
The Art of Flows

Contents
Intellectual Property Rights Notice... iii
Technical Support.. vii

1 Overview... 9

2 The Importance of Design Flows..10

3 Why Do Design Flows Matter?.. 12

4 Critical Flow Requirements.. 14

4.1 Flow Deployment... 15
4.2 Design Data: Repositories and Workspaces... 17
4.3 Flows and Configuration Management.. 18
4.4 License Management..19
4.5 Global Design Teams..20
4.6 Resource Management..21
4.7 Visualization and Flow Status..22

5 A Simple Example... 23

5.1 Problem Definition... 24
5.2 Scripted Solution... 25
5.3 Makefile Solution... 27
5.4 FlowTracer Solution..28

6 A More Realistic Example... 30

6.1 Scripted Solution... 33
6.2 Makefile Solution... 35
6.3 FlowTracer Solution..36

7 Flows for the Big League..38

Index.. 40

2

Intellectual Property Rights Notice
Copyrights, trademarks, trade secrets, patents and third party software licenses.

Altair PBS Works™ v. 2020.1.0 Copyright © 1994-2020.
High-performance Innovation

Altair Engineering Inc. Copyright © 1986-2020. All Rights Reserved.

Altair HyperWorksX™ Copyright © 2019-2020

Notice: Pre-release versions of Altair software are provided ‘as is’, without warranty of any
kind. Usage of pre-release versions is strictly limited to non-production purposes.

Altair PBSWorks™ - Accelerating Innovation in the Cloud™

Altair® PBS Professional® ©1994-2020

Altair Control™ ©2008-2020; (formerly PBS Control)

Altair Access™ ©2008- 2020; (formerly PBS Access)

Altair Accelerator™ ©1995- 2020; (formerly NetworkComputer)

Altair Accelerator Plus™ ©1995- 2020; (formerly WorkloadXelerator)

Altair FlowTracer™ ©1995- 2020; (formerly FlowTracer)

Altair Allocator™ ©1995- 2020; (formerly LicenseAllocator)

Altair Monitor™ ©1995- 2020; (formerly LicenseMonitor)

Altair Hero™ ©1995- 2020; (formerly HERO)

Altair Software Asset Optimization™ (SAO) ©2007- 2020

Note:

Compute Manager™ ©2012-2017 is now part of Altair Access

Display Manager™ ©2013-2017 is now part of Altair Access

PBS Application Services™ ©2008-2017 is now part of Altair Access

PBS Analytics™ ©2008-2017 is now part of Altair Control

PBS Desktop™ ©2008-2012 is now part of Altair Access, specifically Altair Access
desktop, which also has Altair Access web and Altair Access mobile

e-Compute™ ©2000-2010 was replaced by “Compute Manager” which is now Altair
Access

Altair HyperWorks™ - The Platform for Innovation™

Altair AcuConsole™ ©2006-2020

Altair AcuSolve™ ©1997-2020

The Art of Flows
Intellectual Property Rights Notice p.iv

Altair ElectroFlo™ ©1992-2020

Altair ESAComp™ ©1992-2020

Altair Feko™ ©1999-2014 Altair Development S.A. (Pty) Ltd.; ©2014-2020 Altair Engineering Inc.

Altair Flux™ ©1983-2020

Altair FluxMotor™ ©2017-2020

Altair HyperCrash™ ©2001-2020

Altair HyperGraph™ ©1995-2020

Altair HyperLife™ ©1990-2020

Altair HyperMesh™ ©1990-2020

Altair HyperStudy™ ©1999-2020

Altair HyperView™ ©1999-2020

Altair Virtual Wind Tunnel™ ©2012-2020

Altair HyperXtrude™ ©1999-2020

Altair Manufacturing Solver™ ©2011-2020

Altair MotionSolve™ ©2002-2020

Altair MotionView™ ©1993-2020

Altair Multiscale Designer™ ©2011-2020

Altair OptiStruct™ ©1996-2020

Altair Radioss™ ©1986-2020

Altair Seam™ ©1985-2019 Cambridge Collaborative, Inc., © 2019-2020 Altair Engineering Inc.

Altair SimLab™ ©2004-2020

Altair SimSolid™ ©2015-2020

Altair nanoFluidX™ © 2013-2018 Fluidyna GmbH, © 2018-2020 Altair Engineering Inc.

Altair ultraFluidX™ © 2010-2018 Fluidyna GmbH, © 2018-2020 Altair Engineering Inc.

Altair WinProp™ ©2000-2020

Altair ConnectMe™ ©2014-2020

Plus other products from the Altair solidThinking Platform.

Altair Packaged Solution Offerings (PSOs)
Altair Automated Reporting Director™ ©2008-2020

Altair GeoMechanics Director™ ©2011-2020

Altair Impact Simulation Director™ ©2010-2020

Altair Model Mesher Director™ ©2010-2020

Altair NVH Director™ ©2010-2020

Proprietary Information of Altair Engineering

The Art of Flows
Intellectual Property Rights Notice p.v

Altair Squeak and Rattle Director™ ©2012-2020

Altair Virtual Gauge Director™ ©2012-2020

Altair Weight Analytics™ ©2013-2020

Altair Weld Certification Director™ ©2014-2020

Altair Multi-Disciplinary Optimization Director™ ©2012-2020.

Altair solidThinking - Where Innovation Takes Shape™

Altair Inspire™ ©2009-2020 including Altair Inspire Motion and Altair Inspire Structures

Altair Inspire Extrude Metal ©1996-2020 (formerly Click2Extrude®-Metal)

Altair Inspire Extrude Polymer ©1996-2020 (formerly Click2Extrude®-Polymer)

Altair Inspire Cast ©2011-2020 (formerly Click2Cast®)

Altair Inspire Form ©1998-2020 (formerly Click2Form®)

Altair Inspire Mold ©2009-2020 (initial release-Q2 2019)

Altair Inspire Render ©1993-2016 Solid Iris Technologies Software Development One PLLC, ©

2016-2020 Altair Engineering Inc (initial release-Q3 2019, formerly Thea Studio)

Altair Inspire Studio ©1993-2020 (formerly ‘Evolve’)

Altair Compose™ ©2007-2020 (formerly solidThinking Compose®)

Altair Activate™ ©1989-2020 (formerly solidThinking Activate®)

Altair Embed™ ©1989-2020 (formerly solidThinking Embed®)

• Altair Embed SE ©1989-2020 (formerly solidThinking Embed® SE)

• Altair Embed/Digital Power Designer ©2012-2020

Altair SimLab™ ©2004-2020

Altair 365™ ©1994-2020

Altair SmartWorks™ - Innovation Intelligence®

Altair intellectual property rights are protected under U.S. and international laws and treaties.
Additionally, Altair software is protected under patent #6,859,792 and other patents pending. All other
marks are the property of their respective owners.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information.

