VAN

Altair Engineering Inc.

Altair Grid Engine Documentation

Grid Engine Administrator's Guide

Author: Version:
Altair Engineering 2025.1.0 (8.10.0)

January 10, 2025

© 2025 ALTAIR ENGINEERING INC. ALL RIGHTS RESERVED.

WE ARE CURRENTLY LISTED ON NASDAQ AS ALTR.

Contents

Contents

1 Navigating and Understanding 1
1.1 Navigating the Altair Grid Engine System 1
1.1.1 Location of Altair Grid Engine Configuration Files and Binaries 1
1.1.2 Displaying Status Information 8
Understanding the VariousJob States 9
1.2 Understanding a Default Installation. 14
1.2.1 DefaultQueue 14
1.2.2 DefaultPE 15
1.2.3 DefaultUserSetlLists 16
1.2.4 DefaultHostGroup List 16
1.2.5 Default Complex Attributes 17
1.3 Understanding Key Altair Grid Engine Configuration Objects 18
1.3.1 The Cluster Configuration 19
1.3.2 The Scheduler Configuration 19
1.3.3 Host and Queue Configurations 19
1.4 Navigatingthe ARCoDatabase 19
1.4.1 Accessingthe ARCoDatabase 19
1.4.2 ViewstotheDatabase 20
Accounting 20
1.5 message text a message describingtheevent 22
1.5.1 DatabaseTables 33
1.6 Common Administrative Tasks in a Altair Grid Engine System 47
1.6.1 Draining Then Stoppingthe Cluster 47
1.6.2 Starting Up and Activating Nodes Selectively 48
1.6.3 Adding New Execution Hosts to an Existing Altair Grid Engine System . 49
1.6.4 Generate/Renew Certificates and Private KeysforUsers 49
1.6.5 Backup and Restore the Configuration 52

1.6.6 Changing the Altair Grid Engine admin password for all Starter Services
onallexecutionhosts o ... 56
1.7 Managing User ACCESS o v ittt 56
1.7.1 Setting Up a Altair Grid EngineUser 57

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) i

Contents

1.7.2 ManNagers . . . o v i ot e e e e e e e e e e e 58

1.7.3 Operatorsand OWNers i vttt it et 58

1.7.4 Permissions of Managers, Operators, Job or Queue Owners 59

1.7.5 User Access Lists and Departments 61

1.7.6 Projects e 63

1.8 Understanding and Modifying the Cluster Configuration 64
1.8.1 Commands to Add, Modify, Delete or List Global and Local Configura-

HONS . . L 64

1.8.2 Configuration Parameters for Global and Local Configurations 65

1.9 Understanding and Modifying the Altair Grid Engine Scheduler Configuration 66

1.9.1 The Default Scheduling Scheme 67

1.10 Configuring Properties of Hostsand Queues 69
1.10.1 Configuring Hosts i e 69
1.10.2 Configuring QUeUeS 75
1.10.3 Utilizing Complexes and Load Sensors 80
1.10.4 Configuring and Using the RSMAP ComplexType 88
1.10.5 Managing Access to Deviceswith RSMAPs 94
1.10.6 Advanced Attribute Configuration 95
1.10.7 Configuring and Using Linux cgroupso v 96

1.11 Monitoring and ModifyingUserjJobs 101
1.12 Diagnostics and Debugging e 101
1.12.1 KEEP_ACTIVE functionality o o 101
1.12.2 Diagnosing Scheduling Behavior 102
1.12.3 Location of Logfiles and How to Interpret Them 103
1.12.4 Turning on Debugging Information 106

2 Licensing - Summary concerning licensing of Altair Grid Engine 113
2.1 General Overview o o i e e 113
2.2 Licensed RESOUICES o o v i vt e e e 114
2.3 LicenseUsage Records o i i i it 114
2.4 Licensing ACtiONS L e e e e 115
2.5 Licensing Algorithm L 116
2.6 Requirements e e e e e e e e 117
2.7 Administrative Commands L 118

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) i

Contents

2.7.1 Display License Usage OverTime. 118
2.7.2 Trigger License Verification Manually 118
2.7.3 Enforce Reporting of Cloud Resources 118
2.7.4 Disabling License Consumption for Specific Hosts and/or Resources . 118
2.7.5 AGERestinterface. 119

3 Special Activities 119
3.1 Tuning Altair Grid Engine for High Throughput 119
3.1.1 sge_gmasterTuning 119
3.1.2 Tuning Scheduler Performance. 122
3.1.3 Reducing Overhead on the ExecutionSide 122

3.2 Optimizing Utilization 123
3.2.1 Using Load Reporting to Determine Bottlenecks and Free Capacity . . 123
3.2.2 ScalingtheReportedLoad 126
3.2.3 Alternative Means to Determine the SchedulingOrder 127

3.3 Managing Capacities e e e e e 130
3.3.1 Using Resource Quota Sets vt 130
3.3.2 UsingConsumables e 132

3.4 Implementing Pre-emption Logic 137
341 WhentoUsePre-emption. 137
3.4.2 Utilizing Queue Subordination o L L. 137
3.4.3 Utilizing Slot-wise Subordination 139
3.4.4 Advanced Pre-emption Scenarios 140

3.5 Integrating Altair Grid Engine with a License Management System 142
3.6 Managing Priorities and Usage Entitlements 143
3.6.1 Share Tree (Fair-Share) Ticket Policy 144
3.6.2 Functional TicketPolicy 155
3.6.3 OverrideTicketPolicy 156
3.6.4 JobShares 157
3.6.5 Handling of Array Jobs with the Ticket Policies 158
3.6.6 UrgencyPolicy e 159
3.6.7 User Policy: POSIXPolicy 164

3.7 JobPlacement e 165
3.7.1 Host/Queue Sorting 165

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) iii

Contents

3.7.2 Affinity, Anti-Affinity, BestFit, 168
Affinity Use Cases v vt i e e 169

AFfinity . . 169

Anti-Affinity 169

BestFit 170

3.8 Advanced Management for Different Types of Workloads 171
3.8.1 Parallel Environments e 171
3.8.2 Setting Up Support for Interactive Workloads 178
3.8.3 Setting Up Support for Checkpointing Workloads 178
3.8.4 EnablingReservations 181
3.8.5 Simplifying Job Submission Through the Use of Default Requests . . . 188
3.8.6 Job Submission Verifiers 189
3.8.7 Enabling and Disabling CoreBinding 205

3.9 Ensuring High Availability 205
3.9.1 Prerequisites 206
3.9.2 Installation. 206
3.9.3 Testing sge_shadowd Takeover. 207
3.9.4 Migrating the Master Host Back After a Takeover 207
3.9.5 Tuningthesge_shadowd 207
3.9.6 Troubleshooting 208

3.10 Utilizing Calendar Schedules 209
3.10.1 Commands to Configure Calendars 209
3.10.2 Calendars Configuration Attributes 210
3.10.3 Examples to lllustrate the use of Calendars 211

3.11 Setting Up Nodes for Exclusive Use 212
3.12 Deviating from a Standard Installation 213
3.12.1 Utilizing Cells o oo 213
3.12.2 Using Path Aliasing 213
3.12.3 Host-name Resolving and Host Aliasing 215

3.13 Integration with NVIDIADCGM 0o e e e e et e 217
3.13.1 Enabling Support for NVIDIADCGM 217
3.13.2 Using Load Values from NVIDIADCGM 218
3.14 Integration with Docker Engine o 219

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) iv

Contents

3.14.1 Docker Images Suitable for Autostart Docker Jobs with Arguments . . 220
3.14.2 Run container as root, allow running prolog etc. as a different user . . 221

3.14.3 Automatically map user ID and group ID of a user into the container . 221

3.14.4 Create a container_pe_hostfile with all container hostnames 222
3.14.5 Run tightly-integrated parallel jobs in Docker containers. 222
3.14.6 Configuring the Docker daemon response timeout 225
3.14.7 Support for nvidia-docker2.0. L o Lo 225
3.14.8 Authenticating at a Dockerregistry 226
3.15 Support for I/0 Monitoring Using Altair Mistral 227
350 Introduction . . . L L e e 227
3.15.2 Restrictions e 227
3.15.3 Grid Engine Cluster Configuration Parameters for Mistral 227
3.15.4 Environment Variables for Monitoring 228
3.15.5 Configuring Mistral e 228
3.16 Support for I/0 Profiling and Dependency Detection Using Altair Breeze . . . 229
3.16.1 Introduction Lo e 229
3.16.2 Restrictionso e 229
3.16.3 Grid Engine Cluster Configuration Parameters for Breeze and Mistral . 229
3.16.4 Environment Variables for Profiling 230
3.16.5 Configuring Breeze o o i e e 230
3.17 Enabling the GraphQLWeb API 230
3.18 Special TooIs o 232
3.18.1 The Loadcheck Utility 232
3.18.2 Utilitiesfor LMDB spooling 233

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) %

1 Navigating and Understanding

1 Navigating and Understanding

1.1 Navigating the Altair Grid Engine System

Altair Grid Engine consists of different modules, which are usually distributed over a large
number of hosts. This chapter provides a high-level overview of a Altair Grid Engine instal-
lation, including details on where the execution binaries and configuration files are located,
how status information about different components and objects can be displayed, and how
they are interpreted.

1.1.1 Location of Altair Grid Engine Configuration Files and Binaries

To interact with a Altair Grid Engine, the client binaries and basic configuration parameters
must be available in the shell environment. To do the whole shell environment setup, sim-
ply source a predefined shell script generated during the product installation. One major
part of the working environment is the $SGE_ROOT environment variable, which contains
the full path to the Altair Grid Engine installation. Using such environment variables allows
interactions with different Altair Grid Engine installations on the same host.

The following example assumes that Altair Grid Engine is installed in the /opt/UGE820 direc-
tory, and that the user works with bash. This example shows how the environment of this
particular installation is sourced in order to interact with the system.

> source /opt/UGE820/default/common/setting.sh
Within a C-shell the corresponding settings script must be sourced:
> source /opt/UGE820/default/common/setting.csh

And on Windows (win-x86), it is assumed the directory of Altair Grid Engine is available on
\\fileserver\share\opt\UGE820. There, the following batch script must be executed:

> \\fileserver\share\opt\UGE820\default\common\settings.bat

Table 1: Environment Variables Set via the setting Script

Environment

Variable Description
$SGE_ROOT The absolute path to the Altair Grid Engine product installation.
$ARCH The Altair Grid Engine architecture string. It identifies the OS and

in some cases the processor architecture. This variable is not set
on Windows (win-x86).

$SGE_CELL The name of the Altair Grid Engine cell. The purpose of the cell
name is to distinguish different clusters, which are using the
same binary installation (and therefore having the same
$SGE_ROQT).

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 1

1 Navigating and Understanding

Environment
Variable

Description

$SGE_CLUSTER_NAME
$SGE_QMASTER_PORT
$SGE_EXECD_PORT
$PATH

$MANPATH

library path

The system wide unique name of the Altair Grid Engine cluster.
Network port where the master daemon is listening.

Network port where the execution daemons are listening.

The default path variable is extended with the path to the Grid
Engine binary directory.

The manual page path variable is extended in order to provide
command-line access to the various Altair Grid Engine man
pages. This variable is not set on Windows (win-x86).

Path to Altair Grid Engine libraries. Only set on architectures that
do not have a built-in run-path. The library path variable
depends on the OS type.

The following figure illustrates the structure of the $SGE_RQOT directory.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

1 Navigating and Understanding

AR LEEE

VERERAERERE]

{]

i

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 3

1 Navigating and Understanding

FIGURE 1: Overview of the $SGE_ROOT Directory Structure

The main configuration files are located in the $SGE_RO0T/$SGE_CELL/common directory (rep-
resented by the yellow files in Figure 1 above). Most of these files are generated automat-
ically when the configuration is changed by the corresponding Altair Grid Engine adminis-
tration command. The following table provides an overview of these files.

Table 2: Overview of Main Configuration Files

Configuration File Description

accounting Contains accounting information about past jobs. The gacct
client reads this data.

bootstrap Contains information about spooling and multi-threading for
the gmaster.

configuration Contains the current global cluster configuration, which can be
modified by the qconf -mconf command.

qtask The gtask configuration file (see man page gtask).

schedd_runlog Contains information about a scheduling run, when it is
monitored (see qconf -tsm).

cluster_name Contains the unique cluster name.

sched_configuration Contains the current scheduler configuration, which can be
modified by the qconf -tsm command.

sge_aliases The path aliasing configuration file.

shadow_masters Contains a list of shadow daemons.

local_conf/<hostname> All files in this directory represent the local cluster
configuration for the specific host, and they can be modified by
the qconf -mconf <hostname> command.

path_map Exists only if Windows hosts are in the cluster. Contains the
mapping between UNIX paths and the corresponding Windows
(win-x86) paths.

During run-time, all scheduler decisions and status information are written to files (classic
spooling) or a database (PostgreSQL), either of which is usually held on a secondary stor-
age (such as fast SSDs, and/or hard drives). This is done so that, in case of problems, newly
started daemons can retrieve the current state and can immediately proceed with opera-
tion. There are two types of spooling directories, one for the master daemon and one for the
execution daemon. The execution daemon spooling directories should point to a local direc-
tory (and not an NFS shared directory) for the performance benefit. For Windows execution
daemons, the spooling directory must point to a local directory. When shadow daemon is con-
figured, the master spooling directory must be shared with the shadow daemon host; if not,
the master spooling should also be held locally.

Qmaster Spooling Directory

The following figure illustrates the structure of the gmaster spooling directory (Figure 2):

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 4

1 Navigating and Understanding

Contains current advance reservations
Contains a list of user names, which are managers
Contains qmaster messages (informations, warnings, errors) for debugging purposes
Contains configured calendars
Contains a list of user names, which are operators -
Contains the process id of the current master process
Contains all configured complexes
Contains stdout and stderr messages when the shadowd starts qmaster (until gmaster is daemonized)
Contains the process id of the shadow daemon running on host1
Contains the process id of the shadow daemon running on host2

Shadow daemon messages file

Contains a number, which is incremented
every 30 seconds by the master
(for shadow daemon failover)

Contains the sequence number of the last submitted job

Contains a file for each admin host

The qmaster spooling directory -« - -« -« << e e

—
ter =——— =%
qmaster e~————— /\

Zombie jobs
Contains all configured host groups
Contains all job_scripts from active jobs *
Contains queue instances ~
Contains the sequence number of the last advance reservation ~~~
Contains configured resource quota rules *
Contains submit hosts
Contains all managed jobs within the system
Contains configured parallel environments ~ " -
Contains configured checkpointing objects
Contains user configurations ~ -
Contains configured projecets
Contains queues
Contains all hosts, which are execution hosts ~~~

Contains configured user sets -

FIGURE 2: Overview of the gmaster Spooling Directory

Execution Host Spooling Directory

=

advance_t example AR |

managers
messages
=
operators

I -~ B qmasterpid

J— for each complex a file

np_load_avg
messages_qmaster host1

> shadowd_host] pid

> shadowd_host2.pid

messages_shadowd host]

A

messages_shadowd host2

"> heartbeat

© ™ jobsegnum

|
:
- - - B qinstances

pt

example parallel

pe

mytestpe

ibmif

cqueues

allq

exec_hosts
¥ usersets

The following figure illustrates the structure of the execution host spooling directory (Figure

3to 6):

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

1 Navigating and Understanding

Execution host

Contains current process id of the execution daemon
- execd.pid

Logging file of the execution daemon

spooling - - » <execd spool_dir>

base directory

Execution host

spooling directory

- messages
<hostname>
Directory with all jobs currently executed\l active_jobs
(see details in Figure 4)

Directory with the spooled execution daemon\ .» jobs
internal job objects (see details in Figure 5)

Directory with the job scripts of currently- - | job_scripts
executed jobs (see details in Figure 6)

FIGURE 3: Overview of the Execution Host Spooling Directory

Table 3: Execution Host Spooling Directory Details

Directory or File

Description

<execd_spool_dir>

<hostname>
execd.pid
messages

active_jobs

jobs

job_scripts

The execution host spooling base directory as defined by the
configuration value “execd_spool_dir” in the execution host or
global host configuration.

The execution host specific spooling subdirectory. The name of
this directory is the name of the execution host.

The process ID of the execution daemon. It writes this file after
start.

The log file of the execution daemon. The amount of messages
logged to this file depends on the configuration value “loglevel”.
In this subdirectory, the execution daemon creates a directory
for each task of the job that is to be started on this execution
host.

In this subdirectory, the execution daemon spools the job
objects it uses internally.

In this subdirectory, the execution daemon stores the job
scripts of all jobs that have tasks that are to be started on this
execution host.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 6

1 Navigating and Understanding

Additional group id of the user process - addgrpid

UGE configuration values that are relevant for job execution eonfig

The environment variables that are to be set for the job = anvironment

Error message from the shepherd .. R——

Exit status of the job after job end

<job id=. <task id

Process id of the job itself

= axit_status

Cor R

One directory for each task on this execution host

Job_pid

The hosts, queues and granted slots of a parallel job » pe_hostfile

Process id of the shepherd process = pid

The shepherds log fila - - - - - - cooonnnnnna AT trace

One subdirectory for each parallel task on this execution host - - - —| <pe_task>.<hosthame>

FIGURE 4: Overview of the Active Jobs Spooling Sub Directory

Table 4: Active Jobs Subdirectory Details

Directory or File Description

<job id>.<task id> For each task of a job such a subdirectory is created.

<pe_task_id>.<hostname> For each parallel task of a tightly integrated parallel job, the
execution daemon creates such a subdirectory right before
it starts the parallel task. This subdirectory contains the
same files as the “active_jobs” directory, except for the
“pe_hostfile"”.

<job id part 1>

The name of this directory . ..-- -~

are the leftmost two digits <job id part 2>

of the job ID, e.g. "12". The name of this directory---- "~
are the central four digits
of the job ID, e.g. "3456". The name of this file are L. i
the rightmost four digits of <job id part 3>.<task id>
the job |ID and the task ID, L
e.g. "7890.1"

|.e. this file would belong
to task 1 of job 1234567890
It contains the spooled job object,
i.e. the internal representation
of the job in the execution daemon.

FIGURE 5: Overview of the Jobs Spooling Subdirectory

The jobs spooling directory is split up into this structure because most filesystems become
slow when there are too many files or subdirectories in one directory. This wouldn't be a
problem on the execution host, as there will never be more than 10,000 tasks on one host,
but the same spooling functions are used with classic spooling in the Qmaster, too.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 7

1 Navigating and Understanding

job_scripts

T

<job scripts files>
One copy of the job script for all tasks . . » J 5

of the job on this execution host.
The name is the job id,

e.g. "1234567890". FIGURE 6

Overview of the Job Scripts Spooling Subdirectory

1.1.2 Displaying Status Information

Altair Grid Engine is a distributed system that handles and interacts with different entities
such as jobs, hosts, and queues.

+ queues can have different states, depending on whether they are usable, non-usable,
or they are in any special mode (such as maintenance).

+ With jobs, the states indicate things such as whether they are already started and
when, whether the jobs are running or whether they are in any special state (such as
the suspended state).

* Hosts do not have an external state model, but they provide status information (such
as CPU or memory usage).

This section describes how the states and the status for the different objects can be dis-
played and how they are interpreted.

Displaying Job Status Information

After submitting a job, Altair Grid Engine handles the complete lifetime of the job and ex-
presses the condition of the job in various predefined job states. A job can have multiple
combined states, hence the total number of different job states is very high. Use the gstat
command to show job states:

> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID
13 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host2 1

14 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host3 1

15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@hostl 1 1

15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@hostl 1 2

15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@hostl 1 3

15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@hostl 1 4

15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@hostl 1 5

15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@hostl 1 6

12 0.60500 env daniel qw 05/24/2011 09:56:45 1

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 8

1 Navigating and Understanding

The job state is displayed in the state column. In this example, there are several jobs run-
ning (r) and one job is pending (qQueue waiting, qw).

Other basic status information is the queue instance in which the job is running (queue), the
submit time (if the job is in the queued state) and the start time (if the job was dispatched
already to queue instances).

Understanding the Various Job States Altair Grid Engine job states can be a combination
of different states. For example, there are different hold states that can be applied to jobs
during submit time or afterwards, when they are running. A hold state prevents a job from
being considered during a scheduling run, therefore it affects a running job only when it is
rescheduled.

The following example illustrates the hold state in combination with other states:

Here a job is submitted with a user hold (-h):

> gqsub -h -b y sleep 120
Your job 16 ("sleep") has been submitted

After submission, the job stays in the combined hold queued-waiting state.

> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID
16 0.00000 sleep daniel hqw 05/24/2011 10:33:17 1

If the hold is removed and the job was dispatched, it is in the running state. When then
a user hold for the job is requested, the gstat command shows the combined state hold
running.

> qrls 16
modified hold of job 16

> gstat

job-ID prior name user state submit/start at queue slots ja-task-ID
16 0.00000 sleep daniel qw 05/24/2011 10:33:17 1

> gstat

job-ID prior name wuser state submit/start at queue slots ja-task-ID
16 0.55500 sleep daniel r 05/24/2011 10:34:37 all.qGhost 1 1

> ghold 16

modified hold of job 16

> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 9

1 Navigating and Understanding

16 0.55500 sleep daniel hr 05/24/2011 10:34:37 all.qGhost 1 1

The following table provides an overview of the Altair Grid Engine job states, which can
occur alone or in combination with other states:

Table 5: Overview of Job States

State Description

r Running state. The job is running on the execution host.

t Job is in a transferring state. The job is sent to the execution host.

d The job is in a deletion state. The job is currently deleted by the system.

E The job is in an error state.

R The job was restarted.

T The job is in a suspended state because of threshold limitations.

w The job is in a waiting state.

h The jobisin a hold state. The hold state prevents scheduling of the job.

S The job is in an automatic suspended state. The job suspension was triggered
indirectly.

s The job is in a manual suspend state. The job suspension was triggered
manually.

z The job is in a zombie state.

The figure below illustrates a simple but common job state transition from queued-waiting
(qw), to transferring (t) and running (r). While running, the job switches to the suspended
state (s) and back.

FIGURE 4: Simple Job State Transition
Displaying Host Status Information

Status information of hosts can be displayed with the ghost command. Hosts themselves
have no predefined explicit states like jobs or queues. Depending on the internal host state,
the queue instances on that host change its state. When for example a host is not reach-
able any more, all queue instances on that host go into the alarm state (a). Nevertheless sta-
tus information and host topology-based information remain available. Examples of status
information are the architecture, the compute load, and memory state. Examples of host

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 10

1 Navigating and Understanding

topology-based information are the number of sockets, cores and hardware-supported
threads (the latter on Linux and Solaris only).

Use the ghost command to show host status information, as in the following example:

NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS

> ghost

HOSTNAME ARCH

global - - - - -
tanqueray lx-amd64 2 1 2 20
unertl 1x-amd64 1 1 1 10

Note

In order to get SGE 6.2u5 compatible output (without NSOC, NCOR, NTHR), use the -ncb
switch (e.g. ghost -ncb).

.27 T.7G
.00 997.5M 299.0M

2.2G 0.0

2.0G

(el o]
o O

More detailed host status information can be shown with the -F argument. In addition to
the default qhost information, host-specific values (hl:) are also shown.

> ghost -F

HOSTNAME

ARCH

NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - -

host1

hl:
:num_proc=8.000000
hl:
hl:
:virtual_total=889.895M

hl

hl

hl:
hl:
hl:
hl:
hl:
hl:
hl:
hl:
hl:
hl:
hl:
:m_topology=SCCCCCCCC
hl:
hl:
hl:
:m_thread=8.000000

:np_load_avg=0.000000
hl:
hl:
hl:

hl

hl
hl

1x-amd64 8 1 8
arch=1x-amd64

mem_total=491.898M
swap_total=397.996M

load_avg=0.000000
load_short=0.000000
load_medium=0.000000
load_long=0.000000
mem_free=439.961M
swap_free=397.996M
virtual free=837.957M
mem_used=51.938M
swap_used=0.000
virtual_used=51.938M
cpu=0.000000

m_topology_inuse=SCCCCCCCC
m_socket=1.000000
m_core=8.000000

np_load_short=0.000000
np_load_medium=0.000000
np_load_long=0.000000

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

8 0.00 491.9M 51.9M 398.0M

11

1 Navigating and Understanding

Understanding the Various Host States

The following descriptions refer to the column headers output by the ghost command:

> ghost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS

« HOSTNAME: The names of the available hosts.

* ARCH: The host architecture shown by the ghost command is either an abbreviation of
the operating system used on the execution host (e.g. aix51) or a combination of the
operating system and the processor architecture (e.g. sol-amd64).

* NCPU: The number of CPUs for a system is determined by an operating system call. In
most cases, it is the number of available CPU cores on a system.

+ The next three entries are execution host topology related information and are only
available on Linux hosts (with a kernel version >= 2.6.16) and Solaris hosts.

- Nsoc: number of CPU sockets on the execution host
- NCOR: total number of compute cores on the execution host
- NTHR: hardware supported threads on the execution host

* LOAD: The machine load is the average length of the operating system run-queue
(runnable processes)in the last 5 minutes (on some operating systems, this may differ).
The source is the load value load_avg.

* The current memory status is displayed in the MEMTOT and MEMUSE columns.

- MEMTOT: total amount of memory
- MEMUSE: used memory

* Virtual memory specific information is shown in the SWAPTO and SWAPUS columns.

- SWAPTO: total amount of swap space
- SWAPUS: used swap space

Note

Your own host-based load values can be added by declaring the load value name and
typing in the complex configuration (qconf -mc) and initializing the load value either in
the execution host configuration (qconf -me <hostname>) or by installing a 1oad sensor
at the execution host.

The following table explains these additional standard load values.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 12

1 Navigating and Understanding

Table 6: Additional Standard Load Values

State Description

arch The architecture string (usually contains the OS and optionally the
ISA).

num_proc The number of detected processing units.

mem_total The total amount of installed memory.

swap_total The total amount of installed swap space.

virtual_total Total amount of virtual memory (memory + swap space).

load_avg Same as load_medium.

load_short Average load value in the last minute (time interval may differ on

load_medium

OS; source on Linux is /proc/loadavg).
Average load value in the last 5 minutes (time interval may differ on
OS; source on Linux is /proc/loadavg).

load_long Average load value in the last 15 minutes (time interval may differ
on OS; source on Linux is /proc/loadavg).

mem_free The amount of unused memory.

swap_free The amount of unused swap space.

virtual_free The amount of unused virtual memory.

mem_used The amount of occupied memory.

swap_used The amount of occupied swap space.

virtual_used The amount of occupied virtual memory.

cpu Current amount of CPU usage.

m_topology Execution host topology information (S means socket, C core, and T

m_topology_inuse

hardware-supported thread).
Execution host topology like above. Additionally occupied (via core
binding) cores are displayed in lowercase letters.

m_socket The number of CPU sockets.

m_core The total number of CPU cores.

m_thread The total number of hardware-supported threads.
np_load_avg Medium average divided by number of processors (hum_proc).

np_load_short

np_load_medium

np_load_long

display_win_gui

Short load average divided by the number of processors
(num_proc).

Medium load average divided by the number of processors
(num_proc).

Long load average divided by the number of processors
(num_proc).

On Windows (win-x86) only, this value shows whether the
execution host is able to display the GUI of a job on the currently
visible desktop.

Displaying Queue Status Information
The gstat command shows queue status information.
Use the queue selection switch -q to show all queue instances of the all.q.

> gstat -q all.q -f

queuename qtype resv/used/tot. load_avg arch states

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 13

1 Navigating and Understanding

all.q@host1 BIPC 0/0/10 0.00 1x-amd64
all.q@host2 BIPC 0/0/10 0.08 1x-amd64
all.q@host3 BIPC 0/0/10 0.01 1x-amd64

Understanding the Various Queue States

The following table shows the different queue states, which can also occur in combination.

Table 7: Queue States

State Description

Alarm state (because of load threshold, or when host is not reachable)
Alarm state

Unknown state: The execution daemon is not reachable.

Calendar suspended

Suspended

Automatically suspended

Manually disabled (gmod -d)

Automatically disabled

Error state

mggaoaununNnc >

1.2 Understanding a Default Installation

These sections describe common parts of a default Altair Grid Engine installation. Topics
covered include the queue, parallel environment, user sets, host groups and complex at-
tributes.

1.2.1 Default Queue

All hosts are by default members of the queue all.q, where every installed execution host
has as many slots as the number of CPUs reported by the operating system. This default-
queue is configured to run batch, interactive and also parallel jobs with the C-Shell as default.

See Configuring Queues for more information, such as how to change the queue.

qconf -sq all.q

gname all.q

hostlist @allhosts

seq_no 0
load_thresholds np_load_avg=1.75
suspend_thresholds NONE

nsuspend 1
suspend_interval 00:05:00
priority 0

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 14

1 Navigating and Understanding

min_cpu_interval 00:05:00
processors UNDEFINED
qtype BATCH INTERACTIVE
ckpt_list NONE
pe_list make
rerun FALSE
slots 1, [host1=4], [host2=1], [host3=1], [host4=1]
tmpdir /tmp
shell /bin/sh
prolog NONE
epilog NONE
shell_start_mode posix_compliant
starter_method NONE
suspend_method NONE
resume_method NONE
terminate_method NONE
notify 00:00:60
owner_list NONE
user_lists NONE
xuser_lists NONE
subordinate_list NONE
complex_values NONE
projects NONE
xprojects NONE
calendar NONE
initial_state default
s_rt INFINITY
h_rt INFINITY
S_cpu INFINITY
h_cpu INFINITY
s_fsize INFINITY
h_fsize INFINITY
s_data INFINITY
h_data INFINITY
s_stack INFINITY
h_stack INFINITY
s_core INFINITY
h_core INFINITY
s_rss INFINITY
h_rss INFINITY
S_vmem INFINITY
h_vmem INFINITY

1.2.2 Default PE

There is also a predefined parallel environment configured named make which is also al-
ready added to the default queue. This pe utilizes at most 999 slots and allocates them with
round_robin as the allocation rule.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 15

1 Navigating and Understanding

See User Guide -> Parallel environments for more information on how to handle those
parallel environments.

qconf -sp make

pe_name make
slots 999
used_slots 0
bound_slots 0
user_lists NONE
xuser_lists NONE
start_proc_args NONE
stop_proc_args NONE
per_pe_task_prolog NONE
per_pe_task_epilog NONE
allocation_rule $round_robin
control_slaves TRUE
job_is_first_task FALSE
urgency_slots min
accounting_summary TRUE
daemon_forks_slaves FALSE
master_forks_slaves FALSE

1.2.3 Default User Set Lists
By default, there are three different user set lists defined. arusers and deadlineusers are
access lists and defaultdepartment is a department.

All members of the arusers user set list and also the Altair Grid Engine operators and man-
agers are allowed to do advance reservations (User Guide -> Reservations).

All members of the deadlineusers user set list and also the Altair Grid Engine operators and
managers are allowed to submit deadline jobs.

See Managing User Access for more information.

qconf -sul
arusers
deadlineusers
defaultdepartment

1.2.4 Default Host Group List

@allhosts is the only predefined host group list. All hosts known atinstall time of the Qmas-
ter will be members of this host group list.

qconf -shgrpl
@allhosts

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 16

1 Navigating and Understanding

1.2.5 Default Complex Attributes

Many predefined “complex attributes” are available.

