most-recently-saved PR file from the .swd/trace.db directory, and then read in the

transactions from the 'cr*' (crash recovery) files to recover as much of the pre-crash state as possible.

The vovserver writes a new serverinfo.tcl file in the .swd that vovtaskers read to determine the port and host. When it

starts, the failover vovserver appends the new host and port information to the $NC_CONFIG_DIR/<queue-name.tcl> as

well as to the setup.tcl in the server configuration directory. The vovserver then runs the scripts in the autostart directory. This

should include the failover.csh script, which resets the failover directory so that failover can repeat. This script removes the

registry entry, and removes the server_election directory and creates a new empty one. At the end, it calls vovproject

reread to force the failover vovserver to create an updated registry entry.

The failover vovserver remains in crash recovery mode for an interval, usually one minute, waiting for any vovtaskers that have

running jobs to reconnect:

• For Accelerator, Accelerator Plus, Monitor and Allocator, vovtaskers wait up to 4 days for a new server to start.

• For FlowTracer, vovtaskers wait up to 3 minutes for a new server to start.

After reconnecting to vovserver, vovtaskers automatically exit after all of their running jobs are completed. After the vovserver

transitions from crash recovery mode to normal mode, it will try to restart any configured vovtaskers that are not yet running.

Any of the following conditions will prevent successful failover server restart:

• The filesystem holding the .swd directory is unavailable.

• The file servercandidates.tcl does not exist.

• The ServerCandidates list is empty.

• There is no vovtasker running on any host in the ServerCandidates list when the server crashes.

• The autostart/failover.csh script file is not in place.

In this case, the failover server will not be automatically started; the server will have to be manually started.

Tips for Configuring Failover

Following are tips for failover configuration:

• Make the first failover host the regular one. This way, if the vovserver dumps core or is killed by mistake, it will restart on

the regular host.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.80

• Configure special vovtaskers only for failover by passing the -failover option to vtk_tasker_define.

• Test that failover works before depending on it.

Migrating vovserver to a New Host

The failover mechanism provides the underpinnings of a convenient user CLI command that can be used to migrate vovserver to a

new host:

ncmgr rehost -host NEWHOST

The specified NEWHOST must be one of the hosts eligible for failover of vovserver.

Crash Recovery Mode

Crash Recovery Mode is activated the next time the server is restarted, if the server was not shut down cleanly. Crash Recovery

Mode is part of the Failover Server capability of VOV, which is mainly used in Accelerator. This capability allows VOV to start a

new server to manage the queue of a server which has crashed unexpectedly.

When you shut down an Accelerator instance cleanly using the ncmgr stop command, the server will save its database to disk

just before exiting. When the server is restarted, it will read the state of the trace from disk, and immediately be ready for new

work.

Sometimes the vovserver will be stopped unexpectedly, such as due to a hardware problem like a machine crash or memory

exhaustion. In such cases, the server will not have a chance to save the project database before terminating.

• In VOV, the main concern is usually the state of the trace, which stores the status all the jobs in your project.

• In Accelerator, there is no trace, and the important thing to preserve is the state of the queue, so jobs do not lose their position

and need to be re-queued in the case of a server crash.

Journal Files

The vovserver keeps crash recovery journal files of the events that affect the state of the server. These 'CR' files are flushed

whenever the trace data are saved to disk. During crash recovery, the vovserver first reads the last saved state of the trace from the

disk data, then applies the events from the CR files.

Crash Recovery Restart

When the server is next restarted after such a crash, the server enters what is called Crash Recovery Mode, which usually lasts

about two minutes, but may take longer if the CR files are very large. During this period:

• The server waits for vovtaskers with running jobs to reconnect.

• No jobs are dispatched.

• The server does not accept VOV or HTML TCP connections from vovsh or browser clients.

• At the end, the server performs a global sanity check.

• A crash_recovery_report <timestamp> logfile is written. It logs any jobs lost by the crash recovery sequence.

If the server is properly shut down, the next time it restarts, it will not enter Crash Recovery Mode, and will be immediately

functional.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.81

Note: If the sanity check command cannot connect, the server is still recovering its state from the DB and CR files.

Check the size of the vnc.swd/trace.db/CR* files.

Example commands:

% vovproject enable <project-name>
% vovproject sanity

Accelerator Daemons

Additional functionality in Accelerator is provided by external daemons, which are described in the table below.

The status of the daemons can be viewed on the Daemons page.

Daemon Who needs it? Description

vovnotifyd If you want e-mail notification This daemon is necessary to receive

email notifications. The email can be

triggered by job events (such as a job that

completes) or an unusual condition that is

detected by the daemon.

For more information, see Health

Monitoring and vovnotifyd.

vovresourced Everybody This daemon manages the resources

managed by the vovserver. It is

controlled by the resources.tcl file.

Historically, this is the first daemon to

be developed. It still stands out from the

other daemons because how it is managed

is slightly different. This daemon is

started automatically by the server.

For more information, see Resource

Daemon Configuration.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.82

Access Control List
An Access Control List (ACL) is a list of permissions that are attached to an object. The list defines who can access the object (an

agent) and what actions the agent can perform on the object.

Overview

The VOV software implements compartmentalized access control with Access Control Lists (ACLs). Each ACLs is a triplet:

• A VOV object

• An agent, which is VOV security role name or an individual user name

• A capability, which is a controlled activity

For any user to be authorized to perform a controlled capability or action on a VOV object, an ACL must exist that contains that

user or role, the controlled action, and the VOV object.

Objects

Every ACL is associated with a VOV object. Types of objects currently include:

• FairShare groups

• Resource maps

• Nodes (transitions, aka jobs, places, aka files)

• Node sets

• Reservations

Agents

Permission to perform a controlled action depends on the user ID, and the VOV role associated with that user. The SWD/

security.tcl file defines the association of Users with Roles.

VOV's roles serve two purposes:

1. Control queue/instance/project operations (via the VOV protocol)

2. Establish high-level permissions on VOV objects

VOV has these named roles:

ADMIN Can do just about anything. By default, the "owner" of the queue/instance/project is

the only admin.

LEADER Can do lots of things, but not everything an ADMIN can.

USER Can create and manage their own objects.

READONLY Can view most things, but not create.

ANYBODY Very limited, mainly used for testing.

NOBODY Nothing, mainly used for testing.

UNKNOWN The last resort, in case we somehow encounter someone who doesn't fall into any of

the above roles, also can do nothing.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.83

An ACL is expressed in terms of operations that are permitted to an agent acting on the object. An agent may be a USER

(login account), an OS group (OSGROUP), a FairShare group (FSGROUP), a machine (HOST) or one of the symbolic agents

EVERYBODY, OWNER, ADMIN. The most powerful agent is the SERVER.

ACLs support the following "agents", which provide the identities of the persons involved:

USER name OS authorized user

OWNER - role The queue/instance/project owner

USER - role The user that owns the VOV object

OSGROUP name Members of the specified OS group

FSGROUP name Members of the specified FairShare group

HOST Anyone with a client connected from a specific host

EVERYBODY - role Everybody

ADMIN - role Anyone with the ADMIN role

SERVER The vovserver process, specifically

LEADER Anyone with the LEADER role

USERGROUP name Members of the specified VOV user group

UNDEF The last resort, in case there is someone who doesn't fall into any of the above agent

types.

For the agents that are groups, membership in the group confers the operations permitted by that ACL. For example, if the login

joe is a member of the OS group dvregr, and OSGROUP dvregr has APPEND on a fsgroup, then joe may add ACLs to

that fsgroup.

To bypass the ACL, you must be the logged in on the host running vovserver as the user that is running vovserver, and you must

change VOV_HOST_NAME to "localhost".

ACL Management

To perform ACL management, use a utility with the following syntax:

% vovacl [OPTIONS] <Objects>

The following utilities are available for ACL management:

Utility Description

vovacl Script to manage ACLs in VOV.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.84

ACL Commands

ACL management consists of the following commands:

Command Description

APPEND Add ACLs to an object.

DELETE Delete an ACL element from an object. The element is

identified by the agent and name fields.

GET Get current ACLs on an object. It shows you the current ACLs

that are associated with an object, if the ACL permits you to

VIEW it.

RESET Reset ACLs on an object to defaults. It removes all the object's

current ACLs and replaces them with the default values.

ACL 1: OWNER "" ATTACH DETACH
 EDIT VIEW FORGET DELEGATE EXISTS
ACL 2: EVERYBODY "" ATTACH VIEW

ACL Actions

Following are the actions that can be controlled via ACLs:

Action Description

ATTACH Create a relationship between objects

CHOWN Change ownership of an object

CREATE Create an object

DELEGATE Assign ACLs on an object

DETACH Destroy a relationship between objects

EDIT Modify properties of an object

EXIST The agent is aware of the existence of the object

FORGET Forget an object

RESUME Resume a suspended job

SIGNAL Send a signal to a job.

STOP Stop an object.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.85

Action Description

SUSPEND Suspend an object

VIEW View properties of an object

Note: Not all actions apply to all objects. In the case of FairShare groups, applicable actions include: ATTACH,

EDIT, VIEW, DELEGATE. The actions RETRACE, STOP, SUSPEND, FORGET are reserved for use with jobs in

future releases.

Obtain SERVER Credentials

For some ACL operations, you will need the most powerful credentials, i.e. SERVER, which are only available to the owner of the

vovserver process when connected on the loopback interface.

• Login on the vovserver host as the user that is running vovserver.

• Enable the project with vovproject enable PROJECTNAME.

• Change the VOV_HOST_NAME to localhost

% setenv VOV_HOST_NAME localhost

• Now your clients act as the SERVER agent with respect to the ACL.

vovacl

vovacl: Usage Message

 DESCRIPTION:
 Manage access control lists (ACLs).

 USAGE:
 % vovacl [OPTIONS] <Object>

 OPTIONS:
 -h -- This help
 -v -- Increase verbosity
 -agent -- Association of specified ACL. One of the following types and
 formats. ACL capabilities for ALL pertinent agents for a
 given user are aggregated.
 "USER name" OS user name
 "FSGROUP name" VOV FairShare group
 "USERGROUP" name A VOV user group
 "OSGROUP" name Unix primary group (Linux only)
 OWNER
 ADMIN
 LEADER
 Different VOV object types honor different subsets of the
 agents listed above. To see which apply, see the Agents Table
 below.

 -actions -- Capabilities list for this ACL, space delimited. A list of

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.86

 access control capabilities is shown in the Capabilities
 Table below.
 -append -- Add specified capabilities to ACL for specified agent
 -set -- Replace existing ACLs for specified agent
 -delete -- Remove specified capabilities from specified agent
 -show -- Show current ACL for specified objects.
 -reset -- Reset ACL to default values

 OBJECTS:
 <setName>
 <fairshareGroupName>
 <vovId> -- Where vovId can apply to a job, set, FairShare group, or
 resourcemap

 AGENTS TABLE
 The agents list specified with the -agent option is one of the following
 that is valid for the object type.

 Agent Type Type of Object

 Set/Job FS Group Resourcemap

 USER y y y
 USERGROUP n n y
 FSGROUP n y n
 OSGROUP y n n
 OWNER y y y
 ADMIN y y y
 LEADER n/a n/a n/a
 EVERYBODY y y y

 CAPABILITIES TABLE
 The capabilities list specified with the -agent option is one of the
 following that is valid for the object type.

 Capability Name Type of Object

 Set/Job FS Group Resourcemap

 ATTACH n/a attach use
 CHOWN n/a n/a n/a
 CREATE n/a create sub-group n/a
 DELEGATE n/a n/a n/a
 DETACH n/a detach n/a
 EDIT modify modify modify
 EXISTS preq-for-all prereq prereq
 FORGET delete delete delete
 RESUME resume n/a n/a
 RETRACE run n/a n/a
 SIGNAL signal n/a n/a
 STOP job stop n/a n/a
 SUSPEND suspend n/a n/a
 VIEW view view view

 EXAMPLES:
 % vovacl -agent ADMIN -append -actions "VIEW RETRACE STOP FORGET" MySetName
 % vovacl -agent "USER cadmgr" -append -actions STOP /system/processcontrol
 % vovacl -agent "USERGROUP designers" -append -actions STOP,FORGET DesignSet
 % vovacl -agent "OSGROUP designers" -append -actions STOP 00123456
 % vovacl -reset 00123456

 NOTE: The SUSPEND action is not applicable to an FSGROUP object.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.87

Client Limitation and Tuning
The maximum number of clients - the combination of vovtaskers, user interfaces and proxies, that can be concurrently connected to

a vovserver is limited by the number of file descriptors available.

This is an operating system parameter, and is inherited from the shell that starts vovserver. It can not be changed after vovserver

starts.

There are two kinds of limits, a hard limit and a soft limit. Limits are imposed to reduce the likelihood of exhausting system

resources. A soft limit may be set by shell commands so long as a value less than or equal to the hard limit is selected. The hard

limits for descriptors and other resources may vary by user, group, and other attributes.

On UNIX, this number is operating system dependent. In most UNIX installations, the hard limit for file descriptors is 1024 or

more.

On Windows NT, VOV sets the limit at 256 file descriptors.

On Linux, root can change the limits in the file /etc/security/limits.conf. Example:

* hard nofile 8192
* soft nofile 2048

The above example sets the soft limit for all users to 2048, and the hard limit to 8192. The '*' character could be replaced by that of

the Accelerator owner account, e.g. 'cadmgr'.

Background

Each operating system offers a limited number of file descriptors for each process. In modern systems, this limit may be up to

65000. The vovserver can handle as many clients as the "descriptors limit" allows. It is also possible to reduce the number by

setting a soft limit using the methods described above.

To allow a large number of clients, vovserver must be started with a high limit. The ncmgr command reports the number at startup

time, please read it carefully before replying 'yes'. Example:

% limit descriptors 16000
% ncmgr start

The file descriptors are used by the vovserver to communicate with the clients: vovtaskers, GUI, browser, interactive jobs, etc.

The utilization of file descriptors are approximately:

• The server by itself needs about 10

• The other descriptors less than 40 are not used

• Each vovtasker needs 1

• Each running batch job needs 1

• Each running interactive job needs 2

• Each vovconsole needs 2

• Each nc monitor needs 1

Example: On a loaded farm with 500 vovtaskers, each with four CPUs, with half jobs interactive, the estimated number of

descriptors needed is:

10 + 500 + 500 * 2 + 500 * 2 * 2 = 3510 file descriptors

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.88

This leaves descriptors for about 580 monitors and GUIs.

Behavior with Exhausted File Descriptors

The exhaustion of file descriptors rarely occurs. Altair Accelerator's main concern is preserving the integrity of the vovserver.

Commands that attempt a new connection to the vovserver fail to connect and return an error message too many clients in

the system. The vovserver will then post an alert showing too many open files. In that condition, ordinary commands

such as nc hosts and nc list will not work because the vovsh that runs those commands cannot connect to vovserver.

Reserved Connection on the localhost

When file descriptors are exhausted, you can connect to vovserver using a special method through the software loopback interface

(lo0, 127.0.0.1). This is achieved by setting VOV_HOST_NAME to localhost. Example:

% vovproject enable vncNNNN
% setenv VOV_HOST_NAME localhost
% vsi

Solutions to File Descriptor Exhaustion

A short-term solution is to stop some of the clients is to lower the demand for file descriptors. Transient GUI clients such as

VovConsole, monitors, and Accelerator GUI should be stopped first. Any idle vovtaskers should also be stopped. Guidelines:

• Check how users are submitting jobs. There are some limits on maxNormalClients and maxNotifyClients in the

policy.tcl file to prevent accidental or malicious denial-of-service attacks. Sometimes we have seen jobs submitted with

the -wl option and placed in background, each consuming 2 descriptors.

• Next you should first find whether it is possible to raise the descriptor limit on the current host. If not, a longer-term solution

is to move the vovserver to another host that offers more file descriptors. A newer version of UNIX is a good candidate as it

offers 65K descriptors.

It is possible to continue operation, even in the presence of interactive jobs, by moving the vovserver and making the new queue

the default queue so that newly-submitted jobs go to the new default queue. The server on the host with limited descriptors will

finish all jobs, and it may then be shut down.

Client Service Modes

On Linux-based systems, there are two client servicing modes from which to choose: poll (default) and epoll. The mode chosen

specifies which POSIX mechanism the vovserver will use to determine which client file descriptors are ready for use. The mode

can be specified by setting config(useepoll) to 0 (poll, default) or 1 (epoll) in the SWD/policy.tcl file.

Generally, the epoll mode should result in more efficient processing of service requests. As of this version, epoll mode is a new

feature and is therefore disabled by default.

Enabling Time Series Data Stream
Users are now able to leverage existing Kafka systems and compatible reporting tools to monitor VOV projects.

When Kafka is used as part of an infrastructure, multiple vovservers can now be enabled to provide time series data and events,

without negatively impacting server performance/scalability. This allows users to capture time varying data in order to see how

usage evolves over time.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.89

Events Frequency

The metrics events are published at the same rate that metrics are calculated in the server. This will vary by load but should be at

most every 10s on an active server, and possibly longer if the server is heavily loaded such that the scheduling cycle takes longer

than this. The project data is expected to be relatively static and is published every 4 hours. The command: vovservermgr

config sds.readconfig 1 will cause the updated project record to be published on execution.

Project IDs

To enable data from multiple projects to be collected on the same kafka infrastructure, each event will contain the field projId
which identifies the project which published the event. The projId field is formed by concatenating the project name, a hyphen, and

the vovserver instance's numeric generated unique id. e.g. "vnc-12345678"

SDS Configuration

On startup, the vovserver will create and/or update the following configuration items:

• SDS configuration directory, at the server working directory (SWD)/config/publishers/sds, for example, ../vnc.swd/

config/publishers/sds

• SDS configuration file in the SDS configuration directory, sds.cfg

If the sds.cfg file does not already exist, the following default sds.cfg file is created:

{
 enabled = 0;
 kafka_servers = "",
 format = "json",
 site = "",
 group = "",
 events = {
 project = {
 schemaId = 0,
 topic = "vov-projects",
 },
 taskers = {
 schemaId = 0,
 topic = "vov-metrics-taskers",
 },
 jobs = {
 schemaId = 0,
 topic = "vov-metrics-jobs",
 },
 scheduler = {
 schemaId = 0,
 topic = "vov-metrics-scheduler",
 },
 },
}

Configuration File Parameters

Service level configurable parameters in sds.cfg:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.90

Parameter Values Default Description

enabled 0 or 1 0 Disable/enable SDS on

startup/readconfig

format "json"

"confluent"

"json" Specifies the Kafka payload

format to use, "confluent" =

confluent Avro dialect with the

schema registry id

site string "" User definable string to be

delivered with the project

record

group string "" User definable string to be

delivered with the project

record

debug 0 or 1 0 Disable/enable SDS debug

logging on startup/readconfig

Change the Config File for the First Time

In order to use SDS for the first time, the user must perform the following operations:

1. Set the kafka_servers parameter in the sds.cfg file to the bootstrap server(s) for their kafka

installation; for example, kafka_servers = "kafkahost:9092" or kafka_servers =

"kafkahost1:9092,kafkahost2:9092"

2. If publishing using the Confluent Schema Registry, then the following steps are also needed:

a) Upload the schema files to the schema registry and note the IDs assigned to each schema.

b) Assign the schema registry IDs discovered in step 1 to the events in the sds.cfg file (see Event specific

configuration below)

For the initial release the Kafka published events are:

Event Name Description Schema File Default Topic

project (relatively) Static project

information that may be useful

to join with time series data

vov-projects

taskers Metrics related to the state and

capacity of the taskers

metrics.taskers.avsc vov-metrics-taskers

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.91

Event Name Description Schema File Default Topic

jobs Metrics related to the number

of jobs in specific states and

rate of dispatch/completion

metrics.jobs.avsc vov-metrics-jobs

scheduler Metrics related to scheduler

performance, sizes, clients,

innerloop timers

metrics.scheduler.avsc vov-metrics-scheduler

Change the Config File at Run Time

The SDS configuration may be changed while the server is running.

1. The SDS service may be enabled/disabled by using the command:

 $ vovservermgr config sds.enabled 1/0

2. Update the config file for the running server and/or publish a new project event with the following command:

$ vovservermgr config sds.readconfig 1

3. The debug setting may be enabled using:

$ vovservermgr config set_debug_flag SDS
$ vovservermgr config reset_debug_flag SDS

Troubleshooting

If the kafka_servers cfg parameter is not set correctly, the server log will contain entries like the following:

%3|1610382360.585|FAIL|rdkafka#producer-1| [thrd:foo:9092/bootstrap]: foo:9092/
bootstrap: Failed to resolve 'foo:9092': Temporary failure in name resolution (after
 1033ms in state CONNECT)
%3|1610382360.585|ERROR|rdkafka#producer-1| [thrd:foo:9092/bootstrap]: 1/1 brokers
 are down
%3|1610382363.544|FAIL|rdkafka#producer-1| [thrd:foo:9092/bootstrap]: foo:9092/
bootstrap: Failed to resolve 'foo:9092': Temporary failure in name resolution (after
 993ms in state CONNECT, 1 identical error(s) suppressed)

If the kafka servers are not running or reachable, the server log will contain entries like the following:

%3|1610383215.659|FAIL|rdkafka#producer-2| [thrd:hecto:9092/bootstrap]: hecto:9092/
bootstrap: Connect to ipv4#127.0.1.1:9092 failed: Connection refused (after 0ms in
 state CONNECT, 1 identical error(s) suppressed)

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.92

Start and Stop Accelerator

To start the Accelerator vovserver, login as user rtdamgr (or the user chosen as Accelerator administrator) on the machine that is

designated as the vovserver, and the use the following command:

% ncmgr start

To stop the Accelerator vovserver, use the following command:

% ncmgr stop

Note: To stop the vovserver while there is an active workload (running jobs), use the option -freeze. When -freeze is

used, all currently running jobs are preserved. If -freeze is not used, all vovtaskers are stopped along with vovserver,

and any running job is also terminated. The -freeze option feature can be important when upgrading Accelerator.

% ncmgr stop -freeze
% ncmgr start -force

Reset Accelerator and Restart Taskers

Changes made to Accelerator's configuration files can be read in by performing a reset of the queue. The default behavior is to re-

read all configuration files. There are also two optional reset types: soft and hard.

Soft Reset (-soft) A soft reset instructs all running taskers to re-read minor configuration changes

and starts configured taskers that are not running at the time. Running jobs are not

disturbed.

Hard Reset (-hard) A full reset stops and restarts all taskers. This is a forceful command and will kill

all running jobs.

vncmgr: Usage Message

 DESCRIPTION:
 Utility to reread configuration files and optionally start/restart
 taskers.

 By default, "ncmgr reset" rereads and reprocesses the settings in the
 policy.tcl and security.tcl configuration files in the Server Working
 Directory.

 USAGE:
 % ncmgr reset [OPTIONS]

 OPTIONS:
 -help -- Print this message

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.93

 -queue <name> -- Specify the queue name. Default is $NC_QUEUE if
 set, and otherwise vnc.

 -soft -- Also starts any stopped, but configured taskers
 -taskers -- Same as -soft

 -hard * -- Also stops and starts all taskers (jobs are lost)
 -full * -- Same as -hard

 * Warning: These options will forcefully stop all running jobs.

 EXAMPLES:

 % ncmgr reset
 % ncmgr reset -taskers
 % ncmgr reset -full

 % ncmgr reset -soft
 % ncmgr reset -hard

% ncmgr reset - Reread configuration files
% ncmgr reset -queue vnc2 - Reread configuration files for vnc2 queue
% ncmgr reset -soft - Reread configuration files and start taskers that
 are not running
% ncmgr reset -hard - Reread configuration files and restart all taskers

For an example of using the full reset option, refer to Directories and Files.

Start Accelerator at System Boot Time

The instructions in this section are valid for Linux only. This part of the installation requires root permission.

Note: This step is optional.

The Accelerator vovserver can be restarted at reboot by installing the proper script in both the /etc/rc3.d and /etc/rc5.d

directories.

Run the following commands on the host that was selected as the Accelerator vovserver.

% /bin/su
% cp $VOVDIR/etc/boot/S99nc /etc/rc2.d/S99nc
% chmod 755 /etc/rc2.d/S99nc
% vi /etc/rc2.d/S99nc
....
Edit configurable items as needed.

Note: sudo should be used where configured. To avoid Trojan Horse programs, su should always be called by full

path /bin/su.

% ./S99nc start

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.94

Messages about the vovserver starting should be displayed. An example is shown below:

% ./S99nc status

The output of nc info should be displayed. An example is shown below:

% ./S99nc stop

Note: Re-start the Accelerator server with the command S99nc start after testing the stop capability.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.95

Job Management

Job Status
In Accelerator, each job goes through a number of states until completion.

The states are described in the following table:

Status Color Description

Idle BlueViolet If the node is a job, either it has not been run successfully yet

or it needs to be run again, because one of its inputs has been

modified since the last time the job was executed. If the node is

a file, it is the output of a job that is not Idle.

Queued Light blue The job is scheduled to be run. It may be already queued or it

will go in the queue as soon as all its inputs are ready.

Running Orange The job is currently being retraced; it has been dispatched

to one of the taskers. All the outputs of such a job are either

RETRACING or RUNNING.

Done Green If the node is a job, it has run successfully. If the node is a file,

it is up-to-date with respect to all other files and jobs on which

it depends.

Failed Red The job ran and failed.

Transfer Cream The job is being transferred to another cluster and it is not yet

running.

Suspended Pink The job was running (or retracing) and one of the processes

belonging to the job is currently suspended.

Sleeping Black Either the job caused an output conflict upon submission (bad

dependencies) or the job was not reclaimed by any tasker upon

crash recovery.

Withdrawn Gray A job has been withdrawn after dispatching, such as by the

preemption daemon.

Note: This status occurs rarely and tends to be

hard to observe.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.96

The normal sequence for a successful job is Idle > Queued > Running > Done

The normal sequence for a failing job is Idle > Queued > Running > Failed

Job Persistence
An important feature of Accelerator is job persistence. After a job completes, its information remains in vovserver's memory until

the job is forgotten, manually or automatically.

Jobs are automatically forgotten to limit vovserver memory consumption.

Note: The Accelerator default is to automatically forget jobs after a configurable time interval, as described in

Automatic Forgetting.

You may override automatic forgetting by submitting jobs using the -keep or -keepfor options.

The benefits of job persistence:

• You can re-execute a job using nc rerun jobID without the need to type the job command line again.

• Duration information can be used to execute the job on the appropriate taskers (enough time left)

• Commands are easily edited in the GUI or the browser UI

• Preserves the job info for documentation and auditing

• Jobs in vovserver memory have full information accessible via the VTK API

To enable persistence, use the -keep option when you submit the job, as shown below.

Important: Jobs submitted with this option remain in vovserver memory until they are explicitly forgotten, so there

is a tradeoff vs. memory usage, and jobs should only be kept when needed.

Keep Jobs for Longer than the Default

If your Accelerator administrator has arranged to support it, you may also use the -keepfor option when submitting jobs. This

option takes a VOV timespec, e.g. 4h, 14d. Jobs will be automatically removed from the system when older than the specified age.

This is supported by a liveness script which examines the jobs in memory periodically. The example script may be found in

$VOVDIR/etc/liveness/live_keepfor_jobs.tcl and should be copied into the Accelerator vovserver's 'tasks'

subdirectory.

The scripts in the tasks subdirectory are triggered every vovserver update cycle, about once a minute. The -keepfor script uses a

property KEEPFOR_LASTRUN_TS to record the last time it was active, and an optional KEEPFOR_FREQUENCY to determine

how frequently to clean up kept jobs. The default is 1800s, or 30m. These properties are on the object having ID 1.

When you submit a job using the -keepfor option, Accelerator attaches a KEEPFOR property to the job to record how long the job

should be kept. This is silently limited to the range 0..32000000 seconds (just over 1 year).

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.97

Example commands:

% nc run -r unix -t BASE -keep runregression daily

% nc run -r unix -e BASE -keepfor 2w runregression quick

CPU Effort Considerations

The script that implements -keepfor needs to make a scan through all jobs in the system that are in the Done or Failed state, so this

takes some CPU time, and this time will increase with the total number of jobs in the system. You should generally not need to

reduce the scan interval below the default of 30m, and in most cases, you can make it longer, perhaps to 8-24h depending on the

rate of kept job creation in your system.

Forget Jobs from vovserver Memory

You can forget jobs from vovserver's memory using the following command. Common values for <job-spec> include a jobID, '-

mine' and '-set' with a set name.

For more usage information, see nc forget.

% nc forget <job-spec>

Automatic Forgetting

Accelerator's default is to automatically forget jobs as listed below:

• Successful (Done) jobs are forgotten after 1 hour

• Failed jobs are forgotten after 2 days

• Unscheduled (Idle) jobs are forgotten after 2 days

To control the time jobs are kept in the system, edit the VovServer configuration in the policy.tcl file. The parameters

controlling this are autoForgetValid, autoForgetFailed, and autoForgetOthers.

For more details, refer to Autoforget Jobs.

Autoforget Jobs
The autoforget flag sets up a job to automatically be forgotten by the system after a certain time, (not including suspension time) if

and only if the job is done, failed, or idle. Jobs that are scheduled, running, suspended or transfer are never autoforgotten.

Global auto-forget Parameters

There are three different auto-forget parameters:

• autoForgetValid

• autoForgetFailed

• autoForgetOthers

In Accelerator, the autoforget flag is set by default, which can be unset by using the option -keep in nc run. In Flow Design

Language (FDL), the variable make(autoforget) controls the flag.

• The autoforget flag on the job is true

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.98

• The job is done, failed, or idle.

Jobclass Specific auto-forget

• The job belongs to a jobclass with the AUTOFORGET property set to a positive value.

• The job is done, failed, or idle.

Note: The autoforget flag on the job is irrelevant.

If a jobclass has a specific auto-forget property, then the jobs in that jobclass will be forgotten after that specified time.

For example, to set the autoforget property on a jobclass called abc, use the vtk_jobclass_set_autoforget API:

% nc cmd vovsh -x "vtk_jobclass_set_autoforget abc 2m"

To disable this functionality for a jobclass, set the value of autoforget to a non-positive value, such as:

% nc cmd vovsh -x "vtk_jobclass_set_autoforget abc 0"

Auto-forget Log Files

If the parameter autoForgetRemoveLogs is true and the parameter disablefileaccess is false, the vovserver tries to

delete the log file of the jobs that are being auto-forgotten. The success of the deletion depends on the file permissions.

Note: Accessing files makes the vovserver vulnerable to NFS problems.

Auto-forget Examples

For this example, the default autoforget policy is to forget jobs after 1h. Other jobs in the jobclass "Regression" should be retained

for 10days. Submit the jobs with the -keep option (no autoforget flag) and then set the AUTOFORGET property in the set

Class:Regression to 864000.

Done by an ADMIN
% nc cmd vovsh -x 'vtk_jobclass_set_autoforget Regression 10d'

% nc run -C Regression -keep ./my_test

Conversely, if the retention policy keeps the jobs for a long time (such as 3 days), some jobs in the jobclass "Quick" may be set to

be forgotten more promptly, (such as after 5m) of completion. In this case, set the AUTOFORGET property in the jobclass set as

follows:

Done by an ADMIN
% nc cmd vovsh -x 'vtk_jobclass_set_autoforget Quick 5m'

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.99

Schedule Jobs
The scheduling process controls the order of job execution.

The scheduler in Accelerator is event-driven. When an event occurs that can cause a job to be placed onto a tasker, the scheduler is

called. The types of events includes:

• job submission

• job termination

• increased availability in a resource map

• expiration of a reservation

• and many others

The jobs that are scheduled to be run, the queued jobs, are organized into buckets. Each bucket contains jobs that have identical

scheduling parameters.

The buckets are assigned a rank based on the FairShare statistics. Starting from the buckets of rank 0 (zero), the scheduler attempts

to dispatch the top job in the bucket to the best available tasker. Then the scheduler looks at buckets with rank 1 and so on.

Exceptions to FairShare Scheduling

There are a few ways to bypass the FairShare scheduling: manual dispatch of jobs or Job Cohorts.

Seamless Transition to a Cycle-based Scheduler

The scheduler typically executes in a few milliseconds. The scheduler effort required in each cycle increases with the number of

buckets, the number of taskers, and the complexity of the resource expressions. It is always possible to overload the scheduler,

meaning that the scheduler requires a large fraction of the total CPU time used by vovserver.

The vovserver parameter to control scheduler cycle behavior is called schedSkip, and is expressed in seconds. If the effort

required to run the scheduler exceeds the schedSkip threshold, action is taken to reduce the duty cycle allocated to scheduling.

To reduce the duty cycle, the vovserver starts skipping scheduler calls, which frees up computing power to be used to service

other requests such as listings and job terminations. The result is that the scheduler functionality is effectively bypassed, regardless

of bucket priority, until the target "scheduler duty cycle" percentage is attained.The ratio of the computing power allocated

to scheduling, which we call the "scheduler duty cycle", is controlled by the parameter schedMaxEffort, an integer that

represents the percentage of time we want to allocate to the scheduler.

The default value of schedSkip is 0.1 seconds, while the default duty cycle reserved for scheduling is set to 20%, represented by

schedMaxEffort value of 20.

Other Parameters that Control the Scheduler

There are a few more parameters that control the scheduler behavior and could impact performance on large workloads.

Note: There is a built-in dynamic server tuning feature for the maximum jobs dispatched per queue bucket when

server is under heavy load conditions.

sched.maxpostponedjobs

Controls the exit from the scheduler when it is hard to dispatch jobs to taskers, i.e. when the scheduler has to postpone

many jobs because it cannot find suitable taskers for them. Normally this parameter is set to be much larger than the

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.100

maximum number of buckets in the system. Our default value is 10,000; this value can be decreased if you have very

homogeneous farms where all taskers are identical.

Note: This parameter will disappear in future implementations of the scheduler.

fairshare.maxjobsperbucket

Controls how many jobs are allowed to be dispatched from the same bucket. The default value for this is 20 jobs. After

20 jobs have been dispatched from a bucket, the scheduler moves to the next bucket. Smaller values give a more accurate

FairShare accounting. Larger values give a faster dispatch.

Note: This parameter will disappear in future implementations of the scheduler.

fairshare.maxjobsperloop

Controls how many jobs can be dispatched in a single scheduler loop (this includes the scanning of possibly all the

buckets). The default value is 20 jobs per loop (note: this could mean that all 20 jobs are from the same bucket). Smaller

values give a more accurate FairShare accounting. Larger values give a faster dispatch.

Note: This parameter will disappear in future implementations of the scheduler.

To control the scheduler, an admin can use the command line or the policy.tcl file. For example, to increase the threshold

to morph into a cycle-based schedulers from the default 0.1 to 0.3 seconds and to increase the duty cycle from 20% to 40%, the

following command line could be used:

% vovsh -x "vtk_server_config schedSkip 0.3"
% vovsh -x "vtk_server_config schedMaxEffort 40"
% vovsh -x "vtk_server_config sched.maxpostponedjobs 10000"
% vovsh -x "vtk_server_config fairshare.maxjobsperloop 20"
% vovsh -x "vtk_server_config fairshare.maxjobsperbucket 20"

Alternatively, the policy.tcl file can be modified:

This is a fragment of policy.tcl
set config(schedSkip) 0.3
set config(schedMaxEffort) 40
set config(sched.maxpostponedjobs) 10000
set config(fairshare.maxjobsperloop) 20
set config(fairshare.maxjobsperbucket) 40

Job Cohorts

Note: This is a new experimental concept in the 2017 release.

A job cohort is a collection of jobs that require special FIFO scheduling. These jobs are always given a FairShare rank of 0 and are

therefore scheduled "as soon as possible".

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.101

These type of jobs typically occurs in conjunction with large distributed parallel jobs. If a wide DP job has been partially

dispatched, it is important that the rest of the partial jobs get dispatched right away, else we waste a lot of time waiting for the

rendezvous. In the current implementation of partialTool if at least 25% of the DP job has been dispatched, then all the remaining

DP job components become a cohort and will be dispatched "as soon as possible," therefore bypassing other scheduling rules.

Another application of job cohorts is to schedule sets of jobs that are relatively short, but only have value when all of them have

been executed, for example a "smoke regression test", those short regressions that many organizations require of their engineers

before a change to the input data can be checked into the repository. If the smoke test begins and is, say, 50% dispatched, then it

becomes very valuable to make sure that the other jobs in the smoke test also get executed, bypassing the FairShare rules.

It is possible to abuse this concept and say that all my jobs are "cohort" jobs. Abuses will be detected and warnings will be issued.

How to Turn On/Off Cohorts

There is only one low level method to activate cohorts, via the vtk_set_cohort API.

vtk_set_cohort $setId 1 ;# Set the cohort flag on all jobs contained in set.
vtk_set_cohort $setId 0 ;# Reset the cohort flag on all jobs contained in set.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.102

Database
Accelerator stores historical information about jobs in a relational database. As of version 2015.09, the database is fully integrated

and managed as part of Accelerator. This section provides an overview of the components that run and manage the database.

The database, vovdb, is based on PostgreSQL™, a performant and reliable open-source database engine with decades of wide-scale

use. There are two ways to configure and manage vovdb: through the web UI and via the command line.

It should never be necessary to run vovdb directly; once configured and enabled, Accelerator will automatically start and stop the

database as needed.

Daemon

Certain database tasks are managed via the vovdbd daemon: a background process that can load data, perform maintenance, or

trigger backups. These tasks can be configured through the database administration web UI.

Refer to the Daemons documentation for more information on how Accelerator manages daemons.

Tasker

Note: The information in this section does not apply to Windows-based installations.

A vovdbd tasker will be created as necessary to manage the database. This occurs when certain database commands (starting,

stopping, and performing backups) are run from a host different than the configured database host.

This typically occurs when the database is configured with a remote host, but may also occur with a local database if command

line operations are run from another machine. In either case, the command is automatically spawned to the vovdbd tasker as an

interactive job; the command behaves identically whether run locally or remotely.

The vovdbd tasker does not consume a license, and is reserved for database-related jobs only.

Set Up

For the first start of Accelerator, click Admin > System > Database to configure the database. You must have ADMIN privileges

on the Accelerator server to configure and control the database.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.103

Figure 4: System Database Configuration

Database Location

In this section, specify the host (if a separate database host is desired), port (if a specific port is desired), and the path to the

database directory as seen by the specified database host. The configuration page will default to using the local host, a port

randomly selected, and a path that is located in the installation area.

If configuring a separate database host, it is assumed that an SSH connection can be made between the Accelerator server host and

the remote database host without a password prompt appearing. Consult your IT organization to set up an SSH key environment if

needed.

Note:

• Separate database hosts are not supported for Windows-based installations.

• It is highly recommended to utilize the local file system for the database directory. While remote file systems

will work, the resulting performance will be far less than with the local file system.

The database host and path can also be configured from the command line. See Configure the Database from the Command Line

for more information.

Database Control

After the database host and location have been specified, drag the slider switch to the ON position to create and start the database.

The database will now be started automatically upon each start of Accelerator.

To stop the database, drag the slider switch to the OFF position. When the database is not running, data will continue to be

collected by Accelerator but it will not be loaded until the database is restarted.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.104

The database can also be started and stopped from the command line. See Configure the Database from the Command Line for

more information.

Database Tasks

This section allows configuration of the database tasks. These tasks cannot be configured from the command line.

The tasks are run by the vovdbd daemon. Status is shown and updated every 30 seconds. For more information, refer to Altair

Accelerator Daemons.

The Data Loader checkbox controls the automatic loading of jobs. The loader runs continuously, but is automatically disabled

when doing maintenance or backup.

The Maintenance settings enable daily database maintenance and specify the time window to perform maintenance. The database

is still available during the maintenance window; however performance may be impacted. For this reason, it is best to schedule

maintenance for off-peak hours.

Database Backups enables automated backups. The frequency of the backups, backup location, time window in which to start the

backup, and how many backups to keep can be specified. As with maintenance, the database is still available while a backup is

being made, however performance will be impacted.

Note: Network storage is acceptable for database backups.

Configure the Database from the Command Line
The command line utility vovdb_util can be used to configure most aspects of the Accelerator database. You must have

ADMIN privileges on the Accelerator server to configure and control the database.

To execute the utility, first set up the CLI:

% vovproject enable vnc

vovdb_util

Utilities for use with the VOV database.

vovdb_util: Usage Message
DESCRIPTION:
 Utilities for use with the VOV database.

USAGE:
 % vovdb_util <COMMAND> [COMMON OPTIONS] [OPTIONS]

COMMANDS:

 backup <dest> -- Backs up the VOV database to the specified
 destination. This command must be run on
 the same machine as the database. If the
 destination exists it must be empty.
 The database must also be running.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.105

 clearcfg [-noconfirm] -- Resets the VOV database configuration to
 the initial, unconfigured state. Pass
 -noconfirm to skip confirmation.
 exportconfig <fileout> -- Exports VOV database configuration
 properties DB_* to obfuscated file.
 exportpasswords <fileout> -- Exports VOV database passwords
 from project to obfuscated file.
 help -- Shows help information.
 importconfig <filein> -- Imports VOV database configuration
 properties DB_* from obfuscated file.
 importpasswords <filein> -- Imports VOV database passwords
 from obfuscated file to project.
 configure [-v] [-reset] [-noconfirm] <host> <root> [<port>]
 -- Sets the host, root data path, and port for
 the VOV database. Pass -reset to overwrite
 existing settings. Pass -noconfirm to skip
 confirmation.
 showcfg -- Prints out current VOV database
 configuration.
 startdb -- Starts the VOV database. Will restart a
 running database.
 status -- Prints current VOV database status.
 stopdb -- Stops the VOV database.
 upgrade [-noconfirm] [-sdb sourcedir] [-spgsw pg_software_dir]
 -- Upgrades the VOV database to use the newest
 version of the PostgreSQL engine.
 Options:
 -noconfirm to skip confirmation
 -sdb to specify path to Source database
 -spgsw path to older version of PG
 binaries compatible with Source database

 The following commands are only supported for Accelerator and Monitor.

 dump [-pre201509] [-start <YYYYMMDD>] [-end <YYYYMMDD>]
 -- Generate data files, optionally limited to
 the start and end times specified. Pass
 -pre201509 to dump the database that was
 used prior to 2015.09 (or beyond.)
 trim <YYYYMMDD> -- Deletes data prior to the given date.

COMMON OPTIONS:
 -v -- Increase verbosity.

Database Configuration Options

Database configuration is handled by the vovdb_util configure command. Pass -reset to overwrite an existing

configuration. Pass -noconfirm to skip confirmation.

To show the current configuration, use vovdb_util showcfg. To clear an existing configuration, use vovdb_util

clearcfg.

Some examples:

% vovdb_util configure localhost /data/rtda/licmon
vovdb_util 08/17/2023 16:15:03: message: Setting VOV database configuration to:
 Host: srv1
 Data Path: /data/rtda/licmon

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.106

Set configuration (yes/no)? yes
vovdb_util 08/17/2023 16:15:08: message: Configuration saved.

% vovdb_util configure -reset -noconfirm localhost /data/rtda/db/licmon
vovdb_util 08/17/2023 16:15:53: message: Configuration saved.

% vovdb_util showcfg
vovdb_util 08/17/2023 16:16:00: message: The VOV database configuration is:
 Host: srv1
 Data Path: /data/rtda/db/licmon
 Status: stopped

% vovdb_util clearcfg -noconfirm
vovdb_util 08/17/2023 16:15:24: message: Configuration has been cleared.

Database Control Options

Once the database is configured, it can be controlled with the vovdb_util startdb and stopdb commands. There will be

additional output the first time the database is started as the on-disk structure is created.

Starting the database:

% vovdb_util startdb
vovdb 08/17/2023 16:22:55: message: Creating database
The files belonging to this database system will be owned by user "admin".
This user must also own the server process.

The database cluster will be initialized with locale "en_US.UTF8".
The default database encoding has accordingly been set to "UTF8".
The default text search configuration will be set to "english".

Data page checksums are disabled.

creating directory /data/rtda/db/licmon/dbdata9_4 ... ok
creating subdirectories ... ok
<snip>
vovdb 08/17/2023 16:22:58: message: Starting database
vovdb 08/17/2023 16:22:58: message: LOG: database system was shut down at 2023-08-17
 16:22:56 CDT
vovdb 08/17/2023 16:22:58: message: LOG: MultiXact member wraparound protections are
 now enabled
vovdb 08/17/2023 16:22:58: message: LOG: database system is ready to accept
 connections
vovdb 08/17/2023 16:22:58: message: Database engine is ready.
vovdb 08/17/2023 16:22:58: message: Configuring database...
vovdb 08/17/2023 16:22:58: message: Creating user 'rtdamgr'
vovdb 08/17/2023 16:22:58: message: Creating user 'rtdausr'
vovdb 08/17/2023 16:22:58: message: Creating database 'rtda'
vovdb 08/17/2023 16:22:58: message: Database configured.
vovdb 08/17/2023 16:22:58: message: Loading schema for LicenseMonitor...
vovdb 08/17/2023 16:22:58: message: Creating table 'metadata'...
vovdb 08/17/2023 16:22:58: message: Granting RO privileges to rtdausr...
vovdb 08/17/2023 16:22:58: message: Creating table 'loadinfo'...
vovdb 08/17/2023 16:22:58: message: Granting RO privileges to rtdausr...
<snip>
vovdb 08/17/2023 16:22:59: message: Schema loaded
vovdb 08/17/2023 16:22:59: message: Database is ready.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.107

vovdb_util 08/17/2023 16:22:59: message: Database started.

Stopping the database:

% vovdb_util stopdb
vovdb_util 08/17/2023 16:31:22: message: Stopping database...
vovdb_util 08/17/2023 16:31:23: message: Database stopped.

Database Tasks

At present, database tasks such as the automatic loader, daily maintenance, and automatic backups can only be configured through

the web interface. Refer to Set Up for more information.

Database Engine Versions and Upgrades
Accelerator includes version 14.4 of the PostgreSQL database engine that is used by the VOV database daemon vovdb. This

section describes how to determine if a database upgrade will be needed when upgrading the Accelerator product software.

Database Engine Versions

PostgreSQL 14.4 is an improved and updated database version. An existing database created with PostgreSQL 9.4 or 9.6 cannot

be used directly in 14.4; it must be upgraded. The upgrade process is described in Database Upgrades. When you plan to upgrade

an existing Accelerator project from a Accelerator software version with PostgreSQL 9.4 or 9.5 to a Accelerator version with

PostgreSQL 14.4, you will need to choose a database upgrade strategy from the options described in the Altair Accelerator

Software Installation Guide.

To determine the running Accelerator project’s PostgreSQL version, visit the System > Database Configuration web UI page.

If the PostgreSQL version is 14.4, then you may simply upgrade Accelerator via the Software Upgrade Instructions section in the

manual.

Load Data
This section details the methods that Accelerator uses to load data into the database.

Automatic Loading

Checkout data files generated from sampled data will be automatically and continuously loaded if the daemon-based loader is

enabled.

Job data files generated by the server are automatically and continuously loaded when the daemon-based loader is enabled. Refer

to Set Up for more information.

Manual Loading

Manual loading of job data files can be accomplished by using the vovsql_load_jobs command line utility.

To execute the utility, set up the CLI:

% vovproject enable vnc

Proprietary Information of Altair Engineering

../../../bookshelf/topics/install/monitor_db_upgrades.htm

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.108

vovsql_load_jobs: Usage Message

 DESCRIPTION:
 Load job-logs into the SQL database. Useful also to merge
 the data from multiple sites (or multiple clusters).
 The name of the site should preferably be short.

 USAGE:
 % vovsql_load_jobs [OPTIONS] <listOfJobsLogs>

 OPTIONS:
 -db -- Override DB selection
 -force -- Force loading of log files
 -site <NAME> -- Specify a name of a site
 -notools -- Disable processing of toolnames.
 The toolname is normally the tail of the first
 argument of a command. In some sites, the tools
 are auto-generated and are unique for each
 command, so that they have no meaning but cause
 a tremendous overhead.
 -v -- Increase verbosity
 -q -- Quiet verbosity

 EXAMPLES:
 % vovsql_load_jobs ./jobs/2009*
 % vovsql_load_jobs -site rome ./jobs/2009*
 % vovsql_load_jobs -db ./jobs.sq3 jobs.log
 % vovsql_load_jobs -notools jobs.log

Export Data
One function of the utility vovdb_util is to export the database into jobs data files. The exported files are saved in the

vnc.swd/data/dump directory.

To execute the utility, first set up the CLI:

% vovproject enable vnc

vovdb_util

vovdb_util: Usage Message
DESCRIPTION:
 Utilities for use with the VOV database.

USAGE:
 % vovdb_util <COMMAND> [COMMON OPTIONS] [OPTIONS]

COMMANDS:

 backup <dest> -- Backs up the VOV database to the specified
 destination. This command must be run on
 the same machine as the database. If the
 destination exists it must be empty.
 The database must also be running.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.109

 clearcfg [-noconfirm] -- Resets the VOV database configuration to
 the initial, unconfigured state. Pass
 -noconfirm to skip confirmation.
 exportconfig <fileout> -- Exports VOV database configuration
 properties DB_* to obfuscated file.
 exportpasswords <fileout> -- Exports VOV database passwords
 from project to obfuscated file.
 help -- Shows help information.
 importconfig <filein> -- Imports VOV database configuration
 properties DB_* from obfuscated file.
 importpasswords <filein> -- Imports VOV database passwords
 from obfuscated file to project.
 configure [-v] [-reset] [-noconfirm] <host> <root> [<port>]
 -- Sets the host, root data path, and port for
 the VOV database. Pass -reset to overwrite
 existing settings. Pass -noconfirm to skip
 confirmation.
 showcfg -- Prints out current VOV database
 configuration.
 startdb -- Starts the VOV database. Will restart a
 running database.
 status -- Prints current VOV database status.
 stopdb -- Stops the VOV database.
 upgrade [-noconfirm] [-sdb sourcedir] [-spgsw pg_software_dir]
 -- Upgrades the VOV database to use the newest
 version of the PostgreSQL engine.
 Options:
 -noconfirm to skip confirmation
 -sdb to specify path to Source database
 -spgsw path to older version of PG
 binaries compatible with Source database

 The following commands are only supported for Accelerator and Monitor.

 dump [-pre201509] [-start <YYYYMMDD>] [-end <YYYYMMDD>]
 -- Generate data files, optionally limited to
 the start and end times specified. Pass
 -pre201509 to dump the database that was
 used prior to 2015.09 (or beyond.)
 trim <YYYYMMDD> -- Deletes data prior to the given date.

COMMON OPTIONS:
 -v -- Increase verbosity.

Database Export

Database export is done using the vovdb_util dump command. Pass the optional -start YYYYMMDD and -stop

YYYYMMDD to restrict the dump to after the specified start date and before the specified end date.

Dump Pre-2015.09 Databases

If updating Accelerator from a version prior to 2015.09, it is possible to pass the -pre201509 option to vovdb_util dump to

generate data files from the old database. This can be used to save old data if the original data files are no longer present.

Exported Jobs Directory

The vnc.swd/data/dump/jobs directory contains the exported jobs data. The dumped data files can be loaded into a new

database using the vovsql_load_jobs utility.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.110

Database Backup
There are two ways to do direct backups of the database: automatic and manual. In addition, the original source data files may be

saved.

Automatic Backups

Automatic backups are configured through the administration web UI. When enabled, the backups are generated in subdirectories

of the configured Backup Location named for the time of backup.

If the backup location is configured as:

/data/rtda/db_backup/vnc

The backup started on August 21st, 2023 at 1:00AM will be located in:

/data/rtda/db_backup/vnc/20230821_010000

Manual Backups

Manual backups are generated by running the vovdb_util utility. Backups are generated directly in the directory specified; it is

recommended to specify the time of backup in the directory name for future reference. Example:

% vovdb_util backup /data/backup/vnc/2023Aug22_10AM

Source Data Backups

In addition to backing up the database directly, the source data files used to populate the database can be saved. The source files are

located in vnc.swd/data and can be used to rebuild a database from scratch. No utility is provided to save these files.

Restore a Database from Backups

The procedure to restore from backup is the same whether the backup was generated automatically or manually.

1. Ensure the current database is stopped, either through the web UI or via the command line.

2. Delete or move the existing database.

For example, if the database is located at /data/rtda/db/vnc, it can be moved with:

 % mv /data/rtda/db/vnc /data/rtda/db/vnc.bad

3. Copy or move the backup to the original database location.

Using the example of an automatic backup from above.
% mv /data/rtda/db_backup/vnc/20160821_010000 /data/rtda/db/vnc

Using the example of a manual backup from above.
% mv /data/backup/vnc/2016Aug22_10AM /data/rtda/db/vnc

4. Restart the database.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.111

Rebuild a Database from Source Data Files

1. Ensure the current database is stopped, either through the web UI or via the command line.

2. Delete or move the existing database.

For example, if the database is located at /data/rtda/db/vnc, it can be moved with:

% mv /data/rtda/db/vnc /data/rtda/db/vnc.bad

3. Reload the source data files.

% vovproject enable vnc
% cd `vovserverdir -p data/jobs`
% vovsql_load_jobs *

Track Job Commands

Each job has a field called tool, which is stored in the database and is used for reporting. This field is automatically computed to

be the tail of the first command line argument that is not a known wrapper.

For example, if the command line is vw /bin/cp aa bb, the tool field has the value cp because vw is a wrapper and /bin/

cp is the first argument that is not a wrapper.

Problem: The Number of Tools Explodes

Scripts may be generated automatically with unique names assigned to each script, containing elements such as timestamps or

random seeds. This method affects the meaning of tool. It appears that each tool is used only once and there is a very large

number of tools, which leads to excessively slow reporting times. In this scenario, the value of the field tool needs to be

controlled.

Realizing a problem with tool often emerges late in the deployment of Accelerator. A solution for this problem has two

components:

• A post-processing script to modify the tool field in the SQL database. This script is called

vovsql_normalize_field.

• A facility to control the value of tool at job creation time using FDL. This only requires setting the variable make(tool)

before the job is created.

The vovsql_normalize_field Utility

The utility vovsql_normalize_field changes the value of the toolid field in the jobs table in SQL. The recommendation

is to use the utility is to create a configuration file called db_rename.tcl in the directory vnc.swd/db and then call the utility

as follows:

% vovsql_normalize_field -file vnc.swd/db/normalize.tcl

This can also be done automatically with a liveness script (XXXXX TO BE DONE).

The file db_rename.tcl contains calls to a procedure called SQL_NC_FIX_TOOL which takes 2 parameters:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.112

• A regular expression to select the bad tool names. This expression is in SQL syntax; is must include the character '%' to

match any substring.

• The new value of the tool name. Using a simple name is recommended.

Example of *.swd/db/normalize.tcl file.
SQL_NORMALIZE_TOOL vrun% VRUN
SQL_NORMALIZE_TOOL gen_script%seed% SIM

Control the Tool Field at Job Creation Time

In Accelerator, control the tool field with the option -tool in nc run. In a job class definition, the value of the variable

VOV_JOB_DESC(tool) can be set.

% nc run -tool SIM ./sim/sim_seed_123487897_ts_12122212_aa_to_bb

The tool field is also important from a scheduling point of view because the tool field can be associated with a resource map. In

the following example, if there is a resource map called Tool:SIM, it will be honored for all jobs that have a tool value equal to

SIM.

In a jobclass definition file
...
set VOV_JOB_DESC(tool) "SIM"
...

Plot Jobs
The script jobplots.cgi can generate plots of jobs over a period of time. The jobs are organized by project, user, host, or

jobclass.

Following is an example of a plot by project:

Figure 5: Example: running jobs

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.113

Figure 6: Example: waiting jobs

Customize Plot Colors

The script jobplots.cgi uses a small palette of 12 colors. Depending on what is shown, it is possible that the same entity is

plotted in a different color. The file plot.config.tcl in the SWD (e.g. vnc.swd/plot.config.tcl) can be used to

specify the color to be used for a specific project, host, user, jobclass, etc.

Example of plot.config.tcl used by jobplots.cgi

Use symbolic names for colors (see rgb.txt)
JobPlotColor projects arm3 pink
JobPlotColor projects rout5 yellow

Use hex value for colors (no # and no 0x please)
JobPlotColor jobclasses hsim 33FF88
JobPlotColor jobclasses dc EE44AD

Generate Custom Reports
The Accelerator database is open for custom queries using SQL.

Database Structure

The main table in the database is called jobs. As the table is expected to grow very large (billions of records), it is composed

of integer fields only, which are used as references into auxiliary tables. Refer to Database Schema for more information on the

database structure.

Writing Custom Queries

Arbitrary reports can be generated using vovsql_query. (Some knowledge of SQL is required.)

The following example shows the host and users for all the jobs that ran for more than one hour.

SELECT hostid, userid, endtime - starttime AS duration
 FROM jobs
 WHERE duration > 3600
 ORDER BY duration DESC
 LIMIT 100;

There are two ways to pass the SQL command:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.114

1. Directly on the command line:

% vovsql_query -e "SELECT hostid, userid,"

2. Within a file:

% vovsql_query -f file_with_your_sql_query

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.115

Database Schema
The SQL schema used by this version of Accelerator is visualized in the following entity-relationship diagram.

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

fsgroups

id

name

grabbeds

id

name

hosts

id

name

jobclasses

id

name

jobs

id int4

endtime int4

int4
int4

projectid int4

fsgroupid int4

userid int4
int4

toolid int4
int4

grabbedid int4
int4
int4

spriority int2

submittime int4

starttime int4
int4
int2

maxram int4
int4

cputime

susptime int4
int4
int4

loadinfo

id

filename

filemd5

filepos int8

loadtime int4

mtime int4

metadata

row_limiter int2

int2
int4

osgroups

id

name

projects

id

name

id

name

statuses

id

name

tools

id

name

users

id

name

Figure 7: The Accelerator Database Schema

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.116

FairShare

FairShare allocates CPU cycles among groups and users according to policies defined by the administrators. FairShare is the

dominant criteria in the scheduler, more important than job priorities. The fairness of CPU time allocation is computed using a

multi-level FairShare tree. Each node in the tree is called a FairShare Group (abbreviated fsgroup) and is characterized by a

name, a weight, and a time window.