Not for use or disclosure outside of Altair and its licensed clients. Information contained in Altair
software shall not be decompiled, disassembled, “unlocked”, reverse translated, reverse engineered,
or publicly displayed or publicly performed in any manner. Usage of the software is only as explicitly
permitted in the end user software license agreement. Copyright notice does not imply publication.

Third party software licenses
AcuConsole contains material licensed from Intelligent Light (www.ilight.com) and used by permission.

Proprietary Information of Altair Engineering

The Art of Flows
Intellectual Property Rights Notice p.vi

Software Security Measures:
Altair Engineering Inc. and its subsidiaries and affiliates reserve the right to embed software security
mechanisms in the Software for the purpose of detecting the installation and/or use of illegal copies of
the Software. The Software may collect and transmit non-proprietary data about those illegal copies.
Data collected will not include any customer data created by or used in connection with the Software
and will not be provided to any third party, except as may be required by law or legal process or to
enforce our rights with respect to the use of any illegal copies of the Software. By using the Software,
each user consents to such detection and collection of data, as well as its transmission and use if an
illegal copy of the Software is detected. No steps may be taken to avoid or detect the purpose of any
such security mechanisms.

Proprietary Information of Altair Engineering

Technical Support
Altair provides comprehensive software support via telephone and e-mail.

Telephone and E-mail
When contacting Altair support, please specify the product and version number you are using along with
a detailed description of the problem. Many times, it is very beneficial for the support engineer to know
what type of workstation, operating system, RAM, and graphics board you have, so please have that
information ready. If you send an e-mail, please specify the workstation type, operating system, RAM,
and graphics board information in the e-mail.

To contact an Altair support representative, reference the following table.

Location Telephone E-mail

Australia +61 3 9866 5557

+61 4 1486 0829

anz-pbssupport@altair.com

China +86 21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0) 46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

mailto:anz-pbssupport@india.altair.com
mailto:es@altair.com.cn
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs@altairjp.co.jp
mailto:support@altair.co.kr
mailto:pbs-support@india.altair.com
mailto:pbssupport@altair.com
mailto:pbssupport@europe.altair.com
mailto:pbssupport@europe.altair.com
mailto:pbs-support@india.altair.com
mailto:pbssupport@europe.altair.com

The Art of Flows
Technical Support p.viii

Location Telephone E-mail

South America +55 11 3884 0414 br_support@altair.com

United Kingdom +44 (0)1926 468 600 pbssupport@europe.altair.com

Proprietary Information of Altair Engineering

mailto:br_support@altair.com
mailto:pbssupport@europe.altair.com

Overview 1

1 Overview

Design flows capture the details of how design gets done in the modern world of computer-aided
design.

Managing the files, programs, and dependencies between them is critical to the success of any design-
oriented activity, whether it be semiconductors, software, drug discovery, 3d modeling, or a host of
other industries.

This volume explains the importance of the problem, and how best to solve it.

The insights in this book are based on over twenty years of experience in the definition, automation,
and management of design processes across a range of different industries. The recommended
techniques derive their robustness from a combination of graph theory and pragmatic methods for
capturing and managing flow information.

With the rise of compute farms and global design communities, the design flow problem has expanded
to encompass global wide-area networks, sophisticated resource management, and the mediation of
software licenses across global infrastructure. Getting the overall execution environment right is a key
part of deploying design tools effectively.

From this book you will learn the key issues, common pitfalls, and best practices for flow development
and management, from small scale examples to the most complex cases.

The Importance of Design
Flows 2

2 The Importance of Design Flows

Wouldn’t it be great if designing a chip, or developing software, just required us to run a single
program, that used a single input file describing our specifications, and generated a single output file
that contained the desired implementation?

Sadly this is not the case.

Designing anything complex requires us to create multiple input files, run multiple programs, and
generate multiple outputs. This is true in semiconductors, graphics design, software development, 3-D
modeling, drug discovery, scientific analysis, and in fact any domain where the problem is complex and
the technology sophisticated.

Figure 1:

To make life even more difficult, there are complex dependencies between the different files and
programs, some of which may not be well understood or properly documented. This means that we
need to keep track of the status of every part of the process, and make sure everything is run in the
right order, using the right versions of every file.

The design flow can be represented by a graph, where the nodes represent the files and programs, and
the arcs represent dependencies. To be a little more precise, the files represent the state of the design,
while the programs represent transformations that change the state of the design by acting upon their
inputs and creating updated outputs.

The Art of Flows
2 The Importance of Design Flows p.11

Figure 2:

To be more specific, the files manipulated by the designer(s) represent the intelligence created
by the human designer or the software tools. They are ultimately what is used to create the final
product. Their consistency, accu-racy and completeness are the ultimate measure of the state of the
design: when everything is complete, con- sistent and correct (as defined by the specification and the
designer), the work is done. Design flows capture the process of getting to completion, and the records
of running flows provide insight into the state of the design at any point in time.

Proprietary Information of Altair Engineering

Why Do Design Flows Matter? 3

3 Why Do Design Flows Matter?

Design flows represent the collective knowledge of design within your organization. They are typically
created as methodologies by expert designers who understand technology and design criteria at a deep
level. Modern design is a complex task, with many opportunities for error. The creation, management
and deployment of design flows helps to ensure that all members of the design team are working in a
consistent way, that exploits your proprietary design knowledge.

Figure 3:

It’s important to note that flows are usually not written for a single user or a single time. Flows are
part of the intel- lectual capital of your organization, and as such they are a long-term asset. For this
reason, documentation, main- tenance, and enhancement of flows are key requirements. Even if they
are written with a single user in mind, job changes mean there is real value in building flows in a way
that supports re-use by other people.