See Utilizing Complexes and Load Sensors for additional information.

qconf -sc

#name shortcut type rel. req. cons. def. wurg. aapre aff. do_rep. is_sta.

arch a RESTRING ## YES NO NONE O NO 0.00 YES YES
calendar C RESTRING ## YES NO NONE O NO 0.00 YES NO
cpu cpu DOUBLE >= YES NO 0 0 NO 0.00 YES NO
d_rt d_rt TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
display_win_gui dwg BOOL ## YES NO 0 0 NO 0.00 YES NO
docker dock BOOL == YES NO 0 0 NO 0.00 YES NO
docker_api_version dockapi DOUBLE <= YES NO 0 0 NO 0.00 YES NO
docker_images dockimg RESTRING == YES NO NONE O NO 0.00 YES NO
docker_version dockver DOUBLE <= YES NO 0 0 NO 0.00 YES NO
h_core h_core MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_cpu h_cpu TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
h_data h_data MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_fsize h_fsize MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_rss h_rss MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_rt h_rt TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
h_stack h_stack MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_vmem h_vmem MEMORY <= YES NO 0 0 NO 0.00 YES NO
hostname h HOST ## YES NO NONE O NO 0.00 YES NO
load_avg la DOUBLE >= NO NO 0 0 NO 0.00 YES NO
load_long 11 DOUBLE >= NO NO 0 0 NO 0.00 YES NO
load_medium 1m DOUBLE >= NO NO 0 0 NO 0.00 YES NO
load_short 1s DOUBLE >= NO NO 0 0 NO 0.00 YES NO
m_cache_11 mcachel MEMORY <= YES NO 0 0 NO 0.00 YES YES
m_cache_12 mcache2 MEMORY <= YES NO 0 0 NO 0.00 YES YES
m_cache_13 mcache3 MEMORY <= YES NO 0 0 NO 0.00 YES YES
m_core core INT <= YES NO 0 0 NO 0.00 YES YES
m_gpu mgpu INT <= YES NO 0 0 NO 0.00 YES YES
m_mem_free mfree MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_free_nO mfree0O MEMORY <= YES YES O 0 YES 0.00 YES NO
m_mem_free_nl mfreel MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_free_n2 mfree2 MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_free_n3 mfree3 MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_total mtotal MEMORY <= YES YES 0 0 YES 0.00 YES YES
m_mem_total_nO mmemO MEMORY <= YES YES O 0 YES 0.00 YES YES
m_mem_total_nl mmem1 MEMORY <= YES YES O 0 YES 0.00 YES YES
m_mem_total_n2 mmem?2 MEMORY <= YES YES O 0 YES 0.00 YES YES
m_mem_total_n3 mmem3 MEMORY <= YES YES 0 0 YES 0.00 YES YES
m_mem_used mused MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_mem_used_nO musedO MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_mem_used_nl musedl MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_mem_used_n2 mused2 MEMORY >= YES NO 0 0 NO 0.00 YES NO

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 17

1 Navigating and Understanding

m_mem_used_n3 mused3 MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_numa_nodes nodes INT <= YES NO 0 0 NO 0.00 YES YES
m_socket socket INT <= YES NO 0 0 NO 0.00 YES YES
m_thread thread INT <= YES NO 0 0 NO 0.00 YES YES
m_topology topo RESTRING ## YES NO NONE O NO 0.00 YES YES
m_topology_inuse utopo RESTRING ## YES NO NONE O NO 0.00 YES YES
m_topology_numa unuma RESTRING ## YES NO NONE O NO 0.00 YES YES
mem_free mf MEMORY <= YES NO 0 0 NO 0.00 YES NO
mem_total mt MEMORY <= YES NO 0 0 NO 0.00 YES YES
mem_used mu MEMORY >= YES NO 0 0 NO 0.00 YES NO
min_cpu_interval mci TIME <= NO NO 0:0:0 0 NO 0.00 YES NO
np_load_avg nla DOUBLE >= NO NO 0 0 NO 0.00 YES NO
np_load_long nll DOUBLE >= NO NO 0 0 NO 0.00 YES NO
np_load_medium nlm DOUBLE >= NO NO 0 0 NO 0.00 YES NO
np_load_short nls DOUBLE >= NO NO 0 0 NO 0.00 YES NO
num_proc p INT ## YES NO 0 0 NO 0.00 YES YES
gname q RESTRING ## YES NO NONE O NO 0.00 YES NO
rerun re BOOL ## NO NO 0 0 NO 0.00 YES NO
s_core s_core MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_cpu s_cpu TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
s_data s_data MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_fsize s_fsize MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_rss s_rss MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_rt s_rt TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
s_stack s_stack MEMORY <= YES NO 0 0 NO 0.00 YES NO
S_vmen s_vmem MEMORY <= YES NO 0 0 NO 0.00 YES NO
seq_no seq INT ## NO NO 0 0 NO 0.00 YES NO
slots s INT <= YES YES 1 1000 YES 0.00 YES NO
swap_free sf MEMORY <= YES NO 0 0 NO 0.00 YES NO
swap_rate ST MEMORY >= YES NO 0 0 NO 0.00 YES NO
swap_rsvd SISV MEMORY >= YES NO 0 0 NO 0.00 YES NO
swap_total st MEMORY <= YES NO 0 0 NO 0.00 YES YES
swap_used su MEMORY >= YES NO 0 0 NO 0.00 YES NO
tmpdir tmp RESTRING ## NO NO NONE O NO 0.00 YES NO
virtual_free vf MEMORY <= YES NO 0 0 NO 0.00 YES NO
virtual_total vt MEMORY <= YES NO 0 0 NO 0.00 YES YES
virtual_used vu MEMORY >= YES NO 0 0 NO 0.00 YES NO

1.3 Understanding Key Altair Grid Engine Configuration Objects

There are four key configuration objects that define the outline of a Altair Grid Engine clus-
ter.

* cluster configuration

+ scheduler configuration
* host configurations

* queues

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 18

1 Navigating and Understanding

Some of them are created and initialized during the installation process and some of them
have to be created after the installation to set up necessary policies in the cluster.

1.3.1 The Cluster Configuration
The cluster configuration is a configuration object that defines global aspects of the cluster
setup. Modification of this object requires manager privileges.

Certain settings of the global cluster configuration can be specified differently for individual
submit and execution hosts in a cluster. For these hosts a local configuration object can be
created. The local configuration object defines the parameters that should deviate from
the global configuration.

The available parameters of the global and local configuration can be found in the chapter
Understanding and Modifying the Cluster Configuration.

1.3.2 The Scheduler Configuration

All parameters influencing the scheduler component of Altair Grid Engine are summarized
in the scheduler configuration. Only managers of a Altair Grid Engine cluster are allowed
to change scheduler settings.

Scheduler configuration parameters are explained in in the chapter Understanding and
Modifying the Altair Grid Engine Scheduler Configuration.

1.3.3 Host and Queue Configurations

Hosts and cluster queues define the execution environment where jobs will be executed.
The host configuration object defines aspects of an execution host. Cluster queues are used
to partition a group of hosts and to provide more detailed settings that jobs require to be
executed properly.

Read the section Configuration Properties of Hosts and Queues to get more information
on how to set up and configure those objects.

1.4 Navigating the ARCo Database

1.4.1 Accessing the ARCo Database

Use a database front end to access the ARCo database, e.g. a reporting tool, or spreadsheet.

During dbwriter installation, a user arco_read has been created having read access to the
ARCo database. This arco_read user should be used to connect a reporting tool to the ARCo
database.

The examples in the following sections use a PostgreSQL database and the psql command-
line tool.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 19

1 Navigating and Understanding

1.4.2 Views to the Database

To make querying data from the ARCo database easier, a number of views have been cre-
ated on the ARCo tables.

It is recommended to use these views where possible.

The following views are available:

+ Accounting
- view_accounting: Accounting information per job.
* Job-related information

- view_job_log: The job logging.
- view_job_times: Timing information for jobs.
- view_jobs_completed: Number of jobs completed over time.

« Advance reservation data

view_ar_attribute: Attributes of advance reservations.

view_ar_log: The AR log (state changes of an AR).
view_ar_resource_usage: Resources requested by advance reservations.
view_ar_time_usage: Reserved time vs. time actually used by slots.
view_ar_usage: Timing information of advance reservations.

* Values related to Altair Grid Engine configuration objects

- view_department_values: Values related to departments.
- view_group_values: Values related to user groups.

- view_host_values: Values related to hosts.

- view_project_values: Values related to projects.

- view_queue_values: Values related to queue instances.

- view_user_values: Values related to users.

 Statistics

- view_statistic: ARCo statistics.

Accounting The following detailed view documentation is based on a PostgreSQL
database. The database structure is the same for all supported database systems, but with
the attribute types there are slight differences.

view_accounting

The view_accounting gives basic accounting information for finished jobs. More detailed
information, e.g. the rusage (ru_*) attributes can be retrieved from the sge_job_usage table.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 20

1 Navigating and Understanding

Table 8: Information Available from view_accounting

Attribute Type Description
job_number bigint the job id
task_number bigint the array task id
pe_taskid text the ID of a task of a tightly integrated parallel
job
name text the job name
group text the user group of the job owner (submitter)
username text the user name of the job owner (submitter)
account text the account string (see gsub -A option)
project text the project the job belongs to
department text the department the job owner belongs to
submission_time timestamp without the time when the job was submitted
time zone
ar_parent numeric(38,0) a reference to the advance reservation the
job is running in.
start_time timestamp without the time when the job (the array task) was
time zone started
end_time timestamp without the time when the job (the array task)
time zone finished
wallclock_time double precision the job run time in seconds
cpu double precision the CPU time consumed in seconds
mem double precision the integral memory usage in GB seconds
io double precision the amount of data transferred in

input/output operations (available only on
certain architectures)

iow double precision the 1/0 wait time in seconds (available only
on certain architectures)

maxvmem double precision the maximum vmem size in bytes

exit_status integer the exit status of the job

See also the man page accounting.5 for more information.

Example:

Find how many jobs have been run and how much CPU time has been consumed during

the last hour, listed per user:

SELECT username, count(*) AS jobs, sum(cpu)
FROM view_accounting

WHERE end_time > date_trunc('hour', now())
GROUP BY username

ORDER BY username;

username | jobs | cpu
peter | 175 | 10.612507
sgetest | 181 | 4.792978

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

21

1 Navigating and Understanding

sgetestl | 186 | 4.956504
sgetest2 | 276 | 7.054217

Job-related information

In addition to the chapter Views to the Database, there are views showing more details of
jobs, such as the job log, job timing information and a summary about finished jobs.

view_job_log

The job log shows detailed status information about the whole life cycle of a job, from job
submission to the job end.

Attribute Type Description

job_number bigint the job id

task_number bigint the array task id

pe_taskid text the ID of a task of a tightly integrated parallel job

name text the job name

group text the user group of the job owner

username text the name of the job owner

account text the account string (see gsub -A option)

project text the project the job was running in

department text the department the job owner belongs to

time timestamp without time zone the time when a job log event occurred
event text name of the job log event (e.g. pending, delivered, finished)
state text the job state (e.g. r for running)

init':iator text the initiator of the event, e.g. the name of the operator who suspended the
jo

host text the host from which the event was triggered

1.5 message text a message describing the event

: Information Available from the Job Log

Example:

SELECT job_number, time, event, state, initiator, message
FROM view_job_log

WHERE job_number = 59708

ORDER BY time;

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 22

1 Navigating and Understanding

job_number | time | event | state | initiator | message

59708 | 2011-05-24 | pending | | peter | new job
| 12:02:17 | | | I

59708 | 2011-05-24 | sent | t | master | sent to execd
| 12:02:35 | | | I

59708 | 2011-05-24 | delivered | r | master | job received by execd
| 12:02:36 | | | I

59708 | 2011-05-24 | suspended | r | peter |
| 12:02:44 | | | I

59708 | 2011-05-24 | unsuspended | r | peter |
| 12:03:01 | | | I

59708 | 2011-05-24 | finished | r | execution | job exited
| 12:03:35 | | | daemon |

59708 | 2011-05-24 | finished | r | master | job waits for schedds
| 12:03:35 I | | | deletion

59708 | 2011-05-24 | deleted | T | scheduler | job deleted by schedd
| 12:03:35 | | | I

view_job_times

The view_job_times gives timing information about a job, such as when a job was submitted,
started, or finished as well as the job run time, the total turnaround time, and so on.

Table 10: Information Available from view_job_times

Attribute Type Description

job_number bigint the job id

task_number bigint the array task ID (-1 for non-array jobs)
name text the job name

groupname text the user group of the job owner
username text the user name of the job owner

account text the account string (see gsub -A option)
project text the project the job was belonging to
department text the department the job owner belongs to

submission_time

timestamp without time

the job submission time

zone
ar_parent numeric(38,0) reference to an advance reservation the
job was running in
start_time timestamp without time the time when the job was started
zone
end_time timestamp without time the time when the job finished
zone
wait_time interval the time between job submission and job
start as time interval (e.g. 00:00:10)
turnaround_time interval the total job turnaround time (time from
job submission until job end as time
interval)
job_duration interval the job run time as time interval

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

23

1 Navigating and Understanding

Attribute Type Description
wallclock_time integer the job run time in seconds
exit_status integer the exit status of the job

Example: Look for jobs that were pending more than 3 minutes before being scheduled:

SELECT job_number, task_number, submission_time, wait_time, start_time, end_time
FROM view_job_times

WHERE wait_time > '00:03:00'

ORDER BY wait_time;

job_ | task_ | submission_time |wait_time | start_time | end_time
number| number | | | |
4732 | | 2011-05-23 14:32:43 | | 2011-05-23 14:35:50 | 2011-05-23 14:
4695 | | 2011-05-23 14:28:49 | | 2011-05-23 14:31:57 | 2011-05-23 14:
4732 | 35 | 2011-05-23 14:32:43 | 00:03:09 | 2011-05-23 14:35:52 | 2011-05-23 14:

4732 36 | 2011-05-23 14:32:43 | 00:03:17 | 2011-05-23 14:36:00 | 2011-05-23 14:
4732 37 | 2011-05-23 14:32:43 | 00:03:20 | 2011-05-23 14:36:03 | 2011-05-23 14:
4732 38 | 2011-05-23 14:32:43 | 00:03:28 | 2011-05-23 14:36:11 2011-05-23 14:

view_jobs_completed

The view_jobs_completed shows the number of jobs finished per hour.

Table 11: Information Available from view_jobs_completed

Attribute Type Description
time timestamp without start time of a time interval
time zone
completed bigint number of jobs completed between time and
time + 1 hour
ar_parent numeric(38,0) if advance reservations are used, the

completed jobs are listed per time interval and
advance reservation

Example: Show number of jobs that completed during the last 24 hours, summed up per
hour:

SELECT *
FROM view_jobs_completed
WHERE time > date_trunc('day', now());

time | completed | ar_parent

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 24

1 Navigating and Understanding

2011-05-24 02:00:00 | 2715 | 0
2011-05-24 03:00:00 | 2713 | 0
2011-05-24 04:00:00 | 2712 | 0
2011-05-24 05:00:00 | 2715 | 0
2011-05-24 06:00:00 | 2712 | 0
2011-05-24 07:00:00 | 2714 | 0
2011-05-24 08:00:00 | 2713 | 0
2011-05-24 09:00:00 | 2178 | 0
2011-05-24 10:00:00 | 1574 | 0
2011-05-24 10:00:00 | 3| 1
2011-05-24 11:00:00 | 1109 | 0
2011-05-24 12:00:00 | 201 | 0

Advance Reservation Data
view_ar_attribute

The view_ar_attribute shows the basic attributes of an advance reservation.

Table 12: Information Available from view_ar_attribute

Attribute Type Description

ar_number bigint the AR number

owner text the owner of the advance reservation

submission_time timestamp without the time when the AR was submitted
time zone

name text the name of the ar

account text the account string (see grsub -A option)

start_time timestamp without the start time of the advance reservation
time zone

end_time timestamp without the end time of the advance reservation
time zone

granted_pe text name of a parallel environment which was

granted to the advance reservation

Example:

SELECT * FROM view_ar_attribute;

ar_ | owner | submission_ | name | account | start_ | end_ | granted_pe
number | | time | | | time | time |
1 | peter | 2011-05-24 | | sge | 2011-05-24 | 2011-05-24 |
I | 09:59:48 | | | 10:30:00 | 11:30:00 |
view_ar_log

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 25

1 Navigating and Understanding

Table 13: Information Available from view_ar_log

Attribute Type Description

ar_number bigint the AR number

time timestamp without time time when the event logged occurred

zone

event text type of the event

state text the state of the advance reservation

message text a message describing the event
Example:

SELECT * FROM view_ar_log;

ar_ | time | event | state | message

number | | | |

1 | 2011-05-24 09:59:48 | RESOURCES UNSATISFIED | W | AR resources unsatisfied
1 | 2011-05-24 10:01:11 | RESOURCES SATISFIED | w | AR resources satisfied

1 | 2011-05-24 10:30:00 | START TIME REACHED | r | start time of AR reached

view_ar_resource_usage

Table 14: Information Available from view_ar_resource_usage

Attribute Type Description

ar_number bigint the AR number

variable text name of a resource requested by the ar

value text requested value of the named resource
Example:

SELECT * FROM view_ar_resource_usage;

ar_number | variable | value

view_ar_time_usage

The view_ar_time shows the time resources were held by an advance reservation vs. the
time these resources had actually been in use by jobs.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 26

1 Navigating and Understanding

Table 15: Information Available from view_ar_time_usage

Attribute Type Description

ar_id numeric(38,0) the AR number

job_duration interval actual usage of the reserved resources by jobs

ar_duration interval duration (time interval) of the advance reservation
Example:

SELECT * FROM view_ar_time_usage;

ar_id | job_duration | ar_duration

1 | 00:03:00 | 01:00:00

view_ar_usage

The view_ar_usage shows the time until which queue instances (cluster queue on host) had
been in use by an advance reservation.

Table 16: Information Available from view_ar_usage

Attribute Type Description
ar_number bigint the AR number
termination_time timestamp without time when the AR finished
time zone
queue text cluster queue name
hostname text host name
slots integer number of slots reserved on the named

queue instance

Example:

SELECT * FROM view_ar_usage;

ar_number | termination_time | queue | hostname | slots

1 | 2011-05-24 11:30:00 | all.q | hookipa | 1

Values Related to Altair Grid Engine Configuration Objects

Arbitrary values can be stored in the ARCo database related to the following Altair Grid
Engine configuration objects:

+ departments
* user groups

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 27

1 Navigating and Understanding

* hosts
* projects
* queues
* users

Examples for values related to such objects are

* load values of hosts
* license counters

* number of jobs completed per

- department
- user
- project

+ configured vs. free queue slots

¢ ... and more.

Object-related values are valid for a certain time period, meaning they have a start and an
end time.

A number of views allow easy access to these values.

view_department_values

Table 17: Information Available from view_department_values

Attribute Type Description
department text name of the department
time_start timestamp without time value is valid from time_start on
zone
time_end timestamp without time until time_end
zone
variable text name of the variable
str_value text current value of the variable as string
num_value double precision current value of the variable as floating point
number
num_config double precision configured capacity of the value (for

consumables)

view_group_values

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 28

1 Navigating and Understanding

Table 18: Information Available from view_group_values

Attribute Type Description

groupname text name of the department

time_start timestamp without time value is valid from time_start on
zone

time_end timestamp without time until time_end
zone

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point

number
num_config double precision configured capacity of the value (for

consumables)

view_host_values

Table 19: Information Available from view_host_values

Attribute Type Description

hostname text name of the host

time_start timestamp without time value is valid from time_start on
zone

time_end timestamp without time until time_end
zone

variable text name of the variable

str_value text current value of the variable as string

num_value double precision current value of the variable as floating point

number
num_config double precision configured capacity of the value (for

consumables)

Example: Show the average load per hour during the last day:

SELECT hostname, variable, time_end, num_value
FROM view_host_values

WHERE variable =

ORDER BY time_end, hostname;

hostname | variable |

'h_load' AND time_end > date_trunc('day', now())

halape
hapuna
hookipa
kahuku
kailua

time_end
_load | 2011-05-25 01:
_load | 2011-05-25 01:
_load | 2011-05-25 01:
_load | 2011-05-25 01:
load | 2011-05-25 01:

| num_value
00:00 | 0.000465116279069767
00:00 | 0.0108707865168539
00:00 | 0.0738077368421051
00:00 | 0.0430645161290322
00:00 | 0.00572881355932204

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

29

1 Navigating and Understanding

kehena
rgbfs
rgbtest
halape
hapuna

view_project_values

load | 2011-05-25 01:00:00 | 0.000635838150289017
load | 2011-05-25 01:00:00 | 0.092773
load | 2011-05-25 01:00:00 | 0.0061759138888889
load | 2011-05-25 02:00:00 | 0
load | 2011-05-25 02:00:00 | 0.0101123595505618

Table 20: Information Available from view_project_values
Attribute Type Description
project text name of the project
time_start timestamp without time value is valid from time_start on
zone
time_end timestamp without time until time_end
zone
variable text name of the variable
str_value text current value of the variable as string
num_value double precision current value of the variable as floating point

num_config double precision

number
configured capacity of the value (for
consumables)

view_queue_values

A queue value is related to a queue instance (cluster queue on a specific host).

Table 21: Information Available from view_queue_values

Attribute Type Description
gname text name of the cluster queue
hostname text name of the host
time_start timestamp without time value is valid from time_start on
zone
time_end timestamp without time until time_end
zone
variable text name of the variable
str_value text current value of the variable as string
num_value double precision current value of the variable as floating point

num_config double precision

number
configured capacity of the value (for
consumables)

Example: Show the configured capacity for slots and the actually used slots per queue in-
stance over the last hour:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 30

1 Navigating and Understanding

SELECT gname, hostname, time_end, variable, num_config, num_value
FROM view_queue_values

WHERE variable = 'slots' AND time_end > date_trunc('hour', now())
ORDER BY time_end, hostname;

gname | hostname | time_end | variable | num_config | num_value
all.q | rgbfs | 2011-05-25 08:00:01 | slots | 40 | 0
all.q | rgbtest | 2011-05-25 08:00:01 | slots | 60 | 3
all.q | hapuna | 2011-05-25 08:00:05 | slots | 10 | 0
all.q | rgbtest | 2011-05-25 08:00:05 | slots | 60 | 4
all.q | hapuna | 2011-05-25 08:00:13 | slots | 10 | 1
all.q | rgbtest | 2011-05-25 08:00:14 | slots I 60 | 3
all.q | rgbtest | 2011-05-25 08:00:16 | slots | 60 | 3
all.q | rgbtest | 2011-05-25 08:00:16 | slots | 60 | 4
all.q | rgbtest | 2011-05-25 08:00:19 | slots | 60 | 3
all.q | rgbtest | 2011-05-25 08:00:19 | slots | 60 | 4
view_user_values
Table 22: Information Available from view_user_values
Attribute Type Description
username text name of the user
time_start timestamp without time value is valid from time_start on
zone
time_end timestamp without time until time_end
zone
variable text name of the variable
str_value text current value of the variable as string
num_value double precision current value of the variable as floating point
number
num_config double precision configured capacity of the value (for

consumables)

Example: Show the number of slots finished per hour and user for the last day:

SELECT username, time_end, num_value AS jobs_finished

FROM view_user_values

WHERE variable = 'h_jobs_finished' AND time_end > date_trunc('day', now())
ORDER BY time_end, username;

username | time_end | jobs_finished
peter | 2011-05-25 01:00:00 | 247
sgetest | 2011-05-25 01:00:00 | 245
sgetestl | 2011-05-25 01:00:00 | 246

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 31

1 Navigating and Understanding

sgetest2
peter
sgetest
sgetestl
sgetest2

Statistics

2011-05-25 01:00:00
2011-05-25 02:00:00
2011-05-25 02:00:00
2011-05-25 02:00:00
2011-05-25 02:00:00

view_statistic

Shows statistical values.

A statistic has a name and can comprise multiple variables and their values over time.

Table 23: Information Available from view_statistic

245
249
246
245
245

Attribute Type Description

name text name of the statistic
time_start timestamp without time zone start time for validity of value
time_end timestamp without time zone end time for validity of value
variable text name of the variable
num_value double precision value of the variable

Example: Show the average processing speed of dbwriter per hour for the last day:

SELECT time_end AS time, num_value AS lines_per_second
FROM view_statistic

WHERE name

AND time_end > date_trunc('day', now())

= 'dbwriter' AND variable =

ORDER BY time_end;

2011-05-25
2011-05-25
2011-05-25
2011-05-25
2011-05-25
2011-05-25
2011-05-25
2011-05-25

Example: Show daily values for the number of records in the sge_host_values table:

| lines_per_second

01:00:00 | 3730.85662575603
02:00:00 3590.4583316432
03:00:00 | 3669.95984348156
04:00:00 | 3797.30899245708

I
I
I
I
05:00:00 | 3659.50091748412
I
I
I

06:00:00 | 3727.94193461027
07:00:00 3582.6273350896
08:00:00 | 3687.65701312245

SELECT * FROM view_statistic

WHERE name

name

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

= 'sge_host_values' AND variable

| time_start

'h_lines_per_second'

= 'd_row_count';

time_end

variable

| num_value

32

1 Navigating and Understanding

sge_host_values | 2011-05-23 00:00:00 | 2011-05-24 00:00:00 | d_row_count | 82356
sge_host_values | 2011-05-24 00:00:00 | 2011-05-25 00:00:00 | d_row_count | 306459

1.5.1 Database Tables

The views described above are based on the raw data in the ARCo database tables.

The database tables have similar categories as the views:

+ Job data and accounting

- sge_job

- sge_job_log

- sge_job_request
- sge_job_usage

« Advance reservation data

- sge_ar
sge_ar_attribute
sge_ar_log
sge_ar_resource_usage
sge_ar_usage

* Values related to Altair Grid Engine configuration objects

- sge_department

- sge_department_values
- sge_group

- sge_group_values
- sge_host

- sge_host_values

- sge_project

- sge_project_values
- sge_queue

- sge_queue_values
- sge_user

- sge_user_values

+ Sharetree Usage
- sge_share_log
+ Statistics

- sge_statistic
- sge_statistic_values

« dbwriter internal Data

- sge_checkpoint
- sge_version

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 33

1 Navigating and Understanding

The following detailed table documentation is based on a PostgreSQL database. The
database structure is the same for all supported database systems, but with the attribute
types there are slight differences.

Job Data and Accounting

sge_job
Table 24: Information Available from sge_job

Attribute Type Description

j_id numeric(38,0) not null internal sequential id

j_job_number bigint the job number

j_task_number bigint the array task number, -1 for sequential
jobs

j_pe_taskid text the ID of tasks of tightly integrated parallel
jobs, -1 for sequential jobs

j_job_name text the job name from gsub option -N

j_group text the name of the UNIX user group of the
submit user

j_owner text name of the submit user

j_account text account string from gsub option -A

j_priority integer the job priority set with gsub option -p

j_submission_time timestamp without the job submission time

time zone

j_project text the project the job is submitted into (qsub
option -P)

j_department text the department the job owner is assigned
to

j_job_class text if the job was submitted into a job class,
the name of the job class

j_submit_host text name of the submit host

j_submit_cmd text the command line with which the job was

submitted

sge_job_log
Table 25: Information Available from sge_job_log

Attribute Type Description

jl_id numeric(38,0) not null

jl_parent numeric(38,0) reference to sge_job.j_id

jl_time timestamp without time stamp of the job log event
time zone

jl_event text name of the job log event (e.g. pending,

delivered, finished)
jl_state text the job state (e.g. r for running)
jl_user text the initiator of the event, e.g. the name of

the operator who suspended the job

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 34

1 Navigating and Understanding

Attribute Type Description

jl_host text the host from which the event was
triggered

jl_state_time integer time stamp of the event generation, can
be earlier than the jl_time

jl_message text a message describing the event

sge_job_request

Table 26: Information Available from sge_job_request

Attribute Type Description

jr_id numeric(38,0) not null internal id

jr_parent numeric(38,0) reference to sge_job.j_id

jr_variable text name of a complex variable requested by
the job

jr_value text requested value

sge_job_usage

Holds job accounting data.

See also man page accounting.5 for details.

Table 27: Information Available from sge_job_usage

Attribute Type Description
ju_id numeric(38,0) not null internal sequential id
ju_parent numeric(38,0) reference to sge_job.j_id

ju_curr_time
ju_gname

ju_hostname
ju_start_time

ju_end_time

ju_failed
ju_exit_status
ju_granted_pe

ju_slots
ju_ru_wallclock
ju_ru_utime
ju_ru_stime

timestamp without
time zone
text

text

timestamp without
time zone
timestamp without
time zone

integer

integer

text

integer

double precision
double precision
double precision

time when the accounting record was
requested

cluster queue name in which the job was
running

name of the host the job was running on
start time

end time

indicates job start failures

the job exit status

name of the parallel environment in case
of parallel jobs

number of slots granted

job run time

user CPU time consumed

system CPU time consumed

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 35

1 Navigating and Understanding

Attribute Type Description

ju_ru_maxrss integer attributes delivered by the getrusage
system call. Depending on the operating
system only certain attributes are used.
See man page getrusage.2 or
getrusage.3c.

ju_ru_ixrss integer

ju_ru_issmrss integer

ju_ru_idrss integer

ju_ru_isrss integer

ju_ru_minflt integer

ju_ru_majflt integer

ju_ru_nswap integer

ju_ru_inblock integer

ju_ru_outblock integer

ju_ru_msgsnd integer

ju_ru_msgrev integer

ju_ru_nsignals integer

ju_ru_nvcsw integer

ju_ru_nivcsw integer

ju_cpu
ju_mem

ju_io

ju_iow
ju_ioops

ju_maxvmem
ju_ar_parent
ju_qdel_info
ju_maxrss
ju_maxpss

ju_cwd
ju_wallclock

double precision
double precision

double precision

double precision
integer

double precision
numeric(38,0) default 0
text

double precision
double precision

text
double precision

the CPU time usage in seconds.

the integral memory usage in Gbytes CPU
seconds.

the amount of data transferred in
input/output operations. Delivered only
on certain operating systems.

the io wait time in seconds. Delivered only
on certain operating systems.

the number of io operations. Delivered
only on certain operating systems.

the maximum vmem size in bytes.
reference to sge_ar.ar_id

information by whom a job was deleted
the maximum resident set size in bytes
the maximum proportional set size in
bytes

the job’s current working directory

the wallclock time measured by sge_execd
for the job, excluding suspended times.

sge_job_online_usage

Holds job online usage data (usage information gathered during the job run time)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 36

1 Navigating and Understanding

Table 28: Information Available from sge_job_online_usage

Attribute Type Description

jou_id numeric(38,0) not null internal sequential id

jou_parent numeric(38,0) not null reference to sge_job.j_id

jou_curr_time timestamp time when the online usage information
was generated in sge_execd

jou_variable text name of the resource (e.g. cpu,

jou_dvalue double precision

maxvmem)
value of resource jou_variable at time
jou_curr_time

Advance Reservation Data

sge_ar
Table 29: Information Available from sge_ar
Attribute Type Description
ar_id numeric(38,0) not null internal sequential id
ar_number bigint AR number
ar_owner text owner of the advance

ar_submission_time
zone

timestamp without time

reservation
submission time of the AR

sge_ar_attribute

Table 30: Information Available from sge_ar_attribute

Attribute Type Description
ara_id numeric(38,0) not null internal sequential id
ara_parent numeric(38,0) reference to sge_ar.ar_id
ara_curr_time timestamp without time stamp of the AR reporting
time zone
ara_name text name of the AR
ara_account text account string from grsub -A option
ara_start_time timestamp without start time of the AR
time zone
ara_end_time timestamp without end time of the AR
time zone

ara_granted_pe text

ara_sr_cal_week text

if a parallel environment was requested at
AR submission time, the name of the
granted parallel environment

in case of standing reservation the week
calendar describing the reservation points

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 37

1 Navigating and Understanding

Attribute Type Description
ara_sr_depth integer in case of standing reservation the SR
depth (the number of reservations being
done at a time)
ara_sr_jmp integer in case of standing reservation the SR ID
(a number >=0), in case of advance
reservation -1
sge_ar_log
Table 31: Information Available from sge_ar_log
Attribute Type Description
arl_id numeric(38,0) not null internal sequential id
arl_parent numeric(38,0) reference to sge_ar.ar_id
arl_time timestamp without time stamp of the AR log event
time zone
arl_event text type of the event
arl_state text the state of the advance reservation
arl_message text a message describing the event
arl_sr_id bigint in case of standing reservation the SR ID

(a number >=0), in case of advance
reservation -1

sge_ar_resource_usage

Table 32: Information Available from sge_ar_resource_usage

Attribute

Type

Description

arru_id
arru_parent
arru_variable
arru_value

numeric(38,0) not null
numeric(38,0)

text

text

internal sequential id

reference to sge_ar.ar_id

name of a resource requested by the ar
requested value of the named resource

sge_ar_usage

The sge_ar_usage table holds the information how many slots were reserved by an AR in
which queue instance.

Table 33: Information Available from sge_ar_usage

Attribute Type Description
aru_id numeric(38,0) not null internal sequential id
aru_parent numeric(38,0) reference to sge_ar.ar_id

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 38

1 Navigating and Understanding

Attribute Type Description

aru_termination_timémestamp without time when the reservation ended
time zone

aru_gname text cluster queue name

aru_hostname text host name

aru_slots integer number of slots reserved

Values Related to Altair Grid Engine Configuration Objects

The Altair Grid Engine object-related tables hold minimal information about the following
configuration objects:

+ departments
* user groups
* hosts

* projects

* queues

* users

* job classes

Records are inserted as soon as they are needed, e.g. when load values are stored into the
ARCo database for an execution host, or when user-related values are generated by derived
value rules.

sge_department
The sge_department table contains one record per department configured in Altair Grid
Engine.

Table 34: Information Available from sge_department

Attribute Type Description

d_id numeric(38,0) not null internal sequential id

d_department text the department name
sge_group

The sge_group table holds one record per UNIX group name. New groups are generated as
needed when jobs get submitted with a new group name.

