

FLUXMOTOR OVERVIEW TUTORIAL

March 2023

Introduction

In this tutorial, users will learn the basic workflow and the functionalities available in FluxMotor to:

- Create a geometry in the Design area of Motor Factory
- Validate your topology by running tests and analysis in the Test area of Motor Factory
- Export your FluxMotor project to Flux

The following training materials will be provided to you:

This step-by-step presentation

At the end of the tutorial, you are expected to:

• Re-create a given IPM motor topology and run all the tests available in FluxMotor on it.

Related support documents:

Online user notes and technical documents of FluxMotor

Outlook

Introduction

- 1. Introduction to FluxMotor (slide 4-10)
- 2. Definition of the Geometry and Physics of an Electric Motor model (slide 11-28)
- 3. Analysis and Automated Tests (slide 29-59)
- 4. Model Export to Flux (slide 60-65)

Conclusion

INTRODUCTION TO FLUXMOTOR

Introduction - General Overview of FluxMotor

- **FluxMotor** is a multiphysics software dedicated to the design of rotating electrical machines, such as electric motors, with the simplest and the most intuitive user interface in the market.
- It allows engineers to accelerate the design of machines and to quickly evaluate several machine configurations by considering the electromagnetic, thermal and vibroacoustic aspects. A few minutes are enough to select the most promising solution.
- The intuitive environment of FluxMotor allows users from generalist to expert to efficiently design, analyze and optimize their electric motors.
- If required, the exports of FluxMotor projects to other Altair solutions allow carrying out advanced studies to be carried out.

Introduction - General Overview of FluxMotor

Basic hypothesis

Finite element calculations are carried out in 2D with Flux 2D

The finite element calculations are used in order to consider the saturation and the non-linearities of the materials with good precision.

FE calculations are invisible to the user, to maintain the ease of use.

Iron losses are neglected at the rotor

Since the most important part of the losses is in the stator, the iron losses in the rotor are neglected for the calculation of the efficiency.

However, it is still possible to calculate it by exporting the FluxMotor project to solve in Flux 2D.

Joule losses are neglected in magnets

The most important part of the Joule losses is found in the stator windings, the ones in the magnets are therefore neglected for the calculation of the efficiency.

It is also possible to calculate it in Flux 2D.

Open FluxMotor

- · Directly using your FluxMotor desktop shortcut, or
- · Indirectly via the Flux Supervisor

FluxMotor Supervisor – General overview

FluxMotor - Principle Applications

- **Motor Catalog:** Project management tool to refer and manage catalogs, compare and choose motors. Standard or user-created motors are available.
- **Motor Factory:** The main application for designing machines, evaluating their performance, and if necessary, accessing other Altair solutions to carry out advanced studies. A starting topology is proposed for each type of machine (New motor) or access to recently studied motors (Recent motors).
- Part Library: Management of machine components such as slots, magnets, etc... choice, modification or creation.
- **Part Factory**: Accessible from Part Library, it is a dedicated space for viewing, modifying or creating parametrized parts.
- **Materials:** A comprehensive and evolutive material database. View and manage materials: Choice, modification or creation.
- Script Factory: Allows you to drive FluxMotor via Python files and launch an automated experimental design.
- Units: Refer and choose the units available in the software.
- User preferences: Choice of user preferences.

DEFINITION OF THE GEOMETRY AND PHYSICS OF AN ELECTRIC MOTOR MODEL

Motor Factory – Geometric and Physical Definition of the Motor

MACHINE	ROTOR	STATOR	COOLING	MATERIALS
TOPOLOGY HOUSING SHAFT	MAGNET POLARIZATION	SLOT WINDING	EXTERNAL	MATERIALS

- **Topology:** Definition of structural data of the machine Dimensions Number of poles / slots, etc.
- Housing: Definition of the motor casing Necessary to perform thermal and vibro-acoustic calculations
- Shaft: Definition of the rotor shaft and bearings Necessary to perform thermal calculations
- Magnet: Definition of magnets Choice of topology and dimensions and skewing of the rotor
- **Polarization:** Definition of the magnetization orientation of the magnets
- Slot: Definition of slots Choice of topology, dimensions, skewing and shape of the stator laminations
- Winding: Definition of the winding Architecture, coils, conductors, electrical insulation, filling of slots, etc.
- External cooling: Definition of the characteristics of the external cooling of the machine Convection, radiation, cooling system. Possible, only if the casing has been defined
- Internal cooling: Definition of the characteristics of the internal cooling of the motor Convection, radiation, parasitic airgap, slots, etc. Possible only if the casing, the shaft and the bearings have been defined
- Materials: Choice of machine materials from the materials database

Motor Factory – Motor Modification

Double clicking on one of the motor types in "*New motor*" loads the corresponding default motor in the Motor Factory. From there, one can modify the topology of the components (slots or magnets) along with the dimensions, and thereafter carry out the analysis of the defined motor.

• In this tutorial, choose "SM_PM_IR_3Ph".