The Art of Flows
3 Why Do Design Flows Matter? p.13

The importance of managing flows as an asset is even more clear with global design teams, where the
creator of a particular design methodology may not be available to help users in different time zones or
geographies.

Design flows not only ensure that designers do the right things—in other words maintaining
dependencies and execution order for correctness purposes—flows also support the interface between
the designer-user and the compute environment. Design tools and computers are an expensive
resource for any company, and their effective use can be a significant way to save money over the life
of those resources. For this reason you should consider the interface between your design flow and the
environment in which it runs to be a critical requirement for your design flow solution.

Last, but not least, in a meaningful way the state of the flow represents the state of the design. By
observing the current state of execution of a flow, either in real time or via a batch report, the user
or design manager can gain a precise understanding of the current state of work, the specific areas
that need focus and attention, and the likely nature and location of bottlenecks or schedule issues. This
ability to understand the state of the flow is absolutely critical to working effectively with a complex
design methodology.

So there can be little doubt of the importance of flows. They are a key asset to any design-centric
organization, and their effective use is a major contributor to productivity and accuracy in design. Let us
now examine the key requirements for a flow management solution that delivers on the promise of flow
management.

Proprietary Information of Altair Engineering

Critical Flow Requirements 4

4 Critical Flow Requirements

This chapter covers the following:

• 4.1 Flow Deployment (p. 15)

• 4.2 Design Data: Repositories and Workspaces (p. 17)

• 4.3 Flows and Configuration Management (p. 18)

• 4.4 License Management (p. 19)

• 4.5 Global Design Teams (p. 20)

• 4.6 Resource Management (p. 21)

• 4.7 Visualization and Flow Status (p. 22)

Even for a single user, dependency management and progress tracking are important, and there are
very good reasons for building robust flows to improve documenta- tion and adaptability to changing
requirements. But the power of flows really expands when there are multiple users collaborating on a
single design. There are several key issues:

• Deploying a flow effectively to multiple users

• Controlling access to design data

• Managing resources

• Taming complexity.

It’s worth exploring each of these requirements in turn.

The Art of Flows
4 Critical Flow Requirements p.15

4.1 Flow Deployment

In the semiconductor industry, the definition of a method- ology can be extremely complex. There
may be hun- dreds of tools, and tens of thousands of files produced and consumed. There are decision
points, both manually and automatically assessed. There are interactive steps, and batch jobs. The time
for a design step can be measured in days or weeks for large designs. In other domains the numbers
may be smaller.

Figure 4:

The implication of this complexity is that end users need help to be sure they are using the
methodology correctly. This is not simply a matter of hiding all the complexity, and creating a “black
box” within which everything magically happens. Designers are intelligent people, who need visibility
into the processes they are operating, along with appropriate levels of flexibility so they can deal with
unexpected challenges or opportunities in the design.

Deploying a flow in a way that maximizes designer productivity therefore includes many elements,
including:

• Education of users

Proprietary Information of Altair Engineering

The Art of Flows
4 Critical Flow Requirements p.16

• Documentation of the flow

• Visualization of progress and results

• The ability to explore and diagnose problems.

Providing an industrial strength solution to these challenges is a significant effort for any company, but
an essential investment if design knowledge is to be effectively re-used.

Figure 5: FlowTracer Design Flow Visualtization

Proprietary Information of Altair Engineering

The Art of Flows
4 Critical Flow Requirements p.17

4.2 Design Data: Repositories and Workspaces

When multiple users are involved in the same design, contention for resources becomes an issue. The
first manifestation of this is in the control of file access—ensuring not only that the correct files are used
at each step of the flow, but also ensuring efficient execution based on file availability.

Configuration management helps make sure that critical files are properly versioned, and that you can’t
overwrite another person’s work accidentally. Typically a repository is created in which master copies of
all versions of the files in the design are stored. This may be in a single location, or it may be mirrored
to multiple locations for performance reasons (in other words copies of the mas- ter repository are
made that are kept synchronized by a background process).

Individual users can then check out a set of files to work on. The configuration management software
typically copies the files from the repository to a workspace accessible by the user. This is usually
simply a location in the file system accessible by the tools and the user. At the conclusion of a
successful design task, the user can then check in the updated files, ensuring both that the work is
saved, and that it can be made available to other users for subsequent work. In this process, the
configuration management software keeps track of who has what files, so conflicts can be properly
managed. This is a big help in managing the overall health of the design data.

Proprietary Information of Altair Engineering

The Art of Flows
4 Critical Flow Requirements p.18

4.3 Flows and Configuration Management

So configuration management is an essential element of the world of computer-aided design. But design
flow dependencies are more complex in the presence of configuration management software, because
time-stamps can actually move backwards. Here’s how it happens.

Imagine checking in a file, only to decide that your previous version was better. You then check out
the earlier version, which of course has an older timestamp than the newer version. Your dependency
management solution must be able to tell that the file has changed, and be ready to re-run the related
steps. This is difficult to achieve with a dependency management solution that relies on timestamps,
because you have to do more than simply compare input and output timestamps: you have to actually
know if the file is different from the one used in the last run (older or newer). The best way to do this
is to keep a database of file information that is persistent from one run to the next: this way we can
simply compare the timestamp of the file in the workspace to the timestamp we have stored from the
last run.

Proprietary Information of Altair Engineering

The Art of Flows
4 Critical Flow Requirements p.19

4.4 License Management

Software licence management is a challenge at many levels. The principle responsibility of the licence
manager is to issue license keys on demand, subject to the constraints of the user’s contract with the
software provider. In recent years, licencing schemes have become complex, with special capabilities
for token-based licences, LAN and WAN licencing, and more. From the flow development perspective,
the issue is that there is an interaction between licence availability, computing resources, and flow
dependencies.

Licence servers allow for checkout of software capabilities, but when multiple users are working with
limited numbers of licences, the dependency management solution must be intelligent about its
ordering of jobs, based on licence availability. This is a key optimization that can make an enormous
difference to throughput and design cycle time. In fact, the correct ordering of jobs where there are
opportunities for parallel execution requires an understanding of dependencies, licence availability,
compute resource availability, and issues of global distribution of tools, licenses and machines. We will
discuss these issues next.