Table 35: Information Available from sge_group

Attribute Type Description
g id numeric(38,0) not null internal sequential id
g_group text Unix group name

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 39

1 Navigating and Understanding

sge_host

The sge_host table holds the names of all execution hosts.

Table 36: Information Available from sge_host

Attribute Type Description
h_id numeric(38,0) not null internal sequential id
h_hostname text host name

sge_project

The sge_project table holds project names.

Table 37: Information Available from sge_project

Attribute Type Description

p_id numeric(38,0) not null internal sequential id

p_project text project name
sge_queue

The sge_queue table holds one record per queue instance.

Table 38: Information Available from sge_queue

Attribute Type Description
g_id numeric(38,0) not null internal sequential id
g_gname text cluster queue name
g_hostname text host name

sge_user

Table 39: Information Available from sge_user

Attribute Type Description
u_id numeric(38,0) not null internal sequential id
u_user text user name

sge_job_class

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 40

1 Navigating and Understanding

Table 40: Information Available from sge_job_class

Attribute Type Description
jc_id numeric(38,0) not null internal sequential id
jc_name text name of the job class

For every Altair Grid Engine configuration object type stored in the ARCo database, there is
also a table storing name/value pairs that hold data related to a configuration object, such
as load values for execution hosts, consumable values for execution hosts or queues, or
values calculated for users or projects by derived value rules.

The value tables all store the following:

+ timing information (start and end time for value validity)

* avariable name

+ a configured capacity, only used for consumable resources

+ the value of the variable during the reported time interval; can be a string value or a
numeric value

sge_department_values
The sge_department_values table holds name/value pairs related to departments.

Information Available from sge_department_values

Table 41: Information Available from sge_department_values

Attribute Type Description

dv_id numeric(38,0) not null internal sequential id

dv_parent numeric(38,0) reference to sge_department.d_id

dv_time_start timestamp without time interval for the validity of the
time zone reported value

dv_time_end timestamp without time interval for the validity of the
time zone reported value

dv_variable text variable name

dv_svalue text variable value for string variables

dv_dvalue double precision variable value for numeric variables

dv_dconfig double precision configured capacity for consumables

sge_group_values

The sge_group_values table holds name/value pairs related to Unix user groups.

Table 42: Information Available from sge_group_values

Attribute Type Description

gv_id numeric(38,0) not null internal sequential id

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 41

1 Navigating and Understanding

Attribute

Type

Description

gv_parent
gv_time_start

gv_time_end

gv_variable
gv_svalue
gv_dvalue
gv_dconfig

numeric(38,0)
timestamp without
time zone
timestamp without
time zone

text

text

double precision
double precision

reference to sge_group.d_id

time interval for the validity of the
reported value

time interval for the validity of the
reported value

variable name

variable value for string variables
variable value for numeric variables
configured capacity for consumables

sge_host_values

The sge_host_values table holds name/value pairs related to execution hosts.

Table 43: Information Available from sge_host_values

Attribute Type Description
hv_id numeric(38,0) not null internal sequential id
hv_parent numeric(38,0) reference to sge_host.d_id

hv_time_start
hv_time_end

hv_variable
hv_svalue
hv_dvalue
hv_dconfig

timestamp without
time zone
timestamp without
time zone

text

text

double precision
double precision

time interval for the validity of the
reported value

time interval for the validity of the
reported value

variable name

variable value for string variables
variable value for numeric variables
configured capacity for consumables

sge_project_values

The sge_project_values table holds name/value pairs related to projects.

Table 44: Information Available from sge_project_values

Attribute Type Description
pv_id numeric(38,0) not null internal sequential id
pv_parent numeric(38,0) reference to sge_project.p_id

pv_time_start
pv_time_end

pv_variable
pv_svalue
pv_dvalue
dpv_dconfig

timestamp without
time zone
timestamp without
time zone

text

text

double precision
double precision

time interval for the validity of the
reported value

time interval for the validity of the
reported value

variable name

variable value for string variables
variable value for numeric variables
configured capacity for consumables

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 42

1 Navigating and Understanding

sge_queue_values

The sge_queue_values table holds name/value pairs related to queue instances.

Table 45: Information Available from sge_queue_values

Attribute Type Description
qv_id numeric(38,0) not null internal sequential id
qv_parent numeric(38,0) reference to sge_queue.q_id

qv_time_start
gv_time_end

gv_variable
qv_svalue
gv_dvalue
gv_dconfig

timestamp without
time zone
timestamp without
time zone

text

text

double precision
double precision

time interval for the validity of the
reported value

time interval for the validity of the
reported value

variable name

variable value for string variables
variable value for numeric variables
configured capacity for consumables

sge_user_values

The sge_user_values table holds name/value pairs related to user names.

Table 46: Information Available from sge_user_values

Attribute Type Description
uv_id numeric(38,0) not null internal sequential id
uv_parent numeric(38,0) reference to sge_user.u_id

uv_time_start
uv_time_end

uv_variable
uv_svalue
uv_dvalue
uv_dconfig

timestamp without
time zone
timestamp without
time zone

text

text

double precision
double precision

time interval for the validity of the
reported value

time interval for the validity of the
reported value

variable name

variable value for string variables
variable value for numeric variables
configured capacity for consumables

sge_job_class_values

The sge_job_class_values table holds name/value pairs related to job classes.

Table 47: Information Available from sge_job_class_values

Attribute Type Description
jev_id numeric(38,0) not null internal sequential id
jcv_parent numeric(38,0) reference to sge_job_class.jc_id

jev_time_start

timestamp without
time zone

time interval for the validity of the
reported value

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 43

1 Navigating and Understanding

Attribute Type Description

jcv_time_end timestamp without time interval for the validity of the
time zone reported value

jcv_variable text variable name

jcv_svalue text variable value for string variables

jev_dvalue double precision variable value for numeric variables

jcv_dconfig double precision configured capacity for consumables

Sharetree Usage

sge_share_log

Table 48: Information Available from sge_share_log

Attribute Type Description
sl_id numeric(38,0) not null internal sequential id
sl_curr_time timestamp without the time stamp of the last status
time zone collection for this node
sl_usage_time timestamp without the time stamp of the last time the usage
time zone was updated
sl_node text the name of the share tree node
sl_user text the name of the user if this is a user node
sl_project text the name of the project if this is a project
node
sl_shares integer the number of shares assigned to the
node
sl_job_count integer the number of active jobs associated to
this node
sl_level double precision the share percentage of this node
amongst its siblings
sl_total double precision the overall share percentage of this node

sl_long_target_sharedouble precision

sl_short_target_shareouble precision

sl_actual_share double precision

sl_usage double precision

sl_cpu double precision

amongst all nodes

the long term target share that we are
trying to achieve

the short term target share that we are
trying to achieve in order to meet the
long term target

the actual share that the node is
receiving based on usage

the combined and decayed usage for this
node

the accumulated and decayed CPU time
for this node

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 44

1 Navigating and Understanding

Attribute Type Description

sl_mem double precision the accumulated and decayed memory
usage for this node. This represents the
amount of virtual memory used by
processes multiplied by the user and
system CPU time. The value is expressed
in gigabyte seconds.

sl_io double precision the accumulated and decayed I/0 usage
for this node
sl_ltcpu double precision the total accumulated CPU time for this
node
sl_ltmem double precision the total accumulated memory usage (in
gigabyte seconds) for this node
sl_ltio double precision the total accumulated I/0 usage for this
node
Index:
“sge_share_log_pkey” PRIMARY KEY, btree (sl_id)
Statistics

sge_statistic

Table 49: Information Available from sge_statistic

Attribute Type
s_id numeric(38,0) not null
S_name text

Index:
"sge_statistic_pkey" PRIMARY KEY, btree (s_id)
Foreign Key Reference:

TABLE "sge_statistic_values" CONSTRAINT "sge_statistic_values_sv_parent_fkey"
FOREIGN KEY (sv_parent) REFERENCES sge_statistic(s_id)

sge_statistic_values

Table 50: Information Available from sge_statistic_values

Attribute Type
sv_id numeric(38,0) not null
sv_parent numeric(38,0)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 45

1 Navigating and Understanding

Attribute Type

sv_time_start timestamp without time zone
sv_time_end timestamp without time zone
sv_variable text

sv_dvalue double precision

Index:

"sge_statistic_values_pkey" PRIMARY KEY, btree (sv_id)
"sge_statistic_values_idx0" btree (sv_parent, sv_variable, sv_time_end)

Foreign Key Constraints:

"sge_statistic_values_sv_parent_fkey" FOREIGN KEY (sv_parent)
REFERENCES sge_statistic(s_id)

dbwriter Internal Data

sge_checkpoint

Table 51: Information Available from sge_checkpoint

Attribute Type

ch_id integer not null

ch_line integer

ch_time timestamp without time zone

Index:

"sge_checkpoint_pkey" PRIMARY KEY, btree (ch_id)

sge_version
Table 52: Information Available from sge_version
Attribute Type
v_id integer not null
v_version text not null
v_time timestamp without time zone
Index:

"sge_version_pkey" PRIMARY KEY, btree (v_id, v_version)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 46

1 Navigating and Understanding

#Common Tasks

1.6 Common Administrative Tasks in a Altair Grid Engine System

The following sections describe tasks commonly performed in a Altair Grid Engine system,
including stopping a cluster, starting nodes, adding hosts, generating certificates, and back-
ing up and restoring a cluster.

1.6.1 Draining Then Stopping the Cluster

There are different reasons to drain a cluster or parts of a cluster during the daily work with
Altair Grid Engine. Old hosts that are removed from a cluster completely, service downtime
of execution nodes or different software upgrades sometimes require that there are no
running jobs on corresponding hosts. Also major Altair Grid Engine updates might require
that there are no pending jobs in the cluster or that certain types of jobs using specific
features are not running.

The easiest way to get rid of those jobs would be to delete them, but the consequence of
that approach is that the compute resources that were used by running jobs in the past
would be lost. The alternative is to leave the jobs running until they end on their own.
The following examples describe scenarios that could help in finding the best solution for
draining a cluster or parts of a cluster.

Host Replacement

* No new jobs should be started on the host that is being replaced. To make the sched-
uler aware of this, disable the corresponding queues.

gmod -d "*Q<hostname>"

+ Jobs that are already running on that host can continue. The state of those jobs can
be observed with gstat.

gstat -s rs -1 h=so02

* Once there are no more running jobs, the execution daemon can be shut down.
qconf -ke <hostname>

* The host itself can now be shut down.

Minor Altair Grid Engine Upgrade Stipulating Certain Job Types Not Run During the
Upgrade

+ Create or enhance a server JSV script to detect and reject the job types that are not
allowed in the system, and make this script active.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 47

1 Navigating and Understanding

qconf -mconf

jsv_url <jsv_path>

* gstat, gstat -j in combination with some knowledge of the users’ jobs will help find
running instances of jobs that were submitted in the past.
* Once all running jobs have finished, perform the upgrade.

1.6.2 Starting Up and Activating Nodes Selectively

One way to upgrade an Altair Grid Engine system is to use the backup/restore functionality
to set up a second, identical cluster. This is described in the section Installation Guide ->
Updating with Two Separate Clusters on the Same Resource Pool (Clone Configuration) in
the Installation Guide. If this upgrade is done and the functionality of the old cluster is not
disabled, two identical clusters will exist: the initial one can still be used, and the second
one can be tested before it is made active. Compute resources can be disabled in the initial
cluster selectively and enabled in the new cluster.

Disable all queues in the new cluster.
gmod -4 "x"
Deactivate old daemons, and activate compute resources in the new cluster.
+ Disable a subset of resources in the old cluster.

gmod -d "*@<hostname>"
...

+ Wait until jobs that are still running have finished.
gstat -s rs -1 h=<hostname>

+ Shut down the execution daemon in the old cluster.
qconf -ke <hostname>

* Enable the host in the new cluster.
qconf -e "*@<hostname>"

* Make users aware that they can submit jobs into the new cluster. Continue with the
previous step as long as there are enabled compute resources in the old cluster.
Now the old cluster can be uninstalled.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 48

1 Navigating and Understanding

1.6.3 Adding New Execution Hosts to an Existing Altair Grid Engine System

There are three cases in which a new execution host can be added to the Altair Grid Engine:

1. The current system is not Windows-enabled and not running in CSP mode, and the
host to be added is not running Windows as operating system.

In this case simply follow the instructions in section Execution Host Installation of the Instal-
lation Guide.

2. The current system is CSP enabled and the host to be added is not running Windows
as its operating system.

In this case certificate files need to be transferred before the system can be installed.
First execute the steps described in installation step Transfer Certificate Files and Private
Keys (Manually) in section Interactive Installation of the Installation Guide, and then do
the regular execution host installation described in Execution Host Installation.

3. The current system is not Windows-enabled and not running in CSP mode, and the
goal is to add a Windows host.

Next the system has to be Windows-enabled before it is possible to successfully install
and use the additional Windows host. Find further instructions below.

To Windows-enable an Altair Grid Engine system after the gmaster installation has
already been done, execute the following steps:

* Enable the security framework.
$SGE_ROOT/util/sgeCA/sge_ca -init

* Make the new windows host an admin host.
qconf -ah <new_windows_hosts>

* Follow the steps of Transfer Certificate Files and Private Keys (Manually) in section Inter-
active Installation of the Installation Guide.

* Then do a regular execution host installation on the new Windows host as described
in Execution Host Installation.

1.6.4 Generate/Renew Certificates and Private Keys for Users

The following steps represent an easy way to create the required certificates and private
keys for those users that want to access a CSP secured Altair Grid Engine system:

Create a text with user entries.

Create a text file containing one line for each user that should get access to the system.
Each line has three entries separated by a colon character (:) - UNIX username, full name,
email address.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 49

1 Navigating and Understanding

peter:Peter Yarrow:peter@example.com
paul:Paul Stookey:paul@example.com
mary:Mary Travers:mary@example.com

Generate the files.

Execute the following command, and specify the created text file as a parameter:
$SGE_ROOT/util/sgeCA/sge_ca -usercert <text_file>

Check the results.

Now the default location for user certificates will contain additional entries.

1s -1 /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL}/userkeys

dr-x------ 2 peter staff 512 Mar 5 14:00 peter
dr-x------ 2 paul staff 512 Mar 5 14:00 paul
dr-x------ 2 mary staff 512 Mar 5 14:00 mary

Install the files.

Security-related files may be installed in the $HOME/ . sge directory of each user. Each user
has to execute the following commands:

. $SGE_ROOT/$SGE_CELL/common/settings.sh

$SGE_ROOT/util/sgeCA/sge_ca \
-calocaltop /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL} \
—copy

Certificate and private key for user

<username> have been installed

As a fallback the key material in /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL}
is used if no $HOME/.sge exists. If the whole /var/sgeCA tree has been copied to all
hosts the copying step to $HOME/.sge above can be omitted. But be aware to keep
/var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL} tree in sync on all involved hosts after
renewal or replacement of credentials. If the copy step above has been done notify your
users to repeat it. System and daemon certificates have to be always locally installed under
the /var/sgeCA tree on all involved hosts. They are not copied to $HOME/ . sge.

Renew existing certificates:
Change the number of days that certificates should be valid.

By default CA and user certificates are valid for 365 days. To prolong them possibly adjust
the file $SGE_ROOT/util/sgeCA/renew_all_certs. (c)sh to do so.

for csh:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 50

1 Navigating and Understanding

extend the validity of the CA certificate by

set CADAYS = 365

extend the validity of the daemon certificate by
set DAEMONDAYS = 365

extend the validity of the user certificate by
set USERDAYS = 365

for sh:

extend the validity of the CA certificate by
CADAYS=365

extend the validity of the daemon certificate by
DAEMONDAYS=365

extend the validity of the user certificate by
USERDAYS=365

this calls the $SGE_ROOT/util/sgeCA/sge_ca script with the -days <num day> option to pro-
long the validity of the corresponding certificates by <num days>.

Renew the certificates.

as user root on the file server and redistribute them as needed to other hosts in the cluster
as in Install the files. section above.

csh util/sgeCA/renew_all_certs.csh
or
sh util/sgeCA/renew_all_certs.sh

Replace old certificates.

The files in the directory /var/sgeCA/... need to be replaced with the renewed version
or the whole /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL}. See the execution host
installation description for more details.

User certificates must also be replaced by each user as described in Install the files. section
above.

The following examples provide common tasks to display or check certificates:

To display a certificate:

$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -in
~/ .sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -text

To check the issuer:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 51

1 Navigating and Understanding

$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -issuer -in
~/.sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -noout

To show validity:

$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -dates -in
~/.sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -noout

To show the fingerprint:

$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -fingerprint -in
~/ .sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -noout

1.6.5 Backup and Restore the Configuration

During the backup process, all information concerning the configuration of a cluster is
stored in a tar file which can be used later for restoring. The backup saves configuration
objects such as queues, parallel environments, and global/local cluster configuration. It
also saves important files located under $SGE_ROOT, but it does not save information about
pending or running jobs. Therefore the jobs will not be restored during the restoration
process.

Creating a Manual Backup
To perform a backup manually, do the following steps.
Prepare the backup.

Log in to an admin host as user root or as admin user. Source the settings file.
source $SGE_ROOT/$SGE_CELL/common/settings.csh
Start the backup process.

cd $SGE_ROOT
./inst_sge -bup

Answer questions about the cluster.

Enter the installation location.

SGE Configuration Backup

This feature does a backup of all configuration you made
within your cluster.
Please enter your SGE_ROOT directory.

Enter the cell name.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 52

1 Navigating and Understanding

Please enter your SGE_CELL name.

Enter the backup destination directory.

Where do you want to save the backup files?
Should backup be compressed?

If you are using different tar versions (gnu tar/ solaris tar), this option
can make some trouble. In some cases the tar packages may be corrupt.
Using the same tar binary for packing and unpacking works without problems!

Shall the backup function create a compressed tar-package with your files? (y/n)
Enter the backup file name.

Please enter a filename for your backup file.

configuration
sched_configuration
accounting
bootstrap
qtask
settings.sh
act_gmaster
sgemaster
settings.csh

. backup completed
All information is saved in

Verify. Verify that the backup file was created.
Automating the Backup Process

The backup process can be automated. To do this, a backup template can be created. The
-auto command-line parameter causes the backup script to read all backup parameters
from the template file instead of asking them interactively.

An example of a backup template can be found here:
$SGE_ROOT/util/install_modules/backup_template.conf

B s s s s s
Autobackup Configuration File Template
S s g

Please, enter your SGE_ROOT here (mandatory)
SGE_ROOT=""

Please, enter your SGE_CELL here (mandatory)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 53

1 Navigating and Understanding

SGE_CELL=""

Please, enter your Backup Directory here

After backup you will find your backup files here (mandatory)

The autobackup will add a time /date combination to this dirname
to prevent an overwriting!

BACKUP_DIR=""

Please, enter true to get a tar/gz package
and false to copy the files only (mandatory)
TAR="true"

Please, enter the backup file name here. (mandatory)
BACKUP_FILE="backup.tar"

The automated backup process can be started with the following command:
inst_sge -bup -auto <backup_template>

There is no need to shut down the cluster during this operation.
Restoring from a Backup

The following steps are necessary to restore from a previous backup:
Prepare to restore.

Log in to an admin host as user root or as admin user. Source the settings file.
source $SGE_ROOT/$SGE_CELL/common/settings.csh
Start the backup process.

cd $SGE_ROOT
./inst_sge -rst
SGE Configuration Restore

This feature restores the configuration from a backup you made
previously.

Answer questions about the cluster.

Enter the installation directory.
Please enter your SGE_ROOT directory.
Specify the cell name.

Please enter your SGE_CELL name.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 54

1 Navigating and Understanding

Was compression enabled during the backup process?
Is your backup file in tar.gz[Z] format?
Specify the location of the backup file.
Please enter the full path and name of your backup file

configuration
sched_configuration
accounting
bootstrap

qtask

settings.sh
act_gmaster
sgemaster
settings.csh
sgeexecd
shadow_masters
cluster_name
jobsegnum
advance_reservations/
admin_hosts/

local_conf/
local_conf/sul0.local

Shut down gmaster, if it is running.

Found a running gmaster on your masterhost: <gmaster_hostname>
Please, check this and make sure that the daemon is down during the restore!

Shut down gmaster and hit <ENTER> to continue, or <CTRL-C> to stop
the restore procedure!

To shut down the master, open a new terminal window and trigger the shutdown before
continuing with the restore.

qconf -km

Verify
Verify the detected spooling method.

Spooling Method: classic detected!
Your configuration has been restored

Restart qmaster as user root.
Verify the Altair Grid Engine configuration.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 55

1 Navigating and Understanding

1.6.6 Changing the Altair Grid Engine admin password for all Starter Services on all
execution hosts

Typically, company security policies require changing the passwords of all users regularly, as
well as the password of the Altair Grid Engine admin user. This password is registered locally
on each execution host for the “Altair Grid Engine Starter Service” that starts the execution
daemon at host boot time. If the password of this user is changed on the Active Domain
server, the locally registered password also must be changed for each “Altair Grid Engine
Starter Service” in order to allow it to work properly. To avoid having to log on to each single
execution host and change the password manually there, the following command allows
doing this remotely from a single Windows host:

sc.exe \\exechost config "UGE_Starter_Service.exe" password= the_new_password

Where:

* “\\exechost" is the name of the Altair Grid Engine execution host, the name must be
prepended by two backslashes.

* “the_new_password" is the new password of the Altair Grid Engine admin user - the
blank between “password="and the new password is important.

This command has to be started by a user that has sufficient permissions to execute the
change - usually, this is a member of the “Domain Admins” group.

To change the password on all execution hosts, a file with the names of all execution hosts,
each prepended by two backslashes and one name per line, must be prepared, e.g. file
“exechosts.txt™

\\hostA
\\hostB
\\hostC

Then this batch script can be used to apply the password change to all execution hosts:

Q@echo off
for /F %%i in (exechosts.txt) do (
sc %hi config "UGE_Starter_Service.exe" password= the_new_password

)

1.7 Managing User Access

In a system where CSP mode is enabled, by default only users who have the necessary
certificates and private keys have the right to submit and execute jobs in the Altair Grid
Engine system.

Restrictions can be set up by an existing Altair Grid Engine administrator. Access restrictions
can be set up in different Altair Grid Engine configuration objects to limit the access to the
cluster, certain hosts/queues, or certain job types or commands.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 56

1 Navigating and Understanding

To increase the permissions for a user, it can be possible to make this user the owner of
queues, or make that user an operator or an administrator. After the installation of an
Altair Grid Engine system, the only administrator in a cluster is the admin user. Details are
explained in the sections below.

1.7.1 Setting Up a Altair Grid Engine User

To set up a user account for a Altair Grid Engine user that should be able to submit and
execute jobs in a cluster, address the following requirements:

* The user needs a UNIX or Windows user account.

* The username has to be the same on all hosts that will be accessed by the user. For
Windows hosts, this means the short username has to be the same as on the UNIX
hosts and on each host the default AD domain has to be set properly, so the username
without AD domain prefix resolves to the right user.

* Itis also recommended that the user ID and primary group ID be the same on all UNIX
hosts. The ids of UNIX and Windows hosts differ, of course.

* The user ID has to be greater than or equal to the min_uid and the primary group ID
has to be greater than or equal to the min_gid so that the user has the ability to submit
and execute jobs in a cluster. Both parameters are defined in the global configuration
and have a value of 0 by default to allow root to run jobs, too. This does not apply for
Windows hosts.

* In a CSP enabled system, it is also necessary to take the steps described in section
Generate/Renew Certificates and Private Keys for Users so that each user has access
to a certificate and private keyfile to be able to use commands to submit jobs. In CSP
enabled systemes, it is not possible to use Windows execution, submit or admin hosts.

« Users need to be able to read the files in $SGE_R0O0T/$SGE_CELL/common, and it is rec-
ommended to have full access to the directory referenced by $TMPDIR. On Windows
hosts, instead of the $TMPDIR, the fixed directory “C:\tmp” is used.

To access certain Altair Grid Engine functionalities, additional steps are required:
+ Advance Reservations

Users are not allowed to create advance reservations by default. This feature has to be
enabled by an administrator by adding the username to the arusers access list.

+ Deadline Jobs

To submit deadline jobs, users need to be able to specify the deadline initiation time. This
is only allowed if an administrator adds the user name to the deadlineusers access list.

* Access Lists

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 57

1 Navigating and Understanding

If access is additionally restricted in the cluster configuration, host configuration, queues,
projects or parallel environments through the definition of access list, users need to be
added also to those access lists before access to corresponding parts of the cluster will be
granted. For example, to be able to add a user to the share tree it is necessary to define
that user in the Altair Grid Engine system. If projects are used for the share tree definition,
that user should be given access to one project, otherwise the jobs of the user might be
executed in the lowest possible priority class, which might not be intended.

1.7.2 Managers

Users that are managers have full access to an Altair Grid Engine cluster. All requirements
that need to be fulfilled for regular users also apply to managers.

The admin user that is defined during the installation process of the Altair Grid Engine soft-
ware is automatically a manager. This user class can execute administrative commands on
administration hosts. Administrative commands are all the commands that change config-
uration parameters in a cluster or that change the state of configuration objects.

In contrast to other managers, the default admin user will also have file access to central
configuration files.

Commands to Manage Managers

Managers can be added, modified or listed with the following commands:

* gconf -sm

Displays the list of all users with administrative rights.

* gconf —-am <username>

Makes the specified user a manager.

* gconf -dm <username>

Deletes the specified user from the list of managers.

1.7.3 Operators and Owners

Users that are defined as operators have the right to change the state of configuration
objects but they are not allowed to change the configuration of an Altair Grid Engine cluster.
For example, operators can enable or disable a queue, but not to change a configuration
attribute like slots of a queue instance.

The same permissions and restrictions apply to queue owners, except the state changes
they request will only be successful on those queues they own. Sometimes it makes sense
to make users the owners of the queue instances that are located on the workstation they
regularly work on. Then they can influence the additional workload that is executed on
the machine, but they cannot administer the queues or influence queues on other hosts.
An application for such queues was the experimental “gidle” load sensor, which made it
possible to use users’ workstations for the Altair Grid Engine workload, but only if the users
were not logged in to their machines.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 58

1 Navigating and Understanding

Commands to Manage Operators

Operators can be added, modified or listed with the following commands:

* gconf -so

Displays the list of all users with operator rights.

* qCOIlf —ao <username>

Makes the specified user an operator.

* gconf -do <username>

Deletes the specified user from the list of operators.

Commands to Manage Queue Owners

The owner list of a queue is specified by the queue field owner_list. The field specifies a
comma-separated list of login names of those users who are authorized. If it has the value
NONE, only operators and administrators can trigger state changes of the corresponding

queue.

To modify or look up the field value, use the following commands:

* qconf -sq <queue_name>

Prints all queue fields to stdout of the terminal where the command is executed.

* gconf -mq <queue_name>

Opens an editor so that queue fields can be modified.

1.7.4 Permissions of Managers, Operators, Job or Queue Owners

System Operations Or Configuration Changes

Table 53: Permissions of Managers, Operators, Job or Queue

Owners

Job Queue

Operation Owner Owner Operator

Can add/change/delete AGE - - -
configuration settings of all

configuration objects (e.g.

hosts, queues, parallel

environments, checkpointing

objects...)

Can clear user and project - - -
usage in share tree. (see qconf

-clearusage).

Can use the forced flag to - - -
trigger job state changes (see

qconf -f)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

59

1 Navigating and Understanding

Job Queue
Operation Owner Owner Operator Manager
Kill gmaster event clients (see - - - X
qconf -kec)
Kill/Start gmaster threads (see - - - X
gconf -kt | -at)
Trigger scheduler monitoring -- - X
(see gconf -tsm)
Add/delete users from ACLs -- X X

(see gconf -au | Au | -du)

Queue Operations

Table 54: Permissions of Managers, Operators, Job or Queue

Owners
Queue

Operation Job Owner Owner Operator Manager
Clear error state of queue - X1 X X
instance (see qconf -c)
Enable/Disable any queue - X1 X X
instance (see qconf -d | -e)
Suspend/unsuspend any - X1 X X
queue instance (see qconf -s
| -us).

Job Operations

Table 55: Permissions of Managers, Operators, Job or Queue

Owners
Queue

Operation Job Owner Owner Operator Manager
Change the AR request of jobs - - X X
submitted by other users (see
qalter -ac)
Change override tickets of - - X X
other jobs (see qalter -o).
Change functional shares of - - X X
other jobs (see galter -js).
Change attributes of jobs that - - X X
were submitted by other users.
Increase priority of jobs owned - - X X
by other users (see qalter -p).
Reschedule jobs of other users - X2 X X

(see gmod -rj | -rq).

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 60

1 Navigating and Understanding

Queue
Operation Job Owner Owner Operator Manager
Suspend/unsuspend any job - X2 X X
Clear error state of other jobs - - X X
(see gmod -c).
Delete job of other users (see - - X X
qdel).
Set/unset system hold state of - - - X
ajob (see galter -h slS).
Set/unset operator hold state - - X X
of a job (see galter -h ol0).
Set/unset user hold state of a X - X X

job (see galter -h ulU).

1 These operations can only be applied to queues where the user is the owner.

2 Queue owners cannot trigger state changes of jobs directly, but the state changes are ap-
plied to running jobs when the owner of a particular queue where jobs are running triggers
a state change for that queue.

1.7.5 User Access Lists and Departments

User access lists are lists of user names that can be attached to configuration parameters
of the following objects.

* Cluster Configuration
* Host

* Queue

* Projects

« Parallel Environment

The configuration parameters with the name user_lists and ac/ define access lists of users
who will get access to the corresponding object, whereas the attributes with the name
xuser_lists and xac/ will define the access lists for those users who will not get access. A user
that is referenced in both user_lists and xuser_lists or in both ac/ and xac/ will not get access,
whereas when both lists are set to NONE anyone can access the corresponding object.

The term access has different meanings for the different objects. Denied access in the clus-
ter configuration means the user cannot use the whole cluster, whereas denied access to
parallel environments will cause the Altair Grid Engine scheduler to skip scheduling of cor-
responding jobs when a user explicitly requests that parallel environment.

Note that access lists are also used as department in Altair Grid Engine. In contrast to access
lists, users can be part of only of one department. Departments are used in combination
with the function and override policy schemes.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 61

1 Navigating and Understanding

The type field of an access list object defines whether the corresponding object can be used
as department or only as access list.

Commands to Add, Modify Delete Access Lists

Access lists can be added, modified or listed with the following commands:

* gconf -sul

Displays the names of all existing access lists.

* gconf -suld [access_lists]

Shows a detailed list of all access list objects of an Altair Grid Engine cluster or objects
in <access_lists>.

* gconf -dul <listname>

Deletes the access list with the given name.

* gconf -au <user> <user> ... <listname>

Adds the specified users to the access list.

* gconf -du <user> <user> ... <listname>

Deletes the specified user from the access list.

* gconf -Du <filename|dirname>

Deletes an access list object from file or from every file in a given directory.

* gconf -am <listname>

Opens an editor to modify the access list parameters.

* gconf -Au <filename|dirname>

Similar to -au with the difference that configuration is read from a file. If a directory
is specified, access list objects for every configuration file in the directory are added.

* gconf -Mu <filename|dirname>

Similar to -mu with the difference that configuration is read from a file. If a directory is
specified, access list objects for every configuration file in the directory are modified.

Configuration Parameters of Access Lists

Each access list object supports the following set of configuration attributes:

Table 56: Access List Configuration Attributes

Attribute Description
name The name of the access list.
type The type of the access list, currently one of ACL, or DEPT, or a

combination of both in a comma-separated list. Depending on this
parameter, the access list can be used as access list only or as a
department.

oticket The number of override tickets currently assigned to the department.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 62

1 Navigating and Understanding

Attribute Description
fshare The current functional shares of the department.
entries The entries parameter contains the comma -separated list of user

names or primary group names assigned to the access list or the
department. Only a user’s primary group is used; secondary groups
are ignored. Only symbolic names are allowed. A group is
differentiated from a user name by prefixing the group name with an
‘@' sign. When using departments, each user or group enlisted may
only be enlisted in one department, in order to ensure a unique
assignment of jobs to departments. For jobs without users who match
any of the users or groups enlisted under entries, the
defaultdepartment is assigned, if existing.

1.7.6 Projects

Project objects are used in combination with the Altair Grid Engine policy scheme to express
the importance of a group of jobs submitted as part of that project compared to other
jobs in other projects. Details for the setup of the policy scheme can be found in section
Managing Priorities and Usage Entitlements of the Administration Guide. The following
sections describe the available commands and object attributes.

Commands to Add, Modify or Delete Projects

Access lists can be added, modified or listed with the following commands:

* gconf -aprj
Adds a new project.

* gqconf -Aprj <filename|dirname>

Adds a new project that is defined in a file. If a directory is given, projects for every
configuration file in the directory are added.

