
Altair Engineering Inc.

Altair Grid Engine Documentation

Grid Engine Introductory Guide

Author:Altair Engineering Version:2025.1.0 (8.10.0)

January 10, 2025

©2025ALTAIR ENGINEERING INC. ALL RIGHTS RESERVED.
WE ARE CURRENTLY LISTED ON NASDAQ AS ALTR.

Contents

Contents

1 Basic Altair Grid Engine Functionality 1
1.1 Functionality Overview . 1

1.1.1 What is a Resource? . 1
1.1.2 What is a Workload? . 1
1.1.3 Allocating Workloads to Resources . 1
1.1.4 How Policies Govern Altair Grid Engine Behavior 2

1.2 Typical Use Case Scenarios for Altair Grid Engine 2
1.2.1 Running Batch Workloads on a Cluster of Servers 2
1.2.2 Running Parallel Workloads in a Cluster 2
1.2.3 Running Interactive Work on a Pool of Server Resources 3
1.2.4 Repeating a Calculation on a Large Amount of Data 4
1.2.5 Sharing Resources Among Users . 4

2 Concepts and Components 5
2.1 Altair Grid Engine Components and Corresponding Host Types 5

2.1.1 SGE_QMASTER and the Master Host . 5
2.1.2 SGE_EXECD and the Execution Hosts . 7
2.1.3 Altair Grid Engine Client Commands and Submission/AdministrationHosts . 8
2.1.4 The Accounting and Reporting Database 9

2.2 What is a Cell? . 10
2.3 Types of Workloads being Managed by Grid Engine 10

2.3.1 Batch Jobs . 10
2.3.2 Parallel Jobs . 10
2.3.3 Interactive Jobs . 11
2.3.4 Array Jobs . 11
2.3.5 Checkpointing Jobs . 11
2.3.6 Immediate Jobs . 11

2.4 How Workload Gets Queued in Altair Grid Engine 12
2.5 Altair Grid Engine Queues and Cluster Queues 12

2.5.1 Understanding Queue Subordination . 12
2.6 Expressing Capabilities and Capacities . 12

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) i

Contents

2.6.1 What is a Complex? . 12
2.6.2 What is a Quota? . 14
2.6.3 What is a Load Sensor? . 14
2.6.4 What is a Resource Request? . 15

2.7 Reservations . 16
2.7.1 Automatic Resource Reservation . 16
2.7.2 Advance Reservations . 16

2.8 Determining the Scheduling Order . 16
2.8.1 What is Priority? . 17
2.8.2 What is a Ticket? . 17
2.8.3 What is an Urgency? . 18

2.9 Calendar Schedules . 18
2.10 Types of Users and User Lists . 18

2.10.1 Administrators . 18
2.10.2 Operators . 19
2.10.3 Users . 19
2.10.4 User Groups . 19
2.10.5 User Access Lists . 19
2.10.6 Departments . 19
2.10.7 Projects . 19

2.11 Cluster Status Data Spooling Methods . 19
2.11.1 Classic Spooling . 20

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) ii

1 Basic Altair Grid Engine Functionality

1 Basic Altair Grid Engine Functionality

1.1 Functionality Overview

Altair Grid Engine is commonly referred to as a Distributed Resource Management (DRM)system, a Workload and Resource Management system or as a Workload Scheduler. Allof these are arguably descriptive and correct. Altair Grid Engine does indeed manage re-sources of a distributed nature and the workloads designated to occupy or consume thoseresources while executing. In doing so, Altair Grid Engine employs advanced policies todetermine schedules for allocating workloads to the resources in a near optimal fashion.
1.1.1 What is a Resource?

A resource in this context is anything which can be
• defined, e.g. availability of data on a server (has_data_part_1) or the location of themachine (rack-4)• counted, e.g. the usage of software licenses• measured, e.g. the available space on a specific file system (as measured by a scriptor binary)• that which the operating system reports, e.g. CPU usage, available memory, I/O usage

This is a versatile platformwhich accuratelymodels resources in a data center, be they phys-ical resources, virtual resources, static characteristics or other attributes to be managed.
1.1.2 What is a Workload?

Altair Grid Engine supports a broad set of workloads. In general, anything that could be ex-ecuted from a command-line can be submitted to Altair Grid Engine and it will be executedas a job under the control of Altair Grid Engine. Examples for suitable workloads are shellscripts and executable binaries as well as interactive sessions or virtual machines. Moreintroductory information regarding supported workloads can be found in the User’s Guide.
Workloads may have requirements which need to be satisfied in order for them to func-tion as desired. Those can include dependencies on certain operating systems and the re-lease or patch level, requirements for availablememory, disk space or CPU and core counts.Other requirements can be the availability of software licenses to be utilized as part of anapplication embedded in the workload or a minimum of free disk space on a specific filesystem.
These requirements are stated when submitting a workload and will instruct Altair GridEngine how to handle the corresponding job.
1.1.3 Allocating Workloads to Resources

Altair Grid Engine keeps an inventory of the resources controlled and their status. It knows,for example, the number of servers it controls, the number of CPUs and cores they each
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 1

1 Basic Altair Grid Engine Functionality

have, the amount of memory they have, how those servers are already utilized. Togetherwith the requirements submitted along with the workloads, Altair Grid Engine is able todeterminewhichworkloadswill fit onwhich resource orwhichworkwill have to get finalizedso that resources get freed up which a certain workload requires.
In order to make scheduling decisions like which workload to place where and which work-load to give precedence over another there is only one additional thingmissing: knowledgeabout the desired operational behavior as expressed by policies.
1.1.4 How Policies Govern Altair Grid Engine Behavior