Each job belongs to one and only one fsgroup. The contribution of each job to the FairShare mechanism is controlled by the

parameter fstokens, which is 1 by default. If fstokens is 0, then the job will not contribute anything to the actual share (this

is only rarely useful). If fstokens is 2, then the job contributes twice as much as a regular job with fstokens set to 1.

An fsgroup is "active" if some of its jobs are either running or queued, or, recursively, if any of its children is active.

The FairShare tree can be surprisingly large. Some organization have more than 16,000 nodes in the tree, on account of the large

number of projects and users, although typically, at any one time, only less than 100 fsgroups are active.

The goal of the FairShare algorithm is to allocate resources to the active fsgroup so that the actual share of resources is as close

as possible to the target share defined by the weights. To be clear, the fsgroups that are not active are not considered in the

FairShare algorithm.

• The target share is computed from the fsgroup weights and allocated to all active fsgroups. The inactive fsgroups get a

target of 0%

• The actual share is computed from the contribution of each job according to the overlap of the job execution and the time

window multiplied by the fstokens parameter. The actual share consists of two components: the "running actual share"

based on the number of jobs currently running, weighted by fstokens, and the "historical actual share" based on the

overlap of the job execution time and the time window, also weighted by fstokens.

Each active fsgroup is assigned a 'rank' computed from the difference between its target share and actual share. That rank is then

assigned implicitly to all jobs that belong to that fsgroup. The fsgroup that has the highest deficit will get rank of 0, while

the fsgroup with the largest excess share will get a large rank (depending on current number of active fsgroups). The rank

determines which jobs are preferred for dispatch, so that the scheduler first considers dispatching the jobs that have lower rank,

i.e. jobs from fsgroups under their target share. If those jobs cannot be dispatched, because of other constraints such as RAM or

limits, then the scheduler considers jobs with higher rank.

The default FairShare window is 2 hours meaning that we consider the time interval starting 2 hours before the present. Normally

all nodes in the FairShare tree have the same time window, but that is not a requirement. In particular, it is possible to set the time

window to zero in a node to disable FairShare for nodes under that node, by setting the rank of all children to the same value.

Selecting the appropriate window size is a balance between responsiveness and accuracy. A wide time window required more

computation than a narrow window. The average job length and overall daily workload should be taken into account when

selecting an appropriate window size.

As a rule of thumb, if your workload is small, i.e. under 100,000 jobs per day, do not worry about the FairShare window. If

your workload exceeds 100,000 jobs per day, perhaps you want to use a shorter time window, such as 10 minutes. Workloads of

millions of jobs per day can benefit with a time window of 2 minutes. Also relevant here is the frequency of update of the actual

shares, which is controlled by the parameter fairshare.updatePeriod. The default value for this parameter is 0, meaning

that the FairShare data is updated a frequently as needed, perhaps multiple times a second. For large workloads it may be a good

idea to set that parameter to 3 or 5 seconds.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.117

FairShare Rank

A fsgroups's rank ranges from zero upward. Jobs from fsgroups ranked closest to zero are preferred for dispatch. The

rank is computed by ordering the fsgroups by a combined 'distance' between its target share and actual share. This distance

has a 'running' component and a 'historical' component, based on jobs in the window. The vovserver configuration parameters

fairshare.relative and fairshare.relative_alpha control the influence of the historical versus running distance

on the actual rank. Refer to Server Configuration for details.

FairShare features:

• Multiple multi-level FairShare trees are supported. The default number of levels is 2.

• Each node in a FairShare tree has its own window size and weight.

• Ability to disable FairShare for a sub-tree by setting the window size to zero.

• Privileges are controlled with Access Control Lists (ACLs) for fine grained control.

FairShare Tree Naming Conventions

Each fsgroup has a hierarchical name where the components are separated by a "/", similar to a file name. The default fsgroup

is /time/users. The name can take one of the following three forms:

Type Form Example

FS-Group HIERARCHICAL_GROUP_NAME /time/users

FS-User HIERARCHICAL_GROUP_NAME.USER_NAME/time/users.joe

FS-Subgroup HIERARCHICAL_GROUP_NAME.USER_NAME:SUBGROUP_NAME/time/users.joe:myregression1

Each component in the name has to be alpha-numeric, and can contain _. The . character is not allowed except in the FS-User

component. The / and : are not allowed anywhere.

Type Example

FS-Group /proj/sanjose/library/qa

FS-User /proj/sanjose/library/qa.john

FS-Subgroup /proj/sanjose/library/qa.john:mytest1

Each node in the FairShare tree has an owner who has the authority to set the weights for all the subnodes in the tree. For example,

the owner of group /time/med can set the weights for /time/med/sanjose and any other nodes of the form /time/med/

*.

Define FairShare Groups

The FairShare tree is dynamic and can be changed at any time. If you like a configuration, you can save it into a file and then you

can reload it at a later time. The main tool to perform these actions is vovfsgroup

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.118

FairShare Command Line Utilities

To view all FairShare groups, use vovfsgroup show:

ID GROUP OWNER WEIGHT WINDOW
 RUNNING QUEUED
000000016 / (server) 0 1h00m
 0 0
000001012 /system cadmgr 100 0s
 0 0
000001050 /system/taskers cadmgr 100 0s
 0 0
000001053 /system/taskers/messages cadmgr 100 0s
 0 0
000001056 /system/taskers/reservations cadmgr 100 0s
 0 0
000001006 /time cadmgr 100 1h00m
 0 0
000001009 /time/users cadmgr 100 1h00m
 0 0
000001081 /time/users.cadmgr cadmgr 100 1h00m
 0 0

An older method still available is to use vovshow -groups:

% vovshow -groups
 ID GROUP WEIGHT WINDOW
 02223424 /system 100 1m00s
 02223422 /time 100 1h00m
 02223423 /time/users 1 2h00m
 02223435 /time/users.cadmgr 100 1h00m

For a specific fsgroup, you can use an additional argument to vovfsgroup show FSGROUPNAME:

% vovfsgroup show /time/users
Id: 000001009
FullName: /time/users
Owner: cadmgr
Weight: 100
Window: 1h00m
Rank: -1
 ACL 1: OWNER "" ATTACH DETACH EDIT VIEW STOP FORGET DELEGATE EXISTS
 ACL 2: EVERYBODY "" ATTACH VIEW
 000001081 /time/users.cadmgr 100 cadmgr

Permission is required to create fsgroups and to change their weight. You can try the following commands as the ADMIN user

for your Accelerator instance:

% vovproject enable vnc
% vovfsgroup create /app/primetime
% vovfsgroup create /app/spice
% vovfsgroup create /app/other
% vovfsgroup modify /app/primetime weight 300
% vovfsgroup modify /app/spice weight 100
% vovfsgroup modify /app/other weight 20
% vovfsgroup modrec /app window 1h
% vovfsgroup exists /app/other
% vovfsgroup exists /app/not_there
% vovfsgroup genconfig saved_my_cool_config.tcl ### Important to use the .tcl
 extension
% vovfsgroup delete /app

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.119

% vovfsgroup loadconfig saved_my_cool_config.tcl

For more information, refer to Configure FairShare via the vovfsgroup Utility.

Monitor FairShare

From the command line, start the monitors with

% nc monitor

From the browser interface, visit the Project Home page and then select the FairShare link.

Target Share Example

In the following example, it is assumed two groups are defined, the default group /time/users and another group named /

time/regr. The users maureen and murali are members of the /time/users group. User john is a member of the /

time/regr group. It is also assumed that all users have jobs queued. Following is how the target shares would be determined

using the two-tier method.

There are two groups in the queue, each group with a weight of 100. Therefore, at the start, the FairShare percentage of each can be

calculated as such:

/time/regr share = 100/(100+100) 50%
/time/users share = 100/(100+100) 50%

Now assume that within the /time/regr group, only john has jobs. That user gets 100% of the group's share or 50% of the

overall cycles.

/time/regr.john share = 100/(100+100) 50% * 100% = 50%
/time/users share = 100/(100+100) 50%

Within the /time/users group, two users have jobs as shown below:

 /time/users.maureen share = 10/(10+10) 50% * 50% grp = 25%
 /time/users.murali share = 10/(10+10) 50% * 50% grp = 25%

If another user suresh, who is a member of the users group submits jobs that are queued, the target shares would change as

follows:

/time/users.maureen share = 10/(10+10+10) 33% * 50% grp = 16.7%
/time/users.murali share = 10/(10+10+10) 33% * 50% grp = 16.7%
/time/users.suresh share = 10/(10+10+10) 33% * 50% grp = 16.7%

Because the user suresh just entered the queue, his actual share will probably be much less than the target share. Therefore, his

jobs will be launched ahead of the other users as the system tries to bring his actual share up to his target share. An example of the

overall FairShare picture is shown below (target shares shown):

/time/regr.john share = 100/(100+100) 100% * 50% grp = 50.0%
/time/users.maureen share = 10/(10+10+10) 33% * 50% grp = 16.7%
/time/users.murali share = 10/(10+10+10) 33% * 50% grp = 16.7%
/time/users.suresh share = 10/(10+10+10) 33% * 50% grp = 16.7%

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.120

Configure FairShare via the vovfsgroup Utility
The vovfsgroup utility is used to manage FairShare groups (fsgroups) from the command line. This includes creating,

deleting and listing them with attributes and ownership.

Fsgroups have an associated owner and an Access Control List (ACL) to describe the operations that may be performed on the

group. ACLs permit management of fsgroups to be delegated and distributed among multiple users.

The vovfsgroup command is also used to manage the ACLs of fsgroups. (see also vtk_acl_op).

vovfsgroup

Create, show, and modify attributes of FairShare groups. The script also controls Access Control Lists (ACL) for FairShare groups.

vovfsgroup: Usage Message

 DESCRIPTION:
 Create, show, and modify attributes of FairShare Groups.
 The script also controls Access Control Lists (ACL) for
 FairShare groups. See information on ACL for additional detail.

 SYNOPSIS:
 % vovfsgroup <action> <group> ...

 WHERE:
 <action> is one of "acl, aclrec, create, exists, delete, genconfig,
 loadconfig, modify, modrec, normalize, show"
 and is case-insensitive
 <group> is the name of the FairShare group

 USAGE:
 vovfsgroup acl <group> GET
 // Retrieve FairShare Group ACLs
 vovfsgroup acl <group> RESET
 // Reset FairShare Group ACLs to Default
 vovfsgroup acl <group> APPEND OWNER "Privilege List"
 // Append Privs to FairShare Group
 vovfsgroup acl <group> APPEND EVERYBODY "Privilege List"
 // Append Privs to FairShare Group
 vovfsgroup acl <group> APPEND USER <user> "Privilege List"
 // Append Privs to FairShare Group

 Same as above, but apply setting recursively
 to all nodes in the FairShare group:
 vovfsgroup aclrec <group> GET
 // Retrieve FairShare Group ACLs
 vovfsgroup aclrec <group> RESET
 // Reset FairShare Group ACLs to Default
 vovfsgroup aclrec <group> APPEND OWNER "Privilege List"
 // Append Privs to FairShare Group
 vovfsgroup aclrec <group> APPEND EVERYBODY "Privilege List"
 // Append Privs to FairShare Group
 vovfsgroup aclrec <group> APPEND USER <user> "Privilege List"
 // Append Privs to FairShare Group

 vovfsgroup create <group>

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.121

 // Create a new FairShare group

 If the owner-user of the product instance is performing the clone:
 vovfsgroup clone -take <group> <new group>
 // Clone an existing group and all subgroups to a new group,
 // with the current user taking ownership of the new group
 // and all subgroups
 vovfsgroup clone -preserve <group> <new group>
 // Clone an existing group and all subgroups to a new group,
 // with ownership of the new group and all subgroups
 // copied from the original group
 If any other user is performing the clone:
 vovfsgroup clone <group> <new group>
 // Clone an existing group and all subgroups to a new group,
 // with the current user taking ownership of the new group
 // and all subgroups

 NOTE: the owner-user of the product instance MUST specify either -take
 or -preserve with the clone command. Users other than the
 owner-user cannot use the -preserve argument. Only subgroups to
 which the user has access will be cloned.

 vovfsgroup exists <group>
 // Exit status = 0 if group exists
 vovfsgroup delete <group>
 // Delete a FairShare group
 vovfsgroup delete -unused
 // Remove unutilized FairShare groups

 vovfsgroup modify <group> weight <integer-value>
 // Change the weight of a FairShare group
 vovfsgroup modify <group> window <time-spec>
 // Change the window size of a FairShare group
 vovfsgroup modify <group> owner <owner-name>
 // Change owner (requires SERVER status)
 vovfsgroup modify <group> flatten <0|1>
 // Changed the flattened/non-flattened state of the group
 // (0 by default). If a group is flattened, its target
 // share is calculated differently; instead of the usual
 // hierarchical weighting, all non-leaf node weights are
 // ignored and leaf nodes are weighted against each other
 // as though they were all part of the same level of
 // hierarchy. Note that vovfsgroup modrec should not be
 // used with flatten; it will work but is inefficient,
 // as vovfsgroup modify will already propagate the flag
 // to any child groups.

 Same as above, but apply setting recursively
 to all nodes in the FairShare group:
 vovfsgroup modrec <group> weight <integer-value>
 // Change the weight of a FairShare group.
 vovfsgroup modrec <group> window <time-spec>
 // Change the window size of a FairShare group.
 vovfsgroup modrec <group> owner <owner-name>
 // Change owner (requires SERVER status).
 vovfsgroup genconfig <NEW_CONFIG_FILE>
 // Generate config file (name specified)

 EXAMPLES:
 % vovfsgroup help
 % vovfsgroup create /class/sim
 % vovfsgroup modify /time/users weight 121

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.122

 % vovfsgroup modify /time/users window 8h
 % vovfsgroup modify /time/users owner mary
 % vovfsgroup modify /time/users flatten 1
 % vovfsgroup modrec /time/users window 8h
 % vovfsgroup exists /time
 % vovfsgroup show
 % vovfsgroup show /time/users
 % vovfsgroup delete /class/sim /class/verilog
 % vovfsgroup delete -unused
 % vovfsgroup acl /class/sim GET
 % vovfsgroup acl /class/sim RESET
 % vovfsgroup acl /class/sim APPEND EVERYBODY "ATTACH VIEW"
 % vovfsgroup acl /class/sim APPEND USER jong "ATTACH VIEW"
 % vovfsgroup acl /class/sim APPEND USER jong "ATTACH VIEW"
 % vovfsgroup acl / SET OWNER "ALL"
 % vovfsgroup normalize /time/projects 1000
 % vovfsgroup genconfig
 % vovfsgroup genconfig -leaf MyGroupsIncludingLeafNodes.tcl
 %
 % vovfsgroup genconfig myconfig.tcl
 % vovfsgroup loadconfig myconfig.tcl
 %
 % vovfsgroup genconfig -serial myconfig.txt
 % vovfsgroup loadconfig myconfig.txt

vovfsgroup Examples

This section provides examples of using vovfsgroup.

• Show the existing FairShare groups

• Show details of an existing FairShare groups

• Create a new FairShare group

• Modify a FairShare group

• Delete a FairShare group

• Set default for FairShare group

• Set ACL for a FairShare group

• All children inherit the values of Window and Weight.

In all examples below, the command nc cmd as a prefix to make it clear that we want the command to be executed in the

Accelerator project. The prefix can be omitted if you first do a vovproject enable vnc. You also need to have ADMIN

privileges for most of these commands to work.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.123

Note: Configuration files can be viewed in various scripting languages. By default, the scripting language is Tcl.

The option -serial allows using serial text languages such as Perl. Example:

% vovfsgroup genconfig -serial #content is saved in serial text format,
 one group per line
% vovfsgroup genconfig #content is saved in hierarchical tcl
 format

The vovfsgroup create command will now copy the parent ACL when creating a subgroup:

vovfsgroup create /abc/def

The above command will create a new group /abc/def, with ACL permissions copied from the group /abc. If

there is no applicable parent group, the default ACLs will be used.

Show the Existing FairShare Groups

The following example shows the summary of the existing fsgroups, with their owner, weight, and time window. The /time

and /system FairShare trees are built-in. The /system tree is used by Accelerator and should not be modified or extended.

% nc cmd vovfsgroup show
ID GROUP OWNER WEIGHT WINDOW
00001142 /system cadmgr 100 1m00s
00001140 /time cadmgr 100 1h00m
00001144 /time/production cadmgr 700 1h00m
00001145 /time/production.joe cadmgr 1 1h00m
00001147 /time/regression cadmgr 300 1h00m
00001141 /time/users cadmgr 10 2h00m
00001185 /time/users.joe cadmgr 100 1h00m

Show Details of Existing FairShare Groups

The following example shows the details of the /time/users FairShare group. It shows that the owner has all ACL privileges,

and that everybody has the ATTACH and VIEW privileges. These privileges are needed to automatically create the default /

time/users.<user-name> group the first time a user submits a job without specifying a group name.

 % nc cmd vovfsgroup show /time/users
 OWNER "" {ATTACH DETACH EDIT VIEW RETRACE STOP SUSPEND FORGET DELEGATE}
 EVERYBODY "" {ATTACH VIEW}
 00001185 /time/users.joe 100 joe

Create a New FairShare Tree

This command creates the new fsgroup /division/project/block. The intermediate level /division/project is created automatically.

You must be logged in as a user with ADMIN privilege level in Accelerator's security.tcl file.

% nc cmd vovfsgroup create /division/project/block

When you create a new fsgroup, you become its owner. At present, there is no way to change ownership except to delete the

fsgroup, then re-create it as the desired owner. See DELEGATE.

The initial ACLs assigned to an fsgroup when it is created are:

DEFAULT_ACL 1: OWNER "" ATTACH DETACH EDIT VIEW FORGET DELEGATE EXISTS

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.124

DEFAULT_ACL 2: ADMIN "" ATTACH DETACH EDIT VIEW FORGET
DEFAULT_ACL 3: EVERYBODY "" ATTACH DETACH VIEW

Modify a FairShare Group

The first command modifies the fsgroup /division/project/block. The weight is set to 200. The share assigned to this group will

be the weight divided by the sum of the weights of other active fsgroups at this level (i.e. all other groups that have running or

queued jobs).

The second command modifies the fsgroup /division/project/block and sets its time window to 4 hours. This is the interval over

which recent jobs continue to contribute to FairShare rank.

% nc cmd vovfsgroup modify /division/project/block weight 200
% nc cmd vovfsgroup modify /division/project/block window 4h

Append or Delete an ACL Element from a Group

APPEND can be used to append the defined privileges to the ACL list. DELETE is used to do the exact opposite of it, deleting

only what is specified.

For example, an fsgroup /mygroup with one of the ACLs being

USER "john" ATTACH DETACH VIEW

and then executing

$ nc cmd vovfsgroup /mygroup APPEND USER john EDIT

will append "EDIT" to this ACL and leads to

USER "john" ATTACH DETACH EDIT VIEW

Now executing

$ nc cmd vovfsgroup /mygroup DELETE USER john "EDIT"

will DELETE the "EDIT" privilege from the ACL again and leads to

USER "john" ATTACH DETACH VIEW

Set Default Weight for a FairShare Group

The following creates the fsgroup /division/project/default, and assigns it a weight of 200. When another fsgroup is created at

the same level, that is, a sibling of default, it automatically is assigned the weight from the default group at that level.

% nc cmd vovfsgroup create /division/project/default
% nc cmd vovfsgroup modify /division/project/default weight 200

Set Access Control Lists for a FairShare Group

The following sequence of commands first gets the current ACL of the group /time/regression for inspection. The second command

resets the ACL to its default value.

% nc cmd vovfsgroup acl /time/regression GET

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.125

% nc cmd vovfsgroup acl /time/regression RESET
% nc cmd vovfsgroup acl /time/regression APPEND EVERYBODY "ATTACH VIEW"
% nc cmd vovfsgroup acl /time/regression APPEND USER regrmgr "ATTACH DETACH VIEW
 EDIT FORGET DELEGATE"

The third and fourth commands add the ACL for EVERYBODY and regrmgr.

ACL 1: OWNER "" ATTACH DETACH EDIT VIEW FORGET DELEGATE EXISTS
ACL 2: EVERYBODY "" ATTACH VIEW

Configure FairShare via File

The options are:

-w (weight) Specify the relative weight of the group (default given by variable

$FSGROUP(weights), which is normally 100).

-t (timeWindow) Specify the time window used in the computation of the actual shares (default given

by variable $FSGROUP(windows) which is normally 7200, which is 2 hours).

Note: A time window of duration zero can be used to disable

FairShare for a subset of the FairShare tree.

-u (List-Of-Users) Specify a list of users that have exclusive access to that FairShare group. This

access is controlled by an Access Control List.

-user Specify that the group is a USER level group

A FairShare configuration file that represents current FairShare state can be created in the web user interface. Click FairShare >

Hierarchical Configuration. The vovfsgroup genconfig command provides a way to generate a FairShare cofiguration

file from the CLI.

Tcl Example

% vovfsgroup genconfig config.mysetup.tcl
% vovfsgroup genconfig -leaf config.mysetup_with_leaf_nodes.tcl

A FairShare configuration file (as generated by the example above) can be imported into the system with the command

vovfsgroup loadconfig, as follows:

% vovfsgroup loadconfig config.normal.tcl

Where config.normal.tcl contains the FairShare configuration declared in Tcl as follows:

Copyright (c) 1995-2023, Altair Engineering
All Rights Reserved.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.126

$Id: //vov/branches/2023.1.2/src/etcDir/config/fairshare/config.normal.tcl#2 $

#
This is an example of config for fairshare.
#
FSGROUP "class" {

 FSGROUP "sim" -w 0 -t 0 {
 # In this branch, fairshare is disabled
 # because the timewindow is zero (-t 0)
 FSGROUP jolly
 FSGROUP cronos -w 100 -t 3h
 }
 FSGROUP "urgent" -window 10m {
 FSGROUP h2p -w 300
 FSGROUP jolly
 FSGROUP cronos
 }
 FSGROUP projects -w 133 {
 FSGROUP jolly {
 FSGROUP normal -w 200 {}
 FSGROUP random -w 80 {}
 }
 FSGROUP cronos {
 FSGROUP normal
 FSGROUP random
 }
 }
}

Serial Example

The vovfsgroup genconfig -serial command provides a way to generate a FairShare configuration file in the "serial"

format.

% vovfsgroup genconfig -serial config.mysetup.txt
% vovfsgroup genconfig -leaf -serial config.mysetup_with_leaf_nodes.txt

A FairShare configuration file in serial format (as generated by the example above) can be imported into the system with the

command vovfsgroup loadconfig, as follows:

% vovfsgroup loadconfig config.normal.txt

Where the content of file config.normal.txt is as follows:

FairShare configuration file created by vovfsgroup on Mon May 02 16:55:09 EDT 2022
Output is in tab-separated key=value format
ACL values are in AGENT/NAME/ACTIONS format, with multiple ACLs separated by a
 comma

group=/ weight=16777215 window=-1s flatten=0
group=/time weight=100 window=1h00m flatten=0
group=/time/users weight=100 window=1h00m flatten=0 acl=OWNER//ATTACH DETACH EDIT
 VIEW STOP FORGET DELEGATE EXISTS CREATE,ADMIN//ATTACH DETACH EDIT VIEW FORGET
 CREATE,EVERYBODY//ATTACH DETACH VIEW
group=/system weight=100 window=0s flatten=0
group=/system/taskers weight=100 window=0s flatten=0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.127

group=/system/taskers/closures weight=100 window=0s flatten=0
group=/system/taskers/messages weight=100 window=0s flatten=0
group=/system/vovdbd weight=100 window=0s flatten=0

FairShare Weights Control Methods

The FairShare weight is capped at a maximum value of 100,000. The current implementation uses an integer scale. The use of

large ratios within a FairShare group, often as an attempt to implement a priority based queuing system, is discouraged.

Set FairShare Weights Via the Web Interface

Figure 8:

Accelerator Admins can change the FairShare group weights from the browser. The weights can either be changed by using the

+/- buttons on the right, which changes the weight by 10%, or the weight can simply be entered under the weight column. As with

many configurations in Accelerator, the changing of weights is only permitted by Accelerator Admins.

You can also use vovfsgroup to change the FairShare weights at any time.

Multiple Tokens in FairShare

In FairShare, the number of license tokens for each job is counted. Sometimes there are jobs that use four tokens of a license and

other jobs that use only one token of a license, each to access different specific tool functionalities. For the best of use of resources

and scheduling, it may be undesirable to account for both types of jobs in the same way. To specify how selected jobs contribute to

FairShare, use the field FSTOKENS in the nc run ... submission string.

The FSTOKENS field can be set on each job of which the status is neither Failed nor Done. The default value is 1. Typical values

are small integers, such as 2, 3, 4 or 8. The maximum value is 50000. The minimum value is 0, which indicates that the job does

not contribute to the FairShare value.

FSTOKENS can be applied for jobs in which the status is not Failed or Done.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.128

To set FSTOKENS in Accelerator use the option -fstokens in nc run. An example using a "MMSIM" license follows:

% nc run -fstokens 4 -r License:MMSIM#4 -- my_job_script_that_uses_4_tokens

The above will result in an decreased impact when FairShare is calculated for the job. This strategy can be used for multi-token

tools to help them attain a more favorable FairShare positioning.

Note: Setting this up for a job type is easily accomplished by implementing a job class that includes the appropriate

token argument to -fstokens. See Jobclasses for details.

FairShare Recommendations

Initially: Do Nothing

The first recommendation is to do nothing. Start with the simplest FairShare tree, where every job belongs to the fsgroup /time/

users.USERNAME where USERNAME is of course the owner of the job. This means that CPU cycles are allocated to all users in

equal parts.

Later: Design a FairShare Tree for Both Applications and Projects

Over time, as you acquire experience in FairShare, you may want to design a more complex FairShare tree, one that accounts for

allocations of expensive licenses and for all the projects going on in your organization.

Our recommendation is to organize your FairShare tree first by application, then by project, so that a typical name for a FairShare

group could be /class/spice/ChipA.joe

Example of design of a production fairshare tree.
This file could be vnc.swd/fairshare/main_fs_tree.tcl

set listOfApps "spice dc pt"
set listOfProjects "X3 X5 X8 RT SW chameleon"
FSGROUP / -w 0 -t 1h {
 foreach app $listOfApps {
 FSGROUP $app -w 100 -t 1h {
 foreach proj $listOfProjects {
 FSGROUP $proj -w 100 -t 1h {}
 }
 FSGROUP other -w 10 {} ;# All jobs not in a project
 FSGROUP default -w 1 {} ;# In case a new projects appear, give a
 small weight
 }
 }
 FSGROUP extra -w 10 -t 1h {} ;# All jobs not in an app.
 FSGROUP default -w 1 {} ;# In case new apps appear, give them a small
 weight.
}

To load this FairShare tree, use:

% vovfsgroup delete -unused
% vovfsgroup loadconfig .../main_fs_tree.tcl

This will add the tree in addition to all currently used groups in your system.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.129

The users would then submit jobs using the appropriate fsgroup, for example with:

% nc run -g /app/spice/chameleon -r License:spice -- myspice -i ckt.spi

To simplify the submission, we also recommend using Jobclasses, where both resources and FairShare groups can be defined

together, as in the following example:

This could be file vnc.swd/jobclass/spice.tcl
set VOV_JOB_DESC(resources) "License:spice RAM/200"
set VOV_JOB_DESC(group) "/app/spice/$env(PROJECT)"

With the jobclass, the submission is greatly simplified:

% nc run -C spice myspice -i ckt.spi

At some point, it may happen that one project enters a critical phase, e.g. the tapeout of a chip, so it may benefit from a larger share

of resources. This can be achieved by changing the weights of all fsgroups for that project, for example with a script like this which

sets all fsgroups for project "chameleon" to 300:

Assuming C-shell syntax
foreach g (`vovselect fullname from fairshare -where name==chameleon`)
 vovfsgroup modify $g weight 300
end

Disable FairShare

Reducing the FairShare window or completely disabling FairShare may improve the performance of the scheduler.

Note: This configuration is only effective when the workload is very large, such as several million jobs per day.

FairShare can be disabled on an individual node in the FairShare tree by setting the time window size to zero. When FairShare is

disabled, jobs that belong to the disabled branches of the FairShare tree are scheduled using a round-robin scheduler that considers

the oldest buckets first.

For example, to disable FairShare on the subtree rooted at /class, use the following command:

% vovfsgroup modrec /class window 0

This can be done at any time and has immediate effect, which is that all jobs in any subgroup of /class will be considered for

scheduling based on the time a job has been waiting in the queue.

Re-enable FairShare

To re-enable FairShare on a subtree of the FairShare tree, set the FairShare window to something different from zero. Example:

% vovfsgroup modrec /class window 2h
% nc cmd vovproject sanity

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.130

Note: As of release 2015.09, all FSGROUP properties are persistent between Accelerator restarts. If you are using a

release prior to that, the above command line changes will be temporary until the next restart.

FairShare Parameters

The FairShare system is controlled by the following parameters:

fairshare.allowAdminBypass Allow ADMIN to bypass ACL when modifying a FairShare group. Default is 0. Set

this to 1 if you want to allow any ADMIN to change any FairShare setting.

fairshare.default.weight Default weight assigned to new FairShare groups, typically set to 100. Can

also be controlled by a sibling group called 'default'. In other words, if a new

FairShare group is created, its weight will be the same as that of a sibling

group with name "default", else it will be determined by this parameter

fairshare.default.weight.

fairshare.default.window Default window assigned to new FairShare groups. Normally the groups

inherit the window from their parent of from a sibling group called 'default' (

fairshare.default.weight)

fairshare.relative Controls how FairShare ranks are computed. In the following formulas, assume:

• t = target allocation

• h = historic allocation in window

• r = running allocation n

• d = distance from equilibrium, ultimately used to compute ranking of

FairShare groups.

The legal values for this parameter are:

• If set to 0, compute FairShare distance by a simple difference between actual

and target d=(r-t)+(h-t)

• If set to 1, compute FairShare distance relative to the FairShare target

d=((r-t)+(h-t))/t (of course assuming that the target t>0).

• If set to 2, compute FairShare as a weighted sum of d = (r-t) + #(h-t), where #

is the parameter fairshare.relative_alpha explained below

fairshare.relative_alpha Weight of historic distance relative to running distance in computing value for

FairShare ranking, but only when fairshare.relative is set to 2. The

default value for this is 10, meaning that history counts 10 times more than current

allocation.

fairshare.updatePeriod Update FairShare stats no more frequently than specified period. The default is 0,

meaning a period of 0 seconds which means constant update, i.e. that FairShare

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.131

stats are updated as frequently as desired. A value of 1 or 2 seconds may improve

server responsiveness.

fairshareMode Obsolete, was used to turn FairShare on and off.

Control FairShare Tree Access

By default, the FairShare tree is extendable; new nodes can be added without default user permissions. This enables users to add

their own nodes, including those implicitly added at submission time by inclusion in the command line.

For example, here is a minimal FairShare tree:

mac12 vncaux@mac12.local DEFAULT vnc/vncaux.swd > vovfsgroup show
ID GROUP OWNER WEIGHT WINDOW
 RUNNING QUEUED
000000016 / (server) 0 1h00m
 0 0
000001006 /system taylor 100 1m00s
 0 0
000001004 /time taylor 100 1h00m
 0 0
000001005 /time/users taylor 10 2h00m
 0 0
000108049 /time/users.pistol pistol 100 2h00m
 0 0

When users submit jobs, the jobs are added to the /time/users branch by default. In this case, the user pistol has recently

submitted a job and a node was created for him, and his job was attached to it. This model allows users to run jobs without special

settings, which requires a minimal amount of setup work for the administrator. By default, each job will get an equal share of the /

time/users node.

However, a user can also run a job outside the /time/users node by using the -g option to the nc run command. In the following

example, a job is running on the /garterinn node:

[localhost:~] falstaff% nc run -g /garterinn sleep 500
Fairshare= /garterinn.falstaff
Resources= macosx
Env = SNAPSHOT(vnc_logs/snapshots/falstaff/macosx/env55747.env)
Command = vw sleep 500
Logfile = vnc_logs/20131015/161821.9853
JobURL = http://mac12:6349/cgi/node.cgi?id=000108058
JobId = 000108058

Looking at the FairShare tree summary:

mac12 vncaux@mac12.local DEFAULT vnc/vncaux.swd > vovfsgroup show
ID GROUP OWNER WEIGHT WINDOW
 RUNNING QUEUED
000000016 / (server) 0 1h00m
 1 0
000108056 /garterinn falstaff 100 1h00m
 1 0
000108057 /garterinn.falstaff falstaff 100 1h00m
 1 0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.132

000001006 /system taylor 100 1m00s
 0 0
000001004 /time taylor 100 1h00m
 0 0
000001005 /time/users taylor 10 2h00m
 0 0

The above data shows that /garterinn has been added, which allows the job to run. Additionally, the weight for this node is

set to the default value of 100. The total resources at the top level is now divided in 3 (garterinn, system, time) each with

equal weights of 100. With this setup, falstaff has a FairShare allocation of 1/3rd of the compute resources. In other words,

with unrestricted access, arbitrary users can easily tie up an inordinate proportion of the total resources.

Note: For this reason, it is often desirable to restrict access to the top level.

The example below shows the default permissions for the top level:

mac12 vncaux@mac12.local DEFAULT vnc/vncaux.swd > vovfsgroup show /
Id: 000000016
FullName: /
Owner: (server)
 ACL 1: OWNER "" ATTACH DETACH EDIT VIEW FORGET DELEGATE EXISTS
 ACL 2: ADMIN "" ATTACH DETACH EDIT VIEW FORGET
 ACL 3: EVERYBODY "" ATTACH DETACH VIEW

The key value is the third permission listed, ACL 3. ATTACH indicates that EVERYBODY can attach node to this root location.

When a job runs, it needs ATTACH permission. It would be desirable to reduce the EVERYBODY ACL to VIEW. However, there is

no direct mechanism to selectively remove ACLs at this level of granularity. Instead, the solution is to go back to a zero ACLs and

then add more.

Zero ACL

Changing to a zero ACL state on the root node '/' is problematic as that would remove your own permissions to edit the ACL. The

workaround is to get the SERVER role. SERVER is a super user mode that ignores the restrictions implied by the ACLs. As well as

resolving the issue of zero ACLs on the root node, the SERVER role also allows correcting other lock-out scenarios that may occur

due to administration errors.

Important: In ACL terms, the SERVER role is the highest level of access, and is valuable as a last resort back door

access.

To access the SERVER role requires an active login shell on the same host as the Accelerator server process (such as ssh into

the Accelerator server host). Additionally, Accelerator must be accessed through the loopback interface 127.0.0.1. To do so, set

VOV_HOST_NAME=localhost.

Once in the SERVER role, the root '/' node permissions can be fixed. This is done with three actions:

1. Set the OWNER

2. Set the ADMIN

3. Set EVERYBODY ACLs

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.133

Note: There is a side effect of working on the top level node '/'. The ACL change is applied recursively to all nodes,

which will need to be fixed. Here is a transcript of the top level change:

[cadmgr@rtda01 ~]$ vovfsgroup acl / SET OWNER ALL
[cadmgr@rtda01 ~]$ vovfsgroup show /
Id: 000000016
FullName: /
Owner: (server)
 ACL 1: OWNER "" ATTACH DETACH EDIT VIEW FORGET DELEGATE
 EXISTS
[cadmgr@rtda01 ~]$ vovfsgroup acl / APPEND ADMIN ALL
[cadmgr@rtda01 ~]$ vovfsgroup show /
Id: 000000016
FullName: /
Owner: (server)
 ACL 1: OWNER "" ATTACH DETACH EDIT VIEW FORGET DELEGATE
 EXISTS
 ACL 2: ADMIN "" ATTACH DETACH EDIT VIEW FORGET DELEGATE
 EXISTS
[cadmgr@rtda01 ~]$ vovfsgroup acl / APPEND EVERYBODY VIEW
[cadmgr@rtda01 ~]$ vovfsgroup show /
Id: 000000016
FullName: /
Owner: (server)
 ACL 1: OWNER "" ATTACH DETACH EDIT VIEW FORGET DELEGATE
 EXISTS
 ACL 2: ADMIN "" ATTACH DETACH EDIT VIEW FORGET DELEGATE
 EXISTS
 ACL 3: EVERYBODY "" VIEW

With the above setup, the user falstaff will be unable to move to the boarshead. Following is the message to expect when a user

tries to submit a job to a nonexistent FairShare node, and the parent's node has been locked down.

[localhost:~] falstaff% nc run -g /boarshead sleep 500
vnc 10/17/2013 12:51:38: Error: Problem joining fairshare group /boarshead
 Please check with administrator to see that you have
 permissions to join the group.
vnc 10/17/2013 12:51:38: FATAL ERROR: Failed to submit batch job.

Since actions on / are currently recursive, it may be necessary to relax the restriction on the default group /time/users:

rtda01 vnc@rtda01 [BASE] 854 > vovfsgroup acl /time/users SET EVERYBODY "ATTACH VIEW"

Clean Up After an Escape

While the unpermitted attach was prevented (as described above), deleting the offending node is problematic. A node can only

be deleted when it is empty; all jobs, including valid jobs, must be forgotten. When this is not possible, the alternative action is to

reduce the weight of the offending node as shown below:

mac12 vncaux@mac12.local DEFAULT vnc/vncaux.swd > vovfsgroup modrec /garterinn weight
 1
mac12 vncaux@mac12.local DEFAULT vnc/vncaux.swd > vovfsgroup show
ID GROUP OWNER WEIGHT WINDOW
 RUNNING QUEUED
000000016 / (server) 0 1h00m
 0 0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.134

000108056 /garterinn falstaff 1 1h00m
 0 0
000108057 /garterinn.falstaff falstaff 1 1h00m
 0 0
000001006 /system taylor 100 1m00s
 0 0
000001004 /time taylor 100 1h00m
 0 0
000001005 /time/users taylor 10 2h00m
 0 0
000128088 /time/users.taylor taylor 100 2h00m
 0 0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.135

Jobclasses

Jobclasses provide the following advantages:

• Simplifying the command line for job submission, which can prevent errors and omissions.

• Emulate the concept of queues, which is similar to the processes of other batch processing systems. This queue emulation

enables additional behaviors such as:

Automatic revocation of resources that have been grabbed by jobs in the jobclass but are not used

Automatic warning and termination of jobs that are stuck: jobs that have been dispatched to a vovtasker but appear to be

using no CPU time

A jobclass represents a collection of nc run options that are needed to run a type of jobs, such as VCS regression jobs.

Membership in a jobclass can be used to differentiate between jobs in preemption: preempt jobs in a regression jobclass to free up

resources for jobs in an interactive jobclass.

If more than one -C option is given, the jobclasses are processed left-to-right as the command line is parsed. This method requires

great care and planning.

Create Jobclasses

The administrator of Accelerator can define jobclasses using one of the following methods:

• Logged in as ADMIN, click the Job classes link in the Workload section of the Accelerator main page. This page displays

all of the available jobclasses, and allows creating and editing jobclasses, and allows the administrator to designate a default

jobclass.

• Directly add Tcl syntax files in the directory jobclass under the server working directory, which is typically

$VOVDIR/../../vnc/vnc.swd/jobclass.

Each file in the jobclass directory manipulates the submission parameters defined in the Tcl array VOV_JOB_DESC so as to

define a jobclass. See the following table for the meanings of the items in this data structure. The variable classDescription

holds a string used for documentation, i.e. a one-line summary of the jobclass. The variable classEditable holds a boolean

value that controls whether the jobclass can be edited using the jobclass web UI page.

An optional procedure initJobClass can be defined to do any initializations needed for the jobclass to perform correctly.

Often, this is used to create any Limit: resources that may be used by the jobclass.

The files in the jobclass directory are parsed by vovresourced when it starts, and any initJobClass procedures are

evaluated once.

The jobclass definition files are located using a search path.

The built-in search path is computed by a procedure VncJobClassSearchPath, and is shown in the table below.

This procedure adds any directories named by the environment variable VOV_JOBCLASS_DIRS to the beginning of the path,

analogous to VOV_ENV_DIR.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.136

This procedure is defined in $VOVDIR/tcl/vtcl/vovutils.tcl. You may change the search path for jobclass files by

including a modified definition in vnc.swd/resources.tcl, and also in vnc_policy.tcl, if used. See example.

Search path for jobclass definitions:

#directories named by VOV_JOBCLASS_DIRS
<project>.swd/jobclass
$VOVDIR/local/jobclass
$VOVDIR/etc/jobclass

Use Additional Jobclass Directories

If you have an extensive Accelerator setup, you may wish to manage jobclasses in a more-centralized way than placing their

definitions into each vncNNN.swd/jobclass directory. The following example shows one way to accomplish this.

For this example, we want to implement a system where jobclasses are searched for first in the specific Accelerator queue, then in

a site-specific directory, and finally in a global area.

We implement this by using the regular queue-specific directory, and two symlinks called jobclass_site, and

jobclass_global under vncNNN.swd that resolve to the site-specific and global directories for jobclasses. You will need to

arrange for the jobclass directories to be available and up to date at each site.

Additionally, some generic code is shown that may be dropped into vncNNN.swd to automatically compute the value of the

VOV_JOBCLASS_DIRS environment variable.

Code to compute VOV_JOBCLASS_DIRS:

This is file jcdirs.tcl
NOTE: vovwait4server runs in vtclsh, and sources setup.tcl
so vovGetProjectFileName may not be used here

If env-var VNCSWD is set, use its value, it is much simpler
if { [info exists env(VNCSWD)] && [file isdirectory $env(VNCSWD)] } {
 set cfgdir [file join $env(VNCSWD) $env(VOV_PROJECT_NAME).swd]
} else {
 # compute path to the .swd directory
 # setup.tcl needs to be source-able in vtclsh, must use exec
 if { [catch {set sdp [exec vovsh -x {puts [vtk_server_dir -physical]}]} em] } {
 VovError "determining config directory -- $em"
 } else {
 set cfgdir [file join $sdp "$env(VOV_PROJECT_NAME).swd"]
 }
}

set jcdirs {}
foreach dn {jobclass jobclass_site jobclass_global} {
 set tdir [file join $cfgdir $dn]
 if { [file isdirectory $tdir] } {
 lappend jcdirs $tdir
 VovMessage "added jobclass dir '$tdir'" 3
 } else {
 VovMessage "non-existing jobclass dir '$tdir'" 3
 }
}
if { $jcdirs != {} } {
 setenv VOV_JOBCLASS_DIRS [join $jcdirs ":"]

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.137

}

The VOV_JOBCLASS_DIRS need to be set in all Accelerator-related processes. Sourcing the above script from vncNNN.swd/

setup.tcl will arrange this for vovserver and the vovtaskers, which also inherit their environment from a shell that has sourced

setup.tcl. To have it set in the clients, source it from vnc_policy.tcl, which is sourced by the top-level vnc command.

The following example places the drop-in code in vncNNN.swd/scripts/:

This is file jcdirs.tcl
source the drop-in code for VncJobClassSearchPath{}
compute the value of VOV_JOBCLASS_DIRS
if { [info exists env(VNCSWD)] } {
 set jcsetup $env(VNCSWD)/$env(VOV_PROJECT_NAME).swd/scripts/jcdirs.tcl
}
if { [file readable $jcsetup] } {
 if { [catch {source $jcsetup} smsg] } {
 VovError "jcsetup error -- $smsg"
 } else {
 VovMessage "jcsetup OK" 3
 }
} else {
 VovError "jcsetup not found -- $jcsetup"
}

Define a Default Jobclass

When defined, a default jobclass is evaluated for each job as it is submitted before any other nc run options are parsed. The

default jobclass should be simple and limited to actions such as supplying basic values for RAM/ and CORES/.

When a default jobclass is in effect, the values it establishes may be changed if a jobclass is later named by the -C option of the nc

run command.

There are two methods to designate a jobclass as the default:

• Via the Jobclass page web page.

• Setting a property from the CLI.

The default jobclass is determined by the value of the property NC_DEFAULT_JOBCLASS attached to the trace (VovId=1). You

can use the utility vovprop to set this property. In the following example, normal is set as the default jobclass.

% nc cmd vovprop SET -text 1 "NC_DEFAULT_JOBCLASS" "normal"

View the default jobclass from the CLI by:

% nc cmd vovprop GET 1 NC_DEFAULT_JOBCLASS

Jobclass Definitions Examples

Example of job class "SHORT"

This is file short.tcl
set classDescription "Jobs taking less than 30s"
set classEditable true; # Allow editing via web UI
set VOV_JOB_DESC(xdur) 30

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.138

set VOV_JOB_DESC(autokill) 1
set VOV_JOB_DESC(priority,sched) 8
set VOV_JOB_DESC(env) "BASE+D(VOV_LIMIT_cputime=30)"

proc initJobClass {} {}

Example of jobclass "INTERACTIVE"

This is file interactive.tcl
set classDescription "Interactive Jobs"
set classEditable false; # Disallow editing via web UI

set VOV_JOB_DESC(resources) ""

Make the environment unique for each interactive job,
so that multiple submissions of the same command in the same
directory will result in multiple jobs
set VOV_JOB_DESC(env) "BASE+D(uniquify=[clock seconds])"

set VOV_JOB_DESC(priority,sched) 9
set VOV_JOB_DESC(interactive,useXdisplay) 1

We want Crtl-C and similar commands to be handled by the remote host.
set VOV_JOB_DESC(interactive,flag) "tty_remote"

We do not want any wrapper for interactive jobs,
to allow stdout and stdin to go directly to the TTY.
set VOV_JOB_DESC(wrapper) ""

Reconcile Unused Resources

Some tools have a complex behavior for acquiring and releasing licenses. For example, some tools may acquire a license for a

short term and then release that license. Other tools may or may not acquire a specific license.

In some cases, if it is uncertain if licenses are needed, the best method is to request the licenses, and then reconcile (release) the

licenses that are not used.

This method can be accomplished with jobclasses and the procedure vtk_jobclass_set_revocation_delay

$JOBCLASS_NAME $DELAY_SPEC, which is typically called from within the initJobClass procedure in the jobclass

definition.

Global Setting for Reconciliation

If jobclasses are not being used, or setting a global default value for automatic reconciliation is desired, set the variable

RESD(revokeDelay) in the vovreconciled/config.tcl file.

For example:

set RESD(revokeDelay) 4m

Find and Remove "Stuck Jobs" using a Jobclass

To find stuck jobs, the jobs that are running but are burning no CPU longer than the timing threshold set by -maxNoCpuTime. A

notification email is sent when job stuck time exceeds the threshold.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.139

If the jobclass has a property IDLE_KILL_DELAY set, the job will be killed when the stuck time exceeds this property setting. An

email will be sent to the owner at the time of killing the job.

To define the behavior of Accelerator with stuck jobs, use the procedure vtk_jobclass_set_idle_delays. This procedure

is called inside the initJobClass procedure. This procedure requires three arguments as shown below:

vtk_jobclass_set_idle_delays $JOBCLASS_NAME $WARN_TIMESPEC $KILL_TIMESPEC

Define Jobclasses

This VOV_JOB_DESC data structure is an associative array that describes the characteristics of a job. The array has a number of

slots that hold the values describing the job. The following table shows the array slot fields.

Field in Array Description

autokill Set the autokill flag (option -kill)

check,directory Set it to 0 to disable checking of canonicalization of current directory (option -D)

env Environment of the job (option -e). Set this to "" or to DEFAULT to force the use

of an environment snapshot.

force Force the job to be rescheduled (option -F)

group Group the job belongs to (option -g)

group,final Group the job belongs to including the user subgroup (option -G)

inputs List of input files (dependencies) (option -i)

interactive,flag Used for interactive jobs, with values tty_remote (option -Ir) or tty_local

(option -Il)

interactive, useXdisplay Set if the job requires an X display (option -Ix)

logfile Name of the log file (option -l)

mailuser Specification of who gets the e-mail notification (option -M)

osgroup The UNIX group this job. This field is read-only and cannot be changed (see also

user)

outputs List of output files (option -o)

preemptable A suggestion to determine if the job is preemptable

priority, default Default priority (NOT USED)

priority, exec Execution priority

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.140

Field in Array Description

priority, sched Scheduling priority

proplist Properties to be added to the job (option -P)

resources The resources of the job (option -r)

rundir The running directory for the job (normally)

schedule, date NOT SUPPORTED YET

setName The set to which the job belongs (option -set)

user The user for this job. This field is read-only and cannot be changed (see also

osgroup)

wait Boolean: set it to 1 to wait for the job to complete (option -w)

wait,options When waiting, these options are passed to the nc wait command. For example,

set it to -l to view the log file

wrapper Wrapper used for the job (option -wrapper)

xdur Expected duration of the job (option -X)

The following is an example of the populated VOV_JOB_DESC array.

VOV_JOB_DESC(autoforget) = 0
VOV_JOB_DESC(autokill) = 1
VOV_JOB_DESC(check,directory) = 1
VOV_JOB_DESC(env) = BASE+RTSIM
VOV_JOB_DESC(force) = 0
VOV_JOB_DESC(group) = users
VOV_JOB_DESC(inputs) =
VOV_JOB_DESC(interactive,flag) = none
VOV_JOB_DESC(interactive,useXdisplay) = 0
VOV_JOB_DESC(logfile) = vnc_logs/20050920/131409.25563
VOV_JOB_DESC(mailuser) =
VOV_JOB_DESC(osgroup) = guests
VOV_JOB_DESC(outputs) =
VOV_JOB_DESC(priority,default) = 4
VOV_JOB_DESC(priority,exec) = 4
VOV_JOB_DESC(priority,sched) = 8
VOV_JOB_DESC(proplist) =
VOV_JOB_DESC(resources) = linux
VOV_JOB_DESC(rundir) = .
VOV_JOB_DESC(schedule,date) = 0
VOV_JOB_DESC(setName) =
VOV_JOB_DESC(user) = mary
VOV_JOB_DESC(wait) = 0
VOV_JOB_DESC(wait,options) =
VOV_JOB_DESC(wrapper) = vw
VOV_JOB_DESC(xdur) = 30

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.141

Use Jobclasses

A jobclass allows multiple job parameters to be set in a single object that can be requested at submission time.

For example, there may be a job that requires 3 different licenses, 4GB of RAM, and 4 cores. Instead of requesting all 3 licenses, a

jobclass can be created that is called with the -C submission option to the nc run command. Jobclasses are often used to emulate

queues that are found in other batch processing systems.

Note: A jobclass can only be created by an Accelerator administrator.

Find Jobclasses

To list the available classes from the command line, use the jobclass subcommand of the nc command.

For example:

% nc jobclass
 1 short
 2 interactive

The jobclass subcommand accepts the repeatable option -1. The first option includes the description, and the second option

shows the values to which VOV_JOB_DESC slots will be set.

In addition, Accelerator provides the Jobclass page. This page shows a table of the jobclass, with links to the definitions of each

class, and to the sets containing the jobs in that class. It also shows the pass/fail status as a bar graph.

nc jobclass

List classes defined for job submission

vnc: Usage Message
 NC JOBCLASS:
 List classes defined for job submission
 USAGE:
 % nc jobclass [OPTIONS]
 OPTIONS:
 -h -- This help
 -l -- Long format (with description)
 -ll -- Longer format.
 -v -- Increase verbosity.
 EXAMPLES:
 % nc jobclass
 % nc jobclass -l
 % nc jobclass -ll

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.142

Submit Jobs Using Jobclasses

To submit a job in a given class, use the option -C of nc run.

% nc run -C short sleep 10

Jobs in a class are automatically added to a set named after the class, for example Class:interactive.

The options to nc run are parsed sequentially, so it is possible to do a command line override of the parameters set in the

jobclass. For example, the following commands behave differently:

% nc run -C verilog -e DEFAULT -- run_sim chip
% nc run -e DEFAULT -C verilog -- run_sim chip

In the first invocation, the option -e overrides the specifications for the environment to be used for the job. In the second

invocation, the environment is determined by the definition of the verilog jobclass.

Resources That Change Over Time

TIMEVAR should be defined in the $SWD/config/timevars.tcl file.

The procedure TIMEVAR takes two arguments: a label and a list. The list is similar to a switch context, an even number of

elements. In each pair, the first element is a time condition and the second element is an executable script.

The time condition can be one of the following:

• HH:MM-HH:MM

• Sun, Mon, Tue, Wed, Thu, Fri or Sat

The example below utilizes TIMEVAR to control the level of the hsim simulation resource. Between 2:00am and 6:00am on

weekdays, the available resources are restricted. In this example, the restriction is an allowance that allows nightly backups to

finish. Any other time, the number of allowed resources is doubled.

Fragment of the definition of the jobclass 'hsim'
proc initJobClass {} {
 TIMEVAR hsim {
 Sat,Sun {
 vtk_resourcemap_set_limit Limit:u_hsim_@USER@ 20
 }
 02:00-06:00 {
 vtk_resourcemap_set_limit Limit:u_hsim_@USER@ 10
 }
 default {
 vtk_resourcemap_set_limit Limit:u_hsim_@USER@ 20
 }
 }
}

A new liveness task reads the timevars.tcl file and processes the TIMEVAR procedure. The task script is

live_execute_timevars.tcl, and it is automatically enabled when you start Accelerator on version 2021.2.0. Other

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.143

products can enable this task, if desired, by manually copying the task script from $VOVDIR/etc/liveness into $SWD/

tasks.

Jobclass Examples

Short Jobs

In this example, a jobclass is set up for short jobs. All jobs have the strict CPU limit of 10 seconds.

set classDescription "Jobs taking less than 10 seconds"
set VOV_JOB_DESC(env) "BASE+D(VOV_LIMIT_cputime=10)"
set VOV_JOB_DESC(priority,sched) 8
set VOV_JOB_DESC(resources) "unix"
set VOV_JOB_DESC(xdur) 10

proc initJobClass {} {
 # No actions needed to initialize this job class.
}

Night Jobs

In this example, a jobclass is set up for jobs to run at night or on weekends. For each users, the limit is set for 10 jobs per night.

set classDescription "Jobs to run at night or during weekends"
set VOV_JOB_DESC(env) "SNAPSHOT"
set VOV_JOB_DESC(priority,sched) 2
set VOV_JOB_DESC(resources) "Queue:night Limit:night_@USER@"

proc initJobClass {} {
 vtk_resourcemap_set Limit:night_@USER@ 10

 TIMEVAR night {
 Sat,Sun {
 vtk_resourcemap_set Queue:night unlimited
 }
 20:00-24:00,00:00-07:30 {
 vtk_resourcemap_set Queue:night unlimited
 }
 default {
 vtk_resourcemap_set Queue:night 0
 }
 }
}

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.144

Preemption
Preemption is the process of reserving or revoking resources from other jobs in order to help "important jobs" finish quickly.

It is normally triggered by queued jobs, but can also be triggered by a change in a resource or by a manual request from the user.

Preemption may require killing or suspending running jobs, but it can also be "gentle," only generating events or reserve resources

such as taskers or licenses.

The queued job that triggers preemption is called the preempting job, while the job or jobs from which the resources are revoked

are called the preempted jobs.

Preemption can be used with licenses that are constantly used by background regression jobs. This way, engineers who need

licenses for interactive jobs do not have to wait for a regression job to finish.

Preemption Directory and Files

Summary information for preemption:

Working directory vnc.swd/vovpreemptd

Config file vnc.swd/vovpreemptd/config.tcl

Info file vnc.swd/vovpreemptd/info.tcl

Aux directory vnc.swd/preemption

Monitoring Preemption Behavior

To monitor the behavior of the preemption mechanism, view the Preemption Status page.

You may also find it helpful to run separate Accelerator GUIs, one for the set of preemptable jobs, one for the set of preempting

jobs, etc. This setup enables observing jobs that enter the system, jobs that are preempted, and other jobs that are running with the

new resources.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.145

Set Up the Optional Preemption Ruler Compiler Daemon

The Accelerator preemption mechanism is activated by default. If the preemption rules are stored within the config.tcl file,

then vovpreemptd will need to be started in order to read and monitor the preemption rules. Follow these steps to enable and

configure the preemption daemon.

1. Create the directories preemption and vovpreemptd inside the server configuration directory (.swd). The

vovpreemptd directory is the run directory for the preemption daemon.

2. Open up permissions for preemption, because auxiliary jobs will be run in this directory.

% vovproject enable vnc
% cd `vovserverdir -p .`
% mkdir vovpreemptd
% mkdir preemption
% chmod a+rwx preemption

3. Copy the configuration file template, $VOVDIR/etc/config/vovpreemptd/config.tcl into the newly-created

preemption directory.

4. Edit the file to define the preemption rules to be used, using the examples below as a guide.

5. Start the vovpreemptd daemon process using nc cmd vovdaemonmgr start vovpreemptd, or manually via:

% vovproject enable vnc
% cd `vovserverdir -p vovpreemptd`
% vovpreemptd >& vovpreemptd.log &

Tip: Set up an autostart script to automatically start vovpreemptd when the vovserver is started.

% cd `vovserverdir -p autostart`
% cp $VOVDIR/etc/autostart/vovpreemptd.csh .

There are two procedures that support the preemption rules, which can be used in vovpreemptd's config.tcl file.

• VovPreemptRule defines which jobs can preempt other jobs.

• VovPreemptMethod defines the methods used to revoke specific resources.