Proprietary Information of Altair Engineering

The Art of Flows
4 Critical Flow Requirements p.20

4.5 Global Design Teams

Increasingly, design is a global activity. In each of a number of locations you will find a group of
designers, a set of software licences, and a pool of machines. The optimization problem involves serving
the needs of all designers

in a way that maximizes resource efficiency and minimizes design cycle time. Jobs need to be executed
on machines with the appropriate architecture, operating system, processor complement, and disk and
memory resources.

Among the special concerns in running flows across global networks, network reliability and latency are
especially important. Ideally the flow will account systematically for any possible failure modes when
computing in a global environment. This must be integrated with tools for managing all the compute
resources: our next topic.

Proprietary Information of Altair Engineering

The Art of Flows
4 Critical Flow Requirements p.21

4.6 Resource Management

Managing compute resources is an important task in any environment, but especially in the context of
a design team. There is an optimum way to allocate jobs to machines, so that the big jobs go to the big
machines, and the small jobs go to small machines. The flow management solution needs to understand
resource availability, and to determine optimum execution order based on resource availability. In order
to achieve this, the flow manager needs not only to execute jobs in the right order, it needs also to gain
access to the most appropriate resources at run time. This requires licence migration: moving licences
from one location to another, as well at potentially running some jobs locally, and others remotely.

This is a very complex problem, as any realistic environment will contain a significant number of
different machine configurations, including single core, multicore, with different memory and disk
configurations. The complexities of resource management have led to the development of a number
of software systems dedicated to the use of compute farms: Altair Engineering’s Accelerator is one of
them.

Proprietary Information of Altair Engineering

The Art of Flows
4 Critical Flow Requirements p.22

4.7 Visualization and Flow Status

At first glance it might seem that visualization is an optional feature. Surely it should be enough to
know that the flow is correctly captured and executed? In fact, this is not the case.

We hold engineers responsible for executing a complex set of inter-related tasks, and they need to
be able to understand the behavior of the system they are using. This is not only a matter of helping
designers take responsibility for their work, but also of helping them to be productive. When something
goes wrong in a flow, designers should not need to scan an arbitrarily complex set of log files in order to
diagnose problems.

A graphical display that indicates exactly where the failure occurred is not just more productive, it
is also likely to be more reliable. One reason for this is the sheer complexity of modern flows. In
pathological cases, we have seen upwards of 15,000 files as inputs to a flow, and a similar number of
output files. At this level of complexity, color-coding in the visualization can be an enormous help in
sifting through the data and deciding how to fix a problem.

Beyond the practical issues of running the flows, communication between designers and managers is
an issue of real importance in the running of a business. Because of the complexity of design, there
needs to be a consistent flow of factual and usable information about the status of the design between
those doing the design and those responsible for business decisions concerning it. This is critical in
order that the state of the schedule can be properly assessed and resources allocated appropriately in
the interests of the most successful business outcome.

In the semiconductor industry, to take just one example, the cost of being late to market is measured
often in the tens of millions of dollars of lost revenue, and there are often hard deadlines, like CES, for
example, which can be directly linked to a year of revenue and the success or failure of a multi-million
dollar product.

Proprietary Information of Altair Engineering

A Simple Example 5

5 A Simple Example

This chapter covers the following:

• 5.1 Problem Definition (p. 24)

• 5.2 Scripted Solution (p. 25)

• 5.3 Makefile Solution (p. 27)

• 5.4 FlowTracer Solution (p. 28)

In the next three chapters we will look at three examples, at different levels of complexity. Each
will clarify some of the key issues in the art of flows, starting with a simple, single-user example,
moving to a more complex, single-user case, and finishing with a multi-site, multiuser example that is
characteristic of real-world design flows.

Figure 6: Simple Example

There are many ways to implement a flow management system, but the most common are through
scripting and/or the use of makefiles. In addition to these methods, we will show how FlowTracer
handles the same issues.

It’s useful to consider practical examples as we think about the art of flows. We’ll start with a simple
software development example: compiling a small program that takes a single input file and generates
a single output file.

The Art of Flows
5 A Simple Example p.24

5.1 Problem Definition

The illustration on the previous page shows the flow diagrammatically. There is a single input file,
a single program that uses that file, and a single output file. Of course this is an artificially simple
example, but our goal is to illustrate the principles as we move from the simplest case to the more
complex.

Our goal is to set up an environment in which the file can be reliably compiled, and ideally to have some
idea of what happened if it doesn’t compile properly.

This is about as simple as you can get: we are assuming no configuration management, and only a
single user working on the problem.

Proprietary Information of Altair Engineering

The Art of Flows
5 A Simple Example p.25

5.2 Scripted Solution

This example is so basic that we could implement it directly at the command line. That will work so long
as we know exactly what files and programs we are using, and our assumptions don’t change. This also
assumes two arguments: an input file and an output file with no command-line switches.

But we will assume for our current purposes that it’s useful to create a script that sets up the
environment and runs the compiler.

Here’s a simple script to automate this flow:

#!/bin/csh -f
set in = $1
set out = $2
eda_compiler $in $out
exit $status

As you can see, it simply passes its input arguments to the compiler program, and returns the exit
status when its finished. No error checking, no awareness of anything except the name of the program,
which it assumes is in the current path.

To be fair, even in this case, a smart programmer might well provide a bit more capability in a short
script like this, you can see a more robust script for the same flow below.

#!/bin/csh -f
set doCompile = 1
set rtn = 0
set in = $1
set out = $2

if ($doCopy) then
 # Make sure the input exists
 # and the output is removed.
 if (! -e $in) then
 echo “Input file $in is missing”
 exit 1
 endif
 if (-e $out) /bin/rm $out
 # Environment management.
 # and the LM_LICENSE_FILE
 setenv EDAROOT “/opt/edaVendor”
 setenv PATH “$EDAROOT/ \bin:$PATH”
 setenv LM_LICENSE_FILE “3456@lichost”

 # Execute the command:
 echo “Starting now `date` on host `uname -n`” time eda_compiler $in $out >&
 compiler.log
 set rtn = $status
 echo “Done on `date`”

 # Check validity of result:
 if (! -e $out) then
 echo “Output file $out is missing”
 exit 1
 endif
 grep ‘Error:’ compiler.log

Proprietary Information of Altair Engineering

The Art of Flows
5 A Simple Example p.26

 if ($status == 0) then
 echo “Compilation errors.”
 exit 1
 endif
endif
exit $rtn

In this version you can see several of the key issues being addressed. Firstly we have an area where
some variables are set to control which tools are to be executed. This is one approach to scripting
where the writer sets up the execution conditions at the top, and the remainder of the script relies upon
those settings. This has the benefit that you only need to edit the top of the script, but of course you do
still have to make those edits whenever things change.