Stuctural Data

Dimensions and topology

- The structural dimensions are important data in the specifications that are directly linked to the space constraints. •
- The topology will affect the cost of the motor, since it can add the manufacturing difficulties and the material costs. •

	MACHINE - TOP	POLOGY	TOPOLOGY	2	
	View	Datasheet			
				t mode	-1
Action			STATOR	2	
Choose to work with fixed			Outer diameter (mm)	260.0	
outer diameter			Inner diameter (mm)	160.0	
outer diameter			Length (mm)	50.0	
Fill in motor parameters			 No. slots	48	
			AIRGAP		
Validate			Length (mm)	8.0 E-1	
			 ROTOR		
			Outer diameter (mm)	158.4	
			Inner diameter (mm)	110.0	
			Length (mm)	50.0	
			No. poles	8	1
			\checkmark	<	<u> </u>
				Δ	ALTAIR

Step

1

2

3

Housing Definition

STATOR COOLING MATERIALS MACHINE ROTOR ۲ U А TOPOLOG HOUSING SHAFT MAGNET POLARIZATION WINDING EXTERNAL INTERNA SLOT MATERIALS

- The housing definition makes it possible to evaluate the feasibility of a project in terms of size and mass (cost).
- By defining the housing, many tests such as thermal or NVH analysis will be unlocked.

Rotor Shaft Definition

COOLING MATERIALS MACHINE ROTOR STATOR ۲ А TOPOLOGY HOUSI SHAFT MAGNET POLARIZATION WINDING INTERNA SLOT EXTERNAL MATERIALS

- The definition of rotor shaft makes it possible to assess the feasibility of a project in terms of size and mass (cost).
- The central part is magnetically represented and affects the electromagnetic behavior of the motor.
- Defining the rotor shaft (with its bearings) will unlock the thermal tests.

IR

Magnet Topology Definition

MACHINE			F	ROTOR		STATOR		COOLING	
TOPOLOGY	HOUSING	SHAFT			SLOT	WINDING			MATERIALS

- The topology and dimensions of the magnets affect the motor performance, torque, torque ripple, motor efficiency, ٠ and more precisely, the motor power and cost.
- Accurate definition of the magnets is essential to optimize the performance of the machine. •

Step	Action
1	Enter magnet shape library
2	Enter iml_Vblock library
3	Select imb_Vblock_01E
4	Validate the magnet choice

1	2	3	
MAGNET : ims_Ring_01A ?	Choose an other part	LIBRA ?Y : imi_VBlock - PART : imi_VBlock_01E	X
Design Skew Magnet shape INPUTS TM (mm) 7.136	REFERE ICE		
OUTPUTS R1 (mm) VP (deg) 72.064 45.0			?
		4	

Magnet Geometry Definition

MACHINE	ROTOR	STATOR	COOLING	MATERIALS
TOPOLOGY		SLOT WINDING		MATERIALS

ALTAIR

Rotor Skewing

MACHINE			F	ROTOR		STATOR		COOLING	
TOPOLOGY		SHAFT			SLOT	WINDING		INTERNAL	MATERIALS

• Skew consists of skewing the rotor along its length. This reduces torque oscillation, vibration and noise. An exact choice of skewing is necessary because it can also reduce the average torque of the machine.

Magnet Polarization Definition

MACHINE	ROTOR	STATOR	COOLING	MATERIALS
TOPOLOGY HOUSING SHAFT		SLOT WINDING		MATERIALS

- The polarization of magnets corresponds to the direction given to their magnetization.
- In motors, this is mainly (a) parallel or (b) radial. The reference coordinates for adjusting the polarization can be global (center of the rotor) or local (localized coordinates depending on the topology of the magnet considered). The arrows make it possible to visualize the orientation of the resulting polarization.

Slot Topology Definition

MACHINE			F	ROTOR		ST	ATOR	COOLING		MATERIALS
TOPOLOGY		SHAFT	U MAGNET			SLOT	WINDING			MATERIALS

- The topology and the dimensions of the slots determine the quantity of copper present in the stator.
- This directly influences the amount of current flowing in the winding, which in turn produces the Magnetomotive Force (MMF) and the magnetic induction in the air gap.
- This also has an impact on the manufacturing costs of the stator (slot filling coefficients, etc.). Particular attention must be given to the slot (conductor entry, cogging torque).

	SLOT : os_PIITooth_05E	?	Choose an other part		\mathbf{X}
	Design Skew		LIBRARY SELECTOR	LIBRARY : os_PIITooth - PART : os_PIITooth_05E	
	Lamination		REFERENCE		
	Slot shape	12	os_Free		
library		os Piñocos			
h library	INPUTS HS (mm) 4	11.58			
th_05E	WT (mm) 5 HO (mm) 3 WO (mm) 1	5.243 3.96 	USER B-Outer slot		
be choice	V 3	3			Î
	OUTPUTS			os_PilTooth_05D os_PilTooth_06E os_PilTooth_05F os_PilTooth_06A	
	R1 (mm) 3	3.066			T
	WS1 (mm) 6	5.118			•
	WS2 (mm) 1	0.005			
	WS (mm) 8	3.062 4			
	[D (mm) 2	29.617			

Slot Geometry Definition

MACHINE			F	ROTOR		STA	ATOR	COOLING		MATERIALS
TOPOLOGY		SHAFT				SLOT	WINDING			MATERIALS

- The dimensions of the slots must be well chosen, so that it can contain all the electrical conductors necessary to • achieve the performance of the motor.
- In FluxMotor, if the fill factor is greater than 100%, indicating that there are more conductors than the slot can ٠ accommodate, an error warning is given to the user.