There is whole host of what Altair Grid Engine calls policies, rule systems and behavioralpatterns supported by Altair Grid Engine which allow an administrator to declare to AltairGrid Engine how resources are to be utilized and how workloads are to be prioritized. It ispossible, for instance, to control quotas for resource usage broken down by user groupsor individual users. Or it is straight forward to make execution order dependent on impor-tance (e.g. as measured by cost) of the resources which a workload will consume.
1.2 Typical Use Case Scenarios for Altair Grid Engine

The following sub-sections briefly introduce a few scenarios in which Altair Grid Engine istypically used.
1.2.1 Running Batch Workloads on a Cluster of Servers

Probably the most simple and most standard use for employing Altair Grid Engine is toutilize a cluster of servers as an opaque resource (for the end users) to process batch jobs.A common approach would be to inform end users submitting jobs about how to build andsubmit their batch jobs to suit the underlying Altair Grid Engine set-up (as configured bythe administrator). End users will then be able to submit any number of jobs to Altair GridEngine, specifying the requirements of those jobs along with submission.
The jobs would be taken by Altair Grid Engine and either executed immediately on suitableresources or be queued up and executed whenever the required resources become avail-able and when the order of precedence among jobs makes them eligible for execution.
If, as in this scenario, the workloads are batch jobs, i.e. if they do not need any user in-teraction upon start-up or during execution, then Altair Grid Engine has full flexibility ofscheduling those jobs for execution whenever it is optimal following the policy configura-tion set forth by the administrator. Other job types might restrict what Altair Grid Enginecan accomplish. An interactive workload will, for instance, require the presence of the end-user at a terminal to provide the required inputs; thus the workload can only be scheduledimmediately or at an agreed upon time.
1.2.2 Running Parallel Workloads in a Cluster

Parallel workloads are programs which are comprised of a set of tasks executing concur-rently on separate resources. There are different types of parallel jobs. Most important aretwo:
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 2

1 Basic Altair Grid Engine Functionality

• Distributed memory applications: These have their tasks executed only on serversconnected to a network so that each task only uses the memory on the server. Theapplication comprised of all the distributed tasks utilizes distributed memory.
• Shared memory applications: The tasks for such applications execute on resourceswhich have access to sharedmemory. This ismost typically the case on a single systemwith several CPUs or cores but one shared memory. These tasks would each occupya CPU or core but could access the same memory on the server.

Altair Grid Engine supports all kinds of parallel applications. In particular, it allows end usersto specify in generic terms the type of parallel application submitted (e.g. distributed orsharedmemory) and the number of servers, CPUs or cores those applicationswill require. Itis even possible to specify ranges for the number of servers, CPUs or cores. So a distributedmemory application could be submitted along with specifying it can run on four servers but,if available, should be executed using up to 16 servers.
Such parallel job submissions will be handled by Altair Grid Engine in a similar manner tohow it was described for batch jobs (parallel jobs often are batch jobs at the same time).Batch jobs are taken by Altair Grid Engine and executed on suitable resources as soon assufficient resources are available and as soon as a particular job is due to be started.
The use case of parallel jobs is special in that allocating resource concurrently imposesspecific requirements on Altair Grid Engine as does ensuring that all tasks executing con-currently are controlled as a single job. So if a parallel job is canceled while it executes thenit has to be ensured that all tasks of the parallel job are terminated.
1.2.3 Running Interactive Work on a Pool of Server Resources

Systems like Altair Grid Engine are often used for managing batch workloads and are evenreferred to as batch schedulers. It is, however, entirely feasible and quite beneficial to alsorun interactive work on top of Altair Grid Engine. In such case the end user would not ex-plicitly select a resource on which to run, log onto that server and start the interactive workbut would rather specify the type of system being required to Altair Grid Engine togetherwith the interactive work to be executed (e.g. a GUI or terminal session). Altair Grid Enginewould then select an available resource and create an interactive session on the selectedserver for the user.
Running interactive workloads through Altair Grid Engine offers benefits in the followingscenarios:

• Avoiding conflicts or overloaded resources if the same pool or resources is to be usedfor batch and interactive work• Optimizing the use of resources and providing reliable service specifically in case oflarge server and user counts• Farming out resource intensive work (e.g. the memory intensive web browsing) toa backend cluster while the servers providing terminal and GUI sessions do not getoverloaded and thus stay responsive• Reducing IT cost by more optimally utilizing resources• Increasing the efficiency of end users by easing interactive access to the resourcesrequired for their work• Provide controlling, monitoring, reporting and accounting for interactive workloads
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 3

1 Basic Altair Grid Engine Functionality

1.2.4 Repeating a Calculation on a Large Amount of Data

The same calculations often need to be repeated over and over again each time on differ-ent input data. This scenario is encountered in parameter studies in which a simulationor analytic computation depends on the variability of many parameters. Another area inwhich large data sets serve as the input for an ever repeated calculation is data mining,i.e. properties are to be extracted from massive data sets by applying the same algorithmson parts of the data. A case very similar to data mining is found in Bio Technology, wheregenetic or protein databases are searched and analyzed against probes. Yet another casefor repeated calculation over large data sets appears in the animated film creation andcomputerized special effects industry. In this case, it is the computer model of a scene andthe many scenes sequences which make up a film which account for the large quantity ofdata. In this application, the steps to be repeated are things like object rendering, visibilityfiltering or shadow models.
1.2.5 Sharing Resources Among Users