Secondly we have a section that looks for the input file, and lets you know if it’s not there. This is a
help, but it doesn’t address the issue of whether or not the input file has changed since the last run. So
this isn’t real dependency management. We could at this stage also add a command to make a backup
copy of the old output file, although this is not necessary if we can go back to a previous version of the
input file and re-generate the output.

Thirdly we have some rudimentary licence management and environment setup. This section of the
script sets up the variables for the licence file and the path to the compiler binary.

Finally, we run the command and check the validity of the output. This is the most useful aspect of the
script: we can implement arbitrary checks in the script to help the user understand what went right or
wrong.

The benefit of scripting is that it is at least theoretically capable of any computation. It’s Turing-
complete. But completeness and maintainability are two different things.

Because we implement checks and dependencies directly in the script, we have no separation of
structure and implementation, which creates maintenance headaches.

One tactic some script writers use is to separate the environment setup into another file. This at least
allows environment setup to be shared across multiple flows.

It would also be possible to create configuration files that hold the setup information captured at the
beginning of the script in some kind of *rc file, but now we would have to write parsers and processors
to make use of that information, which also need to be maintained and tested as requirements evolve.

A final element to mention regarding this scripting example is the ability to create logfiles: by echoing
status information to stdout, we can capture information that can subsequently be used to track down
errors and to debug the flow.

Proprietary Information of Altair Engineering

The Art of Flows
5 A Simple Example p.27

5.3 Makefile Solution
make works pretty well for simple situations like this. We can set up a single target to build the output
file from the input file.

This is a minimalist version: there’s only one explicit target, and an implicit target that expresses a
dependency between the .o and .i files. The makefile looks like this:

set OUTPUTS = “Block.o”
all: $OUTPUTS
.o.i:
 eda_compiler $< $@

This simple makefile allows the user to run the compiler if the output file is older than the input file. The
dependency tree is built at runtime, and the decision whether or not to run the command is made based
on the time-stamps of the input and output files at the time the command is run.

Because this is unrealistically simplistic, we have also created a more practical version. It’s still a short
file, but it’s a little more robust and useful than the first version (although still probably insufficient for
the real world: we’ll get into more sophisticated approaches later).

set OUTPUTS = “Block.o”
all: $OUTPUTS
.o.i:
 echo “Starting on `date` on host \
 `uname -n`”; \
 /bin/rm -f $@;\
 time eda_compiler $< $@;\
 echo “Done on `date`”

Now we have defined the output file explicitly, and made the command running the program a bit more
capable by echoing some runtime information for logging purposes. We also remove the previous output
file (if it was there) prior to running the tool.

So here we have implemented some simple but real dependency management. The makefile, like the
script, is capable of implementing arbitrary code (typically Bourne shell) so the makefile can become
quite powerful. However, this power is orthogonal to the dependency management in the makefile
structure, and so there is a danger that you end up with a significant part of the makefile’s intelligence
implemented in scripting, which is not part of the dependency management provided by make.

It’s worth noting, however, that some of the dependency information is implicit. For example, the
intelligence to load any required header files is only implemented inside the program files. The makefile
does not know about this, and so does not manage any of those dependencies.

This means that if any of the header files change, make will not detect the change because it knows
nothing about the header files, and will return a false positive. The makefile solution therefore fails to
capture and document all the dependencies, and it also fails to provide any help when things go wrong.

Proprietary Information of Altair Engineering

The Art of Flows
5 A Simple Example p.28

5.4 FlowTracer Solution

FlowTracer tackles the problem a bit differently. We can describe the dependencies declaratively, which
means there is a minimum of interaction between the different statements in the flow description. This
is done with FlowTracer’s Flow Description Language (FDL), which is in turn based on Tcl. But while we
can write down the dependencies and required actions in FDL, FlowTracer is also capable of watching
the tools run, and deducing the dependencies by itself. This has the advantage that FlowTracer can
respond more effectively to change, because the system will find dependencies even if we haven’t
documented them.

Here’s a simple FDL description of our scenario:

set block “Block”
E BASE+EDAVENDOR
T vrt eda_compiler $block.i $block.o
I $block.i
O $block.o

This format may be new to you, so we’ll go through it line by line.

The first line simply sets a variable that holds the name of the input and output files. This is
straightforward enough.

The second line is a directive, responsible for setting up the environment (E) for the computation.
FlowTracer allows environments to be captured once and re-used. In this case, we are setting up the
environment from the catenation of two definitions: one is the base environment, and the other is
specific to the compiler we are going to use.

The third line is a tool directive (T), which provides the command for running the tool, with two
refinements. The first is the use of the vrt command, which invokes FlowTracer’s run-time tracing
(about which more later). The second is the substitution of variables to capture the names of the input
and output files.

Following the T directive, the final two lines declare the one input (I) and one output (O) files for the
job, without excluding the possibility that more inputs and outputs may be discovered when the job is
run (i.e. at runtime).

In order to execute this flow, FlowTracer builds the dependency tree based on the information in
the FDL file. This is constructed and saved at build time—that is the time when the FDL is executed.
Furthermore, the information about previous runs is persistent. This information includes the start and
finish time of the job, the name and timestamp of all inputs and outputs. This overcomes the issue with
reversing timestamps we described earlier, because we can tell if the file in the file system is the same
or different from the one used previously: we don’t simply rely on the delta between the timestamps of
block.i and block.o.

FlowTracer will then run the job or jobs for which some inputs have changed since the most recent
execution. This is the core implementation of dependency management.