1

2

Winding Architecture

MACHINE			ROTOR		STA	TOR	COOLING		MATERIALS
TOPOLOGY		SHAFT			SLOT	WINDING			MATERIALS

- The winding must be well defined to have a stator contribution to the magnetic induction, which is as sinusoidal as
 possible. An idea of this form can be observed by looking at the magnetomotive force (MMF) as well as its
 harmonic decomposition in the datasheet section.
- FluxMotor gives a feasible solution with the "Auto" mode. However, the user can define it more precisely if he feels comfortable with the other definition modes.

Winding : Electric Wire Definition

MACHINE			ROTOR		STA	TOR	CO	MATERIALS	
TOPOLOGY		SHAFT			SLOT	WINDING		INTERNAL	MATERIALS

- This menu is used to define the slot filling according to the chosen conductor topology (circular or rectangular).
- The main input data to consider are the number of turns per coil, the number of elementary conductors (wires) and their dimensions.
- Several filling methods are available (ortho-cyclic, random or in layers) with also several methods of associating the wires forming a conductor (grouped, vertical or horizontal).

Step	Action
1	Enter coil editor context
2	Choose circular wire topology
3	Choose « random » filling methodology
4	Choose « grouped » conductor grouping method
5	Fill in insulation dimensions
6	Validate

Winding : Wire Insulation Definition

MAG	CHINE	ROTOR		STA	TOR	coo	MATERIALS	
TOPOLOGY H	HOUSING SHAFT	U MAGNET		SLOT				MATERIALS

- The electrical insulation of the conductors makes it possible to insulate the wires and prevent short circuits. It is also possible to add one on the slot periphery to block the electrical conductivity with the ferromagnetic parts.
- Impregnation consists of pouring resin into the slot, so that it is full and there is better heat exchange.

End Winding Definition

MACHINE			ROTOR		STA	TOR	C00	MATERIALS	
TOPOLOGY		SHAFT			SLOT	WINDING			MATERIALS

- The coil end windings are the link between the forward and return bundles of the coils. It impacts the resistances and inductances of the phases as well as the overall thermal behavior.
- These end windings also have an impact on the cost and size of the machine.

Step	Action
1	Enter End winding edition context
2	Choose « U Shape » topology
3	Fill in end winding dimensions
4	Validate

Winding : X-Factor

MACHINE			F	ROTOR		STATOR			COOLING		
TOPOLOGY		SHAFT	MAGNET		SLOT	WINDING					

- This is a proportional coefficient allowing the values of the stator resistance and the inductance of the coil ends to be adjusted according to the values measured or calculated elsewhere.
- The evaluation of the resistances is made with reference to the temperature to be considered. Note that this temperature has no impact on the test environment of the machine.

WINDING ?									
Classical		Hairpin (!!!)							
Coil Insulation	on Endw	vind. X-Factor	•						
CALIBRA	TION FAC	TORS							
Reference temperature	e (°C)	20.0							
Winding resistance fac	tor	1.0							
End winding inductanc	e factor	1.0							
\checkmark									

Materials Allocation

MATERIALS	?	
	Materials	
M	ACHINE	
⊞Frame	REF.EN_1_1151	
Shaft	REF.EN_1_1151	
Bearing	REF.EN_1_1151	
F	ROTOR	
Magnets	REF.SmCo_1040_1800	
■Magnetic circuit	REF.M330_35A	
S	STATOR	
■Magnetic circuit	REF.M330_35A	
Coil conductor	REF.Copper	
⊞Insulators	REF.Nomex_130	
C	OOLING	
⊞Internal fluid	REF.Air	
External fluid	REF.Air	
\checkmark	< <u>5</u>	

MACHINE			ROTOR		STATOR		COOLING		MATERIALS	
TOPOLOGY		SHAFT			SLOT	WINDING				MATERIALS

FluxMotor offers a catalog of materials. This covers major recurring needs, namely:

- Laminations
- Ferromagnetic materials to build the magnetic circuit of the rotor and stator
- Solid materials (steel, etc.) to build the magnetic circuit of the rotor and stator, if ferromagnetic, or other construction devices
- Magnets

1

2

- Electrical conductors (copper by default)
- Electrical insulators

It is also possible for the user to define one's own materials from the Materials module.

FLUXMOTOR ANALYSIS AND AUTOMATIZED TESTS

Introduction

Test interface

Motor Factory to Test Motors - Introduction

Internal computation procedure

- Within Motor Factory, different calculation methods are integrated: Analytics, finite elements and optimizations.
- All tests are based on finite element modeling and calculations. The results are post-processed with the analytical approach and optimization processes.

© Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

PERFORMANCE MAPPING

Ŵ

SINE WAVE

MECHANICS

N∨H

WORKING POINT

SINE WAVE SQUARE WAVE

N

Ŵ

CHARACTERIZATION

Ng)

MODEL

Ð

DATASHEET THERMAL

 \mathbb{X}

OPEN CIRCUIT

Open Circuit Analysis (Phase Current = 0)

Torque ripple and airgap magnetic flux density

• Thanks to this test, it is possible to evaluate the impact of the machine topology (slots and magnets - number and dimensions) on the characteristics of the cogging couple (magnitude and period).