One of the main motivations to use a DRM system like Altair Grid Engine is to share a com-mon pool of resources among users and user groups. Here are a few examples for whichresources can be shared.
Sharing the ComputeNodes In the vastmajority of cases Altair Grid Engine is being usedfor distributing workloads coming from different users across the compute nodes (i.e. theservers) in a computer network, often also referred to as cluster. In managing the distri-bution of workloads on behalf of those users, Altair Grid Engine effectively enables usersto share the nodes in that cluster. They do not need to be consumed with monitoring thenodes and selecting those which are suitable and not occupied by someone else. Altair GridEngine accomplishes this with full transparency. Users need not worry about a node goingdown or maintenance downtime on nodes or new nodes being added to the cluster. AltairGrid Engine will make sure all those changes in the cluster environment will be handledappropriately.
Sharing Licenses Altair Grid Engine can be configured to manage almost any kind of re-source, a very important example being software licenses. Software licenses can be a scarceresource, e.g. if there are not enough licenses available so that all work being submittedwill be able to receive a license, and in many cases it becomes the most expensive and thusmost important asset to bemanaged. Here are few examples for licensemanagement withAltair Grid Engine:

• It is possible tomanage node-locked licenses, i.e. licenses which are bound to a specificcompute node in the cluster. In such a case, Altair Grid Engine will make sure that jobsrequiring such a license to run will be dispatched to a node with an unused licensebound to it.
• It is likewise possible to manage floating licenses. These are licenses which can beused on any node in the cluster but for which a quota exists, i.e. the total amountof licenses being used at the same time is restricted to a certain number. Altair Grid

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 4

2 Concepts and Components

Engine can be configured to keep track of the number of licenses being in use andthose still available. It will not dispatch jobs which require a license when the floatinglicense quota has been met.
• Many software vendors integrate their software with a license manager as FlexNetPublisher (formerly called FLEXlm). Those license managers are a separate softwareinfrastructure which have the software license entitlements deposited which a siteowns. The applications have been integrated with that license manager and check outneeded licenses during run-time. Altair Grid Engine can also be configured to interactwith the license manager and align the workload management with the availability oflicenses as controlled by the license manager. I.e. jobs requiring a license will only getdispatched if the license manager has a corresponding license available.

Sharing Storage Space In analogy to sharing compute nodes or software license, AltairGrid Engine can also enable users and the jobs they are submitting to share resources suchas storage space. A typical example is scratch space on a network file system. Some appli-cations require large amounts of temporary file space (also known as scratch space) whilerunning. That file space will no longer needed after the applications has finished. So itmakes sense for a site to set aside a certain amount of scratch space to be shared - not toomuch to be cost effective but just enough for an average amount of such applications to beable to run simultaneously. Altair Grid Engine canmonitor the capacity of resources like filespace and can ensure that applications only get started if there is enough space availablefor them to function properly.

2 Concepts and Components

2.1 Altair Grid Engine Components and Corresponding Host Types

The Altair Grid Engine system is comprised of a set of components, i.e. daemons and clientcommands. The following sections discuss those components, their role in the Altair GridEngine system and specific characteristics which need to apply to hosts running those com-ponents. As a quick overview, the following categories for components exist:
• Central control components, such as the qmaster and the scheduler• Execution agents• Client commands, such as the command-line interface facilities and the graphical userinterfaces

2.1.1 SGE_QMASTER and the Master Host

The qmaster is the central control and information point of a Altair Grid Engine installation.The name of the qmaster executable is sge_qmaster and it runs as a daemon process onceexecuted. The qmaster keeps track of all status information in a Altair Grid Engine cluster.For example, it knows the load situation of all hosts under Altair Grid Engine control, thejobs they execute, the jobs awaiting dispatch, about all users registered with the systemand their roles, about the policies and other configurations which the Altair Grid Engine
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 5

2 Concepts and Components

administrators have set up and about any other status information that has relevance inAltair Grid Engine. The qmaster is also in touch with all other components in a Altair GridEngine system; it maintains regular exchanges with the execution agents and it is contactedby all client commands for whatever information to be retrieved or tasks to be executed.
To ensure that a qmaster can be stopped and restarted without loss of information, data issaved to a file system or into the compiled-in database which then stores the data onto diskstorage. Even if the qmaster is down, jobs will be executed in a Altair Grid Engine system.New jobs cannot be started and client commands will not be able to run successfully.
It is crucial that the qmaster daemon is running and able to respond to requests from theexecution agents or the client commands quickly. It the qmaster is down, stalled or drasti-cally slowed down then the Altair Grid Engine will not work or will exhibit poor performance.Conversely, poor performance is usually a sign that qmaster performance is encumbered.
It is therefore most important that the host on which the qmaster is running is suitablypowerful. This has generally four aspects:

• The qmaster host needs to have enough processing power. State-of-the-art CPUswithfour or more cores are commonly sufficient even for large installations. For smallinstallations (a few hundred execution nodes, a few thousand jobs in the system atany point in time) a less powerful host may suffice.
• The qmaster host needs to have sufficient memory. This is highly dependent on thenumber of jobs waiting to be dispatched at any one time in the systems. For large jobscounts (in the hundred thousands of jobs) 16 Gbytes are advisable.
• The qmaster hosts needs to have fast access to sufficient file space. Since the qmasterhas to process all status changes immediately (and there can bemany per second in alarge and busy cluster), limitations in file access speed can greatly impede the perfor-mance of Altair Grid Engine. The best possible file access path should be provided tothe qmaster, even more so if the installation is large with many execution hosts andjobs.
• The qmaster needs good network connectivity to all other components. While theoverall performance will not be influenced much by a slow link to a particular exe-cution or client machine or even the total failure of network connectivity to such amachine, it is still important that the qmaster can interact quickly with other compo-nents. The amount of data being commonly transferred is relatively small, however,so low latency is much more important than high bandwidth. The qmaster requiresgood connectivity but generally does not require an ultra high speed network (likeInfiniBand).