In addition to simply running the flow correctly, FlowTracer does runtime tracing. This means FlowTracer
is actually watching the file I/O of the tool, and tracking the real dependencies, which might be different
from those documented in the flow description. This is a huge benefit, because it means that even

Proprietary Information of Altair Engineering

The Art of Flows
5 A Simple Example p.29

if you don’t know all the dependencies, FlowTracer will find them and manage them for you. In fact,
when running a job, FlowTracer is able to detect if you have specified the dependencies incorrectly, and
will repair the dependencies for each executed job. This unique capability gives FlowTracer a level of
robustness that is not achievable with other systems.

Another advantage of the FlowTracer approach is the availability of real-time visualization. This is
especially important where the flow is complex. By using a color-coded graph of the flow that updates in
real time, the user can clearly see what’s going on, and can quickly click into the flow to diagnose and
solve problems.

But as before, this is the simplistic version. We can do a better job with the following:

set block “Block”
E BASE+EDAVENDOR
J vrt eda_compiler $block.i $block.o

This assumes the existence of an encapsulation, which defines the inputs and outputs of the tool for
FlowTracer’s benefit. The advantage of this is further separation of the various re-usable elements of
the script. Not only do we have our environment setup in a single location that can be used by multiple
flows; we also have the descriptions of how to invoke our tools captured once so the same tool can
be used in multiple flows. The J directive then causes FlowTracer to refer to the encapsulation for the
required information.

Thus FlowTracer allows the various elements of flow description (such as environment, tool
encapsulation, resource requirements, command lines etc.) to be clearly documented in such a way
that a change to one of the base elements will be properly propagated to all the locations where it is
needed. Typically environments are set up based on the need for consistent run-time behavior; equally
tool encapsulations allow common tool invocation protocols to be captured so the tool is always run
correctly.

Finally, FlowTracer’s ability to capture dependencies at runtime, and then to keep a persistent database
of dependencies and flow status, make sure that the flow is correctly implemented.

In the next example we will explore some more elements of the Art of Flows: parallelism, configuration
management and aspects of licence management.

Figure 7:

Proprietary Information of Altair Engineering

A More Realistic Example 6

6 A More Realistic Example

This chapter covers the following:

• 6.1 Scripted Solution (p. 33)

• 6.2 Makefile Solution (p. 35)

• 6.3 FlowTracer Solution (p. 36)

Now we have seen the principles at work, it’s time to look at a more complex example—one which
addresses more of the technical realities of building flows for design or software development. In this
chapter we’ll consider not only the addition of multiple files, but also the management of multiple
directories, configuration management, licensing, and the need to exploit parallelism to maximize
throughput and minimize design cycle time.

Figure 8:

To keep the example relatively manageable, we’ll focus in this case on including all the key issues, but
not on scaling up to the max. We’ll keep that for our final example in the next chapter. So what you see
here will illuminate the different issues, but will still not be as complex as a real-world flow.

The Art of Flows
6 A More Realistic Example p.31

Figure 9:

The diagram only shows the core of the flow: dependencies between files and programs. We have three
programs: the first will run any time its input files are different from those used to generate the current
set of output files. The second program will run when the first program’s outputs are up to date, and if
they are different from those used to generate the current set of output files from Program 2.

Parallelism
Notice that Program 2 does not depend on all the outputs from Program 1. The third program is similar
to Program 2 in terms of dependencies; however we can also intuitively see that Program 2 and
Program 3 could run in parallel if all the required resources are available.

Sequential Program Dependencies
There’s a new element here: we are not only interested in the file I/O dependencies, we can see
intuitively that there’s no point in running Program 2 or Program 3 until Program 1 has done its work.
This level of dependency needs to be modeled just like the file dependencies if we are to have a robust
solution.

Proprietary Information of Altair Engineering

The Art of Flows
6 A More Realistic Example p.32

License Management
There are other elements as well: let’s imagine that Program 2 and Program 3 are instances of the
same application, but that the application is licenced, and limited licences are available. So that
means that unless two licences are available at runtime, Program 2 and Program 3 must in fact be run
sequentially.

Resource Optimization
We can add more complexity: Program 2 is a relatively small job that can be run in 4GB of memory,
while Program 3 (even though it’s the same application) needs 64GB to run efficiently. That means
Program 2 and Program 3 should ideally be run on different machines so we don’t waste resources on
Program 2, or strangle Program 3.

Configuration Management
Finally we will add the element of configuration management. We shall assume that there is a repository
of design files that are versioned, and that the designer is responsible for checking out a valid
configuration prior to running the flow, and then checking in the results if all goes well.

The challenge here is that the configuration involves all the files in the flow: both input files and output
files. As we revert to older versions of these files, their timestamps will not properly capture the age of
the files, so we need to be careful to model the dependencies with this in mind.

Putting it All Together
So we have three programs, a bunch of files, software licences, dependencies, parallel and sequential
execution, computing resource management and configuration management. The previous diagram only
showed the file and program dependencies: let’s see what the entire problem looks like diagramatically.
We’ll assume a single compute farm and a single licence pool (reasonable simplifications for now, but
many real-world situations will add WANs, multiple licence pools and more).

The final assumption in this example is the existence of three directories: one for the first set of input
files; one for the intermediate files generated by Program 1, and one for the output files generated by
Program 2 and Program 3. This is a simplification of a common situation: in real cases our files would
exist in a complex file hierarchy that would be traversed by the tools, and that must also be traversed
by the configuration management and flow tools in order to set up and manage execution.

Proprietary Information of Altair Engineering

The Art of Flows
6 A More Realistic Example p.33

6.1 Scripted Solution

In order to script this flow, we need to build some infrastructure. It’s just too complicated to build a
single, ad hoc script. The elements we must manage are these:

1. Setting up paths for the tools

2. Setting up the licensing environment

3. Accessing the required data file configuration

4. Capturing the required switches, inputs and outputs for the tools

5. Capturing and acting upon exit status

6. Defining the computing resources (machines, memory, disk etc.)

7. Relating jobs to compute resources

8. Running the flow

9. Monitoring and managing outputs,

This is not a trivial set of tasks, but all of these elements must be managed robustly if we expect our
flow to be reliable and easy to use. The purpose of capturing and managing all these issues is simply to
help end users avoid mistakes that could be costly in terms of design time or correctness.