File: $VOVDIR/etc/config/vovpreemptd/config.tcl

#
Example of a config.tcl file for vovpreemptd.
#

#
Set to 0 (zero) if you do not have the old fashion policies.
Obsolete in 2013.09
#
set vovpreempt(doPolicies) 0
set vovpreempt(maxPreemptPerJob) 6

#
The max time we wait for a jobcontrol action to have effect.
On slow networks (e.g. slow LDAP), you may want to increase
this to 20 or more seconds.
Obsolete in 2013.09
#

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.146

set vovpreempt(timeout,safejobcontrol) 8

#
This rule fires when there are jobs in the
queue that have priority >= 8 and that have been
waiting in the queue for more than 1 minute.
The preemptable jobs are those in the same jobclass
as the preemting job and have priority less than 4.
#
VovPreemptRule -rulename GenericPriorityWithinClass \
 -preempting "priority>=8" -bucketage 1m \
 -preemptable "jobclass==@JOBCLASS@ priority<4" \
 -method AUTOMATIC

#
Example of an ownership contract (Obsolete)
#
VovPreemptDefineOwnershipContract -contractname "SampleOwnership" \
 -ownertable {
 /sample/urgent 0 40
 /sample/normal 0 20
 /sample/regression 0 10
 }

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.147

Preemption Rules

Preemption is controlled by persistent objects called preemption rules, which collectively define:

• The resources that can be preempted

• Conditions under which preemption should be triggered

• Methods used to revoke those resources

There are two ways to manage preemption rules:

1. Create and edit the rules with Accelerator's web interface. The rules are stored within the vovserver and saved to disk from

time to time. The rules are automatically loaded when Accelerator is restarted.

2. Define the rules in the Tcl syntax configuration file at vnc.swd/vovpreemptd/config.tcl. When the

vovpreemptd daemon starts, it reads the config.tcl file containing the preemption rule information. The daemon

monitors this file and reads it again upon changes. The daemon also creates the info.tcl file which contains information

about the daemon and serves as a lock file to prevent two instances of the daemon from running. The daemon tracks

the modification time of the info.tcl file, and will exit if the time is changed, for example by another instance of

vovpreemptd.

Preemption rules define the conditions under which preemption is to be performed. These rules are either defined using the

VovPreemptRule command (defined below) and/or via Accelerator's web page interface.

The preemption rules are grouped into different pools.

• Only one rule in a pool fires for a given iteration; rules are considered in order (as defined with the -order <N> option). This

order of executing rules can use used to set up escalation. For example, if the current rule has not fired, then consider the next

rule. The first rule could be for a small set of preemptable jobs, the second rule could be for a much larger set of preemptable

jobs.

• Multiple pools allow different preemption strategies to be considered in parallel; one pool could be for Design Verification

jobs, while another pool could be for spice simulation jobs.

By default, all rules are added to the pool called mainpool. For multiple rules to fire during each preemption cycle, the rules must

be organized into different pools.

Every preemption rule must have a unique name within it's preemption pool specified with the -rulename NAME option.

Note: If the same name is used for multiple rules, the last definition prevails.

Preemption Conditions

The preemption condition can be defined in one of the following ways.

• There is a bucket of jobs that matches a given selection rule (use the -preempting and -bucketage options)

• There is a bucket of jobs that is waiting for at least one of a list of resources (use the -waitingfor and -bucketage options)

• There is a resource map that is controlled by MultiQueue and MultiQueue is currently requesting a drastic reduction (at

least 10% of the current "in-use" S count) in the amount allocated to this queue (see option -multiqueueres). The 10%

threshold can be controlled by means of the option -mqthresh.

The weakest types of preemption are the RESERVE_RESOURCES and RESERVE_TASKERS methods. RESERVE_RESOURCES

simply reserves some resources for the job at the top of the bucket and RESERVE_TASKERS simply reserves a tasker for the job at

the top of the bucket. It is the intended behaviour that while the resources or taskers are reserved, some other jobs will terminate

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.148

and enable the job at the top of the bucket to be dispatched. The reservation is controlled by the options -reservetime, -

reservefor, and -reservenum.

If the preemption type is not RESERVE_RESOURCES or RESERVE_TASKERS, then the system looks for jobs that can be

preempted, i.e., that can be either killed or suspended.

The strongest type of preemption is FREE_TASKERS which looks at ways to preempt all jobs currently running on a tasker.

Search for Preemptable Jobs

In this search for preemptable jobs:

• Exclude jobs that have the preemptable flag set to zero;

• Exclude jobs that are "system" jobs (like job resumers, zip jobs, ...)

• Exclude jobs that are labeled as top job, which are jobs that have caused a preemption in the past, because they were at the

top job in a preempting bucket. The jobs are left alone for at least 10 minutes, a time interval that can be controlled with the

option -donotdisturb <timeSpec>.

Searching for preemptable jobs is done in the following order:

• Look for jobs that can be killed, or more precisely withdrawn, and resubmitted, which are the jobs that satisfy the -

preemptable selection rule and that are younger than -killage. These jobs also must be useful in the sense that they

hold some resources requested by the preempting job. Preemption will not kill jobs that are not considered useful for the

preempting job.

• If no job can be killed, then look for jobs that satisfy the -preemptable selection rule and are also useful. If any such

job is found, preemption is attempted using the method specified by the -method option. Some jobs are resilient to some

preemption methods, so care is applied to validate that the method has been effective.

• If the preempted job is successfully suspended, then a resumer job associated with the suspended job is created. The resumer

job is an invocation of the script vovjobresumer. The resumer job inherits the grabbed resources from the suspended job,

meaning that it will be executed only when all resources grabbed from the suspended job become available. The resource list

of the resumer job can also be augmented with the option -resumeres.

@KEYWORD* Expansion

A few of the preemption options supported *KEYWORD* expansion against a preempting or preemtped job, following the

structure set by the option itself. The following rules apply:

-resumeres

The default for the resumer job resources (if -resumeres is NOT specified at all) is to use the preempted job's

STOLENRESOURCES field value. Anything entered into the -resumeres option will be added to this default. One

sensible example might be to add @SOLUTION@. This would cause the scheduler to require both the SW and HW

resources of the preempted job to be available in order for the resumer job to be dispatched to a tasker for execution.

-preemptable

The -preemptable option expects job metadata and expansion is performed using the preempting job instead of

the preempted job. The purpose of this option is to narrow down the list of jobs to be considered for preemption by

attempting to match it up to the preempting job in some way. Examples would be: "JOBCLASS==@JOBCLASS@",

"PRIORITY<@PRIORITY@", "FSGROUP==@FSGROUP@", and "JOBPROJ==@JOBPROJ@". Values for these fields

can also be pre-determined instead of using keyword expansion.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.149

-preempttaskerspec

This option expects tasker-specific information and is used for the FREE_TASKERS and RESERVE_TASKERS

rule types exclusively. This can be a predetermined notion of taskers/hosts, such as "TASKERLIST:taskerlist1",

"TASKERNAME=tasker1", and "HOST=host1", or a dynamically-populated notion of a tasker/host, such as

"TASKERNAME=@TASKERNAME@" or "HOST=@HOST@", which would be dynamically-populated from the

preempting job.

-reservefor

Used with the RESERVE_RESOURCES and RESERVE_TASKERS rule types exclusively. This option expects

reservation targets that will be used to reserve a resource/tasker upon firing of the preemption rule and expansion is

performed using the preempting job. Valid targets are: USER, GROUP, JOBCLASS, JOBPROJ, and OSGROUP.

Examples would be: "USER @USER@", "JOBCLASS @JOBCLASS@", and so on for the other allowed targets. Values

for these fields can also be pre-determined instead of using keyword expansion, such as "USER mary" and "JOBCLASS

jobclass1".

Preemption Rule Types

Preemption was previously defined as the process of revoking resources from a running job or reserving resources in order to

start a 'more urgent' queued job that needs specific resources that are not currently available. Consequently, rules are divided into

specific types based on how the resources are to be made available to such 'more urgent' job.

The rule type is specified via the -ruletype option in VovPreemptRule, and the default rule type is "GENERIC".

Some of options in VovPreemptRule are only meaningful for certain rule types. The following options apply to all rule types.

• -pool

• -rulename

• -ruletype

• -order

• -debug

• -enabled

• -fireonce

• -preempting

• -bucketage

• -waitingfor

RESERVE_TASKERS

The rules with type RESERVE_TASKERS are the simplest and least intrusive. Such rules when fired add a reservation of some

specified tasker(s) for some specified period of time. When jobs terminate on a reserved tasker, those open slots are reserved to the

jobs in the preempting bucket.

Note: A preempt rule is recomputed every few seconds; because of this, a short reserve time, such as 10 seconds or

so, is typically sufficient.

The options in VovPreemptRule required for specifying this rule type are:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.150

• -reservenum

• -reservetasker

• -reservefor

• -reservetime

• -preempttaskerspec

Since no jobs are preempted, options such as -method and -preemptable are not needed and will be ignored.

For example, the following rule reserves a number of taskers for one minute for any job in the hsim_critical jobclass:

#
Reserve some machines for one minute if there is a critical hsim job.
#
VovPreemptRule -rulename "ReserveOnlyHsimHw" \
 -preempting "jobclass==hsim_critical" \
 -ruletype RESERVE_TASKERS \
 -reservetasker "taskerlist:dram4" \
 -reservefor "JOBCLASS hsim_critical" \
 -reservenum 1 \
 -reservetime "1m"

RESERVE_RESOURCES

The preemption rules with type RESERVE_RESOURCES are similar to the RESERVE_TASKERS type; however, instead of

reserving taskers, these rules reserve resources for some specific reservation period. The resources reserved are the resources

that the preempting job is waiting for and will be reserved for the preempting job for the time specified via the -reservetime

option. Since no jobs are preempted, the options -method and -preemptable are ignored. The following is meaningful

options for RESERVE_RESOURCES rule type.

• -reservetime

In the following example, licenses are reserved for a high priority job of class LargeJob that has been waiting for more than 5

minutes.

VovPreemptRule \
 -pool "mainpool" \
 -rulename "ReserveLicenseLargeJobHighPriority" \
 -ruletype "RESERVE_RESOURCES" \
 -preempting "Priority>8 JOBCLASS=LargeJob" \
 -bucketage "5m" \
 -waitingfor "License:*" \
 -reservetime 2m

MULTIQUEUE

Options for this type are:

• -multiqueueres

• -mqthresh 0.25

• -donotdisturb

• -preemptable

• -killage

• -method

• -skipresumedjob

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.151

• -resumeres

• -numjobs

• -maxattempts

• -sortjobsby

In the following example, if the difference between the multiqueue allocation of License:hsim and actual is greater than 25%, then

the jobs using that resource are preempted using the automatic method.

VovPreemptRule -rulename "mqPreemptHsim" \
 -ruletype MULTIQUEUE \
 -multiqueueres License:hsim \
 -mqthresh 0.25 \
 -pool multiqueue \
 -method AUTOMATIC

GENERIC

The preemption type GENERIC is the most common. It is designed to find running jobs that can be preempted to provide for

resources in order to dispatch the preempting job.

Options for this type are:

• -donotdisturb

• -preemptable

• -killage

• -method

• -skipresumedjob

• -resumeres

• -numjobs

• -maxattempts

• -sortjobsby

For reference, it may be best to review the options for the vovpreemptrule command for more detailed explanation of the options

available for the command.

An example rule follows:

#
Preempting rule is activiated when any job with priority greater than
or equal to 8 AND is waiting for License:hsmi AND has been waiting
more than 2 minutes. It will preempt any job with priority less
than the preempting job AND is using resource License:hsmi.
The preemptable job will be killed and resubmitted if it has been
running less than 1 minute. Otherwise, it will be preempted via the
AUTOMATIC method.
#
VovPreemptRule -rulename "priority" \
 -ruletype GENERIC \
 -preempting "PRIORITY>=8" \
 -waitingfor "License:hsim" \
 -bucketage 2m \
 -preemptable "PRIORITY<@PRIORITY@" \
 -killage 1m \
 -method SIGTSTP

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.152

FAST_FAIRSHARE

FAST_FAIRSHARE preemption is intended to help speed up FairShare. The rule type is mainly used by the NC web page

preemption rule entry page to pre-enter the interesting FairShare related fields for the preempting and preemptable conditions in

the selection rules. Internally, it is processed exactly the same as the GENERIC rule type.

FREE_RESOURCES

The FREE_RESOURCES preemption rule type is similar in spirit to the FREE_TASKERS rule type in that it can preempt all jobs

using a specific set of reserved SW resources to allow the preempting job to run. This type of rule is intended to support hardware

emulation jobs and is only supported for the Hero product type. Use extra care when selecting appropriate parameters to ensure that

they are consistent with each other.

Options for this type are:

-method Specifies the method used to preempt the preemptable jobs.

-preemptable Specifies which jobs can be preempted by this rule.

-preempting Specifies which jobs can trigger a preemption.

-reservation Reservation id that specifies a collection of emulator leaf resources and a time

interval. This preemption rule will only trigger a preemption while the reservation

is active.

-reservetime When a preemption is triggered, a temporary reservation is made for the

preempting job that will prevent other jobs starting on the leaf resources for the

duration specified by the -reservetime option. As soon as the preempting job

starts the temporary reservation is removed.

The caller must ensure that the reservation target, -preempting and -preemptable parameters are consistent.

The preemption rule will trigger when the following are true:

1. The reservation is active (that is, within it's start/end time)

2. There is a job matching the -preempting selection rule waiting to run

3. The only jobs currently using the reserved resources are those matching the -preempting and -preeemptable

selection rule

4. All the jobs currently using the reserved resources that match the -preeemptable selection rule have the preemptable

flag set.

When the rule triggers, the specified method will be be used to perform the preemption. Note that the vovsh executable must be

excluded by the method when using hero_adapter; see the example below for an illustration.

Care should be taken to ensure the preemption signal cascade allows the emulation job to clean up before the hero_adapter

wrapper terminates. This may take several minutes, the -reservetime should account for the time taken to preempt the jobs.

Some EDA tools start child processes that are not terminated when the main tool process exits and this can result in unnecessary

CPU load. The tasker.childProcessCleanup configuration parameter be used to address this issue.

Here is an example rule:

This example assumes that some resources have been reserved for
jobs whose job project is one of interactiveProj, regressionProj or
otherProj, for example, using the command

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.153

nc -q hero cmd hero_reserve 'HERO:LEAF_myemulname_(0..8).(0..7)' <start time> <end
 time> -jobproj interactiveProj,regressionProj,otherProj
and the rule id is assumed to # be 00001234 below for the -reservation
parameter.

The intent is that if there is an interactive job waiting to run, and
the only jobs using the reserved resources are interactive & regression
jobs (whose preemptable flag is set) then all regression jobs using the
reserved resources will be preempted. If any other running job is using
the reserved resources, then a preemption will not be triggered.

VovPreemptRule \
 -pool "mainpool" \
 -rulename "emulatorFree" \
 -ruletype FREE_RESOURCES \
 -preempting "jobproj==interactiveProj" \
 -preemptable "jobproj==regressionProj" \
 -reservation 00001234 \
 -reservetime 60s \
 -method "0:*:TERM,,vovsh,0 4:WAIT:NOP 30:WITHDRAWN:RESUBMIT"

FREE_TASKERS

This is one of the strongest preemption types, because it can preempt all jobs on a tasker at the same time to make space for the

preempting job. This type preempts necessary number of taskers and jobs on those taskers enough to run jobs in the preempting

bucket. Also the number of taskers to get preempted does not exceed -preempttaskernum.

Options for this type are:

• -donotdisturb

• -preemptable

• -preempttaskerspec

• -preempttaskernum

• -method

• -skipresumedjob

• -resumeres

In the following example, high priority jobs in the jobclass "design" requiring 4 or more cores are allowed to preempt groups of

"regression" jobs. With a bucketage of 10 seconds, this rule fires about once every 10 seconds for each bucket.

VovPreemptRule \
 -pool "mainpool" \
 -rulename "taskerFree" \
 -ruletype "FREE_TASKERS" \
 -preempttaskerspec "TASKERLIST:default" \
 -waitingfor HW \
 -bucketage 10 \
 -preempting "JOBCLASS==design PRIORITY>=8 REQCORES>=4" \
 -preemptable "JOBCLASS==regression" \

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.154

Preemption Timing

-numjobs N

The number of jobs preempted concurrently is determined by the expression:

max(N, min(max(M/2, 1), 80))

Where:

N = numjobs value

M = number of jobs queueing in the bucket

-maxattempts N

The maximum number of attempts to match the rule for a preempting job.

Setting this to zero (0) disables the check, meaning that the rule can be matched an unlimited number of times which is

useful for example < for RESERVE_* type rules.

Default value is 10

The -maxattempts limits the number of times the preemption rule will be applied to the top job in a preempting bucket after no

preemptable targets are found.

The default preemption cycle length is 3s. Since this is short it may appear that more than one job is being preempted during a

given cycle. The preemptionPeriod parameter can be set in policy.tcl to a longer period to make the number of jobs

preempted more apparent. For example:

set config(preemptionPeriod) 10s

The number of jobs preempted per cycle is also limited to a fraction the size of the preempting bucket.

For example, consider a situation with the following characteristics:

• preemptionPeriod of 10s

• SIGTSTP method

• a central resource with -total 4

• 4 preemptable jobs that consume a single resource and 10 preempting jobs that consume 4 resources each

• -numjobs 1

• -maxattempts 3

The preemptable jobs are running before the preempting jobs are added. When the preempting job runs, it runs indefinitely (the

others were added just to have a sufficiently large preempting bucket to test -numjobs). Initially no preempting job is running

and the rule triggers for the top job 000001112 in the preempting bucket. Since it needs 4 resources, it runs 4 cycles preempting

one job at a time allowing job 000001112 to execute. Subsequently the rule fires for job 000001117 but there are no suitable

preemptable jobs available, so after the third cycle (-maxattempts 3) it will no longer apply this rule to job 000001117.

Rule triggers for job 000001112 in bucket 000001114 (jobproj==urgent_job_53244).
GENERIC PreemptRule Rule_53244 trying to preempt up to 1 jobs. 4 preemptable targets
 found
Rule triggers for job 000001112 in bucket 000001114 (jobproj==urgent_job_53244).
GENERIC PreemptRule Rule_53244 trying to preempt up to 1 jobs. 3 preemptable targets
 found
Rule triggers for job 000001112 in bucket 000001114 (jobproj==urgent_job_53244).
GENERIC PreemptRule Rule_53244 trying to preempt up to 1 jobs. 2 preemptable targets
 found
Rule triggers for job 000001112 in bucket 000001114 (jobproj==urgent_job_53244).

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.155

GENERIC PreemptRule Rule_53244 trying to preempt up to 1 jobs. 1 preemptable targets
 found
Rule triggers for job 000001117 in bucket 000001114 (jobproj==urgent_job_53244).
GENERIC PreemptRule Rule_53244 trying to preempt up to 1 jobs. 0 preemptable targets
 found
Rule triggers for job 000001117 in bucket 000001114 (jobproj==urgent_job_53244).
GENERIC PreemptRule Rule_53244 trying to preempt up to 1 jobs. 0 preemptable targets
 found
Rule triggers for job 000001117 in bucket 000001114 (jobproj==urgent_job_53244).
GENERIC PreemptRule Rule_53244 trying to preempt up to 1 jobs. 0 preemptable targets
 found
Permanently skip this preemption rule for top job 000001117 since it exceeds maximum
 attempts of 3

Command Line Interface for Preemption Rules

Here are some useful commands to manage preemption rules.

% vovshow -preemptrules
002772887 test testFreeTaskerRule KILL+RESUBMIT 101
002774006 Micron mic_pri KILL+RESUBMIT 102
002774004 Micron mic_mq KILL+RESUBMIT 101
002775275 mainpool FormalRegressions SUSPEND 101
002774085 mainpool testStealResource AUTOMATIC 102
002775412 mainpool PreemptAth AUTOMATIC 103
002774511 mainpool byPriority SUSPEND 101
002777727 RegrTestPool RegrTestPriority1523033980 KILL+RESUBMIT 50
002778828 RegrTestPool RegrTestThomas 0:*:EXT,KILL
 10:WITHDRAWN:RESUBMIT 50
002777743 RegrTestPool ReserveTaskersForTest AUTOMATIC 101
002774829 mainpool HelpStiffJobs AUTOMATIC 101
002778200 mainpool pRule4613 SUSPEND 101
002778064 mainpool rr41523034013 AUTOMATIC 50
002775429 HERO Test_Priority_Same_User SUSPEND 101
002777656 TESTPOOL TestMethodnormal AUTOMATIC 103
002778839 RegrTestPoolMQ RegrTestMQ1523034523 SUSPEND 55
% vovforget -preemptrules

If you know the VovId of a preemption rule, you can use it in these commands:

% vovshow ID_OF_PREEMPT_RULE
...
% vovforget ID_OF_PREEMPT_RULE
...

Preemption methods are created only in policy.tcl:

% vovshow -preemptmethods
 1 JOBHANDLER_VOVSH 0:*:EXT,SIGTSTP,vovsh 5:SUSPENDED:NOLMREMOVE
 2 SIGTSTP+LMREMOVE *:RETRACING:SIGTSTP 5:WAIT:SUSPEND 10:SUSPENDED:LMREMOVE
 20:LMREMOVED:DONE
 3 SUSPEND *:*:SUSPEND
 4 SIGTSTP+SUSPEND *:RETRACING:SIGTSTP 5:WAIT:SUSPEND
 5 SIGTSTP *:*:TSTP
 6 KILL+RESUBMIT 0:*:KILL 3:WAIT:NOP 30:WITHDRAWN:RESUBMIT
 7 LMREMOVE *:*:SUSPEND 10:SUSPENDED:LMREMOVE 20:LMREMOVED:DONE
 8 AUTOMATIC *:*:*

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.156

 9 JOBHANDLER 0:*:EXT,SIGTSTP,tclsh* 5:SUSPENDED:NOLMREMOVE

Tcl Interface to Preemption Rules

To dump the rules to a file, use the command VovDumpPreemptionRules:

This is Tcl.
VovDumpPreemptionRules NameOfFile.tcl

At the low level, you can use these procedures to manipulate preemption rules:

% vovshow -api preempt
vtk_preemptrule_create DESCRIPTION_ARRAY
vtk_preemptrule_modify DESCRIPTION_ARRAY
vtk_preemptrule_forget ID
vtk_preemptrule_delete ID
vtk_preemptrule_find POOL RULENAME
vtk_preemptrule_get ID RESULT_ARRAY
vtk_preemptrule_delete_all
vtk_preemptrule_forget_all

To preempt a specific job, call:

This is Tcl.
vtk_transition_preempt jobId [-noop] [-manualresume] [-method METHOD] [-resumeres
 RESLIST]

vovpreemptrule

Usage: VovPreemptRule -rulename NAME [OPTIONS]

Options:
 -pool POOLNAME -- The rule belongs to a pool of rules.
 At most one preemption can occur for each pool
 in each preemption cycle (default: mainpool)
 -rulename NAME -- Required.
 -ruletype TYPE -- The type of preemption rule. Allowed values are
 GENERIC, FAST_FAIRSHARE, MULTIQUEUE,
 RESERVE_RESOURCES,
 RESERVE_TASKERS, and FREE_TASKERS (default:
 GENERIC)
 -order INTEGER -- Specify the order of evaluation of rules within
 the same pool.
 Rules are evaluated from low to high order. If
 not specified
 the order is assigned automatically based on
 order of declaration.
 Typical range is small positives from 0 to 1000,
 but the order
 can be any integer.
 -enabled BOOL -- To enable and disable the rule.
 -enable BOOL -- Same as -enabled (obsolete).
 -debug BOOL -- To control debugging flag for this rule.
 -fireonce BOOL -- To control the fire-once flag.
 -preempting SELRULE -- A selection rule for the top job in a bucket.
 -waitingfor RESLIST -- If set, the top job in the bucket must be
 waiting

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.157

 for at least one of the
 given resources in order to trigger a
 preemption.
 If the RESLIST contains the string 'HW', then
 preemption is triggered if a job waits for a
 slot.
 -bucketage TIMESPEC -- Only apply the preemption if the bucket age
 is greater than the specified value.

 -multiqueueres RESLIST -- Trigger preemption if a multiqueue resource
 (rank>20)
 is imbalanced.
 -mqthresh THRESHOLD -- Percent reduction in MQ allocation that triggers
 preemption. Default 0.1=10%

 -donotdisturb TIMESPEC -- Do not preempt a job that was a top-job (i.e. a
 job
 that triggered some preemption) for at least the
 specified
 time (default 10m)
 -preemptable SELRULE -- A selection rule for the running jobs
 that should be preempted. Any field of the
 form @FIELD@ is replaced by the corresponding
 value for the top job in the bucket.

 -preempttaskerspec SPEC -- If preempting job is waiting for hardware,
 preempt taskers that match the given SPEC.
 The SPEC may include
 "TaskerList:NAMEOFTASKERLIST"
 and selection rules for taskers, like
 "HOSTNAME=lnx01,lnx02 RANDOM>5000"
 Used for FREE_TASKERS rules.
 -preempttaskersnum N -- For FREE_TASKERS rules, how many taskers to
 preempt for each bucket
 that matches the preempting rule. In any case, we
 never preempt more
 taskers than there are jobs in the bucket.
 Default is 1.
 Use a higher number if you are preempting many
 jobs for better performance.

 -killage TIMESPEC -- Jobs younger than this age are simply killed
 and resubmitted. Limited to 7 days max and
 default
 is 0 which implies that killage is not used.
 -method METHOD -- The method to be used to recover license
 resources from the job. Allowed values are
 SUSPEND, LMREMOVE, RESERVE, AUTOMATIC.
 If AUTOMATIC, then each license is removed using
 the specific method defined with
 VovPreemptMethod.
 Default: AUTOMATIC
 -skipresumedjob TIMESPEC -- Do not preempt jobs that have been resumed
 no more than TIMESPEC ago.
 Default: 2m

 -reservetime TIMESPEC -- How long resources should be reserved for the
 top job when attempting preemption (default 20)
 -reservetype RESTYPE -- Deprecated. Use reservefor.
 -reservenum N -- How many taskers are to be reserved for
 RESERVE_TASKERS rule type.
 Default: 1

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.158

 -reservetasker TASKERNAMES -- If a job is waiting for hardware, this is a
 space-separated list
 of taskers to reserve for the job. It is also
 possible to include
 a tasker list by using the keyword
 'TASKERList:NAME_OF_TASKER_LIST'.
 -preempttaskerspec is used if the field is empty.
 -reservefor RESSPEC -- Specify how to reserve a tasker. The RESSPEC is
 a space-separated list of KEY VALUE, where KEY is
 one of BUCKET USER GROUP JOBCLASS JOBPROJ OSGROUP
 JOBID and VALUE
 is a comma-separated list of values (also
 symbolic like @USER@).
 VALUE of BUCKET and JOBID entered here is ignored
 and
 preempting job ID and bucket ID are used.
 Default is BUCKET.

 -resumeres RESLIST -- List of resources to append to the resumer job.
 RESLIST can contain field references (e.g.
 @HOST@)
 which are taken from the preempted job.
 -resumedelay TIMESPEC -- Set the minimum delay before executing the
 resumer job,
 where TIMESPEC is the span of time between job
 suspension and future time when the resumer job
 will be considered for scheduling again.
 Default: 5s

 -numjobs N -- The maximum number of jobs preempted per bucket
 per
 preemption cycle.
 -maxattempts N -- The maximum number of attempts to match the rule
 for a
 preempting job. Setting this to zero (0) disables
 the check
 meaning that the rule can be matched an unlimited
 number of times
 which is useful for example for RESERVE_* type
 rules.
 -sortjobsby N -- Criteria to sort/order potential preemptable
 jobs.
 Format is:
 <fieldname> [ASC|DESC] [, <fieldname> [ASC|
DESC]]*.
 Default is 'PRIORITY ASC, AGE ASC'.

Debug VovPreemptRule

To make sure the rules works as intended, it is useful to look at how the preemption algorithms work in detail. Detailed logs will be

written into a log file separate from server log as named server_preemption_DATE.log.

Set the server parameter preemption.log.verbosity to a number between 0 and 10. For preempt rules of interest, turn on

the debug flag through Web UI. To log all preempt rules, set the server parameter preemption.log.allrules to 1.

The following shows kinds of messages shown for each verbosity level.

• Taskers preempted, jobs preempted, reservations made on taskers and resources, and durations of preempted jobs.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.159

• Preempt rules that trigger for jobs in each bucket. Reasons why rules get disabled. Time taken to process rules if it is

significant.

• Which taskerlist is used. Which tasker is missing.

• Why each tasker is not selected. Reasons may be bad tasker status, HW not compabible, already reserved, or select rule not

applicable.

• Report all job status being preempted. Each job preempted with which plan. Reserving critical resource. Skip job after max

attempt.

• Report how all preempted jobs are handled. Which jobcontrol method is applied.

• Why preempt rule is not triggered. Why taskers are not chosen (already reserved, invalid reserve spec.).

• Details about choosing preemptable target such as waiting for HW and SW, running jobs that have resources managed by

Allocator, jobs that have useful resources, wait reasons, preemptable analysis, missing resources.

• Time taken to process preempt rules.

• Which rule is disabled. Miscellaneous messages.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.160

Preemption Examples

Preemption by Priority

In the following example, all high priority jobs requesting License:abc can preempt all low priority jobs. It is implied that the

preempted low priority job must provide the resource License:abc, otherwise it will not be preempted.

An implementation of the old "preemption by priority" policy.
VovPreemptRule -rulename "SimplePriority" \
 -ruletype GENERIC -preempting "priority>=8" -waitingfor License:abc \
 -preemptable "priority<4 "

The next example generalizes the preemption by priority, within a specific job class. In this case, the preempting job needs to be in

the jobclass called hsim, and the preemptable jobs are selected only if the have the same jobclass as the preempting job:

A more generic preemption by priority for jobs in the hsim jobclass.
VovPreemptRule -rulename "Priority_hsim" \
 -ruletype GENERIC -preempting "jobclass==hsim priority>=8" \
 -preemptable "jobclass==@JOBCLASS@ priority<@PRIORITY@"

Preemption Across Jobclasses

In this example, the jobclass urgent can preempt jobs in the jobclass regression but only for jobs that belong to the same

project, as expressed by jobproj==@JOBPROJ@. Also, a relatively long kill age of 10 minutes is allowed; the preemptable jobs

that are younger than 10 minutes are withdrawn and resubmitted, while jobs that are older are suspended and later resumed.

A preemption between jobclasses, but within the same project
VovPreemptRule -rulename "Urgent_vs_regression" \
 -preempting "jobclass==urgent" -preemptable "jobclass==regression
 jobproj==@JOBPROJ@" -killage 10m

Reserve Resources for Token-based Jobs

In the following example, a weak preemption type called RESERVE_RESOURCES is used to help dispatch jobs that require

multiple tokens in the presence of other jobs that compete for the same tokens. In this case, if there is a job in the class ultrasim

with priority greater than 4, the system reserves 6 tokens of whatever the job requires for 3 minutes.

VovPreemptRule -rulename "UltrasimWeak" \
 -preempting "jobclass==ultrasim priority>4" \
 -ruletype RESERVE_RESOURCES -reservetime 3m -reservenum 6 \
 -pool Ultrasim -order 10

Note: There is no mention of the resource required by the jobs in the preempting jobclass, because the resources are

computed automatically.

Such a rule (no mention of required resources) may be combined with a stronger rule. For example, such a rule can actively

preempt other jobs by the same user, provided that the ultrasim job has been waiting for at least 4 minutes.

VovPreemptRule -rulename "UltrasimStronger" \
 -preempting "jobclass==ultrasim priority>4" -bucketage 4m \
 -preemptable "jobclass==spectre user==@USER@ priority<@PRIORITY@" \
 -pool Ultrasim -order 20

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.161

MultiQueue Preemption

MultiQueue is the older name for the system now called Allocator™. The preemption system still refers to these rules with the old

name.

In the following example, assume that the resources WAN:abc and WAN:hsim are managed by Allocator. You want the

preemption daemon to preempt a job that uses those resources when Allocator requires a "substantial reduction" in the number of

available resources for this site. In the example, a different rule is created for each resource and each rule is assigned to a different

pool. The substantial reduction is defined a 5% change in the allocated resources.

foreach mqRes {
 WAN:abc
 WAN:hsim
} {
 VovPreemptRule -rulename "MultiQueueLicense_$mqRes" \
 -multiqueueres $mqRes -mqthresh 0.05 -pool POOL$mqRes
}

Use the -resumeres Option

In many cases, the preemption occurs to make a saturated license available to an important job. Upon suspension of the preempted

job, the license becomes available to the preempting job, while the resumer job, which also wants the same license, waits because it

typically has lower priority than the preempting job.

In some cases, however, the license that is being preempted is not saturated, and preemption occurs on account of the lack of slots

(also known as hardware preemption). In such case, the resumer job could be executed immediately on any available slot, which

may be undesirable. The resources specified by the -resumeres option can be added to the resumer job as a way to better control its

execution.

Note: When preemption occurs because of hardware, the -resumeres option is highly recommended.

Note: See @KEYWORD* Expansion for details on using @KEYWORD@ expansion with -resumeres.

For example, assume that jobs in the class C can only execute on taskers that offer the resource R. A low-priority job in the class C

is preempted. The corresponding resumer job requires only the resources grabbed by the preempted job. Since the resumer job can

execute on any host and the resources grabbed by the suspended job are not saturated, the resumer job fires immediately, leading

to a premature resumption of the suspended job and to the possible overloading of the host on which the resumed job is running.

However, if the preemption rule is specified with the option -resumeres HOST=@HOST@, then the resumer job is forced to

execute only on host called @HOST@, which is mapped to the name of the host on which the preempted job was originally running.

All fields in the preempted job can be used in the -resumeres argument. The most useful are @TASKERNAME@ (or @NAME@

for short), @TASKERHOST@ (or @HOST@ for short) and @HWRAM@, @HWPERCENT@, @HWSLOTS@, @HWCPUS@, and @HWSWAP@,

which are computed from the SOLUTION property of the preempted job. The open slot goes to the preempting job because of

priority, and the resumer job waits for at least one slot to open up on the host of the suspended job.

#
The resumer job must execute on the same host as the
preempted job.
#
VovPreemptRule -rulename XX -ruletype GENERIC -preempting "jobclass==abc
 priority>=8" -waitingfor "HW" -preemptable
"jobclass==abc priority<4" -resumeres "TASKERNAME=@TASKERNAME@ HOST=@HOST@ RAM/
@HWRAM@ SLOTS/@HWSLOTS@"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.162

#
The resumer job must execute on the same tasker as the
preempted job.
VovPreemptRule -rulename YY -ruletype GENERIC -preempting "jobclass==abc
 priority>=8" -waitingfor "HW" -preemptable
"jobclass==abc priority<4" -resumeres "TASKERNAME=@TASKERNAME@"

Preempt Ultrasim

Ultrasim uses Virtuoso_Multi_mode_Simulation, typically 4 or 6 tokens. To preempt Ultrasim, you can use this example:

VovPreemptMethod License:Virtuoso_Multi_mode_Simulation SIGTSTP

VovPreemptRule -rulename ultrasim \
 -ruletype GENERIC \
 -killage 10 \
 -waitingfor "License:Virtuoso_Multi_mode_Simulation" \
 -preempting "priority>8" \
 -preemptable "priority<@PRIORITY@" \
 -method AUTOMATIC

Use Preemption to Reserve Taskers

In the following example, if there are scheduled jobs from the FairShare group "/class/ABCD", then we reserve 3 taskers called

linux02, linux04, and linux06 for 1 minute. If, in that 1 minute, the tasker becomes available, the preempting job will have

exclusive access to that tasker. Since the rule is recomputed every few seconds, it is sufficient to have short reserve times, such as

one minute or even less.

VovPreemptRule -rulename reserveHardware \
 -ruletype RESERVE_TASKERS \
 -preempting "GROUP~/class/ABCD" \
 -reservetime 1m \
 -reservefor "GROUP @FSGROUP@" \
 -reservetasker "linux02 linux04 linux06"
 -reservenum 2

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.163

Preemption Methods

A preemption method is a set of actions that are applied to the preemptable job to revoke its resources. Some methods are provided

with the Accelerator software. Additional methods can be implemented by writing procedures in Tcl using the Accelerator API

calls.

VovPreemptMethod can be used in the configuration file to associate a method with a resource to be revoked.

The supplied preemption methods are:

AUTOMATIC This is the default method and means that the actual preemption method is

computed on the basis of the licenses (not the grabbed resources) actually held by

the preempted job.

SIGTSTP The job's process group is signalled with the operating system TSTP signal. Many

software tools will first give up their licenses, then self-suspend after receiving this

signal. Verify that your tool responds as desired when using this method.

This method sends TSTP to all processes in the process tree of the job. If the job

requires TSTP to be sent to only a few processes, as in the case of ModelSim, the

EXT method needs to be used.

SIGTSTP+LMREMOVE The same as above but also calls lmremove to remove all license checkouts

detected for the job being preempted. This is useful for tools that use 3rd-party

licenses, such as a piece of IP provided by a 3rd-party vendor, that is used in a

simulation.

SUSPEND The job's process group is signalled with the operating system STOP signal. This

causes it to be inactive until it is resumed by the operating system CONT signal.

SUSPEND+LMREMOVE Like SIGTSTP+LMREMOVE, but uses the STOP signal instead of TSTP.

STOP The job is dequeued or stopped, and rescheduled. Mainly used with jobs that have

only been running a short time.

EXT This method uses an EXTernal script to send a specified list of signals to one or

more of the processes in the job. This method is used, for example, to preempt

ModelSim jobs.

EVENTS-ONLY The EVENTS-ONLY method does not actually preform any preemption but only

issues preemption events. This method can be useful for those users that wish to

perform specific preemptions themselves using custom scripts.

Custom preemption methods can be created as well (see the next section on preemption plans). To list all preemption methods,

along with their respective plans, use the following command:

% nc cmd vovshow -preemptmethods
 1 SIGTSTP+LMREMOVE *:RETRACING:SIGTSTP 5:WAIT:SUSPEND 10:SUSPENDED:LMREMOVE
 20:LMREMOVED:DONE
 2 SUSPEND *:*:SUSPEND
 3 SIGTSTP+SUSPEND *:RETRACING:SIGTSTP 5:WAIT:SUSPEND
 4 SIGTSTP *:*:TSTP

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.164

 5 KILL+RESUBMIT 0:*:KILL 10:WITHDRAWN:RESUBMIT
 6 LMREMOVE *:*:SUSPEND 10:SUSPENDED:LMREMOVE 20:LMREMOVED:DONE
 7 AUTOMATIC *:*:*
 8 JOBHANDLER 0:*:EXT,SIGTSTP,tclsh* 5:SUSPENDED:NOLMREMOVE

Select the Preemption Method

There are a few methods to specify the preemption method:

• If the job uses SmartSuspend, then the property SSR_STATUS_PATH exists on the job and the method SMARTSUSPEND

will be used.

• Set the property VOVPREEMPT_METHOD on the job. For example:

% nc run -P VOVPREEMPT_METHOD=LMREMOVE -r License:abc -- myscript mychip.x

• Set the property VOVPREEMPT_METHOD on the jobclass. This can be set using the procedure

vtk_jobclass_set_preemption_method, as in this example:

This could be in vovpreemptd/config.tcl
vtk_jobclass_set_preemption_method hsim_lo STOP

• Assign a preemption method to each resource map, using the procedure VovPreemptMethod in the file vnc.swd/

vovpreemptd/config.tcl.

The procedure VovPreemptMethod is used to specify which method to use for each resource this is used by the preempted job.

LMREMOVE

While the method LMREMOVE works well with a majority of licenses, some licenses are harder to get and this procedure allows

specifying how this should be done.

For example, some tools react to the SIGTSTP signal, but it can only be sent to a specific process in the process tree. ModelSim is

one such tool, which wants the SIGTSTP signal to be delivered only to the vish process.

VovPreemptMethod License:msimhdlsim EXT -signal TSTP -include vish

The following statement is useful for the Cadence tokens. In this example, to recover the resource License:simtoken,

presumably derived from the FlexNet Publisher feature Virtuoso_MultiMode_Simulator, the EXT method (external) and sending

the signal SIGTSTP are required, but only for the processes either spectre or ultrasim:

VovPreemptMethod License:simtoken EXT -signal TSTP -include "spectre ultrasim"

The following example is for Incisive_Enterprise_Simulator:

VovPreemptMethod License:Incisive_Enterprise_Simulator EXT -signal TSTP -include
 "ncsim ncvlog_main"

vovpreemptmethod

Specify which method to use for each resource this is used by the preempted job.

Usage: VovPreemptMethod resourcemap methods [OPTIONS]

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.165

WHERE: methods -- A list of one or more of
 EXT SUSPEND MODELSIM LMREMOVE SIGTSTP JOBHANDLER

OPTIONS:
 -signal <SIGNAME> -- TSTP, USR1, USR2, ...
 -include patternList -- Only send signal to processes that match one of
 the pattern in the list
 -exclude patternList -- Do not send signal to processes that match one of
 the pattern in the list
 -process patternList -- Synonym for -include.

EXAMPLES:
 VovPreemptMethod License:msimhdlsim EXT
 -signal TSTP -include vish
 VovPreemptMethod License:Virtuoso_Multi_mode_Simulation EXT
 -signal TSTP -include "spectre ultrasim"
 VovPreemptMethod License:Virtuoso_Multi_mode_Simulation EXT
 -signal TSTP -include "spectre* *ultra*"
 VovPreemptMethod License:DesignCompiler LMREMOVE

Preemption Plans
Preemption plans are the building blocks of preemption methods and allow the implementation of custom, complex multi-step

preemption sequences.

Preemption plans are defined in the SWD/policy.tcl file, using the following configuration command:

vtk_preemptionplan_set <METHOD-NAME> <PREEMPTION-PLAN>

A preemption plan is a space-separated list of instructions. Each instruction consists of 3 colon-separated fields: TIME, STATE,

and ACTION

TIME can be:

• * = any time

• N = N seconds after start of preemption has begun. More specifically, this is the longest time we would wait for the job

to reach the required state. If the specified time has elapsed and the job is not in the required state, the preemption plan is

considered to have failed.

STATE can be:

• * = any state

• SUSPENDED = the job is known to be in a suspended state

• RETRACING = the job is known to be still retracing (orange)

• RUNNING = the job is known to be still running (yellow)

• WITHDRAWN = the job has been killed by preemption

• LMREMOVED = the job has the property PREEMPT_LMREMOVED

• WAIT = enter a wait state for the specified number of seconds in the TIME field

• SSRSUSPENDED = the job has the property SSR_STATUS (SmartSuspend integration) (OBSOLETE)

ACTION can be:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.166

• NOP = No operation, mainly used for no-op wait states

• SUSPEND = Suspend job (SIGSTOP)

• SIGTSTP or TSTP = Send SIGTSTP

• SIGUSR1 or USR1 = Send SIGUSR1

• SIGUSR2 or USR2 = Send SIGUSR2

• EXT,<SIG>[,includeRx][,excludeRx] = Send a signal using the EXTernal method

• LMREMOVE = Remove licenses using vovlmremove

• NOLMREMOVE = Do not call the utility vovlmremove on the preempted job. This is essentially the same as NOP

• DONE = Similar to NOP but also signifies the end of preemption the plan

• RESUBMIT = Resubmit a withdrawn job (not yet implemented)

The legacy method MODELSIM is essentially a one-step preemption plan of the form *:*:EXT,TSTP,vish, which means "at

any time, in any state, send the signal TSTP to the vish process.

Note: The preemption will fail if the time has passed and an expected state have not been attained. In the following

example, if the job is not suspended at 10 seconds, or if the license is not removed at 20 seconds, the preemption will

fail.

::SUSPEND 10:SUSPENDED:LMREMOVE 20:LMREMOVED:DONE

Examples

Below are some examples of 3-step preemption plans:

*:RETRACING:TSTP 10:WAIT:SUSPEND 15:SUSPENDED:DONE

1. At the beginning, if the job is RETRACING, send its process tree the TSTP (temporary stop) signal.

2. Wait at least 10 seconds from preemption start and send the SUSPEND signal.

3. Up to 15 seconds from preemption start, if the state is SUSPENDED, the preemption is done. Otherwise, preemption fails.

::SUSPEND 10:SUSPENDED:LMREMOVE 20:LMREMOVED:DONE

1. At any time, in any state SUSPEND a job.

2. At any time up to 10 seconds from preemption start, if the job is SUSPENDED, remove license(s) from the job.

3. At any time up to 20 seconds from preemption start, if the licenses have been removed, preemption is done. Otherwise,

preemption fails.

::EXT,HUP,licd 10:*:EXT,TSTP,licd 20:SUSPENDED:LMREMOVE

1. At any time, in any state, use the external method to send the HUP (hangup) signal to the licd process.

2. At any time up to 10 seconds from preemption start, whether or not the previous step (HUP) was successful, use the external

method to send the TSTP signal to the licd process.

3. At any time up to 20 seconds from preemption start, if the job is SUSPENDED, remove license(s) from the job.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.167

Web-Based Interface for Preemption
The Accelerator web interface provides a form-based method of entering preemption rules and methods, and viewing statistics

regarding the activation of previously entered preemption rules.

To access the online preemption information, from the Project Home page of the Accelerator web interface, under Workload, click

Preemption. By default, the Preemption page opens on the Pools tab.

Pools tab

The Pools tab lists summary of all pools of preemption rules. Click the desired pool names to view the listing of all the

preemption rules in that pool.

Figure 9:

Preemption Rules tab

The Preemption Rules tab lists the preemption rules that are currently set.

Figure 10:

Methods for Resources

The Methods for Resources tab summarizes the preemption rules that are used for each resource.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.168

Figure 11:

Plans for Methods

The Plans for Methods tab lists the rules of the method plans.

Figure 12:

Configuration

The Configuration tab allows exporting preemption rules and creating new preemption rules.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.169

Figure 13:

Create a New Preemption Rule Using the Web UI

1. To enter a new rule, click Add new preemption rule at the bottom of the Preemption window.

The Preemption Rule form opens.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.170

Figure 14:

2. Select the type of preemption rule to implement.

The window shows the appropriate options for the type.

3. Fill out the form and click Create Preemption Rule to save the new rule.

For examples on the types of preemption rules available, see Preemption Rule Types.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.171

Preemption Rules to Speed Up FairShare

Every node in the FairShare tree represents a FairShare group. Each job belongs to one and only one FairShare group. Every node

in the FairShare tree is assigned a target share, which depends on both the weights assigned to the nodes in the tree and on the

activity of the nodes. A FairShare node is considered active if it has at least one job that is queued, running or suspended. All nodes

that are not active are assigned a FairShare target of zero.

The target share of a FairShare node is accessible by the field FS_TARGET for any job that belongs to that FairShare node. The

FairShare target is a fractional number less than 1.0, but the FS_TARGET field is an integer in the range from 0 to 10,000 obtained

by scaling up the FairShare target by 10,000. For example, a FS_TARGET of 8000 indicates that the FairShare node has a target

share of 80%(=0.8).

The field FS_RUNNING represents the fraction of running jobs in a FairShare group, relative to all running jobs in the system. This

field is also scaled up by a factor of 10,000. The difference between FS_RUNNING and FS_TARGET is FS_EXCESS_RUNNING.

FS_EXCESS_RUNNING := FS_RUNNING - FS_TARGET

This measures how much a group is above or below its target. A positive number of FS_EXCESS_RUNNING means that the

FairShare group is running more jobs than it should.

The field FS_RUNNING_COUNT is the number of jobs a FairShare group is running.

The field FS_HISTORY represents the fraction of jobs that have been run by a FairShare group in the FairShare window (typically

2 hours) relative to all other jobs that have been run in the system. The difference between FS_HISTORY and FS_TARGET is

FS_EXCESS_HISTORY, and is similar to FS_EXCESS_RUNNING explained above.

FS_EXCESS_HISTORY := FS_HISTORY - FS_TARGET

The field FS_RANK is computed by the scheduler and assigned to each FairShare group that has jobs in the queue. The jobs are

dispatched to taskers in ascending order of rank, starting from the group of rank zero (0). Groups that have no jobs in the queue

are assigned the conventional rank -1. For FairShare and preemption to work harmoniously, it is important that the rank of the

preempted job is greater than the rank of the preempting job, which is why the preemption rules should contain a term of the

form FSRANK>@FSRANK@ in the -preemptable option. Since you also want to allow the preemption of jobs that are running but

have no queued jobs in the same group, use the field "FS_RANK9", which is the same as FS_RANK, except that the value of

FS_RANK9 for groups that have no queued jobs is 9,999,999 instead of -1, which makes for an easier comparison the preemptable

rule FSRANK9>@FSRANK9@.

The Special Field FS_EXCESS_RUNNING_LOCAL

The picture below illustrates the difference between the FS_EXCESS_RUNNING field and FS_EXCESS_RUNNING_LOCAL.

While the first considers the total number of running jobs in the system, the second field only considers the balance of running jobs

at each local level. In the pictures, the nodes of interest are /class/hsim and /class/vcs.

The node /class/vcs has a total of 4 running jobs and 2 children, with user u1 running 3 jobs and user u5 running 1. Assuming

that all weights are the same in all branches, the target share for /class/vcs.u1 and /class/vcs.u5 is exactly the same.

Looking at the FS_EXCESS_RUNNING, it is negative for both nodes because the node /class/hsim has a large proportion of

the running jobs. In this scenario, a preemption rule based on FS_EXCESS_RUNNING as shown below will not fire:

VovPreemptRule -rulename RuleThatDoesNotFire \
 -preempting "JOBCLASS==vcs FS_EXCESS_RUNNING<0" \
 -preemptable "JOBCLASS==vcs FS_EXCESS_RUNNING>0 FSRANK9>@FSRANK9@" \

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.172

 -pool fastfairshare -ruletype FAST_FAIRSHARE

Figure 15:

On the other hand, with a local view of /class/vcs, it is apparent that the distribution of jobs is not balanced. To use

preemption to speedup the achievement of balance, the FS_EXCESS_RUNNING_LOCAL field can be used as follows:

VovPreemptRule -rulename RuleThatFires \
 -preempting "JOBCLASS==vcs FS_EXCESS_RUNNING_LOCAL<0" \
 -preemptable "JOBCLASS==vcs FS_EXCESS_RUNNING_LOCAL>0 FSRANK9>@FSRANK9@" \
 -pool fastfairshare -ruletype FAST_FAIRSHARE

Practical FairShare Driven Preemption

Frequently used fields that are used in preemption are:

• FS_EXCESS_RUNNING_LOCAL

• FS_RANK and FS_RANK9

• FS_RUNNING_COUNT

Other fields are described in Node Fields in the Altair Accelerator User Guide; those fields also begin with FS_.

Preemption Based on FairShare

Preemption can be used as a method to accelerate the FairShare mechanism, so that instead of waiting for a job to finish and a slot

to open up, the preemption daemon can detect imbalances in the FairShare and preempt a job of a group that has excess share in

favor a another group that has a deficit in the share.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.173

A reference rule for this type of preemption can be found in $VOVDIR/etc/config/vovpreemptd/rules/

fastfairshare.tcl, as shown below:

Copyright (c) 1995-2020, Altair Engineering
All Rights Reserved.

$Id: $

Use of preemption to speed-up fairshare.
#
We assume a workload organized in jobclasses where the each jobclass
has its own fairshare node called /class/$JOBCLASS.
#
The preempting is triggered if there is a job which has a locally a
deficit in the number of running jobs (FSEXCESSRUNNINGLOCAL<0) and has been waiting
 for at least 10 seconds.
Also, if a fairshare group already has at least 4 jobs running, do not preempt.

We do preemption within the same jobclass (JOBCLASS==@JOBCLASS@)
and we target the groups that have excessive share of running jobs
 (FSEXCESSRUNNINGLOCAL>0) and
also a higher rank (FSRANK9>@FSRANK9@). We use FSRANK9 instead of FSRANK to
simplify the comparison of the ranks to include groups that have no rank.
We do not want to preempt if the group has only one running job
 (FS_RUNNING_COUNT>1).
We also consider priority (PRIORITY<=@PRIORITY@) to avoid preempting a job of
 higher priority.
#

VovPreemptRule -rulename FastFairshare \
 -preempting "FSEXCESS<0 GROUP~/class FS_RUNNING_COUNT<=3" \
 -bucketage 10 \
 -preemptable "FSEXCESS>0 JOBCLASS==@JOBCLASS@ FS_RUNNING_COUNT>1
 FSRANK9>@FSRANK9@ PRIORITY<=@PRIORITY@" \
 -killage 2m \
 -pool FastFairshare \
 -ruletype FAST_FAIRSHARE

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.174

Preemption Over Altair Allocator

The preemption daemon can be used to speed up the release of licenses at one site. The release of licenses is within the constraints

imposed by Allocator. Constraints are enforced by specifying a preemption rule, which states that a specific resource is managed

by Allocator and should be preempted.

VovPreemptRule -rulename "mqPreemptHsim" -ruletype MULTIQUEUE -multiqueueres
 License:hsim -pool multiqueue

Preempt Jobs with Unrequested Resources

It is possible for resources to be used without being applied. To control the usage properly, a preemption rule can be created that

prevents such issues. For this preemption rule, use the field LM_HANDLES_NRU, where NRU represents "Not Requested / Used".

An examples is shown below.

In this example, the preempting condition is a job waiting for a license, License:abc. In addition, the queued job is in the

specific jobclass abc.

 -preempting "JOBCLASS==abc" -waitingfor "License:abc"

The preemptable set is any job that uses License:abc but does not ask for it:

 -preemptable "LM_HANDLES_NRU~License:abc"

For example:

VovPreemptRule -rulename PunishCheatersAbc \
 -ruletype GENERIC \
 -preempting "JOBCLASS==abc" -waitingfor "License:abc" \
 -preemptable "LM_HANDLES_NRU~License:abc" \
 -method AUTOMATIC
 -pool PunishPool

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.175

Control Whether a Job is Preemptable

This field is a boolean and identifies the jobs that can be preempted.

This flag can be set using the variable make(preemptable) in a FDL file.

In Accelerator, all jobs are preemptable by default. To disable the flag, use the option -preemptable 0 at submission time.

% nc run -preemptable 0 sleep 100

Note: See @KEYWORD* Expansion for details on using @KEYWORD@ expansion with -preemptable.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.176

Preemption Timing
The preemption subsystem has a complex behavior, controlled by many delays that are described in this section.

Preemption Cycle

A preempt cycle is set within the policy.tcl server configuration file. The unit is in seconds. The default value 3 seconds,

No Preemption After Resumption

Job resumption is supported by the property PREEMPTRESUME. In VovPreemptRule, this function is supported by -

skipresumedjob TIMESPEC. The default value is 2 minutes.

Job Too Young to Preempt

This delay depends on the resource. This function is represented by the variable PREEMPT($resmap,delay). The option is -delay in

VovPreemptPolicy. The default value is 5 seconds.

Minimum Bucket Age to Trigger Preemption

Each preempting job is waiting in the queue and therefore belongs to a bucket. The age of the bucket depends on the time of the

last dispatch of a job from that bucket, or the bucket creation, whichever is younger.

Note: If the age of the bucket is less than this minimum age, the preemption is not triggered. This is represented by

PRULES($rule,bucketage), controlled by the option -bucketage in VovPreemptRule. The default value is

zero; there is no minimum age for firing the rule.

Resource Reservation Time

When the resource is reserved for the preempting job, the preempting method used is RESERVE. With preemption rules, this

reservation time is represented by PRULES($rule,reservetime), which is controlled by the option -reservetime in

VovPreemptRule. The default value is 30 seconds.

Too Early to try lmremove

If the age of a checkout assigned to a job is less than 2 minutes. This is hard coded.

Do not Preempt a Resumed Job

If a job has just been resumed, it is recommended to not allow the job to immediately be preempted. Instead, allow the job

time to settle and give Accelerator time to figure out which licenses the job is using. This preempt method is represented by

PRULES($rule,skipresumedjob), which can be set with option -skipresumedjob TIMESPEC in VovPreemptRule

The default value is 2 minutes.

Kill Instead of Suspend a Job

If a job is younger than a certain age, we prefer killing and resubmitting it rather than suspending and resuming it. This is

represented by PRULES($rule,killage) and is controlled by the -killage option in VovPreemptRule.

The default value is 2 minutes. A value of zero disables the killing.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.177

Do not Disturb a Top Job

If a job successfully triggered a preemption, you do not want that job to be bothered for some time. This is represented by

PRULES($rule,donotdisturb), which is controlled by the option -donotdisturb in VovPreemptRule.

The default value is 10 minutes.

Safe Job Control Timeout

This is the time preemption waits for the signals to have effect. Typically the signals have immediate effects.

However it has been noticed that SIGTSTP may take many seconds to take effect. This is represented by the variable

vovpreempt(timeout,safejobcontrol). The default value is 30s. The valid range is between 1s and 2m, and it is

silently enforced.

Failed Preemption, Job-to-Watch Timeout

If a job cannot be preempted, it is put into a "jobs-to-watch" list for the time specified by

vovpreempt(timeout,jobstowatch). The default value is 30m.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.178

Start the Preemption Rule Compiler Daemon vovpreemptd

Note: The following commands must be executed on the host where the vovserver is running.

The daemon vovpreemptd can be started or stopped using vovdaemonmgr.

% vovdaemonmgr start vovpreemptd
% vovdaemonmgr stop vovpreemptd

For debugging, it can be useful to start the daemon in the foreground.

% cd `vovserverdir -p vovpreemptd`
% vovpreemptd -v -v

Note: When a new instance of the preemption daemon is started, the previously running instance is automatically

terminated.

Automatically Start the Preemption Daemon

Note: If autostart scripts are not yet in use, it may be necessary to create the autostart directory as a subdirectory of

the .swd for Accelerator.

To start the preemption daemon when the server is started, add the following executable script to the Autostart Directory for

Accelerator. It is expected that the lmremove command is available in the path.

% cd `vovserverdir -p autostart`
% cp $VOVDIR/etc/autostart/vovpreemptd.csh .

vovpreemptd

Main preemption daemon, based on the C++ implementation of preemption.

vovpreemptd: Usage Message

 DESCRIPTION:
 Main Preemption Daemon, based on the C++ implementation
 of preemption.

 USAGE
 % vovpreemptd [OPTIONS]

 OPTIONS:
 -h -- This help
 -v -- Increase verbosity

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.179

 -n -- Normal (no-op)

 EXAMPLES:
 % vovpreemptd -h -- usage message
 % vovpreemptd -- normal start
 % vovpreemptd -n -- same as above
 % vovpreemptd -v -v -- for debugging

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.180

Manual Preemption
Manual preemption can be used in addition to or instead of automatic preemption.