Motor Factory User_SM_PM_IR_3Ph.NewMo	tor1			
1 Design	CHARACTERIZATION WORKING POINT PERFORMANCE MAPPING MECHANICS Image: Company comp	?	*Magr modif	net temperature can be ied for this test
SECTIONS	CHARACTERIZATION - OPEN CIRCUIT - MOTOR AND GENERATOR - COGGING TORQUE	OPEN CIRCUIT ?		
Configuration	Overview Current Cogging torque characteristics Settings • Thormal Outputs • Thormal	Motor & Generator Cogging Suit uni		
Magnets	Evaluation of the impact of the machine topology: numbers and dimensions of slots and magnets Inputs	Thermal *	Step	Action
Main results	• No input	INPUTS No parameters for this test	1	Choose Open Circuit test
Mag. flux Cogging torque Graphs & tables		V 3	2	Choose the cogging torque test
Cogging torque Cogging torq. harm.	100 0 0000 100 0000 100000 100 0000 100 0000 1000000 1000000000 10000000000		3	Launch computation
Cogging torq harm.				

© Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Open Circuit Analysis (Phase Current = 0)

Torque ripple and airgap magnetic flux density

- CHARACTERIZATION WORKING POINT PERFORMANCE MAPPING MECHANICS \mathbb{X} Ð Ŵ A with Ŵ N 3 OPEN CIRCUIT MODEL DATASHEET THERMAL SINE WAVE SQUARE WAVE SINE WAVE NVH
- Contrary, this test makes it possible to obtain the magnitude order of the magnetic induction induced by the magnets in the different parts of the motor. Here, we can observe maximum and average magnitudes.
- These values are useful for motor sizing, to prevent potential saturation of ferromagnetic materials.

Flux density in magnetic circuit over the period of analysis							
Flux density in iron							
Stator tooth, max (T)	1.08	Stator tooth, mean (T)	6.365 E-1				
Stator foot tooth, max (T)	1.326	Stator foot tooth, mean (T)	5.229 E-1				
Stator yoke, max (T)	1.117	Stator yoke, mean (T)	5.338 E-1				
Rotor yoke, max (T)	1.518	Rotor yoke, mean (T)	7.292 E-1				
Rotor web, max (T)	1.47	Rotor web, mean (T)	4.268 E-1				
Rotor bridge, max (T)	2.007	Rotor bridge, mean (T)	1.004				
Rotor pole shoe, max (T)	2.07	Rotor pole shoe, mean (T)	1.042				

PERFORMANCE MAPPING

PM)

SINE WAVE

MECHANICS

A with

NVH

WORKING POINT

SINE WAVE SQUARE WAVE

ĽN)

N)

CHARACTERIZATION

MODEL

DATASHEET

THERMAL

 \mathbf{x}

OPEN CIRCUIT

Open Circuit Analysis (Phase Current = 0)

Torque ripple and airgap magnetic flux density

- The cogging torque is the motor torque at no current condition. It gives a vision of the tooth torque ripple that will be found in the torque ripple under load and which, potentially, play an important vibro-acoustic role.
- Torque ripple that are too high will require more current to be countered when starting the motor. If these are too high, it can be reduced by modifying the motor topology (more magnets or notches) and their dimensions or by adding skewing.

© Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Open Circuit Analysis (Phase Current = 0)

Back-EMF Analysis

c	CHARACTERIZATION					PERFORMANCE MAPPING	MECHANICS	
	MODEL	DATASHEET	THERMAL	SINE WAVE	SQUARE WAVE	SINE WAVE	Kung Kung Kung Kung Kung Kung Kung Kung	

Open Circuit Analysis (Phase Current = 0)

Back-EMF Analysis

CHARACTERIZATION	WORKING POINT	PERFORMANCE MAPPING	MECHANICS
OPEN CIRCUIT	SINE WAVE SQUARE WAVE	SINE WAVE	H (()) H

- Back EMF (Back-EMF) is the no-load voltage induced in the windings by the magnets.
- It gives an image of the magnetic state of the machine. It is particularly interesting to observe its harmonic content which gives an estimate of the excitations in the machine.

System Analysis of the Motor

Motor characterization

- This study calculates the parameters which make it possible to model the electric motor during the system analysis. The parameter maps are calculated and displayed in the ld, lq plane.
- There are flux, inductances, torque but also iron losses, Joule losses, etc. These results make it possible to define the size of the motor driving system.

'AIR

System Analysis of the Motor

CHARACTERIZATION WORKING POINT PERFORMANCE MAPPING MECHANICS

Motor characterization

- The parameters given in this table make it possible to produce an equivalent motor system model. This equation model is used to calculate the voltages at the terminals of the machine and to represent its operation.
- It is possible to calculate these quantities as a function of the temperature, by considering the variations of Br of the magnets.
- Determination of the characteristics of magnets and windings:

Winding and Magnet characterist	ics				
Winding					
Winding connection	Wye	Winding resistance factor	1.0		
Winding temperature (°C)	20.0				
Phase resistance (Ω)	2.653 E-2	Line-Line resistance (Ω)	5.305 E-2	End winding resistance (Ω)	1.884 E-2
Winding straight part temperature (°C)	20.0	C.S. end winding temperature (°C)	20.0	O.C.S. end winding temperature (°C)	20.0
Winding straight part resistance (Ω)	7.683 E-3	C.S. end winding resistance (Ω)	1.081 E-2	O.C.S. end winding resistance (Ω)	8.032 E-3
Magnets					
Magnet temperature Tmag (°C)	20.0				
Magnet name	Magnet	Material name	REF.SmCo_1	Material reference temp. Tref (°C)	20.0
Remanent induction at Tref (T)	1.04	Intrinsic coercive field at Tref (A/m)	1.8 E6	Relative permeability at Tref	1.04
Remanent induction at Tmag (T)	1.04	Intrinsic coercive field at Tmag (A/m)	1.8 E6	Relative permeability at Tmag	1.04

38

S)

 \mathfrak{M}

WORKING POINT

SINE WAVE SQUARE WAVE

Ŵ

CHARACTERIZATION

MODE

DATASHEET

THERMAL

X

System Analysis of the Motor

Flux and Inductances maps

- Representation of magnetic induction, static and dynamic inductances as a function of currents Id and Iq.
- These data make it possible to calculate the motor efficiency maps which will be presented later.

MECHANICS

NVH

Motor Datasheet

Characterization of the motor at the nominal working point

Motor Datasheet

Motor torque for a given current and voltage as a function of the rotor position

- This is the instantaneous torque as a function of the angular position of the rotor.
- The average torque of the motor is a main criterion of the specifications.

Motor Datasheet

CHARAC	CHARACTERIZATION				PERFORMANCE MAPPING	MECHANICS
	DATASHEET	THERMAL	SINE WAVE	SQUARE WAVE	SINE WAVE	K (fin) ≥

Average torque as a function of control angle

- The control angle corresponds to the phase difference between the resulting flux and the rotor flux (magnet flux).
- Depending on the saliency of the machine and for a given current value, it is possible to choose the optimum operating point in terms of torque. For example:

Thermal Characterization Test

Steady State analysis

This analysis gives an overview of the temperature that the various parts of the motor will reach at steady state for given thermal parameters and a set of losses.

 $\ensuremath{\textcircled{\sc online}}$ Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

Thermal Analysis

CHARACTERIZATION		WORKI	NG POINT	PERFORMANCE MAPPING	MECHANICS
OPEN CIRCUIT MODEL DATASHEET	THERMAL	SINE WAVE	SQUARE WAVE	SINE WAVE	NVH

Thermal Characterization Test

Transient analysis

CHARACTERIZATION WORKING POINT PERFORMANCE MAPPING MECHANICS

This analysis gives an overview of the evolution of the temperature of the various parts of the motor during a transient computation for given thermal parameters and a set of losses.

With Sine Wave currents

CHARACTERIZATION WORKING POINT PERFORMANCE MAPPING CPEN CIRCUIT MODEL DATASHEET THERMAL WAYS SQUARE WAYS

This study gives a good estimate of the magnetic and electrical quantities as well as the losses of the machine for an operating point defined by the user for a sinusoidal power supply.

Motor Factory User_SM_PM_R_3Ph step_	54_116p_TP_JAC01		Motor Generator	Step	Action
ESIGN TEST EXPORT	CHARACTERIZATION VORUNG POINT PERFORMANCE MAPPING MECHANICS ST TO	-1	I-Ψ-N T-N I-U	1	Choose working point sine wave test
Configuration	WORKING POINT - SINE WAVE - MOTOR - CURRENT-CONTROL ANGLE-SPEED Overview Current		A * 0 .	2	Fill in the parameters
Winsing & Magnets Winsing & Magnets Main results Washing point Power alsobarries	Identifying a working point defined by targeted current I, Control angle Ψ and speed N Overview of the resulting electromagnetic behavior of the motor		Thermal Electronics Mechanics INPUTS Computation mode Current density, rms (A/mm2)	3	Launch computation
Carves - Fast Carves - Fast B argop Figure torque Figure torque	A AC losses A agree to a constrained and a constrained an	2→	Control angle (deg) 34.856 Speed (rpm) 1 500.0 AC losses analysis - Ripple torque analysis No Additional losses (%) 0.0		Value found in Datasheet test
Curves - Accurate Torque Ingue Bargapo Bargapo harm.			<u></u> 3		Value from specifications
Phase voltage Phase voltage		3-			

Ŵ

SQUARE WAVE

 \mathfrak{M}

WORKING POINT

Ŵ

SINE WAVE

Working Point Analysis

With Sine Wave currents

Interesting results (and usefulness):

1. General results characterizing the operating point

1

2

3

4

5

- 2. Power balance, losses, efficiency
- 3. Magnetic induction and flux in the air gap (generator of electromagnetic forces)
- 4. Order of magnitude of induction in the active parts of the magnetic circuit of the motor (prevent materials saturation)
- 5. Estimation of magnet demagnetization
- 6. Magnetic induction in the air gap in one pole