Setting up the qmaster on a suitable machine with the above considerations in mind is keyto avoid performance problems.
The following subsection will discuss how to ensure that a failure of the qmaster machinewill not halt the operation of a Altair Grid Engine cluster.
SGE_SHADOWD and the Shadow Master Hosts Altair Grid Engine plays a crucial rolein a workload processing environment. If Altair Grid Engine were to fail, servers would
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 6

2 Concepts and Components

then become idle thereby rendering expensive equipment useless. And within Altair GridEngine, the qmaster is a single point of failure. Jobs can be submitted, dispatched, started,monitored and controlled only if qmaster is running. Thus making sure that qmaster isalways running is important for a production-grade Altair Grid Engine system.
There are, in essence, two ways to achieve this:

• Integrating the qmaster machine and the qmaster daemon into a high availability (HA)solution. This will result in a fail-over qmaster machine and some qmaster failuredetection conditions which aremonitored by the HA solution. This should also includethe file system being used by qmaster for persisting out status data (see Installation
Guide -> Selecting a File System for Persistency Spooling of Status Data for informationon status information spooling) in the HA configuration so it fails over together withqmaster.

• If the file service used for spooling is available or is considered reasonably reliable,then use the shadow master facility. It is provided by the shadow master daemonsge_shadowd. The shadow daemon runs on a different host than qmaster and mon-itors whether qmaster is alive. If the shadow daemon detects qmaster’s failure thenit invokes a new qmaster which takes over the cluster operation based on the statusinformation in the spooling data. There can bemore than one shadow daemon on dif-ferent shadow master hosts. In such a scenario one of the shadow masters will takeover the qmaster role (see Administrator’s Guide -> Special Activities -> Ensuring High
Availability for more information).

The Scheduler Thread The qmaster also provides the decision making function in anAltair Grid Engine cluster. These are for instance
• matching of resources with job requirements• planning of resource assignment schedules• job priority management• user dependent resource entitlement control• resource reservations• job placement decisions

This functionality is clearly separated from the rest of qmaster’s tasks (configuration man-agement, status monitoring, reporting, etc) in the scheduler thread. The operation of thescheduler thread is normally opaque to the user and even the Altair Grid Engine adminis-trator. The scheduler thread interacts with the qmaster by receiving cluster status and con-figuration updates and sending back job dispatching decision. There are, however a fewadministrative commands which allow the administrator to analyze the scheduler thread’sdecision making. An example is the qconf -sss (“show scheduler status”) command.
2.1.2 SGE_EXECD and the Execution Hosts

The execution hosts are the nodes in a Altair Grid Engine cluster on which workloads (jobs,interactive sessions, etc) are being executed by Altair Grid Engine. The component whichidentifies a node as execution host and which allows Altair Grid Engine to utilize it is the
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 7

2 Concepts and Components

execution daemon (sge_execd). A host may be declared as an execution host in a Altair GridEngine cluster but it cannot act as such unless a sge_execd is running on it. The executiondaemon provides the following functionalities:
• It communicates with the qmaster in both directions:

– It reports the resource utilization status (CPU load, memory usage, etc) as well asstatus and resource usage of running jobs and finished jobs on a specific node
– It receives tasks to execute any type of workload which Altair Grid Engine supportfrom qmaster. There are also configuration options which will result in qmastersending requests to re-prioritize running jobs from time to time.

• The sge_execd hands off the starting of workloads and the low level process controlto a component called shepherd (sge_shepherd). There is one sge_shepherd per job.So one sge_execd utilizes and controls several sge_shepherds if a node runs multiplejobs at a time simultaneously.
Execution hosts do not solely have to be dedicated to Altair Grid Engine. It is possible to alsorun other workloads (e.g. work started by users manually) on those nodes. The sge_execdmonitors all loads, regardless of whether initiated by Altair Grid Engine or otherwise whichthe qmaster and sge_schedd can take into account. In high throughput clusters or use caseswith parallel jobs it is however advisable to designate execution hosts. Other workload willotherwise interfere and affect the efficiency of the cluster.
By the same token is it also possible to use the host on which the qmaster runs as anexecution host. But also this is only advisable for small installations, e.g. for tests. Theqmaster is a crucial component in a cluster and shouldmostly run on a designatedmachine.And again, the activity of the qmaster would also interfere with the workloads on that hostif it were used as an execution host also. An exception is probably if the jobs to be executedon the qmaster host are administrative Altair Grid Engine tasks.
Finally, execution hosts can also be submission and administrative hosts (see below). Thisis necessary even if jobs are executing corresponding Altair Grid Engine client commands.
2.1.3 Altair Grid Engine Client Commands and Submission/Administration Hosts

Users and administrators (see Introduction -> Concepts and Components -> Types of Users and
User Lists for information on different user type) interact with Altair Grid Engine via a set ofclient commands. There are client commands which are restricted for administrative tasks,i.e. which can only be executed by users in an administrative role, and commandswhich areutilized by users as well as administrators. Hosts need to be declared to have permission torun Altair Grid Engine user or administrative commands, otherwise the qmaster will rejecta request from a client command running on those nodes.
A host having the permission to run client commands for the regular user such as submit-ting, monitoring or controlling jobs is called a submission host. A host allowed to run admin-istrative commands, such as modifying the cluster configuration is called an administrativehost. An administrative host is automatically also a submission host.
Below is a short breakdown of the client commands being available.