In automatic preemption, the preemptable jobs are identified by vovpreemptd; however, in manual preemption, the ID of the

preemptable job is required with the nc preempt command.

It is sometimes advantageous to manually preempt a job. For example, the licenses are available, but all the CPU slots are taken by

other jobs and an important job must run now. Preempting a job can only be applied by the owner of the job or by having ADMIN

privileges.

A job can be submitted with very high priority, such as high or top. Later, if needed, a running job can be preempted with nc

preempt jobId if the high level job is waiting in the queue.

Unless the method is specified with the -method, manual preemption uses the configured preemption method for the resources

held by the preempted jobs, which is the same as applied for automatic preemption. The preemption method is defined in the

configuration file for the automatic preemption daemon. See Automatically Start the Preemption Daemon for the location of this

file.

Examples:

% nc preempt 34567
% nc preempt -manualresume 45678

Manual Preemption with Manual Resumption

In normal preemption, the preempted job is suspended and another job, called the resumer job, is created. The resumer job is

scheduled to be executed as soon as the required licenses become available.

% nc preempt 12345
No need to call nc resume

With the option -manualresume of nc preempt, the resumer job is created but not scheduled. To schedule the resumer job, use

nc resume.

% nc preempt -manualresume 12345
... later, you have to remember to resume the job...
% nc resume 12345

nc preempt

Preempt the specified running jobs.

vnc: Usage Message

 NC PREEMPT:
 Preempt the specified running jobs.
 Preemption means that:
 1. The job is stopped or suspended (depending on method and age)
 2. The resources of the job are revoked
 3. If needed, a 'resumer job' is scheduled to

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.181

 restart the job as soon as the revoked
 resources are again available.

 If a job is not running, an error is reported.

 USAGE:
 % nc preempt [OPTIONS] <jobId> ...

 OPTIONS:
 -h -- This help.
 -v -- Increase verbosity.
 -method METHOD -- Specify preemption method. Default is AUTOMATIC.
 Common values:
 AUTOMATIC, KILL, KILL+RESUBMIT, SUSPEND,
 SIGTSTP+SUSPEND
 Other values and example of preemption plans
 (see docs): MODELSIM, BEGIN:RETRACING:EXT,
 TSTP, vish.
 Bad values are currently ignored.
 -manualresume -- The resumer job is not scheduled;
 A 'nc resume' is required to restart the
 preempted job.
 -resumeres RESLIST -- Specify resources to be added to the
 resumer job. The resources are expanded.
 Examples:
 @HOST@ RAM/@RAM@
 @PROP.SOLUTION@
 Any job field can be used, but here are
 some common fields that can be useful:
 @TASKERNAME@
 @HWRAM@ @HWCORES@ @HWPERCENT@ @HWSLOTS@

 EXAMPLES:
 % nc preempt 123456
 % nc preempt -v 123456

 % nc preempt -method SIGTSTP 123456
 % nc preempt -method KILL+RESUBMIT 123456
 % nc preempt -method BEGIN:RETRACING:EXT,TSTP,vish 123456
 % nc preempt 03076307 03076311 03076315

 % nc preempt -manualresume 123456
 % nc preempt -manualresume -resumeres @PROP.SOLUTION@ 123456
 % nc preempt -manualresume -resumeres "@HOST@ RAM/@MAXRAM@" 123456
 % ...
 % nc resume 123456

Options

Most of the options are explained by the summaries in the brief usage output shown above. The -v option enables printing of

additional messages that may be helpful in troubleshooting.

The -method option may be used to specify the preemption method used to revoke the resources of the preempted jobs. This

overrides any method in the configuration file. This option may be helpful in troubleshooting. The -l option is handy to get a list

of known preemption methods. The names of the methods are case-sensitive.

Only users with the Altair Accelerator ADMIN privilege or the owner of the preempted job can run this command.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.182

Preempting Tokens

There are families of tools that use different numbers of tokens per license. The number of tokens used depends on the application.

For example, the family Cadence Multi-Mode simulators contains tools such as Spectre, AMS, and UltraSim, using 1, 2, and 6

tokens respectively. These families of tools require special attention when configuring preemption.

In the following examples, it is assumed there are eight groups of users (My1, ..., My8) competing for the tokens, represented

by the resource map MyTokens. It is also assumed that the jobs are assigned to different jobclasses: spectre, ams, and

ultrasim.

Three types of preemption will be set up:

• Based on priority, restricted to jobs belonging to the same user

• Based on ownership

• Based on avoiding starvation of multi-token jobs by reserving tokens

Priority-based Preemption for Tokens

In this rule, a high priority job is allowed to preempt a low priority job that is in the same jobclass and is owned by the same user.

The preempting jobs need to be waiting for the MyTokens resource. Jobs younger than 20 seconds are killed and resubmitted;

they are not suspended or resumed.

 # Fragment of vnc.swd/vovpreemptd/config.tcl
 VovPreemptRule -rulename MyPriSameUser \
 -preempting "priority>=8" \
 -waitingfor MyTokens \
 -preemptable "jobclass==@JOBCLASS@ user==@USER@ priority<4" \
 -killage 20 \
 -pool contract:My

The only difference between the preemption on tokens and the preemption on regular license is the use of the pool

contract:My. This pool is used for the rules based on Ownership, which is described in the following section. In a given

preemption cycle, the ownership rules will not fire if the MyPriSameUserK rule is fired.

Avoid Starvation for Tokens

With mixed workloads of spectre and ultrasim jobs, it is difficult for an ultrasim job to be scheduled. It is also difficult

for six tokens to be available at the same time, as spectre jobs will likely take all the tokens as the tokens become available.

This starvation for the ultrasim jobs can be prevented by reserving tokens for the ultrasim jobs as described in the

following example.

In this example, for jobs in the ultrasim class, if a job that has at least normal priority and has been waiting for more than 2

minutes, 6 tokens are reserved for the top job for a period of 1 minute. As this reservation is renewed at every cycle, the reservation

period does not need to be long. A subordinate rule in the same pool takes care of the jobs in the ams class.

Note:

• The resource reservations for a specific job are automatically dismissed when the job is no longer in the queue

because it is either dispatched or descheduled.

• It is not necessary to specify the resources to be reserved, as that is automatically computed.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.183

The same pool, My:reserve, is used for both ultrasim and ams. This is to not have both rules to fire in each cycle. Having

reserved tokens for the ultrasim jobs, it is not desirable to also reserve tokens for ams, as ams would likely prevail.

Fragment of vnc.swd/vovpreemptd/config.tcl
VovPreemptRule -rulename MyAntiStarvationUltrasim \
 -preempting "jobclass==ultrasim priority>=4" \
 -bucketage "2m" \
 -method "RESERVE" \
 -reservetime 1m -reservenum 6 \
 -pool "My:reserve"

VovPreemptRule -rulename MyAntiStarvationAms \
 -preempting "jobclass==ams priority>=4" \
 -bucketage "2m" \
 -method "RESERVE" \
 -reservetime 1m -reservenum 2 \
 -pool "My:reserve"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.184

Remove Licenses from a Preempted Job

The utility vovlmremove is used to release license resources from a suspended job. This utility is normally called automatically

by the preemption code; it can also be called from the command line. The usage is simple: pass the VovId of the jobs from which

to release the license resources, as shown below.

% vovlmremove 00012345 00012355

The selection of utility calls lmremove, rlmremove, or vlmremove, is related to the licenses that currently match to the job.

Utility Related License

lmremove FlexNet Publisher license

vlmremove License emulation

Automatic Call of vovlmremove for Suspended Jobs

The utility vovlmremove is automatically called by vovserver when a preempted job is in the SUSPENDED state and matches

some existing license handles. The utility attempts to free up the handles that match. This functionality is called with a frequency

controlled by the parameter preemptionResourceRelease, which defaults to 90 seconds. This functionality can be disabled

by setting this parameter to 0.

The utility vovlmremove is called during the following conditions:

• A job has been preempted at least 60 seconds before and is currently in the SUSPENDED state (system controlled).

• The job does not have the property DONOTLMREMOVE (user or system controlled).

vovlmremove

This utility removes all the license features associated with the given job.

vovlmremove: Usage Message

 USAGE:
 % vovlmremove [OPTIONS] <jobId> ...

 This utility removes all the license features associated with the given job.
 It uses 'lmremove' for FLEXlm licenses.
 It uses 'rlmremove' for licenses that use a tag containing RLM.
 It also works with Altair Engineering license emulation using 'vlmremove'.

 Due to FLEXlm behavior, it is possible and expected for lmremove to fail if
 it is called too early (typically 2 minutes after a checkout has occurred).
 In such cases, vovlmremove should be retried after adequate time has passed.

 OPTIONS:
 -h Print this help message.
 -v Increase verbosity
 -prop Add a property called "PREEMPT_LMREMOVE" to the job to describe what

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.185

 has been done.

 EXAMPLES:
 % vovlmremove 00012345
 % vovlmremove 00012345 00022334
 % vovlmremove -v 00012345
 % vovlmremove -prop 00012345
 % vovlmremove -h

Note

vovlmremove uses lmremove for FlexNet Publisher licenses. It uses rlmremove for licenses that use a tag containing RLM.

It also works with Altair Engineering license emulation using vlmremove.

Because of the FlexNet Publisher behavior, it is possible and normal for lmremove to fail if it is called too early (typically before

2 minutes after a checkout). In such case, you can try to run vovlmremove again a bit later.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.186

Resource Management
Altair Accelerator includes a subsystem for managing computing resources. This allows the design team to factor in various

constraints regarding hardware and software resources, as well as site policy constraints.

This mechanism is based on the following:

• Resources required by jobs

• Resources offered by taskers

• Resource maps, as described in the file resources.tcl

There are several types of resources, which are listed below:

Resource type Representation Explanation

Job Resources name A resource required by a job. If the quantity is not shown, the

default is 1; "unix" is the same as "unix#1".

Uncountable Resources (also

called Attributes)

name These resources represent attributes of a tasker that are not

countable. For example, a tasker may have attributes such

as "unix" or "linux". The quantity is not shown for these

resources and it defaults to MAXINT; "unix" is equivalent to

"unix#MAXINT".

Quantitative Resources name#quantity Example: The resource RAMTOTAL#2014 on a tasker

indicates the total amount of RAM on that machine. On a

job, it says that the job requires at least the shown amount of

RAMTOTAL.

Consumable Resources name/quantity Example: RAM/500 assigned to a job indicates that the job

consumes 500 MB of the consumable resources RAM.

Negated Resources !name Example: "unix !linux" on a job indicates that the job requires a

UNIX machine but not a Linux one.

The definition of the quantity is related to the context of the resource. If the context is a tasker, quantity represents how much of

that resource is available from the tasker. If the context is a job, quality represents how much of that resource is required by the job.

Note: Negated resources are allowed only for the context of a job.

The unit of measure is determined by convention for each resource. For example, the resource RAMTOTAL is measured in MB. By

default, quantity is assumed to be 1; the notation foo is equivalent to foo#1.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.187

A resources list is a space-separated list of resources, which are typical resources offered by the taskers. The following example

indicates that a job requires at least 128 MB of RAM and a UNIX host, but not a Linux host.

RAMTOTAL#128 unix !linux

A resources expression is a space separated list of resources and operators: typical resources requested by the jobs or mapped in

the resource map set. Operators can be one of the following: <blank space>, &, |, OR, AND, !, and NOT. The operators are

defined in the table below.

Note: Logical AND has precedence over logical OR operations.

Operator Description

<blank space> implicit logical AND

& explicit logical AND

AND explicit logical AND

| explicit logical OR

OR explicit logical OR

! explicit logical negation

NOT explicit logical negation

For example, a job may have the following resource requirements:

RAMTOTAL#128 unix !linux | RAMTOTAL#512 & linux

This job requires either a UNIX host with at least 128 MB of RAM, but not a linux host or a Linux host with at least 512MB of

RAM.

Also in this Section

Hardware Resources
All taskers offer a predefined set of hardware resources that can be requested by jobs.

All taskers offer a predefined set of hardware resources that can be requested by jobs. These resources are listed in the following

table.

Hardware Resource Type Description

ARCH STRING The VOV architecture of the machine, for

example "linux64", "win64", "armv8"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.188

Hardware Resource Type Description

CORES INTEGER Consumable resource: the number of

logical CPUs/processors used by a job.

CORESUSED INTEGER The total number of cores used by the

running jobs. It is assumed that each job

uses at least one core.

CLOCK INTEGER The CPU-clock of at least one of the

CPUs on the machine in MHz. If the

machine allows frequency stepping, this

number can be smaller than expected.

GROUP STRING The tasker group for this tasker. Each

tasker can belong to only one tasker

group.

HOST STRING The name of the host on which the tasker

is running. Typically this is the value you

get with uname -n, except only the

first component is taken and converted to

lowercase, so that if uname -n returns

Lnx0123.my.company.com the

value of this field will be lnx0123.

LOADEFF REAL The effective load on the machine,

including the self-induced load caused by

jobs that just started or finished.

L1 REAL On UNIX, the load average in the last one

minute.

L5 REAL On UNIX, the load average in the last

five minutes.

L15 REAL On UNIX, the load average in the last

fifteen minutes.

MACHINE STRING Typically the output of uname -m.

MAXNUMACORES INTEGER Highest total number of NUMA cores in

a single NUMA node.

MAXNUMACORESFREE INTEGER Highest number of free cores in a single

NUMA node. Note that free NUMA

cores are correctly accounted for only

if the user specified -jpp pack or -jpp
spread for all jobs on the tasker.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.189

Hardware Resource Type Description

NAME STRING The name of the tasker.

OS STRING The name of the operating system:

"Linux" or "Windows".

OSCLASS STRING This can be unix or windows.

OSVERSION STRING The version of the OS. On Linux, this can

usually be found in /etc/system-

release.

OSRELEASE STRING Typically the output of uname -r.

PERCENT INTEGER Consumable resource: The percentage of

the machine that is still available.

POWER INTEGER The effective power of the tasker, after

accounting for both raw power and the

effective load.

RAM INTEGER A consumable resource expressing the

remaining RAM available to run job:

RAMTOTAL-RAMUSED, in MB.

RAMFREE INTEGER The amount of RAM available to run

other jobs. This metric comes from the

OS, and on linux it includes both free

memory and buffers. In MB.

RAMTOTAL INTEGER The total amount of RAM available on

the machine, in MB.

RAMUSED INTEGER The aggregate quantity of RAM used by

all jobs currently running on the tasker,

in MB. For each job, the amount of RAM

is calculated as the maximum of the

requested RAM resource (REQRAM)

and the actual RAM usage of the job

(CURRAM).

RELEASE STRING On Linux machines, this is the output

of lsb_release -isr, with spaces

replaced by dashes. For example,

CentOS-6.2

SLOT INTEGER A consumable resource indicating how

many more jobs can be run on the tasker.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.190

Hardware Resource Type Description

SLOTS INTEGER Same as SLOT

SLOTSUSED INTEGER Corresponding to the number of jobs

running on the tasker.

STATUS ENUMERATED TYPE Possible values are BLACKHOLE,

BUSY, DEAD, DONE, FULL, OVRLD,

NOLIC, NOSLOT OK, PAUSED, READY,

REQUESTED, SICK, SUSP, WARN,

WRKNG

SWAP INTEGER A consumable resource. The swap space

in MB.

SWAPFREE INTEGER The amount of free swap.

SWAPTOTAL INTEGER Total about of swap configured on the

machine.

TASKERNAME STRING Same as NAME

TASKERHOST STRING Same as HOST

TIMELEFT INTEGER The number of seconds before the tasker

is expected to exit or to suspend. This

value is always checked against the

expected duration of a job.

TMP INTEGER On UNIX, free disk space in /tmp, in MB.

USER STRING The user who started the vovtasker

server, which is usually the same user

account associated with the vovserver

process.

VOVVERSION STRING The version of the vovtasker binary (such

as '2015.03').

Request Hardware Resources

Each job can request hardware resources.

Note: The consumable resources are CORES, CPUS, PERCENT, RAM, SLOT, SLOTS, and SWAP.

• To request a machine with the name bison, request NAME=bison. To request any linux64 machine, request

ARCH=linux64.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.191

• Consumable resources are added together. For example -r CORES/2 CORES/4 CORES/6 is a request for a total of 12

cores.

• If redundant resources are specified, the largest value will be taken. For example, if -r RAMTOTAL#2000

RAMTOTAL#4000 is specified then RAM#TOTAL4000 will be the resource that is used.

Request examples are listed in the following table:

Request Objective Syntax for the Request

A specific tasker NAME=bison

Not on bison NAME!=bison

One of two taskers NAME=bison,cheetah

A preference: bison, if it is available; otherwise, cheetah (NAME=bison OR NAME=cheetah)

A specific architecture, such as Linux ARCH=linux

A specific tasker group, such as prodLnx GROUP=prodLnx

2 GB of RAM RAM/2000

Two cores CORES/2

Two slots SLOTS/2

Exclusive access to a machine PERCENT/100

1 minute load less than 3.0 L1<3.0

Wildcard Tasker Resources

A tasker can also offer resources that contain a wildcard. The wildcard is '*' and can be used instead of the name or the type. Legal

values for wildcard resources are:

Wildcard Description

* Matches all resources that have no type

: Matches all resources

*:hsim Matches all resources with name "hsim"

License:* Matches all resources of type "License"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.192

Wildcard Description

JobType:* Matches all resources of type "JobType"

These resources are particularly useful for indirect taskers, which are used to transfer jobs from FlowTracer to Accelerator.

Resource Mapping
As the vovservers determines which tasker is most suited to execute a particular job, it performs a mapping of the job resources,

followed by a matching of the mapped resources.

When dispatching a job, the vovservers does the following:

• Gets the list of resources required by a job.

• Appends the resource associated with the priority level, such as Priority:normal.

• If it exists, it appends the resource associated with the name of the tool used in the job (reminder: the tool of a command

is the tail of the first command argument after the wrappers). The tool resource has type Tool and looks like this:

Tool:toolname.

• Appends the resource associated with the owner of the job, such as User:john.

• Appends the resource associated with the group of the job, such as Group:time_regression.

• Expands any special resource, i.e. any resource that starts with a "$".

• For each resource in the list, the vovservers looks for it in the resource maps. If the resource map is found and there is enough

of it, that is, the resource is available, the vovservers maps the resource. This step is repeated until one of the following

conditions is met:

The resource is not available. In this case, the job cannot be dispatched and is left in the job queue.

A cycle in the mapping is detected; in this case the job cannot be dispatched at all and is removed from the job queue.

The resource is not in the resource map.

• VOV appends the resource associated with the expected job duration to the final resource list. For example, if the job is

expected to take 32 seconds, the resource TIMELEFT#32 will be appended.

• Finally, the vovservers compares the resulting resource list with the resource list of each tasker. If there is a match - all

resources in the list are offered by the tasker - the tasker is labeled as eligible. If there is no eligible tasker, the job cannot be

dispatched at this time and remains in the queue; otherwise, the server selects the eligible tasker with the greatest effective

power.

Local Resource Maps

Resource maps can be designated as local, using the local flag.

Important: This flag is only available and supported for a FlowTracer installation, utilizing vovwxd and an LSF

interface.

Resource maps designated as local will be managed on the "local" (FT) side of the vovwxd connection instead of the normal case

where resource specifications are expected to be managed on the base queue side.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.193

For example, to limit jobs to running 5 at a time from a specific FlowTracer project, do the following:

1. Enable local resources with run: vovservermgr configure vovwxd.localresources 1

Note: Alternatively, you can add the following to the policy.tcl file:

set config(vovwxd.localresources) 1

2. Create the local resource.

a. Run vovresourcemgr set mylocallimit -max 5 -local

Note: Alternatively, you can add the following to the resource.tcl file:

vtk_resourcmap_set mylocallimit -total 5 -local

This results in limiting running jobs with the local resource mylocallimit to a maximum of 5 jobs at a time.

For example, FDL to use a local resource named "mylocallimit:

R mylocallimit

J vov /bin/sleep 0

Limitations on the number of Resource Expressions

While the number of OR expressions allowed in a job resource request is limited and controlled by a policy setting, the number of

AND expressions including plain expressions without an explicit AND, also has limits.

The scheduler evaluates the resource expressions counting them as it goes. For example a list of 4 separate resource requests

(without maps) will result in a max count of 7; 4 from the explicit resource requests and 3 from the automatically added resources

(Group, Priority and User). Traversal into a resource map increments the count and a return from a resource map restores the count

to value prior to the traversal into the map.

During this traversal, OR operators are recorded and used to influence scheduler operation. The count represents the cumulative

depth of the resources. Whenever the count exceeds 30, any traversal that increases the depth is curtailed. This is done silently.

Any OR operators that occur at a depth deeper than 30 are ignored and those scheduling solution are effectively ignored by the

scheduler resulting in unexpected behavior.

Large numbers of resource expressions do impact scheduler performance. The general guidance is to keep the explicit resource

expressions to fewer than 8 including any mapped ones.

For applications that need a much larger number and where the depth may exceed the 30 limit, it is recommended to place the

OR operators early in the resource requests (for example, the left hand side) and to place large numbers of ANDed resource into a

resource map.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.194

Resources Representing the Sum of Others

The procedure vtk_resourcemap_sum is used to define a resource map as the sum of other resource maps. It takes two

arguments:

• The name of the resource map

• The list of the resource components

For example, suppose you have a resource map called License:a and another called License:b. You can create a sum

resource called License:sum using:

This code fragment typically goes into resources.tcl
vtk_resourcemap_sum License:sum [list License:a License:b]

This results in a resource License:sum defined as follows:

This is the result of using vtk_resourcemap_sum....
vtk_resourcemap_set License:sum -max [expr $qa+$qb] -map "License:a OR License:b"

... or this map if you activate "commas" (see Commas vs. ORs in
 Resources).
vtk_resourcemap_set License:sum -max [expr $qa+$qb] -map "License:a,License:b"

Where qa and qb are the current max values for License:a and License:b respectively. The sums are recomputed by

vovresourced about once a minute, or by Allocator every 30 seconds.

Commas vs. ORs in Resources

Motivation for Commas

For various reasons, the current Accelerator scheduler suffers from an growth of complexity depending on the number of OR's in a

resources expression. For example, this expression has 2 ORs:

"(License:A OR License:B OR License:C) RAM/200"

Practical considerations limit the allowed number of ORs to about 20. However, in many cases, you do not need to use the

expensive OR when instead we are trying to request any resource in a list of resources. For this purpose, there is the "comma

operator", and the equivalent expression above can be rewritten as:

"License:A,License:B,License:C RAM/200"

The scheduler will pick any one of License:A, License:B or License:C, in that order. Such expression is much cheaper to

compute.

As of version 2016.09u15, full support of this comma operator is offered.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.195

Activation of Commas in vovresourced

To activate the use of commas in resource expressions in vovresourced, add the following setting in the config file (either

resources.tcl or vovresourced/config.tcl)

Add this to vovresourced/config.tcl
set RESD(useCommas) 1

Activation of Commas in Allocator

For the time being, the use of commas to represent groups of resources is activated by setting the environment variable

VOV_USE_COMMAS_IN_MAPS to 1 when calling vtklanc. This is most easily accomplished by setting the variable in the

setup.tcl file and restarting the taskers.

Set this in la.swd/setup.tcl
setenv VOV_USE_COMMAS_IN_MAPS 1

It is expected that finer control for this will be provided in future versions of Allocator.

Automatic Resource Limits

The resources of type Limit are treated specially by VOV. When a job is created or submitted, if the name of the job resource

contains one or more of these tokens @USER@, @GROUP@, @JOBCLASS@, @JOBPROJ@ then each token is replaced by the value

of the corresponding field for the job. The resource map with the token is called the symbolic limit while the derived resource map

is called the specific limit.

For example, if user "john" submits a job with the resources Limit:abc_@USER@, the following happens:

• The resource requirement for the job is changed so that Limit:abc_@USER@ is replaced with Limit:abc_john

• A new resource map called Limit:abc_john is created. This resource map will be assigned a maximum amount equal to

the maximum of the resource map called Limit:abc_@USER@, if such resource map exists, or just 1 if the resource does

not exist.

To use the automatic limit resources, the admin needs to create the symbolic resource. For example:

In resources.tcl
vtk_resourcemap_set Limit:queue_normal_@USER@ 10

To change the value of all limits derived from a symbolic limit, you should use the procedure

vtk_resourcemap_set_limit. This procedure normally sets all derived limits to the same new value, but it also allows

the specification of different limits for selected users or the reduction of specific limits based on the out-of-queue usage of a given

license.

Example 1: set all derived limits to 15:
vtk_resourcemap_set_limit Limit:queue_normal_@USER@ 15

Example 2: set all derived limits to 15, with a few exceptions:
vtk_resourcemap_set_limit Limit:queue_normal_@USER@ 15 -special {
 Limit:queue_normal_mary 20
 Limit:queue_normal_john 3
}

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.196

Example 3: set all derived limits to 15, but consider out-of-queue usage
Since this limit changes over time, we put it inside a TIMEVAR
procedure, so it is computed once every minute.
TIMEVAR hsim_ooq {
 default {
 vtk_resourcemap_set_limit Limit:queue_hsim_@USER@ 15 -ooq License:hsim
 }
}

Resource Daemon Configuration

vovresourced

Table 1:

Working directory vnc.swd/vovresourced

Config file vnc.swd/vovresourced/resources.tcl

Auxiliary config file $VOVDIR/local/resources.tcl

Info file vnc.swd/vovresourced/resourced.pid

The daemon vovresourced is the main agent that defines the resources of the vovservers. The configuration file is

resources.tcl, which is located in the server configuration directory. This file defines which resources are to be used by the

server by calling the procedure vtk_resourcemap_set. Examples are available in the vnc.swd/resources.tcl file.

The procedures vtk_flexlm_monitor and vtk_flexlm_monitor_all are used to define resources that are

derived from licenses. If the resources.tcl file calls for monitoring FlexNet Publisher features with the command

vtk_flexlm_monitor, or when Monitor receives notification of an event from LICMON, vovresourced then retrieves the

information about the event. Refer to the vnc.swd/resources.tcl file for examples.

Refresh Rate

The frequency of the checks can be configured in the resources.tcl file as shown below:

set RESD(refresh) 10000; #Set refresh time to 10,000 milliseconds.

Starting vovresourced

The program vovresourced is normally started automatically by the server. vovresourced can also be invoked manually

from any directory. After reading the vovresourced configuration file, vovresourced then reads the auxiliary configuration

file $VOVDIR/local/resources.tcl (if the auxiliary file has been created). When the resources.tcl file is changed,

the vovresourced daemon is restarted with the following commands:

% vovproject reread ; # Generic method for any vovserver.
% nc cmd vovproject reread ; # Specific for Accelerator.
% ncmgr reset ; # Specific for Accelerator.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.197

Manage Resources with the CLI
vovresourcemgr is a utility for managing VOV resource maps. It may be used to create, modify, forget, and reserve resource

maps.

Resouce map names support most of the ASCII characters except # / =. Using alphanumeric characters is strongly

recommended.

vovresourcemgr: Usage Message

USAGE:
 % vovresourcemgr COMMAND [options]

COMMAND is one of:
 show Show summary info about all resource maps
 show [R1..RN] Show info about specified resource map(s)
 matches RESMAP Show license matching info
 ooq RESMAP Show out of queue license handles
 create RESMAP map-options
 Create a new resource map
 set RESMAP map-options
 Create a new or modify an existing resource map
 reserve RESMAP TYPE WHO HOWMANY HOWLONG WHY [-exclusive]
 Place a reservation on a resource map
 forget [-force] R1 [R2..RN]
 Remove resource map(s) from the system

MAP-OPTIONS:
 -expire specify expiration (timespec) relative to now
 -max specify quantity
 -map specify map-to value
 -rank specify rank when setting
 -noooq do not track out-of-queue
 -local specify that this is a local resource (when using vovwxd)

For reserve, TYPE is one of: USER,GROUP,JOBCLASS,JOBPROJ,JOBID.

EXAMPLES:
 % vovresourcemgr show
 % vovresourcemgr show Limit:abc
 % vovresourcemgr matches Limit:abc
 % vovresourcemgr create License:spice -max 8
 % vovresourcemgr set License:spice -max 10
 % vovresourcemgr set License:spice -map "Policy:spice"
 % vovresourcemgr ooq License:spice
 % vovresourcemgr reserve License:spice USER john,jane 3 3d ""
 % vovresourcemgr reserve License:spice USER bill 1 1w "" -exclusive
 % vovresourcemgr forget License:spice
 % vovresourcemgr forget -force License:spice

Note: The vovresourcemgr utility command connects to and acts on the VOV project enabled in the shell

where it is launched. To act on Accelerator, use vovproject enable vnc, or precede it with nc cmd as

shown in the examples below.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.198

Dynamic Resource Map Configuration

Persistent resource maps are defined in the resources.tcl configuration file for a project. The vovresourcemgr command

is useful to make changes to the resource maps on the fly.

Note: Unlike resource maps defined in resources.tcl, changes made with vovresourcemgr do not persist

across restarts of vovserver.

The create command checks for existence of the named resource map and exits with a message if it already exists. The set

command will create or replace an existing resource map with the given values with no confirmation.

The following example creates a new resource map named Limit:spice, which is created with a quantity of 10 and an empty

map-to value.

% nc cmd vovresourcemgr set License:spice -max 10

Resource Map Reservation

Following is an example of using vovresourcemgr to place a reservation on a resource map. In this case, two of the resource

maps called License:spice are reserved for user john for an interval of 4 hours. The resource map reservation will

automatically expire after 4 hours.

% nc cmd vovresourcemgr reserve License:spice USER john 2 4h "library char"

Workaround for Misspelled Resource

Sometimes users submit jobs to Accelerator that request nonexistent resources, which causes the jobs to be queued indefinitely.

Such jobs can be made to run by creating the missing resource, or by modifying the jobs to request the correct resources. The

following example creates four temporary License:sspice resources that are mapped to the correct License:spice

resource. License:sspice is an incorrect request - that resource does not exist. A temporary resource is created with that name

that will be mapped to the correct resource, License:spice

% nc cmd vovresourcemgr create License:sspice -max 4 "License:spice"

Forgetting Unneeded Resource Maps

Continuing the above example - the temporary resource map may be removed after the malformed jobs have run. Or, you can just

let it expire.

Note: There is no confirmation; the command acts immediately.

% nc cmd vovresourcemgr forget License:sspice

Reconciliation Daemon Configuration

Summary information for vovreconciled:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.199

Working directory vnc.swd/vovreconciled

Config file vnc.swd/vovreconciled/config.tcl

The daemon vovreconciled periodically checks all running jobs and looks for resources that are either "Requested/Not

Used" or "Not Requested/Used". When the daemon is reasonably sure about the resource mismatch, it will reconcile the grabbed

resources list for the running jobs by calling vtk_resourcemap_change_grab.

vovreconciled: Usage Message

DESCRIPTION:
 vovreconciled is a daemon that detects "requested/not_used"
 resources for running jobs and removes them from the
 "grabbed resources" list after a certain amount of time,
 called "RevocationDelay"

 The RevocationDelay is set to the smallest value
 found in the following places:

 1. The property AGGRESSIVE_SCHEDULING_DELAY
 (old) attached to the job class object, if defined
 2. The property REVOKE_DELAY
 (new) attached to the job class object, if defined
 3. The property REVOKE_DELAY
 attached to the resourceMap, if defined
 4. The value of RESD(revokeDelay), if defined.

 NO revocation is performed if any of the following are true
 1. If RevocationDelay < 1
 2. If RevocationDelay > 10000000
 (or 115d17h)
 3. If the resource is not derived from an external license.
 4. If the resource type is not "License" or a legal member
 of License
 5. If the number of revocations for a license on a job >
 $RESD(maxRevokes)=50
 6. If the CHANGEGRAB property exceeds RESD(maxPropLength)
 7. The job is younger than the RESD(revokeDelay)

 The config.tcl file must exist but it can be empty.
 The config file allows the user to set some additional options

 RESD(maxRevokes) N N is the maximum number of times a license on a
 job can be revoked. Default is 50
 To see the number of times a specific license has
 been revoked for a given job, view the
 REVCNT_<license> property that will exist on the
 job, where <license> is the name of the specific
 license of interest.
 RESD(maxPropLength) N N is the number of characters the CHANGEGRAB
 property can be. Default 130000
 RESD(emailSkips) N 1 enables/0 disables emailing the job owner and
 optionally admins that a license could have been
 revoked but was not, because the maximum number
 of revoke was reached or the CHANGEGRAB property

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.200

 is too long. Default 1
 RESD(adminEmails) S A comma-separated string of userId's that are sent
 emails on skips. Default ""
 RESD(revokeDelay) T number of seconds a job must be running before it
 can be considered to have a license revoked.
 Default 10000000 seconds or 115d17h
 RESD(loopTime) T How often to run the check on all jobs.
 Default 30 seconds
 RESD(typeList) S A space separated list of license types that will
 be handled by vovreconciled. Default is {License}.
 The types Limit, Policy, User, Group and Priority
 are not supported and will be ignored. The type
 License will be added if not specified.

OPTIONS:
 -v -- Increase verbosity.
 -h -- Show this help.
 -loop <TIMESPEC> -- Default 30s
 -inert -- Run in inert mode where nothing changes
 for the job.

EXAMPLES:
 % vovreconciled
 % vovreconciled -h
 % vovreconciled -loop 2m
 % vovreconciled -v

vovreconciled Operations

This daemon, if activated, runs continuously and checks all running jobs every 30 seconds. It looks at running jobs whose age is

greater than the RESD(revokeDelay) or from the most recent resumption. If one of such jobs has an RNU resource (Requested

but Not Used) for longer than a certain reconciliation time (Treconcile), then the job is flagged for reconciliation. If the condition

persists for 3 consecutive cycles, then the resource is removed from the list of grabbed resources for the job.

The reconciliation time Treconcile is computed as the list of:

• The value of the property REVOKE_DELAY attached to the resource map (a TIMESPEC)

• The value of the property REVOKE_DELAY attached to the jobclass (a TIMESPEC)

• The value of RESD(revokeDelay) in config.tcl

Later on, if a job is found to use a resource that was previously reconciled away, that resource is restored to the job.

Override Delays

For each running job, vovreconciled looks at what it can do only after a certain amount of time has elapsed from the start of

the job. This amount of time is called REVOKE DELAY and it is defined, by default, as the least of:

• The value of the property REVOKE_DELAY in the jobclass

• The value of the property REVOKE_DELAY in the resource map

• The global variable RESD(revokeDelay)

Some customers may want to change this behavior. A possibility is to override the procedure VovGetRevokeDelay in the file

config.tcl. Both the default implementation of this procedure as well as an example for an override are shown below:

####
DEFAULT IMPLEMENTATION
####
proc VovGetRevokeDelay { jobClass res displayMessage } {

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.201

 global RESD
 set revokeDelayOld [VovJobClassGetProperty $jobClass
 AGGRESSIVE_SCHEDULING_DELAY 10000000]
 set revokeDelayNew [VovJobClassGetProperty $jobClass REVOKE_DELAY
 10000000]
 set revokeDelayResMap [VovResMapGetProperty $res REVOKE_DELAY
 10000000]

 set revokeDelay [FindLeastDelay $revokeDelayOld $revokeDelayNew
 $revokeDelayResMap $RESD(revokeDelay)]

 if { $displayMessage > 0 } {
 set msg " FindLeastDelay\n"
 append msg "\tAggressiveClass: $revokeDelayOld\n"
 append msg "\tREVOKE_DELAY in class: $revokeDelayNew (jobclass=$jobClass)\n"
 append msg "\tREVOKE_DELAY in ResMap: $revokeDelayResMap (resource=$res)\n"
 append msg "\tGlobal: $RESD(revokeDelay)\n"
 append msg "\tResult revokeDelay: $revokeDelay"
 VovMessage $msg 5
 }

 return $revokeDelay
}

####
EXAMPLE OVERRIDE (to be implemented in vovreconciled/config.tcl
####
proc VovGetRevokeDelay { jobClass res displayMessage } {
 global RESD
 set revokeDelayClass [VovJobClassGetProperty $jobClass REVOKE_DELAY 10000000]
 if { $revokeDelayClass != 1000000 } { return $revokeDelayClass }

 set revokeDelayResMap [VovResMapGetProperty $res REVOKE_DELAY 10000000]
 set revokeDelay [FindLeastDelay $revokeDelayResMap $RESD(revokeDelay)]

 return $revokeDelay
}

Add Resources

Generic resources are added to Altair Accelerator via the vtk_resourcemap_set procedure call:

vtk_resourcemap_set <name> <quantity> [map]

Below are two examples:

vtk_resourcemap_set myres 2
vtk_resourcemap_set myunlimitedres UNLIMITED

Example: Node Locked License

In the scenario of this example, a license does not utilize FlexNet Publisher or another dynamic license management solution, but

does require a tool to run only on one specific host. In this example, the tool is spice, the host is pluto, and the license is for

two concurrent instances of spice. Following are the steps to correctly handle this constraint:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.202

1. Choose a name (in the form name or type:name) to represent the node locked resource (such as

License:spice_pluto) and a name to be announced to the users (such as License:spice). In this way, it is

hidden to the users that the spice license is locked to a given node. Also, if there is an upgrade to a floating license or

multiple node-locked licenses, that can be carried out without having to announce it to the users.

2. Add the following lines to the resources.tcl file:

vtk_resourcemap_set License:spice UNLIMITED License:spice_pluto
vtk_resourcemap_set License:spice_pluto 2 pluto

% nc cmd vovproject reread

3. Let the job declare that it requires the resource License:spice; use option -r in nc run as shown below:

% nc run -r License:spice -- spice -i chip.spi

License-based Resources
This section describes the Accelerator interface to Monitor, an application that monitors license servers and makes the in-use

information available to Accelerator.

Many software products in Electronic Design Automation use FlexNet Publisher licensing by Flexera or other vendor-specific

license mechanisms.

Monitor provides a centralized interface between vendors' license daemons and Accelerator. The benefits of this approach are:

• Faster response, with reduced load on the license daemons

• Improved consistency of license in-use information

• Individual projects need not be concerned with license details

• Browser-based interface to access information about licenses in-use

Accelerator is shipped with an edition of Monitor that is licensed to monitor current license activity only, and provide that

information to Accelerator. This edition is referred to as LMS (Monitor Small).

Monitor can also store, report, and graph historical license usage and denial activity.

Note: A full Monitor license from Altair is required to enable historical and denial information.

Configuration

Refer to Installation Guide for details about installing and configuring the Monitor product.

By default, Accelerator assumes that the Monitor server is running on the same machine as the Accelerator server on port 5555,

under the VOV project name of licmon. If this is not the case, the following statements will need to be placed at the top of the

resources.tcl file to inform the Accelerator resource daemon of Monitor's details:

Enable Accelerator to see Monitor.
This is a security feature.
set lm(ssl) true

Fragment of resources.tcl

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.203

This is the default configuration.
set LM(flexlmd) localhost:5555
set LM(licmon) licmon

You may want to specify a different Monitor
running on a different host, a different port
with a different name.
set LM(flexlmd) someOtherHost:25555
set LM(licmon) licmonTest

Accelerator uses vtk_flexlm_monitor and vtk_flexlm_monitor_all statements in its resources.tcl

configuration file in order to communicate with the Monitor product to obtain license utilization information.

The procedure vtk_flexlm_monitor takes from one to three arguments:

1. feature - the name of the license feature. This is the name of any feature monitored by Monitor. The name may include a

specific Monitor tag. If no tag is specified, the cumulative count for all tags containing the feature will be used.

2. resource - the Accelerator resource name. If the resource name is specified, then this name is the actual resource name

used. If the resource name is not specified, the name defaults to License:<feature>.

3. map - an optional resource to which the resource should be mapped.

For example:

vtk_flexlm_monitor Design-Compiler

Pick up a specific tag for Design-Compiler
This maps the feature Design-Compiler to License:Design-Compiler
vtk_flexlm_monitor SNPS/Design-Compiler

Specify a different resource name
vtk_flexlm_monitor SNPS/Design-Compiler License:dc

Additionally specify that all jobs using License:dc need to also use
a linux resource.
vtk_flexlm_monitor SNPS/Design-Compiler License:dc linux

As an alternative to individually calling vtk_flexlm_monitor for each feature to monitor, vtk_flexlm_monitor_all

can be used. The default behavior of this procedure is to create resources for all features that are known to Monitor. This procedure

has a number of options:

Table 2: vtk_flexlm_monitor_all Options

Option Description

-daemon host:port Specifies the host and TCP/IP port where Monitor is to be contacted to get

license data via HTTP. If not given, the procedure reads the info.tcl in

$VOVDIR/../../licmon/licmon.swd/vovlmd to locate the daemon.

If the daemon cannot be located, the procedure returns 0.

-tag tag Only use features from the source having this tag. The default is to use features

from all license sources. This option may be repeated.

-tags list_of_tags Same as above, only with a list of tags to be included. This option may be

repeated.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.204

Option Description

-I regexp Appends regexp to the list of regexps evaluated for feature inclusion. If no -I

options are given, all features from the given source are included.

-X regexp Appends regexp to the list of regexps evaluated for feature exclusion. If no

-X options are given, no features are excluded.

-It regexp Appends regexp to the list of regexps evaluated for tag inclusion. If no -It

options are given, all tags from the given source are included.

-Xt regexp Appends regexp to the list of regexps evaluated for tag exclusion. If no -Xt

options are given, no tags are excluded.

-fproc fproc-name Specifies the name of the user-defined Tcl filter procedure to apply to

the features. The default is vtk_flexlm_monitor_filter {tag

feature}. This procedure takes two parameters, a tag and a feature name, and

returns a Boolean, where 1 means to include the feature, and 0 means to exclude

it. The default procedure always returns 1.

-rproc rproc-name Specifies the name of the user-defined Tcl procedure that returns the resource

map name for a feature. The default is vtk_flexlm_monitor_resname

{tag feature}. This procedure takes two parameters, a tag and a feature

name, and returns a string, which is the VOV resource name for the feature. The

default procedure prepends License: to the feature name.

-mproc mproc-name Specifies the name of the user-defined Tcl procedure that returns the

right-hand-side of the resource map name for a feature. The default is

vtk_flexlm_monitor_mapname {tag feature}. This procedure

takes two parameters, a tag and a feature name, and returns a string, which is the

right-hand-side of the VOV resource map for the feature. The default procedure

returns "", which means no mapping.

-order list_of_tags This options controls the order in which multiple tags (think of "license files")

are listed in Accelerator. This applies when there are multiple tags for the same

feature. For example, if the feature abc is in two tags, SNPS_BLR/abc and

SNPS_US/abc, you will get a resource map called License:abc, which is

the OR of the two resource maps associated to each feature, as in

License:abc # License:SNPS_US_abc OR
 License:SNPS_BLR_abc

However, it is also possible to get the following map, with inverted order of the

tags:

License:abc # License:SNPS_BRL_abc OR
 License:SNPS_US_abc

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.205

Option Description

The -order option allow controlling which map will be used. For example: -

order "SNPS_BLR SNPS_US" will use SNPS_BLR before SNPS_US. The

option can be repeated multiple times.

This procedure can make getting started with license management much easier and faster. Use this procedure with caution,

especially if it is used with any user-defined Tcl procedures. Place the procedure definitions in the resources.tcl file, and be

sure to specify the names carefully.

More examples for vtk_flexlm_monitor and vtk_flexlm_monitor_all

Fragment of resources.tcl file:

Monitor the feature PrimeTime
vtk_flexlm_monitor PrimeTime

Monitor the feature PrimeTime, control the order of the tags
vtk_flexlm_monitor -order "SNPS_US SNPS_CH SNPS_FR" PrimeTime

Monitor the feature for Design-Compiler. Internally VOV
uses the token dc_shell_license.
vtk_flexlm_monitor Design-Compiler dc_shell_license

The FlexNet Publisher feature "pathmill" maps to the VOV resource "pathmill"
which, in turn, maps to the resource "sun7"
vtk_flexlm_monitor pathmill pathmill sun7

Example : Monitoring all features

#
Monitor all the features gathered by the Monitor at grove:5555#
vtk_flexlm_monitor_all -daemon grove:5555

#
Monitor all the features gathered by the Monitor,
control the order of the tags
#
vtk_flexlm_monitor_all -order "SNPS_US SNPS_FR" -order "MGC_US MGC_FR MGC_UK"

Example: Monitor some features, user-defined map proc

#
Monitor some features gathered by the LicenseMonitor at grove:5555
Make all the Fintronic tools go to the finfarm vovtaskers
by defining a RHS-procedure

proc fintronic_mapname {tag feature} {
 set rval ""
 if { [regexp {^fin} $feature] } {
 set rval "finfarm"
 }
 return $rval
}

Only monitor features from tags REAL and Altair Accelerator products

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.206

vtk_flexlm_monitor_all -daemon grove:5005 -tag REAL -tag RTDA -rproc
 fintronic_mapname

In the above example, features related to the Fintronic Finsim Verilog simulator, recognized by the feature name beginning with

'fin', will have a right-hand-side of finfarm' added to the resource map, so that such jobs will go to vovtaskers offering the 'finfarm'

resource.

Configuring Job and License Checkout Matching

When a resource is derived from a license feature, it is useful to attempt a matching of the license handles that are currently

checked out and the jobs that are currently running.

This is a challenging task because the information relative to the license handles is often incomplete and incorrect. For example,

FlexNet Publisher does not report the checkout time to the second, and does not reveal the PID of the process that has requested

the checkout. The PID alone would enable a precise matching. Instead, we have to accept the best possible solution based on

approximate input data.

The matching is automatically enabled for all licenses.

When the number of running jobs for a given license exceeds about 1,000, the matching becomes onerous on the vovserver, which

can be detected by "Long Service" messages in the vovserver log. For this issue, it is recommended to disable the handle matching

for selected licenses.

Note: If the rds.enable configuration parameter is set to 1, then RDS resource management is active.

Otherwise, classic resource management is active.

When RDS Resource Management is Enabled

Edit the SWD/resources.cfg AVS resource management configuration file in one of two ways to assert the NOMATCH

flag.

The recommended way is to assert the NOMATCH flag attribute directly in the feature rule object within the

RESOURCE_MAPS array attribute:

{
 LICENSE_MONITORS=[{ NAME=”lm_cool_project” }]
 RESOURCE_MAPS = [
 { TAGS=”Blue”, FEATURES=”great_feature”, NOMATCH}
]
}

Alternatively, the NOMATCH flag can be configured for a license feature using the top-level FLAGS array attribute:

{
 LICENSE_MONITORS=[{ NAME=”lm_cool_project” }]
 FLAGS = [
 { TYPENAME=”License:great_feature”, NOMATCH },
]
 RESOURCE_MAPS = [
 { TAGS=”Blue”, FEATURES=”great_feature”}
]
}

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.207

When Classic Resource Management is Enabled

Edit the Tcl configuration file SWD/resources.tcl to disable matching for a feature:

vovresSetFlags License:great_feature –nomatch

A less preferred method is as follows:
vtk_resourcemap_set License:great_feature -nomatch

The great_feature license feature is created by a vtk_flexlm_monitor
or vtk_flexlm_montor_all directive.

vtk_flexlm_monitor_all

Configuration Parameters that Control Matching

The following server configuration parameters control, configure, and limit Accelerator’s job and license checkout matching

algorithm.

resusermatchtolerance In seconds, determines a tolerance in matching checkout timestamps with jobs

starts

resusermaxmatches The number of "also" matches that we look for. .

resuserDisableMatchingThresholdA threshold for disabling matching if the sum of Monitor handles and FlowTracer

jobs exceeds it.

License Sharing Support
With license sharing, the same license can be shared by multiple jobs. Depending on the policy selected by the vendor, there are

licenses that can be shared among different jobs provided that some characteristics are the same, for example the execution host,

the user or the display.

Host + User Sharing

With this type of sharing, if a user is already running a job on a machine, that same user is allowed to run any number of jobs

on the same machine without consuming another license. This can be very advantageous for the end user especially when using

machines with 8 or more CPUS.

This configuration is supported with two steps:

1. Define a jobclass for the jobs that should take advantage of license sharing.

This is file vnc.swd/jobclass/spectrerf.tcl
set classDescription "SpectreRF class"
set VOV_JOB_DESC(resources) "Share:spectrerf_[vtk_logname] OR License:spectreRF"

2. Add a procedure to resources.tcl to dynamically create the resource maps represent what licenses can be shared.

source $env(VOVDIR)/tcl/vtcl/vovsharedresourcesproc.tcl
Configuration of the procedure for shared licenses.
SHRaddRule spectrerf Share:spectrerf_@USER@

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.208

Automatic Setting of LM_LICENSE_FILE
The capability described in this section is useful when the same license is provided by more than license server.

Problem Description

In this example, there is a license called "spice" that is provided by two daemons:

• The daemon 1234@lan.company.com has 3 licenses for LAN use

• The daemon 9999@wan.company.com has 10 licenses for WAN use

In a typical setup, the scheduler is told to use first the LAN licenses and then the WAN licenses, and this is easily accomplished by

setting the environment variable LM_LICENSE_FILE to the following value:

setenv LM_LICENSE_FILE 1234@lan:9999@wan

For this example, the scheduler has decided that a given job should use a WAN license. When the job is launched, however a LAN

license has just become available, and the tool actually checks out a LAN license instead of a WAN license.

This causes a problem: the double counting of the licenses in use:

• One WAN license is considered in use by the scheduler (requested but not yet used).

• One LAN license is actually in use (not requested but currently used).

In this situation, it would be desirable for the scheduler to decide that a job should use a WAN licenses and the value of

LM_LICENSE_FILE should be only 9999@wan. However, if the scheduler chooses the LAN license, then the value of

LM_LICENSE_FILE should be only 1234@lan. This arrangement works best if the license checkouts need to be queued by

FlexNet Publisher.

The farm would work more efficiently if the value of LM_LICENSE_FILE were controlled at execution time on the basis of the

resources grabbed for each individual job. A solution is described in the following section.

Solution: set VOV_LM_VARNAMES

If the environment variable VOV_LM_VARNAMES is set to a comma-separated list of names of environment variables, the "vw"

wrapper will automatically set or prepend to each variable in the list with the list of license daemons that are associated with the

resources that have been grabbed for the job.

Important: The functionality activated by setting the VOV_LM_VARNAMES environment variable is

implemented by the VOV wrapper program vw2 and its aliases. Interactive jobs that have a PTY do not use this

wrapper, so the VOV_LM_VARNAMES capability is only available for batch jobs.

A typical value of VOV_LM_VARNAMES is LM_LICENSE_FILE, but sometimes it is necessary to control other variables such

as CDS_LICENSE_FILE (for Cadence tools). At times, it may be desirable to set VOV_LM_VARNAMES to another variable

name which is then processed by one of the wrapper scripts.

There may be cases where it is desired to exclusively set license variables instead of prepending to existing values. To accomplish

this, set the VOV_UNSET_VARNAMES environment to a comma-separated list of environment variables to unset and they will

be unset before the vw wrapper populates them.

Following is an example of using this variable:

setenv VOV_LM_VARNAMES LM_LICENSE_FILE

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.209

More examples are shown below:

Examples of uses of VOV_LM_VARNAMES
setenv VOV_LM_VARNAMES CDS_LICENSE_FILE
setenv VOV_LM_VARNAMES CDS_LICENSE_FILE,LM_LICENSE_FILE
setenv VOV_LM_VARNAMES MY_VAR

Job submission with VOV_LM_VARNAMES

In the example below, a feature called "abc" is provided by two FlexNet Publisher daemons, 1234@lan and 9999@wan.

Both daemons are being monitored by Monitor, which uses tags "LAN" and "WAN" respectively. In turn, Accelerator, which

is connected to Monitor, is aware of those two resources and has a resource map called "License:abc" which is the sum of

"License:LAN_abc" and "License:WAN_abc". In Accelerator, License:abc maps to "License:LAN_abc OR License:WAN_abc".

You want to push the utilization of the abc resource to the edge of saturation, so instead of defining LM_LICENSE_FILE to the

value "1234@lan:9999@wan," let Accelerator control the value of LM_LICENSE_FILE by having an environment for the tool

execution where the variable VOV_LM_VARNAMES is set to LM_LICENSE_FILE. Call the environment "MYENV". In the file

MYENV.start.csh, you will have a line that says:

setenv VOV_LM_VARNAMES LM_LICENSE_FILE

To submit a job that uses "abc", enter:

% ves MYENV
% nc run -r License:abc -- abcTool ...

In cases in which you absolutely want to use one of the daemons, specify the appropriate resource:

% nc run -e MYENV -r License:WAN_abc -- abcTool ...

LM_VAR_NAME - deprecated

Note: Using LM_VAR_NAME is not recommended; it has been deprecated.

For backwards compatibility, the variable LM_VAR_NAME could be used to set the name of a single environment variable.

vovgetflexlmdaemons

In some situations, using other methods to set the LM_VAR_NAME variable on the fly may be preferred. The utility

vovgetflexlmdaemons can be used to locate the daemons that need to be used based on the resources grabbed by Accelerator

at dispatch time.

vovgetflexlmdaemons: Usage Message

 DESCRIPTION:
 Processes VOV_UNSET_VARNAMES, VOV_LM_VARNAMES, and/or LM_FILE_VAR
 environment variables and generates script for the specified shell that
 will unset the variables listed in VOV_UNSET_VARNAMES and then set
 LM_LICENSE_FILE to match the resources used by the job whose ID is in
 VOV_JOBID or those provided on the command line.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.210

 USAGE:
 % vovgetflexlmdaemons [OPTIONS] [RESOURCES]

 OPTIONS:
 -v -- Increase verbosity
 -h -- This help
 -sh -- Specify the shell for the output script, default is csh
 -bash
 -ksh
 -csh
 -tcsh

 EXAMPLES:
 % vovgetflexlmdaemons -h
 % vovgetflexlmdaemons
 % vovgetflexlmdaemons -bash
 % vovgetflexlmdaemons -bash License:lic_drc

 EXAMPLE OUTPUT:
 ### With -bash option.
 LM_LICENSE_FILE=6306@mac05;
 export LM_LICENSE_FILE;

 ### With -csh option.
 setenv LM_LICENSE_FILE 6306@mac05

 USAGE IN SCRIPTS:
 eval `vovgetflexlmdaemons`;

Limit Users
Limiting users is typically not the best choice, as alternative approaches may be used to enforce policies without incurring low

resource utilization issues. However, in some cases, limiting users may be the best solution and this section discusses several ways

in which an administrator can limit the number of jobs that a user can run.

Control the User:x Resource

For every user 'x' there is a resource called "User:x" that controls the overall number of jobs that the user can run. The default value

is "unlimited" and an administrator can set the resource to a different value with vtk_resourcemap_set, as in the following

examples:

vtk_resourcemap_set User:john 5
vtk_resourcemap_set User:mary unlimited
vtk_resourcemap_set User:phil 0
vtk_resourcemap_set User:hoag -max 2 -map "linux64 RAM/200"

These VTK calls can go into the resources.tcl file or they could be executed directly with vovsh -x ...:

% nc cmd vovsh -x 'vtk_resourcemap_set User:tarzan 88'

Similarly, you can control the Group:* resource to limit the jobs within a FairShare group or the Priority:* resource to limit all jobs

that use certain ranges of priorities. The use of these limits is highly discouraged.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.211

The default value of the User:* resource is controlled by the server configuration parameter resMapUserDefault, which can

be set in the policy.tcl file, as in this example:

Fragment of policy.tcl file.
set config(resMapUserDefault) 30

The configuration applies to all new resources that are created after the default has been changed.

Control the Tool:* Resource

While the resources mentioned in the previous section are always used, the resource Tool:x is only used if it is defined for a given

tool. The "tool for a job" is defined as the tail of the command line argument that is not a known VOV wrapper. For example, for

the command vw /bin/cp aa bb, the tool is the string cp.

For example, if you want to limit the number of cp jobs that are executed at any one time, or you want to route them to a specific

set of machines, you can use the resource map "Tool:cp", as in:

vtk_resourcemap_set Tool:cp -max 3

Limits in Jobclasses

If you are using a jobclass, it is easy to define limits for both the jobclass and also for the users of that jobclass. This is best shown

with this complete example taken from $VOVDIR/etc/jobclass/examples/hsim.tcl:

File: hsim.tcl

set classDescription "A template for an hsim class"
set classEditable 1
lappend VOV_JOB_DESC(resources) License:hsim
lappend VOV_JOB_DESC(resources) Limit:q_hsim_@USER@
lappend VOV_JOB_DESC(resources) Limit:r_hsim_@GROUP@
lappend VOV_JOB_DESC(resources) CPUS/1 percent/1 RAM/20

proc initJobClass {} {
 # Executed by vovresourced at startup.
 # vtk_resourcemap_set License:hsim 8
 # vtk_flexlm_monitor hsim License:hsim

 # Revoke requested/not-used resources after 2 minutes.
 vtk_jobclass_set_revocation_delay "hsim" 2m

 # Warn after 2h, kill after 4h of idleness.
 vtk_jobclass_set_idle_delays "hsim" 2h 4h

 vtk_jobclass_set_max_reschedule "hsim" 2

 TIMEVAR hsim {
 Fri,Sat,Sun {
 vtk_resourcemap_set_limit Limit:q_hsim_@USER@ 3
 vtk_resourcemap_set_limit Limit:r_hsim_@GROUP@ 5
 }
 20:30-24:00,0:00-5:30 {
 vtk_resourcemap_set_limit Limit:q_hsim_@USER@ 1
 vtk_resourcemap_set_limit Limit:r_hsim_@GROUP@ 2
 }
 default {
 vtk_resourcemap_set_limit Limit:q_hsim_@USER@ 1
 vtk_resourcemap_set_limit Limit:r_hsim_@GROUP@ 2
 }

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.212

 }
}

Self Limiting

Some users may like to self limit the jobs that can be executed concurrently by using the option -limit in nc run:

% nc run -limit 3 -f listOfJobs

License Overbooking

Advantages of Overbooking

If there are 10 licenses of a simulator, the scheduler (that is, Accelerator) dispatches 10 jobs using those licenses. However,

many jobs do not use the licenses for 100% of their lifespan. If one checks how many licenses are checked out at any one time,

for example with lmstat, one may find out that occasionally there are less that 10 licenses in use. Experienced users who

look directly at the license daemon statistics may wonder why there are jobs in the queue while licenses are available. From

Accelerator's point of view, those licenses are not available because they are reserved for those running jobs, which may check out

the licenses at any time.