* qconf -dprj <project_name>

Deletes an existing project.
* qconf -Dprj <filename|dirname>

Deletes a project from a file or from every file in the specified directory.
* gconf -mprj <project_name>

Opens an editor so that the specified project can be modified.

* qconf -Mprj <filename|dirname>

Modifies the project. New object configuration is read from a file. If a directory is
given, projects for every configuration file in the directory are modified.

* gconf -sprj
Shows the current configuration of the project.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 63

1 Navigating and Understanding

* gconf -sprjl
Shows all existing projects of an Altair Grid Engine cluster.

* gconf -sprjld [<prj_list>]

Shows a detailed list of all projects of an Altair Grid Engine cluster or projects in
<prj_list>.

Configuration Parameters of Projects

Each project object supports the following set of configuration attributes:

Table 57: Project Configuration Attributes

Attribute Description

name The name of the project.

oticket The number of override tickets currently assigned to the project.
fshare acl The current functional share of the project. A list of user access lists

referring to those users being allowed to submit jobs to the project. If
set to NONE all users are allowed to submit to the project except for
those listed in xacl.

xacl A list of user access lists referring to those users that are not allowed
to submit jobs to the project.

1.8 Understanding and Modifying the Cluster Configuration

The host configuration attributes control the way an Altair Grid Engine cluster operates.
These attributes are set either globally through the global host configuration object, or in a
local host configuration object that overrides global settings for specific hosts.

1.8.1 Commands to Add, Modify, Delete or List Global and Local Configurations

Global and local configurations can be added, modified, deleted or listed with the following
commands:

* gconf -Aconf <filename|dirname>
Adds a new local configuration that is defined in a file. If a directory is specified, con-
figurations for every configuration file in the directory are added.

* gconf -Mconf <filename|dirname>
Modifies a local configuration that is defined in a file. If a directory is specified, config-
urations for every configuration file in the directory are modified.

* gconf -aconf <host>

Adds a new local configuration for the given host.

* gconf -dconf <host>
Deletes an existing local configuration.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 64

1 Navigating and Understanding

* gconf -Dconf <filename|dirname>

Deletes a configuration from a file or from every file in the specified directory.

* gconf -mconf <host> | global
Modifies an existing local or global configuration.

* gconf -sconf <host> | global
Displays the global or local configuration.

* gconf -sconfl <host> | global
Displays the list of existing local configurations.

* gconf -sconfld <conf_list>

Shows a detailed list of all configurations of an Altair Grid Engine cluster or configura-
tions in <conf_list>.

1.8.2 Configuration Parameters for Global and Local Configurations

The global object and each local configuration object support the following set of configura-
tion attributes. Note that the list is not complete. Find the full description in the man page
sge_conf (1).

Table 58: Project Configuration Attributes

Attribute Description

execd_spool_dir The execution daemon spool directory. For Windows
execution hosts, this always has to be the value
“/execd_spool_dir/win-x86/placeholder” which is
replaced on the Windows execution host by the
corresponding path that is defined in the
$SGE_ROOT/$SGE_CELL/common/path_map file.

mailer Absolute path to the mail delivery agent.

load_sensor A comma-separated list of executables to be started by
execution hosts to retrieve site configurable load
information.

prolog epilog Absolute path to executables that will be executed
before/after an Altair Grid Engine job.

shell_start_mode Defines the mechanisms which are used to invoke the
job scripts on execution hosts.

min_uid min_gid Defines the lower bound on user/group IDs that may
use the cluster.

user_lists xuser_lists User access lists that define who is allowed access to the
cluster.

administrator_mail List of mail addresses that will be used to send problem
reports.

project xproject Defines which projects are granted access and where

access will be denied.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 65

1 Navigating and Understanding

Attribute

Description

load_report_time

reschedule_unknown

max_unheard

loglevel
max_aj_instances

max_aj_tasks

max_u_jobs

max_jobs
max_advance_reservations

enforce_project

enforce_user

auto_user_delete_time
auto_user_default_project
auto_user_fshare
auto_user_oticket
gid_range

The system load of execution hosts is periodically
reported to the master host. This parameter defines the
time interval between load reports.

Determines whether jobs on execution hosts in an
unknown state are rescheduled and thus sent to other
hosts.

If the master host could not be contacted or was not
contacted by the execution daemon of a host for
max_unheard seconds, all queues residing on that
particular host are set to status unknown.

Defines the detail level for log messages.

This parameter defines the maximum number of array
tasks to be scheduled to run simultaneously per array
job.

Defines the maximum number of tasks allowed for array
jobs. If this limit is exceeded, the job will be rejected
during submission.

The number of active jobs each user can have in the
system simultaneously.

The number of active jobs in the system.

The maximum number of active advance reservations
allowed in Altair Grid Engine.

When set to true, users are required to request a project
during submission of a job.

When set to true, users must exist within the Altair Grid
Engine system before they can submit jobs. auto means
that the user will be automatically created during the
submission of the job.

Defines different aspects for automatically created
users.

comma-separated list of range expressions specifying
additional group IDs that can be used by execution
daemons to tag jobs.

1.9 Understanding and Modifying the Altair Grid Engine Scheduler

Configuration

The Altair Grid Engine scheduler determines which jobs are dispatched to which resources.
It runs periodically at predefined intervals, but can also be configured so that additional
scheduling runs are triggered by job submission and job finishing events.

Crucial steps within a scheduler run are as follows:

* Create the job order list out of the pending job list.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 66

1 Navigating and Understanding

+ Create a queue instance order list based on a host sort formula or a sequence num-
bering schema (or both).

+ Dispatch the jobs (based on the job-order list) to the resources (based on the queue-
instance order list).

The scheduler configuration is a crucial part of each installation due to its influence on the
overall cluster utilization, job throughput, and master host load. Altair Grid Engine offers a
large set of variables, making the configuration very flexible.

Because this scheduler configuration section intersects with several other topics (such as
the policy configuration), it is recommended to read all of the following sections and man
pages: man sched_conf, man sge_priority and in Managing Priorities and Usage Entitle-
ments.

1.9.1 The Default Scheduling Scheme
The scheduler configuration is printed with the gconf -ssconf command. Modify the sched-

uler configuration with the editor configured in the $EDITOR environment variable with the
gconf -msconf command. The default configuration after a installation is shown below:

> qconf -ssconf

algorithm default
schedule_interval 0:0:10
maxujobs 0
job_load_adjustments np_load_avg=0.15
load_adjustment_decay_time 0:7:30
host_sort_formula np_load_avg
schedd_job_info false
flush_submit_sec 0

flush finish_sec 0

params none
reprioritize_interval 00:00:40
halftime 168
usage_weight_list wallclock=0.000000,cpu=1.000000,mem=0.000000,i0=0.000000
compensation_factor 5.000000
weight_user 0.250000
weight_project 0.250000
weight_department 0.250000
weight_job 0.250000
weight_tickets_functional 0
weight_tickets_share 0
share_override_tickets TRUE
share_functional_shares TRUE
max_functional_jobs_to_schedule 200
report_pjob_tickets TRUE
max_pending_tasks_per_job 50
halflife_decay_list none
policy_hierarchy 0OFS

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 67

1 Navigating and Understanding

weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000
max_reservation 0
default_duration INFINITY
weight_host_affinity 0.000000
weight_host_sort 1.000000
weight_queue_affinity 0.000000
weight_queue_host_sort 1.000000
weight_queue_seqno 0.000000

The scheduler parameters are explained in the table below:

Table 59: Scheduler Configuration Attributes

Attribute Value Specification

algorithm The algorithm can't be changed; it is default.

schedule_interval Specifies the time interval at which the scheduler is
called. The format is hours:minutes:seconds.

maxujobs The maximum number of user jobs running at the same

time. Note: 0 indicates that there is no limit. Since the
advent of resource quota sets, configuring the user limit
there is preferred because of its superior flexibility.

job_load_adjustment Determines the load correction (additional artificial load
for the scheduler), that each job contributes to the
machine load values after the job is dispatched. This
avoids overloading a currently unloaded host by
dispatching too many jobs on it, because load reporting
is sluggish (right after scheduling, there is no additional
load).

load_adjustment_decay_time The load adjustment is scaled linearly. This means right
after dispatching the job, the job_load_adjustment
adjusts the load value of the resources with 100%
influence. After a while the influence is reduced linearly
until load_adjustment_decay_time is reached.

host_sort_formula An algebraic expression used to derive a single weighted
load value from all or part of the load parameters for
each host and from all or part of the consumable
resources being maintained for each host. The default is
np_load_avg, the normalized average load. It is only
considered if weight_host_sort is not 0.

sched_jobinfo If set to true, additional scheduling information can be
seen in the gstat -j output. The default value is false,
because it impacts the overall scheduler performance in
bigger clusters.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 68

1 Navigating and Understanding

Attribute Value Specification

flush_submit_sec If unequal to O, it defines an additional scheduler run
that is performed the specified number of seconds after
a job is submitted.

flush_finish_sec If unequal to 0, it defines an additional scheduler run
that is performed the specified number of seconds after
a job finishes.

params Additional parameters for the Altair Grid Engine
scheduler:
* DURATION_OFFSET: assumed offset between run-time
of a job and the run-time from scheduler perspective
* PROFILE: 1 = turning run-time profiling on
* MONITOR: 1 = turning additional monitoring on
* PE_RANGE_ALG: alternative behavior when selecting
slots depending on a PE range

other parameters see Managing Priorities and Usage Entitlements

1.10 Configuring Properties of Hosts and Queues

Both hosts and queues offer a wide range of resources for jobs. While hosts are a common
physical concept, queues can be seen as job containers spanning across multiple hosts. A
specific queue on a specific host is called a queue instance, which is a central element in
Altair Grid Engine. One host can be part of multiple queues. Resources can be defined on a
host level or on a queue level. This section describes the configuration of hosts and queues,
as well as their intersection with complexes and load sensors.

1.10.1 Configuring Hosts

Altair Grid Engine hosts have two configurations: the local cluster configuration (also
called execution host local configuration) and the execution host configuration.

Local Cluster Configuration

The local cluster configuration can override values from the global cluster configuration
(gconf -sconf) to adapt them to the execution hosts' characteristics (like the path to the
mailer or xterm binary). The following table lists the commands used to alter the local cluster
configuration:

Table 60: Local Cluster Configuration

Command Result

qgconf -sconfl Shows all hosts with a local cluster configuration.

qconf -sconf <hostlist> Shows the local cluster configuration of hosts from the
<hostlist>.

‘gconf -mconf’ Opens an editor and lets the user configure the local

cluster configurations of hosts in the <hostlist>.
qgconf -Mconf <hostlist> Modifies the local configuration

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 69

1 Navigating and Understanding

Command Result

qgconf -aconf <hostlist> Adds new local cluster configurations to hosts given by a
host list.

qconf —Aconf <filelist> Adds new local cluster configurations to hosts given by a
file list

qconf -dconf Deletes the local cluster configuration of the host given

by the host list.

The following attributes can be used for overriding the global cluster configuration:

execd_spool_dir
mailer

Xterm
load_sensor
prolog

epilog
load_report_time
rescheduler_unknown
shepherd_cmd
gid_range
execd_params
qlogin_daemon
qlogin_command
rlogin_daemon
rlogin_command
rsh_daemon
rsh_command
libjvm_path

additional_jvm_args

More details about these attributes can be found in the man page sge_conf and in the
section Understanding and Modifying the Cluster Configuration.

Execution Host Configuration

The execution host configuration is modified with gconf -me <hostname>. Scripts should
call gconf -Me <filename|dirname>, which allows changes to the configuration based on a
given file or directory. The configuration can be shown with gconf -se <hostname> Or qconf
-seld. The following table illustrates the configuration host attributes.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 70

1 Navigating and Understanding

Table 61: Execution Host Configuration

Command

Result

qconf -ae [<template>]

qconf -Ae <filelist|dirname>

qconf -de <hostlist>
qconf -De <filename|dirname>
qconf -me <hostname>

qconf -Me <filename|dirname>

qconf -se <hostname>

qconf -sel

qconf -seld [<host_list>]

Adds a new execution host configuration,
optionally based on a configuration template.
Adds an execution host configuration based on a
file. If a directory is specified, execution hosts for
every configuration file in the directory are added.
Deletes execution host configuration based on the
given host list.

Deletes an execution host from a file or from every
file in a given directory.

Modifies the execution host configuration of the
host given by the hostname.

Modifies an execution host given based on a
configuration file. If a directory is specified,
execution hosts for every configuration file in the
directory are modified.

Shows the execution host configuration of the
given host.

Shows all existing execution hosts of an Altair Grid
Engine cluster.

Shows a detailed list of all execution hosts of an
Altair Grid Engine cluster or hosts in <host_list>.

The following is an example of an execution host configuration:

> qconf -se ma
> csuse
hostname
load_scaling
complex_values
load_values

processors
user_lists
xuser_lists
projects
xXprojects

macsuse
NONE

NONE

arch=1x-amd64,num_proc=1,mem_total=1960.277344M, \
swap_total=2053.996094M,virtual_total=4014.273438M, \
load_avg=0.280000,load_short=0.560000, \
load_medium=0.280000,load_long=0.320000, \
mem_free=1440.257812M, swap_free=2053.996094M, \
virtual_free=3494.253906M,mem_used=520.019531M, \
swap_used=0.000000M, virtual_used=520.019531M, \
cpu=2.900000,m_topology=SC,m_topology_inuse=SC, \
m_socket=1,m_core=1,m_thread=1,np_load_avg=0.280000, \
np_load_short=0.560000,np_load_medium=0.280000, \
np_load_long=0.320000

1

NONE

NONE

NONE

NONE

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 71

1 Navigating and Understanding

usage_scaling NONE
report_variables NONE

Execution Host Configuration Fields:

¢ The hostname field denotes the name of the host.

* With load_scaling, load values can be transformed. This can be useful when stan-
dardizing load values based on specific host properties (e.g. number of CPU cores).
More information and examples about load scaling are in the Special Activities Guide
in section Scaling the Reported Load.

* The complex_values field is used to configure host complexes. More details about this
field are described in the Utilizing Complexes and Load Sensors.

* The load_values and the processors field are read-only, and they can only be seen
with qconf -se <hostname>. these fields are not available when the execution host
configuration is modified.

* The usage_scaling provides the same functionality as load_scaling, but with the dif-
ference that it can only be applied to the usage values mem, cpu, and io. When no
scaling is given, the default scaling factor (1) is applied.

+ Access control can be configured on user and project level.

- user_lists and xuser_lists contain a comma-separated list of access lists (see
alsoman access_lists. The default value of both fields is NONE, which allows any
user access to this host. If access lists are configured in user_lists, only users
within this list (but not listed in xuser_lists), have access to the host.

- All users in the access lists of xuser_1list have no access.

- Inclusion and exclusion of jobs based on the projects they are associated with is
configured inthe projects and xprojects field. They contain a comma-separated
list of projects that are allowed or disallowed on the specific host. By default (both
values NONE), all projects are allowed. If a project is listed in both lists, access is
disallowed for all jobs of this project.

* The report_variables field contains a list of load values that are written in the report-
ing file each time a load report is sent from the execution daemon to the gmaster
process.

Administrative and Submit Hosts

Altair Grid Engine allows the administrator to control which hosts can be used to submit
jobs, and which hosts can be used for administrative tasks, such as changing configurations.

The following table shows all commands used for configuring the administrative host list.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 72

1 Navigating and Understanding

Table 62: Admin Host Configuration

Command Result

qconf -ah <hostnamelist> Adds one or more host to the administrative host list.

qconf -dh <hostnamelist> Deletes one or more hosts from the list of administrative
hosts.

qgconf -sh Shows all administrative hosts.

Submit hosts are configured in a similar way. The following table shows the commands
used for configuring the submission host list.

Table 63: Submission Host Configuration

Command Result

qconf -as <hostnamelist> Adds one or more host to the submit host list.
gconf -ds <hostnamelist> Deletes one or more hosts from the list of submit hosts.
qconf -ss Shows all submits hosts.

On Windows, additionally the dynamic link library $SGE_ROOT/lib/win-x86/pthreadvC2.dll
has to be copied to the Windows directory (usually “C:\Windows") on each submit or admin
host, in order to make the Altair Grid Engine binaries work on these hosts.

Grouping of Hosts

To simplify the overall cluster configuration, Altair Grid Engine hosts can be arranged with
the host-group feature. Host-groups allow the administrator and the user to identify a
group of hosts just with a single name. To differentiate host names from host-group names,
host-group names always start with the @ prefix.

Table 64: Host Group Configuration

Command Result

qconf -ahgrp <group> Adds a new host group entry with the name
<group> and opens an editor for editing.

qconf —-Ahgrp <filename|dirname> Adds a new host group entry with the
configuration based on the file <filename>. If a
directory is specified, host groups for every
configuration file in the directory are added.

qconf -dhgrp <group> Deletes the host group with the name <group>.

qconf -Dhgrp <filename|dirname> Deletes a host group from a file or from every
file in a given directory.

qconf -mhgrp <group> Modifies the host group <group> in an
interactive editor session.

qgconf -Mhgrp <filename|dirname> Modifies a host group based on a configuration
file <filename>. If a directory is specified, host
groups for every configuration file in the
directory are modified.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 73

1 Navigating and Understanding

Command Result

qconf -shgrp <group> Shows the configuration of the host-group
<group>.

qconf -shgrp_tree <group> Shows the host-group <group> with sub-groups
in a tree structure.

qconf -shgrp_resolved <group> Shows the host-group with an resolved host-list.

qgconf -shgrpl Shows a list of all host-groups.

qconf -shgrpld [<hgrp_list>] Shows a detailed list of all host groups of an

Altair Grid Engine cluster or host groups in
<hgrp_list>.

An host-group configuration consists of two entries:

* The group_name, that must be a unique name with an “@" prefix

* Ahostlist, that can contain host-names and/or other host-group names. Having host-
group names in the hostlist allows one to structure the hosts within a tree. The follow-
ing example points this out.

Example: Grouping Host-Groups in a Tree Structure

In the first step, the lowest host-groups with real host-names must be added:

> qconf -ahgrp @lowgrpl
group_name Q@lowgrpl
hostlist hostl

> gconf -ahgrp Q@lowgrp2
group_name Qlowgrp2
hostlist host2

> qconf -ahgrp Q@lowgrp3
group_name Qlowgrp3
hostlist host3

> qconf -ahgrp Q@lowgrp4
group_name Qlowgrp4
hostlist host4

Now the mid-level groups can be defined:

> qconf -ahgrp @midgrpl
group_name G@midgrpl
hostlist Q@lowgrpl Q@lowgrp2

> qconf -ahgrp G@midgrp2

group_name G@midgrp2
hostlist @lowgrp3 @lowgrp4

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 74

1

Navigating and Understanding

In a final step, the highest host-group is added:

> qconf -ahgrp Ghighgrp
group_name Ghighgrp
hostlist @midgrpl @midgrp2

Show the tree:

> qconf -shgrp_tree Qhighgrp
Ghighgrp
@midgrpl
@lowgrpl
host1l
@lowgrp2
host2
Omidgrp2
Q@lowgrp3
host3
@lowgrp4
host4

The resolved host-list looks like the following:

> qconf -shgrp_resolved Ghighgrp
hostl host2 host3 host4

1.10.2 Configuring Queues

Queues are job-containers that are used for grouping jobs with similar characteristics. Ad-
ditionally, with queues, priority-groups can be defined with the subordination mechanism.
A queue must have a unique queue name that is set with the gname attribute, and span
over a defined set of hosts (hostlist). The hostlist can contain none for no host, @all
for all hosts, or a list of hosthames and/or host group names. The following table gives an

overview over the queue configuration commands.

Table 65: Queue Configuration Commands

Command Description

qconf -aq [qname] Adds a new queue.

qconf -Aq <filename|dirname> Adds a new queue based on the configuration
given by the file filename. If a directory is specified,
qgueues for every configuration file in the directory

are added.

qgconf -cq <queuelist> Cleans a queue of jobs. The queues are given in the
<queuelist>.

qgconf -dq <queuelist> Deletes one or more queues. The name of queues

are given in the <queuelist>.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

75

1 Navigating and Understanding

Command Description

qconf -Dq <filename|dirname> Deletes a queue from a file or from every file in a
given directory.

gconf -mq <hostname> Opens an editor for modifying a queue
configuration.

qconf -Mq <filename|dirname> Modifies a queue configuration based on a
configuration file. If a directory is specified, queues
for every configuration file in the directory are

modified.

qgconf -sq <queuelist> Shows the queue configuration for one or more
queues. If no parameter is given, a queue template
is shown.

qconf -sql Shows a list of all configured queues.

qconf -sqld [<queue_list>] Shows a detailed list of all queues of an Altair Grid

Engine cluster or queues in <queue_list>.

Example: Adding a New Queue, Showing the Queue Configuration and Deleting the
Queue

> qconf -aq new.q
gname new.q
hostlist Q@allhosts

(closing the vi editor with CTRL-ZZ)
user@host added "new.q" to cluster queue list

> qconf -sq new.q

gname new.q
hostlist @allhosts
h_vmem INFINITY

> qconf -dq new.q
user@host removed "mew.q" from cluster queue list

Queue Configuration Attributes

The queue configuration involves a spectrum of very different settings. For more detailed
information, see man queue_conf.

Queue Limits

The queue configuration allows one to define a wide range of limits. These limits (by default,
INFINITY) limit the following parameters of a job running in this particular queue:
* runtime (h_rt/s_rt)

* CPU time (h_cpu/s_cpu)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 76

1 Navigating and Understanding

* number of written disc blocks (h_fsize/s_fsize)
+ data segment size (h_data/s_data)

* stack size (h_stack/s_stack)

* maximum core dump file size (h_core/s_core)

* resident set size (h_rss/s_rss)

* virtual memory size (h_vmem/s_vmem)

All limits are available as soft and hard limit instances (prefix s_and h_).

The following table shows the meaning of the different limits:

Table 66: Queue Resource Limits

Attribute Description

h_rt Limits the real time (wall clock time) the job is running. If a
job runs longer than specified a SIGKILL signal is sent to the
job.

s_rt The soft real time limit (wall clock time limit) warns a job

with a catchable SIGUSERT1 signal, if exceeded. After a
defined time period (see notify parameter), the job is
killed.

h_cpu Limits the CPU time of a job. If a job needs more CPU time
than specified, the job is signaled with a SIGKILL. In case of
parallel jobs, this time is multiplied by the number of
granted slots.

s_cpu Limits the CPU time of a job. If a job needs more CPU time
than specified, the job is signaled with SIGXCPU, which can
be caught by the job. In case of parallel jobs, this time is
multiplied by the number of granted slots.

h_vmem The virtual memory limit limits the total amount of
combined memory usage of all job processes. If the limit is
exceeded a SIGKILL is sent to the job.

S_vmem The virtual memory limit limits the total amount of
combined memory usage of all job processes. If the limit is
exceeded a SIGXCPU is sent, which can be caught by the

job.
h_fsize, s_fsize, These limits have the syntax of the setrlimit system call of
h_data, s_data, the underlying operating system.

h_stack, s_stack,
h_core, s_core,
h_rss,s_rss’

Queue Sequencing and Thresholds

The seq_no field denotes the sequence number the queue (or the queue instances) has

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 77

1 Navigating and Understanding

when the queue sort method of the scheduler configuration is based on sequence numbers.
More information can be found in the scheduler configuration section.

With load_thresholds it is possible to define when an overloaded queue instance is set to
the alarm state. This state prevents more jobs from being scheduled in this overloaded
gueue instance.

suspend_thresholds defines the thresholds at which the queue is set into a suspended
state. The default value is NONE (no threshold). If suspend thresholds are defined, and
one of the thresholds is exceeded, within the next scheduling run, a predefined number of
jobs running in the queue are suspended. The number of suspended jobs is defined in the
nsuspend field. The suspend_interval field denotes the time interval until the next nsuspend
number of jobs are suspended, in case one of the suspend thresholds remains exceeded.

Queue Checkpoints, Processing and Type

The priority value specifies at which operating system process priority value the jobs are
started. The possible range for priority (also called nice values) is from -20 to 20, where -20
is the highest priority and 20 the lowest priority. This value only has effect when dynamic
priority values are turned off (i.e. reprioritize is false in the global cluster configuration).

The min_cpu_interval defines the time interval between two automatic checkpoints. Fur-
ther information about checkpointing can be found in the man page sge_ckpt.

The processors field can be used to use a predefined processor set on the Solaris operating
system. It is deprecated since the advent of the core binding feature.

&Warning

Do not use the processors field when using the core binding feature on Solaris!

The qtype field specifies what type the queue has. Allowed values are BATCH, INTERACTIVE, a
combination of both and NONE. Interactive queues can run jobs from interactive commands,
like qrsh, qsh, qlogin, and gsub -now y. The remaining batch jobs can only run in BATCH
queues.

The list of checkpointing environments associated with this queue can be set at ckpt_list.
Further information about checkpointing can be found in the man page sge_ckpt.

The pe_list contains a list of parallel environments which are associated with this queue.

If rerun is set to FALSE (the default value), the behavior of the jobs running in the queue is
thatthey are not restarted in case of an execution host failure (seeman queue_conf for more
details). If set to TRUE, the jobs are restarted (run again) in such a case. The specified default
behavior for the jobs can be overruled on job level, when the -r option is used during job
submission.

The slots field defines the number of job slots that can be used within each queue instance
(a queue elementon a host). In case only normal (sequential) jobs are running in the queue,
it denotes the number of jobs each queue instance is capable to run. When the queue spans
over n hosts, the whole queue is limited to n*slots-value slots.

Queue Scripting

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 78

1 Navigating and Understanding

The tmpdir field specifies the path to the host's temporary file directory. The default value is
/tmp. When the execution daemon starts up a new job, a temporary job directory is created
in tmpdir for this particular job, and the job environment variables TMP and TMPDIR are set
to this path.

The shell field points to the command interpreter, which is used for executing the job
script. This shell is only taken into account when the shell_start_mode in the cluster con-
figuration is set to either posix_compliant Or script_from_stdin. This parameter can also
be overruled by the -s parameter on job submission time.

The prolog field can be set to a path to a shell script that is executed before a job running
in this queue starts. The shell script is running with the same environment as the job. The
output (stdout and stderr) is redirected to the same output file as the job. Optionally the
username under which the prolog script is executed can be set with a <username>@ prefix.
For Docker jobs, the prolog is first executed on the physical host, then in the container. In
the container, the environment variable $SGE_IN_CONTAINER is set (always to the value “1")
to allow the script to distinguish where it was started. In the container, the prolog always
runs under the job user; the <username>@ prefix is ignored there.

The epilog field sets the path to a shell script that is executed after a job running in this
gueue ends. Also see the prolog field and the queue_conf man page.

For Docker jobs, the epilog is first executed in the container, then on the physical host.
Here, $SGE_IN_CONTAINER is set and the <username>@ prefix is ignored in the container,
too.

The shell_start_mode determines which shell executes the job script. Possible val-
ues are posix_compliant (take the shell specified in shell or on job submission time),
unix_behavior (take the shell specified within the shell script (#!) or at job submission
time), or script_from_stdin. More detailed information can be found in the queue_conf
man page.

The starter_method allows one to change the job starting facility. Instead of using the speci-
fied shell, the configured executable is used for starting the job. By default, this functionality
is disabled (value NONE).

Queue Signals and Notifications

Altair Grid Engine suspends, resumes, and terminates the job process usually by default
with the signals SIGSTOP, SIGCONT, and SIGKILL. These signals can be overridden with the
queue configuration parameters suspend_method, resume_method, and terminate_method.
Possible values are signal names (such as SIGUSR1) or a path to an executable. The
executable can have additional parameters. Special parameters are $host, $job_owner,
$job_id, $job_name, $queue, and $job_pid. These variables are substituted with the
corresponding job-specific values.

When a job is submitted with a -notify option, the notify field in the queue configuration
defines the time interval between the delivery of the notify signal (SIGUSR1, SIGUSR2)and
the suspend/kill signal.

Queue Access Controls and Subordination

If user names are listed in the owner_list queue configuration attribute, these users have
the additional right to disable or suspend the queue.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 79

1 Navigating and Understanding

Access control to the queue is configured by the user_lists, xuser_lists, projects, and
xprojects lists. More detailed information about configuration of these fields can be found
in the man page access_lists and in the section ‘Configuring Hosts - Configuring Hosts'.

Queue-wise and slot-wise subordination can be defined in the subordinate_list. More in-
formation about the subordination mechanism can be found in the Special Activities Guide
in section Implementing Pre-emption Logic.

Queue Complexes

If a previously declared complex (see man complex) should be used as a queue complex
or queue consumable (i.e. available on queue instance level), it must be initialized in the
complex_values field.

Queue consumables and queue complexes must be initialized on the queue level.
The complexes_values field is used to configure the specific values of the complexes
(e.g. complex_values test=2 sets the complex test to the value 2 on each queue instance
defined by the queue).

Queue Calendar and State

The calendar attribute associates a queue with a specific calendar that controls the queue.
More information about calendars can be found in the man page calendar_cont.

The initial_state field specifies the state of the queue instances have after an execution
daemon (having this queue configured) starts or when the queue is added the first time.
Possible values are default, enabled, and disabled.

1.10.3 Utilizing Complexes and Load Sensors

The complexes concept in Altair Grid Engine is mainly used for managing resources. The
load sensors are used on execution hosts to provide a functionality for reporting the state
of resources in a flexible way. The following sections describe both concepts and show
examples of how they can be used for adapting Altair Grid Engine to the needs of users.

Configuring Complexes

Complexes are an abstract concept for configuring and denoting resources. They are de-
clared in the complex configuration (qconf -mc). Depending on whether these complexes
are initialized with a value, they can reflect either host resources or queue resources.
Host-based complexes are initialized in the complex_values field of the execution host con-
figuration (gconf -me <hostname>). If they are initialized in the global host configuration
(gconf -me global), they are available in the complete cluster. The configuration value is a
list of name/value pairs that are separated by an equals sign (=).

Adding, Modifying and Deleting Complexes

All complexes are administered in a single table. The following commands are used in
order to show and modify complexes; these commands require root/manager privilege.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 80

1 Navigating and Understanding

Table 67: Complex Configuration Commands

Command Description

qconf -ace <complex Adds a complex definition.

name>

qconf -Ace <filename> Adds a complex definition from file fname.

qconf -Ace <dirname> Adds a complex definition from every file in directory
dirname.

gconf -dce <complex Deletes complex definition.

name>

qconf -Dce <filename> Deletes a complex from file fname.

qconf -Dce <dirname> Deletes a complex from every file in directory dirname.

gconf -mc Presents all complexes in one table for editing. Opens the
editor configured in the $EDITOR environment variable
with all configured complex entries. This complex table
can be modified with the editor. When the editor is
closed the complex configuration is read in.

qconf -mce <complex Modifies a complex definition.

name>

qgconf -Mc <filename> Reads the given file in as a new complex configuration
table.

qgconf -Mce <filename> Modifies a complex definition from file.

qconf -Mce <dirname> Modifies complex definitions from every file in directory
dirname.

qgconf -sc Shows all complexes in one table with one complex on
each line.

qconf -sce complex Shows complex definition.

qconf -scel Shows all complex definitions in one list.

gconf -sceld Shows a detailed list of all complexes or complexes in

[<ce_list>]

ce_list.

Each row of the complex table consists of the following elements:

Table 68: Complex Configuration Attributes

Attribute Description
name The unique name of the complex.
shortcut This shortcut can be used instead of the name of complex

(e.g. when requesting the complex). It must be unique in
the complex configuration.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 81

1 Navigating and Understanding

Attribute

Description

type

relop

requestable

consumable

default

urgency

aapre

The type of the complex variable (used for internal
compare functions and load scaling). Possible values are
INT, DOUBLE, TIME, MEMORY, BOOL, STRING, CSTRING,
RESTRING, HOST and RSMAP. See man complex for more
detailed format descriptions. A CSTRING is a case
insensitive string type. A RSMAP (resource map) is similar to
an INT but must be a consumable and have additional
functionalities, such as mapping a job not only to a
number of resources but also to specific resource
instances.

Specifies the relation operator used for comparison of the
user requested value and the current value of the
complex. The following operators are allowed: ##, <, >,
<=, >=, and EXCL. The EXCL operator is used to define host
exclusive of queue exclusive access control.

Possible values are y, yes, n, no,and f, forced. Yes
means that a user can request this resource, no denotes
the resource non-requestable, and forced rejects all jobs
which do not request this resource.

Possible values are y, yes, n, no, j, job,andh, host. A
yes value declares a complex as a consumable. When job
is set, the complex is a per job consumable. Since 8.1.3
thereis ah, host consumable which is a per-host
consumable. This type is only allowed with the type
RSMAP.