In fact we will have to provide all the same infrastructure for makefiles and for FlowTracer, but we’ll go
through it in a bit more detail as this is our first time through.

Paths and Environment Setup
It’s good practice to separate the environment setup into its own file. That way we can more quickly re-
target our flow to new environments.

Configuration Management
We will assume that we don’t have to directly implement configuration management in the flow script.
This is consistent with common industry practice, where a set of configuration management commands
are used independently of the flow to pull the desired file set from the repository in preparation for
running the tools.

With this assumption, we will write the flow script to use timestamps as a way of understanding
dependencies.

Tool Encapsulation
For this example, we will write the command lines for each tool directly into the script file. This is
commonly done, and it is reasonable if the focus is on minimizing the script development time, rather
than on documentation and maintainability for re-use.

As we have said before, we regard the flows as an important corporate asset, so there’s a strong case
for building for scalability and maintainability, rather than just for implementation ease.

Proprietary Information of Altair Engineering

The Art of Flows
6 A More Realistic Example p.34

Computing Resources & Job Mapping
How should we implement the definition of our compute farm and the mapping of jobs to other
machines? We need some kind of database, recording the capabilities and availability of the different
machines on the network. We also need a way to schedule jobs through such a system. There are three
systems out there in common use: LSF from Platform Computing, SGE from Sun Microsystems (soon to
be Oracle), and Altair Accelerator from Altair Engineering.

It really wouldn’t make sense for a scriptwriter to create a solution from scratch, because this is a
complex task involving networking, job monitoring, handshakes and locks, error recovery and a lot
more.

The Flow
Because we’re using NC to manage jobs across the network and the compute farm, we can simply
send the jobs to NC for execution, knowing that the resource management issues are addressed,
and that all the complexities of networking errors, licence availability and so on are being handled by
NC. Implementing these directly in a script is a very big task, and it doesn’t make sense given the
availability of industry-proven and cost- effective solutions.

Tracking Outputs
Without building a custom reporting system, it’s hard to do much more than writing a log file and
grepping for errors. With a simple flow like this, such a solution might be good enough. But in a larger,
more complex situation like chip design, this is not enough, and a lot of time can be wasted scouring log
files looking for the source of a problem. Nevertheless, we’ll focus for this example on a straightforward
logging solution, because this is in fact what a lot of users suffer with.

Scripting Summary
We can make our script arbitrarily complex, and ultimately we could handle all the issues if we really
wanted to. This is not really the point, however, as we are more interested in the most effective way to
document and implement the flow. We have seen that in order to implement the basic elements of our
more complex flow we need quite a number of separate scripts, with some dependencies and shared
assumptions between them. Such a system is not easy to maintain. In addition, we didn’t handle all the
issues properly: for example making best use of the compute farm, or optimizing licence access based
on dependencies.

Proprietary Information of Altair Engineering

The Art of Flows
6 A More Realistic Example p.35

6.2 Makefile Solution

In the last section we went through all the elements in gory detail. We can leverage some of that for the
makefile-based solution, because we still need the same kinds of things: environment setup, licensing,
resource management etc.

In fact, most of the issues we identified in the previous section are not addressed in any meaningful
way by the makefile, so here we can see that while superficially the makefile looks like a good solution,
it really only handles the file and tool dependencies directly, and everything else has to be handled by
scripting either inside the makefile or separately, if we handle it at all.

Again it’s worth pointing out that this is one reasonable way to use makefiles for a problem like this:
there are many different possibilities. Our goals are clarity, maintainability, and as far as possible,
correctness.

Issues and Optimizations
Our makefile-based solution has allowed us to capture the dependencies, with the assumption that the
timestamps of the files are valid. That means that configuration management has been relegated to a
separate task: it’s not handled explicitly within the makefile. As we’ve observed, this is risky when you
go back in time and access an earlier configuration. The makefile doesn’t know which file you used last
time, because it doesn’t maintain any state between runs. Every time the makefile runs, it traverses
the dependencies described in the makefile, and checks the files based on those dependencies. We
could implement something more complex by using checksums or some other kind of signature-
based system, but the makefile won’t give us any explicit help with that, so we would end up creating
additional scripts, which is not really in the spirit of using the makefile as a solution.

The second issue that we didn’t address adequately in the makefile was parallelism. This is because
make does not understand the notion of a compute farm. The make -v switch simply passes multiple
jobs to the operating system for scheduling. It makes no allowance for the resource requirements of
any particular job.

The third issue with the makefile solution is that it doesn’t track or optimize licence usage. It will
certainly allow tools to ask for licences (although it doesn’t provide any assistance in that regard), but
if a licence is not available, the makefile will allow the job to block until a licence becomes available.
This can be a big bottleneck in a complex flow. It would be much smarter if the makefile could look
at compute resources, licence resources, and jobs in the queue, and find the best way to get it all
done, consistent with the known dependencies. Unfortunately, a makefile is not capable of this level of
optimization without a great deal of additional scripting.

Proprietary Information of Altair Engineering

The Art of Flows
6 A More Realistic Example p.36

6.3 FlowTracer Solution

How much of the complexity of our problem can FlowTracer manage?

Let’s go back to our original set of issues for this example, and work through them one by one.

Paths and Environment Setup
FlowTracer provides a mechanism for capturing and reusing environmental data. The idea is that once
this is set up, it can be accessed from any flow description as a black box. The great benefit of this
is that we can make changes to either the flows or the environment setup without affecting other
elements of our system. Information separation is one of the basic principles of good software design.

FlowTracer understands licensing directly, and it can monitor and report on licence usage as it tracks
jobs. This is an important optimization capability, because it allows users to understand where they
might have too few or (equally importantly) too many licences. This allows for maintenance and
upgrading of the overall design environment over time as needs and workloads change.

Configuration Management
Following the scripting and makefile examples, we will make the simplifying assumption that the
configuration management takes place outside the system. In other words the user is responsible for
making sure the right files are in place prior to running the flow.

Our job, therefore, is to make sure that the flow manager knows which files are current and which are
not, so that the correct tools can be executed at runtime.