This problem is greatly amplified if instead of 10 licenses there are 1,000 licenses. In such a case, you may notice that 1,000

licenses are never fully checked out, although there are 1,000 running jobs at all times. For example, one customer had about 2,000

licenses of a simulator and even with 2,000 running jobs, only 1,750 to 1,900 licenses were checked out.

Those unused licenses create an opportunity to run more jobs than licenses, which is accomplished by "license overbooking".

Activate Overbooking

For overbooking to work well, you have to activate vendor-queueing for the license. If a job cannot find a license, it waits for the

license to become available instead of failing. Allocator and Accelerator are capable of overbooking licenses so that only a small

number of running jobs are waiting for a license.

Note: The activation of vendor queueing is application dependent.

Overbooking Operation

The normal approach for managing licenses in Accelerator is setting the maximum number of licenses equal to the number

available from the license daemons. Allocator and/or Accelerator issue jobs using this fixed number as an upper bound. In

overbooking, tell Allocator and Accelerator to keep issuing jobs until it sees the actual license count (from the license daemon)

fully depleted. The overbooking function acts as a classic control loop:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.213

Figure 16:

The Reference is the number of licenses available, the Measured output is the number of licenses in use and the Measured error
is the difference in the two. The Controller is the actual overbooking function that converts the license available into the number

of jobs to issue - this is the System input. The System output is the launched jobs and the Sensor is the Monitor.

The Overbooking function (Controller) is vtk_flexlm_overbook for vovresourced and LA::AddResource in

Allocator. These procedures have a number of tuning parameters for overbooking.

License Overbooking in vovresourced

The Overbooking function (Controller) in vovresourced is called vtk_flexlm_overbook and has a number of tuning

parameters:

-thresh real

This is the threshold at which overbooking becomes active. For example if the value is set to 0.8 it means that when the job

count reaches 80% of the allowed total, overbooking starts increasing the number of submitted jobs. The default value for

the parameter is 0.9.

-factor real

This is number is used to scale the Measured Error into the additional number of jobs to submit. Common values are 0.8.

The default value for this parameter is 1.0.

-headroom int

When the license in-use counts is greater than the maximum number of licenses less the headroom, the overbooking

quantity is throttled. Negative headroom values are often used. The default value of headroom is 0.

-queued int

When Allocator sees this number of licenses queued (for example, in vendor-queuing) then the overbooking quantity is

throttled. Generally this should be a small number. The default value is 1.

-lowpass int

To smooth the effect of overbooking, the actual correction is low-pass filtered. This option controls the delay of the filter.

The larger the number, the longer the delay and the smoother the correction. The default value is 8.

-enable BOOL

Simple way to enable/disable an overbooking rule.

-verbose BOOL

Increase verbosity.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.214

-v

Same as -verbose 1.

Tuning Overbooking

The optimal values for the overbooking parameters are workload specific. While the default values work in many cases, it is

worthwhile to review the overbooking operation. Use the -verbose 1 option to monitor the behavior of the overbooking routines

in the resource daemon log file. The goal should be to increase the license utilization close to 100% but without pushing too many

jobs into vendor queueing. Vendor queuing implies that a hardware slot is taken but the job is stalled waiting for that license;

normally a few slots being idle for a few seconds is a reasonable tradeoff for high license utilization. However, administrators

should be aware that having too many jobs in vendor queueing can cause the license daemons to stall, dramatically reducing

overall throughput.

If your workload ends up pushing too many jobs into vendor queuing before backing off, even with a small value of -queued

then consider reducing the factor from 1.0 to 0.9 or lower, and increasing the headroom from 0 to 2-5% of the maximum license

quantity.

If your workload struggles to get any vendor queuing, it may be because the threshold is not reached or maintained - particularly

when the new total (maximum number of jobs) has been increased. Reducing the threshold to 0.8 or 0.7 will enable overbooking to

continue to be active. For a large number of short duration jobs, there can be many jobs "in-flight": jobs for which license matching

by Accelerator has not yet occurred. In these cases, it may make sense to increase -factor N to about 1.2 and have a negative value

of headroom equal to 2-5% of the total license count.

While overbooking exhibits the self compensation characteristics expected from a control loop, tuning the parameters is often

worthwhile for optimal usage.

Example of Overbooking in vovresourced

Fragment of resources.tcl
Example of overbooking of hspice.

vtk_flexlm_monitor_all ; ## This must be called before vtk_flexlm_overbook.

#
Overbook the feature hspice up to the point where there are 5 jobs in vendor-queue.
vtk_flexlm_overbook hspice -queued 5

All valid options.
vtk_flexlm_overbook myspice -thresh 0.9 -factor 1.0 \
 -headroom 2 -queued 3 \
 -enable 1 \

After changing resources.tcl, remember to restart the vovresourced daemon:

% ncmgr reset

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.215

Resource Management with RDS
This is a usage guide for the Resource Data Service (RDS), an alternative service for managing License resources and License-first

scheduling in Accelerator.

Overview

Accelerator and Monitor run in "classic resource management" mode by default. In classic mode, the vovresourced daemon

manages licenses and other resources as configured in the resources.tcl configuration file.

A second mode for managing resources, termed "RDS mode", may be chosen and configured as described in this section of the

manual. In RDS mode, resource management is performed by an RDS thread instead of the vovresourced daemon, and the

configuration is described in the resources.cfg file instead of resources.tcl.

Resource Management Background

The Resource Data Service (RDS) is a new solution to manage job resources associated with limits or software licenses. The

Accelerator and Monitor products work together to provide advanced software licensing feature scheduling with flexible and

powerful capabilities to adapt license resource allocation to asynchronous and out-of-queue license usage and to variable license

usage across a job's lifespan.

When an Accelerator batch job is submitted, a list of resource maps, also known as resources, are specified to guide scheduling.

An important type of resource is a license-based resource, which is managed by Accelerator resource management with input

from Monitor, which actively monitors actual license usage in real time. The classic service within Accelerator that provided this

capability is the vovresrouced daemon, which is active by default.

Configuring RDS

The RDS configuration file is located at <SWD>/resources.cfg. This file sets up RDS with configuration information

which includes connections to license monitoring and definition of limit resource maps, license resource maps, and mapping

resource maps. In summary, the resources.cfg file will give you the ability to configure what classic resource management

has configured in the Tcl based resources.tcl file. The Attribute Value Stream (AVS) format and schema for RDS

resources.cfg is described Configuration File Format.

Important configuration notes:

• For advanced license scheduling, Accelerator needs to link to at least one running RDS-enabled Monitor instance. See Server

Configuration Parameter to Configure Accelerator for RDS.

• The LICENSE_MONITORS attribute in resources.cfg specifies the Monitor instance that will be linked to Accelerator.

• A common way to specify a Monitor instance in Accelerator's resources.cfg file is with the following simple

resources.cfg content:

{
LICENSE_MONITORS = [{ NAME = "monitor_name" }],
RESOURCE_MAPS = [{ FEATURES = "*"]
}

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.216

This specification will often be enough. However, if Monitor is not using the same registry as Accelerator, then Monitor

needs the EVENT_PORT parameter declared. The selected/specified port will be placed in the LM's registry file so that

normally only the LM name is needed to establish the RDS to LM connection. For example:

% lmmgr start -eventport <port number>

• The RESOURCE_MAPS attribute structure in resources.cfg uses explicit feature names and wildcard patterns to

specify exactly what license features to import into Accelerator for the purpose of advanced license scheduling.

• Full details for configuration syntax of LICENSE_MONITORS and RESOURCE_MAPS in resources.cfg are shown in

Configuration File Format.

Note: For a full description of the AVS data language, see AVS Syntax.

Resources.cfg

The Resource Data Service (RDS) capability is Accelerator's next-generation resource management. The new RDS service is

configured by a new configuration file --resources.cfg-- in the Server Working Directory. The new configuration file uses an

Attribute Value Stream (AVS) syntax, a JSON-like syntax which is quite different from the Tcl format of the resources.tcl

file used to configure classical Accelerator resource management. This document will guide you in configuring RDS and in

translating an existing resources.tcl file into a properly formatted resources.cfg file.

Server Configuration Parameter to Configure Accelerator for RDS

When you have an RDS-enabled Monitor instance running, you are ready to configure Accelerator for RDS.

Within Accelerator, when the rds.enable server configuration parameter is set to "1", Accelerator will be RDS-enabled, and

a new server thread named RDS will activate in place of the classic vovresourced daemon. The RDS thread will process the

resources.cfg file, which can be written according to the following instructions.

Edit/create the SWD/resources.cfg file. Substitute your LM name for licmon below if different:

{
 LOG_LEVEL = 5,
 LICENSE_MONITORS = [
 { NAME = "licmon", }
],
RESOURCE_MAPS = [
 { FEATURES = "*" }, # monitor all features

 { TYPE = "Priority", NAME = "low" },
 { TYPE = "Priority", NAME = "normal" },
 { TYPE = "Priority", NAME = "high" },
 { TYPE = "Priority", NAME = "top" },
 { NAME = "diskio" },
]
}

Proprietary Information of Altair Engineering

../../../vov/topics/vov/avs_syntax.htm

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.217

See Configuration File Examples for more complex resources.cfg options.

Start Accelerator as normal using ncmgr start. It will locate the LM ports using the licmon name in the registry.

Configuration File Format

The RDS config file consists of a single object in Attribute-Value Stream (AVS) format. AVS objects begin with an open curly

brace '{' and end with a close curly brace '}'. Array attributes are expressed as a comma separated list inside square brackets []. In

most cases array attributes with a single element may be expressed as the single element (TAGS = foo is equivalent to TAGS =

[foo]). String type attributes are double quoted.

There are 3 types of attributes in the top level AVS object:

• RDS Global Attributes

• The LICENSE_MONTIORS array

• The RESOURCE_MAPS array

The objects within the RESOURCE_MAPS array may be one of the following object types. The first is identified by a NAME

attribute, and is called a non-license resource definition. The second object type is identified by the presence of a FEATURE

attribute and is called a license feature resource creation rule.

Flag values are generally indicated as on/true simply by their presence but may alternately be indicated on or explicitly off by

setting the attribute to 0/1, off/on, false/true.

RDS Global Attributes (aka - Top/Daemon Level Attributes)

Attribute Description Default

DROPPED_RESMAP_DELETE_DELAY When RDS is initializing, the amount of

time in seconds that it will wait before

deleting feature resource maps that are no

longer represented in the license monitor

data. This allows for delays in license

monitor # license server recovery.

900

FLAGS Array of flag overrides.

HEARTBEAT_THRESHOLD How long to wait for a missing LM

heartbeat before signaling a resync, in

seconds.

5 minutes

INTERNAL_HEARTBEAT_THRESHOLD(Internal for testing) overrides above with

unlimited values.

LICENSE_MONITORS LM project name, or an LM object.

LOG_LEVEL The RDS logging level 0-7:

Fatal=1

4

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.218

Attribute Description Default

Error=2

Warning=3

Info=4

Verbose=5

Debug=6

Engineering=7

MATCHING_PERIOD How often to perform matching in

seconds.

60

MAX_ORS_IN_RESOURCE_SUM Max number of OR operators allowed

in a sum resource using legacy OR

operators.

5

NOPIDMATCH If asserted, then the PID associated with

any license checkout, if available, will

be ignored when Accelerator matches

license checkouts with jobs.

RESOURCE_MAPS Array of resource map and/or feature rule

objects.

RM_RANK_DEFAULT The default RANK of non-license

resource maps.

3

Non-License Resource Definition Object Attributes

Attributes for regular resource maps not related to the monitoring of LM features. Most of these attributes correspond to the same

named fields in the vov resource maps meta data. Usually each non-licensed ResourceMap object in the resource.cfg file will

create one resource map. See examples section below for more details.

Attribute Description Default

MAP The MAP field of the resource map,

string

none, ""

NAME The NAME of the resource map, string None (required)

NOLOG flag, sets the NOLOG field in the

resource map

off

OWNER The OWNER of the resource map. string "(rds)"

RANK The RANK of the resource map, integer 3

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.219

Attribute Description Default

SPECIAL Special exceptions to user specific

resource maps, object

none

TOTAL The TOTAL/max available for this

resource, integer or UNLIMITED

UNLIMITED

TYPE The TYPE of the resource map, string none, ""

License Feature Resource Rule Object Attributes

Feature rules specify which tag/feature pairs are to be monitored, how/if they are matched, and how/if they are grouped into sum

resources. When a specific tag/feature pair is reported by the license monitor, the feature rules are consulted in order to determine

the behavior for that tag/feature. Once a feature rule fires, no further rules will apply to that tag/feature. Generally there will be a

single sum resource map per rule per matching feature. See Configuration File Examples for more details.

Attribute Description Default

EXCLUDE_FEATURES Exceptions to FEATURES None

EXCLUDE_TAGS Exceptions to TAGS None

FEATURES Array of string patterns naming LM

features to be matched by this rule. The

array is optional for a single pattern.

None (required)

LEGACY_SUM_RESMAPS Flag that indicates the legacy OR operator

should be used in the sum resource

map's MAP field instead of the comma

operator.

off

MAP A resource map MAP expression. It is

applied to the leaf resource maps created

by a FEATURE rule.

ORDER The order in which to place the various

tags in the sum resourcemap map

field. The default is TAGORDER

which indicates the same order as

in the TAGS attribute. Alternately,

REVERSE_TAGORDER, or a partial

explicit array of tags may be specified.

TAGORDER

SUM Array of Custom Sum Resource Rule

objects. See description below.

License:@FEATURE@ mapped to all

matching tags in TAGORDER

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.220

Attribute Description Default

TAGS Array of string patterns naming Tags

to be matched by this rule. The array is

optional for a single pattern

"*"

TOTAL Overrides the total available for the

corresponding feature resourcemap rather

than using the total available from LM.

This value will also be used in the sum

resourcemap total calculation unless that

is also overridden.

The following are flag attributes for feature rules. Their presence in the rule signifies that they are "On", their absence signifies

"Off". Alternately they may be expressed as <name> = 1, or <name> = 0 for on/off respectively. Default: all are off.

Flags Description

DONOTSHARE Not used by RDS but it signifies something to LA ?

EXCLUDE Do not monitor tag/features matched by this rule (stops further

rule evaluation for a matching tag/feature).

LEGACY_SUM_RESMAPS Use the legacy OR operator between members of the sum

resource map in stead of the comma operator.

NOALSOMATCH Do not calculate additional matches for best matched jobs.

NOMATCH Do not perform matching.

NOOOQ Do not calculate Out-Of-Queue values, aka VovResourceMap

"OTHERS" field.

NOPIDMATCH Direct Accelerator to ignore the PID information associated

with a license checkout when matching license checkouts with

jobs.

NORECENT Do not perform matching against recently finished jobs.

NOSUM Do not create a sum resource for this rule.

NOVQASOOQ Do not count vendor-queued licenses as OOQ.

SUM1 Create a sum resource even if the rule uniquely identifies a

single feature.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.221

Custom Sum Resource Rule Object Attributes

By default, each feature rule will result in the creation of a single sum resourcemap for each matching feature containing all the

matching tags. SUM-affecting attributes contained in the feature rule will be inherited by the "default" sum rule implicit in each

feature rule. Grouping of tag/features into sum resources can generally be achieved by creating separate feature rules for each

group. An explicit array of Sum resourcemap rule objects may be specified when multiple sums with overlapping tags is desired, or

in order to override the sum's total or map fields.

Attribute Description Default

EXCLUDE_TAGS Array of tag patterns to exclude from this

sum

Inherited

LEGACY_SUM_RESMAPS Use the legacy OR operator between

members of the sum resource map in

stead of the comma operator

Inherited

MAP Override the map field Auto maps each contained tag/feature in

specified order

NAME The NAME of the sum resource to be

created

"@FEATURE@"

ORDER The order for the tags in the map Inherited

TAGS Array of tag patterns to include in this

sum

Inherited

TOTAL Overrides the total number available Auto sums the totals from tag/features

contained

TYPE The TYPE of the sum resource to be

created

Inherited

Configuration File Examples

Resource map definitions and feature rules may now be intermixed to support common usage in customer examples where related

entities are grouped together.

########################
new default
########################
{
 #LICENSE_MONITORS = { NAME = "licmon" },
 RESOURCE_MAPS = [
 #{ FEATURES = ALL }, # monitors all features/tags
 #{ FEATURES = "feature1", TAGS = "tag1" }, # monitors tag1/feature1
 # monitor all combinations of feature2, feature3, tag2, tag3
 #{ FEATURES = ["feature2", "feature3"], TAGS = ["tag2", "tag3"] },

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.222

 { TYPE = "Priority", NAME = "low" },
 { TYPE = "Priority", NAME = "normal" },
 { TYPE = "Priority", NAME = "high" },
 { TYPE = "Priority", NAME = "top" },
 { NAME = "diskio" }
],
}
#######################
end new default
######################

###################################
-- examples with documentation
###################################
{
 #
 # optional daemon/top level config params
 #

 RM_RANK_DFLT = 3, # default rank for non-lm resourcemaps created from this
 configuration, default is 3

 MATCHING_PERIOD = 60, # period in seconds for which to accumulate lm changes
 before performing matching,
 # evaluated per feature, default: 60
 LOG_LEVEL = 4, # level of logging detail to use for RDS, default is 4
 (Info), see rds_config.hh for levels

 MAX_ORS_IN_RM_SUM = 5, # maximum number of OR operators allowed in a legacy sum
 resource

 HEARTBEAT_THRESHOLD = 300, # max seconds after which no messages from an lm will
 trigger a reconnect/resync
 # attempt, limit 2-15 minutes, default 300 (5 minutes)

 LEGACY_SUM_RESMAPS = off, # whether or not to use the legacy OR operator by default
 in the sum resource maps instead
 # of new default comma operator

 # internal optional
 INTERNAL_HEARTBEAT_THRESHOLD = 50, # overrides HEARTBEAT_THRESHOLD for testing
 without limits, default none

 #
 # section identifies license monitor instances, may be array or a single
 object)currently only a single
 # license monitor is supported)
 #
 LICENSE_MONITORS = [
 # preferred usage, use registry to locate the named licmon
 { NAME = "licmon" }, # lm info is looked up in registry

 # alternate for when no access to shared registry
 {
 NAME = "licmon2",
 HOST = "localhost",
 EVENT_PORT = 12345,
 }
],

 #

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.223

 # Resource map section:
 #

 # The resource map section contains rules that specify feature/tag combinations to
 be monitored and
 # resource map definitions. Each entry may be a feature rule, a resourcemap
 definition, or a collection of
 # related feature rules/resourcemap definitions that optionally share common
 parameter definitions.

 # A feature rule contains the "FEATURES" parameter, when a new tag/feature
 combination is reported from an LM,
 # it should be evaluated in order against all feature rules until a match is found.
 If a match is found (that
 # is not an exclusion rule) a resource map for that specific tag/feature will be
 created, and that tag/feature
 # will be monitored and included in the appropriate sum resources. Once a specific
 tag/feature is matched with
 # a rule, no further rules are evaluated for that tag/feature pair.
 # A feature rule containing the flag EXCLUDE, indicates that matching tag/feature
 combinations are not to be monitored
 # and should be excluded from further rule matching.

 # A collection contains a RESOURCE_MAPS parameter, and may contain default
 parameter definitions for the contained
 # rules.

 # A resource map definition contains neither FEATURES nor RESOURCE_MAPS parameters,
 has at least a NAME parameter.

 RESOURCE_MAPS = [

 # feature rule examples
 { FEATURES = "foo" }, # monitor feature foo across all lms and tags with all
 default values
 { FEATURES = ["foo1", "foo2"], TAGS = ["bar1", "bar2 "] }, # monitor all
 combinations
 { FEATURES = "foo?", TAGS = "bar?" }, # "

 # collection examples:
 {
 TAGS = ["CADENCE_AUS_DV01", "CADENCE_AUS_DV02", "SYNOPSYS_LDC01",
 "CADENCE_AUS_VIP01", "CADENCE_AUS_VIP02",
 "CADENCE_AUS_VIP03", "SYNOPSYS_AUS_DV01", "MENTOR_SCV_GWAN06",
 "MENTOR_SCV_GWAN05", "MENTOR_WAN01",
 "INTERRAD_WAN01", "APACHEDA_WAN01", "SYNOPSYS_US_GWAN01",
 "SYNOPSYS_US_GWAN03", "SYNOPSYS_US_GWAN02",
 "CONCEPTENG_SOC01", "REALINTENT_SOC02", "CADENCE_SCV_GWAN02",
 "CADENCE_SCV_GWAN03", "CADENCE_SOC04",
 "CADENCE_SCV_FV01", "SYNOPSYS_SOC01", "SMARTDV_SCV_GWAN01",
 "FRACTAL_WAN01", "SYNOPSYS_SCV_DV01"],

 # all entries in this RESOURCE_MAPS array, share the above LICMONS and TAGS
 defintions unless overridden:
 RESOURCE_MAPS = [

 {
 FEATURES = "Formality*",
 TAGS = ["SYNOPSYS*"], # TAGS specified here completely replaces the upper
 level array of TAGS
 SUM = [# create 2 custom sum resourcemaps for each matching feature (note
 that the same tag may appear in multiple sums this way

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.224

 { TAGS = ["SYNOPSYS_US_GWAN01", "SYNOPSYS_US_GWAN03"], NAME =
 "@FEATURE@" }, # ex. License:SYNOPSYS1 will map to these tags
 { TAGS = ["SYNOPSYS_DEV??", "SYNOPSYS_US_GWAN01"], NAME =
 "@FEATUR@E_Dev" } # ex. License:SYNOPSYS1_Dev will map to these tags
]
 },

 { FEATURES = "Incisive*", TAGS = "CADENCE_AUS_DV*" }, # override TAGS with
 glob
 { FEATURES = "Primtime", NOMATCH, NOOOQ, MATCHRECENT = 0 }, # override
 flags, MATCHRECENT is explicitly off
 { FEATURES = "Primtime-SI", NOMATCH, NOOOQ, MATCHRECENT = 0 },

 # exclusion rule prevents matching feature/tags from triggering further rules
 (ex. CADENCE_SCV_GWAN02/Incisive)
 # note that exclusion applies to all remaining rules in the config, not just
 in this collection
 { FEATURES = ["Formality*", "Incisive*", "Conformal*"], EXCLUDE },

 # overbooking TBD V2 (internal)
 { FEATURES = "VCSRuntime_Net", OVERBOOK = { THRES = 0.5, FACTOR = 1.2, QUEUED
 = 1, HEADROOM = -20 } },

 # Specify partial order
 { FEATURES = "Conformal*", TAGS = "CADENCE_*", ORDER = ["*AUS*", "*SOC*",
 "*SCV*"] }, # tags matched by the ORDER array will be mapped before

 # other tags

 { FEATURES = "*" } # all features not already matched above (inherited TAGS
 def still applies)
]
 },
 {
 TAGS = ["SYNOPSYS_WANLIC", "SYNOPSYS_EVALLIC"],
 TYPE = "Mytype", # default "License", can override - (was "" in customer
 example, not allowing "")
 RESOURCE_MAPS = [
 { FEATURES = "1TA-OPT-SPY-GuiPkg", NAME = "atrenta_optspygui" }, # renames
 sum because multiple tags
 { FEATURES = "Advanced_CDC", NAME = "atrenta_advancedcdc" },
 { FEATURES = "BasePolicySO", NAME = "atrenta_basepolicyso" },
 { FEATURES = "adv_checker", NAME = "atrenta_advchecker" },
 { FEATURES = "checker", NAME = "atrenta_checker" },

 # related resourcemap definitions
 { NAME = "atrenta_spyglass",
 MAP = "atrenta_advancedcdc atrenta_basepolicyso atrenta_advchecker
 atrenta_checker" },
 { NAME = "atrenta_advancedcdc", MAP = "Mytype:atrenta_advancedcdc" }, # add
 typeless maps
 { NAME = "atrenta_basepolicyso", MAP = "Mytype:atrenta_basepolicyso" },
 { NAME = "atrenta_advchecker", MAP = "Mytype:atrenta_advchecker" },
 { NAME = "atrenta_checker", MAP = "Mytype:atrenta_checker" },
]
 },

 {
 EXCLUDE_TAGS = "*BETA*", # all tags except those that match "*BETA*"
 RESOURCE_MAPS = [
 # sum Formality1 as normal/default
 { FEATURES = "Formality1" },

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.225

 # sum other Formality* features with DEV tags as @FEATURE@_Dev and disable
 logging for these features
 { FEATURES = "Formality*", TAGS = ["SYNOPSYS_DEV??"], NORECENT, NAME =
 "@FEATURE@_Dev" },
 # sum other Formality* features with PROD tags as @FEATURE@_Prod and disable
 ooq for these features
 { FEATURES = "Formality*", TAGS = ["SYNOPSYS_PROD??"], NOOOQ, NAME =
 "@FEATURE@_Prod" },
 # monitor remaining Formality* tags and sum under _misc, but exclude tag EVAL
 from the sum
 { FEATURES = "Formality*", NAME = "@FEATURE@_misc", SUM = { EXCLUDE_TAGS =
 "EVAL" } },
],
 },

 # all features that start with "Bar", except "BarTest", (all tags)
 { FEATURES = "Bar*", EXCLUDE_FEATURES = "BarTest" },

 # more customer examples:

 # customer example
 {
 TAGS = "ARTWORK",
 RESOURCE_MAPS = [
 { FEATURES = "ACS3520", NAME = "gdsplot" }, # renames specific to
 License:gdsplot
 { FEATURES = "ACS5003", NAME = "qckvugds" },
 { FEATURES = "ACS58IO", NAME = "qckvu3gdsII_full" },
 # create resource map that combines features
 { TYPE = "License", NAME = "qckvu", MAP = "License:qckvu3gdsII_full |
 License:qckvugds" },
]
 },

 # customer example
 {
 TAGS = ["SYNOPSYS_WANLIC", "SYNOPSYS_EVALLIC"],
 TYPE = "Mytype", # default "License", can override - (was "" in customer
 example, not allowing "")
 RESOURCE_MAPS = [
 { FEATURES = "1TA-OPT-SPY-GuiPkg", NAME = "atrenta_optspygui" }, # renames
 sum because multiple tags
 { FEATURES = "Advanced_CDC", NAME = "atrenta_advancedcdc" },
 { FEATURES = "BasePolicySO", NAME = "atrenta_basepolicyso" },
 { FEATURES = "adv_checker", NAME = "atrenta_advchecker" },
 { FEATURES = "checker", NAME = "atrenta_checker" },
 { NAME = "atrenta_spyglass",
 MAP = "atrenta_advancedcdc atrenta_basepolicyso atrenta_advchecker
 atrenta_checker" },
 { NAME = "atrenta_advancedcdc", MAP = "Mytype:atrenta_advancedcdc" }, # add
 typeless maps
 { NAME = "atrenta_basepolicyso", MAP = "Mytype:atrenta_basepolicyso" },
 { NAME = "atrenta_advchecker", MAP = "Mytype:atrenta_advchecker" },
 { NAME = "atrenta_checker", MAP = "Mytype:atrenta_checker" },
]
 },

 # order overrides
 {
 TAGS = [A, B, C],
 RESOURCE_MAPS = [
 { FEATURES = "orderExample1" }, # default TAGORDER
 { FEATURES = "orderExample2", ORDER = REVERSE_TAGORDER },

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.226

 { FEATURES = "orderExample3", ORDER = SHUFFLE },
 { FEATURES = "orderExample4", ORDER = [B, C] } # explicit partial order
]
 },
 # sum overrides
 {
 TAGS = [D, E, F],
 RESOURCE_MAPS = [
 { FEATURES = "sumExample4" }, # create default sum if multiple tags exist
 { FEATURES = "sumExample1", SUM = { TAGS = [D, E] } }, # exclude F from sum
 { FEATURES = "sumExample2", NOSUM }, # do not create sum
 { FEATURES = "sumExample3", SUM1 }, # create sum even if only one of the tags
 exists
 { FEATURES = "sumExample5", SUM = { NAME = "sum5", RANK = 4 } }, # create
 default sum, override name and rank
 { FEATURES = "sumExample6", LEGACY_SUM_RESMAPS }, # create default sum except
 use legacy ORs
 { FEATURES = "sumExample7", LEGACY_SUM_RESMAPS = 0 }, # create default sum
 except don't use legacy ORs (useful when when LEGACY_SUM_RESMAPS is the default)
]
 },

 # feature with a map
 { FEATURES = "mappedFeature", SUM1, NOOOQ, MAP = "linux64" },

 # example resource map definitions not related to features
 {
 TYPE = "Priority",
 RESOURCE_MAPS = [
 { NAME = "low" }, # default UNLIMITED
 { NAME = "normal" },
 { NAME = "high" },
 { NAME = "top" },
]
 },

 { NAME = "diskio" }, # default TYPE = ""
 { TYPE = "Tool", NAME = "footool" }, # override TYPE
 { NAME = linux, MAP = "centos | ubuntu" },

 # Limit resource examples:
 {
 TYPE = "Limit",
 RESOURCE_MAPS = [
 # create Limit:random_@USER@ with total = 305 on demand for each user
 {
 NAME = "random_@USER@",
 TOTAL = 305,
 SPECIAL = [# override totals for these specific users:
 { NAME = "random_a_mur", TOTAL = 5000 },
 { NAME = "random_segdv_total_limit", TOTAL = 20500 },
 { NAME = "random_sbenarye", TOTAL = 600 },
 { NAME = "random_nmalki", TOTAL = 600 },
 { NAME = "random_tgreenshtein", TOTAL = 600 }
]
 },
 # create map to this limit, UNLIMITED by default
 { NAME = "random_segdv", MAP = "Limit:regression_segdv_total_limit" },
]
 }

], # end outer RESOURCE_MAPS

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.227

 # FLAGS section overrides flags for specific resmaps
 FLAGS = [
 { TYPENAME = "License:bar_foo", NORECENT },
 { TYPENAME = "Mytype:atrenta_advancedcdc", NOOOQ, DONOTSHARE }
]

}

end of resource.cfg

Switching From Classic Resource Management Mode to RDS Mode

Accelerator activates the legacy resource management daemon vovresourced by default. To switch to RDS resource

management mode, follow the procedure below.

Steps 1 - 5 will configure your LM project:

1. Append this line to the LM project <SWD>/policy.tcl:

set config(rds.enable) 1

2. Enable the shell and activate these changes in policy.tcl:

% vovproject enable LM_PROJECT_NAME
% vovproject reread

3. Use the following command to see if the RDS event port is set to an appropriate port number for your system:

% vovselect project,eventport from server

4. If the new event port number needs to be changed, restart LM with the -eventport option specified with the lmmgr

start command.

The following steps configure your NC queue.

5. Set the NC_QUEUE environment variable to the name of your Accelerator queue.

6. Append this line to <SWD>/policy.tcl:

set config(rds.enable) 1

7. Provide a translation of Tcl-based resources.tcl into an AVS-based <SWD>/resources.cfg file. See

Resources.cfg.

8. Shut down vovresourced.

% nc cmd vovdaemonmgr stop vovresourced

9. Start the RDS service by activating the policy.tcl setting:

% ncmgr reset

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.228

Revert from RDS Mode to Classic Resource Management Mode

If RDS is active and you want to revert operation to legacy resource management, follow the procedure below:

Steps 1 – 6 are performed on your NC queue.

1. Set the NC_QUEUE environment variable to the name of your Accelerator queue.

2. Append this line to <SWD>/policy.tcl:

set config(rds.enable) 0

3. Provide or restore Tcl based configuration file <SWD>/resources.tcl.

4. Activate the updated RDS-off setting:

% ncmgr reset

5. Erase any resource maps that RDS had created while processing the configuration file.

% nc cmd vovforget -rdsresources

6. Start vovresourced:

% nc cmd vovdaemonmgr start vovresourced

Steps 6 - 9 will revert LM to classic mode. This is optional, because LM in RDS mode can interact with NC in either mode.

7. Enable the shell for this LM project.

% vovproject enable LM_PROJECT_NAME

8. Append this line to <SWD>/policy.tcl:

set config(rds.enable) 0

9. Activate the new RDS-off setting:

% vovproject reread

Monitoring RDS Function and Performance

RDS Log Files

The RDS service logs various events in a special log file in the server working directory. The file is <SWD>/logs/rds.log.

Log entries have verbosity levels associated with them: (4=info (default)). To control the level of logging in the rds.log file,

specify the desired maximum message log level in the LOG_LEVEL variable in resources.cfg. The log levels are defined as

follows:

Level Log Level Number

Fatal 1

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.229

Level Log Level Number

Error 2

Warning 3

Info 4 (default)

Verbose 5

Debug 6

Internal 7

Inner Loop Timers

The vovserver tracks how the time is spent in the inner loop. The statistics are accumulated over multiple loops and are rotated

every 10 seconds, so what you normally see in the stats is the overall time spent in the past 10 to 20 seconds. With RDS a new

timing category "rds" is added.

If you are ADMIN, you can check the timers with vovshow:

% nc cmd vovshow -innerlooptimers

Accelerator CLI Command Syntax

lmmgr start

The lmmgr start command has an option that allows the event port to be specified when starting Monitor. The event port is

used by the Accelerator RDS thread to communicate with Monitor.

• -eventport

Explicit port numbers may be specified or a special keyword "any" may be specified to request that a free port be found and

assigned.

Wildcard-Capable Attributes

The following matched attribute pairs accept two optional wildcard characters. The wildcard characters are '*', matches 0 or more

characters, and '?', matches exactly 1 character. When a wildcard character is present in an attribute value, the value must be

quoted.

Inclusion Exclusion

FEATURES EXLUDE_FEATURES

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.230

Inclusion Exclusion

TAGS EXCLUDE_TAGS

The inclusion attribute is applied first, followed by the exclusion attribute. Thus, exclusion wins regardless of order.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.231

Configure Container Integration

Container Support

Linux containers can be leveraged to constrain the amount of system resources used by jobs. Accelerator's container support is

designed to be agnostic of the container solution. The examples provided are for Docker specifically.

Note: It is currently recommended to exclude contained jobs from preemption. This can be done at job submit

time using the "-preemptable 0" submission option or by writing preemption rules to exclude jobs that request a

"Container:X" resource.

Named Container Configurations

Containers are enabled by the administrator through named configurations that can be requested as a job resource. Each named

configuration will contain a recipe of hooks to call to setup the container, and limits to impose upon it. Hooks are stand-alone shell

scripts, each meant to perform a certain task, with specific UNIX permissions (root | user).

Named configuration files must be stored in the SWD/containers directory and end with a .cfg extension. Examples named

configuration files are provided in the $VOVDIR/etc/config/containers directory, such as:

File: Container C1 definition:

Example named-container configuration c1.
Hook run directory
#
The default behavior is to switch to the job directory before running the
hooks. If this directory is not accessible until the hooks have been executed
though, the job will fail. This issue can be resolved by setting
containerHooksRunDir to a location that is guaranteed to be accessible prior
to the hooks being executed. This causes the subtasker to switch to that
directory instead, and the original job directory will be made available to
the hooks via the VOV_CONTAINER_JOB_RUNDIR environment variable. The value of
this variable can then be used by the hooks to specify the working directory
for the container instance.
containerHooksRunDir "/path/to/run/directory"

Hook definitions
#
containerHook <type> <mode> <path> <signature>
<type> = setup | enter | cleanup | teardown
<privilege> = user | root
<file> = absolute path to hook file
<signature> = output of vovsignfile command
#
Specifies which hook(s) should be called to interact with the container
platform throughout the job's life cycle:
#
1. The setup hook is required if the container must be created prior to
spawning the job. This hook will always be used if root privileges are
required to create containers.
2. The enter hook is always required and is responsible for placing the
job into the container. If root privileges are not required to create
containers and the container platform supports it, the enter hook can
also create the container, as would be done via the "docker run" command,
for example. The enter hook must block for the duration of the job.
3. The cleanup hook can be used to remove temporary artifacts that are

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.232

generated by the job.
4. The teardown hook is required to stop and/or remove the container. This
hook would normally be used if a setup hook is used to create the
container.
#
Any root-mode hook must be owned by root on the filesystem.
#
The tasker sets at least the HOST, VOV_PROJECT_NAME, VOV_JOBSLOT, and
VOV_CONTAINER_NAME environment variables in the job execution environment.
It is intended for the hooks to use these variables to uniquify container
instances. Hooks can be tested by running them manually in the shell as long
as the required environment variables are set to some value. The only hook
that is called with arguments is the enter hook, which expects the job command
line to be passed in. An example test run of the enter hook may look like:
#
% env HOST=foo VOV_PROJECT_NAME=vnc VOV_JOBSLOT=0 VOV_CONTAINER_NAME=c1 \
/path/to/c1-enter.sh whoami
containerHook setup root "/path/to/c1-setup.sh" 1211238920
containerHook enter user "/path/to/c1-enter.sh" 97261574
containerHook cleanup user "/path/to/c1-cleanup.sh" 5376821904
containerHook teardown root "/path/to/c1-teardown.sh" 8237156649

Specify the Taskers that Support Containers

Each named container configuration will require a Container:X resource to be offered by every tasker that supports that specific

container configuration. This can be done via the tasker.tcl file or the taskerClass.table file.

When a user includes Container:c1 in the resource request for their job, the request will be passed to the tasker that is selected to

execute the job and the tasker will process the recipe defined in the configuration. If the recipe references a hook that does not

exist, is not executable, or has a different signature than the one specified in the configuration, the job will fail.

Hooks

It is recommended to manually test each hook before using them in production environment. Use the tasker hosts for testing and

production. An example test run of the "enter" hook may look like:

#% env HOST=foo VOV_PROJECT_NAME=vnc VOV_JOBSLOT=0 VOV_CONTAINER_NAME=c1 \
#/path/to/c1-enter.sh whoami

Multiple hooks can be utilized to integrate with the container solution. At a minimum, an "enter" hook will be required, as long

as the container solution provides a single command to setup the container, run the job, and remove the container afterward. For

container solutions that do not provide this feature, separate setup and teardown hooks can be configured. For either method, an

optional cleanup hook can be configured to remove artifacts generated by the job from the file system, for example.

Hooks must also be stored in the SWD/containers directory and can be in script or binary form. Example hook scripts are

provided in the $VOVDIR/etc/config/containers directory, such as:

File: c1-enter.sh

!/bin/bash -fxv
Note: The enter hook must block for the duration of the job.
#
Container c1 example enter hook: an all-in-one script that creates a
container, launches a job inside of it, then exits and removes the container.
#

The following environment variables are available and should be used to avoid

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.233

container and/or host name conflicts:
#
HOST (string)
VOV_PROJECT_NAME (string)
VOV_JOBSLOT (number)
VOV_CONTAINER_NAME (string)
#
The following environment variables are available if defined in the named
container configuration file:
#
VOV_CONTAINER_CORES (number)
VOV_CONTAINER_RAM (megabytes)
VOV_CONTAINER_TMP (megabytes)

For containers handling interactive jobs (-I), uncomment the following line.
set -m
containerName=${VOV_PROJECT_NAME}_${HOST}_${VOV_CONTAINER_NAME}_${VOV_JOBSLOT}
uid=$(id -u ${USER})
Handle the run directory specified in the named container configuration file.
if [[-d $VOV_CONTAINER_JOB_RUNDIR]]; then
 workDirOptions="--workdir $VOV_CONTAINER_JOB_RUNDIR --mount type=bind,source=
${VOV_CONTAINER_JOB_RUNDIR},target=${VOV_CONTAINER_JOB_RUNDIR}"
else
 workDirOptions="--workdir $PWD"
fi
Process limits into Docker options.
limitOptions=""
if [[-n $VOV_CONTAINER_CORES && $VOV_CONTAINER_CORES > 0]]; then
 limitOptions+=" --cpus $VOV_CONTAINER_CORES"
fi
if [[-n $VOV_CONTAINER_RAM && $VOV_CONTAINER_RAM > 0]]; then
 ramSpec="${VOV_CONTAINER_RAM}m"
 limitOptions+=" --memory $ramSpec"
fi
if [[-n $VOV_CONTAINER_TMP && $VOV_CONTAINER_TMP > 0]]; then
 # Use in-memory tmpfs for /tmp in container.
 tmpBytes=$(($VOV_CONTAINER_TMP*1048576))
 limitOptions+=" --mount type=tmpfs,destination=/tmp,tmpfs-size=$tmpBytes"
fi
Capture job environment in a file for Docker to import.
envFile=/tmp/${containerName}.env
env > $envFile

Use the Docker "run" command to create a container based on the "myImage"
container image, setup networking, specify the user, capture the environment,
and bind-mount the required directories for the job. Finally, the job itself
is passed in for Docker to execute. The image must have the ability to resolve
the job owner's UID, have access to the VOV software installation, and be able
to execute the vw job wrapper along with the job command.
The "$@" variable will contain "vw <jobCmd> <jobArgs>".

Note: Pay close attention to the comments in each hook example. Failure to follow the guidelines provided will

likely result in failure to integrate with the container solution, as well as job failure. Any root-mode hook must be

owned by root on the filesystem.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.234

Hook Signatures

The configuration for each hook that is defined must contain a signature. The signature is used by the tasker to verify the hook

has not been tampered with since it was defined by the administrator. The signature can be obtained by using the vovsignfile

utility. In the following example, the signature is highlighted in red:

containerHook setup root "/path/to/c1-setup.sh" 1211238920
containerHook enter user "/path/to/c1-enter.sh" 97261574
containerHook cleanup user "/path/to/c1-cleanup.sh" 5376821904
containerHook teardown root "/path/to/c1-teardown.sh" 8237156649

vovsignfile
Utility to obtain a security signature for files.

vovsignfile: Usage Message

 Utility to obtain a security signature for files.

 USAGE:

 vovsignfile [OPTIONS] <FILE>

 OPTIONS:

 -h -- Show usage syntax.

 EXAMPLES:

 % vovsignfile -h
 % vovsignfile /path/to/file

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.235

Streaming Data Service
The Streaming Data Service (SDS) publishes a time series data stream that can be consumed by existing Kafka systems and

compatible reporting tools to monitor VOV projects.

When Kafka is used as part of an infrastructure, multiple vovservers can now be enabled to provide time series data and events,

without negatively impacting server performance/scalability. This allows users to capture time varying data in order to see how

usage evolves over time.

Events Frequency

The metrics events are published at the same rate that metrics are calculated in the server. This will vary by load but should be at

most every 10s on an active server, and possibly longer if the server is heavily loaded such that the scheduling cycle takes longer

than this. The project data is expected to be relatively static and is published every 4 hours. The command: vovservermgr

config sds.readconfig 1 will cause the updated project record to be published on execution.

Project IDs

To enable data from multiple projects to be collected on the same kafka infrastructure, each event will contain the field projId
which identifies the project which published the event. The projId field is formed by concatenating the project name, a hyphen, and

the vovserver instance's numeric generated unique id. e.g. "vnc-12345678"

SDS Configuration

On startup, the vovserver will create and/or update the following configuration items:

• SDS configuration directory, at the server working directory (SWD)/config/publishers/sds, for example, ../vnc.swd/

config/publishers/sds

• SDS configuration file in the SDS configuration directory, sds.cfg

• Avro schema files (updated each time the server starts)

If the sds.cfg file does not already exist, the following default sds.cfg file is created:

{
 enabled = 0,
 kafka_servers = "",
 format = "json",
 site = "",
 group = "",
 enable_jobdata = 0,
 events = {
 project = {
 schemaId = 0,
 topic = "vov-projects",
 },
 taskers = {
 schemaId = 0,
 topic = "vov-metrics-taskers",
 },
 jobs = {
 schemaId = 0,
 topic = "vov-metrics-jobs",

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.236

 },
 scheduler = {
 schemaId = 0,
 topic = "vov-metrics-scheduler",
 },
 tasker = {
 schemaId = 0,
 topic = "vov-metrics-tasker",
 },
 taskerlist = {
 schemaId = 0,
 topic = "vov-metrics-taskerlist",
 },
 jobdata = {
 schemaId = 0,
 topic = "vov-jobdata",
 },
 deletejob = {
 schemaId = 0,
 topic = "vov-deletejob",
 },
 },
}

Configuration File Parameters

Service level configurable parameters in sds.cfg:

Parameter Values Default Description

enabled 0 or 1 0 Disable/enable SDS on

startup/readconfig

format "json"

"confluent"

azure"

"json" Specifies the Kafka payload

format to use:

"json": use plain text using the

JSON format

"confluent": use AVRO

encoding with the schema

registry identifier used in the

Confluent services

"azure": use the AVRO

encoding with the schema

registry identify used in

Azure's EventHub service.

site string "" User definable string to be

delivered with the project

record

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.237

Parameter Values Default Description

group string "" User definable string to be

delivered with the project

record

debug 0 or 1 0 Disable/enable SDS debug

logging on startup/readconfig

enable_jobdata 0 or 1 0 Disable/enable job events

enable_jobarraydata 0 or 1 Enabled Disable/enable job array

events. There will be events

for each job in the array

enable_systemjobs 0 or 1 Disabled Disable/enable system job

events.

Event Specific Configurable Parameters in sds.cfg

Each event has its own configuration section in the config file, for example, for the project event:

 ...
 events = {
 project = {
 schemaId = 0,
 topic = "vov-projects",
 },
 ...

Parameter Values Default Description

schemaId integer or string 0 N is a string, publish using

Azure EventHub encoding

where N is the schema's

registry ID

N < 0, do not publish this

event

N = 0, publish using single

object encoding

N > 0, publish using Confluent

encoding where N is the

schema's registry ID

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.238

Parameter Values Default Description

topic string see event table The name of the Kafka topic

to which these events are

published.

format ""

"json"

"confluent"

"azure"

"" Overrides format for this event

"" = use format specified at the

overall service level

Kafka Configuration

The Kafka libraries enable some flexibility with configuration. For example, in the publishers/sds/sds.cfg file:

 # kafka properties forwarded to rdkafka library for client config
 kafka_properties = {
 security = {
 protocol = "ssl", # security.protocol=ssl
 },
 ssl = {
 ca = {
 location = "/home/rhenry/Proj/confluent/ssl2/ca-cert" # ssl.ca.location=/
home/rhenry/Proj/confluent/ssl2/ca-cert
 },
 certificate = {
 location = "/home/rhenry/Proj/confluent/ssl2/client_hecto_client.pem" #
 ssl.certificate.location
 },
 key = {
 location = "/home/rhenry/Proj/confluent/ssl2/client_hecto_client.key", #
 ssl.key.location
 password = "abcdefgh" # ssl.key.password
 }
 }
 }

Kafka uses security.protocol = "ssl"

However, there is flexibity to include an equivalent as security { protocol = "ssl" }.

The vovserver/SDS is passing the configuration through to the underlying Kafka libraries and network layer, making this feasible.

Change the Config File for the First Time

In order to use SDS for the first time, the user must perform the following operations:

1. Set the kafka_servers parameter in the sds.cfg file to the bootstrap server(s) for their kafka

installation; for example, kafka_servers = "kafkahost:9092" or kafka_servers =

"kafkahost1:9092,kafkahost2:9092"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.239

2. If publishing using the Confluent Schema Registry, then the following steps are also needed:

a) Upload the schema files to the schema registry and note the IDs assigned to each schema.

b) Assign the schema registry IDs discovered in step 1 to the events in the sds.cfg file (see Event Specific

configuration below)

For the initial release the Kafka published events are:

Event Name Description Schema File Default Topic

project (relatively) Static project

information that may be useful

to join with time series data

vov.projects.avsc vov-projects

taskers Metrics related to the state and

capacity of the taskers

metrics.taskers.avsc vov-metrics-taskers

jobs Metrics related to the number

of jobs in specific states and

rate of dispatch/completion

metrics.jobs.avsc vov-metrics-jobs

scheduler Metrics related to scheduler

performance, sizes, clients,

innerloop timers

metrics.scheduler.avsc vov-metrics-scheduler

The following events have been added in the 2022.1.0 release:

Event Name Event Type Description Schema File Default Topic

deletejob DELETEJOB Information about

deleted job like jobid,

user, name, host, etc/

vov-deletejob.avsc vov-deletejob

jobdata INITIAL Initial job data like

jobid, command,

jobclass, status, etc.

vov-jobdata.avsc vov-jobdata

jobdata UPDATE Updated job data

like jobid, command,

jobclass, status, etc.

vov-jobdata.avsc vov-jobdata

jobdata PROPERTYADD Information about job

new properties in the

format <name value>

vov-jobdata.avsc vov-jobdata

jobdata PROPERTYMODIFY Information about job

modified properties

vov-jobdata.avsc vov-jobdata

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.240

Event Name Event Type Description Schema File Default Topic

in the format <name

value>

jobdata PROPERTYDELETE Information about job

deleted properties in the

format <name value>

vov-jobdata.avsc vov-jobdata

Changing the Config File at Run Time

The SDS configuration may be changed while the server is running.

1. The SDS service may be enabled/disabled by using the command:

 $ vovservermgr config sds.enabled 1/0

2. Update the config file for the running server and/or publish a new project event with the following command:

$ vovservermgr config sds.readconfig 1

3. The debug setting may be enabled using:

$ vovservermgr config set_debug_flag SDS
$ vovservermgr config reset_debug_flag SDS

Troubleshooting

If the kafka_servers cfg parameter is not set correctly, the server log will contain entries like the following:

%3|1610382360.585|FAIL|rdkafka#producer-1| [thrd:foo:9092/bootstrap]: foo:9092/
bootstrap: Failed to resolve 'foo:9092': Temporary failure in name resolution (after
 1033ms in state CONNECT)
%3|1610382360.585|ERROR|rdkafka#producer-1| [thrd:foo:9092/bootstrap]: 1/1 brokers
 are down
%3|1610382363.544|FAIL|rdkafka#producer-1| [thrd:foo:9092/bootstrap]: foo:9092/
bootstrap: Failed to resolve 'foo:9092': Temporary failure in name resolution (after
 993ms in state CONNECT, 1 identical error(s) suppressed)

If the kafka servers are not running or reachable, the server log will contain entries like the following:

%3|1610383215.659|FAIL|rdkafka#producer-2| [thrd:hecto:9092/bootstrap]: hecto:9092/
bootstrap: Connect to ipv4#127.0.1.1:9092 failed: Connection refused (after 0ms in
 state CONNECT, 1 identical error(s) suppressed)

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.241

Environment Management
To ensure the correct and repeatable behavior of the tools, the environment must be controlled. This chapter explains how VOV

supports multiple reusable environments.

Environments Overview

When using the UNIX shell, it is standard procedure to establish a working environment by setting environment variables within

the shell login script, such as the .profile or .cshrc file.

The Altair Accelerator products are built to establish control and direction from the values of environment variables. The set of

such controls is long enough that it makes it hard to manage all the values. A technique is supported to help manage the complexity

so that a person does not use a single monolithic login script to set every possible environment variable.

This technique is to partition the set of control environment variable into working groups that are appropriate for use in certain

situations and by certain activities.

Each group is given a name, and tools are provided to modify the environment to add or delete environment variables by group

name.

The technique of using FlowTracer tools to set a particular working environment by name is used instead of doing a native UNIX

sourcing of a variety of different scripts as needed, or of one large script sourced at login.

Definitions and Benefits

In both UNIX and Windows platforms, there is a mechanism that allows processes to communicate information to their

subprocesses environment variables. For example, in a shell, the following command can be used set the value of the environment

variable VOVDIR.

% setenv VOVDIR /remote/VOV/<version>/<platform>

All jobs started by the shell inherit the environment. This enables finding the root directory of the VOV installation by looking up

the value of the variable VOVDIR. The behavior of many programs is affected by such environment variables.

Environment indicates the collection of all the environment variables. A single environment that can execute all tools required

in a project is desirable but not always feasible. For example, if a project requires tools from many vendors, the PATH variable

may become too long. In other cases, there may be conflicting requirements for the value of some variables (for example,

LM_LICENSE_FILE). for these reasons, multiple environments are a valuable asset.

To address these issues, some users have developed a more or less unstructured collection of setup files, scattered around the file

system, leaving it up to the individual designers to remember to use those files when needed. Others have developed a system

in which the designers, instead of invoking the tools directly, invoke specialized wrappers. Wrappers set up the appropriate

environment for the tool on the fly before invoking the actual tool.

If you have scattered setup scripts, the VOV environment management facilities offers a way to organize them under a logical

framework. If you have wrappers, you can keep using them as a complement to the VOV environment management facilities.

VOV environment facilities let you:

• Precisely control the environment used by each job in your flow

• Load each environment on demand rather than use an overloaded environment

• Simplify the shell startup script (such as ~/.cshrc)

• Create many small environments that are optimized and easy to maintain

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.242

• Share the environments across multiple shells (ksh, tcsh, ...)

• Share the environments among the project team members

• Share the environments among multiple projects

Environment Basics

Each VOV environment has a name. This name is an alphanumeric string, usually in uppercase. Underscores are also allowed. For

example, an environment could be named TEX for running Latex, and another environment named SYNOPSYS for running the

Synopsys tools.

The name of the current environment is represented by the environment variable VOV_ENV. If this variable is not set, VOV

assumes that the name is DEFAULT.

Environment definitions are found in the directory $VOVDIR/local/environments. The optional variable VOV_ENV_DIR

can be used to identify other directories where additional environments can be found. The value of this variable is a list of

directories separated by colons ":" on UNIX systems and by semicolons ";" on Windows.

The environment files may be written in C-shell, in Bourne Shell, or Tcl. Regardless of the syntax used to describe it, any

environment can be used in any shell; an environment written in C-shell can be used, even if ksh is being used.

VOV stores the name of the environment that is used to execute each job. Before re-executing a job, VOV switches to the

appropriate environment. The switch of environment is actually performed on the taskers. Taskers cache environments, resulting in

instantaneous switches between environments.

Parameterized Environments
An environment definition may accept parameters. This is useful, for example, to select different versions of some tool.

Parameters are passed to the script either one of syntaxes shown below. The older syntax uses parentheses, which need quoting

when used from the shell

In this syntax, parentheses are used:

environmentName(parameter1[,parameter2]...)

In this 'comma' example, parentheses are not used:

environmentName,parameter1[,parameter2]

The parameters are a comma-separated list of tokens that are placed in parentheses after the environment name or after the first

comma. No spaces are allowed. Arguments cannot contain commas, spaces, quotes, or other special characters. Proper quoting

must be used when switching to a parameterized environment from the command line.

Examples

These examples show how to add a parameterized environment. The two pairs of lines have the same effect.

% ves '+D(DISPLAY=tahoe:0.0)'
% ves '+D,DISPLAY=tahoe:0.0'
% ves '+SYNOPSYS(1998.08)'
% ves '+SYNOPSYS,1998.08'

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.243

From inside the environment script, the parameters are accessible by means of the variable '$argv' in C-shell or the list $argv in

Tcl. Parameters are passed to both the start.tcl script, and the end.tcl script.

For example, this is the definition of the standard environment D:

This is D.start.tcl
An environment to define variables.
Usage: ves +D,VAR1=value,VAR2=value,...
foreach arg $argv {
 if [regexp {([^=]+)=(.*)} $arg all var value] {
 setenv $var $value
 lappend env(D_env_vars) $var
 }
}

Multiple environment variables can be set while launching a job using D using parentheses, like this:

% nc run -e "D(VOV_LIMIT_maxproc=8192,VOV_LIMIT_openfiles=8192)" env

Multiple environment variables can also be set for individual jobs by using the comma notation without parentheses and without

quotes.

% nc run -e D,VOV_LIMIT_maxproc=8192,VOV_LIMIT_openfiles=8192 env

Inside a jobclass definition file, a parametrized environment can be specified like this:

set VOV_JOB_DESC(env) "SNAPSHOT+D,VOV_LIMIT_maxproc=8192,VOV_LIMIT_openfiles=8192"

Curly braces are also supported in the use of environment variables. This permits the use of commas, among other special

characters. For example:

nc run -e 'D(FOO={value,with,commas},BAR=normal_value)' ...

and

ves 'D(FOO={bar,baz})'

Another example:

set VOV_JOB_DESC(env) "SNAPSHOT
+D,VOV_LIMIT_maxproc=8192,MY_CSV_VAR={a,b,c},VOV_LIMIT_openfiles=8192"

Composite Environments
Complex environments can be built via composition; use the operator "+" with ves.

For example, if you there are two environments E1 and E2, they can be combined by switching to the environment E1+E2 as

shown below:

% ves E1+E2

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.244

Order of Environment Components

The order of the environment components in environments is significant, because some environment definitions can be destructive,

while others may be in conflict with each other.

For example, the environment BASE sets the variable PATH to a well-defined list of directories, ignoring any previous value. For

this variable, the environments BASE and E1+BASE are identical, because it is completely determined by the BASE environment.

Note that in general, the environment BASE+E1 is a true composite environment (assuming that E1 is not destructive).