When the complex is a consumable, a default request can
be set here. It is overridden when a job requests this
complex on the command line.

Defines the resource urgency. When a user requests this
resource, this resource urgency is taken into account
when the scheduler calculates the priority of the job (see
Urgency Policy).

Defines whether a consumable resource will be reported
as available when a job that consumes such a resource is
preempted. For all non-consumable resources it can only
be set to NO. For consumables it can be set to YES or NO.
The aapre attribute of the slots complex can only be set to
YES. After the installation of AGE all memory-based
complexes are defined as consumable and aapre is also
set to YES. As a result preempted jobs will report memory
of those jobs as available that are in the preempted
(suspended) state.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 82

1 Navigating and Understanding

Attribute Description

affinity Defines the resource affinity factor. A value of 0 means
that no affinity is configured for the variable, a positive
value means that affinity is configured (jobs already
running on a host attract other jobs), a negative value
means that anti-affinity is configured (jobs already running
on a host reject other jobs). See Affinity, Anti-Affinity, Best
Fit

do_report Defines whether a resource may be reported as a load
value. When it is set to YES, load values gathered on an
execution host will be reported. When set to NO, no load
values will be reported. Exceptions are all “m_mem_*" and
all “cuda.*” complex variables which will always be
reported.

is_static Defines whether the load value for a resource is
considered to be static (does not or seldom changes) or
dynamic (constantly changes).

After a default installation, at least the following complexes are available (there are more
depending on the product version):

> qconf -sc

#name shortcut type rel. req. cons. def. wurg. aapre aff. do_rep. is_sta.

arch a RESTRING ## YES NO NONE O NO 0.0 YES YES
calendar c RESTRING ## YES NO NONE O NO 0.0 YES NO
cpu cpu DOUBLE >= YES NO 0 0 NO 0.0 YES NO
d_rt d_rt TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
display_win_gui dvg BOOL #i#t YES NO 0 0 NO 0.0 YES NO
docker dock BOOL == YES NO 0 0 NO 0.0 YES NO
docker_api_version dockapi DOUBLE <= YES NO 0 0 NO 0.0 YES NO
docker_images dockimg RESTRING == YES NO NONE O NO 0.0 YES NO
docker_version dockver DOUBLE <= YES NO 0 0 NO 0.0 YES NO
h_core h_core MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_cpu h_cpu TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
h_data h_data MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_fsize h_fsize MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_rss h_rss MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_rt h_rt TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
h_stack h_stack MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_vmem h_vmem MEMORY <= YES NO 0 0 NO 0.0 YES NO
hostname h HOST ## YES NO NONE O NO 0.0 YES NO
load_avg la DOUBLE >= NO NO 0 0 NO 0.0 YES NO
load_long 11 DOUBLE >= NO NO 0 0 NO 0.0 YES NO
load_medium 1m DOUBLE >= NO NO 0 0 NO 0.0 YES NO
load_short 1s DOUBLE >= NO NO 0 0 NO 0.0 YES NO
m_cache_11 mcachel MEMORY <= YES NO 0 0 NO 0.0 YES YES
m_cache_12 mcache2 MEMORY <= YES NO 0 0 NO 0.0 YES YES

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 83

1

Navigating and Understanding

m_cache_13
m_core

m_gpu
m_mem_free
m_mem_free_nO
m_mem_free_nl
m_mem_free_n2
m_mem_free_n3
m_mem_total
m_mem_total_nO
m_mem_total_nl
m_mem_total_n2
m_mem_total_n3
m_mem_used
m_mem_used_nO
m_mem_used_nl
m_mem_used_n2
m_mem_used_n3
m_numa_nodes
m_socket
m_thread
m_topology
m_topology_inuse
m_topology_numa
mem_free
mem_total
mem_used
min_cpu_interval
np_load_avg
np_load_long
np_load_medium
np_load_short
num_proc

gname

rerun

s_core

s_cpu

s_data

s_fsize

sS_rss

s_rt

s_stack

S_vmem

seq_no

slots
swap_free
swap_rate
swap_rsvd
swap_total

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

mcache3
core
mgpu
mfree
mfreel
mfreel
mfree2
mfree3
mtotal
mmemO
mmem1
mmem?2
mmem3
mused
musedO
musedl
mused?2
mused3
nodes
socket
thread
topo
utopo
unuma
mf

mt

mu

mci
nla
nll
nlm
nls

p
q

re
s_core
s_cpu
s_data
s_fsize
sS_rss
s_rt
s_stack
S_vmem
seq

s

sf

sT

STrsvV

st

MEMORY
INT
INT
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
MEMORY
INT
INT
INT
RESTRING
RESTRING
RESTRING
MEMORY
MEMORY
MEMORY
TIME
DOUBLE
DOUBLE
DOUBLE
DOUBLE
INT
RESTRING
BOOL
MEMORY
TIME
MEMORY
MEMORY
MEMORY
TIME
MEMORY
MEMORY
INT
INT
MEMORY
MEMORY
MEMORY
MEMORY

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO

NO

NO

NO

NO

YES
YES
NO

YES
YES
YES
YES
YES
YES
YES
YES
NO

YES
YES
YES
YES
YES

NO
NO
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO

O OO OO O OO ODODIODODOODOOOOOOoOOo

NONE
NONE

=
o
=
3]

O OO O OO O O o

=
o
=
™

O O OO, OO OO0 OO OoOOoOOo

O OO OO OO ODOOODOODODOOOOOO

NO
NO
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

1000 YES

o

O O O

NO
NO
NO
NO

O O O OO OO OO0 OO0 OO0 OODOOODODOODODODODOODODODODOOODOOOOOOOOOOOOOOOo
O OO O OO OO OO OO ODODODODOODODODODODODODODODODODODODODODOODODOODODOOODOOOOOOOO

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES

84

YES
YES
YES
NO
NO
NO
NO
NO
YES
YES
YES
YES
YES
NO
NO
NO
NO
NO
YES
YES
YES
YES
YES
YES
NO
YES
NO
NO
NO
NO
NO
NO
YES
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
YES

1 Navigating and Understanding

swap_used su MEMORY >= YES NO 0 0 NO 0.0 YES
tmpdir tmp RESTRING ## NO NO NONE O NO 0.0 YES
virtual_free vi MEMORY <= YES NO 0 0 NO 0.0 YES
virtual_total vt MEMORY <= YES NO 0 0 NO 0.0 YES
virtual_used vu MEMORY >= YES NO 0 0 NO 0.0 YES

Initializing Complexes

After a complex is configured in the complex configuration, it must be initialized with a
meaningful value. The initialization can be done on global, host, or queue level. When a
complex s initialized on global level, the complex is available on the complete cluster. For a
consumable, the accounting for the consumable is done cluster-wide. Host-level complexes
are available after altering the local cluster configuration on the specific host. They are
available and accounted for in all queue instances on the host. Queue-level complexes are
configured for the complete queue but accounted on the host level.

In order to initialize a pre-configured complex as a global complex, the complex_values
attribute in the global host configuration has to be edited. In the following example, a com-
plex with the name complexname is initialized with the value 10.

> gconf -me global

complex_values complexname=10

Host complexes are configured similarly, but instead of editing the global host configura-
tion, the local host configuration must be changed.

> qconf -me hostname

complex_values complexname=10
Queue complexes are configured in the queue configuration:

> qconf -mg queuename

complex_values complexname=10

After setting this, each queue instance (each host on which the queue is configured) has
a complex complexname with the value 10 defined. If this complex is a consumable, and
the queue spans over 5 hosts, then overall 50 units can be consumed (10 per queue in-
stance). Sometimes the complex must be initialized with different values on each queue
instance (i.e. here on different hosts). This can be done with the “[" "]” syntax. The following
example assigns the complex complexname on queue instance queuel@hostl 10 units, on
queuel@host2 5 units, and on all other queue instances 20.

> qconf -mg queuename

complex_values complexname=20, [hostl=complexname=10], [host2=complexname=5]

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 85

NO
NO
NO
YES
NO

1 Navigating and Understanding

Using Complexes

After adding and initializing a new complex, the value of the complex can be shown either
with ghost (host level complexes) or with gstat (host, queue, and global complexes).

The gstat -F <complexname> shows the state of the complex complexname on each queue
instance. The output of all available complexes can be seen with gstat -F.

> gstat -F complexname
queuename qtype resv/used/tot. load_avg arch states

all.q@tanqueray BIPC 0/0/20 0.10 1x-amd64
qc:complexname=20

all.q@unertl BIPC 0/1/10 0.00 1x-amd64
qc:complexname=50

The prefix qc indicates that the type of the complex is a queue-based consumable. Other
common prefixes are qf (global complex with a fixed value), and hl (host complex based
on load value). Host-specific values can also be shown via qhost -F.

The following table lists the prefix letters.

Table 69: Meaning of Different Prefixes from Complexes Shown
by gstat and ghost

Prefix Letter Description

Cluster global based complex

Host-based complex

Queue (queue-instance) based complex

Value is based on load report

Value is based on a load report, which is modified through the
load scaling facility

Value is a based on consumable resource facility

f The value is fixed (non-consumable complex attribute or a fixed
resource limit)

H=Q B0

(¢}

If a complex is requestable (REQUESTABLE equals YES), a user can request this resource at
job submission time as either a hard or a soft request. A default request is a hard request,
which means that the job only runs on execution hosts/queue instances where the resource
request can be fulfilled. If requesting a resource as a soft request (see gsub man page -soft
parameter), the Altair Grid Engine scheduler tries to dispatch the job with as few soft request
violations as possible.

The following example shows how 2 units of the consumable complex complexname are
requested:

> gsub -1 complexname=2 -b y /bin/sleep 120

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 86

1 Navigating and Understanding

Configuring Load Sensors

By default, the Altair Grid Engine execution daemons report the most common host load
values, such as average CPU load, amount of memory, and hardware topology values such
as the number of CPU cores. If more site specific resource state values are needed, Altair
Grid Engine supports this with the load sensor facility. A load sensor can be a self-created
executable binary or a load sensor script that must just follow a few simple predefined
rules. The communication between the execution daemon and the load sensor is done via
standard input and standard output of the load sensor.

Load sensors are registered in the global or local cluster configuration (qconf -mconf,
load_sensors), in which the execution host specific local cluster configuration overrides
the global configuration. Load sensors are registered as a comma-separated list of
absolute paths to the load sensors.

On Windows: The path to Windows load sensors must be configured in UNIX notation and
the path_map file must contain the corresponding mapping. Both Windows batch scripts
and Windows executables can be configured.

A correct load sensor must respect the following rules:

* The load sensor must be implemented as an endless loop.
* When “quit” is read from STDIN, the load sensor should terminate.

* When end-of-line is read from STDIN, the load sensor has to compute the load values
and write the load sensor report to STDOUT.

The load sensor report must have the following format:

+ Areport starts with a line containing either the keyword “start” or the keyword “begin”.
+ Areport ends with a line containing the keyword “end".

* In between, the load values are sent. Each load value is a separate line with the fol-
lowing format:

host :name:value. The host denotes the host on which the load is measured or “global” in
the case of a global complex. The name denotes the name of the resource (complex) as
specified in the complex configuration. The value is the load value to be reported.

On Windows: In Windows executable load sensors, it is necessary to flush STDOUT after
the keyword “end” is written to it. Otherwise, the load values will be transferred to the
execution daemon not before the STDOUT buffer is full. In batch load sensors, the “echo”
command flushes STDOUT.

For a load value gathered by a load sensor to be actually reported, the corresponding vari-
able must be defined in the complex configuration with attribute do_report being set to
YES.

Sample load sensor scripts can be found here: $SGE_RO0T/util/resources/loadsensors/.
Also consider the man page sge_execd(8) for additional information.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 87

1 Navigating and Understanding

1.10.4 Configuring and Using the RSMAP Complex Type

This section describes the new complex type RSMAP, which was introduced in Altair Grid
Engine version 8.1.0.

When managing host resources such as GPU devices it is not always sufficient to handle just
the amount of installed resources, which is usually done with an integer host consumable.
Additionally there is a need to orchestrate access to specific devices in order to make sure
that there are no conflicts for individual devices and that they can be accessed properly.
Traditionally this is done by wrapper scripts, which are installed on the execution hosts
or by partitioning hosts through different queues. The new host complex type RSMAP not
only restricts the amount of units of a resource used concurrently on a host, it also attaches
identifiers to resource units and assigns them to the jobs when they are dispatched to that
host. Thereby a job gets attached to a specific unit (an ID) of such a resource.

The first section below shows how such an RSMAP complex s created. Afterwards the usage
of such complexes is shown. The last section shows the behavior of the complex types in
conjunction with special job types, such as parallel jobs and job arrays.

Creation and Initialization of RSMAP Complexes

A new complex of the type RSMAP (resource map) is created like all other complexes with
the qconf command. Usually the complex is added by hand, meaning using an editor with
gconf -mc.

Like all complexes it needs a name and a shortcut. The type must be RSMAP. The only
allowed RELOP is <=. It should be made requestable from the command line. It must be a
consumable (YES or in case of a per job consumable JOB. Since Altair Grid Engine 8.1.3 it
can also be set to HOST, which means that the requested amount is handled as a per-host
request for all hosts the job might span). Since the default values are not attached to jobs
(which is very important for the RSMAP), setting a default value is not allowed. Depending
on the scheduler configuration, the attribute urgency can be increased in order to increase
the scheduling priority of jobs requesting this complex attribute.

ARSMAP maps jobs to one or more specified IDs. An ID can be any kind of number or string
and IDs are not required to be unique. Those IDs are either cluster global or host specific.
With one complex type you can define a set of different IDs. Note that this can also be used
to reduce the need for multiple complexes with versions prior to 8.1 in some situations.

Example:
Adding a new RSMAP complex called “ProcDevice” to the Altair Grid Engine system.

> gconf -mc

#name shortcut type relop requestable consumable default urgency

ProcDevice pd RSMAP <= YES YES 0 0

After the new complex is announced to the Altair Grid Engine system it is initialized with
different IDs. This can be done either on the host level or on the cluster global level. It can
not be used on the queue level.

Example:

Initializing the “ProcDevice” complex on host host1 with the IDs “device0” and “device1”.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 88

1 Navigating and Understanding

> qconf -me hostl

complex_values ProcDevice=2(device0 devicel)

The initialization line is similar to a consumable but with an additional specifier in brackets
denoting the ID list. IDs can also be numerical ranges like (1-10) which is a shortcut for (1
23456789 10). Youcan also mix ranges with arbitrary strings ((NULL 100-113 INF)),
and also multiple identical values are allowed (0 0 0 0 1 1 1 1). Those can be useful, for
instance, if devices are installed, which can be accessed multiple times.

Usage of RSMAP Complexes

Like consumables, the resource map values can be requested during job submission. The
following example shows two jobs each requesting one of the configured “ProcDevices” (in
the examples above).

> gsub -b y -1 ProcDevice=1 sleep 3600
Your job 9 ("sleep") has been submitted
> gqsub -b y -1 ProcDevice=1 sleep 3600
Your job 10 ("sleep") has been submitted

> gstat -j 9

job_number: 9
hard resource_list: ProcDevice=1
**resource map 1: ProcDevice=macsuse=(device0) **

> gstat -j 10

job_number: 10
hard resource_list: ProcDevice=1
resource map 1: ProcDevice=macsuse=(devicel)

As you can see, each job has received a different device ID. This actual device ID can be
accessed via the SGE_HGR_ProcDevice environment variable.

Example:

The device ID is needed by an application as parameter. The application is started by a job
script.

#!/bin/sh

myapp $SGE_HGR_ProcDevice

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 89

1 Navigating and Understanding

RSMAP Topology Masks

In certain situations it is useful to map specific host resources to specific host topology
entities, such as CPU cores and sockets. In case of a multi-socket NUMA machine, some
resources (such as co-processors or network devices) are connected to specific sockets.
Altair Grid Engine supports such configurations by allowing definition of topology masks in
the RSMAP configuration.

RSMAP topology masks are strings, very similar to topology strings (complex values
m_topology and m_topology_inuse), which prohibit jobs from using certain masked CPU
cores (or complete sockets). A topology string for an eight-core processor for example
is “SCCCCCCCC”, while a two-socket quad-core system is represented by “SCCCCSCCCC".
Allowed characters in a topology mask are “S” (“s”), which represents a socket, “C" which is
an allowed (not masked core), “c”, which is a masked (not allowed) core, and “T" (“t"), which
represents a hardware thread. Since single threads cannot be masked (only complete
cores), the “T"/"t" character is ignored. Important are the “C" and “c" values, which allow or
disallow the usage of the cores.

Examples: The topology mask “SccSCC” allows the usage of the second socket (with core 0
and 1), while the usage of the first socket is prohibited. The topology mask “SCcCCSccCC”
allows the usage of first, third, and fourth core on the first socket and the third and fourth
core of the second socket.

In order to map a host resource with a certain topology, such a topology mask must be
appended in the RSMAP initialization. In the example of the last subsection a resource map
containing 2 devices was defined.

complex_values ProcDevice=2(device0 devicel)

Let's assume that device0 is connected to the first socket, and devicel to the second socket
of a dual-socket quad-core machine. To make the Altair Grid Engine scheduler aware of
this mapping, a topology mask must be appended to the configuration. First check that in
the complex configuration in the consumable column, the value HOST is set. RSMAPs with
topology masks must be HOST consumables since CPUs are host resources and have to be
chosen independent from any queues a parallel job might run in. After this is done the
topology mask can be set by appending it with an additional colon.

qconf -me <hostname>

complex_values ProcDevice=2(device0:SCCCCScccc devicel:SccccSCCCC)

When the scheduler selects the device0 for the job, the job is automatically bound to the
free cores of the first socket (because the topology mask marks the second socket internally
as being used). If there is already a job running, which is bound on cores of the first socket,
only the unbound cores can be used for the job. When the job comes with an own (implicit
or explicit) core binding request, that request is honored as well. But it is never possible
that the job gets bound to cores of the second socket.

Two examples demonstrating this behavior:

First submit a job requesting one core:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 90

1 Navigating and Understanding

$ gqsub -b y -binding linear:1 -1 ProcDevice=1 sleep 123
Your job 29 ("sleep") has been submitted

$ gstat -j 29

binding 1: maui=0,0
resource map 1: ProcDevice=maui=(device0)

The jobs gets one core on the selected device, allowed from the topology mask.

Now submit a job requesting just the device.

$ gsub -b y -1 ProcDevice=1 sleep 123
Your job 30 ("sleep") has been submitted

$ gstat -j 30

binding 1: maui=1,0:1,1:1,2:1,3
resource map 1: ProcDevice=maui=(devicel)

The job gets all free cores, which are allowed by the RSMAP topology mask.
Special Jobs

The resource map (RSMAP) complex can be used in conjunction with other job types, like
array jobs and parallel jobs, as well. The next sections describe the behavior and show
some detailed examples.

Array jobs and the RSMAP Complex

When an array job is submitted, the same job (job script or binary) is started multiple times.
This can be useful for data parallel applications, where the same processing must be per-
formed on different data sets. Like a job, each of the array job tasks can be assigned to a
resource ID out of the created pool (ID list). During job submission the resource requests
are done per task, so when requesting one resource ID but two tasks, each task gets a
different resource ID (if they are unused).

Example:

In this example we configure 10 new devices on host host1 with device numbers 100, 101,
..., 109.

> qconf -mc

#name shortcut type relop requestable consumable default urgency
__
devices dev RSMAP <= YES YES 0 0

> qconf -me hostl

complex_values dev=10(100-109)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 91

1 Navigating and Understanding

Now an array job with 10 tasks is started, which requests 2 devices per task.

> gsub -1 devices=2 -t 1:10 $SGE_RO0T/examples/jobs/sleeper.sh 3600
Your job-array 5.1-10:1 ("Sleeper") has been submitted

> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.qg@hostl 11
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@hostl 12
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@hostl 13
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@hostl 14
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@hostl 15
5 0.55500 Sleeper user qw 07/07/2011 09:04:55 1 6-10:1

As you can see just 5 jobs are able to run because the devices are limited to 10 at a time. All
jobs are running on host1.

> gstat -j 5

job_number: 5

hard resource_list: devices=2
**resource map 1: devices=host1=(100 101)*x*
**resource map 2: devices=host1=(102 103)*x*
**resource map 3: devices=host1=(104 105)*x*
**resource map 4: devices=host1=(106 107)*x*
resource map 5: devices=host1=(108 109)

scheduling info: (-1 devices=2) cannot run in queue "all.qGhost3"
because job requests unknown resource (devices)
(-1 devices=2) cannot run in queue "all.qG@host2"
because job requests unknown resource (devices)
(-1 devices=2) cannot run at host "hostl" because
it offers only hc:devices=0.000000

The gstat output shows that each task has been allocated two different IDs.
Parallel Jobs and the RSMAP Complex

Resource maps can also be used by parallel jobs. The amount of IDs a parallel job is granted
is exactly the same as for traditional consumables. If a parallel job with, for instance, 4 slots
has an additional request for a resource map complex, the total granted IDs are slots * re-
quested amount. Sometimes the amount of resources needed by the job does not depend
on the amount of granted slots. Then a resource map (RSMAP) complex can be configured
to allocate the amount of requested resources during submission time (without multipli-
cation by slots). This is accomplished by setting JOB instead of YES for the consumable
attribute in the complex configuration (qconf -mc). Then the resource map is a per job con-
sumable complex. The drawback is that per job resources are only granted on the host of

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 92

1 Navigating and Understanding

the master task. Hence RSMAPs also can be configured as per host consumables, when the
consumable attribute is set to HOST. That allows requesting a specific amount of resources
per host independent of the amount of granted slots per host.

Example:

In this example we are submitting an OpenMP job, which runs on exactly one host but has
multiple threads performing work in parallel. This job needs access to one GPU regardless
how many OpenMP threads are spawned.

In order to declare the GPU devices (let's say 2 are added on host1), the complex must be
created. Because a fixed number of GPUs are accessed per job (and not per granted slot)
the complex is a JOB consumable.

> qconf -mc

#name shortcut type relop requestable consumable default urgency
__
GPGPU gp RSMAP <= YES *x JOB** 0 0

Now the complex must be initialized on host1.

> qconf -me hostl

complex_values GPGPU=2(GPUO GPU1)

The parallel environment (here called mytestpe) must be set up for the OpenMP jobs with
$pe_slots.

> qconf -mpe mytestpe

pe_name mytestpe
slots 24
user_lists NONE
xuser_lists NONE
start_proc_args NONE
stop_proc_args NONE
allocation_rule $pe_slots
control_slaves FALSE
job_is_first_task TRUE
urgency_slots min

accounting_summary FALSE
Now start the parallel job using 12 cores but just one GPU.
> gsub -pe mytestpe 12 -1 GPGPU=1 jobscript

> gstat -j 6

job_number: 6

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 93

1 Navigating and Understanding

hard resource_list: GPGPU=1

parallel environment: mytestpe range: 12

binding: NONE

usage 1: cpu=00:00:00, mem=0.00044 GBs,
i0=0.00012, vmem=19.125M, maxvmem=19.125M

binding 1: NONE

resource map 1: GPGPU=macsuse=(GPUO)

The parallel job has received just one GPU device because the complex was configured as
a per job resource map. If it were a consumable (YES) it couldn't be started because 12 IDs
would be needed and would have to be configured for the complex attribute GP.

1.10.5 Managing Access to Devices with RSMAPs

Since Altair Grid Engine 8.6.0 it is possible to manage access to host devices via RSMAPs.
Each id of a RSMAP complex can be configured to represent a device on the host by setting
the new paramater “device” (each device can be represented by more than one RSMAP id).
In the example below a RSMAP complex gpu is initialized with two ids and each id is mapped
to an NVIDIA GPU:

complex_values gpu=2(gpuOl [device=/dev/nvidial] \
gpul [device=/dev/nvidiall)

The assigned devices are shown in the gstat output of a job:

> gsub -1 gpu=1 $SGE_ROO0T/examples/jobs/sleeper.sh 3600
Your job 7 ("Sleeper") has been submitted

> gstat -j 7

job_number: 7
hard resource_list: gpu=1
granted devices <host>: /dev/nvidia0

In a default environment the configuration and assignment of devices has no effect on
the scheduling, but if cgroups are available the cgroups parameter “devices” can be set to
a list of devices that should be managed by Altair Grid Engine. Read/write access to all
devices in the list will be blocked via cgroups and jobs will only be able to access devices
that were assigned to them via RSMAPs. With the following configuration Altair Grid Engine
will manage access to all NVIDIA GPUs (i.e. all devices from /dev/nvidia0 to /dev/nvidia254):

cgroups_params cgroup_path=/sys/fs/cgroups devices=/dev/nvidia[0-254]

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 94

1 Navigating and Understanding

Note: Multiple devices with different paths can be configured by separating their paths with
“1", e.g.

cgroups_params cgroup_path=/sys/fs/cgroups devices=/dev/nvidial[0-254]|/dev/nvidiactl

1.10.6 Advanced Attribute Configuration

With Altair Grid Engine, it is also possible to modify internal objects directly. The following

table shows the commands supporting direct object configurations:

Table 70: Commands for Direct Object Modification

Command

Result

qconf -aattr obj_nm
attr_nm val obj_id_list

qconf -Aattr obj_nm fname
obj_id_list

qconf -dattr obj_nm
attr_nm val obj_id_list
qgconf -Dattr obj_nm fname
obj_id_list

qconf -mattr obj_nm
attr_nm val obj_id_list
qconf -Mattr obj_nm fname
obj_id_list

qconf -purge obj_nm3
attr_nm objectname

qconf -rattr obj_nm
attr_nm val obj_id_list
qconf -Rattr obj_nm fname
obj_id_list

Adds a new specification of an attribute/value pair into
an object (queue, exechost, hostgroup, pe, rgs, ckpt) with
a specific characteristic (e.g. for a queue, it is added only
to the queue with the name defined in obj_id_list).
Same as above but the attribute name and attribute
value is taken from a file given by the file name fname.
Deletes an object attribute.

Deletes an object attribute by a given file.

Modifies an object attribute.

Modifies an object attribute based on a given file.
Removes overriding settings for a queue domain
(queue@@hostgroup) or a queue instance. If a
hostgroup is specified, it just deletes the settings for the
hostgroup and not for each single queue instance.

Replaces an object attribute.

Replaces an object attribute based on a given file.

Example: Modification of a Queue Configuration

The following example shows how this direct object attribute modification can be used to
initialize a queue consumable.

First add a new consumable test to the complex configuration.

> gconf -sc > complexes; echo "test t INT <= YES NO O O NO O NO NO" >> complexes;
gconf -Mc complexes user@host added "test" to complex entry list

Show the default complex initialization of queue all.q.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 95

1 Navigating and Understanding

> qconf -sq all.q | grep complex_values
complex_values NONE

Now initialized the consumable test with the value 2 on all queue instances defined by the
queue all.q.

> qconf -aattr queue complex_values test=2 all.q
user@host modified "all.q" in cluster queue list

Show the initialization:

> qconf -sq all.q | grep complex_values
complex_values test=2

Now add a different initialization value for the queue instance all.qg@macsuse.

> qconf -aattr queue complex_values test=4 all.g@macsuse
user@host modified "all.q" in cluster queue list

Show the updated queue attribute.

> qconf -sq all.q | grep complex_values
complex_values test=2, [macsuse=test=4]

Remove the configuration for all.qg@macsuse.

> qconf -purge queue complex_values all.qg@macsuse
user@host modified "all.q" in cluster queue list

Now show the queue configuration again:

> qconf -sq all.q | grep complex_values
complex_values test=2

1.10.7 Configuring and Using Linux cgroups

Newer Linux kernels and distributions support a facility called control groups (cgroups)
for improved resource management. Altair Grid Engine has added support for cgroups
in version 8.10 for Ix-amd64 hosts. The following requirements must be fulfilled for the
features to work correctly:

* Linux kernel must have support for cgroups (e.g. RHEL 6.0 or later)

+ Some distributions require the cgroup package to be installed.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 96

1 Navigating and Understanding

* cgroups subsystems (memory, cpuset, freezer) need to be mounted to different direc-
tories with the subsystem as name of the directory (like /cgroup/memory).

+ All subsystems must be mounted in the same parent directory (like /cgroup), this di-
rectory is called here cgroup path.

The memory subsystem needs to have the following configuration parameters available:
_memory.limit_in_bytes_, _memory.soft_limit_in_bytes_, _memory.memsw.limit_in_bytes_.

The cpuset subsystem needs to support: cpuset.cpus, cpuset.mems.

Availability can be checked by doing an /s on the subsystem (like Is /cgroup/memory). Please
consult your OS documentation for activating/mounting cgroups. Altair Grid Engine also

supports trying to auto-mount subsystems, but this might fail depending on the Linux dis-
tribution/version.

Tested Linux distributions at the time of initial release of the feature: RHEL / CentOS >= 6.0-
6.4. Mint Linux 14. Ubuntu 12.04. openSUSE 12.3.

Further details of the cgroups implementation can be found in the sge_conf manual page.
Enabling cgroups Support in Altair Grid Engine

Since support for cgroups depends on the host type it can be configured in the global
(gconf -mconf global) and/or local host configuration (_qconf -mconf <hostname>_)inanew

attribute called cgroups_params. In the default configuration after installation it is turned
off:

> gconf -sconf global
cgroups_params cgroup_path=none subdir_name=AGE \
cpuset=true mount=false freezer=false \
freeze_pe_tasks=false killing=false \
forced_numa=false h_vmem_limit=false \
m_mem_free_hard=false m_mem_free_soft=false \
min_memory_limit=0

When cgroups_params are configured in the local host configuration they override the
global configuration parameters. If a parameter is not listed in the local configuration, the
value of the global parameter is used. If the parameter is not listed anywhere, the default
value (none, false, or 0) is used.

In order to enable cgroups the cgroup_path must be set to the correct (existing) path. Typ-
ical locations are /cgroup or /sys/fs/cgroup. If cgroup_path is set to none, cgroups is dis-
abled, even if other parameters are set.

If mount is set to 1 or true, Altair Grid Engine tries to mount a subsystem whether or not it
is mounted yet.

In the following subsections the different behaviors of jobs running within cgroups are ex-
plained.

Enabling cpuset for core binding

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 97

1 Navigating and Understanding

When using core binding in Linux, system calls are made (like sched_setdffinity) before the
job starts in order to bind it on Altair Grid Engine selected processor ids. One drawback is
that the user application can revert that by calling the same system calls. When the cgroup
parameter cpuset is set to 1 or true Altair Grid Engine puts the job into a cpuset cgroup
with the specific CPU ids assigned. This ensures that the job cannot re-bind the job to other
than granted CPUs.

If forced_numa is set to 1 or true, on NUMA machines only local memory (memory in the
same NUMA zone) is allowed to be used when the job requests memory allocation with
-mbind cores:strict.

Using cgroups for job suspend and resume

The default suspension mechanism is sending SIGSTOP signals to the application and SIG-
CONT for resumption. This is not always what the application needs because SIGCONT is
catchable and may break functionality of the application. The cgroups freezer subsystem
allows suspend and resume without sending signals. The scheduler just does not sched-
ule the process any more; it stays in the same state, as if it is waiting for I/O resources (P
state). If the freezer parameter is set to 1 or true, the whole job (without the shepherd
process) is frozen by the kernel. This behavior can made application-specific by overriding
it in the queue configuration. If a job needs the signal, in the queue where the job runs the
suspend_method can be set to SIGSTOP and resume to SIGCONT. For those jobs the freezer
subsystem is turned off.

The behavior for tightly integrated parallel jobs can be controlled by the freeze_pe_tasks
parameter. If set to false (default), slave tasks are not put in the freezer (also slaves on
master host which are started by a new shepherd using grsh). If set to 1 or true, all slave
tasks are frozen (also slaves on remote hosts). If a queue overrides the freezer by a sig-
nal, the execd_param SUSPEND_PE_TASKS is taken into account (true when not set) for the
appropriate behavior.

Using cgroups for main memory and swap space limitation

Main memory can be limited by using the cgroups memory subsystem. It is controlled by the
cgroups parameters m_mem_free_hard and m_mem_free_soft. If m_mem_free_hard is
setto 1 or true, the Linux kernel ensures that the job does not use more main memory than
required. For the main memory footprint also the shepherd process is taken into account.
The limit can be requested with the m_mem_free memory request.

$ gqsub -1 m_mem_free=12G ...