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 8

2 Concepts and Components

Command Line Clients There is a set of client commands to be run from the commandline. There are commands available targeting the end user and other commands beingmainly used by administrators. Here are a few examples:
• qsub/qrsh/qsh/qlogin - these are all commands which submit workload (batch, inter-active, parallel) into a Altair Grid Engine cluster• qstat/qhost - commands to retrieve information about the status of jobs, hosts or thecluster and its components• qalter/qmod - commands to modify jobs, either their characteristics or their status(e.g. suspending a job)• qdel - a command to delete jobs (terminate running job or cancel submitted but notyet executing jobs)• qacct - a command to generate resource usage reports for finished jobs and account-ing reports for users or user groups• qconf - the main administrative command line interface allowing display and modifi-cation of the Altair Grid Engine configuration

Graphical User Interfaces There is also a graphical user interface called qmon. Qmonprovides access to the same functions as the command line clients described above. So itfulfills a mix of administrative and end-user targeting roles.
Qmon will be replaced by new graphical user interface components. Therefore usage of itis deprecated and the qmon functionality is not described as part of this documentation set.Refer to the online help within qmon for explanations on how to use the various dialogs.
2.1.4 The Accounting and Reporting Database

Altair Grid Engine collects ample data about jobs while in execution and after completion.This data is recorded for later review by the user or administrator and for creating clusterusage statistics or for accounting reports for users and user groups. There are two pro-cesses by which such data is recorded and there are two access methods to the resultingdata.
The first step is to record data of finished jobs in the accounting file. That file can be ac-cessed with the qacct command line client to run simple reports or administrators maychoose to access and parse the file directly.
A more comprehensive set of data is collected into the accounting and reporting database.This does not only include the resource usage of finished jobs but also resource utilizationsnapshots of running jobs and other cluster statistics. That is written out by qmaster intoanother file and then fed into a relational database (Oracle, MySQL or PostgreSQL). Fromthere it is possible to use SQL analysis methods. One specifically tuned for the Altair GridEngine accounting and reporting data is the Altair UniSight. It provides a straight forwardmeans to generate reports from Altair Grid Engine accounting data and for exporting suchreports into various formats (such as comma separated values, also known as CSV).

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 9

2 Concepts and Components

2.2 What is a Cell?

Sometimes it is necessary for sites to completely separate the management of differentworkloads. Such a case could be to operate a pre-staging test cluster in which new con-figurations or new types of jobs are being tested before they get moved over into a com-pletely separate productions cluster. For such and similar cases, Altair Grid Engine providesa means to use the same installation repository (i.e. the same file space where binaries andother installation package components reside) while keeping the configurations and oper-ations separated.
This is accomplished by the Cell concept. A Altair Grid Engine cell simply refers to the nameof the root of the configuration data directory hierarchy. Altair Grid Engine commandsknow which cell they belong to through the environment variable SGE_CELL. It tells theqmaster that it is tomanage the corresponding cell and read its configurationwhenqmasteris started and it will also tell client commands which qmaster they are to respond to.

2.3 Types of Workloads being Managed by Grid Engine

2.3.1 Batch Jobs

A batch job is a shell script which lists UNIX commands and application calls. Those callsare executed in a sequential manner on the execution host as if the call were invoked bythe submitting user locally.
Example of a batch job:
#!/bin/sh

redirect the output-file of the batch job
#$ -o /tmp/output.$JOB_ID

Call UNIX command 'hostname'
hostname

For more information on how to write shell scripts and submit batch jobs consult the man-page submit(1).
2.3.2 Parallel Jobs

Altair Grid Engine supports the possibility to handle and submit jobs for parallel and dis-tributed processing. Applications which uses message-passing environments like ParallelVirtual Machine (PVM) or Message Passing Interface (MPI) are also supported like sharedmemory parallel programs on multiple slots across execution hosts for distributed mem-ory parallel jobs.

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 10

2 Concepts and Components

2.3.3 Interactive Jobs

Altair Grid Engine provides the facility to execute interactive applications or batch jobswhichsupports terminal I/O (standard output, standard input, standard error). Interactive jobs,unlike batch jobs, supplies the possibility to interact with the submitted job and it transfersthe output directly to the user terminal.
2.3.4 Array Jobs

An array job divides a batch job (shell script) into a certain number of tasks. Those tasks aredistributed by the Altair Grid Engine in the cluster. Each of these tasks occupies a slot onan execution host. This is useful, for example, when there is a large amount of data whichcan be divided into sub-tasks and should be processed with the same application or script.
#!/bin/sh

redirect the output-file of the batch job
#$ -o /tmp/array.$JOB_ID
This job is divided in 10 tasks.
#$ -t 1-10

The data_processor application is started ten times with consecutively numbered
input files which contains the divided input data.
/tmp/data_processor -i /tmp/array_input.$SGE_TASK_ID

2.3.5 Checkpointing Jobs

Jobs which support Checkpointing store the completed current application state which en-ables the Altair Grid Engine to restore and restart this job from the last checkpoint in casethe job was halted or aborted. This means that work which is already done is not lost. Thistechnique is used to provide more fault tolerance and to increase the flexibility of the AltairGrid Engine system accordingly. (e.g. job migration and load balancing mechanisms).
2.3.6 Immediate Jobs

Typically, jobs are not started immediately but rather are queued into the pending queue.They are started as soon as the scheduler dispatches them to an appropriate executionhost. Immediate jobs, in contrast, are dispatched straight away to an execution host. If thisis not possible, as in the case when there is no free slot available, the job will fail.
For more information how to start a job immediately consult the man-page submit(1).