For example, to use tools from Synopsys and Virage, they can be run in the combined environment SYNOPSYS+VIRAGE as

shown below:

mars chip@mercury BASE src/vhdl > ves SYNOPSYS+VIRAGE
mars chip@mercury SYNOPSYS+VIRAGE src/vhdl >

Environment Examples

The following is an example of a start script for the environment named SYNOPSYS. Typically, this script is stored in: $VOVDIR/

local/environments/SYNOPSYS.start.csh:

###
Typical Synopsys Environment: SYNOPSYS.start.csh
###

setenv SYNOPSYS /home/eda/synopsys/synopsys3.0
setenv SIM_ARCH sparc
setenv LD_LIBRARY_PATH `vovenv APPEND -: $SYNOPSYS/$SIM_ARCH/sim/lib
 $LD_LIBRARY_PATH`
setenv MANPATH `vovenv APPEND -: $SYNOPSYS/doc/sim/man $MANPATH`

set path = `vovenv APPEND $SYNOPSYS/$SIM_ARCH/sim/bin $path`
set path = `vovenv APPEND $SYNOPSYS/$SIM_ARCH/motif/bin $path`
set path = `vovenv APPEND $SYNOPSYS/$SIM_ARCH/syn/bin $path`
set path = `vovenv APPEND $SYNOPSYS/$SIM_ARCH/sge/bin $path`

The following is another example of building a composite environment:

-- A combined environment: call it COMBI.start.csh
-- Get Synopsys and EPIC tools together.
source $VOVDIR/etc/std.vov.aliases

Show two different ways to use ves.
ves BASE+SYNOPSYS
ves +EPIC

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.245

Refresh Environments

To save time while switching environments, taskers cache up to eight environments, which makes switching instantaneous. The

cached environments can be refreshed either through the GUI by clicking Project > Taskers control > Refresh environments, or

by entering:

% vovtaskermgr refresh

Refreshing is necessary if you modify an environment after the taskers have cached it. Restarting the taskers achieves the same

result at a slightly higher cost.

CAUTION: On Windows NT, refresh does not work. You must restart the taskers instead.

Develop Environments

Each environment can be described with Tcl, C-shell, or Bourne-shell scripts, which allows the re-use of existing scripts. The Tcl

syntax is recommended; the resulting environment can be used on both UNIX and Windows systems, and Tcl supports aliases.

When necessary, the environment definition, written in any of the above languages, is automatically converted to use with Bourne-

shell and the derivatives of Korn-shell and bash, C-shell and derivatives, Tcl scripts, and DOS prompt.

Each environment is described by the files shown in the following table. A minimal description of an environment consists of the

start* script and the DOC file.

The .end* script is usually needed only for environments that are used with ves from the command line. The vovtasker binary

caches eight recently used environments. When all eight cache slots are full and a new one is needed, the least-recently used

environment is discarded without calling any of the .end* scripts.

Some C-shell implementations have small limits on some important variables, such as the length of the path. If environments are

needed that exceed those limits and tcsh is on the hosts, the .tcsh script suffix can be used.

Note: A vovtasker does not execute jobs using any shell. Instead, a vovtasker uses the execve() system call. The

shell implied by the environment script suffix is only used to compute the environment.

Suffix Language Description

start.csh C-shell

start.sh Bourne-shell

start.ksh Korn-shell

start.tcl Tcl

start.tcsh tcsh

Initialization scripts, executed before

entering the environment. If multiple

scripts exist for the same environment,

VOV will prefer in the following order,

Tcl, C-Shell, Bourne-Shell, tcsh.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.246

Suffix Language Description

end.csh C-shell

end.sh Bourne-shell

end.tcl Tcl

end.tcsh tcsh

Termination scripts, read when exiting

the environment. See comment above

about choice of language

pre.tcl Tcl Executed before the execution of the job.

post.tcl Tcl Executed after the execution of the job.

General Rules

A good environment definition is minimal, incremental and reversible.

Note: These general rules are recommendations; they are not requirements. VOV works well with environments

that are not minimal, incremental, or reversible.

• Minimal: The definition adds only the minimum number of variables necessary to correctly execute a certain

class of tools.

• Incremental: It builds upon the original environment.

• Reversible: It is possible to restore the original environment.

Rules to Write Environments in c-shell

In this example, an environment is created. The environment is named MYENV, which contains the directory /usr/local/bin

in the path. The start script for this environment is $VOVDIR/local/environments/MYENV.start.csh.

In C-shell, either the shell variable path or the environment variable PATH can be set. An example follows:

-- This is MYENV.start.csh
set path = (/usr/local/bin $path)

Note: This solution has a disadvantage. Switching to the MYENV environment, the resulting PATH may contain

duplicates of /usr/local/bin. In the long run, it is possible for the PATH variable to exceed its maximum

allowed length (about 1kB), which can be imposed by some implementations of csh.

A better solution avoids duplicates. For this purpose, use vovenv, which is a script to manipulate environment variables. The

usage for vovenv is:

vovenv OPERATION [-colon] wordlist

Operation Description

DELETE Deletes word from list.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.247

Operation Description

APPEND Adds the word at the end of the list.

PREPEND Adds the word at the beginning of the list.

If -colon is used, the list is assumed to be colon-separated, as for the environment variable PATH. Otherwise, it is a space-

separated list such as the C-shell variable path; Instead of -colon, -: can be written.

For example:

-- This is a better MYENV.start.csh
set path = `vovenv PREPEND /usr/local/bin $path`

In the MYENV.end.csh file, revert the changes made by the start script with the operation DELETE of vovenv as shown below.

Note: This practice should be applied to all the environment variables that describe lists of files or directories, such

as PATH, MANPATH, LD_LIBRARY_PATH and LM_LICENSE_FILE.

For example:

-- This is MYENV.end.csh
set path = `vovenv DELETE /usr/local/bin $path`

Rules to Write Environments in Tcl

If you are familiar with Tcl, consider writing the environment definitions in this language. The advantage is the portability between

UNIX and Windows.

Note: Tcl must be used to describe environments for Windows.

To write an environment in Tcl, it is important to remember that all environment variables are available through the associative

array env(). For example, the value of the variable VOVDIR is accessible as $env(VOVDIR). You also need to become

familiar with the following Tcl procedures supplied by VOV:

setenv name value
unsetenv name ...
vovenv name separator op arg ...
alias name words ...

These procedures look similar to their C-shell equivalent. In fact, they are Tcl procedures that are defined in $VOVDIR/tcl/

vtcl/vovenvutils.tcl.

The procedures setenv and unsetenv behave as their C-shell counterparts. The procedure vovenv has the same functionality

as the shell utility vovenv, but with a different syntax. Refer to the VOV/Tcl book for more information about these procedures.

Error handling: if errors are detected while processing of the environment definition, do not call exit. Instead, use the call

error.

The environment MYENV that was described in the previous section can be described with the Tcl syntax as shown below.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.248

Note: Because the colon ":" is used as a path separator, this example only works for UNIX. (The example shown

after this works with Windows.)

This is MYENV.start.tcl
vovenv PATH : PREPEND /usr/local/bin

This is MYENV.end.tcl
vovenv PATH : DELETE /usr/local/bin

To have an environment that also works on Windows the following form can be used:

This is MYENV.start.tcl
if { $::tcl_platform(platform) eq "windows" } {
 # Quote ; because it is the command separator in Tcl.
 vovenv PATH ";" PREPEND c:/local/bin
} else {
 vovenv PATH : PREPEND /usr/local/bin
}

For Windows environments, care must be taken in dealing with case insensitivity and with the confusion between backward

and forward slashes. The variables Temp and TEMP are indistinguishable in Windows, because they differ only in case. In Tcl,

however, env(Temp) and env(TEMP) are distinct and only one of the two can be used. If the value of an environment variable

is needed, first call the procedure nt_preprocess_env to create an upper-case only version of the variable:

set tmpdir $env(TEMP) ;# May not work

nt_preprocess_env
set tmpdir $env(TEMP) ;# Guaranteed to work.

Another useful procedure is nt_slashes, which is used to convert the direction of slashes in file names. Example:

nt_preprocess_env
set tmpdir [nt_slashes $env(TEMP)]

Support for Aliases

Some customers desire the ability to define aliases in environments. Aliases are useful shorthands and reduce typing. They are

useful only in command shells. Aliases are not used when taskers execute jobs.

To define an alias, you have to describe an environment using Tcl syntax. Aliases defined in the environment become available to

the following shells: C-shell, Tcsh, Korn-shell. They are not available in Bourne-shell or in DOS.

The synopsis to define an alias is:

alias NAME WORD

For example: define an alias called 'l' for 'ls -sF':

At the end of $VOVDIR/local/environments/BASE.start.tcl
alias lll ls -sF

% ves BASE% alias lll
ls -sF

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.249

Pre and post Conditions

As part of environment definition, you can prepare two scripts, called NameOfEnv.pre.tcl and NameOfEnv.post.tcl,

which can be used to take care of pre- and post-conditions on a job by job basis.

Pre-Command and Post-Command Job Conditions
When a job is being submitted, a pre-condition and/or a post-condition can be specified.

• pre-condition: a script that is executed before the job is executed.

• post-condition: a script that is executed after the job has completed. The post-condition is typically used to perform cleanup,

such as deleting temporary files in /usr/tmp.

Example scripts are available in the following directories: $VOVDIR/etc/pre and $VOVDIR/etc/post.

Pre-condition

A pre-condition is executed before the job is run. It is invoked with a single argument: the ID of the job. A pre-condition is

executed with the same credentials as the job (userid, os-groupid) and is in the same directory of the job.

• If the precondition script fails by exiting with a status different from 0 (zero), the job will not be run and the exit status of the

job will be the exit status of the pre-condition script.

• If the exit status of the pre-condition script is within the range 201-215, the automatic rescheduling condition will occur and

the job will be rescheduled on a different host or on a different tasker.

Post-condition

The post-condition script is invoked with two arguments: the ID of the job and the exit status of the job. The post-condition is

executed with the same credentials as the job (userid, os-groupid) and in the same directory of the job.

• When the post-condition script is invoked, the job is still running.

• The post-condition is executed after the job, even if the job fails, but it is not executed if the pre-condition fails.

• The exit status of the post condition overrides the exit status of the job. It needs to explicitly return the exit status of the job

when that is the requested behavior (see the example scripts).

Submit Jobs with Conditions

Use the options -pre and -post with nc run to specify the pre- and post- conditions.

% nc run -pre $VOVDIR/etc/pre/pre_check.sh sleep 10
% nc run -post $VOVDIR/etc/post/post_cleanup.sh sleep 10

Log Files

The standard output from the pre- and post-commands is saved in log files. The location of the log files is determined by the value

of the environment variable NC_LOGDIR. If NC_LOGDIR is not set, the files are stored in the directory ./vnc_logs, relative

to the current launch directory.

In the following example, NC_LOGDIR is not set, and the run directory is ~/testrundir:

[goetz@goetz1 ~/testrundir]$ pwd
/home/goetz/testrundir

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.250

[goetz@goetz1 ~/testrundir]$ ls
vnc_logs
[goetz@goetz1 ~/testrundir]$ ls -a vnc_logs/
. .. 20210726 .precmd.000083865.log .precmd.000083885.log snapshots

The log files are created with zero size if the pre- and post-commands redirect all the output of the files. At the end of the job, if

these files are zero length, they are automatically deleted to reduce disk space overhead.

The log files are named according to the following rules:

.precmd.$jobID.log

.postcmd.$jobID.log

The pre- and post-command log files can optionally be located in the same directory as the job logfile. For example:

nc run -pre "myprecommand > @JOBLOGDIR@/@JOBID@_pre.out" -l path/to/an/existing/
directory/mycommand.out -- mycommand
nc run -post "mypostcommand > @JOBLOGDIR@/@JOBID@_post.out" -l path/to/an/existing/
directory/mycommand.out -- mycommand

This would result in the respective pre- and post-command logfiles being written to the directory path/to/an/existing/

directory.

Note: When using the nc run command after forgetting jobs that have pre- and/or post-commands, it does

not automatically remove the pre- and post-command .log files. If these files are not zero length, they must be

removed manually.

Manage Umask

The umask feature is used on UNIX to set the permissions on new files and directories. VOV supports umask with the environment

variable VOV_UMASK. This variable is checked by the wrappers (vw, vov, etc.). When set, the wrapper adjusts the umask

accordingly.

The environment variable VOV_UMASK is automatically set to the value of the umask in the submit environment when using an

environment snapshot in Accelerator.

If using a named environment, VOV_UMASK may need to be set separately. To do so, add D(VOV_UMASK=value) to the

environment specification.

Note: The logfile of the job is created by the vovtasker, and its mode is controlled by VOV_UMASK. However, the

date-stamped directory YYYYMMDD under vnc_logs is created at job submit time by the nc run command; the

file permission (mode) of the logfile is controlled by the umask in the submit shell.

Examples with VOV_UMASK

This section provides examples of using VOV_UMASK.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.251

In the following example, the umask is set in the current shell to a value that is different from the one in the ~/.cshrc file. The

077 umask removes all permissions from group and others.

% umask 077
% umask
77
% grep umask ~/.cshrc
umask 022
% nc run -v 0 -r unix -wl csh -c umask
----STARTING ON some-host-name----
22
----END OF LOG----
----EXIT STATUS 0----

The next example shows the umask value that is set in the ~/.cshrc file, since the csh ran that file when it started. This value

overrides the value that is captured in the environment snapshot.

% nc run -v 0 -r unix -wl csh -fc umask
----STARTING ON some-host-name----
77
----END OF LOG----
----EXIT STATUS 0----

The following example shows the umask value that is set in the current shell, captured in the snapshot environment and reproduced

in by vw2. That shell does not run the ~/.cshrc file because of the -f option. The snapshot file contains the following:

...
VOV_UMASK='077'
export VOV_UMASK
...

The next example shows a umask value that is different from the current shell, that was most likely inherited from the one set

up in the startup script of the owner of Accelerator. It could also be set by VOV_UMASK in the startup script for the BASE

environment. The BASE environment shipped by Altair does not set VOV_UMASK.

% nc run -v 0 -e BASE -r unix -wl csh -fc umask
----STARTING ON some-host-name----
22
----END OF LOG----
----EXIT STATUS 0----

The following example shows the umask value that is set by the VOV_UMASK environment variable, which is different from both

the current shell, and the shell startup file.

% nc run -v 0 -e 'BASE+D(VOV_UMASK=055)' -r unix -wl csh -fc umask
----STARTING ON some-host-name----
55
----END OF LOG----
----EXIT STATUS 0----

The following example creates the logfile named by the command, and possibly the 20060713 subdirectory of vnc_logs, if it did

not exist. The subdirectory is mode 0700, since it was initialized from the umask in the current shell.

The logfile itself, 162014.8525, has mode 0620 because it was initialized from the OR of umask 055 and 666 in the wrapper vw2.

% nc run -e 'BASE+D(VOV_UMASK=055)' -r unix -wl date
Resources= unix CPUS/1

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.252

Env = BASE+D(VOV_UMASK=055)
Command = vw date
Logfile = vnc_logs/20060713/162014.8525
JobId = 00424353
----STARTING ON some-host-name----
Thu Jul 13 15:57:56 PDT 2006
----END OF LOG----
----EXIT STATUS 0----
% ls -ld vnc_logs/20060713
drwx------ 2 cadmgr rtda 4096 Jul 13 15:57 vnc_logs/20060713
% ls -l vnc_logs/20060713
-rw--w---- 2 cadmgr rtda 29 Jul 13 15:57 vnc_logs/20060713/162014.8525

Environment Debugging

A faulty or incomplete environment definition can cause problems with running jobs. Example: A job succeeds when executed

directly from the command line but fails when executed by the taskers.

The utility taskerdebug can be used to debug the environments used by the taskerdebug. This utility prints all environment

variables, aliases and equivalences into the file that is given as its first argument. In the following example, the environment named

BASE is debugged, and base.out is the output file:

% ves BASE
% vov taskerdebug base.out

The command can now be retraced on selected taskers and check the file base.out for clues about the problem with the

environment. If necessary, use the resource mechanism to direct the job to the desired tasker.

Note: The taskerdebug command is implemented as a csh script on UNIX, and a .bat script for Windows.

The command machinfo can also be used, which is implemented in Tcl. Implemented in Tcl allows using this

command in either UNIX or Windows. This may be preferred, as the machinfo output provides more information

than the command taskerdebug on Windows.

Environment Checking

To verify if an environment is good, use vovenvcheck, which checks that all variables set in the start.* file are properly

unset in the end.* file. Example:

% vovenvcheck env_name

Environment Management: Limits

In addition to environment variables, hard and soft limits can affect tool behavior. Hard and soft limits are set in the shell and are

imposed by the operating system. Both UNIX and Windows provide a mechanism for processes to communicate information to

their subprocesses via environment variables.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.253

VOV uses special environment variables to communicate limit information. The environment variables are named

VOV_LIMIT_<name>. name is the name of the limit, such as VOV_LIMIT_cputime.

A complete list of VOV_LIMIT_<name> environment variables include:

Variable Value Type

VOV_LIMIT_coredumpsize ByteSpec

VOV_LIMIT_cputime VOV TimeSpec

VOV_LIMIT_datasize ByteSpec

VOV_LIMIT_filesize ByteSpec

VOV_LIMIT_maxproc Ignore any unit

VOV_LIMIT_memorylocked ByteSpec

VOV_LIMIT_openfiles Ignore any unit

VOV_LIMIT_stacksize ByteSpec

VOV_LIMIT_vmemoryuse ByteSpec

The variables are interpreted in the wrapper program vw2 which uses the C-language getrlimit()/setrlimit() system

calls to set the limits for the child process when the job runs.

The value of a variable can be either of the following (depending on the value type):

• A ByteSpec, which is a sequence of digits followed by an optional unit indicator letter, e.g. 5M

• A TimeSpec, which is a sequence of integers and unit indicators, e.g. 3m, or 4h30m

• A sequence of digits without a unit indicator, e.g. 1000 (applicable to all value types)

• The string value 'unlimited' (applicable to all value types)

The recognized unit indicators (case insensitive) for the ByteSpec format are:

• K, kilobytes (same as no unit indicator)

• M, Megabytes (multiply by 1024)

• G, Gigabytes (multiply by 1024*1024)

• T, Terabytes (multiply by 1024*1024*1024)

The recognized unit indicators (case insensitive) for the TimeSpec format are:

• s, Seconds (same as no unit indicator)

• m, Minutes (multiply by 60)

h, Hours (multiply by 60*60)

d, Days (multiply by 60*60*24)

w, Weeks (multiply by 60*60*24*7)

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.254

y, Years (multiply by 60*60*24*365)

In Accelerator, the limit can be set at submission time. In the following example, a limit of 20 seconds of CPU is set for a job.

% nc run -e 'BASE+D(VOV_LIMIT_cputime=20)' shortjob.csh
% nc run -e 'BASE+D(VOV_LIMIT_vmemoryuse=5G)' bigjob.csh
% nc run -e 'BASE+D(VOV_LIMIT_vmemoryuse=5G)' bigjob.csh

In the following example, the command lines provide the roughly equivalent limit of 5GB for a job.

% nc run -e 'BASE+D(VOV_LIMIT_vmemoryuse=5000M)' bigjob.csh
% nc run -e 'BASE+D(VOV_LIMIT_vmemoryuse=5G)' bigjob.csh
% nc run -e 'BASE+D(VOV_LIMIT_vmemoryuse=5000000k)' bigjob.csh

The multipliers used with the memory specifications for limits are as follows: 'k' (KiB, 1024=210, kibibytes) 'M' (MiB, 220,

mebibytes) 'G' (GiB, 230, gibibytes) and 'T' (TiB, 240, tebibytes). The multipliers are case-insensitive.

If an integer has no unit specification, kilobytes are the units used. For example, 1024K is the same as 1024. In addition, using

unlimited as a value is acceptable.

The following two examples show how to find the current limits.

For csh/tcsh:

% limit
cputime unlimited
filesize unlimited
datasize unlimited
stacksize unlimited
coredumpsize 0 kbytes
vmemoryuse unlimited
descriptors 1024
memorylocked unlimited
maxproc 2048
openfiles 1024

For sh/bash:

bash-2.05$ ulimit -a
core file size (blocks) unlimited
data seg size (kbytes) unlimited
file size (blocks) unlimited
max locked memory (kbytes) unlimited
max memory size (kbytes) unlimited
open files 1024
pipe size (512 bytes) 8
stack size (kbytes) unlimited
cpu time (seconds) unlimited
max user processes 5119
virtual memory (kbytes) unlimited

Use option -H to get the hard-limits
bash-2.05$ ulimit -a -H
...

In most cases, everything in the shell startup file can be set as unlimited. This setup gives the tools the greatest possibility of a

successful run. It is extremely rare for this method to not work.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.255

When an environment snapshot is used when submitting jobs to Accelerator, the limits in the submission environment are captured

automatically.

If using a named environment, the following Tcl code in the ENV.start.tcl script can be used to set the variables for limits

and umask. This is the same as what is done in the environment snapshot.

if { [info command vtk_umask_get] != {} } {
 setenv VOV_UMASK [vtk_umask_get]
 catch {
 vtk_limits_get limit
 foreach n [array names limit] {
 setenv VOV_LIMIT_$n $limit($n)
 }
 }
}

Tcl-language API

VOV provides two API procedures to get and set the limits, vtk_limits_get and vtk_limits_set. Both procedures take a

single array parameter, which contains the limits, keyed by name.

Because different platforms have different limits available, the VTK procedures support only a common subset of limits.

The following names are supported:

VTK Limit Procedure Name Description

stacksize Size of process stack segment, bytes

datasize Size of process data segment, bytes

cputime Maximum process CPU time, seconds

filesize Maximum file size, bytes

coredumpsize Maximum core dump file size, bytes

In the following example, Tcl code is used to eliminate core files by setting the coredump size limit to zero:

catch {
 vtk_limits_get L ; # get existing limits into array L
 set L(coredumpsize) 0 ; # set coredump limit
 foreach n [array names L] {
 setenv VOV_LIMIT_$n $limit($n) ; # propagate limits to envVars
 }
}

The SNAPSHOT and SNAPPROP Environments

The SNAPSHOT Environment

If the environment variable VOV_ENV is not defined or if it is defined and it contains the keyword SNAPSHOT, the submission

procedure creates a snapshot file with all current environment variables, excluding some troublesome variables, listed later in

this section. The snapshot file is typically in vnc_logs/snapshots/$LOGNAME/$VOVARCH/envNNNNN.env where

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.256

NNNNN is a hash of the content of the file, and it is used to quickly share existing snapshots between files. After the snapshot file

has been created, the environment of the job is modified so that the SNAPSHOT environment gets a parameter which is a full

name or a relative name to the snapshot file. The snapshot file is chosen based on the value of the variables NC_LOGDIR and

NC_SNAPSHOTDIR.

For example:

% nc run -e SNAPSHOT sleep 10
Fairshare= /time/users.john
Resources= macosx
Env = SNAPSHOT(vnc_logs/snapshots/john/macosx/env13378.env)
Command = vw sleep 10
Logfile = vnc_logs/20121013/124703.55776
JobId = 007470870

The SNAPPROP Environment

It has been proven that under heavy load, many NFS servers are not fast enough to deliver the SNAPSHOT file to the remote host

on which jobs need to be executed. This is particularly tough to debug because by the time one is ready to investigate a job failure

caused by a bad snapshot file, the file has become available on the remote host.

Accelerator implements an alternative way to deliver the snapshot information to the remote job which does not rely on NFS files

but rather on properties attached to the job. The downside of this approach is an increase in memory use by the main vovserver in

Accelerator, such on the order of one additional GB for about 100,000 jobs, although this does not seem to be much of a problem

on current hardware.

Currently, the only way to use the SNAPPROP environment is to use option -ep in nc run.

% nc run -ep sleep 10
Fairshare= /time/users.john
Resources= macosx
Env = SNAPPROP(@JOBID@)
Command = vw sleep 10
Logfile = vnc_logs/20121013/123218.26892
JobId = 007470866

% nc info !
Id,User,Group 007470866,john.staff,/time/users.john
Environment SNAPPROP(007470866)
Directory /Users/john
Command sleep 10
Resources macosx
Submitted from mac09
Submitted at Sat Oct 13 12:32:18 PDT 2012
Priorities schedule=normal execution=normal
Status Done
 Host mac09
 Queue Wait 0s
 CPU Time 0.00
 Max RAM 0MB
 Duration 11
 Age 9s
 AutoForget 1

Customize SNAPSHOT Behavior

Some aspects of the environment snapshot procedure can be customized by the administrator via the $VOVDIR/local/

vovenv.config.tcl file. The settings in this file apply to both file and property-based snapshots.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.257

Variable Blacklisting

It may be desirable to prevent some environments variables from being carried over from the submission environment to the job

execution environment. A blacklist can be established via a Tcl list variable named badVarList.

• ANIMALS

• HOST

• HOSTNAME

• LC_COLLATE

• LC_CTYPE

• LC_MESSAGES

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

• LS_COLORS

• OSREV

• OSTYPE

• PROMPT

• PWD

• SHELL

• SHLVL

• TERMCAP

• TK_TABLE_LIBRARY

• USERNAME

• VOVARCH

• VOVDIR

• VOVSAVEPROMPT

• VOV_ENV

• VTCL_LIBRARY

• VTIX_LIBRARY

• VTK_LIBRARY

• WINDOWIDTERM

• WINDOW_TERMIOS

• _

Other Settings

maxEnvSize

Specifies the maximum size, in bytes, the submission environment is allowed to be for the environment snapshots.

Example File

Example of $VOVDIR/local/vovenv.config.tcl file.
lappend badVarList SITE

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.258

set maxEnvSize 10000

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.259

Directories and Files

Working Directories and Equivalences
The directory where the top level job is executed must be visible and accessible to both the Accelerator vovserver, which is

running on UNIX, and the remote Windows NT machine.

This is normally not a limitation, since there is always at least one directory that satisfies this requirement, the one of the

Accelerator installation itself. Nothing prevents you from changing to any other directory as part of the job.

It is imperative that you explain to the Accelerator vovserver the naming equivalences between UNIX files and Windows NT

files. Keeping up with our examples, the path to the Accelerator installation is /usr/local/rtda on UNIX and f:\rtda on

Windows NT. This can be described in the file vnc.swd/equiv.tcl as:

Fragment of vnc.swd/equiv.tcl
vtk_equivalence NCROOT /usr/local/rtda
vtk_equivalence NCROOT f:/rtda; # Notice the forward slashes!!

where NCROOT is the "logical name" we want to use for both the directory /usr/local/rtda and /usr/local/rtda.

After you change the vnc.swd/equiv.tcl file, you must always do a full reset:

% ncmgr reset -full

Canonical and Logical File Names
VOV clients and server exchange dependency information by using file names; each file needs a single name that is valid on both

the client and the server.

It may seems that each file, could use its full path as its unique name. However, a file may and will have more than one name for

the following reasons:

• Links, both hard and symbolic, allows multiple full paths for the same file.

• For any file, it is possible to generate an infinite number of full paths by using the "dot" and "dot-dot" notation (for example,

/usr/bin/ls can also be written as /usr/../usr/bin/./ls).

• The same file may have different full paths on different hosts due to how the file systems are network mounted.

Canonical Names

VOV defines the canonical name of a file to be the full path obtained by removing all symbolic links and all "dots".

In this example, a file system contains the following link:

/users/john/projects --> /sandbox/projects

With the relative path ~/projects/vhdl/vtech/../syn/vtech.v, with respect to the user john, the following

transformations would apply:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.260

The non-canonical path ~/projects/vhdl/vtech/../syn/vtech.v

after tilde expansion becomes /users/john/projects/vhdl/vtech/../syn/vtech.v

after removing the symbolic link becomes /sandbox/projects/vhdl/vtech/../syn/vtech.v

by removing the double dot becomes canonical /sandbox/projects/vhdl/syn/vtech.v

Logical Names

A canonical name is then turned into a logical name. A logical name is one in which the file name begins with the value of a

variable.

For example, the name ${HOME}/foo.c is logical, while /users/home/john/foo.c is not.

The use of logical names is critical because the value of the variable used in the name is allowed to be different on different hosts.

This is to account for the different ways the file systems are mounted across the network.

For example, the variable ${HOME} may point to /users/home/john on a UNIX machine and to h:/john on a Windows

NT machine.

All filenames in VOV are logical and canonical names. The logical names are formed according to the rules defined in the equiv.tcl

file.

There are two further advantages in using logical canonical names:

• The average length of names is reduced, which reduces the storage requirements for the trace.

• The trace can be easily moved from one file system to another.

Define Equivalences for File Names
There are multiple methods to define the equivalences used to compute the canonical names of files and directories.

For example:

• Instruct the server to parse the equiv.tcl file and provide entries to clients. This is the default behavior. Note that for this

case, equivalences that reference an environment variable should not resolve the variable in this file, in environments that

will have both UNIX and Windows clients. Instead, they will need to be resolved by the client upon receipt. This is done by

enclosing the equivalence value inside curly braces and referring the environment variable as $VARNAME as opposed to the

Tcl format of $env(VARNAME).

• Instruct clients to read the file directly. This is a legacy method that requires that all clients have access to the server working

directory so they can parse the equiv.tcl file for entries, and read/write access to the equiv.caches directory so

the entries can be written to a host-based cache file for future use. In this mode, environment variables may be resolved in

this file, but the behavior will be the same as not allowing them to be resolved. To resolve them in this file, the equivalence

value should not be wrapped with curly braces and the environment variable should be referred to in the Tcl format of

$env(VARNAME). This method is enabled by setting the VOVEQUIV_CACHE_FILE environment variable to "legacy".

• Instruct clients to read a specific cache file only. This is a special method used in corner cases where directories may

not be the same but should be forced to be considered the same. This is utilized mainly by Monitor agent single-file

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.261

distributables. In this mode, environment variables may be resolved in this file, but the behavior will be the same as not

allowing them to be resolved. To resolve them in this file, the equivalence value should not be wrapped with curly braces and

the environment variable should be referred to in the Tcl format of $env(VARNAME). This method is enabled by setting the

VOVEQUIV_CACHE_FILE environment variable to a valid equivalence cache file path.

Equivalence File

The equivalence file (equiv.tcl) defines the rules to generate logical names. This file is used by all clients as well as by the

server. This file is a Tcl script. The fundamental procedure used in this script is vtk_equivalence.

The procedure vtk_equivalence has the following purposes:

• The main purpose is to define an equivalence between a logical name and a physical path, as in:

vtk_equivalence TOP /export/projects/cpu
vtk_equivalence TOP p:/cpu

Note: The physical path need not be canonical. The definition is silently ignored if the physical path does not

exist.

• The secondary purpose is to control the case sensitivity for file names, using the options -nocase or -case. With -nocase, all

names are canonicalized to lowercase, which is useful when the vovserver is running on a Windows NT machine.

• The third purpose is to control whether the AFS paths should be supported. If the -afs option is used, then all paths of the type

/.automount/hostname1/root/aaa become /net/hostname1/aaaa

The procedure vtk_equivalence also has side effects:

• The environment variable corresponding to the logical name is set, if it does not exist already (that is, the variable

$env(TOP)).

• The Tcl global variable corresponding to the logical name is set to the value of the environment variable (that is, the variable

$TOP).

Example Uses of vtk_equivalence

See the following example:

-- HOME should not be used in multi-user projects, because it has a
-- different value for each user. Use it only in single-user projects.

vtk_equivalence HOME $env(HOME)

-- VOVDIR is always defined and these equivalences are always useful.

vtk_equivalence VOVDIR $VOVDIR
vtk_equivalence VOVDIR $VOVDIR/../common

-- Data directories.

vtk_equivalence TOP /export/projects/cpu; # This is for Unix
vtk_equivalence TOP p:/cpu ; # This is for Windows

Uncomment this if you need AFS paths.

vtk_equivalence -afs

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.262

For another example of equivalence file, see the default file for the "generic" project type $VOVDIR/local/ProjectTypes/

generic/equiv.tcl.

Define Host-specific Overrides for the Server-side Equivalence Cache

The server-side equivalence cache can be accessed via the VTK Tcl API using vtk_equivalence_get_cache OPTION.

When passing a host name in for OPTION, the equivalences for that host will be returned. When passing an empty string in for

OPTION, the list of host names that have entries is returned. By default, a special host name of "_default_" is used for the server-

side cache that applies to all clients.

The server-side equivalence cache can be set with via the VTK Tcl API using vtk_equivalence_set_cache HOSTNAME

VALUES, where HOSTNAME is the name of a host or the "_default_", and VALUES is a Tcl list with an even number of elements in

the form LOGICAL_NAME PHYSICAL_PATH.

vtk_equivalence_set_cache lin0201 "HOMES /homes VOVDIR /tmp_mnt/tools/rtda/current/"

The equivalences can also be viewed and managed via the web UI on the Equivalences page.

Historical Job Data Files
vovserver creates a CSV (comma-separated variable) file containing data about each job that ran. This format may be directly

imported into many spreadsheet and database programs. The jobs files are stored in the jobs subdirectory of the vovserver

configuration directory.

For example, for the default setup of Accelerator, the job files are stored in the directory as shown below:

$VOVDIR/../../vnc/vnc.swd/jobs

The jobs files are rotated automatically each day by the vovserver, and older ones are compressed. Each file is named according to

the day it applies to, in the form YYYY.MM.DD, where YYYY is the year, MM is the 2-digit month, and DD is the two-digit day of

the month.

Each file contains a few header lines that identify the format version and the order of the fields. In the following example, the

backslashes indicate line breaks inserted for readability. The comment denoting the fields is actually one long line. The available

fields may vary by jobs file version as shown below:

V 1
T 1173942608
FIELDS: ID,JOBCLASS,PROJECT,GROUP,USER,OSGROUP,DP,DIR,ENV,TOOL,JOBNAME,
SPRIORITY,XPRIORITY,RESOURCES,GRABBED,LICENSES,SUBMITHOST,EXEHOST,DPHOSTS,
SUBMITTIME,STARTTIME,ENDTIME,STATUS,EXIT,MAXRAM,CPUTIME,QUEUE

Jobs File Fields Description

The following table shows the type and meaning of the fields in the jobs file.

Field Name Data Type Description

ID %d Numeric ID of the job

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.263

Field Name Data Type Description

JOBCLASS %s Name of jobclass in which job was

submitted; may be empty

PROJECT %s Name of management project on behalf

of which job was run

GROUP %s Name of FairShare group in which job

was run

USER %s Name of user as which the job ran

OSGROUP %s List of user.group

DP %d Boolean; 1 if distributed parallel job, 0 if

not

DIR %s Working (run) directory of the job

ENV %s Name of the environment in which the

job was run

TOOL %s Name of the program (first word on

command line) that the job ran

JOBNAME %s User-assigned name of the job; may be

null

SPRIORITY %d User-assigned scheduling priority of the

job

XPRIORITY %d User-assigned execution priority of the

job

RESOURCES %s Resources requested by the job

GRABBED %s Resources actually assigned to the job,

after all mapping

LICENSES %s License features used by the job

SUBMITHOST %s Name of host from which job was

submitted

EXEHOST %s Name of host on which job was executed

DPHOSTS %s List of host names on which distributed

parallel job was executed

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.264

Field Name Data Type Description

SUBMITTIME %d Time job was submitted, seconds since

the Epoch

STARTTIME %d Time job started running, seconds since

the Epoch

ENDTIME %d Time job finished running, seconds since

the Epoch

STATUS %s String describing status of the job, e.g.

'Done'

EXIT %d Exit status of the job, e.g. 0

MAXRAM %d Maximum RAM used by the job, in

MBytes

CPUTIME %d Cumulative CPU time used by the job, in

seconds

QUEUE %d Time the job waited in queue, in seconds

Journals
The vovserver records all events in a journal file that resides in a the subdirectory journals/ of the server configuration

directory.

Each journal has a name in the form YYYY.MM.DD.jrn. A new journal is started each day; older journals are compressed

automatically, but not removed. For a long-running VOV project, it may be necessary to set up the vovcontrab or another means to

manage the size of the journal's directory.

In the current release, the journals are intended for machine consumption, and are terse and cryptic. These journals are to be used

for auditing and troubleshooting.

The journals can be browsed on the Journals page. This page can display only the events that are related to a specific node, or all

events. The events are arranged into groups by timeslice.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.265

Alerts and Notifications

Notification daemon: vovnotifyd
The vovnotifyd daemon is used to deliver notifications to selected recipients about functions that are related to job events.

On Accelerator, this delivery function is associated with the MAILTO property of the jobs. (This association does not apply to

other Altair Accelerator products.)

The notifications are related to health checks, such as taskers that are down, jobs that are stuck or waiting too long, and so on.

These conditions are detected by Accelerator or Monitor. Predefined system health check procedures are included with the Altair

Accelerator.

The content and the email delivery of the notifications can be configured by using the forms and text fields on the browser, or by

creating and editing files that use CLI commands.

The following table lists the files that are related to vovnotifyd.

Table 3: Summary of vovnotifyd Files

Config files vnc.swd/vovnotifyd/config.tcl

vnc.swd/vovnotifyd/config_smtp.tcl

vnc.swd/vovnotifyd/config_export.tcl

Info file vnc.swd/vovnotifyd/info.tcl

Auxiliary files $VOVDIR/tcl/vtcl/vovhealthlib.tcl

$VOVDIR/local/vovhealthlib.tcl

vnc.swd/vovnotifyd/vovhealthlib.tcl

Timing of Notifications

You can use the TIMEVAR definitions to control the timing at which license expiration and other emails are sent.

In vovhealthlib.tcl, you can define a TIMEVAR such as:

source $env(VOVDIR)/tcl/vtcl/vovflexlmdlib.tcl
package require vovurlutils

global HEALTHLIB_PRODUCT_MAP HEALTH_PROCS env

set HEALTHLIB_PRODUCT_MAP(doTestHealthMyFeature) "nc"
registerHealthCheck doTestHealthMyFeature -checkfreq 10 -forceCheckfreq -mailfreq
 10 -forceMailfreq
lappend HEALTH_PROCS(list) doTestHealthMyFeature

proc doTestHealthMyFeature { args } {

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.266

 global HEALTH_PROCS
 set homeUrl $HEALTH_PROCS(homeURL)
 # VovMessage "now running doTestHealthMyFeature"
 set subject "TestMyHealthFeature"
 set body "\nHi,\n\nWe ran TestMyHealthFeature.\n"
 doMailNotify doTestHealthMyFeature "@ADMIN" $subject $body
}

TIMEVAR doTestHealthMyFeature {
 Tue {
 suppressMail doTestHealthMyFeature 1
 }
 06:00-08:00 {
 suppressMail ALL 0
 suppressMail doTestHealthMyFeature 0
 }
 default {
 suppressMail ALL 1
 suppressMail doTestHealthMyFeature 1
 }
}

Where calling suppressMail with a "1" for the specified health check will suppress the mailings for that TIMEVAR.

suppressMail accepts either the name of a specific health check, or "ALL" to control all defined health check routines.

Configure vovnotifyd via the Browser

1. On the menu bar, click the Administrations icon (which looks like a gear).

This takes you to Admin page.

2. In the left column on the Admin page under Administration, select - Daemons.

3. In the Daemons page, select config for vovnotifyd.

4. The next windows provides the options to edit, enable and disable the desired features: Health Checks, SMTP Configuration

or E-Mail Maps

After configurations have been set, the option to view the current configurations will be available in the Config File column:

Show config file.

CAUTION: Configurations can be modified in the this text field. To avoid errors, it is recommended to

instead configure the parameters in the GUI fields that are described below.

Health Checks

By default, all procedures are monitored. Procedures that are designated as not required can be disabled.

SMTP Configuration

SMTP Configuration is used to configure the notification system.

Note: To query LDAP for email addresses, LDAP must first be configured. For details about LDAP

configuration, refer to LDAP Integration.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.267

E-Mail Maps

E-Mail Maps are used to add, update or remove the email addresses of the users that receive notifications. By default, email

addresses are sent directly via either the user ID or user@sourcedomain. In addition, alternate email addresses can also be

entered per recipient.

Configure vovnotifyd via the CLI

Note: For information about configuring health checks, refer to Health Monitoring and vovnotifyd.

1. To manually configure vovnotifyd, create the directory vovnotifyd inside the server working directory (.swd).

2. Copy the configuration file template into the newly-created directory.

cp $VOVDIR/etc/config/vovnotifyd/config.tcl

3. Modify the configuration template to match the settings of your mail server environment.

% cd `vovserverdir -p .`
% mkdir vovnotifyd

Example of the $VOVDIR/etc/config/vovnotifyd/config.tcl file:

Notification configuration file.
Should be placed in the vovnotifyd directory of the .swd.
All settings are required unless specified otherwise.
Unused optional settings should be commented out.

Create an e-mail address map, stackable, optional
addUserToEmailAddressMap rtdamgr john@mydomain.com

AltairMonitor-specific settings
See notification configuration documentation in Altair Monitor Admin guide
ConfigureTag TAG OPTION VALUE
ConfigureFeature FEATURE OPTION VALUE

Examples:
ConfigureTag MGC -poc { john mary }
ConfigureFeature EDA/MATLAB -longcheckout 2d -userlongcheckout john 1w -mincap
 5 -triggerperc 90
ConfigureFeature SIMULINK -poc bob -mincap 10 -triggeruse 12

4. To start the daemon, either enter the command nc cmd vovdaemonmgr start vovnotifyd, or start it manually

from the vovnotifyd directory as shown below:

% vovproject enable vnc
% cd `vovserverdir -p vovnotifyd`
% vovnotifyd

Autostart vovnotifyd

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.268

In the directory vnc.swd/autostart set up your script start_vovnotifyd.tcl to run with autostart:

% cd `vovserverdir -p .`
% mkdir autostart
% cp $VOVDIR/etc/autostart/start_vovnotifyd.tcl autostart

Configure Email Addresses
Use the config.tcl file to set the email addresses to be used for each user.

Two methods are available:

• Call addUserToEmailAddressMap USERNAME EMAIL

• Override the entire procedure getEmailAddress

Fragment of vovnotifyd/config.tcl file.

Method 1.
addUserToEmailAddressMap john John.Smith@my.company.com

Method 2. Assume you can get an address from LDAP
The LDAP subsystem needs to be configured.
proc getEmailAddress { user } {
 set email [VovLDAP::getEmail $user]
 if { $email != "" } {
 return $email
 } else {
 return $user
 }
}

Write Localized Health Checks
The vovnotifyd command runs in the vovsh binary, so all the VTK API procedures are available to you.

The standard checks procedures are defined in the file $VOVDIR/tcl/vtcl/vovhealthlib.tcl.

The health check procedures are loaded by using a search path. They are loaded first from the file given above, then from

$VOVDIR/local/vovhealthlib.tcl, and last from vovhealthlib.tcl in the vovnotifyd working directory. This

permits redefining health check procedures on a site-wide or a project-specific basis.

Note: Local procedure names should begin with 'doTestHealth' such as the system names; some platforms

require on this convention.

To have local procedures shown by the browser UI, add a line into your vovhealthlib.tcl file. An example is shown below:

set HEALTHLIB_PRODUCT_MAP(doTestHealthYourProcedure) "nc"

The product names are those returned by the procedure vtk_product_get_info -name: nc, lm, ft, wa.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.269

Ensure your procedures are robust and handle error conditions, such as catching all exec{}, open{} and other procedures that

may fail.

Note: Changes made to any of the vovhealthlib.tcl files will not take effect until the vovnotifyd daemon

is restarted.

Alternate Method of Sending Email
If SMTP is not available, a mailer program could be used instead.

Use a Mailer Program

The standard sendMail procedure checks the Method setting in the SMTP Configuration section of the vovnotifyd

configuration web UI. The method may be set to PROGRAM in the web UI to allow you specify a custom mailer command.

Notification of Job Status
The Accelerator vovnotifyd notification daemon accesses the server's event stream and then sends a notification for jobs that

request it.

To enable this notification, the MAILTO property must be set: use the option -m or -M option with the nc run command. An

example is shown below:

% nc run -m sleep 10
% nc run -M ":ERROR" simulate chip.spi

The format of the property of MAILTO can be configured as follows:

recipientList
recipientList : verbList
recipientList : ALL
: verbList

recipientList is the list of the e-mail recipients. verbList is the list of verbs for which notifications must be sent. The supported

verbs are listed below.

DESCHEDULE - Job has been dequeued.
DISPATCH - Job has left the queue and has been routed to an execution host.
ERROR - Job has exited with a failure.
FORGET - Job has been forgotten.
RESUME - Job has been resumed.
STOP - Job has exited successfully.
SUSPEND - Job has been suspended.

If the recipientList is empty, a notification is sent to the owner of the job. If the verbList is empty, then a notification is sent only

when the job terminates.

For example:

john : ERROR - Send mail to the user 'john' if the job terminates in error.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.270

: STOP ERROR - Send mail to the job owner when the job terminates.
john mary: ALL - Send mail to the users 'john' and 'mary' for anything that happens
 to the job.

Change the MAILTO Property After Job Submission

To change the MAILTO property, use the vovprop utility. The following are examples of getting, setting, and deleting the

property:

% nc cmd vovprop get 000012345 MAILTO
% nc cmd vovprop set -text 000012345 MAILTO "mary : STOP ERROR"
% nc cmd vovprop delete 000012345 MAILTO

Job Status Triggers
The daemon vovtriggerd taps the event stream and executes commands that are based on selected events.

A typical application is updating an external SQL database when a job is completed.

Triggers are different from post-commands. Triggers are executed by vovtriggerd, which is normally run by the user who

owns vovserver. The owner of the account that was used to start vovserver is the owner of vovserver. Post-commands are executed

by the user who owns each job.

The following table summarizes the information about vovtriggerd:

Config file vnc.swd/vovtriggerd/config.tcl

Sample config file $VOVDIR/etc/config/vovtriggerd/config.tcl

Info file vnc.swd/vovtriggerd/info.tcl

Set Up vovtriggerd

vovtriggerd is a daemon that is configured as follows:

• Create a subdirectory called vovtriggerd in the server configuration directory

• Create a configuration file called config.tcl with the main purpose of overriding the procedure called

triggerCallBack

• Start the daemon:

% mkdir `vovserverdir -p vovtriggerd`
% cd `vovserverdir -p vovtriggerd`
% mkdir autostart
% cp $VOVDIR/etc/config/vovtriggerd/config.tcl .
% vovdaemonmgr start vovtriggerd

The TRIGGER Property

The default trigger handler looks for the property TRIGGER attached to the object mentioned in the event. If the property exists, it

is assumed to be the name of a trigger procedure to be called. There are three arguments for the trigger procedure: id, subject,

verb.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.271

The trigger procedures are defined in the config.tcl file. Following are the guidelines for implementing a trigger:

• The trigger is stateless.

• The trigger is fast; it should complete within a few seconds.

Following is an example of using the TRIGGER property:

• Create a trigger call-back in the config.tcl file. In the following example, it is named trigShowJobEventCB.

#
This goes in PROJ.swd/vovtriggerd/config.tcl
#
proc trigShowJobEventCB { id subject verb } {
 puts "TrigShowJobEventCB: Just got the event $id $subject $verb"
}

• Attach the property TRIGGER to jobs in the flow. Example:

% vovprop set -text 000123456 TRIGGER trigShowJobEventCB
% vovprop set -text 000234567 TRIGGER trigShowJobEventCB

Trigger Events

Following are the events that are processed by vovtriggerd:

• JOBID "JOB" "DISPATCH", when the job is dispatched to a tasker.

• JOBID "JOB" "ERROR", if the job fails.

• JOBID "JOB" "STOP", if the job succeeds.

Handling the OVERFLOW Event

If the vovtriggerd daemon receives an overflow event (the verb is the string OVERFLOW), the procedure

overflowCallBack is called with no arguments. The overflow event is an indication of a buffer overflow inside the vovserver,

which is typically caused by vovtriggerd being too slow in processing the events. Depending on the situation, it may be useful

to reinitialize the trigger callbacks.

Example of Submission of Jobs with Triggers

The following example applies to Accelerator:

A trigger can be submitted by setting the TRIGGER property. Knowing the name of the trigger callback routine to call is required.

In the following example, the name of the trigger callback is updateDbCallBack.

% nc run -P TRIGGER=updateDbCallBack sleep 10

Example of updateDbCallBack
This procedure is defined in *.swd/vovtriggerd/config.tcl
Here we update a table called "mytable" based on the
value of a property called MYPROP.
proc updateDbCallBack { jobid subject verb } {
 switch $verb {
 "STOP" - "ERROR" {
 if [catch {set value [vtk_prop_get $jobid "MYPROP"]}] {
 set value -1
 }

 set stmt "INSERT INTO mytable (id,value)"

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.272

 append stmt " VALUES ($jobid, $value)"
 VovSQL::init
 set handle [VovSQL::open]
 VovSQL::query $handle $stmt
 VovSQL::close $handle
 }
 }
}

Alerts
VOV issues an "alert" when an event requires attention. An alert can range from information that does not require action to an

urgent fault that requires immediate action.

Depending on the event that occurs, an alert may require attention from a system administrator.

VOV supports four alert levels, which are defined in the table below.

INFO Information only, no action required.

WARN Warning, a limit is about to be reached.

ERROR A fault in one of the subsytems. Example: a syntax error in one of the configuration

files.

URGENT A major fault that compromises the behavior of the system and requires immediate

attention. Examples: a license violation or a disk full condition.

Alerts can be viewed on the browser or the command line interface (CLI). In addition, alerts are stored in log files.

For the administrator, VOV permits two actions with respect to an alert:

• Acknowledge the alert.

• Delete the alert from view.

Note: Every alert is stored in a log file; deleting an alert from viewing does not delete the record of the alert in the

log file.

Maximum Number of Alerts

The vovserver keeps up to a defined maximum number of alerts in view. The maximum number is defined by the parameter

alerts.max. The default value is 50. If the number of alerts exceeds the maximum, the oldest alert with the lowest level is

deleted from the view.

Note: The record of the alert is not deleted from the log file.

Manage Alerts

For viewing alerts, the level of the most severe alert is visible in the title bar of the browser user interface and in the VOV GUI.

The most recent alerts can be viewed from the command line interface with the following commands:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.273

• vsi for short format

• vovshow -alerts for full format

The following is an example of alerts as shown by vsi:

Alerts:
URGENT Imminent license violation: us 3 12d20h 12d20h
WARNING License is expiring in less th 2613 12d20h 9d13h
ERROR License is expiring in less th 558 9d13h 8d13h
URGENT License has expired 270 8d13h 8d01h
URGENT License violation 24 8d13h 8d01h
WARNING License violation: too many sl 336 8d13h 8d01h

The following example shows the same alerts as seen on the browser:

Figure 17:

If viewing the documentation from a live vovserver, refer to the Alerts page.

Alerts are also logged in the logs directory in files with names that are formatted as alert.YYYY.MM.DD.log. Old alert files

are compressed.

Some alerts may not require immediate action. However, it is good practice to acknowledge the alert. The [ack] link on the alerts

page can be used to indicate that the alert has been acknowledged. The login name of the person acknowledging the alert will be

shown on the Alerts page.

Clear Alerts from View

An alert is automatically cleared from view about one day after the last occurrence that triggered the alert. A selected alert can be

removed from view by using the [del] link from the browser UI.

All alerts can also be cleared from view with the following command:

% vovforget -alerts

Tcl API

There are two Tcl API procedures in vovsh that handle alerts:

• vtk_generic_get alerts A - Get alert data into array A

• vtk_alert_add sev title - Add an alert

To add an alert from the Tcl interface, use the command vtk_alert_add.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.274

To get data for all alerts in Tcl, use the command

vtk_generic_get alerts array

The following code example shows how vsi formats the alerts:

This is how the vsi cmd formats alerts
vtk_generic_get alerts alerts
if { $alerts(count) > 0 } {
 append output "\nAlerts:\n"
 for { set i 0 } { $i < $alerts(count) } { incr i } {
 append output [format " %-10s %-10s %-30s" $alerts($i,level)
 [string range $alerts($i,module) 0 9]
 [string range $alerts($i,title) 0 29]]
 if { $alerts($i,count) > 1 } {
 append output [format "%7d %8s %8s"
 $alerts($i,count)
 [vtk_time_pp [expr $now - $alerts($i,first)]]
 [vtk_time_pp [expr $now - $alerts($i,last)]]]
 }
 append output "\n"
 }
 append output "\n"
}

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.275

System Tasks

Run Periodic Tasks with vovliveness
If the directory "tasks" exist in the Server Working Directory, the server calls the vovliveness script once per minute.

The script executes all the tasks contained in the "tasks" directory.

vovliveness: Usage Message

 DESCRIPTION:
 This script is called by vovserver about once a minute.
 It can be used to perform maintenance tasks.

 USAGE:
 % vovliveness [OPTIONS] <taskdirectory> <timestamp>

 WHERE:
 task_directory -- is the directory with the tasks
 to be executed. The tasks are those
 that match the expression "live_*.tcl".
 timestamp -- Currently ignored.

 OPTIONS:
 -v -- Increase verbosity.

There are many uses for vovliveness. Examples are available in the directory $VOVDIR/etc/liveness.

To activate this functionality, create the directory tasks and add some tasks files with a name matching the expression

live_*.tcl. The Tcl interpreter has access to all vtk_* procedures. Example:

% cd `vovserverdir -p .`
% mkdir tasks
% cd tasks
% cp $VOVDIR/etc/liveness/live_start_taskers.tcl .

Following an example of the script live_start_taskers.tcl to restart any down taskers, once per hour:

#
Copyright © 2007-2021, Altair Engineering
#
All Rights Reserved.
#
Directory : src/scripts/liveness
File : live_start_taskers.tcl
Content : Start down taskers once an hour.
Note :
#
$Id: //vov/branches/2019.01/src/scripts/liveness/live_start_taskers.tcl#3 $
#

set now [clock seconds]

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.276

Get or initialize period
if { [catch {set period [vtk_prop_get 1 LIVE_START_TASKERS_PERIOD]}] } {
 set period 3600
 catch {vtk_prop_set 1 LIVE_START_TASKERS_PERIOD $period}
}

Get age
if { [catch {set lastRun [vtk_prop_get 1 LIVE_START_TASKERS_LAST]}] } {
 set lastRun 0
}
set age [expr {$now - $lastRun}]

if { $age >= $period } {

 # Start down taskers
 if { [catch {exec vovtaskermgr start >&@ stdout} errmsg] } {
 VovError "Failed to start taskers: $errmsg"
 }

 # Reset the last run TS
 catch {vtk_prop_set 1 LIVE_START_TASKERS_LAST $now}

}

Alerts from Liveness Tasks

Alerts may occur that are related to liveness tasks such as "The previous liveness script is still connected", especially in Monitor.

Note: In previous releases, there is no control these occurrences; such occurrences cause no harm.

The liveness tasks system is designed to support short jobs that are triggered frequently (about once per minute) by the vovserver

so long as it is running. It was also used for the database loading task for Monitor checkouts and Accelerator jobs; sometimes these

jobs run significantly longer.

In later releases the debuglog parsing, batch reports and other maintenance items are converted to periodic jobs that run on a

dedicated vovtasker named 'maintainer', so these alerts should no longer appear.

Run Periodic Tasks with vovcrontab
The UNIX utility crontab is used to perform regularly scheduled tasks such as retracing an entire project each night or storing

a back-up of the trace every Saturday. vovcrontab is a VOV utility that simplifies the creation of cron rules for a project.

Directions are provided in this section.

Usage: voncontrab

vovcrontab: DESCRIPTION:
vovcrontab: Interface to the UNIX utility crontab.
vovcrontab:
vovcrontab: USAGE:
vovcrontab: % vovcrontab [option]
vovcrontab:
vovcrontab: OPTIONS:
vovcrontab: -help -- Get this message
vovcrontab: -new -- Install the crontab for this project
vovcrontab: Also used to update the scripts/vovdir.csh script.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.277

vovcrontab: -noautostart -- Do not install autostart script to update
vovcrontab: vovdir.csh; the default is to install it.
vovcrontab: -reinstall -- Reinstall current crontab for this project
vovcrontab: -clear -- Clear the current crontab
vovcrontab: -show -- Show the crontab
vovcrontab: -type <type> -- Specify project type
vovcrontab:
vovcrontab: NOTE:
vovcrontab: Please remember to copy
vovcrontab: $(VOVDIR)/etc/autostart/update_crontab_vovdir.csh
vovcrontab: into your autostart directory if needed.
vovcrontab: It is installed by default.

Enable a Project

Enable a project in a shell via:

'vovproject enable <PROJECT>'

Create crontabs

Execute 'vovcrontab -new' to create crontabs.

% vovcrontab -new
vovcrontab: Creating vnc.swd/scripts/cron.csh
vovcrontab: Creating cron table vnc.swd/crontab.lion
no crontab for john
vovcrontab: Installing new crontab.
vovcrontab: Installing updated crontab

This program prepares the scripts $SWD/scripts/cron.csh and $SWD/crontab.hostname.

Display Current crontab Definition

Running vovcrontab -show shows the current crontab definition.

% vovcrontab -show
(vovcrontab) START PROJECT vnc
#
... some lines omitted...
#
Every hour at 5 minutes before the hour.
55 * * * * /home/john/vov/vnc.swd/scripts/cron.csh hourly
#
Every day: at 23:15
15 23 * * * /home/john/vov/vnc.swd/scripts/cron.csh daily

Every week: on Saturday at 7:00am
0 7 * * 6 /home/john/vov/vnc.swd/scripts/cron.csh weekly
#
Every month: on the 1st at 3:00am
0 3 1 * * /home/john/vov/vnc.swd/scripts/cron.csh monthly
(vovcrontab) END PROJECT vnc

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.278

Customize the crontab

The crontab can be customized by editing either $SWD/crontab.hostname or $SWD/scripts/cron.csh. Afterwards,

vovcrontab -reinstall will need to be run to take the modifications into consideration.

% vovcrontab -reinstall
vovcrontab: vnc.swd/scripts/cron.csh exists already.
vovcrontab: vnc.swd/crontab.lion exists already.
vovcrontab: Installing new crontab.
vovcrontab: Installing updated crontab

Delete the Current crontab Definition

To delete current crontab definitions, use:

'vovcrontab -clear'
vovcrontab: vnc.swd/scripts/cron.csh exists already.
vovcrontab: vnc.swd/crontab.lion exists already.
vovcrontab: Removing the crontab

Complete the Cleanup

To complete the cleanup, remove the crontab.HOSTNAME file in the SWD directory of the project.