For parallel jobs the memory request is multiplied by the amount of slots the job was
granted on the specific host. Note that some Linux distributions (e.g. RHEL) have bugs in
counting memory for forked processes so that the overhead could be very high (200M in-
stead of a few megabyte per shepherd). This can be tested by looking at the h_vmem values
in the accounting file (qacct -j <jobnumber>). If m_mem_free_soft is set to 1 or true (and
hard memory limit is turned off), the requested memory with m_mem_free is a soft limit. De-
pending on the Linux kernel it allows the process to consume more than allowed memory
if there is still free memory left on the execution host. If the memory is too low the job’s
memory footprint is pushed back to the limits (consuming more swap space). More details
can be found in the Linux kernel documentation.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 98

1 Navigating and Understanding

Main memory and swap space can be limited with cgroups by setting h_vmem to 1 or true.
Then instead of setting rlimits the job is put into a cgroup using the memory subsystem
setting the memory.memsw.limit_in_bytes parameter. Together with a lower m_mem_free re-
quest this allows enforcing a main memory limit for the job when the host is at its limits.
This eliminates the risk that a job slows down other jobs when consuming more than its
requested memory. The job will slow down itself or fail.

A host-based minimum memory limit can be set in the min_memory_limit parameter
which accepts Altair Grid Engine memory values (such as bytes or values like 10M, 1G).
If a job requested a memory limit and the limit is smaller than this configured value the
memory limit is automatically increased to the limit without affecting job accounting. This
is useful for solving host-related issues involving job memory footprints that are too high,
or to prevent users from setting limits for their jobs that are too low.

cgroups-based killing of processes

Under some rare conditions processes of a job can survive Altair Grid Engine induced job
termination. This risk can be eliminated by using the killing parameter. If set to 1 or true
Altair Grid Engine signals all processes forked or started by the job until all of them are
killed.

Examples

In the following examples first the configuration of cgroups_params is shown, then the
pertinent command-line requests for submitting the corresponding jobs.

Restricting main memory

Enabling hard memory limitation for host oahu.

$ qconf -sconf oahu > oahu

$ echo "cgroups_params cgroup_path=/sys/fs/cgroup m_mem_free_hard=true" >> oahu
$ gconf -Mconf oahu

daniel@oahu modified "oahu" in configuration list

$ qconf -sconf oahu

#oahu:

xterm /usr/bin/xterm

mailer /bin/mail

cgroups_params cgroup_path=/sys/fs/cgroup m_mem_free_hard=true

Submitting a job requesting 768M main memory. Note that m_mem_free on the host must
be lower than the requested value (check ghost -F -h oahu for this).

$ gsub -b y -1 h=oahu,m_mem_free=768M memhog -r100 512M

Checking the actual limit on host by inspecting cgroups configuration (when the job is run-
ning).

$ cat /sys/fs/cgroup/memory/UGE/151.1/memory.limit_in_bytes
805306368

An interactive job can be submitted in the same way:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 99

1 Navigating and Understanding

$ gqrsh -1 m_mem_free=4G

On the remote host the gqrsh session is limited to 4G of main memory. In the following
remote session 1G main memory is requested by the memhog utility. Afterwards 3G of
main memory is occupied by the next start of memhog. This leads to an abortion of the
memhog process, but the grsh session is unaffected by this. Hence the next call of memhog
requesting 1G is again successful.

$ memhog -r1 1G
$...
$ memhog -r1 3G
$...Killed

$ memhog -ri1 1G
$...

Job suspend and resume by using the freezer subsystem

This is an example configuration of a homogeneous cluster, where all hosts have the same
configuration. The configuration is only done once in the global host object. All cgroup
subsystems are turned on and the minimum memory limit for each job is set to 1T00M.

$ qconf -sconf global

cgroups_params cgroup_path=/sys/fs/cgroup cpuset=true mount=true \
freezer=true freeze_pe_tasks=true killing=true \
forced_numa=true h_vmem_limit=true \
m_mem_free_hard=true m_mem_free_soft=true \
min_memory_limit=100M

Job suspension can be triggered in different ways: slot-wise suspend on subordinate, queue-
based suspension, or manual suspension.

The following job with number 152 is suspended manually now using the freezer subsys-
tem.

$ gmod -sj 152

When calling gstat the job is in s state. On the execution host the job is put in the freezer
cgroup.

$ cat /sys/fs/cgroup/freezer/UGE/152.1/freezer.state
FROZEN

After resume it is in the normal state again.
$ gmod -usj 152
daniel - unsuspended job 152

$ cat /sys/fs/cgroup/freezer/UGE/152.1/freezer.state
THAWED

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 100

1 Navigating and Understanding

Restricting main memory and swap space usage
The cgroups configuration required for this setup is:

$ qconf -sconf oahu
cgroups_params cgroup_path=/sys/fs/cgroup m_mem_free_soft=true h_vmem_limit=true

Submitting a job requesting 512M main memory and 1024M main memory plus swap
space.

$ gsub -b y -1 h=oahu,m_mem_free=512M,h_vmem=1024M <yourjob>

The current kernel behavior is that the job keeps running but the kernel enforces that the
main memory usage is pushed back to 512M while the remaining memory is in swap space,
in case the host memory is low.

1.11 Monitoring and Modifying User Jobs

Refer to section ‘User Guide -> Monitoring_and_Controlling_Jobs - Monitoring and Control-
ling Jobs in the User's Guide' for information on how to monitor jobs and how to use Altair
Grid Engine commands to make modifications to waiting or already executing jobs.

In addition to the modifications a user can do, an administrator can also do the following:

* Monitor and modify jobs of all users

+ Set the scheduling priority of a job to a value above the default of 0. The administrator
may set this priority to values between -1023 and 1024. This is done with the “-p
priority” option of gqalter.

*+ Force the immediate deletion of a job regardless of circumstance. As a normal user,
the “-f" option of qdel can be used only if ENABLE_FORCED_QDEL is specified in the
gmaster_params setting of the cluster global configuration. Even if this is specified, the
normal user still can't force the immediate deletion of a job; the job will first be deleted
in the normal way, and only if this fails will the deletion be forced. As an administrator,
the job deletion will immediately be forced.

1.12 Diagnostics and Debugging

The sections below describe aspects of diagnosing scheduling behavior and obtaining de-
bugging information.

1.12.1 KEEP_ACTIVE functionality

Usually, as soon as a job finishes (it does not matter whether it finishes successfully or with
an error) the jobs-directory gets deleted immediately. With the KEEP_ACTIVE parameter it
is possible to customize this behavior. The KEEP_ACTIVE switch is an execution daemon
parameter (execd_params) which can be set via qconf -mconf.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 101

1 Navigating and Understanding

Table 71: KEEP_ACTIVE Parameters

Parameter Description

FALSE If set to false, the job-directory will be deleted after the job
finishes.

TRUE If set to true, the job-directory is not deleted and stays at the
execution host.

ERROR If set to error, on job error the job-directory will be sent to the
gmaster before it gets deleted from the execd-host.

ALWAYS If set to always, every job-directory will be sent to the gmaster

before it gets deleted from the execd-host.

For values of ERROR and ALWAYS, gmaster will copy, in addition to the job-directory, the
generated job-script, all job-related execd-messages, and a summary of the $TMPDIR of the
job to $SGE_ROOT/$SGE_CELL/faulty_jobs/$job_id.

Structure of the jobs-directory

The active jobs directory is $execd_spool_dir/$hostname/active_jobs/$job_id.$task_id/
and contains the following files:

File Description

addgrpid Additional group-1D

config Config of the job

environment List of environment variables which are available in the job
shell

error Error messages of the shepherd

exit_status Exit status of the job script

job_pid PID of the job on the execution host

pe_hostfile Contains all hosts where the parallel job is running

pid PID of the corresponding shepherd on the execution host

trace Messages file of the corresponding shepherd

<petask.id>.<hostname> Directory which includes all files listed above for every pe-task
(only for tightly integrated parallel jobs).

1.12.2 Diagnosing Scheduling Behavior

Altair Grid Engine provides several means that help clarify why the scheduler makes specific
decisions or what decisions it would make based on the current cluster state for a job with
specific requirements.

The gselect command prints the list of possible queues to which a job with the given re-
quirements could be scheduled. gselect options are listed below:
+ specify all requirements the job has using the “-I" option

+ limit the possible queues using the “-q” and “-gs” option

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 102

1 Navigating and Understanding

+ specify the job user with the “-U"” option

+ specify the available parallel environments using the “-pe” option

The -w p option specified in the gsub, gsh, qrshorqlogin command line prints the sched-
uler decisions that would be made for this job with the current cluster state, but does not
submit the job. When specified in the galter command line, the -w p option prints this list
for a job that is queued and waiting. This is a rather efficient way to get the scheduling info,
but it provides the data only for this very moment.

gstat -j <job_id> prints the “scheduling_info:" for the given job. This is the same data
that qalter -w p <job_id> prints, except that it is collected for the whole lifetime of the
job. This information is available only if the “schedd_job_info” configuration value is set
to true in the scheduler configuration. Note that having “schedd_job_info" set to true may
have severe impacts on the scheduler performance.

gconf -tsm triggers a scheduler run and writes data for all currently queued jobs to the
file $SGE_ROOT/$SGE_CELL/common/schedd_runlog. This slows down the scheduler run sig-
nificantly, but is done only for this one scheduler run.

By setting the “params” configuration value to “MONITOR=1" in the scheduler configuration,
the scheduler writes one or more lines for every decision it makes about a job or a task
to the file $SGE_ROOT/$SGE_CELL/common/schedule. This is described in detail below in the
section “Turning on Debugging Information”/“Activating Scheduler Monitoring”. This option
also slows down the scheduling process.

Scheduler profiling helps answer the question of why a scheduler run might be taking so
long. Enable scheduler profiling by setting the “params” configuration value to “PROFILE=1"
in the scheduler configuration. The scheduler then writes statistics about the scheduler run
times to the Qmaster messages file. This is described in detail below in the section “Turning
on Debugging Information”/“Activating Scheduler Profiling”.

1.12.3 Location of Logfiles and How to Interpret Them

The daemons of Altair Grid Engine write their status information, warnings and errors to
log files, as follows.

Table 73: Daemon Log File Locations

Daemon Log file

sge_gmaster <sge_gmaster_spool_dir>/messages

sge_shadowd <sge_gmaster_spool_dir>/messages_shadowd.

sge_execd <sge_execd_spool_dir>/messages

sge_shepherd <sge_execd_spool_dir>/active_jobs/<job_dir>/trace
sge_container_shepherd <sge_execd_spool_dir>/active_jobs/<job_dir>/container_trace
dbwriter $SGE_ROOT/$SGE_CELL/common/spool/dbwriter/dbwriter.log

+ <sge_gmaster_spool_dir> is the “gmaster_spool_dir" that is defined in the bootstrap
file located in the directory

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 103

1 Navigating and Understanding

$SGE_ROOT/$SGE_CELL/common/
+ <host> is the name of the host on which the sge_shadowd is running.

+ <sge_execd_spool_dir> is the “execd_spool_dir" from the global or the host local con-
figuration (“gconf -sconf” resp. “qconf -sconf ”).

* <job_dir>is composed from the job ID and the task ID, e.g. “42.1".
All “messages” and “messages_shadowd.<host>" files have the same structure:

05/20/2011 14:27:49| mainl|kailua|I|starting up UGE 8.0.0 (1x-x86)

05/20/2011 14:30:07 |worker |kailua|W|Change of "execd_spool_dir" will not be
effective before sge_execd restart as described
in sge_conf (5)

05/20/2011 14:30:23|worker|kailual|E|There are no jobs registered

05/20/2011 14:30:24|worker|kailua|E|sharetree does not exist

05/20/2011 14:30:47 |worker |kailua|I|using "/var/spool/gridengine/4080/execd"
for execd_spool_dir

05/20/2011 14:30:47 |worker |kailua|Ilusing "/bin/mail" for mailer

The columns contain the date, time, thread name, host name, message type and the mes-
sage itself.

+ Date, time and the host name describe when and where the line was written to the
log file.

* The thread name is always “main”, except for the sge_gmaster which has several
threads.

* The message type is one of C(ritical), E(rror), W(arning), I(nfo) or D(ebug). Which
messages are logged is controlled by the “loglevel” setting in the global configura-
tion. If this is set to “log_error”, only messages of type “C" and “E” are logged; if
it is “log_warning”, additionally the messages of type “W" are logged; for “log_info”
messages of type “I” are also logged; and for “log_debug"” messages of all types are
logged.

The “trace” file of the shepherd and the is available only while the job is running, except
when the “execd_params” “KEEP_ACTIVE=TRUE" is set; then it is also available after the job
ends. The same applies to the “container_trace” file of the “sge_container_shepherd”, which
is started only for non-autostarting Docker jobs.

Such a trace file looks like this:

05/23/2011 15:09:00 [1000:26811]: shepherd called with uid = 0, euid = 1000

05/23/2011 15:09:00 [1000:26811]: starting up 8.0.0

05/23/2011 15:09:00 [1000:26811]: setpgid(26811, 26811) returned O

05/23/2011 15:09:00 [1000:26811]: do_core_binding: "binding" parameter not
found in config file

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 104

1 Navigating and Understanding

The columns contain the date and time, the effective user ID and the process ID of the
sge_shepherd process and the message itself.

The log file of the dbwriter looks like this:

23/05/2011 14:14:18|kailual.ReportingDBWriter.initLogging|I|

Starting up dbwriter (Version 8.0.0)
23/05/2011 14:14:18|kailual|r.ReportingDBWriter.initialize|I|

Connection to db jdbc:postgresql://kailua:5432/arco
23/05/2011 14:14:19|kailual|r.ReportingDBWriter.initialize|I|

Found database model version 10
23/05/2011 14:14:19|kailualtingDBWriter.getDbWriterConfig|I|

calculation file /gridengine/dbwriter/database/postgres/dbwriter.xml

has changed, reread it
23/05/2011 14:14:19|kailual|Writer$VacuumAnalyzeThread.run|I|

Next vacuum analyze will be executed at 24.05.11 12:11
23/05/2011 14:14:19|kailualngDBWriter$StatisticThread.run|I|

Next statistic calculation will be done at 23.05.11 15:14
23/05/2011 14:15:19|kailualer.file.FileParser.processFile|I|

Renaming reporting to reporting.processing
23/05/2011 14:15:19|kailualiter.file.FileParser.parseFile|W|

0 lines marked as erroneous, these will be skipped
23/05/2011 14:15:19|kailualiter.file.FileParser.parseFile|I|

Deleting file reporting.processing

Here again, the first two columns are date and time, then the name of the host on which
the dbwriter is running, the right-most part of the name of the function that did the logging,
the type of the message and the message itself.

If the particular module of Altair Grid Engine can't write to the configured directory for the
messages file or it does not get the configuration value at all or it cannot create that direc-
tory, it writes a panic file to the /tmp directory (c: \tmp directory on Windows). These are the
paths of the panic files:

Table 74: Daemon Panic File Locations

Daemon Panic file

sge_gmaster /tmp/gmaster_messages.<pid>
sge_shadowd /tmp/shadowd_messages.<pid>
sge_execd (Unix) /tmp/execd_messages.<pid>

sge_execd (Windows) C:\tmp\execd_messages.<pid>
sge_shepherd (Unix) /tmp/shepherd.<pid>
sge_shepherd C:\tmp\shepherd.<pid>
(Windows)

sge_container_shepherd /tmp/container_shepherd.<pid>

If the particular module of Altair Grid Engine writes to a panic file and the environment
variable SGE_USE_SYSLOG_AT_STARTUP=1 is set in its environment, the same information that

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 105

1 Navigating and Understanding

is written to that panicfile also is logged to the system log file, e.g. /var/log/syslog on most
Linux derivates. If this environment variable is not set or set to a different value than 1, no
messages are logged to the system log file. It depends on the configuration of the syslog
daemon which information actually appears in the system log file, e.g. it is possible to let it
log only errors and critical messages, but no informational messages.

If the particular module of Altair Grid Engine can't create or open its messages file, but can
create afile in the configured directory, it creates a file called “messages.<pid>.<id>", where
the “id” is increased if the next message cannot be written to that file again.

1.12.4 Turning on Debugging Information

The debugging sections describe recommended debugging tools available in Altair Grid En-
gine, including scheduler profiling and logfiles.

Activating Scheduler Profiling

The Altair Grid Engine profiling functionality is used during the development of the software
to analyze the performance of the scheduler component. Also in customer environments
the profiling can be used to detect issues in the setup of the cluster.

With the profiling module enabled in the scheduler component, profiling is running as
a thread within the sge_gmaster process and will print additional log messages to the
message file of the master component. The message file can be found in the directory
$SGE_ROOT/$SGE_CELL/spool/gmaster/

Each line in the output is introduced by the following:

+ time when the output was made,

*+ the name of the thread that caused the logging,

+ the hostname on which the component is running,

* a letter that shows what kind of logging message was printed (P for profiling)

+ and the logging message itself:
05/13/2011 08:42:07 | schedu | host1 |P|PROF: ...

The line above shows profiling output (P) of the scheduler thread that was running on host
host1. Profiling messages themselves will start with either PROF; or PROF(<timestamp>):.

For simplicity, the prefixed text of each line has been skipped in the following sample out-
put:

01 PROF: sge_mirror processed 5 events in 0.000 s

02 PROF: static urgency took 0.000 s

03 PROF: job ticket calculation: init: 0.030 s, pass 0: 0.030 s, pass 1: 0.000,
04 pass2: 0.000, calc: 0.010 s

05 PROF: job ticket calculation: init: 0.000 s, pass 0: 0.000 s, pass 1: 0.000,
06 pass2: 0.000, calc: 0.000 s

07 PROF: normalizing job tickets took 0.010 s

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 106

1 Navigating and Understanding

08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

PROF: create active job orders: 0.010 s

PROF: job-order calculation took 0.090 s

PROF: job sorting took 0.090 s

PROF: job dispatching took 0.000 s (20 fast, O fast_soft, O pe, O pe_soft, O res)
PROF: parallel matching global rgs cgstatic hstatic

gstatic hdynamic qdyn

PROF: sequential matching global rgs cgstatic hstatic

gstatic hdynamic qdyn

PROF: parallel matching 0 0 0 0

0 0 0

PROF: sequential matching 20 0 20 20

20 20 20

PROF: create pending job orders: 0.050 s

PROF: scheduled in 0.310 (u 0.220 + s 0.000 = 0.220): 20 sequential, O parallel,

11799 orders, 3 H, 0 Q, 2 QA, 11775 J(qw), 20 J(r), 0 J(s), 0 J(h), 0 J(e),
0 J(x), 11795 J(all), 52 C, 1 ACL, 1 PE, 1 U, 1 D, 1 PRJ, O ST, 1 CKPT, O RU,

1 gMes, 0 jMes, 11799/4 pre-send, 0/0/0 pe-alg
PROF: send orders and cleanup took: 0.090 (u 0.080,s 0.000) s

PROF: schedd run took: 0.720 s (init: 0.000 s, copy: 0.200 s, run:0.490, free:

0.000 s, jobs: 10929, categories: 1/0)

The text box above shows the profiling output of one scheduler run.

Line 1: At the beginning, the scheduler thread receives events containing all informa-
tion about configuration and state changes since the last event package was received.
This line shows how many events the scheduler received and how long it took to up-
date scheduler internal data structures according the instructions in the events.

Line 2: Shows the time needed to calculate the numbers for the urgency policy.

Line 3: The output contains different calculation times for the ticket policy. init shows
how long it took to set up all internal data structures. Pass 0 to pass 2 show time for
data preparation steps, and calc shows the time for the final ticket calculation of all
pending jobs.

Line 4: Same as in line 3 but for running jobs.

Line 5: Shows the time needed to normalize the tickets so that they are in a range
between O and 1.

Line 6: Here, orders for running jobs are generated and sent to other threads execut-
ing those orders. The time does not include processing of those orders.

Line 7: Overall time needed (including all times from 2 to 6) to compute the priority of
all jobs.

Line 8: Jobs need to be sorted to reflect the job priority. This shows the length of time
that this sorting took.

Line 9: Now the scheduler can start to dispatch jobs to needed compute resources.
The time for this step is shown along with how many jobs of each category could be
scheduled. The scheduler distinguishes between:

- fast jobs (sequential jobs without soft resource requests)
- fast_soft jobs (sequential jobs with soft resource requests)
- pejobs

- pe_soft jobs (parallel jobs with soft resource requests)

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 107

1 Navigating and Understanding

- res jobs (jobs with reservations)

Line 10-13: Show for how many jobs the different parts of the scheduler algorithm
were passed.

Line 14: Time needed to create priority update orders for all pending jobs.

Line 15-17: Time (wallclock, system and user time) needed to schedule all jobs includ-
ing all previous steps except for step 1.

Line 18: The scheduler already sent orders during the scheduling run. This line shows
how long it took to send orders that could not be sent during the scheduler processing,
and the time also includes cleanup time to remove data structures that are no longer
needed.

Line 19: The time needed for the whole scheduling run including all previous steps.
init - initialization time

copy - time to replicate and filter data for the scheduler processing

run - scheduler algorithm

free - time to free previously allocated data

- jobs - number of jobs in the system (before copy operation)

- categories 1 - number of categories

- categories 2 - number of priority classes

The scheduler also dumps system user and wall-clock times of each processing layer.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

PROF (1664087824) : scheduler thread profiling summary:

PROF (1664087824) : other : wc = b5.870s, utime = 0.000s, stime
6.050s, utilization = 11%
PROF (1664087824) : packing we = 0.000s, utime = 0.000s, stime
0.000s, utilization = 0%
PROF (1664087824) : eventclient T we = 0.000s, utime = 0.000s, stime
0.000s, utilization = 0%
PROF (1664087824) : mirror : wec = 0.020s, utime = 0.000s, stime
0.040s, utilization = 200%
PROF (1664087824) : gdi :we = 0.000s, utime = 0.000s, stime
0.000s, utilization = 0%
PROF (1664087824) : ht-resize : we = 0.000s, utime = 0.000s, stime
0.000s, utilization = 0%
PROF (1664087824) : scheduler : wec = 0.910s, utime = 0.340s, stime
0.040s, utilization = 42%
PROF (1664087824) : pending ticket : wc = 0.130s, utime = 0.000s, stime
0.000s, utilization = 0%
PROF (1664087824) : job sorting : wc = 0.110s, utime = 0.120s, stime
0.020s, utilization = 127%
PROF (1664087824) : job dispatching: wc = 0.000s, utime = 0.000s, stime
0.000s, utilization = 0%
PROF (1664087824) : send orders T we = 0.380s, utime = 0.360s, stime
0.050s, utilization = 1089
PROF (1664087824) : scheduler event: wc = 0.180s, utime = 0.110s, stime
0.010s, utilization = 67%
PROF (1664087824) : copy lists T we = 1.270s, utime = 0.260s, stime

0.440s, utilization = 559

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 108

1 Navigating and Understanding

28 PROF (1664087824) : total : wec = 60.340s, utime = 2.070s, stime =
29 6.790s, utilization = 15Y%

Activating Scheduler Monitoring

There are different ways to monitor the scheduler and the decisions it makes. Profiling that
shows the main activity steps and corresponding run times can be enabled as outlined in
the previous chapter. Besides that, administrators can also enable additional monitoring.
The monitoring output can be used to find out why certain scheduler decisions were made,
and why specific jobs were not started. Note that enabling additional monitoring might
throttle down the scheduler and therefore the cluster throughput.

Find Reasons Why Jobs Are Not Started

The scheduler can collect the reasons why jobs could not be scheduled during a scheduler
run. The parameter schedd_job_info of the scheduler configuration enables or disables
this functionality. If it is enabled, messages containing the reasons why it was not possi-
ble to schedule a job will be collected for the not-scheduled jobs. The amount of memory
that might be needed to store that information within the sge_qgmaster process could be
immense. Due to this reason, this scheduler job information is disabled by default.

If it is enabled, gstat can be used to retrieve that information for a specific job:

gstat -j <jid>

scheduling info: queue instance "all.q@hostl" dropped because it is overloaded:
queue instance "all.q@hostl" dropped because it is disabled
A1l queues dropped because of overload or full
Job is in hold state

Enable Monitoring to Observe Scheduler Decisions

Especially when resource or advance reservations are used in a cluster it might be helpful
to understand how the scheduler is influenced by the existing reservations. For this
purpose, the scheduler configuration parameter setting MONITOR can be enabled. This
causes the scheduler to add information to the schedule file that is located in the direc-
tory $SGE_ROOT/$SGE_CELL/common/. The following example briefly introduces scheduler
monitoring.

Assume the following sequence of jobs:

gsub -N L4_RR -R y -1 h_rt=30,license=4 -p 100 $SGE_ROO0T/examples/jobs/sleeper.sh 20
gsub -N L5_RR -R y -1 h_rt=30,license=5 $SGE_RO0OT/examples/jobs/sleeper.sh 20
gsub -N L1_RR -R y -1 h_rt=31,license=1 $SGE_RO0T/examples/jobs/sleeper.sh 20

These jobs are being submitted into a cluster with the global /icense consumable resource
that has been limited to a number of 5 licenses. Due to the use of these default priority
settings in the scheduler configuration:

weight_priority 1.000000
weight_urgency 0.100000
weight_ticket 0.010000

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 109

1 Navigating and Understanding

the -p priority of the L4_RR job will be sure to overwhelm the license-based urgency, finally
resulting in a prioritization such as the following;:

job-ID prior name
3127 1.08000 L4_RR
3128 0.10500 L5_RR
3129 0.00500 L1_RR

In this case, traces of those jobs can be found in the schedule file for 6 schedule intervals:

3127:1

3127:1
3128:1:RESERVING:1077903446:30:
3128:1:RESERVING:1077903446:30:
3129:1:RESERVING:1077903476:31
3129:1:RESERVING:1077903476:31:
3127:1:RUNNING:1077903416:30:G:
3127:1:RUNNING:1077903416:30:Q:
3128:1:RESERVING:1077903446:30:
3128:1:RESERVING:1077903446:30:
3129:1:RESERVING:1077903476:31
3129:1:RESERVING:1077903476:31:
3128:1

3128:1
3129:1:RESERVING:1077903478:31:
3129:1:RESERVING:1077903478:31:
3128:1:RUNNING:1077903448:30:G:
3128:1:RUNNING:1077903448:30:Q:
3129:1:RESERVING:1077903478:31:
3129:1:RESERVING:1077903478:31:

:STARTING:1077903416:30:G:global:1license:4.000000
:STARTING:1077903416:30:Q:all.q@host3:slots:1.000000

G:global:license:5.000000
Q:all.q@host2:slots:1.000000

:G:global:license:1.000000

Q:all.qG@hostl:slots:1.000000

global:1license:4.000000
all.q@host3:slots:1.000000
G:global:license:5.000000
Q:all.qG@hostl:slots:1.000000

:G:global:1license:1.000000

Q:all.q@hostl:slots:1.000000

:STARTING:1077903448:30:G:global:1license:5.000000
:STARTING:1077903448:30:Q:all.q@host3:slots:1.000000

G:global:1license:1.000000
Q:all.q@host2:slots:1.000000

global:license:5.000000
all.q@host3:slots:1.000000
G:global:1license:1.000000
Q:all.q@hostl:slots:1.000000

3129:1:STARTING:1077903480:31:G:global:1license:1.000000
3129:1:STARTING:1077903480:31:Q:all.qGhost3:slots:1.000000

3129:1:RUNNING:1077903480:31:G:
3129:1:RUNNING:1077903480:31:Q:

global:1license:1.000000
all.q@host3:slots:1.000000

For a schedule interval, each section shows all resource utilizations that were taken into
account. The RUNNING entries show utilization by jobs that already were running at the
beginning of the interval, STARTING entries show immediate utilization that was scheduled
within the interval, and RESERVING entries show utilization that is planned for the future

i.e. reservations.

The format of the schedule file is

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 110

1 Navigating and Understanding

* jobid: The jobs id.

+ taskid: The array task ID or 1 for non-array jobs.

+ state: One of RUNNING/SUSPENDED/MIGRATING/STARTING/RESERVING.
 start_time: Start time in seconds after 1.1.1970.

+ duration: Assumed job duration in seconds.

* level_char: One of P,G,H and Q standing for PE, Global ,Host and Queue.

* object_name: The name of the PE/global/host/queue.

* resource_name: The name of the consumable resource.

+ utilization: The resource utilization debited for the job.

Aline "z marks the beginning of a new schedule interval.
Activating Debugging Output from the Command Line and Interpreting Output

To activate debugging output of Altair Grid Engine applications, do the following before
starting the application to be tested:

. $SGE_ROOT/$SGE_CELL/common/settings.sh
. $SGE_ROOT/util/dl.sh

dl <debug_level>

<uge_command>

On Windows, it is:

> %SGE_ROOTY%\%SGE_CELL%\common\settings.bat
> %SGE_RO0T%\util\dl.bat <debug_level>
> <uge_command>

The d1.sh script makes the d1 command available. The d1 command will set necessary en-
vironment variables for a specific debug level. If the Altair Grid Engine command is started,
then it will print debug messages to stderr. In debug_level 1, the applications print general in-
formation messages about what steps are executed. debug_level 2 will show function calls of
the upper processing layers and corresponding locations in the source code that are passed.
Other debug_levels are available, but are not recommended for users or administrators.

Here is an example for the output of the gstat command in debug level 1:

01 0 17230 140106943756032 returning port value: 5001

02 1 17230 main creating gstat GDI handle

03 2 17230 main file "/Users/ernst/Test/5000/default/

04 common/sge_qgstat" does not exist

05 3 17230 main file "/Users/ernst/.sge_qstat" does not exist
06 4 17230 main queues not needed

07 5 17230 main sge_set_auth_info: username(uid) = user1(500),
08 groupname = univa(1025)

09 6 17230 main =~ ------- selecting queues ---———————-

10 7 17230 main ~ ---———- selecting jobs --——————---

11 8 17230 main Destroy handler

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 111

1 Navigating and Understanding

The first column in the output shows a line number followed by the PID of the process that
is being debugged. The third column will show either an internal thread id or the thread
name of the thread that logs the message. After that, the debug message is printed.

Activating Debugging Output of Altair Grid Engine Windows services

To activate debugging output of the Altair Grid Engine Windows services \GEFullName{} Job
Starter Serviceand \GEFullName{} Starter Serviceandtheassociated SGE_Starter.exe
binary, follow these steps:

+ At the Windows execution host, open the Services dialog from the Control Panel as
an Administrator.

* Open the Properties dialog of the Altair Grid Engine Windows service.

* Stop the service.

* Enter “/log" to the Start parameters: text field.

+ Start the service using the Start button on this dialog.

From now on, the service writes a log file to c:\tmp. If logging was enabled for the
\GEFullName{} Job Starter Service, additionally the SGE_Starter.exe starts writing a log
file for each time it is started.

Activating Debugging Output from gloadsensor.exe

If the Windows execution host does not report load, it could be because qloadsensor.exe
does not work properly. First check the Windows Task Manager to see whether gloadsen-
sor.exe runs at all. If it runs and the execution daemon does not report load after more
than one minute, test qloadsensor. exe itself. To do this, stop the execution daemon using

> qconf -ke <hostname>

and check the Windows Task Manager to make sure neither the Windows execution dae-
mon sge_execd.exe Nor the load sensor qloadsensor.exe are running anymore.

To test gloadsensor.exe, open a console window (also called cmd.exe window) as
the user that starts the Windows execution daemon. In this console window, run the
$SGE_ROOT/$SGE_CELL/common/settings.bat file to set the environment variables properly.
Then start the load sensor manually:

> %SGE_RO0TY%\bin\win-x86\qloadsensor.exe

Press Enter two times and wait several seconds. The load sensor should print an output
like this:

begin

wega:num_proc:1
wega:load_short:0.010
wega:load_medium:0.010
wega:load_long:0.010
wega:load_avg:0.010
wega:cpu:0

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 112

2 Licensing - Summary concerning licensing of Altair Grid Engine

wega:swap_free:1113124864
wega:swap_total:1308422144
wega:swap_used: 195297280
wega:mem_free:279228416
wega:mem_total:536330240
wega:mem_used:257101824
wega:virtual _free:1392353280
wega:virtual_total:1844752384
wega:virtual _used:452399104
end

If it does not look like this or if the “load_*" values are always 0, enable debugging:
> %SGE_ROO0T%\bin\win-x86\qloadsensor.exe -set-trace-file c:\tmp\qloadsensor.trace

Again, press Enter at least two times and wait several seconds. Now the log file
c:\tmp\qloadsensor.trace should contain the program flow and possibly also error
messages.

2 Licensing - Summary concerning licensing of Altair Grid
Engine

2.1 General Overview

Altair Grid Engine 8.7.0 introduces a license mechanism allowing fine grained resource us-
age reporting which is linked to the Altair license services. License consumption informa-
tion is available during the runtime of the main cluster component (sge_gmaster) for the
current point in time and also for the past to the beginning where Altair Grid Engine 8.7.0
was installed or where an upgrade to that version was made.

The new license consumption reporting allows the usage of Altair network licenses main-
tained by the Altair licensing server. Altair Grid Engine consumes a certain amount of fea-
ture licenses dependent on the number of CPUs and GPUs available in the cluster.