Machine performance - Workin	g point				
General data					
Operating mode	Motor				
Mechanical torque (N.m)	71.89	Speed (rpm)	1 500.0	Electrical frequency (Hz)	100.0
Mechanical power (W)	11 292.415	Machine electrical power (W)	11 816.484	Machine total losses (W)	524.068
Machine efficiency (%)	95.565	Apparent power (VA)	14 802.511	Reactive power (VAr)	8 915.439
Control angle (deg)	34.856	Power factor	7.983 E-1	Phase angle (deg)	37.034
Line current, rms (A)	75.398	Phase current, rms (A)	75.398		
Line-Line voltage, rms (V)	113.348	Phase voltage, rms (V)	65.441		
Machine constants					
Current density, rms (A/mm2)	6.0	Electrical loading, rms (A/m)	50 400.0	Power density (W/kg)	451.776
kT (N.m/A)	6.742 E-1				
Power balance					
Machine total losses (W)	524.068				
Joule losses (W)	452.382	Stator Joule losses (W)	452.382		
Total Iron losses (W)	71.687	Stator Iron losses (W)	71.687		
Mechanical losses (W)	0.0	Additional losses (W)	0.0		
Flux in airgap					
Flux density, ARV (T)	7.548 E-1	Flux density 1st harm., rms (T)	8.401 E-1	Flux density, peak (T)	1.539
Flux / pole, ARV (Wb)	2.359 E-3	Flux / pole 1st harm., rms (Wb)	2.626 E-3	Flux / pole, peak (Wb)	4.81 E-3
Flux density in iron					
Stator tooth, max (T)	1.747	Stator tooth, mean (T)	1.198		
Stator foot tooth, max (T)	2.048	Stator foot tooth, mean (T)	1.044		
Stator yoke, max (T)	1.685	Stator yoke, mean (T)	9.878 E-1		
Rotor yoke, max (T)	1.732	Rotor yoke, mean (T)	1.093		
Rotor web, max (T)	1.888	Rotor web, mean (T)	1.611		
Rotor bridge, max (T)	2.366	Rotor bridge, mean (T)	1.638		
Rotor pole shoe, max (T)	2.32	Rotor pole shoe, mean (T)	1.245		
Magnet behavior					
Magnet name	Magnet	Material name	REF.SmCo_1		
Flux density, mean (T)	8.29 E-1	Coercive field 50% (A/m)	9.0 E5	Demagnetization rate < CF50 (%)	100.0
Magnetic field strength, mean (A/m)	1.705 E5	Coercive field 90% (A/m)	1.62 E6	Demagnetization rate > CF90 (%)	0.0

CHARACTERIZATION

OPEN CIRCUIT MODEL DATASHEET THERMAL

 \mathbb{I}

(1)

5

MECHANICS

N∨H

Estimation of magnet demagnetization

The coercive field H_{cj} measures the magnetic field necessary to cancel the induction of a magnet. If the magnet works in zone 1 (H<0.5H_{ci}), there is no risk that it will demagnetize.

Magnet behavior					
Magnet name	Magnet	Material name	REF.SmCo_1		
Flux density, mean (T)	8.063 E-1	Coercive field 50% (A/m)	9.0 E5	Demagnetization rate < CF50 (%)	100.0
Magnetic field strength, mean (A/m)	1.868 E5	Coercive field 90% (A/m)	1.62 E6	Demagnetization rate > CF90 (%)	0.0

Label	Symbol	Tooltip, note, formula
Magnet name	-	
Material name	-	When several kinds of magnet materials are considered, the magnet behavior is defined for each kind of magnet material
Flux density, mean	B _{magnet}	Flux density, mean value. Mean value of flux density computed in all the magnets.
Magnetic field strength, mean	H _{magnet}	Magnetic field strength, mean value. Mean value of the magnetic field computed in all the magnets.
Coerc.Field 50%	50%HcJ	Coercive field 50%. 50% HcJ = $0.5 \times$ HcJ = limit to define Zone 1 for demagnetization analysis.
Coerc.Field 90%	90%HcJ	Coercive field 90%. 90% HcJ = $0.9 \times$ HcJ = limit to define Zone 2 for demagnetization analysis
Demag. rate < CF50	D _{emag} 50	Percentage of magnet area in Zone 1 (where maximum magnetic field, absolute value, is lower than $50\% HcJ=0.5\times HcJ$)
Demag. rate > CF90	D _{emag} 90	Percentage of magnet area in Zone 2 (where maximum magnetic field, absolute value, is greater than $90\%HcJ=0.9\times HcJ$

CHARACTERIZATION WORKING POINT PERFORMANCE MAPPING MECHANICS OPEN ORCUIT MODEL DATASHEET THERMAL SINE WAVE SOLARE WAVE

Magnetic induction in the air gap for one pole

With Square Wave currents

This study gives a good estimate of the magnetic and electrical quantities as well as the losses of the machine for an operating point defined by the user for a square power supply.