% rm crontab.lion

vovgetnetinfo
The program vovgetnetinfo is used with Accelerator and Monitor to fill in information about the hosts. vovgetnetinfo is

to be run periodically from the scripts created by the vovcrontab command.

vovsh -s netinfo is run as a system job on each of the vovtasker hosts, which gathers information about clock offset,

filesystems, OS version, memory, etc., and sends information to the vovserver.

vovgetnetinfo: Usage Message

USAGE:
 % vovgetnetinfo [OPTIONS]

OPTIONS:
 -autoforget -- Set the autoforget flag on the jobs created by this script.
 -delay <ms> -- Add a delay between submission of jobs. In milliseconds.
 -h -- Help usage message.
 -hosts <list> -- Restrict operation to list of named hosts. Requires a
 tasker on each host.
 -netinfo -- Compute host and filesystems information (default).
 -nolog -- Disable output log. Unless disabled, an output log will be
 written in the parent of the SWD.
 -procinfo -- Compute process status information.
 -v -- Increase verbosity.

EXAMPLES:
 % vovgetnetinfo -h
 % vovgetnetinfo -procinfo

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.279

 % vovgetnetinfo -netinfo

vovgetnetinfo can also be run as a single time from the command line as shown below:

% nc cmd vovgetnetinfo

Information about a single host can be updated as follows:

% rsh some-host-name nc cmd vovsh -s netinfo

vovinfo
A utility related to vovgetnetinfo is vovinfo, which performs the same function as vovsh -s netinfo, but with a

smaller binary. This binary can only get host and process information, and does not have Tcl/TK or the VTK API.

vovinfo is to be used to provide monitoring and can run standalone in an infinite loop to provide periodic updates to a vovserver.

The following example updates the vovserver vnc@jupiter:6271 with clock offset information every hour for 60 days. The

environment variable settings do not require access to the server's .swd directory.

% setenv VOV_SWD_KEY none
% setenv VOVEQUIV_CACHE_FILE vovcache
% vovinfo -all h jupiter -p vnc -P 6271 -l 3600 -i 1440 &

usage: vovinfo [-ac] [-s what] [-p project] [-h host] [-P port] [-l looptime]
 [-i iterations] [-Vv]
 -a: Ignore PROCS_TO_TRACK property and track all processes if
 procinfo is enabled.
 -c: Use cpu_* licensing instead of host_* licensing (deprecated)
 -s: What info to get: netinfo hostinfo procinfo clockinfo all. May
 be repeated. The keywords 'netinfo' and 'hostinfo' are
 equivalent.
 -p: The project name (or the value of VOV_PROJECT_NAME
 -h: The host name (or the value of VOV_HOST_NAME
 -P: The port number (or the value of VOV_PORT_NUMBER)
 -l: The looptime (a time-specification): defaults to 0
 -i: Exit after this many iterations (use with -l)
 -V: Print version and exit
 -v: Verbose flag

The vovinfo program is licensed, and must be run by a user having enough privilege with respect to the vovserver to update the

server's clock, process, and other information about the server.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.280

Manage Processes
This section describes how to use the command line and find all processes that are not currently managed by Accelerator. VOV can

use a vovtasker to collect information about all processes from all hosts in a farm.

Processes that are descendents of vovtasker, orphans of vovtasker, and external processes can also be found. Foster jobs can be

created for discovered orphans; these jobs can be accounted for by a tasker on the same host, and tracked for the rest of their

lifetime.

vovprocessmgr: Usage Message

 USAGE:
 % vovprocessmgr [OPTIONS]

 Report on and manage processes on hosts where an Altair Engineering vovtasker
 is running, for example, in Accelerator.

 OPTIONS:
 -h -- Show brief help.
 -v -- Increase verbosity.
 -w -- Wide output (tab-separated, no truncation in names).
 -refresh [-orphans [-host HOST[,HOST]...] [-nohost HOST[,HOST]...]]
 -- Refresh the process info. Refreshes all process info
 unless the -orphans option is also passed, which
 refreshes the process info for orphaned processes only.
 The -host/-nohost options apply when refreshing orphaned
 processes only, otherwise, all hosts are included.
 Orphaned processes are determined by the presence of the
 VOV_JOBID variable in the environment of the process.
 Note that this is an asynchronous operation that is sent
 to remote taskers, requesting them to gather and send
 process information to the server. The timeliness of the
 response depends on the loading of both the taskers and
 of the server. For this reason, some amount of time
 should be allowed between a refresh request and
 reporting on processes of any type. For reports
 involving only a few taskers, this could be measured in
 seconds. For requests involving hundreds or thousands of
 hosts, it may take several minutes for every tasker to
 report in. Refreshing process info is an expensive
 operation that can result in a significant amount of
 communication and loading on the vovserver process and
 therefore should be used only when necessary.
 -external -- Filter to processes that are not an descendant of
 tasker.
 -descendants -- Filter to current descendant processes of tasker.
 -orphans -- Filter to former descendant processes of tasker. For
 accurate results, refresh the process info using the
 -orphans option prior to running an orphan report. An
 orphan report will also include fostered jobs as well.
 Note that if orphan processes are common, it is
 recommended to enable automatic child process cleanup
 via the tasker.childProcessCleanup configuration
 parameter in the policy.tcl file.
 -fostered -- Filter to orphans currently being fostered.
 -all -- Show all processes.

 -user "USER[,USER]..." -- Filter to specified users.
 -host "HOST[,HOST]..." -- Filter to specified hosts.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.281

 -exe "executableName[,exname]..." -- Filter to specified executable
 names.

 -noheader -- Suppress header.
 -noresv -- Exclude reserved taskers.
 -noexternal -- Exclude processes that are not an descendant of tasker.
 -nodescendants -- Exclude current descendant processes of tasker.
 -noorphans -- Exclude former descendant processes of tasker.
 -nofostered -- Exclude orphans currently being fostered.

 -nouser "USER[,USER]..." -- Exclude specified users.
 -nohost "HOST[,HOST]..." -- Exclude specified hosts.
 -noexe "executableName[,exname]..." -- Exclude specified executable
 names.

 -age "TIMESPEC" -- default age 10m.
 -maxrecursion "N" -- Limit in recursive check of parents (default 100).

 -foster -- Create a foster job for each top-most orphaned
 process. Note that if orphan processes are common,
 it is recommended to enable automatic child process
 cleanup via the tasker.childProcessCleanup
 configuration parameter in the policy.tcl file.

 -clear -- Forget all information about processes from the
 server (frees up memory). Must be the only option.

 EXAMPLES:
 % vovprocessmgr -refresh
 % vovprocessmgr -refresh -orphans
 % vovprocessmgr -orphans
 % vovprocessmgr -all -noexternal
 % vovprocessmgr -external -onlyuser john,mary,bob
 % vovprocessmgr -orphans -age 3h
 % vovprocessmgr -clear

The process information is accumulated in the vovserver and is released after approximately 5 minutes or until it is refreshed,

whichever occurs first. To refresh information about all processes, use the following commands:

% vovproject enable vnc
% vovprocessmgr -refresh

vovprocessmgr sends a message to all the taskers to update the information about all processes and deliver the data collection

to the vovserver. Sending all the data may take a few seconds.

Note: This command only works for the owner of Accelerator.

All processes can now be computed that are not children of a vovtaskerroot process with:

% vovprocessmgr -orphans

For example:

> vovprocessmgr -orphans
vovprocessmgr 07/08/2016 11:46:18: message: Analyzing 438 processes on 1 hosts that
 are older than 10m00s

 Mininum process age: 10m00s

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.282

 Exclude user: apache avahi canna daemon dbus gdm
 haldaemon haldeamon htt mysql named nobody
 ntp oracle postfix postgres root rpc
 rpcuser smmsp xfs
 Filter to orphans

Host Pid User Executable Age State RAM CPU
 Relation
titanus 23382 john vovsh S 10 10s orphan
titanus 23383 john vovsh S 9 0s orphan
titanus 23421 john postgres 14d00h S 212 5s
 orphan

To create foster jobs for discovered orphans:

% vovprocessmgr -orphans -foster

To track fostered jobs:

% vovprocessmgr -fostered

To find only the processes that are older than a specified time, for example 1 day, use the option -age as shown below:

% vovprocessmgr -orphans -age 1d

Removing unwanted processes from the farm can be necessary. For security, vovprocessmgr only provides the list of suspected

orphans. Only an administrator with root privileges has the authority to access the machines to kill the processes that were listed in

the information.

Stopped Taskers and Foster Jobs
Taskers account for jobs running on a stopped tasker that is on the same host. When a tasker is started, if there is a matching tasker

in the stopped condition (waiting on its jobs to finish), the new tasker will adopt any jobs on the stopped tasker by using foster

jobs. This prevents host overloading.

Job Fostering
Job fostering is the processes of artificially consuming a job slot on a tasker in order to represent an externally running job or

process.

The vovfosterjob utility runs as a job on a tasker and monitors an external job or process. When the external job or process

exits, the vovfosterjob utility will also exit, freeing up the slot in which it was running.

vovfosterjob

vovfosterjob: Usage Message

 DESCRIPTION:
 A system utility to tell a tasker to watch a PID or a JOB by creating
 a foster job that runs for the lifetime of the entity being watched.
 Resulting foster jobs are stored in the System:Orphanage set, which
 can be displayed by passing the set name to 'nc list -alljobs -set'.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.283

 This utility is mainly used to prevent overloading of a tasker that
 has been started on a host that also has a tasker in the process of
 shutting down gracefully. Such taskers will only exit once any jobs
 running on them are complete. Fostering such jobs onto the newly started
 tasker will result in job slots being consumed, preventing additional
 jobs from landing on the host.

 OPTIONS:
 -fromtasker TASKERNAME -- Foster all jobs on specified tasker. Normally used
 to foster jobs on a tasker that has been requested
 to gracefully stop after its jobs are finished.
 This helps to prevent overloading if the tasker is
 restarted before the job attrition process is
 complete. Compatible only with, and requires, the
 -totasker option.
 -h -- Help usage message.
 -host HOSTNAME -- Specify host to which the foster job should be
 dispatched. The resulting foster job will be
 dispatched to the first tasker found on the
 specified host. Compatible with the -pid and
 -job options.
 -job JOBID -- Foster a job. Without the -host or -totasker
 option, the resulting foster job will be
 dispatched to the first tasker found that is
 running on the same host as the job being
 fostered. Compatible with the -host and -totasker
 options.
 -pid PID -- Foster a process. Without the -host or -totasker
 option, the resulting foster job will be
 dispatched to the first tasker found that is
 running on the same host where the vovfosterjob
 command is executed. If the PID does not exist,
 the foster job will be created but will exit
 immediately. Compatible with the -host and
 -totasker options.
 -stoppedtaskers TASKERNAME --
 -- Foster jobs running on all prior instances of the
 specified tasker that are in the process of
 stopping gracefully. The resulting foster jobs
 will be dispatched to the specified tasker. Not
 compatible with any other option.
 -totasker TASKERNAME -- Specify tasker to which the foster job should be
 dispatched. Compatible with the -pid, -job, and
 -fromtasker options.
 -v -- Increase output verbosity. Repeatable.

 EXAMPLES:
 % vovfosterjob -job 000123456
 % vovfosterjob -job 000123456 -totasker titan
 % vovfosterjob -pid 6789
 % vovfosterjob -pid 6789 -host titan
 % vovfosterjob -fromtasker titan_stopped -totasker titan
 % vovfosterjob -stoppedtaskers titan

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.284

Query the vovserver
The vovselect command provides a way to retrieve specific data from the vovserver, with filtering done on the server side. This

method is differs from some of the VTK calls, which get all data and require processing on the client side to get the data of interest.

Attention: In an upcoming major release of Accelerator Products, the vovselect * wildcard select feature will

be dropped. To prepare for this change, users should update scripts and REST requests to issue vovselect requests

using a specified list of field names. For example:

nc cmd vovselect statusnc,id,command from jobs

An easy way to find out what fields are in an object type is by using vovselect fieldname. For example:

nc cmd vovselect fieldname from jobs

Many types of objects in the vovserver may be queried. See the help information below for the supported objects.

Note: vovselect supports the "*" wildcard to signify all fields of a particular object. Be sure to quote the *

character as required by your shell, e.g.: vovselect '*' from jobs where idint==12345

Run vovselect fieldname,fieldtype from <object> to see the list of fields for that object. Multiple fields may

be requested by separating them with a comma. Some fields represent a data collection that can be broken down using a format of

FIELD.X, such as:

KEY.<KEYNAME> (metric objects)
PARAM.<PARAMNAME> (server object)
PROP.<PROPNAME> (all objects)
RESOURCES.<RESNAME> (tasker objects)

GRABBEDRESOURCES.<name> only returns a value for the corresponding central resource when the job is currently running.

SOLUTION.<name> returns a value for the corresponding hardware resource after the job has started running. The value persists

after the job has terminated.

RESOURCES.<name> attempts to determine a value for the corresponding requested resource. If the job is running, then the

actual value of the allocated resource is returned. If the job is not running, the query will estimate a value by looking for the first

matching value in the requested resource string. This may result in an underestimate, or an incorrect value.

For example, with the request: -r "RAM/20 RAM/30", RESOURCES.RAM may return "20" or "50" depending on

the scheduling phase of the job. A contrived example which illustrates the difficulty of computing a value would be -r

"(RAM/100 CLOCK/10) OR (RAM/50 CLOCK/20)". RESOURCES.RAM returns exactly the same value as

REQRAM, and similarly for CORES, PERCENT, SLOTS & SWAP.

Examples

Queries you can run include the following:

• RESOURCES.<RESNAME> estimates the requested resource value of RESNAME. It attempts to determine a value for the

corresponding requested resource. If the job is running, then the actual value of the allocated resource is returned. If the job is

not running, the query will estimate a value by looking for the first matching value in the requested resource string. This may

result in an underestimate, or an incorrect value.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.285

For example, with the request -r "RAM/20 RAM/30", RESOURCES.RAM may return "20" or "50" depending on

the scheduling phase of the job. A contrived example which illustrates the difficulty of computing a value would be -r

"(RAM/100 CLOCK/10) OR (RAM/50 CLOCK/20)". RESOURCES.RAM returns exactly the same value as

REQRAM, and similarly for CORES, PERCENT, SLOTS & SWAP.

• GRABBEDRESOURCES.<RESNAME> returns the current value of RESNAME in a job's grabbed resources. It only returns

a value for the corresponding central resource when the job is currently running.

• SOLUTION.<RESNAME> returns the value of RESNAME in a job's solution. It returns a value for the corresponding

hardware resource after the job has started running. The value persists after the job has terminated.

For example, the following job submission

$ nc run -r "RAM/30 License:MATLAB/2" – sleep 1000

vovselect produces the following output:

$ nc cmd vovselect -header id,RESOURCES.RAM,RESOURCES.License:MATLAB from jobs
id RESOURCES.RAM RESOURCES.License:MATLAB
000001366 30 2

If the query is unable to determine a value, it will return an empty string.

If the query is used inside a 'where' clause, it may need to be quoted, such as, -where

'"grabbedresources.License:MATLAB">1'.

For example, if the following job executes:

$ nc run -r License:MATLAB/2 – sleep 1000

vovselect produces the following output:

$ nc cmd vovselect -header id,statusnc,GRABBEDRESOURCES.License:MATLAB,SOLUTION.RAM
 from jobs -where
'"GRABBEDRESOURCES.License:MATLAB">1'
id statusnc GRABBEDRESOURCES.License:MATLAB SOLUTION.RAM
000001202 Running 2 20

vovselect

vovselect: Usage Message

 Utility to query vovserver data.

 USAGE:

 vovselect <FIELDSPEC> from <OBJECT> [OPTIONS]

 OPTIONS:

 -h -- Show usage syntax.
 -v -- Increase verbosity.
 -where <FILTER> -- Filter the results.
 -order <COLUMN> [ORDER] -- Sort the output by the specified column
 and ordering. Ordering is either "asc"
 (ascending) or "desc" (descending).
 Default ordering is ascending. When
 specifying an ordering, place the column

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.286

 and ordering in quotes, e.g.
 -order 'name desc'.
 -limit <N> -- Limit the output to N rows.
 -distinct -- Return distinct rows.

 -header -- Displays column headers in the output.
 -cache 0/1 -- Control cacheing of query (default is 1).
 Tech Note: use cache 0 for small results
 (less than a few thousand rows)

 If option values contain shell-sensitive characters, such as ">",
 enclose them with single quotes (Linux) or double quotes (Windows).

 The from parameter will accept queryable object names (as listed by
 "vovselect objectname from objects"), individual object identifiers
 (as listed by "vovselect idint from <object>"), or set names
 (as listed by "vovselect name from sets"). This parameter can also
 accept the following:
 SUBSETS.<SETID>
 MATCHES.<RESMAPID>
 MATCHES.<RESMAPNAME>

 SUPPORTED OBJECTS:
 Run "vovselect objectname from objects" to see
 the list of queryable objects.

 SUPPORTED FIELDS:

 Run "vovselect fieldname,fieldtype from <object>" to see the list of
 fields for that object. To see a list of fields with descriptions run,
 "vovselect fieldname,fielddesc from <object>". Multiple fields may be
 requested by separating them with a comma. Some fields represent a data
 collection that can be broken down using a format of FIELD.X, such as:
 GRABBEDRESOURCES.<RESNAME> (job objects)
 KEY.<KEYNAME> (metric objects)
 PARAM.<PARAMNAME> (server object)
 PROP.<PROPNAME> (all objects)
 RESOURCES.<RESNAME> (tasker & job objects)
 SOLUTION.<RESNAME> (job objects)

 SUPPORTED FILTERS:

 Use selection rule operators in conjunction with field names to filter
 queries. See operator list at URL/doc/html/vov/topics/vov/operators.htm
 via web browser. To get the current the URL for current instance,
 execute the vovbrowser command.

 EXAMPLES:

 % vovselect -h
 % vovselect objectname from objects
 % vovselect fieldname from server
 % vovselect id,name from users -order name -limit 10 -header
 % vovselect id,name from users -where 'name==joe'
 % vovselect id,name from 12345
 % vovselect id,name from subsets.23456
 % vovselect matchtype,host from matches.License:spice
 % vovselect idint,name from users -where 'idint>3600'
 -order 'idint desc'
 % vovselect id,age from System:running
 % vovselect id,age -from System:running -cache 0

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.287

Use vovselect for Querying

The nc hosts command can be used for querying, but it can sometimes take several minutes to return results, which causes

some nodes to show up as "N/A". nc hosts will query the server and return significant amounts of data, but the server loading

will directly affect the response time of the command.

In order to avoid such delay, you can use vovselect to run the query, as it prefilters the output server-side before returning it to

the client.

Use the table below to understand the mapping of fields between the nc hosts and vovselect commands.

nc hosts vovselect from TASKERS vovselect from HOSTS

ARCH ARCH ARCH

CAPABILITIES CAPABILITIES NA

CAPACITY CAPACITY CPUS

CLASSRESOURCES CLASSRESOURCES NA

CLOCK CLOCK CPUCLOCK

COEFF COEFF NA

CONSUMABLES CONSUMABLES NA

CORES CORESAVAIL NA

CORESAVAIL CORESAVAIL NA

CORESTOTAL CORESTOTAL CPUS

CORESUSED CORESUSED NA

CPUS CPUS CPUS

CURLOAD CURLOAD NA

DOEXEC DOEXEC NA

DONETINFO DONETINFO NA

DOPROCINFO DOPROCINFO NA

DORTTRACING DORTTRACING NA

EFFLOAD NA NA

EXTRAS EXTRAS NA

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.288

nc hosts vovselect from TASKERS vovselect from HOSTS

FULLINFO FULLINFO NA

GROUP GROUP NA

HB NA NA

HBPP NA NA

HEARTBEAT HEARTBEAT NA

HOST HOST NAME

ID ID NA

IDINT IDINT NA

LASTJOBID NA NA

LASTUPDATE LASTUPDATE NA

LIFETIMEJOBS LIFETIMEJOBS NA

LOAD1 NA NA

LOAD15 NA NA

LOAD5 NA NA

LOADEFF NA NA

MACHINE MACHINE MACHINE

MANUALPOWER NA NA

MAXLOAD MAXLOAD NA

MESSAGE MESSAGE NA

MESSAGESYS MESSAGESYS NA

MESSAGEUSER MESSAGEUSER NA

MODEL MODEL NA

NAME NAME NAME

NUMJOBS NA NA

OSCLASS OSCLASS NA

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.289

nc hosts vovselect from TASKERS vovselect from HOSTS

PERCENT PERCENT NA

PERSISTENT PERSISTENT NA

PID PID NA

POWER POWER NA

RAM RAM NA

RAMFREE RAMFREE NA

RAMTOTAL RAMTOTAL RAMTOTAL

RAWPOWER NA NA

RELEASE RELEASE NA

RESERVEDBY RESERVEDBY NA

RESERVEEND RESERVEEND NA

RESERVEFORBUCKETID RESERVEFORBUCKETID NA

RESERVEFORID RESERVEFORID NA

RESERVEGROUP RESERVEGROUP NA

RESERVEJOBCLASS RESERVEJOBCLASS NA

RESERVEJOBPROJ RESERVEJOBPROJ NA

RESERVEOSGROUP RESERVEOSGROUP NA

RESERVESTART RESERVESTART NA

RESERVEUSER RESERVEUSER NA

RESOURCECMD RESOURCECMD NA

RESOURCES NA NA

RESOURCESEXTRA NA NA

RESOURCESPEC RESOURCESPEC NA

RUNNINGJOBS RUNNINGJOBS NA

SLOTS NA NA

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.290

nc hosts vovselect from TASKERS vovselect from HOSTS

SLOTSTOTAL SLOTSTOTAL NA

STATSREJECTCORES STATSREJECTCORES NA

STATSREJECTOTHER STATSREJECTOTHER NA

STATSREJECTRAM STATSREJECTRAM NA

STATSREJECTRESERVED STATSREJECTRESERVED NA

STATSREJECTSLOTS STATSREJECTSLOTS NA

STATSVISITS NA NA

STATUS NA NA

SWAP SWAP NA

SWAPFREE SWAPFREE NA

SWAPTOTAL SWAPTOTAL NA

TASKERGROUP TASKER NA

TASKERNAME TASKERNAME NAME

TASKERSLOTSSUSPENDABLE TASKERSLOTSSUSPENDABLE NA

TASKERSLOTSSUSPENDED TASKERSLOTSSUSPENDED NA

TASKERSLOTSUSED TASKERSLOTSUSED NA

TASKERTYPE TASKERTYPE NA

TIMELEFT TIMELEFT NA

TMP TMP NA

TYPE TYPE NA

UPTIME NA NA

UPTIMEPP UPTIMEPP NA

USER USER NA

VERSION VERSION NA

VOVVERSION VOVVERSION NA

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.291

Upgrade Accelerator
This section provides instructions to change the software version on which Accelerator runs.

Often you will do this to switch all the components (vovserver, vovtasker, vovsh) to a newer version, but you may also switch the

vovserver and vovtasker versions separately. For the discussion below, current refers to the version before the change, and new for

the version after it.

You will find instructions for three common scenarios below.

Cold Upgrade Used when you are also shutting down the Accelerator computers, as for making

OS, hardware upgrades. All components will be on the new version.

Hot Upgrade Used to replace vovserver while allowing jobs to continue to run on the current

vovtasker version. vovserver will be on the new version, but vovtaskers stay on the

current version.

Rolling Hot Upgrade Used to allow the current software version to run jobs after the new version is

installed and starts running jobs. This method is recommended when the normal

workload consists of large-scale projects.

Note: The upgrade process includes downloading software archive files from the Altair website, which are then

unpacked or untarred into a temporary installation directory. The installer will ask for a destination directory.

When choosing the destination for the downloaded software, be careful to select a non-destructive installation path. This ensures

the current Altair Accelerator is not overwritten or otherwise damaged before the new software is installed and activated. Usually

the new version will be installed as a sibling of the current version, such as /tools/rtda/2013.09 for the current and /

tools/rtda/2016.09 for the new.

Cold Upgrade
This method is usually implemented with a physical overhaul, a part of a major IT event. This kills all running jobs, which can be

highly disruptive.

To reduce the impact, Accelerator can be instructed to stop accepting and dispatching new jobs for a period prior to the shutdown

event, enabling some of the running jobs to complete. How many jobs will complete depends on the jobs' duration and the time

allowed before shutdown.

1. Download the Accelerator upgrade software.

2. Install the new software.

3. Using the new version, create a separate, temporary test queue (to validate the new version while production continues).

4. Validate the installation using the test queue that you created.

5. Schedule and announce the upgrade.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.292

6. If you have multiple Accelerator queues, it is recommended that you set thNC_QUEUE to the name of the queue that is

undergoing maintenance. This helps prevents accidentally shutting down the wrong queue. Use the command:

setenv NC_QUEUE vncNameOfQueue

7. Optional: Suspend the vovtaskers with the command below. This command puts the vovtaskers in the SUSP state; running

jobs will continue, but vovtasker will not accept new jobs. When vovtasker completes its current set of jobs, it will exit.

nc cmd vovtaskermgr stop

8. Optional: At the point of the scheduled downtime, document the IDs of running jobs as those jobs will be terminated

forcefully. This list can be used to inform users that their jobs were terminated by the maintenance event.

nc list -r -a -O @ID@ @USER@ @COMMAND@

9. Optional: To automatically identify jobs when the queue is restarted, place the jobs in a special set.

Example:

nc cmd vovset create "ImpactedByQueueRestart" "isjob status==RETRACING"

10. Optional: Terminate these running jobs with the -force option, which should terminate the remaining taskers within a few

minutes.

Example:

vovtaskermgr stop -force -all

11. Stop the vovserver of the queue with the command ncmgr stop

12. Proceed with any necessary infrastructure maintenance.

13. Restart the queue.

14. Ensure that your shell is configured to support the correct number of file descriptors.

Note: This value cannot be changed after starting the queue.

15. Ensure that you are pointing to the appropriate version of Accelerator with the command which nc.

16. Start the queue with the command ncmgr start.

A confirmation dialog will open.

17. Review the parameters carefully (especially number of file descriptors) before replying 'yes'. (Starting the queue will

automatically start the taskers but this will take some time, be patient.)

18. Validate that jobs are dispatching normally.

Note: Restarting a large compute farm will take several minutes.

19. Optional: Re-queue the jobs that were impacted by the shutdown. Use the following command:

nc rerun -f -set ImpactedByQueueRestart

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.293

Hot Upgrade
This method reduces upgrade impact -- less downtime for productivity, less obtrusive for the users. The vovserver and vovtaskers

are moved separately to the new version.

With this method, vovtaskers with running jobs are temporarily renamed, by appending _stopped_<timestamp> to their

regular names. This allows active jobs to finish, and restarted vovtaskers to use the regular names.

Note: If you are using a large value of VOV_RELIABLE_TIMEOUT you should suspend job dispatch (see

Suspend Accelerator Job Dispatch) for some time, 30-60s, before initiating the cutover.

Follow the steps below for the preparation portion of the procedure:

1. Download the Accelerator upgrade software.

2. Install the upgrade software.

3. Create a separate, temporary test queue (to validate installation).

4. Validate the installation by starting the temporary test queue with a few vovtaskers on the new version and running test jobs.

Cutover process:

5. Notify your Accelerator users of the scheduled upgrade.

6. Get a shell as the Accelerator owner on the Accelerator vovserver host with current-version Altair Accelerator commands in

the PATH.

7. Suspend job dispatching as in Suspend Accelerator Job Dispatch.

8. Stop the vovserver with the following command:

ncmgr -q nc-queue stop -freeze

Note: The vovtaskers with jobs will continue to run and will be renamed. The ones that have no jobs will

exit.

9. Ensure that the shell you are using has a sufficiently high limit for file descriptors.

10. Source the Altair Accelerator setup file for the new version, or use a separate shell set up for the new version.

11. Restart the vovserver with the new software version.

ncmgr -queue nc-queue start

12. Optional: Restart a subset of the taskers. Use the following command:

nc cmd vovtaskermgr stop tasker1...taskerN

13. After the vovtaskers have finished their jobs and exited, run the following command:

nc cmd vovtaskermgr start tasker1...taskerN

Proprietary Information of Altair Engineering

../../../accel/topics/shared/job_dispatch_suspend.htm
../../../accel/topics/shared/job_dispatch_suspend.htm

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.294

Rolling Hot Upgrade
In this method, a new queue is brought up with the new version of the software; the previously existing queue remains fully

functional.

This approach permits both administrators and users to thoroughly test the new version of the software and selectively move

workloads to the new queue. The vovtasker machines are progressively moved from one queue to another by suspending them

on the old queue, allowing jobs to drain off (complete) and then restarting the tasker on the new queue. The advantage of this

approach is reducing risk: The old queue remains available during transition. Some disadvantages: The queue host:port and

possibly queue name changes is not transparent to users; the entire upgrade process may take many days; you may need additional

licenses during the transition interval.

1. Download the Accelerator upgrade software.

2. Install the new upgrade software.

3. Create a new queue name.

4. Start the queue (created in step 1) on either the existing host machine for Accelerator or a new host.

5. Configure the new queue with the various policy and job class settings.

6. Suspend a number of the taskers on the old queue and when they have terminated (when existing jobs have completed), add

these taskers to the new queue.

7. Test and verify the software upgrade; transfer other remaining taskers after verifying new Accelerator.

8. After all taskers have been transferred, stop the old queue.

Stop Accelerator Job Acceptance

When preparing to stop Accelerator, you may wish to stop accepting new jobs so the queued jobs can drain before the shutdown.

You can do this by implementing the vnc_policy.tcl file shown below. Since vnc_policy.tcl is interpreted inline

during the nc run command, this policy refuses new jobs with an informative message.

proc VncPolicyValidateResources { resList } {
 #
 # This policy prevents submission of new jobs with a message
 #
 VovWarning "Job not not submitted; NC closed by admin"
 exit
 return $resList; # not reached
}

Suspend Accelerator Job Dispatch

You can suspend job scheduling without stopping the Accelerator vovserver.

 % nc [-q qname] cmd vovsh -x 'vtk_server_config scheduler suspend'

This will suspend the dispatching of jobs.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.295

To resume, use:

 % nc cmd vovsh -x 'vtk_server_config scheduler resume'

(in fact, any word other than 'suspend' will resume the scheduler)

Run Multiple Versions of Altair Accelerator
Accelerator can be run using a different software version than the software version used by the other Altair Accelerator projects.

Allocator

Specify the version used by a queue using the -version option. For more information, refer to the Altair Allocator user

documentation.

Indirect Taskers

For indirect taskers to work with a Accelerator server that uses a different version, set the environment variable

VNC_NEWVERSION to the full path of the root of the installation used by Accelerator.

For example, if the Accelerator server is using the software installed in /tools/RTDA/2019.01/macosx/bin/

vovserver, do the following:

setenv VNC_NEWVERSION /tools/RTDA/2019.01

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.296

Storage Aware Scheduling
This daemon vovfilerd replaces older daemons like vovisilond, vovnetappd and vovregulatord. Also the utility

vovfiler_setup is no longer needed. The visualization of the filer information is now done either via the vovfilerd.cgi

page or via the utility vovfilerdgui.

Storage Aware Grid Acceleration (SAGA) with vovfilerd
vovfilerd is used to make Accelerator aware of the status of the filers.

These filers can be of any type, but special treatment is done for Isilon filers (https://www.dellemc.com/en-us/storage/isilon/

index.htm), NetApp filers, and ElastiFile filers.

For this daemon to work, you need:

• Access to the curl binary

• A user/password pair on each filer to be able to use the RestAPI (ask your Admin to help you with this)

Start and Configure the Daemon

% cd `vovserverdir -p vovfilerd`
% vi config.tcl
This is an example for vovfilerd/config.tcl
####################
Global settings
####################
DefineFilers {
 AddFiler FS1 -probe 1 -testdir /net/fs120-ch/export/probes -period 1m
 AddFiler FS2 -probe 1 -testdir /remote/fs2/users/cadmgr -period 20
 AddFiler IFS -probe 1 -testdir /mnt/isilon/dev -host ifs1 -user admin -
passwd pw
}

The usage message for the procedure AddFiler is the following:

DESCRIPTION OF PROCEDURE:
 AddFiler <NICKNAME> <ARGS>...

 This procedure is only available in the config.tcl file for vovfilerd.

 This procedure has to be called from inside DefineFilers {}

 The first argument is the short nickname you want to use for the filer.
 It will be useful in invoking the GUI and it is reported in all interfaces.
 The rest of the arguments are options:

 The filer can be in one of these states based on the measured value of
 latency
 and on the values of the 3 limits l1 l2 l3

 State S1 Open-Loop if l <= l1
 State S2 Steady if l > l1 && l <= l2

Proprietary Information of Altair Engineering

https://www.dellemc.com/en-us/storage/isilon/index.htm
https://www.dellemc.com/en-us/storage/isilon/index.htm

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.297

 State S3 Feedback if l > l2 && l <= l3
 State S4 Preempt if l > l3

 OPTIONS:
 -doc -- This message
 -t <TYPE> -- Type of filer: Known types are :Isilon Netapp Elastifile
 Generic
 Case insensitive. Default 'Generic'
 -type <TYPE> -- Same as -t
 -probe <BOOL> -- Activate probe for filer using vovfsprobe. Default 0.
 -testdir <DIR> -- Test directory for the vovfsprobe. This must be a
 writable directory
 that sits on the filer being probed.
 -period <TIMESPEC> -- How often you want the probe to run (last arg in
 vovfsprobe)
 Default 30s
 -preempt <BOOL> -- Control whether preemption is activated when we reach
 state S4.
 Default 0
 -min <N> -- Minimum value for controlling resource. Default 20
 -max <N> -- Maximum value for controlling resource. Default 1000
 -limits <LIST l1 l2 l3> -- Define the boundaries of the state of the filer
 based on
 measured latency. The limits are in milliseconds.
 The default values are { 5.0 10.0 18.0 }

 ISILON OPTIONS:
 -host <HOSTNAME> -- Used for Isilon to connect to correct host with wget
 -user <USERNAME> -- Used for Isilon to connect to host with correct user name
 -passwd <PASSWD> -- The password in Isilon to access the

 EXAMPLE:
 DefineFilers {
 AddFiler F1 -probe 1 -testdir /remote/filer1/test
 }

A simple way to start vovfilerd for testing is the following:

% cd `vovserverdir -p vovfilerd`
% vovfilerd >& vofilerd.log &

Then start the GUI with:

% vovfilerdgui -f NAME_OF_FILER &

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.298

Figure 18:

In this dialog, you can see the status of the selected filer, and a graph showing the raw/filtered value of the measured latency (pink/

red) and another graph showing the value of the controlling resource for that filer, i.e. the resource called Filer:NAME_OF_FILER.

vovfilerd Behavior

The vovfilerd daemon:

• Monitors several metrics on one or more filers, such as the average latency per operation; the main metric used to represent

the load on the filer is the "Latency", which is the "average latency per operation" measured in milliseconds;

• Throttles the load on the filer by means of a resource map called "Filer:NAME_OF_FILER"

• Preempt jobs to lower the load if the load on the filer exceeds a threshold.

Both the Latency signal extracted from the filer and the value of the controlling resource computed by vovfilerd are low-pass

filtered to smooth out their behavior.

The values of L1, L2, and L3 can be defined by the administrator using the option -limits in AddFiler and can be different

for each filer. The limits represent latency values in milliseconds. They have to be at least 1.0 and each has to be larger than the

previous.

State of Filer Condition Description

S1#OpenLoop Latency # L1 The controlling resource is enough to accommodate the demand

(running + queued); in this state of low latency, the resource is

allowed to grow rapidly

S2#Steady L1 < Latency # L2 The controlling resource is set to about 2% above the current

running count, representing a slow growth of the number of

running jobs

S3#FeedbackLoop L2 < Latency # L3 The controlling resource is decreased based on the distance of

latency from (L2+L3)/2. This state tries to maintain the latency

in the middle between L2 and L3

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.299

State of Filer Condition Description

S4#Preemption L3 < Latency This state is the same as S3-FeebackLoop with the addition of

preemption in a pro-active attempt to lower the latency on the

driver. At every cycle, up to 5% of jobs impinging on the filer

are preempted. This requires preemption to be activated for this

filer with the option -preempt 1 in AddFiler

The selection of the jobs to be preempted is based on a number of metrics:

• Only jobs that declare the resource "Filer:NAME_OF_FILER" are considered

• The age, priority of the job: young jobs are more likely to be preempted, and low priority jobs are also preferred

• The latency experienced by the host on which the job is executing

• The directory in which the job was started, based on the load on the filer by path

All preempted jobs are suspended with SIGSTOP, their licenses are recovered, and then they are restarted when the load on the

filer had decreased and the required licenses are again available.

Start vovfilerd

Once vovfilerd is configured, it can be started and stopped like any other daemon using vovdaemonmgr:

% vovdaemonmgr start vovfilerd
% vovdaemonmgr status vovfilerd
OK
% vovdaemonmgr stop vovfilerd

Usage: vovfilerd - h

vovfilerd: Usage Message

DESCRIPTION:
 A daemon to monitor filers and control Filer:XXX resources.

USAGE:
 % vovfilerd \[OPTIONS\]

OPTIONS:
 -h -- Help usage message.
 -v -- Increase verbosity.

EXAMPLES:
 % vovfilerd
 % vovfilerd -v -v

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.300

Tuning vovfilerd
You may need to refine the tuning of the L1,L2,L3 limits that define the behavior of vovfilerd for each specific filer. We

suggest a simple experiment that will help you see the effect of storage-aware-scheduling and also may help you decide on the

tuning.

The experiment consists of running two I/O intensive workload (using dd) first with Storage Aware Scheduling and then without.

The difference in behavior can be monitored in the browser interface. The suggested workload consists of only "write-to-disk"

operations, so it is by definition an extreme workload. Real workload will behave better that this experiment.

First, bring up the GUI for the filer you want to test (in this example we assume the nickname for the filer is FS1), so you can keep

an eye on the measured latency on the filer.

% vovfilerdgui -show
% vovfilerdgui -f FS1 &

Figure 19:

Next run the workload with storage-aware-scheduling, i.e. using the resource that represents the filer, in this case Filer:FS1:

% cd some/directory/on/filer/FS1
% mkdir OUT
% setenv VOV_JOBPROJ SASyes
% time nc run -w -r Filer:FS1 -array 5000 dd of=OUT/dd_@INDEX@.out
if=/dev/zero count=1024 bs=102400

Next, run the same workload without the resource, so no restraint will be placed on it:

% cd some/directory/on/filer/FS1
% mkdir OUT
% setenv VOV_JOBPROJ SASno
% nc run -array 5000 dd of=OUT/dd_@INDEX@.out if=/dev/zero
count=1024 bs=102400

If you have a big enough farm, say close to 1000 cores, you will see that this second workload uses all machines you have and

creates even larger level of latency on the filer. The jobs, which should take about 1s each, may end up taking minutes to run

because of such congestion. If the jobs also required a license, that license would be used by the job for way longer than it was

earlier with storage aware scheduling.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.301

To quantify the difference between the two modes of operation, lets navigate the browser interface (Home > Workload >

Job Plots) to look at this report (you will have to define a precise time range for the report, something of the form

"20190506T150000-20190506T170000", then report by project with no binning)

Figure 20:

In this report you see the two workloads. (In this plot the SASno experiment comes before the SASyes experiment). Look at the

average run time of the jobs. In SASyes experiment, the average duration is 5 seconds, while in the SASno experiment the average

duration is 2m47s, i.e. 33 times longer!

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.302

Frequently Asked Questions and Troubleshooting Tips

I'm doing an installation and configuration in a Windows environment - can I use PowerShell?

PowerShell is not supported; we strongly recommend not using PowerShell.

How do I contact Altair Engineering to get additional support, report a bug, or request a feature?

You can contact Altair Support at: https://community.altair.com/community.

Why can't I access Monitor's historical license usage through Accelerator?

Accelerator ships with a version of Monitor that is licensed to monitor current license activity only. This edition is called LMS

(Monitor Small). To access Monitor's historical license usage information, you must have the full version of Monitor.

What do I do in the event of a server failover or crash?

You can find a checklist for system recovery on the System Recovery page. You can find this address with the command:

nc cmd vovbrowser -url /cgi/sysrecovery.cgi

Where is the policy.tcl file? What about the taskers.tcl file? The resources.tcl and security.tcl files?

All .tcl configuration files for Accelerator are located at $VOVDIR/../../vnc/vnc.swd

How do I enable the retrace of more than 400 jobs at a time?

The limit to how many jobs can be run/retraced at any given moment is defined by the maxNormalClients config variable. To

change the variable, you can use the command:

vtk_server_config "maxNormalClients" maxnumberofjobs

How do I receive email notifications on job completion?

To receive automatic notification of major FlowTracer and Accelerator events, you should use the vovnotifyd daemon.

How do I track the memory usage of taskers?

VOV automatically keeps track of tasker memory usage. vovtasker keeps logs of 1 minute, 5 minute, and 10 minute load averages

of the machines where taskers are running on. The tasker reports are available on the Tasker Load page. The Accelerator URL can

be found with the command:

nc cmd vovbrowser -url /cgi/taskerload.cgi

Why are my jobs taking so long?

There are multiple reasons why FlowTracer jobs may be retracing slowly. Fortunately, Accelerator produces reports to help

diagnose any problems. Read about available reports at Resource Plots in the Altair Accelerator User Guide..

How do I change to another version of Accelerator?

To upgrade Accelerator software, refer to Upgrade Accelerator.

Proprietary Information of Altair Engineering

https://community.altair.com/community

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.303

How do I access information on license usage?

Accelerator does not have this functionality. This functionality belongs to Monitor. If you have Monitor installed and fully

working, you can display license information at on the FTLM page.

Why are my licenses not fully utilized? I'm sure they're completely booked.

Your licenses are not fully utilized probably because they are not overbooked.

Essentially, the jobs being run do not use a license 100% of the time. Because there are jobs booked for licenses 100% of the

time, there will be times where licenses are not utilized. This is because one or more jobs will still be running, but be done with

the license that was booked. To rectify this, jobs are queued for more than 100% of the licenses, allowing another job to start and

utilize the open license.

How do I share licenses between jobs in queue?

Read more on license at License Sharing Support.

My tasker is sick! What do I do?

Your tasker is sick because it has not sent out a heartbeat for at least 3 minutes. This may mean your tasker has crashed or

disconnected. Once you have identified a sick tasker, you can proceed to troubleshoot it to fix the problem.

This list may be helpful:

• Check to make sure the machine itself is healthy. Make sure it is running, connected to the network, and not jammed.

• Check to see if vovtasker or vovtaskerroot is still running. If it isn't, then the tasker program itself has crashed. You should

restart the tasker program with:

vovtaskermgr start

• Check to see if vovtasker or vovtaskerroot is stuck. If it is, Linux commands such as strace and pstack should provide

you with enough information to fix it.

My tasker is healthy, but all jobs sent to the tasker come out failed. What is going on?

Your tasker is what is called a black hole. It appears healthy, but is in fact unable to execute jobs. There is functionality to enable

automatic detection of black holes in the Black Hole Detection page.

When a black hole is found, it would be prudent to send a simple job such as cp or sleep to the tasker to confirm its black hole

state.

I want to give a different amounts of resources to different sites. How can I do that?

FairShare is a mechanism to allocate CPU cycles among groups and user according to a policy. This would be your best bet.

How do I limit a resource for a particular user?

Although it is not recommended, information on limiting users can be found on the Limit Users page.

My job was killed because it failed to start within 1m00s!

This can be caused by a bad NFS mount point, or an automounter that is so overloaded, that it fails to mount the run

directory for the job in under a minute. Although this is a hardware problem, there is a workaround by changing the variable

VOV_MAX_WAIT_NO_START to a value over 1 minute.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.304

How do I setup prioritized licence usage?

For example, to use the licence FOO_BAR_A first, then the licence FOO_BAR_B second, use:

vtk_resourcemap_set FB-lic UNLIMITED "Licence:FOO_BAR_A OR Licence:FOO_BAR_B"

In the jobclass. To set it in a resource map, use:

set VOV_JOB_DESC(resources) "Licence:FOO_BAR_A OR Licence:FOO_BAR_B"

Why am I missing the plots when I look at a resource or license report?

Probably, what is causing the plots to be missing is a name resolution issue. To fix this, make sure VOV_HOST_HTTP_NAME

is set correctly. If all else fails, set this to the host's IP address, not network name. To update a running server, you must use the

command:

vtk_server_setenv VOV_HOST_HTTP_NAME XXX

vovresourced is not starting, says 'Failed to source'' too many resources'!

Most likely, you have exceeded the limit for resource maps in use. To raise this limit, change the maxResMap value in

policy.tcl.

How do I ensure that a tool is preemptable robustly?

Sometimes a tool will crash when preempted. To test whether this is Altair, or the tool vendor, try and run the tool without Altair

binaries (pure UNIX code) and see if the tool still crashes. The steps to do this are as follows:

1. Start the EDA tool(s) which you wish to test.

2. Use the UNIX command ps to find the PID of the EDA tool(s):

% ps | grep firefox
PID TTY TIME CMD
349 ? 00:24:19 firefox

3. Send TSTP and CONT signals 10 seconds apart repeatedly. Try this in your shell:

% kill -TSTP 349 ; sleep 10 ; kill -CONT 349 ; sleep 10 ; kill -TSTP 349 ;
 (etc...)

Following these steps, if the tool crashes, then the problem is independent of Altair, as not a single line of Altair code was

executed.

I set a configuration in the policy.tcl file, but it is not taking effect!

Most likely, the file has not been read yet. Try a:

% nc cmd vovproject sanity

I have a lot of log files, how can I remove the older files?

An easy way to remove files that are over 60 days old is using the vovcleanup command:

% nc cmd vovcleanup -proj

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.305

Note: When preemption is heavily used, log files tend to build up.

How do I test a policy change before releasing it to production?

To test policy changes you can use the soft release mechanism. Here's a summary:

• Create a test queue.

• Set up the test to use files from the repository of the master queue.

• Test a hot file in a sandbox, identify and fix the errors before releasing it to the production domain.

I am upgrading the software - how do I suspend Accelerator from dispatching jobs?

Typically, to minimize the impact of upgrading the overhauling the system, the vovserver is stopped from dispatching new jobs,

while jobs that are running are allowed to complete on the vovtasker. There is more than one way to do this: Cold Upgrade, Hot

Upgrade and Rolling Hot Upgrade. For more information and instructions, refer to Upgrade Accelerator.

HPC Advice
This section provides recommendations to obtain the maximum performance from your Accelerator. As Accelerator is a fast

system, fine-tuning performance may only be needed when running several hundreds of thousands of jobs daily.

Use the Latest Altair Accelerator Release

The performance of the Accelerator scheduler is frequently updated. Using the most current version is recommended.

Use the vwn Wrapper

The wrapper vwn (alias for vw -d) is a faster wrapped because it avoids communication with vovserver. The regular vw checks

the timestamp of the outputs after the job is done, whereas vwn does not. An example is shown below:

% nc run -wrapper vwn -array 100 sleep 0

To further push performance of the scheduler, you may want to use two options:

• -nolog: this disables the creation of the log file

• -nodb: this disables the logging of the job execution used for adding job info to the database

% nc run -wrapper vwn -nodb -nolog -array 100 sleep 0

• The benefit of using vwn is speed.

• The disadvantage is that jobs that require the -wl option cannot be run. However, this disadvantage may be not be significant,

as -wl adds a relatively high load for what it does: -wl requires an extra notify client to handle the event generated when the

job terminates.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.306

Reduce the FairShare Window

When running millions of jobs per day, it is not important to keep a long FairShare history. Typically, a window of 2 to 5 minutes

tracks sufficient history. An example follows:

% nc cmd vovfsgroup modrec /some/fs/tree window 2m

Reduce the autoForget Times

By forgetting jobs more quickly, the memory image of vovserver is kept smaller. An example is shown below:

In policy.tcl
set config(autoForgetValid) 3m
set config(autoForgetFailed) 1h
set config(autoForgetOthers) 1h

Disable Wait Reasons

If analyzing what causes wait time in the workload, the wait reason analysis can be disabled as shown below:

In policy.tcl
set config(enableWaitReasons) 0

Wait time analysis can then be re-enable as needed as shown below:

% nc cmd vovsh -x 'vtk_server_config enableWaitReasons 1'

collect some data for a few minutes, then

% nc cmd vovsh -x 'vtk_server_config enableWaitReasons 0'

Disable File Access

Disabling file access is mostly a high-reliability option. By disabling file access, the vovserver never looks at any of the files in the

user workspaces, which avoids the risk of disk slowness or disk unavailability. An example is shown below:

% nc cmd vovsh -x 'vtk_server_config disablefileaccess 2'

Reduce Update Rate of Notify Clients

Notify clients, clients that are tapping the event stream from vovserver (such as nc gui, voveventmon or nc run -wl),

are updated immediately in the inner loop of the scheduler. If the environment includes hundreds of such clients, it may be

beneficial to slow down the update rate by setting the parameter notifySkip. The default value is 0: no skip. Typically, the

more events that take place, the more events that can be skipped without notice. For example, if several events are taking place,

setting notifySkip to 100, fewer updates may not be noticed. If the number of events is small, a one-second delay may be

noticed in some updates of the GUI. skipped without notice.

Note: Regardless of the setting, the maximum time between updates is one second.

In policy.tcl
set config(notifySkip) 100

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.307

NVIDIA™ GPUs Support in Accelerator
If you have machines with multiple GPUs, you can harness the power of those devices by following these guidelines, which have

been tested with up to 8 GPUs per machine.

1. Start a "vovtaskerroot" in each machine with one consumable hardware resource for each of the GPUs on that machine. Call

these resources GPU:Tesla<N> where N is an index starting from 0.

In taskers.tcl
set res4gpus "GPU:Tesla0/1 GPU:Tesla1/1 GPU:Tesla2/1 GPU:Tesla3/1"
vtk_tasker_define nv001 -resources $res4gpus
vtk_tasker_define nv002 -resources $res4gpus
...
vtk_tasker_define nvXXX -resources $res4gpus

2. Define job resources of type G:Tesla<J> where J is the number of GPUs that are requested by the job. For each J you

need to define the maps from the job resource to the HW resources of type GPU:TeslaN.

For example, G:Tesla1 is easy and it needs to map to the OR of any of the available GPUs, while G:Tesla4 is also

easy because it needs to map to the AND of all 4 devices.

In resources.tcl
set mapOR "GPU:Tesla0/1 OR GPU:Tesla1/1 OR GPU:Tesla2/1 OR GPU:Tesla3/1"
set mapAND "GPU:Tesla0/1 GPU:Tesla1/1 GPU:Tesla2/1 GPU:Tesla3/1"
vtk_resourcemap_set G:Tesla1 -max unlimited -map $mapOR
...
vtk_resourcemap_set G:Tesla4 -max unlimited -map $mapAND

The other maps for G:Tesla2 and G:Tesla3 are more complex, and for larger values of N it is not feasible to use

all possible combinations of devices. To help compute those maps, and to reduce the number of combinations to a

workable subset, we provide a procedure called findCombinations in $VOVDIR/scripts/hero/nvidia/

hero_nvidia_resources.tcl. Feel free to copy that file into your resources.tcl file.

proc findCombinations { list n } {
 #
 # Recursive procedure to find all combinations of 'n' elements from 'list'.
 #
 set result {}
 set l [llength $list]
 if { $l >= $n } {
 set inc 1
 for { set i 0 } { $i < $l } { incr i $inc } {
 set elem [lindex $list $i]
 set subList [lreplace $list 0 $i]
 set subCombos {}
 if { $n > 1 } {
 set subCombos [findCombinations $subList [expr $n-1]]
 if { $l > 2 && [llength $subCombos] > 1 } {
 ### When the combinations are too-many, use only the first
 combo.
 set subCombos [lrange $subCombos 0 0]
 }
 foreach subCombo $subCombos {
 lappend result [concat $elem $subCombo]
 }
 } else {
 lappend result $elem
 }

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.308

 }
 }
 return $result
}

Maximum number of GPUS in any of the farm machines.
Call the GPUS "GPU:Tesla0 ... GPU:Tesla3 ..."
set MAX 8
set GPUS {}
for { set i 0 } { $i < $MAX } { incr i } {
 lappend GPUS "GPU:Tesla$i/1"
}

A resource to count how many GPUs are in use.
vtk_resourcemap_set G:TeslaNum -total unlimited

for { set i 1 } { $i <= $MAX } { incr i } {
 set options [findCombinations $GPUS $i]
 set optionsWithParentheses ""
 set sep ""
 foreach opt $options {
 if { [llength $opt] > 1 } {
 append optionsWithParentheses "$sep ($opt)"
 } else {
 append optionsWithParentheses "$sep $opt"
 }
 set sep " OR"
 }
 vtk_resourcemap_set G:Tesla$i -total unlimited -map "G:TeslaNum#$i
 ($optionsWithParentheses)"
}

3. Submit your workload using the wrapper vovgpu which is a script that interprets the "SOLUTION" computed by the

scheduler and passes the selected list of devices to the application via the environment variable VOV_GPUSET or with the

macro @GPUSET@. Note that VOV_GPUSET gives you a space-separated list of devices, while @GPUSET@ gives you a

comma-separated list.

With this setup, you can submit arbitrary workloads which request any number of GPUs.

% nc run -r G:Tesla1 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2
% nc run -r G:Tesla2 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2
% nc run -r G:Tesla3 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2
% nc run -r G:Tesla4 -- vovgpu some_job_requiring_gpu -devices=@GPUSET@ -arg1 -arg2

If you are new to Accelerator, it is worth remembering that you can get project tracking if you use the -jobproj option. For

FairShare, use the -g and -sg options in nc run, as in this example:

% nc run -r G:Tesla4 -jobproj MachineLearnAboutCats -g /bu/ai/rd vovgpu
 my_ml_app

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.309

Simulation Scripts
This section describes job simulation scripts that emulate jobs. Such scripts are often used by developers as well as business

systems analysts.

Typically, these scripts perform no real functions and do not access licenses; they emulate the appearance of actual usage. These

scripts are often used to debug a system or configuration issue, test the capacity of the system, checking if the resources are

available for upcoming jobs, and setting benchmarks for dispatching jobs, such as 1000 calls of nc run /bin/date.

Why Developers Use Simulation Job Scripts

Sometimes developers need to test a flow under realistic conditions to ensure that all settings are correct that users have access to

resources, permissions and quotas, to run the jobs that they intend to run.

• Developers may not have access to the tools; they need to create simulated jobs for realistic testing in an artificial

environment.

• Developers may have access, but in an earlier stage of development, it may be preferable to create placeholder tools, thus

avoiding the use and cost of licenses.

Using Job Script Simulations for Troubleshooting and Planning

Running tests with simulated jobs can help identify hardware bottlenecks or other system limitations. Using test scripts with

proportional values help generate profiles very quickly, such as usage over time. Such scripts can be used with scaled memory/time

requirements, such as 1 Megabyte of memory of a test script represents 1 Gigabyte represents 1 Megabtyte of actual usage, or 1

minute of a test script represents 1 hour of actual usage.

For more basic flows in which each stage consists of similar types of jobs, test scripts may not be needed. However, for more

complex flows with jobs that have different characteristics and dependencies, estimating the longest path, how often job

requirements result in conflict and so on, are difficult to estimate without running tests that provide results to analyze.

% sleep x
% cp aa bb
% vovmemtime

Guidelines for Simulation Job Scripts

Frequently Used Code

• array

• cp file1file2: Emulates I/O data transfer.

Note: To successfully view a data transfer on a job profile, very large files must be used; transactions

and other usages must continue at least one minute to be visible.

• sleep x: Do nothing during the specified time x. For tests and evaluations, it is best to include a random number

generator. Used alone, sleep jobs complete at known, precise times - based on the specified timing, several jobs could

complete simultaneously, which does not occur in actual job runs. For information about job profiles, refer to Job

Profiling in the Altair Accelerator User Guide..

• vovmetime: Allocates memory, also uses CPU.

• vtool: Used for calling licenses. vtool can be used to emulate calling licenses. For information, refer to Wrap

Unlicensed Tools in the Altair Monitor Administrator guide.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.310

Simple examples of scripts

Note: Using the sleep command alone may cause unrealistic behaviors, such as all jobs completing at the

same time. Due to the scheduling of jobs and the availability of resources exact timing is unlikely. For more

realistic behaviour, including a random variation of timing is recommended.

bash version

% #!/bin/bash
% dur=$[($RANDOM % $1 / 5) + $1]s
% echo "Sleeping for $dur"
$% sleep $dur

Sanity Check for vovserver
The command sanity is used to perform checks on the consistency of the trace and of other internal data structures.

Use sanity check when the server appears confused about the status of the trace.

% vovproject sanity

Use the reread command to re-read the server configuration. The files read are policy.tcl, security.tcl, equiv.tcl,

setup.tcl, and exclude.tcl.

You need not use reread after changes to taskers.tcl, it is not a vovserver config file. It is used by vovtaskermgr.

% vovproject reread

sanity does a wide variety of checks, cleanups, and rebuilds of internal data structures. Check the vovserver log file for

messages that include sanity. Here are some of the main things that it does:

• Clears all alerts

• Flushes journal and crash recovery files

• Clears IP/Host caches

• Stops and restarts resource daemon (vovresourced)

• Checks and cleans internal object attachments

• Verifies all places and jobs have sensible status

• Resets user statistics and average service time

• Checks the contents of system sets like System:jobs

• Removes older jobs from recent jobs set

• Makes sure all jobs in the running jobs set are actually running

• Verifies all sets have the correct size

• Clears the barrier-invalid flag on all nodes and recomputes it

• Clears empty retrace sets

• Checks preemption rules

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.311

• Checks all tasker machines, marking them sick if they are not responding

• Checks for rebooted tasker machines and terminates jobs attached to them

• Checks filesystems on tasker machines and verifies mount points

• Clears resource list caches from jobs

• Clears and rebuilds job class sets

• Creates limit resources for ones that are missing

• Verifies grabbed resources (non running jobs should not have any)

• Makes sure only running jobs have stolen resources

• Reserves resources for all running jobs

• Create any missing resource maps for groups and priorities

• For each job with I/O, makes sure outputs are newer than inputs

• Makes sure any file with running status has an input job with running status

• Verifies the status of all nodes

• Checks for stuck primary inputs (primary inputs should only be VALID or MISSING)

• If a file is invalid or missing, but the input job is VALID, turn the job INVALID

• Finds running jobs without tasker and changes the status to SLEEPING

• Makes sure all input files of a VALID job are also VALID

• Makes sure all output files of a job have the same status as the job

• Recomputes waitreason counts

• Checks job queue buckets

• Verifies link between job queue buckets and resource maps

• Makes sure all queued jobs have job queue buckets

• Checks FairShare groups

• Checks for a license

Disable Regular User Login
This section provides guidelines to disable the ability for those with the USER level of privilege to log onto selected tasker

machines. Most often, for better throughput, this is applied to use selected machines as part of a computing resource pool

exclusively through Accelerator.