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 11

2 Concepts and Components

2.4 How Workload Gets Queued in Altair Grid Engine

2.5 Altair Grid Engine Queues and Cluster Queues

2.5.1 Understanding Queue Subordination

2.6 Expressing Capabilities and Capacities

2.6.1 What is a Complex?

Complexes reflect resource attributes which can be requested for a job by the user via the
-l option of e.g. qsub and qrsh and resources that reflect the load of e.g. a host. A complexalso defines how Altair Grid Engine should handle and interpret these resource attributes inits scheduling and dispatching of the pending jobs. There are many of predefined complexentries like qnameor hostname. Consult theman-page complex(5) for a list of all predefinedcomplexes.
A complex resource attribute consists of the following attributes:

Table 1: Complex attributes
Attribute Description
name The name of the complex object, for example hostname
shortcut A shortcut for the complex object which can be used in the -lparameter call like h for hostname
type The type of the complex object. The type defines which values areallowed. See the following table for a description of the availabletypes of complex resource attributes.
relop The relation operator defines how Altair Grid Engine has tocompare the by the user requested value to the correspondingvalue accounted by Altair Grid Engine. If the result of thecomparison is false, the job will not be scheduled. Valid operatorsare: ==, <, >, <=, >= and EXCL. In case of STRING-alike type only == isallowed. EXCL is only allowed for BOOL See Administrator’s Guide

-> Special Activities -> Setting Up Nodes for Exclusive Use for detaileddescription how to use the EXCL operator.
requestable If requestable is set to yes, a user is able to request this complex viathe -l parameter of e.g. qsub. Accordingly, if set to no, a user is notable to request this complex. If set to forced, a user has to requestthis complex or the job is rejected. See complex(5) for how toenable resource request enforcement.

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 12

2 Concepts and Components

Attribute Description
consumable consumable can be set either to yes, no, ’job_ or host. yes and jobare only valid as parameter if the type of the complex is numeric(e.g. INT). If set to yes or job the consumption of the correspondingcomplex is handled by the bookkeeping of Altair Grid Engine andaccordingly a job will not be scheduled if not enough of therequested resources are available. If set to yes Altair Grid Enginedebits the requested consumable per used slot and if set to jobAltair Grid Engine will debit per job. host (available since 8.1.3) isonly allowed to be set for a RSMAP complex. The requested valueis decremented once on each host the job runs. The amount doesnot depend on the granted amount of slots.
default Only meaningful if the complex is a consumable. The value set asdefault be consumed by every running job. Can be overwritten bythe -l parameter.
urgency With the urgency it is possible to influence the priority of job perresource base. Consult complex(5) and SGE_priority(5) for moreinformation.
aapre Defines if a consumable resource will be reported as availablewhen a job that consumes such a resource is preempted. For allnon-consumable resources it can only be set to NO. Forconsumables it can be set to YES or NO. The aapre-attribute of theslots complex can only be set to YES. After the installation of AltairGrid Engine all memory based complexes are defined asconsumable and aapre is also set to YES. As result preempted jobswill report memory of those jobs as available that are in thepreempted (suspended) state.
affinity Defines the resource affinity factor. A value of 0 means that noaffinity is configured for the variable, a positive value means thataffinity is configured (jobs already running on a host attract otherjobs), a negative value means that anti-affinity is configured (jobsalready running on a host reject other jobs). See [Affinity,Anti-Affinity, Best Fit]
do_report Defines if a resource may be reported as a load value. When it isset to YES and load values gathered on an execution host will bereported. When set to NO then no load values will be reported.Exception are all “m_mem_*” and all “cuda.*” complex variableswhich will always be reported.
is_static Defines if the load value for a resource is considered being static(does not or seldom change) or dynamic (constantly changes).

Table 2: Available types of complex attributes
Type Description
INT With INT only raw integers are allowed as values.
DOUBLE Only floating point values in double precision are allowed.

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 13

2 Concepts and Components

Type Description
TIME Only a valid time specifier is allowed. Consult queue_conf(5) for aformat description.
MEMORY Only memory size specifiers are allowed. Consult queue_conf(5) fora format description.
BOOL Only the strings TRUE or FALSE are allowed.
STRING All strings are allowed. The strings are used for wildcard regularboolean expression matching.
CSTRING Like STRING except that the comparison is case insensitive.
RESTRING Like STRING but will be deprecated in future.
HOST Like STRING but only valid hostnames are allowed.
RSMAP Like a list of strings (ids) where the amount of ids can be requestedlike an INT. Chosen ids are attached to a job.

Example:

#qconf -sc
#name shortcut type rel. req. cons. def. urg. aapre affinity do_rep. is_static
#---
arch a RESTRING == YES NO NONE 0 NO 0.000000 YES YES
calendar c RESTRING == YES NO NONE 0 NO 0.000000 NO NO
cpu cpu DOUBLE >= YES NO 0 0 NO 0.000000 YES NO
...

See Administrator’s Guide -> Special Activities -> Using Consumables for more information andhow to use them.
2.6.2 What is a Quota?

With a resource quota it is possible to set limits for the consumption of resources of any jobrequests. For example, this is useful in preventing single users to fill or overload the wholecluster. Those resource quotas are defined in resource quota sets or simply RQS.
See Administrator’s Guide -> Special Activities -> Using Resource Quota Sets_ how to usesuch resource quota sets.
2.6.3 What is a Load Sensor?