Motor F	actory *Us	er_SM_PM_IR_3Ph.Step	_Dy_Step_housing				Mater	1	Sten	Action
	6	DESIGN	CHARACTERIZATION WORKING P	OINT PERFORMANCE MAPPING M	MECHANICS		Generator		otep	Action
B	D	TEST EXPORT			NVH	1	Forced I		1	Choose working point square wave test
SECTIONS			WORKING POINT - SQUARE WAVE - MOTOR - FORCED CURRENT							
E	Configure	fion	Overview			1	A C.		2	Fill in the parameters
	puts	Settings					Thermal Mechanics		3	Launch computation
Winding Works Bym LL V. LL V. LL V. LL V.	A Magnets Main res Main res map point Curve resis roue current current sses	AS Rights Droban Dock-terf Dock-terf Dock-terf Plater voltager Plater voltager Plater voltager Plater voltager Plater voltager	defined with a Horced square wave drive Overview of the resulting electromagnetic behavior of the motor computed with transient analysis	Sections Hearman He	Outputs General data Rupple torque Machine consumers Machine consumers Machine consumers Plaux Anargap Plaux density in iron Magnet behavior Magnet be	(2→ (3-	INPUTS Current density, peak (A/mm2) 64 Speed (rpm) Control angle (deg) 34,856 Conduction angle (deg) 6.0 Iron loss computation No Losses in magnets computation No Additional losses (%) 0.0			Value found in Datasheet test Value from specifications

ALTAIR

Working Point Analysis

With Square Wave currents

Machine performance - Working	g point				
General data					
Operating mode	Motor				
Mechanical torque (N.m)	56.325	Speed (rpm)	1 500.0	Electrical frequency (Hz)	100.0
Mechanical power (W)	8 847.572	Machine electrical power (W)	9 185.169	Machine total losses (W)	337.597
Machine efficiency (%)	96.325	Apparent power (VA)	27 843.098		
Control angle (deg)	34.856	Power factor	3.299 E-1		
Line current, rms (A)	65.53	Phase current, rms (A)	65.53	Line current, peak (A)	80.425
Line-Line voltage, rms (∨)	243.813	Phase voltage, rms (V)	141.63	Line-Line voltage, peak (V)	1 151.774
Machine constants					
Current density, rms (A/mm2)	5.215	Electrical loading, rms (A/m)	43 803.681	Power density (W/kg)	353.965
kT (N.m/A)	7.003 E-1	kE (V.s/rad)	6.119 E-1		
Power balance					
Machine total losses (W)	337.597	Joule losses (W)	337.597	Losses in magnet (W)	0.0
Iron losses (W)	0.0	Additional losses (W)	0.0	Mechanical losses (W)	0.0
Iron losses					
Total iron losses (W)	0.0	Stator iron losses (W)	0.0	Rotor iron losses (W)	0.0
Flux in airgap					
Flux density, ARV (T)	6.622 E-1	Flux density 1st harm., rms (T)	8.906 E-1	Flux density, peak (T)	1.298
Flux / pole, ARV (Wb)	2.07 E-3	Flux / pole 1st harm., rms (Wb)	2.784 E-3	Flux / pole, peak (Wb)	4.057 E-3
Flux density in iron					
Stator tooth, max (T)	1.773	Stator tooth, mean (T)	1.155		
Stator foot tooth, max (T)	2.101	Stator foot tooth, mean (T)	9.703 E-1		
Stator yoke, max (T)	1.758	Stator yoke, mean (T)	8.767 E-1		
Rotor yoke, max (T)	1.74	Rotor yoke, mean (T)	1.003		
Rotor web, max (T)	1.86	Rotor web, mean (T)	1.403		
Rotor bridge, max (T)	2.298	Rotor bridge, mean (T)	1.58		
Rotor pole shoe, max (T)	2.295	Rotor pole shoe, mean (T)	1.233		
Magnet behavior					
Magnet name	Magnet	Material name	REF.SmCo_1		
Flux density, mean (T)	8.484 E-1	Coercive field 50% (A/m)	9.0 E5	Demagnetization rate < CF50 (%)	100.0
Magnetic field strength, mean (A/m)	1.533 E5	Coercive field 90% (A/m)	1.62 E6	Demagnetization rate > CF90 (%)	0.0
Ripple mechanical torque					
Working point					
Mechanical torque (N.m)	56.325				
Ripple mech torque pk-pk (Nm)	17 203	Ripple mech torque +- vs avg (%)	30 542	Ripple forgue period (deg)	15.0

With Square Wave currents

CHARACTERIZATION	WORKING POINT	PERFORMANCE MAPPING	MECHANICS
OPEN CIRCUIT MODEL DATASHEET THERMAL	SINE WAVE	SINE WAVE	N H

With Square Wave currents

CHARACTERIZATION				WORK	ING POINT	PERFORMANCE MAPPING	MECHANICS
	MODEL	DATASHEET	THERMAL	SINE WAVE	SQUARE WAVE	SINE WAVE	N H

Efficiency Maps Computation

CHARACTERIZATION	WORKING POINT	PERFORMANCE MAPPING	MECHANICS
OPEN CIRCUIT MODEL DATASHEET THERMAL	SINE WAVE SQUARE WAVE	SINE WAVE	K (fin) ≥

- Efficiency maps give an estimate of machine behavior at different speed/torque operating points. The map
 envelope represents the domain in which the machine operates. The point where one can have maximum torque
 and speed for a given command is called "Base Point".
- It is possible to define in this test the main characteristics of the motor, e.g., the selected command.

Efficiency Maps Computation

CHARACTERIZATION	WORKING POINT	PERFORMANCE MAPPING	MECHANICS
OPEN CIRCUIT MODEL DATASHEET THERMAL	SINE WAVE SQUARE WAVE	SINE WAVE	NVH

CHARACTERIZATION			WORKI	NG POINT	PERFORMANCE MAPPING	MECHANICS
MODEL	DATASHEET	THERMAL	SINE WAVE	SQUARE WAVE	SINE WAVE	NAH (Man)

NVH Analysis

Working point NVH analysis

- Analysis of the electromagnetic forces in the air gap obtained from the magnetic flux density components
- Sound pressure level?

© Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

NVH Analysis

Working point NVH analysis results

CHARACTERIZATION	WORKING POINT	PERFORMANCE MAPPING	MECHANICS
OPEN CIRCUIT MODEL DATASHEET THERMAL	SINE WAVE SQUARE WAVE	SINE WAVE	No Mark

🛆 ALTAIR

© Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

NVH Analysis

Spectrogram test

CHARACTERIZATION	WORKING POINT	PERFORMANCE MAPPING	MECHANICS
OPEN CIRCUIT MODEL DATASHEET THERMAL	SINE WAVE SQUARE WAVE	SINE WAVE	NVH

 $\ensuremath{\textcircled{\sc online}}$ Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

CHARACTERIZATION		WORKING POINT		PERFORMANCE MAPPING	MECHANICS	
MODEL	DATASHEET	THERMAL	SINE WAVE	SQUARE WAVE	SINE WAVE	Kr (ling) ≥₹

NVH Analysis

Spectrogram test

These graphics give an idea of the acoustic behaviour of our motor when making it do a speed ramp

FLUXMOTOR EXPORT TO FLUX

Export of the Project

Export Options

- The project defined in FluxMotor can be exported to Flux in order to carry out additional studies.
- This export is done by creating a Python code to be read in Flux in order to regenerate the geometry and physics of the project. The python code can be run within FluxMotor or be called in Flux to generate the Flux project.
- There are different type of exports :
 - 1. Export to a document :
 - Report : Create a PDF or HTML file showing all the work achieved to design and test the machine.
 - "Script" : Build and export a python script file, in which all the needed command lines are written to rebuild the considered motor. This script can be used in Script Factory to automate some study.
 - 2. HyperStudy : build a connector, allowing HyperStudy to drive FluxMotor for performing motor optimizations.
 - 3. Export to Flux : Create a Python script that recreates the geometry and physics associated to a test in Flux.
 - 4. Export machine maps, curves and constants (like LUT) in FMU and MAT format files to do a driving system analysis in Activate, PSIM, ...

Export of the Project

Creation of a Report

- The aim of this export is to build and quickly export a report showing all the work achieved to design and test the machine.
- As a result, the report can be exported in a pdf or html file format. It can also be attached to the motor in the "Motor Catalog" or simply displayed in the report area.
- Various data can be shown in the report (Design, Test, Material and Archive).
- Each of this areas will represent a section of the report.

Step	Action
1	Select the sections you want to appear in the report
2	Validate the selection
3	See a preview of the report in FluxMotor interface
4	Export the report

Export of the Project

Visualization of a report

Report Preview

PDF Report

Altair[®] FluxMotor[®]

🛆 ALTAIR

Motor name : Step_by_Step_housing

Created on 2023/05/11

Export of the Project and Import in Flux

Geometry, physics and mesh defined in FluxMotor

- The project defined in FluxMotor can be exported to Flux in order to carry out additional studies.
- This export is done by creating a Python code to be read in Flux in order to regenerate the geometry and physics of the project. The python code can be run within FluxMotor or be called in Flux to generate the Flux project.
- In the current version, models can be exported for static application or transient application in Flux environments :

Static	Transient	Sinus.
1. TEST SELE	CTION	
□Characterizatio □Open circuit Back emf □Working point □Sine wave -	on - Motor & Gener Motor	ator
ι-ψ-Ν Ι-Ψ-Ν Hairpin (!!!)		
2. TEST CONFIGURATION		
3. EXPORT INFORMATION		

Application	Environment	Model family	Package	Convention	Model / Test
	2D	Without solving scenario	Current source	Motor & Generator	Basic model
STATIC	3D / Skew	Without solving scenario	Current source	Motor & Generator	Basic model
TRANSIENT	2D	Characterization	Open circuit	Motor & Generator	Back-EMF
		Working point	Sine wave	Motor	Ι-Ψ-Ν
		Working point	Sine wave	Motor	I-Ψ-N (Hairpin)
	Skew	Characterization	Open circuit	Motor & Generator	Back-EMF
		Working point	Sine wave	Motor	I-Ψ-N

Export of the Project and Import in Flux

Geometry, physics and mesh defined in FluxMotor

Here are quicksteps to create a transient magnetic model in Flux 2D with FluxMotor.

Step	Action
1	Enter Flux2D Export area
2	Select the Transient I-Ψ-N test
3	Fill in the test configuration inputs
4	
5	Validate the configuration inputs
6	

ALTAIR

Export of the Project and Import in Flux

Transient model in Flux2D

The python script is run automatically in Flux after clicking the export button and a Flux window is opened where the geometry and physics of the project is regenerated. Regions, parameters (2), electric circuit (3) and motor mesh (4) are defined in the script and can be checked in the project.

This project can be used to run additional analyses on it.

CONCLUSIONS

Conclusions

- This tutorial gives an overview of the basic workflow in FluxMotor. User can see the steps that allows him to :
 - Create a geometry in the Design area of Motor Factory
 - Validate your topology by running tests and analysis in the Test area of Motor Factory
 - Export your FluxMotor project to Flux

THANK YOU

altair.com