Note: Disabling the login to a vovtasker is not a normal or supported use of VOV functionality.

Disabling user login to the selected tasker machines is done in two phases:

1. Disable user logins

2. Set up vovtsd

Phase 1

1. Disable all user logins except for the superuser or root on the selected machine.

2. Create the file /etc/nologin. The content of the file will be the message the users receive when they try to login.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.312

An example of /etc/nologin on host h01 is shown below:

% cat /etc/nologin
Login disabled. Contact admin for help.

When a regular (non-root) user tries to login, the message shown to the user will be as follows:

% rlogin -l john h01
john's Password:
Login disabled. Contact admin for help.

login:

Phase 2: Set Up vovtsd When login is disabled for the USER level and VOV ADMIN is typically not a root user, it is not possible

to use rsh or ssh to either start or stop taskers from remote machines, such using the command vovtaskermgr. In this scenario,

vovtsd can be used to manage the tasker machines remotely.

3. Log onto the machine as root, switch to VOV ADMIN and then start vovtsd.

4. From a remote machine, start or stop a tasker on this machine using a previously used method, such as using the command

vovtaskermgr or ncmgr reset, the GUI or a browser.

% su - vncadmin
% vovtsd -normal

5. Step 4 assumes that the shell for user "vncadmin" is set up to run the VOV software. Some accounts do not have this setup.

In that case, the vovboot script could be used to start vovtsd.

% su - root
% /full/path/to/vov/installation/common/scripts/vovboot vovtsd -normal

To start vovtsd at boot time, consider deployment of the S99vovtsd script, a copy of which can be found in the directory

$VOVDIR/etc/boot/S99vovtsd. Copy this script into /etc/rc3.d/S99vovtsd and customize it to fit the installation

requirements.

• Ensure that vovtsd is running.

• Automatically restart vovtsd on reboot of the machine. This enables the machine to provide continuous computing power

without having to log in as root and manually start vovtsd.

Note: If vovtsd is already running on a host and starting another host is tried, that second host will not start

because the port is already occupied; starting vovtsd on a regular basis is a good way to ensure it is always

running. Keeping the host running can be done with a cron job as shown in the example below:

% su - vncadmin% crontab -e
Start vovtsd every thirty minutes
1,31 * * * * /full/path/to/VOV/common/scripts/vovboot vovtsd -normal > /
dev/null 2>&1

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.313

Auxiliary Group Membership

Theory

If VOV_USE_INITGROUPS is set, the subtasker calls initgroups(). This is an OS call that sets all (or max 16) auxiliary

groups. The resulting list of groups is not cached. Another job will call initgroups() again.

The default is to not call initgroups because it may load the name services too much.

By default, the vovtasker calls the external utility vovgetgroups, which uses the value of VOV_ALARM to decide how long

to wait for a reply (default 10 seconds). The VOV_USE_VOVGETGROUPS environment variable can be used to control this

behavior:

Set to 0 to disable the call to the external utility and use the getgrent() POSIX API function to find all groups that are valid

for a user. If there are more than 16, the list is truncated to the first 16. The list is cached by vovtasker, so only the first job for a

user causes traffic with the name services. This is only recommended in small environments, as this method can create significant

delays, and even blocking conditions, in complex environments (e.g. Linux with LDAP).

Set to 2 to continue to use the external utility, but instruct the utility to call the getgrent() POSIX API function instead of

the default call to getgrouplist(). This is mainly for debugging purposes, since this mode of operation results in slower

processing of group information.

History

Prior to 2016.09 & 2015.09u8

If VOV_USE_VOVGETGROUPS was set to any value, when a tasker needs to get group data it will use the

vovgetgroups external utility (a separate executable). This utility is robust to LDAP errors or timeouts which would

otherwise cause the getgrent library call to hang indefinitely (and block the tasker from issuing further jobs).

Prior to customers switching to Centos6.x and SSSD name service, the use of VOV_USE_VOVGETGROUPS was

recommended. After the switch to Centos6.x/SSSD, a bug was found that prevented all groups from being fetched.

Switching to VOV_USE_INITGROUPS=1 and leaving VOV_USE_VOVGETGROUPS unset appeared to fix the problem,

but at the probable cost of reduced performance and increased name service load.

2016.09 & 2015.09u8 and Later Versions

If VOV_USE_VOVGETGROUPS was set to any value other than 1, it would behave like pre 2016.09 code and use

getgrent(). If VOV_USE_VOVGETGROUPS was set to 1, it would use getgrouplist(), which is a newer utility

(but still old) to get group information with higher performance.

The downside to setting VOV_USE_VOVGETGROUPS=1 in 2016.09 is that there may be some off-beat OS's that don't

support it. However, it seems to be faster, work with SSSD, and doesn't load the name service as much.

The recommendation based on the review of the history and the code is the following:

• Use VOV_USE_VOVGETROUPS=1 and leave VOV_USE_INITGROUPS unset if you are on <2015.09u8 earlier

and not using CentOS6.6 with SSSD (uses non blocking getgrent)

• Leave VOV_USE_VOVGETGROUPS unset and set VOV_USE_INITGROUPS=1 if you are on < 2015.09u8 and

want to use CentOS6.6/SSSD (uses an extra group init & getgrent)

• Set VOV_USE_VOVGETGROUPS=1 and leave VOV_USE_INITGROUPS unset if you are on 2016.09 or

>2015.09u7 and running a common OS (non blocking, getgrouplist)

• Set VOV_USE_VOVGETGROUPS=1 and leave VOV_USE_INITGROUPS unset if you are on 2016.09 or

>2015.09u7 and running an uncommon OS (non blocking, getgrent).

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.314

If both are set then VOV_USE_VOVGETGROUPS dominates.

Troubleshooting
Answers to common questions when using Monitor.

The Server Doesn't Start

1. Make sure you have a valid RLM license. Type:

% rlmstat -a

2. Check if the server for your project is already running on the same machine. Do not start an Accelerator project server more

than once.

% vovproject enable project% vsi

3. Check if the server is trying to use a port number that is already used by another vovserver or even by another application.

VOV computes the port number in the range [6200,6455] by hashing the project name. If necessary, select another project

name, or change host, or use the variable VOV_PORT_NUMBER to specify an known unused port number. The best place

to set this variable is in the setup.tcl file for the project.

4. Check if the server is trying to use an inactive port number that cannot be bound. This can happen when an application,

perhaps the server itself, terminates without closing all its sockets.

The server will exit with a message similar to the following:

...more output from vovserver...
vs52 Nov 02 17:34:55 0 3 /home/john/vov
vs52 Nov 02 17:34:55 Adding licadm@venus to notification manager
vs52 Nov 02 17:34:55 Socket address 6437 (net=6437)
vs52 ERROR Nov 02 17:34:55 Binding TCP socket: retrying 3
vs52 Nov 02 17:34:55 Forcing reuse...
vs52 ERROR Nov 02 17:34:58 Binding TCP socket: retrying 2
vs52 Nov 02 17:34:58 Forcing reuse...
vs52 ERROR Nov 02 17:35:01 Binding TCP socket: retrying 1
vs52 Nov 02 17:35:01 Forcing reuse...
vs52 ERROR Nov 02 17:35:04 Binding TCP socket: retrying 0
vs52 Nov 02 17:35:04 Forcing reuse...
vs52 ERROR Nov 02 17:35:04
PROBLEM: The TCP/IP port with address 6437 is already being used.

POSSIBLE EXPLANATION:
 - A VOV server is already running (please check)
 - The old server is dead but some
 of its old clients are still alive (common)
 - Another application is using the
 address (unlikely)

ACTION: Do you want to force the reuse of the address?

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.315

a) If this happens, list all VOV processes that may be running on the server host and that may still be using the port. For

example, you can use:

% /usr/ucb/ps auxww | grep vov
john 3732 0.2 1.5 2340 1876 pts/13 S 17:36:18 0:00 vovproxy -p
 acprose -f - -b
john 3727 0.1 2.2 4816 2752 pts/13 S 17:36:16 0:01 vovsh -t /rtda/
VOV/5.4.7/sun5/tcl/vtcl/vovresourced.tcl -p acprose
...

b) Wait for the process to die on its own, or you can kill it, for example with vovkill.

% vovkill pid

c) Restart the server.

5. You run the server as the Accelerator administrator user. Please check the ownership of the file security.tcl in the

server configuration directory vnc.swd.

UNIX Taskers Don't Start

Accelerator normally relies on remote shell execution to start the taskers, using either rsh or ssh.

• If using rsh try the following:

% rsh host vovarch

where host is the name of a machine on which there are problems starting a tasker.

This command should return a platform dependent string and nothing else. Otherwise, there are problems with either with the

remote execution permission or the shell start-up script.

• If the error message is similar to "Permission denied", check the file .rhosts in your home directory. The file should

contain a list of host names from which remote execution is allowed. See the manual pages for rsh and rhosts for details.

You may have to work with your system administrators to find out if your network configuration allows remote execution.

• If using ssh, perform the test above but use ssh instead of rsh. For more details about ssh see SSH Setup in the VOV

Subsystem Administrator Guide.

• If you get extraneous output from the above command, the problem is probably in your shell start-up script. If you are a C-

shell user, check your ~/.cshrc file. The following are guidelines for a remote-execution-friendly .cshrc file:

Echo messages only if the calling shell is interactive. You can test if a shell is interactive by checking the existence of

the variable prompt, which is defined for interactive shells. Example:

Fragment of .cshrc file.
if ($?prompt) then
echo "I am interactive"
endif

Many .cshrc scripts exit early if they detect a non interactive shell. It is possible that the scripts exit before sourcing

~/.vovrc, which causes Accelerator to not be available in non-interactive shells. Compare the following fragments of

.cshrc files and make sure the code in your file works properly:

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.316

The following example will not work properly for non-interactive shells:

if ($?prompt) exit
source ~/.vovrc

This example is correct, source .vovrc and then check the prompt variable:

source ~/.vovrc
if ($?prompt) exit

This example is also correct:

if ($?prompt) then
Define shell aliases
...
endif
source ~/.vovrc

Do not apply exec to a sub shell. This will cause the rsh command to hang.

Do not do this in a .cshrc file
exec tcsh

License Violation

Accelerator is licensed by restricting the number of taskers. This is the number of all unique hosts that run taskers in all instances

of Accelerator servers that use the same license.

You can find out the capacity of your license with the following command:

% rlmstat -avail

The file $VOVDIR/../../vnc/vnc.swd/taskers.tcl defines the list of hosts that are managed by the server. Make sure

the number of tasker hosts is within the license capability.

Crash Recovery

In the event of a crash or failover, you can find a checklist of what to do on the System Recovery page.

This address can found using the command:

nc cmd vovbrowser -url /cgi/sysrecovery.cgi

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.317

Backwards Compatibility and Migrating from Previous Versions
This chapter provides information about deprecated features that are still supported. This information is provided should you see

older commands in use after a software upgrade or migrating to a newer Accelerator.

As these older features, commands and options may soon become unsupported, using the current commands and options instead is

strongly recommended.

Tasker Resources
The resources offered by a tasker are represented by a space-separated list of tokens. Resources can be explicit or symbolic.

The resources described in this section have been obsoleted. The new information about Hardware Resources in provided in

Hardware Resources. The resources described in this section are still supported.

The resource list is the concatenation of two sublists:

• The resources specified with option -r, which can be either a static list (explained below) or dynamically computed list as

explained in Time-Variant Taskers.

• The resources specified in the taskerClass.table file.

The option -r in vovtasker defines the resources offered by the tasker.

Examples of explicit resources:

% vovtasker -r "unix diskio RAM/512"
% vovtasker -r "RAM/3000 REGRMACHINE"

Symbolic Resources for Taskers

The following table describes all symbolic resources defined for taskers. By default, a tasker provides the resources corresponding

to the symbolic resource @STD@.

Symbolic Resource Description

@ARCHITECTURE@ It has value 'win64' on Windows, and the same as

@MACHINE@ on UNIX.

@CPUS@ A consumable resources indicating the number of CPUS in the

tasker (example for a 4-CPU machine: "CPUS/4").

@DISPLAY@ The name of the X display accessible by the tasker and derived

from the value of the environment variable DISPLAY.

@HOST@ The name of the host on which the tasker runs.

@MACHINE@ The name that identifies the machine type . On Windows, this

have value 'x86'.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.318

Symbolic Resource Description

@MODEL@ Linux: an abbreviated version of the "model name" line in

the output of /proc/cpuinfo, otherwise the value is

"Model:unknown". Not available on the other platforms.

@OS.VERSION@ The name of the operating system, including the version

number (for example, Linux.1.0).

@OS@ The operating system name (for example, Linux).

@OSCLASS@ Either "unix" or "windows".

@RAMFREE@ The amount of available physical memory (RAM), in MB.

On a Linux system, this is computed by opening /proc/

meminfo and by adding up the values for MemFree, Buffers,

and Cached.

% cat /proc/meminfo
MemTotal: 6100392 kB
MemFree: 1848576 kB
Buffers: 188596 kB
Cached: 2686368 kB
SwapCached: 16 kB
Active: 1847404 kB
...

@RAMTOTAL@ The total amount of physical memory (RAM), in MB.

@RAM@ This is a consumable resource representing the residual amount

of RAM after taking into account the jobs running on the

tasker.

@RELEASE@ This is mostly used on Linux to represent the name of the Linux

distribution. On most systems, this is computed by running

lsb_release -isr.

@SMARTSUSPEND@ Either the string "smartsuspend" if SmartSuspend (by Jaryba) is

available on the machine or the null string "".

@STD@ The default for each tasker, which corresponds to the

set @CPUS@ @DISPLAY@ @USER@ @HOST@

@RAM@ @MACHINE@ @VOVARCH@ @OSCLASS@

@OS.VERSION@ @VIEW@ @RELEASE@.

@SWAPFREE@ The amount of available swap space, in MB.

@SWAPTOTAL@ The total amount of swap space, in MB.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.319

Symbolic Resource Description

@SWAP@ This is a consumable resource representing the residual amount

of SWAP after taking into account the jobs running on the

tasker.

@USER@ The name of the user that owns the tasker. This is the value of

either the variable LOGNAME or of the variable USER.

@VIEW@ The view name as defined by ClearCase.

@VOVARCH@ The value of the environment variable VOVARCH, normally

set with vovarch.

Pre and Post Conditions

The execution of Pre and Post conditions based on the environment definition have been deprecated as of version 8.2.0. For

current information, refer to Pre-Command and Post-Command Job Conditions. The information provided in this section describes

behavior that is supported for backward compatibility.

As part of the environment definition, two scripts can be prepared to take care of pre- and post-conditions on a job-by-job basis.

These scripts are called NameOfEnv.pre.tcl and NameOfEnv.post.tcl.

Configure FairShare via the policy.tcl File

The FairShare Groups policy configuration described in this section have been deprecated. It is strongly advised to not use the

described in this section. The features described in this section are currently available, but may soon become unavailable and/or

unsupported.

Refer to vovfsgroup for the current implementation.

To create new groups, define them in the policy.tcl file in the PROJECT.swd directory using vtk_group_set. This procedure

is only valid in the policy.tcl file.

Example of definition of some groups in the policy.tcl file.
Reminder: this is considered obsolete. Use FSGROUP instead.
vtk_group_set /time/med/sanjose -weight 200
vtk_group_set /time/med/sanjose/library -weight 40
vtk_group_set /time/med/sanjose/systems -weight 60
vtk_group_set /time/med/sanjose/systems/qa -users { john mary }
vtk_group_set /time/med/sanjose/systems/dev -users { bob suresh }
vtk_group_set /time/med/sanjose/systems/prot -unixgroup acxx

If a group is defined without a leading /, the group becomes part of the /time group by default.

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.320

Set Up FairShare

1. The policy.tcl file defines the FairShare weight for each fsgroup. The script uses the following Tcl procedures:

• vtk_fairshare_set -window <timeSpec>

Sets the value of the keyref window for the top group.

• vtk_group_set <group_name> [-weight w] [-users userlist] [-useasdefault] [-max

N] [-map RESEXPRESSION] [-owner USER]

The default weight for a group is 100. The default user list is empty.

• Example:

vtk_fairshare_set -window 4h
vtk_group_set /queue/alpha -weight 500 -users {mary frank}
vtk_group_set /queue/gamma -weight 800 -users {frank john alan}
vtk_group_set /queue/gamma -weight 800 -unixgroup acx

2. Each fsgroup with queued jobs is assigned a target share proportional to the FairShare weight.

3. The fsgroups are ranked based on how far they are from the target share taking into account:

• The number of jobs currently running for each fsgroup;

• The total run-time logged by each fsgroup over the FairShare window.

4. The farther a fsgroup is from the target, the lower its rank and the earlier their jobs are checked for scheduling.

5. As soon as a slot becomes available, the scheduler searches for the next job to dispatch starting from the user with lowest

rank, and then increasing the rank until a job to dispatch is found.

Migration of Preemption from 2013.03 and Prior Versions

Starting in version 2013.09, Accelerator has a new implementation of the preemption functionality. Within this section, the

terminology "older version" of preemption is used to indicate Accelerator versions 2013.03 and prior and "newer version" of

preemption to indicate Accelerator versions 2013.09 or later.

Optional vovpreemptd Daemon

The Preemption section discussed some of the changes in preemption implementations as compared to prior versions of

Accelerator. Specifically, the preemption functionality for older versions, a stand-alone daemon monitored the file-based

preemption rules and that daemon also preformed the actual preemption. For newer version of preemption, the functionality is

performed by the server directly and preemption rules are stored within the persistent representation of Accelerator so that this

information is preserved across server restarts. There is an optional daemon that can be used to monitor preemption rules that are

stored within the preemption config.tcl file.

For new users of preemption and for previous preemption users upgrading from older versions of Accelerator, the initial decision

for preemption configuration is to decide if preemption rules will be file-based or entered via Accelerator. If the preemption rules

are file-based and the administrator wishes for Accelerator to monitor the rules, then the optional vovpremeptd daemon will

need to be started.

Server Configuration

As previously mentioned, Accelerator is now managing the preemption of jobs internally. The administrator can configure the

server to specify the frequency of how often Accelerator is to attempt preemption of jobs. This is via the preemptionPeriod

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.321

server configuration variable as described in Server Configuration. The default value is that Accelerator evaluates the preemption

rules every 3 seconds. Setting this configuration value to 0 will disable preemption in the server and setting the value to a larger

number will obviously cause preemption to occur on a less frequent basis.

VovPreemptRule Command Changes

VovPreemptRule has some new command options and some slightly modified commands option beginning in 2013.09. The

two modified command options are -killage and -method.

The default of -killage was changed from a default of 1 minute to 0. Previously, by default, any preempted job younger than 1

minute was killed and resubmitted. Now, this is not the default and young jobs will only be killed and re-submitted if the -killage

command option is specified.

The -method option previously supported RESERVE and FREE_TASKERS as preemption methods. A new concept called

Preemption Rule Types factors RESERVE and FREE_TASKERS out as -method and are now valid values for -ruletype.

Consequently, any preemption rules that use these values as preemption method need to instead specify the values as preemption

type.

Convert Old VovPreemptPolicy into VovPreemptRule

An old and currently unsupported preemption policy is used for this example:

VovPreemptPolicy License:ncverilog -type OWNERSHIP:GROUP -delay 150 \
 -method SUSPEND+LMREMOVE -forcelmremove \
 -owners {
 Group:AAA 7
 Group:BBB 8
 Group:CCC 10
 }
Note: this type of preemption policy is no longer supported because it
results in a quadratic number O(N**2) of rules where N is the
number of owners.

This is replaced by a FairShare driven preemption. Assume that the jobs to be balanced are in FairShare groups called /xxx/AAA /

xxx/BBB and /xxx/CCC and that these groups have been assigned weights of 700 800 and 1000 respectively

Two implementations are suggested:

Implementation for scripted preemption daemon (pre 2013.09)

For preemption daemon before 2013.09
VovPreemptRule -rulename fsConversion \
 -preempting "FSGROUP~/xxx/ FS_EXCESS_RUNNING<0 FS_COUNT_RUNNING<2"
 -waitingfor "License:ncverilog" \
 -preemptable "FSGROUP~/xxx/ FS_EXCESS_RUNNING>0 FS_COUNT_RUNNING>2
FS_RANK9>@FS_RANK9@"
 -method SUSPEND+LMREMOVE

Implementation for binary preemption daemon (2013.09 and later)

For preemption daemon 2013.09 and later
VovPreemptRule -rulename fsConversion -poolname somePoolName \
 -ruletype "FAST_FAIRSHARE" \
 -preempting "FSGROUP~/xxx/ FS_EXCESS_RUNNING<0FS_COUNT_RUNNING<2" \

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Altair Accelerator Administrator Guide p.322

 -waitingfor "License:ncverilog" \
 -preemptable "FSGROUP~/xxx/ FS_EXCESS_RUNNING>0 FS_COUNT_RUNNING>2
FS_RANK9>@FS_RANK9@"
 -method SUSPEND+LMREMOVE

FairShare Groups

Note: The FairShare information described in this chapter has been deprecated. It is strongly advised to not use the

information described in this chapter. The features described in this section are currently available, but may soon

become unavailable and/or unsupported.

Refer to FairShare and Configure FairShare via the vovfsgroup Utility for the current implementations.

Each job belongs to both a user and a group. Groups are used as part of the FairShare mechanism.

To set the FairShare group of a job, set the environmenVOV_GROUP when creating the job using vovbuild or when executing

the job for the first time. If the variable is missing, the FairShare group name is /time/users by default. The group of a job

cannot be changed after the job has been created.

The VOV administrator defines the share of resources to allocate to a group by means of the procedure vtk_group_set in the

policy.tcl file. The option -weight is used to specify a relative weight of the group. Example:

vtk_group_set /time/alpha -weight 500
vtk_group_set /time/beta -weight 200
vtk_group_set /time/reg -weight 200 -unixgroup regression
vtk_group_set /time/prod -weight 200 -unixgroup production -useasdefault

To define the users that belong to a FairShare group, use the option -users or -unixgroup. Example:

Explicit list of users:vtk_group_set /time/alpha -users { john mary joe }

Take list from the Unix definition of groups:vtk_group_set /time/beta -unixgroup
 guests

To define the share of resources to allocate to a user within a group, use vtk_user_set and the -group option. Example:

vtk_user_set john -weight 20 # Default is group "users"
vtk_user_set john -group /time/alpha -weight 100
vtk_user_set john -defaultGroup /time/beta

To see the list of all groups, refer to the /groups page.

Proprietary Information of Altair Engineering

Legal Notices

Altair Accelerator 2024.1.1

Legal Notices p.324

Intellectual Property Rights Notice
Copyrights, trademarks, trade secrets, patents and third party software licenses.

Copyright ©1986-2024 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of the intellectual property rights held by

Altair Engineering Inc. or its affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are

protected under laws of the United States and laws of other jurisdictions.

In addition to intellectual property rights indicated herein, such software, other products, and materials of Altair Engineering Inc.

or its affiliates may be further protected by patents, additional copyrights, additional trademarks, trade secrets, and additional other

intellectual property rights. For avoidance of doubt, copyright notice does not imply publication. Copyrights in the below are held

by Altair Engineering Inc. or its affiliates. Additionally, all non-Altair marks are the property of their respective owners. If you

have any questions regarding trademarks or registrations, please contact marketing and legal.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual

property rights of Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates

is governed by and dependent on a valid license agreement.

Altair HyperWorks®, a Design & Simulation Platform

Altair® AcuSolve® ©1997-2024

Altair® Activate®©1989-2024

Altair® Automated Reporting Director™ ©2008-2022

Altair® Battery Damage Identifier™©2019-2024

Altair® Battery Designer™ ©2019-2024

Altair® CFD™ ©1990-2024

Altair Compose®©2007-2024

Altair® ConnectMe™ ©2014-2024

Altair® DesignAI™ ©2022-2024

Altair® EDEM™ ©2005-2024

Altair® EEvision™ ©2018-2024

Altair® ElectroFlo™ ©1992-2024

Altair Embed® ©1989-2024

Altair Embed® SE ©1989-2024

Altair Embed®/Digital Power Designer ©2012-2024

Altair Embed®/eDrives ©2012-2024

Altair Embed® Viewer ©1996-2024

Altair® e-Motor Director™ ©2019-2024

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Legal Notices p.325

Altair® ESAComp® ©1992-2024

Altair® expertAI™ ©2020-2024

Altair® Feko® ©1999-2024

Altair® Flow Simulator™ ©2016-2024

Altair® Flux® ©1983-2024

Altair® FluxMotor® ©2017-2024

Altair® GateVision PRO™ ©2002-2024

Altair® Geomechanics Director™ ©2011-2022

Altair® HyperCrash® ©2001-2023

Altair® HyperGraph® ©1995-2024

Altair® HyperLife® ©1990-2024

Altair® HyperMesh® ©1990-2024

Altair® HyperMesh® CFD ©1990-2024

Altair® HyperMesh ® NVH ©1990-2024

Altair® HyperSpice™ ©2017-2024

Altair® HyperStudy® ©1999-2024

Altair® HyperView® ©1999-2024

Altair® HyperView Player® ©2022-2024

Altair® HyperWorks® ©1990-2024

Altair® HyperWorks® Design Explorer ©1990-2024

Altair® HyperXtrude® ©1999-2024

Altair® Impact Simulation Director™ ©2010-2022

Altair® Inspire™ ©2009-2024

Altair® Inspire™ Cast ©2011-2024

Altair® Inspire™ Extrude Metal ©1996-2024

Altair® Inspire™ Extrude Polymer ©1996-2024

Altair® Inspire™ Form ©1998-2024

Altair® Inspire™ Mold ©2009-2024

Altair® Inspire™ PolyFoam ©2009-2024

Altair® Inspire™ Print3D ©2021-2024

Altair® Inspire™ Render©1993-2024

Altair® Inspire™ Studio ©1993-2024

Altair® Material Data Center™ ©2019-2024

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Legal Notices p.326

Altair® Material Modeler™©2019-2024

Altair® Model Mesher Director™ ©2010-2024

Altair® MotionSolve® ©2002-2024

Altair® MotionView® ©1993-2024

Altair® Multi-Disciplinary Optimization Director™ ©2012-2024

Altair® Multiscale Designer® ©2011-2024

Altair® newFASANT™©2010-2020

Altair® nanoFluidX® ©2013-2024

Altair® NVH Director™ ©2010-2024

Altair® NVH Full Vehicle™ ©2022-2024

Altair® NVH Standard™ ©2022-2024

Altair® OmniV™ ©2015-2024

Altair® OptiStruct® ©1996-2024

Altair® physicsAI™ ©2021-2024

Altair® PollEx™ ©2003-2024

Altair® PSIM™ ©1994-2024

Altair® Pulse™ ©2020-2024

Altair® Radioss® ©1986-2024

Altair® romAI™ ©2022-2024

Altair® RTLvision PRO™ ©2002-2024

Altair® S-CALC™ ©1995-2024

Altair® S-CONCRETE™ ©1995-2024

Altair® S-FRAME® ©1995-2024

Altair® S-FOUNDATION™ ©1995-2024

Altair® S-LINE™ ©1995-2024

Altair® S-PAD™ © 1995-2024

Altair® S-STEEL™ ©1995-2024

Altair® S-TIMBER™ ©1995-2024

Altair® S-VIEW™ ©1995-2024

Altair® SEAM® ©1985-2024

Altair® shapeAI™ ©2021-2024

Altair® signalAI™ ©2020-2024

Altair® Silicon Debug Tools™ ©2018-2024

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Legal Notices p.327

Altair® SimLab® ©2004-2024

Altair® SimLab® ST ©2019-2024

Altair® SimSolid® ©2015-2024

Altair® SpiceVision PRO™ ©2002-2024

Altair® Squeak and Rattle Director™ ©2012-2024

Altair® StarVision PRO™ ©2002-2024

Altair® Structural Office™ ©2022-2024

Altair® Sulis™©2018-2024

Altair® Twin Activate®©1989-2024

Altair® ultraFluidX® ©2010-2024

Altair® Virtual Gauge Director™ ©2012-2024

Altair® Virtual Wind Tunnel™ ©2012-2024

Altair® Weight Analytics™ ©2013-2022

Altair® Weld Certification Director™ ©2014-2024

Altair® WinProp™ ©2000-2024

Altair® WRAP™ ©1998-2024

Altair HPCWorks®, a HPC & Cloud Platform

Altair® Allocator™ ©1995-2024

Altair® Access™ ©2008-2024

Altair® Accelerator™ ©1995-2024

Altair® Accelerator™ Plus ©1995-2024

Altair® Breeze™ ©2022-2024

Altair® Cassini™ ©2015-2024

Altair® Control™ ©2008-2024

Altair® Desktop Software Usage Analytics™ (DSUA) ©2022-2024

Altair® FlowTracer™ ©1995-2024

Altair® Grid Engine® ©2001, 2011-2024

Altair® InsightPro™ ©2023-2024

Altair® Hero™ ©1995-2024

Altair® Liquid Scheduling™©2023-2024

Altair® Mistral™ ©2022-2024

Altair® Monitor™ ©1995-2024

Altair® NavOps® ©2022-2024

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Legal Notices p.328

Altair® PBS Professional® ©1994-2024

Altair® PBS Works™ ©2022-2024

Altair® Software Asset Optimization (SAO) ©2007-2024

Altair® Unlimited™ ©2022-2024

Altair® Unlimited Data Analytics Appliance™ ©2022-2024

Altair® Unlimited Virtual Appliance™ ©2022-2024

Altair RapidMiner®, a Data Analytics & AI Platform

Altair® AI Hub ©2001-2023

Altair® AI Edge ©2001-2023

Altair® AI Cloud ©2001-2023

Altair® AI Studio ©2001-2023

Altair® Analytics Workbench™ ©2002-2024

Altair® Knowledge Hub™ ©2017-2024

Altair® Knowledge Studio® ©1994-2024

Altair® Knowledge Studio®for Apache Spark ©1994-2024

Altair® Knowledge Seeker™ ©1994-2024

Altair® IoT Studio™ ©2002-2024

Altair® Monarch® ©1996-2024

Altair® Monarch® Classic ©1996-2024

Altair® Monarch® Complete™©1996-2024

Altair® Monarch® Data Prep Studio ©2015-2024

Altair® Monarch Server™©1996-2024

Altair® Panopticon™ ©2004-2024

Altair® Panopticon™ BI ©2011-2024

Altair® SLC™ ©2002-2024

Altair® SLC Hub™ ©2002-2024

Altair® SmartWorks™ ©2002-2024

Altair® RapidMiner® ©2001-2023

Altair One® ©1994-2024

Altair® License Utility™ ©2010-2024

Altair® TheaRender® ©2010-2024

Altair® OpenMatrixTM©2007-2024

Proprietary Information of Altair Engineering

Altair Accelerator 2024.1.1

Legal Notices p.329

Altair® OpenPBS® ©1994-2024

Altair® OpenRadiossTM ©1986-2024

Third Party Software Licenses

For a complete list of Altair Accelerator Third Party Software Licenses, please click here.

Proprietary Information of Altair Engineering

third_party_licenses.pdf

Altair Accelerator 2024.1.1

Legal Notices p.330

Technical Support
Altair provides comprehensive software support via web FAQs, tutorials, training classes, telephone and e-mail.

Altair One Customer Portal

Altair One (https://altairone.com/) is Altair’s customer portal giving you access to product downloads, Knowledge Base and

customer support. We strongly recommend that all users create an Altair One account and use it as their primary means of

requesting technical support.

Once your customer portal account is set up, you can directly get to your support page via this link: www.altair.com/customer-

support/.

Altair Training Classes

Altair training courses provide a hands-on introduction to our products, focusing on overall functionality. Courses are conducted

at our main and regional offices or at your facility. If you are interested in training at your facility, please contact your account

manager for more details. If you do not know who your account manager is, e-mail your local support office and your account

manager will contact you

Telephone and E-mail

If you are unable to contact Altair support via the customer portal, you may reach out to the technical support desk via phone or e-

mail. You can use the following table as a reference to locate the support office for your region.

When contacting Altair support, please specify the product and version number you are using along with a detailed description

of the problem. It is beneficial for the support engineer to know what type of workstation, operating system, RAM, and graphics

board you have, so please include that in your communication.

Location Telephone E-mail

Australia +61 3 9866 5557

+61 4 1486 0829

anz-pbssupport@altair.com

China +86 21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Proprietary Information of Altair Engineering

https://altairone.com/Dashboard
https://www.altair.com/customer-support/
https://www.altair.com/customer-support/
mailto:anz-pbssupport@india.altair.com
mailto:es@altair.com.cn
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs@altairjp.co.jp
mailto:support@altair.co.kr

Altair Accelerator 2024.1.1

Legal Notices p.331

Location Telephone E-mail

Malaysia +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0) 46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

United Kingdom +44 (0)1926 468 600 pbssupport@europe.altair.com

See www.altair.com for complete information on Altair, our team and our products.

Proprietary Information of Altair Engineering

mailto:pbs-support@india.altair.com
mailto:pbssupport@altair.com
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:br_support@altair.com
mailto:pbssupport@europe.altair.com
http://www.altair.com/

Index

Special Characters

-keep for 96

@ARCHITECTURE@ 317

@CPUS@ 317

@DISPLAY@ 317

@HOST@ 317

@MACHINE@ 317

@MODEL@ 317

@MODELFULL@ 317

@OS.VERSION@ 317

@OS@ 317

@OSCLASS@ 317

@RAM@ 317

@RAMFREE@ 317

@RAMTOTAL@ 317

@RELEASE@ 317

@SMARTSUSPEND@ 317

@STD@ 317

@SWAP@ 317

@SWAPFREE@ 317

@SWAPTOTAL@ 317

@USER@ 317

@VIEW@ 317

@VOVARCH@ 317

/usr/tmp 26

Numerics

3-step preemption plan 165

A

Accelerator Administration Guide introduction 6

Accelerator CLI command syntax 229

Accelerator customization 59

Accelerator daemons 81

Accelerator quick start 11

Accelerator server and system configuration 18

access Accelerator 6

access control list 82

access to help 9

account for multiple tokens in FairShare 127

ACL 82

activate overbooking 212

activation of commas in Allocator 194

332

activation of commas in vovresourced 194

add resources 201

advanced taskers topics 187

agent groups, ACL 82

agent operations, ACL 82

alerts 272

alerts from liveness tasks 275

alerts, clear 272

alerts, manage 272

alerts, maximum number 272

alerts, Tcl API 272

alias, Tcl procedure 245

allocate jobs to machines based on percentages 43

alternate method of sending email 269

array_VOV_JOB_DESC 137

array, VOV_JOB_DESC 139

attributes of taskers 26

autoforget jobs 97

autoforget log files 97

autoforget parameters 97

automatic backups 110

automatic call of vovlmremove for suspended jobs 184

automatic data loading 107

automatic forget 96

automatic resource limits 195

automatic setting of LM_LICENSE_FILE 208

automatically start the preemption daemon 178

autostart directory 72

autostart vovnotifyd 267

autostop directory 73

auxiliary group membership 313

avoid starvation for tokens 182

B

backdoor access 131

backwards compatibility and migrating from previous versions 317

batch files 46

black hole detection 48

browser-based setup 70

built-in checks in vovtasker 34

bypass ACL instructions 82

C

cache nc list 59

canonical file names 259

capacity in taskers 23

333

capacity, tasker 26

change the config file at run time 91

change the config file for the first time 90

check environment 252

choose a tasker list for a job 32

classDescription 135

classEditable 135

clean up after an escape 131

clean up processes left behind by completed jobs 55

client limitation and tuning 87

client service modes 87

clients, too many in the system 87

CM functions available 67

coefficient in tasker 26

coefficient of tasker 23

cold upgrade 291

command line interface 14

command line interface for preemption rules 155, 155

commas vs ORs in resources 194

composite environments 243

configuration 102, 104, 104

configuration file examples 221

configuration file format, RDS 217

configuration files for vovagent 35

configuration management 67

configuration management, test instance 70

configure a failover server replacement 77

configure callbacks with vnccallbackaction 63

configure container integration 231

configure database from the command line 104

configure email addresses 268

configure FairShare via file 125

configure FairShare via the policy.tcl file 319

configure FairShare via the vovfsgroup utility 120

configure the tls/ssl protocol 58

configure vovnotifyd via the browser 266

configuring Accelerator for RDS 216

configuring job and license checkout matching 206

configuring resource management 215

configuring vovnotifyd via the CLI 267

consumable resources 186

container support 231

control FairShare tree access 131

control the capacity of taskers: slots and cores 32

control the tool field at job creation time 111

control the tool:* resource 210

control the user:x resource 210

334

control whether a job is preemptable 175

control which license usage data is loaded 107

convert old vovpreemptpolicy into vovpreemptrule 321

CPUs in a tasker 23

CPUs, in tasker 26

crash recovery mode 80

crash recovery restart 80

create a tasker on Windows 20

create jobclasses 135

customize plot color 112

customize SNAPSHOT behavior 255

customize submission policy 60

customize the GUI 67

customize the nc list command 65

customize the nc run command 63

customize the nc wait command 66

customize, Accelerator 59

D

daemon, automatic start 72

daemons, Accelerator 81

database 102

database backup 110

database configuration options 105

database control 102

database control options 106

database daemon 102

database engine versions and upgrades 107, 107

database export 108

database location 102

database schema 115

database structure 113

database tasker 102

database tasks 102, 106

debug vovpreemptrule 158

define a custom tasker policy 40

define a default jobclass 137

define equivalences for file names 260

define FairShare groups 116

define jobclasses 139

define policies for taskers 40

delete empty node 131

determine the current engine version 107

develop environments 245

directories and files 259

directories, jobclass 136

335

disable FairShare 129

disable handle matching 206

disable listing by job name 65

disable reconciliation 198

disable regular user login 311

disable security 71

disk full and quota 76

do not disturb a top job 176

do not preempt a resumed job 176

dump previous release databases 108

dynamic resource map configuration 197

E

emulate job, test script 309

enable a project 276

enable FairShare 129

enable RAM sentry 39

enable security 71

enable time series data stream 235

enabling time series data stream 88

enter the Windows password 46

environment debugging 252

environment examples 244

environment management 241

environment management limits 252

environments in taskers, cache 245

examples, job submission with triggers 270

examples, jobclass 143

examples, vovinfo 279

exceptions to FairShare scheduling 99

exclamation-point (bang) operator 14

exhausted file descriptors behavior 87

export data 108

exported jobs directory 108

external webserver 57

F

failed preemption, job-to-watch timeout 176

failover configuration, tips 78

failover server candidates 77

failover.csh 78

FairShare 116

FairShare command line utilities 116

FairShare groups 322

FairShare groups, manage 120

FairShare rank 116

336

FairShare recommendations 128

FairShare tree naming conventions 116

FairShare tuning 130

FairShare weights control methods 127

FairShare, add nodes 131

features 6

file names 259

find and remove "stuck" jobs using a jobclass 138

find jobclasses 141

forgetting unneeded resource maps 197

free disk space 41

frequently asked questions and troubleshooting tips 302

FS_EXCESS_RUNNING_LOCAL 171

G

generate custom reports 113

global setting for reconciliation 138

guest access port 56

H

handle matching, disable 206

handling the overflow event 270

hardware resources 187

help, Accelerator 9

help, quick start 11

historical job data files 262

hook signatures 231

hooks 231

host availability policy 40

hot upgrade 293

how vovserver failover works 78

HPC advice 305

HTTP access models 56

I

indirect taskers 23, 23

instructions, bypass ACL 82

internal webserver 56

introduction 6

J

job cohorts 100

job fostering 282

job persistence 96

job resources 186

337

job setup options 95

job status 95

job status notification 269

job status triggers 270

job submission customizing procedures 60

job, emulate with script [] 309

jobclass definitions examples 137

jobclass directories 136

jobclass examples 143

jobclass_global 136

jobclass_site 136

jobclass, define default 137

jobclass, submit 142

jobclasses 135

jobclasses, define 139

jobs file fields description 262

jobs too young to preempt 176

jobs, forget from vovserver memory 96

jobs, keep 96

journal files 80

journals 264

K

Kafka 235

kill instead of suspend a job 176

L

legacy webserver 56

license overbooking 212

license overbooking in vovresourced 213

license sharing support 207

license-based resources 202

limit users 210

limits in jobclasses 210

list cache, configure expiration 65

list cache, enable 65

live capacity configuration 32

lmmgr stop 80

LMREMOVE 163

load sensor 26

load sensors 43

load, in tasker 26

local resource maps 192

log files 249

logfile, tasker 26

logical file names 259

338

M

MAILTO notifications, job status 269

MAILTO properties 269

manage processes 280

manage remote taskers without SSH/RSH capabilities 47

manage reservations 50

manage resources with the CLI 197

manage tasker lists 30

manage umask 250

manual backups 110

manual data loading 107

manual preemption 180

max idle time of tasker 23

max lifetime of tasker 23

max load of tasker 23

max number of jobs a tasker can execute 23

maxfile, vovagent.cfg 35

maxidle, vovagent.cfg 35

maxlife, vovagent.cfg 35

message, vovtasker 23

migration of preemption from 2013.03 and prior versions 320

minimum free disk 23

minumum bucket age to trigger preemption 176

monitor FairShare 116

monitoring preemption behavior 144

monitoring RDS function and performance 228

motivation for commas 194

multiple tokens in FairShare 127

multique preemption 160

N

named container configurations 231

nc jobclass 141

nc list, customize 65

nc percent 43

nc preempt 180

nc run, customize 63

nc taskerlist 31

NC_DEFAULT_JOBCLASS 137

ncmgr command 12

ncmgr stop 80

negated reservations 50

negated resources 186

no preemption after resumption 176

nodes, add to FairShare 131

nodes, delete 131

339

notification daemon: vovnotifyd 265

notification of job status 269

notifications 265

number of reservations and system performance 50

number of tool explodes 111

NVIDIA GPUs support in Accelerator 307

O

obtain server credentials 82

online help 9

optional vovpreemptd daemon 320

other methods of starting vovtasker with root capability 21

overbooking advantages 212

overbooking operation 212

override delays 198

P

parameterized environments 242

parameters that control the scheduler 99

PDF, access 9

persistant reservations 50

persistent capacity configuration 32

plot jobs 112

policy, customize 60

post-condition 249

practical FairShare driven preemption 171

pre and post conditions 319

pre-command and post-command job condition 249

pre-condition 249

preempt jobs with unrequested resources 174

preempt resumer jobs 160

preempt Ultrasim 160

preempting tokens 182

preemption 144

preemption across jobclasses 160

preemption based on FairShare 171

preemption by priority 160

preemption conditions 147

preemption cycle 176

preemption directory and files 144

preemption examples 160

preemption methods 163

preemption over Allocator 174

preemption plans 165

preemption rule types 149

preemption rules 147

340

preemption rules to speed up FairShare 171

preemption rules, Tcl interface 155

preemption timing 176

priority-based preemption for tokens 182

procedures for job customization 60

Q

quantitative resources 186

query the vovserver 284

queue name, default 11

quick reference 16

quick start help 11

R

RAM sentry 39

RAM, monitor 317

RDS 215

RDS configuration file format 217

RDS, configuration file examples 221

RDS, configure 215

rebuild a database from source data files 111

reconcile unused resources 138

reconciliation daemon configuration 198

refresh environments 245

refresh rate 196

regulate access to Accelerator 71

remote shell command 23

removed licenses from a preempted job 184

request hardware resources 187

RESD(refresh) 142

reserve resources for token-based jobs 160

reserved connection on the localhost 87

reset Accelerator and restart taskers 92

resource config file format 216

resource daemon configuration 196

resource management 186

resource management with RDS 215

resource map reservation 197

resource mapping 192

resource reservation time 176

resources and license 186

resources representing the sum of others 194

resources that change over time 142

resources.cfg 216

restart, crash recovery 80

restore a database from backups 110

341

revert from RDS mode to classic resource management mode 228

rolling hot upgrade 294

rules to write environments in c-shell 245

rules to write environments in tcl 245

run multiple versions of Accelerator 295

run periodic tasks with vovcrontab 276

run periodic tasks with vovliveness 275

run vovtsd as a different user 48

S

safe job control timeout 176

sanity check for vovserver 310

schedule jobs 99

script, emulate jobs 309

sds configuration 235

SDS configuration 89

sds configuration file, change for the first time 238

SDS configuration troubleshootin 91

sds configuration, change at run time 240

sds configuration, troubleshooting 240

sds.config 235, 238, 240, 240

seamless transition to cycle-based scheduler 99

search for preemptable jobs 147

select the preemption method 163

self limiting 210

serial example 126

server candidates 77

server capacity 87

server configuration 18

server configuration parameter to configure Accelerator for RDS 216

server configuration variables 18

server error conditions 76

server impersonation on Windows 21

server license violation 76

servercandidates.tcl 77, 78

serverinfo.tcl 78

set FairShare weights in jobclasses 127

set FairShare weights via the web interface 127

set up aggregation 36

set up the optional preemption ruler compiler daemon 145

setting aggregation by speed 36

setup.cgi page 70

setup.tcl 78

SGE style load sensors 43

simulation scripts 309, 309

SNAPPROP environment 255

342

SNAPSHOT environment 255

solution to file descriptor exhaustion 87

source data backups 110

specify the taskers that support containers 231

speed up nc run 65

start a remote UNIX tasker 44

start a remote vovtasker with vovtsd 48

start Accelerator 92

start and configure the daemon 296

start the preemption rule compiler daemon vovpreemptd 178

start vovfilerd 298

starting Accelerator at system boot time 93

starting vovresourced 196

status of jobs 95

stop Accelerator 92

stop Accelerator job acceptance 294

stopped tasker's effect on a newly started tasker 32

stopped taskers and foster jobs 280

storage aware grid acceleration with vovfilerd 296

storage aware scheduling 296

streaming data service 235

submission of jobs with pre-condition or post-condition 249

submit jobs using jobclasses 142

submit multi-threaded jobs 32

suspend Accelerator job dispatch 294

swap, monitor 317

switching from classic resource management mode to rds mode 227

symbolic resources for tasker 317

system tasks 275

T

target share example 116

tasker attributes 26

tasker capabilities 23

tasker health checks 34

tasker load reports 36

tasker name 23

tasker policies 50

tasker reservations 50

tasker resources 317

taskerlist, create and delete 32

taskers introduction 19

taskers on UNIX 45

taskers on Windows 45

taskers running as root: security implications 21

taskers.tcl file 23, 50

343

Tcl interface to preemption rules 155

Tcl-language API 252

test Accelerator 74

throttle job submission rate 60

time variant taskers 41

timevar procedure 142

too early to try lmremove 176

track job commands 111

trigger events 270

TRIGGER property 270

troubleshooting 314

troubleshooting - crash recovery 316

troubleshooting - license violation 316

troubleshooting - server doesn't start 314

troubleshooting - UNIX taskers don't start 315

troubleshooting a SICK tasker 49

tuning overbooking 213

tuning vovfilerd 300

types of vovtasker binaries 19

U

uncountable resources 186

upgrade Accelerator 291

upgrade the database engine 107

use a setui vovtaskerroot binary on local disk 21

use Accelerator help 9

use additional jobclass directories 136

use CM in a test instance 70

use jobclasses 141

use preemption to reserve taskers 160

use the -resumeres option 160

use the web interface to create a new preemption rule 169

use vovselect for querying 287

user accounts that run jobs on Windows 46

user-specified scripts 34

using vovcontrab 276

V

variable blacklisting 255

variable, server configuration 18

vnc, default name of queue 11

VNC: quick reference 16

vnccustomize 59

VncJobClassSearchPath 135

vnclist.config.tcl 65

vncmgr, configuration management 67

344

vncpersistency 96

VncPolicyDefaultPriority 60

VncPolicyDefaultResources 60

VncPolicyGetJobInfo 60

VncPolicyUserPriority 60

VncPolicyUserPriorityExec 60

VncPolicyValidateCommand 60

VncPolicyValidateEnvironment 60

VncPolicyValidateResources 60

vncrun.config.tcl 63

VOV 11, 14, 16

VOV license violation 76

VOV Windows impersonation 46

VOV_CONTAINER_* 231

VOV_HOST_NAME 82

VOV_JOB_DESC 60, 63, 135, 139

VOV_JOBCLASS_DIRS 135, 136

VOV_JOBID 55

VOV_JOBSLOT 231

vov_preemptrule 155

VOV_PROJECT_NAME 231

VOV_STDOUT_SPEC 9

VOV_UMASK examples 250

VOV_USE_COMMAS_IN_MAPS 194

vovacl 85

vovagent 35

vovagentcfg 35

VOVARCH 60, 317

vovautostart 72, 77

vovbrowser 9

vovbuild 9

vovcontrab 276

vovdb 23, 102

vovdb_util 104, 108, 110

vovdb_util clearcfg 105

vovdb_util configure 105

vovdb_util showcfg 105

vovdb_util startdb 106

vovdb_util upgrade 107

vovdbd 102

vovdbd tasker 102

VOVDIR 11, 67

vovdoc 9, 9

VovDumpReemptionRules 155

VOVEQUIV_CACHE_FILE 260

vovfilerd behavior 298

vovfire 14

345

vovforget 155

vovfosterjob 282

vovfsgroup 82, 120, 120, 125

vovfsgroup examples 122

vovgetflexlmdaemons 209

vovgetnetinfo 278

vovid 9

vovinfo 279

vovlmremove 184

vovlsfd 81

vovmemtime 309

vovmetime 309

vovnetappd 81

vovnotifyd 81, 269

vovpreemptd 178

vovpreemptmethod 164

VovPreemptPolicy 60

vovpreemptrule 156

vovpreemptrule command changes 320

vovproject 78, 82, 104, 310

vovprop 269

vovreconciled operations 198

vovresgrab 60

vovresourced 81, 135, 194, 196, 310

vovresreq 60

vovresSetFlags 206

vovretraced 80

vovselect 284

vovserver 9, 11, 82, 206, 310

vovserver autostart 72

vovserverdir 77

vovservsel.tcl 78

vovset 14

vovsh 97

vovsignfile 231, 234

vovsql_load_checkouts 107

vovsql_load_denials 107

vovsql_normalize_field 111

vovtasker 78

vovtasker configuration 19

vovtasker states 19

vovtaskerlist 30

vovtaskermgr 310

vovtaskermgr reserve 50

vovtaskers 77

vovtriggerd 270

vovtsd 47

346

vtk API for taskers lists 32

vtk_acl_op 120

vtk_equivalence 260

vtk_equivalence_get_cache 260

vtk_equivalence_set_cache 260

vtk_jobclass_set_autoforget 97

vtk_reservation_create 50

vtk_reservation_get 50

vtk_resourcemap_set 206

vtk_tasker_define 23

vtk_tasker_reserve 50

vtk_tasker_set_default 23

vtk_transition_get 63

vtk_transition_preempt 155

vtk_transition_set 63

W

web interface 67, 70

web server configuration 56

web-based interface for preemption 167

wildcard tasker resources 191

wildcard-capable attributes 229

workaround for misspelled resource 197

working directories and equivalences 259

write custom queries 113

write environments 245

write localized health checks 268

Z

zero ACL 131

347

	Contents
	Altair Accelerator Administrator Guide
	Use Accelerator Help
	Accelerator Quick Start
	Command Line Interface
	Quick Reference
	Accelerator Server and System Customization
	Configure Accelerator
	Server Configuration
	Tasker Configuration
	Taskers
	Create a Tasker on Windows
	UNIX User Impersonation
	The taskers.tcl File
	vtk_tasker_define
	Tasker Attributes
	Manage Tasker Lists
	nc taskerlist

	Control the Capacity of Taskers: Slots and Cores
	Tasker Health Checks
	Configuration File for vovagent
	Tasker Load Reports
	RAM Sentry
	Define Policies for Taskers
	Time-Variant Taskers
	Allocate Jobs to Machines Based on Percentages
	SGE Style Load Sensors
	Start a Remote UNIX Tasker
	Taskers on Windows
	Windows User Impersonation
	Manage Remote Taskers without SSH/RSH Capabilities
	Black Hole Detection
	Troubleshooting a SICK Tasker
	Tasker Reservations
	Clean up Processes Left Behind by Completed Jobs

	Web Server Configuration
	Legacy Webserver
	Internal Webserver
	nginx Webserver
	Configure the TLS/SSL Protocol
	Guest Access Port
	Transition from nginx Webserver to Internal
	Restarting the Webserver

	Altair Accelerator Configuration
	Job Submission Policy
	nc run Command
	Speed up nc run

	nc list Command
	nc wait Command
	Accelerator GUI
	Web Interface

	Configuration Management (CM) Guide
	Browser-based Setup
	Regulate Access to Accelerator
	Autostart Directory
	Autostop Directory
	Test Altair Accelerator

	Server Error Conditions
	Configure a Failover Server Replacement
	Crash Recovery Mode

	Accelerator Daemons
	Access Control List
	vovacl

	Client Limitation and Tuning
	Enabling Time Series Data Stream
	SDS Configuration
	Change the Config File for the First Time
	Change the Config File at Run Time
	Troubleshooting

	Start and Stop Accelerator
	Job Management
	Job Status
	Job Persistence
	Autoforget Jobs
	Schedule Jobs
	Job Cohorts

	Database
	Daemon
	Tasker
	Set Up
	Configure the Database from the Command Line
	Database Control Options

	Database Engine Versions and Upgrades
	Load Data
	Export Data
	Database Backup
	Track Job Commands
	Plot Jobs
	Generate Custom Reports
	Database Schema

	FairShare
	Configure FairShare via the vovfsgroup Utility
	Configure FairShare via File
	Tcl Example
	Serial Example

	FairShare Weights Control Methods
	Multiple Tokens in FairShare
	FairShare Recommendations
	Disable FairShare
	FairShare Parameters
	Control FairShare Tree Access

	Jobclasses
	Create Jobclasses
	Use Additional Jobclass Directories
	Define a Default Jobclass
	Reconcile Unused Resources
	Define Jobclasses
	Use Jobclasses
	Resources That Change Over Time
	Jobclass Examples

	Preemption
	Set Up the Optional Preemption Ruler Compiler Daemon
	Preemption Rules
	Preemption Rule Types
	vovpreemptrule
	Debug VovPreemptRule

	Preemption Examples
	Preemption Methods
	Preemption Plans
	Web-Based Interface for Preemption
	Preemption Rules to Speed Up FairShare
	Preemption Over Altair Allocator
	Preempt Jobs with Unrequested Resources
	Control Whether a Job is Preemptable
	Preemption Timing
	Start the Preemption Rule Compiler Daemon vovpreemptd
	Manual Preemption
	Preempting Tokens
	Remove Licenses from a Preempted Job

	Resource Management
	Hardware Resources
	Wildcard Tasker Resources
	Resource Mapping
	Resources Representing the Sum of Others
	Commas vs. ORs in Resources
	Automatic Resource Limits
	Resource Daemon Configuration
	Manage Resources with the CLI
	Reconciliation Daemon Configuration
	Add Resources
	License-based Resources
	Configuring Job and License Checkout Matching

	License Sharing Support
	Automatic Setting of LM_LICENSE_FILE
	Limit Users
	License Overbooking
	License Overbooking in vovresourced

	Resource Management with RDS
	Configuring RDS
	Resources.cfg
	Server Configuration Parameter to Configure Accelerator for RDS
	Configuration File Format
	Configuration File Examples

	Switching From Classic Resource Management Mode to RDS Mode
	Revert from RDS Mode to Classic Resource Management Mode
	Monitoring RDS Function and Performance
	Accelerator CLI Command Syntax
	Wildcard-Capable Attributes

	Configure Container Integration
	Streaming Data Service
	SDS Configuration

	Environment Management
	Parameterized Environments
	Composite Environments
	Environment Examples
	Refresh Environments
	Develop Environments
	Pre-Command and Post-Command Job Conditions
	Manage Umask
	Environment Debugging
	Environment Management: Limits
	The SNAPSHOT and SNAPPROP Environments

	Directories and Files
	Working Directories and Equivalences
	Canonical and Logical File Names
	Define Equivalences for File Names
	Historical Job Data Files
	Journals

	Alerts and Notifications
	Notification daemon: vovnotifyd
	Configure Email Addresses
	Write Localized Health Checks
	Alternate Method of Sending Email
	Notification of Job Status
	Job Status Triggers
	Alerts

	System Tasks
	Run Periodic Tasks with vovliveness
	Run Periodic Tasks with vovcrontab
	vovgetnetinfo
	vovinfo
	Manage Processes
	Job Fostering
	Query the vovserver
	Use vovselect for Querying

	Upgrade Accelerator
	Cold Upgrade
	Hot Upgrade
	Rolling Hot Upgrade
	Stop Accelerator Job Acceptance
	Suspend Accelerator Job Dispatch
	Run Multiple Versions of Altair Accelerator

	Storage Aware Scheduling
	Storage Aware Grid Acceleration (SAGA) with vovfilerd
	Start and Configure the Daemon
	vovfilerd Behavior
	Tuning vovfilerd

	Frequently Asked Questions and Troubleshooting Tips
	HPC Advice
	NVIDIA™ GPUs Support in Accelerator
	Simulation Scripts
	Sanity Check for vovserver
	Disable Regular User Login
	Auxiliary Group Membership
	Troubleshooting

	Backwards Compatibility and Migrating from Previous Versions
	Tasker Resources
	Pre and Post Conditions
	Configure FairShare via the policy.tcl File
	Migration of Preemption from 2013.03 and Prior Versions
	Convert Old VovPreemptPolicy into VovPreemptRule
	FairShare Groups

	Legal Notices
	Intellectual Property Rights Notice
	Technical Support

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