A Load Sensor is an executable (script or binary) that periodically reports the load of one ormore predefined resources to the execution daemon of the executing host.
Before the Load Sensor is run, any reported resource must be defined as a complex(see Introduction -> Concepts and Components -> What is a Complex?). The Load Sensorwill be started automatically during start-up of the execution daemon or, if added laterto an already-running execution daemon, after a few load-report intervals. A Load

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 14

2 Concepts and Components

Sensor must fulfill a predefined set of rules, e.g. how it reports the load to the exe-cution daemon. See SGE_execd(8) for those rules. More examples are available in the
$SGE_ROOT/util/resources/loadsensors directory.
It is possible to configure Load Sensors globally or per-host. For either, use qconf andchange the load_sensor line to contain the path of the Load Sensor executable. Configur-ing globally means that each execution daemon (on every execution host) will run its owninstance of the sensor and report the load. Alternatively, the Load Sensor may be config-ured to run on a per-host basis, where only the execution daemon on that particular hostwill run the specified Load Sensor.
Configure globally with:
qconf -mconf

Configure per-host with:
qconf -mconf <hostname>

Example of a load-sensor script which reports the number of running processes on a
host:

#!/bin/sh

myhost=`uname -n`

while [1]; do
wait for input
read input
result=$?
if [$result != 0]; then

exit 1
fi
if ["$input" = quit]; then

exit 0
fi
#send number of running processes
processes=`ps -elf | wc -l`
echo begin
echo "$myhost:processes:$processes"
echo end

done

exit 0

2.6.4 What is a Resource Request?

It is possible to request special resources when submitting a job e.g. the job needs a hostwhich has at least 512 MB main memory. Those resources need to be predefined as com-plex with the attribute requestable (see Introduction -> Concepts and Components -> What is
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 15

2 Concepts and Components

a Complex?). A resource request can be stated at time of submission via the -l_ operator ofe.g. qsub or qrsh or directly within the job-script.
Altair Grid Engine even provides the possibility to request resources on an if available-basis.If the request cannot be fulfilled, proceed to run the job on a host/queue which does notprovide this resource. These are known as soft-requests.
Example: Submit a job which has to run on a host with at least 512 MB main memory. Atbest, Altair Grid Engine should dispatch the job to a host which has also at lest 256 MB freemain memory.
qsub -l mt=512MB -soft -l mf=256MB job_script.sh

2.7 Reservations

2.7.1 Automatic Resource Reservation

A job is submitted each time as either an explicit or implicit resource request. The Altair GridEngine scheduler-component will reserve all needed resources automatically for pendingjobs and prioritize them as lower priority or overlapping resource requests.
2.7.2 Advance Reservations

Advance reservation is a resource reservation completely independent of a particular joband can be requested by a user or administrator and gets created by the Altair Grid Enginesystem. An advance reservation causes the requested resources to be blocked for otherjobs that are submitted subsequently.
See also User Guide -> Reservations and Administrator’s Guide -> Enabling Reservations.

2.8 Determining the Scheduling Order

Altair Grid Engine determines a rank order for the jobs which are waiting to be scheduled(i.e. assigned to resources for execution). Conceptually, the Altair Grid Engine schedulerwill look into jobs in order of priority and try to find suitable resources for them. Given thatresources (such as CPU, memory or other resources) are available, the scheduler will thenreserve those resources for the job before considering the next job. Thus jobs with higherpriority have greater chances to get the required resources and will likely be started sooner.
One of the main tasks of a Altair Grid Engine administrator is therefore to control the rankorder of the jobs. While there are ways to directly set priorities for jobs, controlling the rankorder is mainly performed by defining priority related policies which will automatically influ-ence the order of jobs. Job priorities will change dynamically based on altered conditions.They also will change if the administrator modifies an underlying policy.
If an administrator chooses to not define the policies which will assign priorities for jobsthen the order in which jobs are scheduled will be determined by submission order. Thefirst jobs being submitted will then be at the top of the pending job list, i.e. a first-in-first-out(FIFO) scheduling order will be used.
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 16

2 Concepts and Components

Here is now an overview on the key influence factors, i.e. the main policies, which controlthe priority assignments for jobs.
2.8.1 What is Priority?

The usage of the term priority in the above introduction is generic. Priority is used to be aqualifier for the rank order in which jobs are waiting to be scheduled. There is, however, amore specific definition of priority in Altair Grid Engine. It refers to the POSIX priority whichis either implicitly or explicitly assigned to a job. The POSIX priority is simply a number in therange between -1023 (lowest priority) and 1024 (highest priority). It can be assigned to jobsfor instance with the qsub -p <prio> or qalter -p <prio> command options. If no explicitassignment is being made then the default value of 0 is assigned implicitly.
The POSIX priority is primarily a means for users to rank the jobs submitted. If a user hassubmitted two jobs for example and wants to make sure one receives higher priority in-dependent of the order of submission, then the user could leave the priority of the moreimportant job at the default of 0 and lower the priority of the other job to, let’s say, -10.This “trick” of lowering the priority for the less important job is used because regular users(as opposed to Altair Grid Engine administrators) can only set priority values of 0 and lower.This is to prevent every user requesting 1024 for their own jobs. However, with a defaultpriority of 0, users may only lower the priorities of their own jobs.
It is, therefore, in good practice to change that default value for the POSIX priority, e.g. to
-100. See the SGE_request(5) manual page for information on how to accomplish this via asystem-wide default request file and embedding a -p -100 setting into it.
Another use case for the POSIX priority is to supply the administrator with the means tomanually control the rank order of individual jobs. The administrator can set the priority toany value in the POSIX range so if a particular job is very important and needs to be pushedto the top of the waiting list then assigning as priority of 1024 is one way to achieve that.

Assigning priorities manually can quickly become complicated, and it’s also quite inflexi-ble. For this reason, the POSIX priority is commonly only used as a means for exceptionaloverrides.