The licensing functionality is implemented in all Altair Grid Engine components. Execution
daemons (sge_execd) report resource availability and/or consumption. The information is
collected in Altair Grid Engine’s main component (sge_gmaster) and available for cluster
managers via client commands (qconf, gstat, ghost).

Altair Grid Engine does check for license violations at regular time intervals every 90 sec-
onds. The system notifies the manager of the cluster when license violations occur and
provides actions to solve those violations.

If for any reasons network licenses and/or installing the Altair license server are not an
option for your configuration, please contact our support department to find a solution
fulfilling your requirements.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 113

2 Licensing - Summary concerning licensing of Altair Grid Engine

2.2 Licensed Resources

Altair Grid Engine uses visible and usable CPU cores and GPUs that may be used for com-
putational work in a cluster for license considerations. The availability of such resources
consumes a corresponding entitlement of a Altair Grid Engine license.

The total available amount of CPU cores and GPUs is reported by each compute node as
static load values with the name m_core and m_gpu. Static means that the reported re-
source consumes license entitlements beginning with installation until an execution node
is uninstalled. When a compute node is not available (e.g during maintenance times) the
Altair Grid Engine system will use the last reported values of m_core and m_gpu for license
considerations unless all queues residing on that host are disabled manually by a manager
of the cluster.

Reported m_core and m_gpu values might change during the lifetime of an execution node,
when CPU sockets and/or GPUs are added, replaced or removed. In that case the change
can be detected as soon as the corresponding execution daemon (see sge_execd(8))
reconnects to the main cluster component component (see sge_gmaster(8)) when the
first load report is sent. Changes in reported resource counts will be detected approxi-
mately 90 seconds after the execution daemon is restarted or within the configured load
report time plus 90 seconds (see load_report_interval in sge_conf(5)) during runtime of
a sge_execd. Reported load values can be made visible with different client commands
(see gstat(1)/ghost(1) -F or gconf(1) -se <hostname>). A resource usage check can also be
manually triggered by using the qconf -tlv command.

The sge_gmaster process collects the load values of all execution nodes and accumulates
the license count that will then be visible in form of License Usage Records (see qconf(1)
-slur). Usage collected in License Usage Records will also be accumulated and compared
against the number of available feature licenses.

2.3 License Usage Records

License Usage Records describe resource consumption and shortage in a cluster over a
range of time. The sum of all data sets shows available capacities or licensing violations.

Records are created automatically and they comprise the following descriptive attributes:

* ID: Identifier for one record

« start_time and end_time: Each record has a start and end time (visible as 64bit UNIX
timestamp) that shows when and how long resources were reported to be available
in the cluster. Whenever the total amount of resources changes in a cluster a new
record is created. Usually the end time and start time of consecutive records match.
Even in case of cluster downtimes (sge_gmaster(8) is inactive) the time gaps in license
usage reporting will be closed as long as the downtime does not exceed 24 hours. If
reported resources of hosts should not be considered during smaller maintenance
windows then queues residing on a host have to be disabled manually and changes
have to be reflected in a new license usage record (automatically created every 15
seconds) before cluster components should be shut down.

* resource_consumption: Shows consumed resources by a cluster. Directly after gmas-
ter installation and before execution nodes are attached the resource_consumption will

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 114

2 Licensing - Summary concerning licensing of Altair Grid Engine

show the keyword NONE. As soon as execution nodes are installed this attribute will
show one or multiple resources in the form of name/value pairs separated by commas.
The names represent different resources whereas the numbers denote the total num-
ber of corresponding resource items available in the cluster. The following resources
might be reported:

* m_core_l, m_core_r, m_gpu_l, m_gpu_r: Machine cores on premises (local), machine
cores in the cloud (remote), GPUs on premises (local), GPUs in the cloud (remote).
Reported cores and GPUs are considered to be remote if hosts objects or host
configurations are correspondingly tagged. Find more information below how to tag
hosts.

* resource_shortage: This attribute will show the keyword NONE as long as the installed
license covers all available resources in a cluster. Otherwise it will show a comma sep-
arated list of name/value pairs of those resources that are not covered by the installed
license file. The same resources might be reported as with the resource_consumption
attribute.

* licenses_required: Shows the number of Altair feature licenses required for the current
available resources in a cluster. One machine CPU core will consume 10 licenses, a
GPU will consume 100 licenses.

* licenses_checked_out: Shows the number of Altair feature licenses checked out from
the licensing server for the currently available resources in a cluster.

* info: Shows information about special states or occurrences of the licensing system.
If everything is working as it should, this field is shows the cluster to be licensed.

2.4 Licensing Actions

Altair Grid Engine triggers specific actions when certain alarm levels are reached. There
are four distinct alarm levels, namely info, warning, error and alert. Otherwise, Altair Grid
Engine operates without any alarm level triggered when licensing is working without any
problems.

Here is the description of actions that are taken by the Altair Grid Engine master component
when an alarm level is reached.

+ info: The info level informs about important, successful licensing events and is used
primarily for debugging purposes. An info message is logged to Altair Grid Engine log-
ging facility every 6 hours only if info messages are enabled there. No email message
is sent.

+ warning: The warning level occurs, when the licensing server reports a warning. This
is usually the case, when the license file is about to expire. A warning message is
logged to the Altair Grid Engine logging facility every 3 hours. An email is sent to the
cluster administrator every 12 hours describing the warning as well.

* error: The error level occurs, when Altair Grid Engine was not able to acquire all licens-
ing entitlements from the licensing server which are required to license all resources
inthe cluster. An error message is logged to the Altair Grid Engine logging facility every
20 minutes. Additionally, an email is sent to the cluster administrator every 3 hours
describing the error.

+ alert: The alertlevel is the most severe licensing alarm. It occurs, when the connection
to the licensing server is lost. An error message is logged to the Altair Grid Engine

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 115

2 Licensing - Summary concerning licensing of Altair Grid Engine

logging facility every 10 minutes. An email is sent to the administrator of the cluster
every hour describing the alert.

Ifthe error or alert level was triggered and the last successful license validation is older than
the granted grace period of 3 days, all hosts will enter the unlicensed state. Messages are
logged and emails are sent as described above. Note that unlicensed hosts are excluded
from scheduling. Jobs submitted to unlicensed hosts will enter pending state.

Jobs already running can always continue to run.

2.5 Licensing Algorithm

The licensing algorithm is the instance in sge_gmaster responsible to report license viola-
tions and trigger corresponding actions. Depending on the severeness of the alarm level
which the algorithm detects, it will:

+ Cause logging messages to be written to the message file of gmaster

+ Send emails to the admin or configured users, containing information about the li-
cense violations

+ Set execution host queues to unlicensed state

* Exclude unlicensed resources from scheduling

On startup, the algorithm attempts to license all currently available resources in the cluster
by checking out all required feature licenses. If not enough features licenses are available,
the algorithm will get as many feature licenses as possible. If this operation fails, an initial
grace period will be granted. Within the initial grace period, the cluster continues to work
normally but error log messages will be generated and emails will be sent. If this period
expires without successfully checking out all feature licenses required, unlicensed hosts will
be set to unlicensed state (L-state). It is possible to submit new jobs to unlicensed hosts but
these jobs will not be scheduled until the host is licensed again. Unlicensed hosts are always
excluded from scheduling. When all required feature licenses are checked out successfully,
the cluster will start or continue to operate normally.

If an error or alert alarm level occurs, e.g. when the licensing server becomes unreachable
or the license is expired, a grace period of 3 days is granted. Within this period, all cluster
resources continue to work normally, but error log messages are generated and emails are
sent. Note that any occurance of a grace period will be logged in the License Usage Records.
If this period expires without a successful feature license checkout, all hosts will enter the
unlicensed state. Submission of new jobs will still be possible but these jobs will not be
scheduled until at least one host becomes licensed.

The licensing algorithm will perform the following operations as a sequence:

+ Accumulate all resources (m_gpu and m_core) for active hosts that cause license con-
sumption (not in L or d-state).

* Calculate the feature license costs for those resources. One core requires 10, one GPU
requires 100 feature licenses.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 116

2 Licensing - Summary concerning licensing of Altair Grid Engine

+ Checkout the number of calculated feature licenses from the Altair licensing server
and handle eventual errors.

+ Check the state of the connection to the licensing server. Also, check for warnings
which usually occur when the license is about to expire.

* Collect all alert levels and messages which may have occurred

+ Check license usage. For every execution host, check if enough feature licenses are
available. If enough licenses are available for the current host, keep the host enabled
or re-enable the host, if it was in the unlicensed state. Otherwise, if there are not
enough licenses remaining, set or keep the unlicensed state of the host. Sum up the
core and GPU resources of all hosts in the unlicensed state and save the values for the
license resource shortage attribute, which is assigned to the License Usage Record in
the next step.

+ Update the license usage record. If any value of the License Usage Record has
changed (see License Usage Record section), add a new entry to the list of License
Usage Records.

+ Handle any alert level and message, which may have occurred during the previous
steps. Log an automated message to the Altair Grid Engine logging facility and send
an email, if required.

This license verification algorithm will run once every 90 seconds. Note that you can trigger
a manual verification run using the qconf -tlv command at any given time e.g. after an
execution host was added to the cluster.

2.6 Requirements

There are a couple of requirements that need to be fulfilled so that the licensing function-
ality of Altair Grid Engine can work properly:

+ A working Altair License Management System installation with a proper license for
the Altair Grid Engine cluster has to be up and running. The licensing server has to be
introduced to the running instance of Altair Grid Engine by setting the proper gmas-
ter configuration parameter named AGE_LICENSE_PATH. When installing the Qmaster
component of Altair Grid Engine via the installation script, a dialogue will ask for the
AGE_LICENSE_PATH aswell. See the Altair Grid Engine Installation Guide and the “Altair
License Management System Installation and Operations Guide"” for further details on
how to setup the Altair License Managment System.

+ The execution daemons providing GPU information need to be able to query those
devices. Access to GPU resources for jobs requires a working NVML (NVIDIA Manage-
ment Library) installation and the NVML shared library to be loadable. Consider the
documentation provided by NVIDIA for further details on how to setup NVML.

+ Auser-specified path to the NVML runtime or driver library can be declared by adding
NVML_LIBRARY_PATH to execd_params. See manual page sge_conf(5) for more infor-
mation.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 117

2 Licensing - Summary concerning licensing of Altair Grid Engine

* If NVML is not available on the system, pcilib is used to find matching PCl devices,
where the vendor id resolves to NVIDIA and the PCI device class is a 3D, XGA or VGA
controller. Each of these devices is then reported as one GPU unit. Querying for PCl
devices is available on Linux systems only. The pcilib dynamic library is a standard
component on Linux systems.

« If Altair Grid Engine cannot find any of the libraries above, zero GPU resources will be
reported to the master component.

2.7 Administrative Commands

2.7.1 Display License Usage Over Time.

In a running cluster license usage will change over time, depending on the installed and
active execution nodes and also depending on the hardware (CPU, GPU) installed on those
machines.

License usage is collected over time and license usage records will be automatically created.
Such license records can be shown with the command qconf -slur. Find more information
concerning license usage records in the corresponding section above.

2.7.2 Trigger License Verification Manually

A license verification run can be triggered manually at any given time using the qconf -tlv
command.

2.7.3 Enforce Reporting of Cloud Resources

Altair Grid Engine distinguishes between resources that are reported to be on premises or
in the cloud. Depending on how the cluster is installed manual steps might be required to
tag resources as cloud resources before they are recognized as such.

Reported cores or GPUs of a host are handled as cloud resources when one of the following
conditions is met:

* The Altair Grid Engine Installation Guid host object contains in the complex_values the
definition of a boolean complex named tortuga that is set to true. (This may require
to create the boolean complex tortuga before use).

* The host configuration objects contains an execd_param where a host_provider pa-
rameter is set to a character sequence.

2.7.4 Disabling License Consumption for Specific Hosts and/or Resources
In case execution nodes fulfill a special role in a cluster (e.g. where only transfer-queues are

residing or when those hosts are used just to feed load information in a cluster) then the
reported m_code and m_gpu values of such a node should not consume license entitlements.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 118

3 Special Activities

Also, in some situations, not all GPUs available on a system are appointed to consume
feature licenses e.g. an integrated GPU in a CPU, which is not used.

Customers having such use cases should contact our Support organization to get instruc-
tions how to disable resource reporting.

2.7.5 AGERest interface

The AGERest interface allows to access information about license usage records.

3 Special Activities

3.1 Tuning Altair Grid Engine for High Throughput

In clusters with high throughput, there is usually a high volume of short jobs (job run times
in the magnitude of seconds).

Both the submission rate as well as the number of jobs finishing in a certain time frame is
high; there may also be a high number of pending jobs.

Cluster sizes range from small clusters with only a few hosts to large clusters with thousands
of hosts.

A number of setup and tuning parameters can help in achieving high throughput and high
cluster utilization in such high-throughput scenarios.

3.1.1 sge_qgmaster Tuning

Installation Options

Altair Grid Engine 8.2 allows activation of a read-only component during installation. If en-
abled this component will handle all read-only requests in parallel with read-write requests.
Up to 64 threads can be enabled in this component. Enabling this ensures faster response
times for all requests, which also has a huge positive impact on the cluster throughput.

It is recommended to enable this component during the installation so that it starts at least
4 threads. If memory constraints allow starting more threads, this will be helpful especially
in huge clusters with several thousand execution and submit hosts. Find more information
concerning read-only threads and memory requirements in section ‘Selecting Thread Setup
of the Master Host Component’ in the installation guide.

If the read-only component was disabled during the Altair Grid Engine installation process,
it can be manually enabled by adjusting the reader parameter located in the bootstrap file
of the configuration. Adjusting this parameter requires restart of the sge_qmaster process.

During the runtime of an instance of sge_gmaster with an enabled read-only component it
is possible to add or kill reader threads with the qconf -at reader and qconf -kt reader
commands. Increasing the number of reader threads will be helpful for the Altair Grid
Engine system when the number of incoming read-only requests cannot be handled im-
mediately by the active number of threads. In this case waiting requests are added to an

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 119

3 Special Activities

sge_gmaster internal queue. The length of the queue will be shown in the logging output
of gmaster monitoring when this is enabled by setting the MONITOR_TIME parameter in the
gmaster_params Of the global configuration.

03/20/2014 11:36:40.910387 | listener|v06|P|listener001: runs: 0.25r/s (
in (g:204.25,a:0.00,e:0.00,r:0.00)/s other (wql:0,rql:10,wrql:0))
out: 0.00m/s APT: 0.0000s/m idle: 100.00% wait: 0.00% time: 3.97s

The rql parameter in the other section of the monitoring output shows the reader queue
length. In this example the queue length is 10 which means that 10 additional threads
would be required to handle all read-only requests immediately.

Itis recommended to observe the cluster over a longer time to discover the optimal number
of read-only threads that should be started. Justincreasing the number of read-only threads
to the maximum of 64 is not beneficial because internal locking might slow down processing
in situations of lesser load.

Spooling Options

In high-throughput scenarios, performance of the cluster is highly dependent on the spool-
ing done by sge_gmaster. Every job submission, job status transition, and finally job end,
result in spooling operations.

Therefore the sge_gmaster spooling options should be carefully chosen:

+ Use LMDB spooling if possible.

* Do spooling on a local file system, unless high availability using sge_shadow is re-
quired; see Ensuring High Availability.

* If spooling needs to be on a shared file system, LMDB spooling on NFS4 is preferred
over classic spooling.

Choosing the spooling method is usually done during Altair Grid Engine installation.

For all spooling methods the spooled objects can be compressed before writing them to
the spooling database (for classic spooling, only job and job scripts can be compressed).
Compression is enabled by adding the option COMPRESSION=[0..9] to the spooling_params
in the bootstrap file; see man page bootstrap(5). The compression level can be set from 0
(no compression), 1 (little but fastest compression) to 9 (highest but slowest compression).

Compression can help to reduce the storage requirements of the spooling database. There
may also be positive performance impact, especially with the lower compression levels (1
or 2) and when data is stored on a shared file system or in a remote PostgreSQL database.

For testing the impact of different compression levels in an idle cluster, e.g. during mainte-
nance:

+ set the COMPRESSION option in the bootstrap file

* re-start sge_gmaster

+ disable all queues

+ submit a high number of jobs and measure the time

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 120

3 Special Activities

+ optionally check the size of the spooling database
+ delete all jobs again

E.g. for classic spooling:

In the bootstrap file:
spooling_params <path to common dir>;<path to spool dir>;COMPRESSION=2
As user root:

$SGE_RO0T/default/common/sge_master stop
$SGE_RO0T/default/common/sge_master start

As admin user:

gmod -d "x"

time env SGE_DEBUG_MULTI_SUBMIT=1000 gsub $SGE_ROOT/examples/jobs/sleeper.sh
du -skc $SGE_ROOT/default/spool/gmaster/job*

time qdel "x"

The environment variable SGE_DEBUG_MULTI_SUBMIT is meant for testing and debugging - do
not use it in a production environment!

Configuration Options

The following options in the global cluster configuration can have a significant impact on
sge_gmaster performance. Changing these parameters takes immediate effect.

* The attribute loglevel defines how much information is logged to the sge_gmaster mes-
sages file during sge_gmaster runtime. If loglevel is set to log_info, messages will get
logged at every job submission and job termination. Set loglevel to log warning to re-
duce overhead from writing the sge_gmaster messages file.

+ Do the following configuration for the attribute reporting params:

- Make sure to write operations on the accounting file and optionally if the report-
ing files are buffered. The parameter flush_time should be set to at least one
second (00:00:01). If it is set to O, buffering of write operations to the accounting
and the reporting file is not done. Should the attribute accounting flush_time be
set, it must either be removed (meaning that flush_time will be in effect for the
accounting file) or set to at least one second (00:00:01).

See Understanding and Modifying the Cluster Configuration for more details on the global
cluster configuration.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 121

3 Special Activities

3.1.2 Tuning Scheduler Performance

An important factor in high-throughput scenarios is scheduler performance. Reducing the
time required for a single scheduling run will allow for more precise scheduling runs.

The scheduler configuration allows for the setting of attributes having significant impact on
scheduler performance.

« Setting the attribute flush_submit sec to 1 triggers a scheduling run whenever a job is
submitted. If there are free resources in the cluster, the newly submitted job can be
started immediately.

* The attribute flush_finish_sec has a similar meaning. When its value is set to 1, a
scheduling run is triggered whenever a job finishes. The resources having been held
by the just finished job can get reused immediately.

+ The default configuration of Altair Grid Engine makes the scheduler dispatch jobs to
the least-loaded host; this also adds some virtual load to a host when a job gets dis-
patched to it. Adding virtual load to a host requires sorting the host list after every dis-
patch operation, which can be an expensive operation in large clusters. By setting the
attribute load_adjustment to NONE scheduling overhead can be reduced significantly.

* When the schedd_job_info attribute is set to true the scheduler provides informa-
tion about why a job cannot be dispatched to sge_gmaster. This information can
be queried by calling gstat -j <job_id>. Setting schedd_job_info to false signifi-
cantly reduces the amount of information generated by the scheduler and held by
sge_gmaster, lowering the amount of memory required by sge_gmaster and the
overhead of producing the information. Querying the reason why a job cannot be
dispatched is then accomplished by calling galter -w p <job_id>.

* Resource reservation results in quite expensive analysis being done by the scheduler.
If resource reservation is not required, consider disabling it completely by setting the
attribute max_reservation to O.

See Understanding and Modifying the Altair Grid Engine Scheduler Configuration for further
information about scheduler configuration.

In general, the fewer the scheduling policies configured, the higher the scheduler perfor-
mance.

3.1.3 Reducing Overhead on the Execution Side

Local sge_execd Spooling

In high-throughput scenarios with short-running jobs, many jobs are started and completed
per time period. Some of the most expensive operations at job start and end are job spool-
ing and the creation of temporary files and directories for the job start, and the cleaning of
temporary data at job end.

By configuring the execution daemons to use a local file system for spooling, performance
can be significantly improved.

For changing the sge_execd spool directory

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 122

3 Special Activities

* make sure no jobs are running on the hosts affected,

+ modify the global cluster configuration or the local cluster configuration for the exec
host,

+ set the attribute execd_spool_dir to the new spool directory,

+ shut down and restart the sge_execd.

Setting Execution Hosts to Use Extended Memory Data Metrics

The default memory collection metrics in Altair Grid Engine can be extended on modern
Linux operating systems to include additional memory metrics added to Kernel 2.6.25 or
later. The ENABLE_MEM_DETAILS execd parameter flag can be set in the global cluster config-
uration using qconf -sconf. When ENABLE_MEM_DETAILS is set to 1 or TRUE Altair Grid Engine
will collect additional per-job memory usage for proportional set size (pss), shared memory
(smem) and private memory (pmem).

3.2 Optimizing Utilization

Cluster utilization describes the proportion of resources currently used by Altair Grid Engine
jobs in comparison to the whole amount of available resources installed at the compute
cluster. Reaching high cluster utilization is one of the main goals which Altair Grid Engine
has on its agenda. This section describes basic techniques for optimizing the resource uti-
lization of an Altair Grid Engine managed cluster.

3.2.1 Using Load Reporting to Determine Bottlenecks and Free Capacity

In order to provide a quick overview about the cluster's compute resources state, the
ghost command can be used. Interesting values are the current load value (LOAD) and the
amount of memory currently in use (MEMUSE).

> ghost
HOSTNAME ARCH NCPU

NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - - - -
host1 lx-amd64 1 1 1 1 0.21 934.9M 147.7M 1004.0M
host2 1x-x86 1 0 0 0 0.091011.3M 103.4M 1.9G
host3 lx-amd64 2 1 2 2 0.46 3.4G 343.3M 2.0G
host4 sol-amd64 2 1 2 2 2.07 2.0G 763.0M 511.0M
host5 lx-amd64 1 1 1 1 0.09 492.7M 75.3M 398.0M

Unused hosts can be identified through a low load value. To sort the output by load, use
standard commands like the following:

> ghost | tail +4 | sort -k 7
host2 1x-x86 1 0 0 0
hostb 1x-amd64 1 1 1 1

13 1011.3M 103.4M 1.9G

0.
0.14 492.7TM 75.3M 398.0M

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 123

O O O O

o O

3 Special Activities

hostl 1x-amd64 1 1 1 1 0.29 934.9M 147.7M 1004.0M 0.0
host3 1x-amd64 2 1 2 2 0.64 3.4G 343.3M 2.0G 0.0
host4 sol-amd64 2 1 2 2 1.94 2.0G 763.0M 511.0M 0

More detailed load information can be seen at the execution host level. The qconf -se
<hostname> displays the current raw load values.

> qconf -se host3

load_values load_avg=0.000000,load_short=0.000000, \
load_medium=0.000000,load_long=0.000000,arch=1x-amd64, \
num_proc=1,mem_free=2818.867188M, swap_free=2053.996094M, \
virtual free=4872.863281M,mem_total=3144.273438M, \
swap_total=2053.996094M,virtual_total=519\GEShortVersion{}69531M, \
mem_used=325.406250M, swap_used=0.000000M, \
virtual_used=325.406250M, cpu=0.200000,m_topology=SC, \
m_topology_inuse=SC,m_socket=1,m_core=1,m_thread=1, \
np_load_avg=0.000000,np_load_short=0.000000, \
np_load_medium=0.000000,np_load_long=0.000000

report_variables NONE
In order to see the processed (when using load scaling) values -h hostname -F can be used:

> ghost -h host6 -F

HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
global - - - - - - - - - -
host7 1x-x86 1 0 0 0 0.001011.3M 106.5M 1.9G 0.0

hl:arch=1x-x86
hl:num_proc=1.000000
hl:mem_total=1011.332M
hl:swap_total=1.937G
hl:virtual_total=2.925G
hl:load_avg=0.000000
hl:1load_short=0.000000
hl:load_medium=0.000000
hl:load_long=0.000000
hl:mem_free=904.812M
hl:swap_free=1.937G
hl:virtual_free=2.821G
hl:mem_used=106.520M
hl:swap_used=0.000
hl:virtual used=106.520M
hl:cpu=0.000000
hl:m_topology=NONE
hl:m_topology_inuse=NONE
hl:m_socket=0.000000

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 124

3 Special Activities

hl:m_core=0.000000
hl:m_thread=0.000000
hl:np_load_avg=0.000000

hl:np_load_short=0.000000
hl:np_load_medium=0.000000

hl:np_load_long=0.000000

The current cluster utilization should always be examined in conjunction with the pending
job list. If there are no jobs waiting for resources, the utilization is already perfect from the
DRM point of view. The gstat command gives an overview of running and pending jobs.
Running jobs are in state r and pending jobs are in state qw (for queued waiting). The time
of submission is visible, depending on job status and the requested number of slots.

> gstat
job-ID prior mname user

state submit/start at queue slots ja-task-ID
r 04/14/2011 09:45:12 bg@macsuse 1
r 04/14/2011 09:45:12 bg@macsuse 1
qw 04/14/2011 09:44:25 1
qw 04/14/2011 09:44:25 1

More information about why certain jobs are not scheduled can be retrieved via the gstat
command. A prerequisite for this is thatin the scheduler configuration the schedd_job_info

parameter is set to true.

Note

Note that enabling the scheduler output has implications for the overall performance of
the gmaster process and should be activated either in smaller clusters, where the gmaster
host is just slightly loaded, or only temporarily.

> qconf -msconf

schedd_job_info

true

When there are any pending jobs the scheduling information can be viewed via a simple

gstat -j <jobno>
> gstat -j <jobno>

scheduling info: queue
queue
queue
queue
queue

instance
instance
instance
instance
instance

"all.q@SLES11SP1" dropped because it is full
"all.q@ul010" dropped because it is full
"all.q@cent48" dropped because it is full
"all.qO@macsuse" dropped because it is full
"all.q@solaris10" dropped because it is full

In the output above, all queue-instances are already full and there are no more slots left.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 125

3 Special Activities

3.2.2 Scaling the Reported Load

Sometimes load values have different meanings. The machine load average could be such
an example. It is defined by the number of processes in the operating system'’s running
queue. On a multi-CPU or multi-core host, usually multiple processes can be run at the
same time, so a load of 1.0 means that it is fully occupied on a one core machine while
there are still resources left on a multi-core machine. In order to resolve these issues, load
report values can be scaled at the host level.

Example: Downscale load_short by a Factor of 10

Load scaling is host-specific therefore the host configuration must be adapted:

> qconf -me <hostname>
hostname <hostname>
load_scaling load_short=0.10000

The original execution host source values can still be seen in the host configuration
(load_short=0.08):

> qconf -se <hostname>

hostname <hostname>

load_scaling load_short=0.100000

complex_values NONE

load_values load_avg=0.060000,load_short=0.080000, \

load_medium=0.060000,load_long=0.110000,arch=1x-amd64, \
num_proc=1,mem_free=2742.671875M, swap_free=2053.996094M, \
virtual_free=4796.667969M,mem_total=3144.273438M, \
swap_total=2053.996094M,virtual_total=519\GEShortVersion{}69531M, \
mem_used=401.601562M, swap_used=0.000000M, \
virtual_used=401.601562M, cpu=73.800000,m_topology=SC, \
m_topology_inuse=SC,m_socket=1,m_core=1,m_thread=1, \
np_load_avg=0.060000,np_load_short=0.080000, \
np_load_medium=0.060000,np_load_long=0.110000

The current scaled load values (load_short=0.008 in comparison to the source 0.08) are
shown using gstat:

> gstat -1 h=<hostname> -F load_short
queuename qtype resv/used/tot. load_avg arch states

all.q@<hostname> BIPC 0/0/20 0.06 1x-amd64
hl:load_short=0.008000

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 126

3 Special Activities

Note

The scaled load values are already available with the np_load_* values. They are scaled
using the number of reported processors (num_proc).

3.2.3 Alternative Means to Determine the Scheduling Order
After a defaultinstallation, the scheduler is configured in a way to choose the more available

hosts first for the new jobs. The scheduler configuration can be viewed with the qconf
-ssconf command.

> qconf -ssconf

job_load_adjustments np_load_avg=0.50

load_adjustment_decay_time 0:7:30
host_sort_formula np_load_avg
schedd_job_info false
weight_host_affinity 0.0

weight_host_sort
weight_queue_affinity
weight_queue_host_sort
weight_queue_seqno

O~ O =
O O O O

The weight_queue_* and weight_host_*-parameters determine the order of the queue-
instances when they are matched against the pending job list. The host_sort_formula de-
scribes load type and is calculated if weight_host_sort is set to something bigger than 0.

Queue Sequence Number

When weight_queue_seqno is set to a much higher value than weight_queue_host_sort,
the queue sequence number, which is defined in the queue configuration attribute (qconf
-mq <queue_name>) determines the order in which the queued instances are chosen for the
pending jobs.

Example: Defining the Queue Order

Create two queues a and b.

> qconf -aq a
> qconf -aq b

Disable queue all.q if it exists.
> gmod -d all.q

Set weight_queue_seqno to 1 and all other weight_-parameters to 0.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 127

3 Special Activities

> qconf -msconf

weight_host_affinity
weight_host_sort
weight_queue_affinity
weight_queue_host_sort
weight_queue_seqgno

= O O O O
O O O O O

Set the seq_no of queue a to 10 and seq_no of queue b to 20.

> qconf -mqg a

gname a
hostlist @allhosts
seq_no 10

> qconf -mg b

gname b
hostlist @allhosts
seq_no 20

Submit some jobs. It can be observed that all jobs are running in queue a.

gsub -b y sleep 120
gsub -b y sleep 120
gqsub -b y sleep 120
qsub -b y sleep 120

vV V V V

> gstat -g c
CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoACDS cdsuE

a 0.01 4 0 46 50 0 0
all.q 0.01 0 0 0 60 0 60
b 0.01 0 0 5 5 0 0

Example: Defining the Order on Queue Instance Level

Defining the queue order on the queue level can be too vague when implementing specific
scheduling strategies. A queue could span a large number of hosts or even the whole clus-
ter. Therefore it is useful to define sequence numbers on queue instance levels (a queue
instance is the part of a queue which sits on a specific host).

The order can be defined on a queue instance level in the following way:

> qconf -mqg a
gname a
hostlist @allhosts

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 128

3 Special Activities

seq_no 10, [host1=1], [host2=2], [host3=3]

slots 1

If 4 jobs are submitted, the first one is dispatched to host1, the second to host2 and so on.

> gqsub -b y sleep 120
> gsub -b y sleep 120
> gqsub -b y sleep 120
> gqsub -b y sleep 120
> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID
4 0.55500 sleep daniel r 04/28/2011 14:31:36 aGhostl 1
5 0.55500 sleep daniel r 04/28/2011 14:31:36 aGhost2 1
6 0.55500 sleep daniel r 04/28/2011 14:31:36 aGhost3 1
7 0.55500 sleep daniel r 04/28/2011 14:31:36 aGhost4 1

Here host1 takes precedence over host2 in queue a, and so on.
Example: Antipodal Sequence Numbering of Queues

A Altair Grid Engine-managed cluster is often populated by jobs with different priorities. In
many cases there are several extended I/0 intensive (with a low load) batch jobs which are
not time sensitive, running simultaneously with a group of high priority jobs which require
immediate execution requiring suspension of already-running jobs. In order to configure
the cluster for these two job types, two queues have to be added to the configuration. For
simplicity, 3 hosts are used in this example.

> qconf -mq low

qname low

hostlist @allhosts

seq_no 10, [host1=3], [host2=2], [host3=1]
slots 1

> qconf -mqg high

gname high

hostlist @allhosts

seq_no 10, [host1=1], [host2=2], [host3=3]
slots 1

This example shows that the high queue suspends the low queue. The seq_no in both con-
figurations is now defined in the queue instance layer with a reverse order respectively.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 129

3 Special Activities

The net result is that jobs which are submitted to the high queue run first host1 then host2
and so on and jobs which are running in the 1ow queue begin from the opposite end. This
means that jobs are suspended only when the cluster is fully utilized. A drawback in this
example is the problem of starvation. Low-priority jobs which are running on hosts with
a very low sequence number for the high priority queue instance can remain suspended
for a long time when there are always jobs with higher priority running. A more advanced
approach is shown in section Implementing Pre-emption Logic with the example Mixing
exclusive high priority jobs with low priority jobs.

3.3 Managing Capacities

Administrators are often faced with the problem that the number of resources used at any
one point in time has to be limited for different consumers in order to map given business
rules into a Altair Grid Engine cluster installation. Altair Grid Engine includes several mod-
ules for limiting capacities of the managed resources. The main concepts to ensure these
limits in Altair Grid Engine are the resource quota sets and the consumables, which are
illustrated in more detail below.

3.3.1 Using Resource Quota Sets

With resource quota sets the administrator is able to restrict various objects such as users,
projects, parallel environments, queues, and hosts, using different kinds of limit. Limits
can be static, fixed-value, or dynamic (a simple algebraic expression). All currently defined
resource quota sets can be shown using qconf -srqsl. After a default installation, no re-
source quota set is defined.