FlowTracer approaches this differently from other solutions, in that it maintains a persistent database
about the flow, including the exact information regarding which files were used in previous runs. There
is a bootstrapping phase, in which you run the flow once or twice to build up that database, but once
it’s current, it will correctly understand the status of the current files, and will therefore execute the
dependencies correctly.

To be more specific, if FlowTracer notices that an input file is different from the version used to create
a particular output file, it registers that as a change which invalidates the output. This change may be
manifest as an earlier or a later timestamp. This is only possible because of the persistent database. A
makefile-based or scripting solution that does not have a persistent database cannot understand the
idea of a changed file: it can only understand the concept of a newer file.

Computing Resources & Job Mapping
FlowTracer incorporates a powerful compute farm scheduling and dispatch capability, coupled with
visualization and reporting so you can track what’s going on (actually a superset of the NC capability we
used in the scripting example). If we simply tell FlowTracer about the capabilities of the compute farm,
and annotate each job with its resource requirements, FlowTracer will handle the rest.

The Flow
The flow description language is again pretty simple: environment, tool, inputs and outputs.

Proprietary Information of Altair Engineering

The Art of Flows
6 A More Realistic Example p.37

The basic FDL is simple, but we’ve added an enhancement: we include information about the job’s
resource requirements: for example the fact that Program 1 runs on Windows, while Program 2
and Program 3 run on Linux, and that their resource needs differ. We could have put some of this
information in the encapsulation, but you will recall that Program 2 and Program 3 are the same
program, so we can use one encapsulation, and specify the differing resource requirements right here in
the flow.

Summary
The hard parts of making this work are not the dependencies. It’s the integration of all the other
elements, like licensing, parallelism, and resource management.

Because FlowTracer is built from the ground up to handle these issues, it’s a lot easier to solve them
with FlowTracer than with either scripts or makefiles.

Not only did we handle all the issues directly, but our code size is smaller than in either of the other
cases and it’s also easier to read and maintain.

Finally, FlowTracer automatically provides visualization so we can track what’s going on as we run the
tools.

The one area in which we don’t have any explicit integration (also true for the scripting and makefile
solutions) is configuration management. However, because we have a persistent database, FlowTracer
can correctly implement the dependencies in all cases, which is not true for makefiles or scripts.

Proprietary Information of Altair Engineering

Flows for the Big League 7

7 Flows for the Big League

Our final example is full scale. It’s based on an ASIC implementation flow, with placement, routing,
timing analysis, physical verification, and the back-end optimization required for a modern chip design.

We will be dealing with thousands of files, a range of tools from different vendors, a big compute farm,
and jobs that can last days. We’re going to pull out all the stops.

Issues of Scale
In building anything of complexity, scale drives the requirements. How do we ensure manageability
across hundreds of actions, spread across the globe, implemented by a large team of users working
separately and together? Scalability is certainly about performance, but even more it is about
robustness. We put a lot of effort into the development of the flows, in order that we can proceed with
our design tasks confident in the knowledge that our decisions and constraints are being supported by
the infrastructure.

Robustness, in turn, has many aspects. Among them are these:

• Ability to address all the issues: licensing, distribution, global WANs, tool management,
configuration management and so on.

• Ability to test and validate the flow itself

• Informative error messages and graceful failure modes when things go wrong

• Visualization, reporting, and history management for auditing and effective management of the
process

These are the goals and evaluation criteria for an effective flow management capability. We have
explored their use with three different implementation strategies in previous chapters. You have seen
that it is possible to solve these problems in a range of different ways, but that there are benefits to
using a purpose-built solution like FlowTracer.

In this chapter we will look at how FlowTracer addresses a much larger example, with many tools,
multiple queues, and other aspects of complexity. Think of this as a kind of template that you can use
to implement FlowTracer on your own flows. We will break it down into sections as follows:

• Tool encapsulation

• Configuration and file management

• Computing resource management

• Licence management

• Flow description

• Automation

• Visualization

• Reporting

Because of the complexity of this example, it won’t fit onto a single diagram. Instead we will illustrate
the elements of each step as we go.

The Art of Flows
7 Flows for the Big League p.39

Automation
In previous sections we did not address this issue. Automation has to do with the addition of control
structures and customized decision-making inside the flow. It can be important, but perhaps more
significantly, simple automation can greatly improve the quality of the “OK/ not OK” decision that is
made after every tool is run. So far we have assumed that the successful creation of a new set of
output files without errors means the step was successful. In fact we could easily use grep or other
programming tools to implement more sophisticated validation of outputs. In this section we will show
how this can be done with FlowTracer.

Visualization
This is one of the areas where FlowTracer delivers a big win. By showing the status of the flow as a
graph, and updating the graph in real time as the tools run, the user has a powerful insight into the
progress of the tasks and the satisfying of the dependencies.

Proprietary Information of Altair Engineering

Index
A
a more realistic example introduction 30

E
example, simple 23

F
flows and configuration management 18
flows for the big league 38
FlowTracer solution, realistic example 36
FlowTracer solution, simple example 28

G
global design teams 20

M
makefile solution, realistic example 35
makefile solution, simple example 27

P
problem definition, simple example 24

R
realistic example, FlowTracer solution 36
realistic example, makefile solution 35
realistic example, scripted solution 33
resource management 21

S
scripted solution, realistic example 33
scripted solution, simple example 25
simple example 23
simple example, FlowTracer solution 28
simple example, makefile solution 27
simple example, problem definition 24
simple example, scripted solution 25

40

	Contents
	Intellectual Property Rights Notice
	Technical Support
	1 Overview
	2 The Importance of Design Flows
	3 Why Do Design Flows Matter?
	4 Critical Flow Requirements
	4.1 Flow Deployment
	4.2 Design Data: Repositories and Workspaces
	4.3 Flows and Configuration Management
	4.4 License Management
	4.5 Global Design Teams
	4.6 Resource Management
	4.7 Visualization and Flow Status

	5 A Simple Example
	5.1 Problem Definition
	5.2 Scripted Solution
	5.3 Makefile Solution
	5.4 FlowTracer Solution

	6 A More Realistic Example
	6.1 Scripted Solution
	6.2 Makefile Solution
	6.3 FlowTracer Solution

	7 Flows for the Big League
	Index