Note

2.8.2 What is a Ticket?

Altair Grid Engine provides a collection of policies controlling the importance of jobs whichall are based upon the notion of a ticket. A ticket can be viewed as a currency - more “tickets”equals more “rights” for a specific job. These “rights” are commonly referred to as entitle-
ments in Altair Grid Engine. See below for an explanation of entitlement.
Tickets are automatically assigned andmodified (at least for themost part) and that they notonly influence the scheduling order of a job but also determines the resource access whicha running job receives , in particularly if that job is competing for the same resource(s) asother jobs. An example can be the portion of a CPU which a job gets if two jobs are runningsimultaneously.
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 17

2 Concepts and Components

The ticket value assigned to a job gets is derived from several sources. These are the afore-mentioned ticket-based policies. A job may not be the most important job in each of thosepolicies but the combined ticket number derived from all policies can well make it the mostimportant job in the system. There is a weighting functionality which controls how muchinfluence each of the policies can exercise and it is, of course, possible to use policies selec-tively, i.e. not all or for only a part of the jobs.
The following are the policies being based upon the concept of tickets:
The Fair-Share Policy This ensures that individual users, groups of users or projects get
fair and equitable access to resources in the cluster. A group of users, e.g. a department,may contribute to 30% of the funding of a cluster. Then that user group should also be enti-tled to consume a share of 30% of the cluster resources, at least on average and balancedover a certain period of time. So for this policy it is important to compare entitlementswith actual past usage.
The Functional Share Policy It is also a means to ensure equitable resource access is be-ing granted to user groups. It differs from the fair-share policy in that resource entitlementsare enforced independently of past usage. So there is no percentage of average resourceusage to be achieved over time but rather a portion of the resources which is owned bya user group at any time unless the users don’t utilize those resources (in which case theavailable resources are split among other user groups according to their entitlements).
The Deadline Policy This policy provides a steady increase in tickets for jobs being sub-mitted with a deadline. The idea is that jobs nearing deadline will receive preferential treat-ment by Altair Grid Engine, i.e. they are more likely to receive the required resources, thusbe started sooner and receive more of the resources available.
2.8.3 What is an Urgency?

2.9 Calendar Schedules

2.10 Types of Users and User Lists

There are a number of different user roles in Altair Grid Engine. Part of this discussion canbe found in the section about administrative and submission hosts There are also differentmeans to group users and thus manage their rights or entitlements. A more completeoverview regarding user roles and groups of users can be found below.
2.10.1 Administrators

An administrator account has full rights in a Altair Grid Engine cluster. There can bemultipleadministrators. The root account on the qmaster machine has administrative rights bydefault. All other administrative accounts need to be given that role explicitly by an alreadyregistered Altair Grid Engine administrator. Administrators can completely reconfigure acluster or manipulate and inspect all jobs.
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 18

2 Concepts and Components

2.10.2 Operators

Operators also can execute administrative tasks but only those which keep the cluster op-erational. They can suspend or resume jobs, for example, but are unable to modify theconfiguration. Accounts need to receive operator privileges by an Altair Grid Engine admin-istrator.
2.10.3 Users

Users need to be given permission to access a Altair Grid Engine cluster, again by admin-istrators. Users then can submit workloads into Altair Grid Engine, control their own jobs(e.g. modify, suspend, resume or delete them) and monitor the status of the cluster and ofjobs (of all jobs). Regular users cannot modify the cluster configuration andmanipulate thejobs of other users.
2.10.4 User Groups

Users can be grouped together by the administrator for easier configuration. Such usergroups can then be used for instance to define user access lists, departments or projects(see below).
2.10.5 User Access Lists

Lists of users can be given permission or denied to utilize certain parts of the Altair Grid En-gine system. There are positive and negative lists, i.e. lists which contain those with accessand lists which contain those who are denied access. It’s usually only necessary to use onlyone list, depending on what requires less effort to define.
Some of the functions which are controlled by access lists are accessible to hosts or classesof workloads.
2.10.6 Departments

Departments are groups of users that conceptually belong to the same organizational unit.Departments are specifically used in the context of Altair Grid Engine policies which controlresource entitlements across such organizational units.
2.10.7 Projects

Projects are similar to departments (see above), and are meant for finer grained resourceentitlement control and less so along organizational boundaries.
2.11 Cluster Status Data Spooling Methods

This section describes characteristics and implications of the different status or data receiv-ing methods being supported.
Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 19

2 Concepts and Components

2.11.1 Classic Spooling

Backing Up and Restoring the Classic Spooling Data Might want to move this sub-section
to Tasks in Admin Guide

Grid Engine Introductory Guide v 2025.1.0 (8.10.0) 20

	Basic Functionality
	Functionality Overview
	What is a Resource?
	What is a Workload?
	Allocating Workloads to Resources
	How Policies Govern Behavior

	Typical Use Case Scenarios for
	Running Batch Workloads on a Cluster of Servers
	Running Parallel Workloads in a Cluster
	Running Interactive Work on a Pool of Server Resources
	Repeating a Calculation on a Large Amount of Data
	Sharing Resources Among Users

	Concepts and Components
	 Components and Corresponding Host Types
	SGE_QMASTER and the Master Host
	SGE_EXECD and the Execution Hosts
	 Client Commands and Submission/Administration Hosts
	The Accounting and Reporting Database

	What is a Cell?
	Types of Workloads being Managed by
	Batch Jobs
	Parallel Jobs
	Interactive Jobs
	Array Jobs
	Checkpointing Jobs
	Immediate Jobs

	How Workload Gets Queued in
	 Queues and Cluster Queues
	Understanding Queue Subordination

	Expressing Capabilities and Capacities
	What is a Complex?
	What is a Quota?
	What is a Load Sensor?
	What is a Resource Request?

	Reservations
	Automatic Resource Reservation
	Advance Reservations

	Determining the Scheduling Order
	What is Priority?
	What is a Ticket?
	What is an Urgency?

	Calendar Schedules
	Types of Users and User Lists
	Administrators
	Operators
	Users
	User Groups
	User Access Lists
	Departments
	Projects

	Cluster Status Data Spooling Methods
	Classic Spooling