>qconf -srqgsl
no resource quota set list defined

Resource quotas can be added withqconf -args, modified with qconf -mrqs myname, and
deleted with qconf -drqs myname.

A resource quota set has the following basic structure:

{
name myresourcequotaset
description Just for testing.
enabled TRUE
limit users {*} to slots=2
b

The name denotes the name of the rule. This should be short and informative because this
name can be seen using gstat -j <jobno> as the reason why a specific job was not pro-
cessed in the last scheduled run (Note: schedd_job_info must be turned on in the sched-
uler (see TODO)).

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 130

3 Special Activities

>gstat -j 3

scheduling info: cannot run because it exceeds limit "/////"
in rule "myresourcequotaset/1"

The description can contain more detailed information about the limits. This becomes im-
portant especially when the cluster configuration grows in order to keep track of all defined
rules. It should describe the rules in a way that even after years the purpose of the rules
can be seen immediately.

The enabled field determines whether the rule is enabled (TRUE) or disabled (FALSE). Hence
rules do not have to be deleted and restored as a whole, but can be turned off and on,
simplifying the handling of resource quota sets.

The entry which defines a rule starts with the keyword limit. In the first example above,
each useris limited to the use of 2 slots at a time. If a user has, for example, 3 jobs submitted,
one job will stay in the waiting state (qw state) until the first job finishes. The scheduler
ensures that not more than 2 slots are occupied by one user at the same time.

Multiple limit rules are allowed. If multiple limits match, the first match wins.

{
name myresourcequotaset
description Just for testing
enabled TRUE
limit users {*} to slots=2
limit users {*} to slots=1
}

In this example, the first limit that matches a user is users to slots=2, meaningthata user
is allowed to run 2 sequential jobs in parallel.

Limits can have a name. The name must be unique within each resource quota set:

{
name myresourcequotaset
description Just for testing
enabled TRUE
limit name slot2rule users {*} to slots=2
limit name slotlrule users {*} to slots=1
}

Objects, which can be restricted, are users, projects, pes, queues, and hosts. In order to
specify entities within these objects, the { } notation can be used. Special values are the
asterisk {}, which means all, the exclamation mark {!}, which can be used to exclude entities, and
the combination of both {!}, meaning are the entities which have not requested the specific
object.

In the following example user1 and user2 (each of them) are restricted to using 2 slots of
the parallel environment mytestpe at the same time.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 131

3 Special Activities

{

name myresourcequotaset

description Just for testing

enabled TRUE

limit users {userl,user2} pes { mytestpe } to slots=2
b

In order to limit all users to at most 100 serial jobs running in the system, but unlimited
parallel jobs, the rule below can be used.

{

name myresourcequotaset

description Just for testing

enabled TRUE

limit users {*} pes {!*} to slots=100
}

The limit after the to keyword can be any complex (see TODO) defined in the system. In
order to define rules, which are different for specific hosts, dynamic complexes can be used.

The following example limits the number of slots on each host to the number of available
cores:

{
name myresourcequotaset
description Just for testing
enabled TRUE
limit hosts {*} to slots=$m_core
3

3.3.2 Using Consumables

Consumables are complexes that have a counting behavior. They can be identified through
the consumable column, when displaying the complexes with gconf -sc. In a default instal-
lation only one (special) consumable is defined - the slots complex.

>qconf -sc

#name shortcut type relop requestable consumable default urgency

slots s INT <= YES YES 1 1000

The best way to think about consumables is to consider them as counting variables, which
can have any syntax one can imagine. These consumables can be defined on different
layers: When they are initialized on the host level they can limit the number of consumers
on specific hosts. If they are applied in queues they limit the use of specific queue instances,

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 132

3 Special Activities

and when they are used in global configuration (qconf -me global) they limit the usage of
this resource for each job.

A common task for consumables is to handle special hardware devices for a cluster and to
make them available for the Altair Grid Engine. In the following example, execution hosts
are upgraded with GPU cards in order to support special numerical computational jobs.

Host Consumable Example: Adding a GPU to the cluster

In the current cluster, 3 execution hosts are defined and one of them (host1) has the addi-
tional GPU processing facility.

> ghost

HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS
global - - - - - - -
hostl 1x26-amd64 4 0.00 934.9M 134.1M 1004.0M 0.0
host2 1x26-amd64 4 0.02 2.0G 430.9M 2.0G 0.0
host3 1x26-amd64 4 0.00 492.7M 41.6M 398.0M 0.0

First, a new consumable must be added in the complex table.

> qconf -mc

#name shortcut type relop requestable consumable default
__
GPU gpu INT <= YES YES 0

Because this consumable is host-dependent (and not queue-dependent), it must be initial-
ized per host. The execution server configuration must be edited and the new GPU complex
value 1 is added.

> qconf -me hostl

hostname host1l
load_scaling NONE
complex_values GPU=1
user_lists NONE
xuser_lists NONE
projects NONE
xXprojects NONE
usage_scaling NONE
report_variables NONE

Now the value can be seen in the gstat output:

> gstat -F GPU

queuename qtype resv/used/tot. load_avg arch states

all.q@hostl BIPC 0/0/10 0.00 1x26-amd64

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 133

3 Special Activities

1x26-amd64

hc:GPU=1
all.q@host?2 BIPC 0/0/10 0.00
all.q@host3 BIPC 0/0/10 0.00

In order to request the GPU consumable the user must specify the attribute at job submis-

sion time.

> gqsub -b y -1 GPU=1 sleep 100
Your job 4 ("sleep") has been submitted

Now check the host consumable again:

> gstat -F GPU

queuename qtype resv/used/tot. load_avg arch states
all.qG@host1l BIPC 0/1/10 0.00 1x26-amd64
hc:GPU=0

4 0.55500 sleep daniel r 03/04/2011 10:17:21 1

all.q@host2 BIPC 0/0/10 0.00 1x26-amd64

all.q@host3 BIPC 0/0/10 0.00 1x26-amd64

If a second GPU job is started, let the scheduler run again (-tsm):

> gsub -b y -1 GPU=1 sleep 100

Your job 5 ("sleep") has been submitted

> qconf -tsm

daniel@hostname triggers scheduler monitoring

> gstat

job-ID prior name user state submit/start at queue slots ja-task-ID
4 0.55500 sleep daniel r 03/04/2011 10:17:21 all.q@hostl 1
5 0.55500 sleep daniel qw 03/04/2011 10:17:28

The second job, which requests a GPU, stays in the waiting state until the first GPU job
finishes, since there is no other host with a GPU consumable configured.

> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID
5 0.55500 sleep daniel r 03/04/2011 10:19:07 all.qGhostl 1

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

134

3 Special Activities

Queue Consumable Example: Adding multiple GPUs on cluster hosts

This example illustrates how to use queue consumables. Queue consumables can be used
when resources should be split up between several queues. Imagine that two GPU cards
are added to an execution host. Using the approach above with more counters (two instead
of one) works just fine, but the jobs have to negotiate the GPU used (GPUO or GPU1). One
approach to solve this issue would be for the administrator to provide a script on the exe-
cution host which then provides the GPU number for the job. In order to handle this with
Altair Grid Engine, queue consumables can be used.

As stated above, the GPU complex must first be added in the complex list with gconf -mc. In
contrast to a host complex, the initial value has to be defined in the queue layer. Therefore
two queues, each representing one GPU, must be added and initialized properly.

> qconf -aq gpu0l.q

qname gpul.q
hostlist host1
slots 10
complex_values GPU=1

> gconf -aq gpul.q

gname gpul.q
hostlist host1l
slots 10
complex_values GPU=1

The complex_values entry can also have different values for each queue instance. If on
some hosts GPU pairs should be requestable by just one job the complex_values entry
would look like the following: GPU=1, [host2=GPU=2].

The hosts entry contains all hosts with two GPUs installed. The complex_values entry is
used for initializing the GPU value. The values can now be seen in the gstat output:

> gstat -F GPU

queuename qtype resv/used/tot. load_avg arch states

all.gohostt BrPC 0/0/20 023 le-amisa
algemostz BIPC 0/0/10 0.08 lxxss
all.gohosts BrPC 0/0/10 0.040 lr-amisa
all.gomosta BrPC 0/0/10 0.040 lr-amisa

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 135

3 Special Activities

gpu0.qg@hostl BIP 0/0/10 0.23 1x-amd64
qc:GPU=1

gpul.q@hostl BIP 0/0/10 0.23 1x-amd64
qc:GPU=1

Now jobs requesting the queue consumable can be submitted:
> gsub -S /bin/bash -1 gpu=1 gpu.sh
The gpu.sh is like the following:
#!/bin/bash
if ["x$QUEUE" = "xgpuO.q"]; then
echo "Using GPU 0"
fi
if ["x$QUEUE" = "xgpul.q"]; then
echo "Using GPU 1"
fi

sleep 100

After the job is scheduled the gstat shows which queue and therefore which GPU is se-
lected:

> gstat -F gpu

queuename qtype resv/used/tot. load_avg arch states
all.q@hostl BIPC 0/0/20 0.23 1x-amd64
all.q@host2 BIPC 0/0/10 0.08 1x-x86
all.qGhost3 BIPC 0/0/10 0.04 1x-amd64
all.q@host4 BIPC 0/0/10 0.04 1x-amd64
gpu0.q@host1 BIP 0/1/10 0.05 1x-amd64

qc:GPU=0

5 0.55500 gpu.sh daniel r 04/19/2011 08:58:08 1
gpul.q@hostl BIP 0/0/10 0.05 1x-amd64

qc:GPU=1

The output of the job is:

Using GPU O

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 136

3 Special Activities

When 3 jobs are submitted each requesting a GPU, only 2 will run at the same time. The
third one is rejected because 2 GPUs are available. If the scheduler information is turned
on (gconf -mscontf)the reason why the third job remains pending can be seen immediately:

> gstat -j <jobno>

(-1 GPU=1) cannot run in queue "gpuO.q@hostl" because it offers only qc:GPU=0.000000
(-1 GPU=1) cannot run in queue "gpul.q@hostl" because it offers only qc:GPU=0.000000

3.4 Implementing Pre-emption Logic

Pre-emption is the action of suspending a job in order to free computational resources and
resume the job at a later time. The reasons can be different: to avoid thrashing or to give
jobs of higher priority precedence. Pre-emption can be configured in Altair Grid Engine
in different places and can have different meanings. Limits can be set between different
queues so that one queue gains precedence over another: jobs in the higher-priority queue
can trigger the suspension of jobs in the lower-priority queue. Furthermore, suspension
thresholds within a queue can be defined so that whenever these limits are exceeded, jobs
are suspended. Additionally the Altair Grid Engine calendar is able to suspend resources. In
this section the slot-wise and queue-wise suspension features are explained in more detail.

3.4.1 When to Use Pre-emption

Queue-wise subordination can be used whenever jobs have to be grouped into different
priority classes. Jobs of a certain class are submitted into the corresponding queue. When-
ever a particular limit for high-priority jobs in a queue has been reached, the lower-priority
jobs (i.e. the jobs in the subordinate queues) are suspended. After the higher-priority jobs
have completed, the suspended jobs are reinstated. Suspending and reinstating jobs is
usually performed by sending the SIGSTOP and SIGCONT signal to the user jobs. In the
queue configuration attribute suspend_method and resume_method the path to a self-defined
script/executable can be added, which overrides the default signals with a user-defined sus-
pension/reinstatement behavior. In this script, different suspend/resume methods for dif-
ferent jobs can be defined. In the case that a different signal for all jobs is needed, the job
signal name (SIG*) can be used.

3.4.2 Utilizing Queue Subordination

Queue subordination is defined in the queue configuration, which can be modified through
the qconf -mq <queuename> command. The related attribute for subordination definitions
is named subordinate_list. The syntax is:

<queuename>=<slots>, <queuename2>=<slots>,
where the queue name denotes the subordinated queue (the lower-priority queue) and

slots is the threshold value which triggers the suspension of the subordinate queue.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 137

3 Special Activities

Example: Suspend all low-priority jobs on a host whenever a job is running in
the high priority queue

First create the low priority queue:

> qconf -aq low.q

gname low.q
hostlist @allhosts
slots 10

subordinate_list NONE

Create the high priority queue with a slot limit of 1 (when 1 slot is used in the upper queue
to suspend the lower queue).

> qconf -aq high.q

gname high.q
hostlist @allhosts
slots 10

subordinate_list low.qg=1
Now submit a job into the subordinate queue on host1:
> gsub -q low.q@hostl -b y sleep 240

See that the job is running:

> gstat
job-ID prior name user state submit/start at queue slots ja-task-ID
4 0.55500 sleep daniel r 05/17/2011 15:36:04 low.qG@hostl 1

Submit the high-priority job:
> gqsub -q high.q@hostl -b y sleep 240

After the job is dispatched, the job in the lower-priority queue is immediately suspended.

> gstat

job-ID prior name user state submit/start at queue slots ja-task-ID
4 0.55500 sleep daniel S 05/17/2011 15:36:04 low.q@hostl 1
5 0.55500 sleep daniel T 05/17/2011 15:36:14 high.q@host1l 1

Grid Engine Administrator's Guide v 2025.1.0 (8.10.0) 138

3 Special Activities

3.4.3 Utilizing Slot-wise Subordination
Slot-wise subordination is also defined in the queue configuration, which can be modified

throughthe gconf -mq <queuename>command. The related attribute for subordination def-
initions is named subordinate_list. The syntax is:

slots=<slots>(queuename2)

where the queue name denotes the subordinated queue (the lower-priority queue) and
slots is the threshold value which triggers the blocking of the subordinate queue.

Example: Block a low-priority queue on a host whenever the slot-wise threshold is
reached

First create the low priority queue:

> qconf -aq low.q

gname low.q
hostlist @allhosts
slots 10

subordinate_list NONE

Create the high priority queue with a total number of 3 slots to be used by itself and its
subordinate queue:

> gconf -aq high.q

gname high.q
hostlist @allhosts
slots 10

subordinate_list slots=3(low.q)
Now submit two jobs into the high priority queue on host1:

> gqsub -q high.q@hostl -b y sleep 240

> gqsub -q high.q@hostl -b y sleep 240

See that the jobs are running:

> gstat

job-ID prior name user state submit/start at queue slots ja-task-ID
4 0.55500 sleep daniel r 05/17/2011 15:36:04 high.q@hostl 1
5 0.55500 sleep daniel r 05/17/2011 15:36:14 high.q@host1 1

Submit a third high-priority job:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 139

3 Special Activities

> gqsub -q high.q@hostl -b y sleep 240

After the job is dispatched, there are now a combined number of 3 jobs on the high and
low priority queues, which is the subordination threshold. The lower-priority queue is im-
mediately set into blocked (‘B’) state.

$ gstat -f
queuename qtype resv/used/tot. np_load arch states
low.q@uk-1lon-020 BIP 0/0/1 0.04 1x-amd64 B
high.q@uk-1lon-020 BIP 0/3/16 0.04 1x-amd64

4 0.55500 sleep daniel r 05/17/2011 15:36:04 1

5 0.55500 sleep daniel r 05/17/2011 15:36:14 1

6 0.55500 sleep daniel T 05/17/2011 15:36:24 1

Jobs submitted to the low-priority queue will go into pending state while the queue is
blocked. Jobs can continue to be run on the high-priority queue. This ‘B’ queue state
will only be released once the number of combined jobs reaches below the configured
subordination threshold.

3.4.4 Advanced Pre-emption Scenarios

Job suspension can come at the cost of a lower overall cluster utilization. The following
scenario makes this clear:

The cluster consists of two hosts on which a high.q and a low.q are defined. The high.q
subordinates the low.q with a limit of 2 which means that whenever two or more jobs are
running in the high.q on a specific host the low.q on that host is subordinated. On both
hosts one job is running in the low.q. Additionally on host1, one job is in high.q. If now a
second higher-priority job is submitted, it does not in all cases run on host2. If for example
the queue sort method is 1oad and the two jobs on host1 produce less load than the one
job on host2, then the fourth job is scheduled on host1 with the net result that the lower-
priority job is suspended. No suspension would result if the job runs on host2.

Usually having the queue instances sorted by load is a good way to prevent subordination.
But this is not true in all cases. The following example shows how to combine the queue
sort method seq_no and the exclusive queue feature with queue-wise subordination.

Example: Mixing exclusive high-priority jobs with low-priority jobs

In the following scenario, a cluster of 8 hosts is used by two different groups: researchers
and students. Usually the researchers have just one or two jobs running while the stu-
dents must do their assignments on the cluster. Therefore two hosts are reserved for the
researchers (students should not to have access to these machines) and the remaining 6
hosts are used by the students. The researchers want to have their machines exclusively if
a job using 1 or more slots is running, which means a mix of different researcher jobs on
one machine is also not allowed. In some rare cases the researchers have much more work,
therefore it should be possible that in such circumstances, they can access the student ma-
chines. But when there are just a few student jobs running, the risk of suspending these

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 140

3 Special Activities

jobs should be minimized. All this can be expressed in Altair Grid Engine in the following
way:

* research jobs need machines exclusively, so the exclusive queue complex (consum-
able) is needed
+ two queues are needed: research.q and student.q

* research jobs should be able to suspend student jobs, so queue-wise subordination
must be configured

* research jobs should first use their own hosts and if this is not enough, they can use
student hosts. This requires queue sort method seq_no

+ 3 specific student hosts should be the last resort for research jobs: queue sorting of
student queue should be diverted to the sort method of the research hosts

The configuration is done in the following way:

Create gexclusive queue consumable (complex).

> qconf -mc

#name shortcut type relop requestable consumable default urgency
__
gexclusive qe BOOL EXCL YES YES 0 4000

Create the student.q:

> gconf -aq student.q

qname student.q

hostlist host3 host4 hostb5 host6 host7 host8

seq_no 10, [host3=4], [host4=3], [host5=2], [host6=1], [host7=1], [host8=1]
slots 4

Create the research.q which subordinates student .q and define the queue instance exclu-
sive resource:

> qconf -aq research.q

gname research.q

hostlist hostl host2 host3 host4 hostb

seq_no 10, [host1=1], [host2=1], [host3=2], [host4=3], [host5=4]
slots 4

subordinate_list student.qg=1

complex_values gexclusive=1

Change the scheduler configuration:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 141

3 Special Activities

> qconf -msconf

weight_host_affinity
weight_host_sort
weight_queue_affinity
weight_queue_host_sort
weight_queue_seqgno

= O O O O
O O O O O

Now the researchers have to request the research.q together with the gexclusive complex
and the students have to request student.q. This can be enforced by using request files or
the Jsv facility.

3.5 Integrating Altair Grid Engine with a License Management
System

Applications that run under Altair Grid Engine control may be licensed. In many cases a
license management system controls the number of concurrent uses of the application.
These licenses are configured as consumable resources in Altair Grid Engine. See Intro-
duction Guide -> Concepts and Components -> Expressing Capabilities and Capacities and
Special Activities -> Using Consumables.

Once a consumable resource has been created as a license counter, its capacity must be
set. There are different ways to set the capacity (the available licenses) in Altair Grid Engine:

1. Consumable-only counter: Set the capacity (the maximum number of available
licenses) in the execution host configuration (see man host_conf). For site licenses,
set the global host. For node-locked licenses, set the specific execution host.

Altair Grid Engine keeps track of the licenses in use by jobs. No job requesting license(s) is
started if any license is not met.

This is the easiest and most precise way of handling licenses, but licenses must be con-
sumed by Altair Grid Engine batch jobs only. It is not suited for situations with both interac-
tive and batch license use.

2. Using only external values (load sensor): A load sensor is used to report license usage.
See man page sge_execd(8) for information about load sensors. Examples for load
sensors are in $SGE_RO0T/util/resources/loadsensors.

The load sensor is called at regular intervals (load_report_interval configured in the cluster
configuration). It queries the license manager for the available number of licenses and
reports this number to Altair Grid Engine.

This setup works in clusters with low job throughput and jobs of longer duration. With
higher job throughput or frequent interactive license use, it suffers from race conditions:

* When licenses are consumed interactively, it takes some time (the load report interval)
until the load sensor reports the license usage.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 142

3 Special Activities

* When ajobis started, a license is not immediately consumed. During this time period,
further jobs requesting a license may be started.

3. Combining consumable with load sensor: This setup combines approaches 1 and 2:
Altair Grid Engine keeps track of licenses via the consumable counter, and the actual
license usage is reported by a load sensor.

The Altair Grid Engine scheduler will take the minimum of internal license booking and load
value as the number of available licenses.

With this setup, interactive license usage is taken into account, and license overbooking due
to jobs not immediately drawing licenses is avoided.

Interactive license usage is still reported to Altair Grid Engine by the load sensor with some
delay. Overbooking licenses due to interactive license usage can still occur.

4. Setting the capacity by an external program: A different approach to reducing the
time window for race conditions to a minimum is by using an external component to
monitor the license usage and dynamically setting the license capacity in the Altair
Grid Engine execution host configuration.

3.6 Managing Priorities and Usage Entitlements

Influence of Policy Weights on Final Priority

weight_user weight_project weight_department weight_job

T~ S

weight_tickets_share weight_tickets_functional overrideTickets weight_waiting_time weight_deadline resourceRequest
weight_priority weight_ticket weight_urgency
JobPriority

FIGURE: Influence of policy weights on final priority

Mapping business rules into cluster use is crucial for companies with a cluster shared by dif-
ferent entities. Altair Grid Engine supports this through different scheduling policies. These
policies influence the final order of the job list, which is processed by the scheduler. The
scheduler dispatches the jobs to the execution nodes in this order: jobs at the top of the list
have a greater chance of obtaining resources earlier than jobs at the bottom of the list. Jobs
that cannot be dispatched to an execution node due to a lack of resources are deferred to
the next scheduling run. This section describes the different policies which influence the
job order list. There are three general groups of priorities from which the final priority value
is derived: ticket-based priorities, urgency-based priorities, and the POSIX priority. Further
information can be found in the man pages sched_conf and sge_priority.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 143

3 Special Activities

3.6.1 Share Tree (Fair-Share) Ticket Policy

The Altair Grid Engine Share Tree Policy implements fair share scheduling as described in
the 1998 paper “Fair Share Scheduler” by J. Kay and P. Lauder published in the Communi-
cations of the ACM. The algorithm described in the paper is the basis for fair share imple-
mentations across a wide range of computing systems.

The basicidea of fair share scheduling is to allow an administrator to assign “shares” to users
or groups to reflect the percentage of resources which should be granted to that user or
group over a period of time. Shares are just numbers which are relative to one another. For
example, if we assign 100 shares to Jim and 100 shares to Sally, we are indicating that Jim
and Sally should share resources equally. If we assign 200 shares to Sally and 100 shares
to Jim, we are indicating that Sally should get twice the resources that Jim gets.

Rather than explicitly defining a period of time, the share tree algorithm defines a sliding
window of time. The sliding window is described by a half-life period. The half-life period is
the amount of time after which the resource usage will have decayed to half of the original
value. That is, as Jim and Sally use computing resources, the system records and accumu-
lates their resource usage as numeric values such as CPU seconds or the amount of memory
(gigabyte-seconds) used. These values are stored by the system and “decayed” based on
the half-life period of time. You can also think of the half-life as the amount of time that re-
source usage will “count against” Jim and Sally. If you want Jim and Sally to share resources
equally on a daily basis, the half-life period could be set to 12 hours. If Jim and Sally should
share resources equally on a monthly basis, the half-life period could be set for two weeks.

The illustration below shows how resources are shared between two groups. The two
groups below could represent two users such as Jim and Sally or could represent two differ-
ent projects. Initially, if there are jobs submitted by both groups, an equal amount of jobs
will be scheduled from each group. If group B receives a greater share of the resources for
a period of time, the scheduler will then adjust and attempt to compensate and schedule
more jobs from group A. When group A “catches up” the scheduler will begin scheduling
the same number of jobs from each group.

Time

Approx.
50% of resources
over time

Approx.
50% of resources
over time

]
Both groups E Group A Group Ais After compensation,
get 50% 1 returns and compensated for both groups receive
target share ! reclaims excess use by target shares again
Group A takes a its share Group B

break; Group B
consumes unused
resources

Altair Grid Engine provides a sophisticated and flexible implementation of the fair share

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 144

3 Special Activities

algorithm. The Share Tree Policy allows supports a hierarchical tree to represent the re-
lationships between users, groups, and projects. The Share Tree Policy also supports fair
share scheduling based on a wide variety of resources including CPU, memory, I/0, and
consumable resources. These resources can be combined in a flexible way to achieve the
sharing goals of a site.

Internal Nodes

User

Project

demo default @admin jane uwe
20 10 30 40 60

arun sam bob sam
80 20 35 65 Number of shares,

not percentage

Example Share Tree Configurations

The Share Tree Policy supports a wide variety of sharing configurations. Resource sharing
can be specified on a project basis, on a user basis, or on a combined project and user
basis. In this section, we list some of the common use cases for share tree configurations
and describe how to implement them.

User Share Tree

A common use case is to share equally between all users in the cluster. We accomplish this
by defining a special “default” leaf node that will internally expand to represent all users. In
this case, we decide that we want the sliding window of time to be about one day. Most
jobs are memory bound so we decide to charge usage based on memory.

1. As three different users (Al, Bob, and Carl), submit 100 jobs each sleeping 90 seconds

qconf -clearusage

gmod -d all.q

Al

for i in “seq 1 1007; do gsub $SGE_ROOT/examples/jobs/sleeper.sh 90; done
Bob

for i in “seq 1 1007; do gsub $SGE_ROOT/examples/jobs/sleeper.sh 90; done
Carl

for i in “seq 1 1007 ; do gsub $SGE_ROO0T/examples/jobs/sleeper.sh 90; done
gmod -e all.q

V VV V V V V V.YV

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 145

3 Special Activities

2. Verify that the jobs are scheduled and running in FIFO (first in, first out) order.
> gstat -u ‘*’ -ext

3. Define a share tree with a special “default” leaf node that will internally expand to
represent all users.

> $ qconf -mstree
id=0

name=R0O0T
type=0

shares=1
childnodes=1
id=1
name=default
type=0

shares=1
childnodes=NONE

4. Add ENABLE_MEM_DETAILS to support collecting PSS data

> qconf -mconf

execd_params ENABLE_MEM_DETAILS=true

5. Update the scheduler configuration to schedule based on the share tree by assigning
tickets to the share tree policy

> qconf -msconf

halftime 12

usage_weight_list mempss=1.000000
weight_tickets_functional 0
weight_tickets_share 10000
weight_ticket 100.000000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.000000
weight_priority 0.000000

6. Verify that the jobs are no longer ordered and running in FIFO (first in, first out) order.

> gstat -u ‘*’ -ext

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 146

3 Special Activities

Project Share Tree

A common use case for the Share Tree Policy is the need for two or more projects to share
resources. Let's say that our company has two important and busy projects which are fund-
ing the shared computing resources equally. We decide we want to grant the computing
resources equally to each project. Let's assume also that we decide that the sliding window
of time should be about a week. The projects run a variety of jobs, so we decide to charge
based on a combination of CPU usage and memory usage.

1. Create two projects

> gconf -aprj
name projectA
oticket 0
fshare 0

acl NONE

xacl NONE

> qconf -aprj
name projectB
oticket 0
fshare 0

acl NONE

xacl NONE

2. Create a share tree with two projects

> qconf -mstree
id=0

name=Root
type=1

shares=1
childnodes=1,2
id=1
name=projectA
type=1
shares=100
childnodes=NONE
id=2
name=projectB
type=1
shares=100
childnodes=NONE

3. Add ENABLE_MEM_DETAILS to support collecting PSS data
> qconf -mconf

execd_params ENABLE_MEM_DETAILS=true

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 147

3 Special Activities

4. Create a scheduler configuration to use the share tree policy with a sliding window of
about one week

> qconf -msconf

halftime 84

usage_weight_list mempss=1.000000, cpu=1.0000
weight_tickets_functional 0

weight_tickets_share 10000

weight_ticket 100.000000
weight_waiting_time 0.000000

weight_deadline 3600000.000000
weight_urgency 0.000000

weight_priority 0.000000

5. Submit jobs in both projects and observe how they share resources

qconf -clearusage

gmod -d all.q

for i in “seq 1 207; do qsub -P projectA $SGE_ROOT/examples/jobs/sleeper.sh 90; done
for i in “seq 1 207; do gqsub -P projectB $SGE_ROOT/examples/jobs/sleeper.sh 90; done
gmod -e all.q

V V V Vv V

6. Observe how the jobs and the share tree nodes are sharing resources
> $§ gstat -ext

> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -a

Monitoring the Share Tree Policy
Altair Grid Engine includes some tools for monitoring the share tree policy.
gstat

The gstat command can be used to show the results of the share tree policy. One of the
best ways to see the results of share tree scheduling is to look at the number of share tree
tickets (stckt) granted to each active and pending job. The number of share tree tickets will
indicate how the share tree policy is affecting the scheduling order of jobs.

> gstat -ext

sge_share_mon

The sge_share_mon command was specifically designed to monitor the share tree. The
sge_share_mon command reports the following values for each node in the share tree.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 148

3 Special Activities

Table 75:

Values for nodes in share tree reported by

sge_share_mon

Name Description

curr_time time stamp of the last status collection for this node
usage_time time stamp of the last time the usage was updated
node_name name of the node

user_name name of the user if this is a user node

project_name name of the project if this is a project node

shares number of shares assigned to this node

job_count number of active jobs associated to this node

level% share percentage of this node among its siblings
total% overall share percentage of this node among all nodes

long_target_share
short_target_share

actual_share
usage
wallclock
cpu

mem

io

Itwallclock
Itcpu

[tmem

Itio

long term target share that we are trying to achieve

short term target share that we need to achieve in order to meet
the long term target

actual share that the node is receiving based on usage
combined and decayed usage for this node

accumulated and decayed wallclock time for this node
accumulated and decayed CPU time for this node
accumulated and decayed memory usage for this node
accumulated and decayed I/0 usage for this node

total accumulated wallclock time for this node

total accumulated CPU time for this node

total accumulated memory usage (in gigabyte seconds) for this
node

total accumulated I/0 usage for this node

If the -a option is supplied, an alternate format is displayed where the fields in the table
above following the usage fields are not displayed. Instead, each node status line con-
tains a field for each usage value defined in the usage_weight_list attribute of the sched-
uler configuration. The usage fields are displayed in the order that they appear in the us-
age_weight_list. Below are some of the supported fields.

Table 76: Supported Fields in usage_weight_list

Name Description

memvmm accumulated and decayed memory usage for this node. This
represents the amount of virtual memory used by all processes
multiplied by the wallclock run-time of the process. The value is
expressed in gigabyte seconds.

memrss accumulated and decayed memory usage for this node. This

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

represents the resident set size (RSS) used by all processes
multiplied by the wallclock run-time of the process. The value is
expressed in gigabyte seconds. The resident set size is the
amount of physical private memory plus the amount of physical
shared memory being used by the process.

149

3 Special Activities

Name Description

mempss accumulated and decayed memory usage for this node. This
represents the proportional set size (PSS) used by all processes
multiplied by the wallclock run-time of the process. The value is
expressed in gigabyte seconds. The proportional set size is the
amount of physical private memory plus a proportion of the
shared memory being used by the process.

consumable-resource accumulated and decayed virtual usage for this node for the
consumable resource specified in the usage_weight_list
attribute in the scheduler configuration. The amount of the
consumable resource which has been requested by the job is
multiplied by the wallclock run-time of the job. If the
consumable resource is a slot-based resource, the value is also
multiplied by the number of slots granted to the job.
Memory-type consumable resources are expressed in gigabyte
seconds.

Here are some examples of the sge_share_mon command.

1. Show the default share tree nodes (including the header) using the default interval of
15 seconds

> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -h

2. Display the share tree leaf nodes including the configured usage names using
name=value format

> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -a -n -c¢ 1 -x

Advanced Capabilities

Several advanced capabilities have been added to Altair Grid Engine 8.5.0 and later. These
are described below.

Share Tree based on Proportional Set Size (PSS) on Linux Systems

The Share Tree Policy now supports scheduling based on Proportional Set Size (PSS) or
Resident Set Size (RSS) on Linux Systems. To schedule based on PSS, use the following
global and scheduler configuration.

1. Add ENABLE_MEM_DETAILS=true to the execd_params in the global host configura-
tion

> gconf -mconf

execd_params ENABLE_MEM_DETAILS=true

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 150

3 Special Activities

2. Add “mempss” or “memrss” to the usage_weight_list attribute in the scheduler config-
uration

> qconf -msconf

usage_weight_list mempss=1.000000

Share Tree based on consumable resources

The Share Tree Policy now supports scheduling based on consumable resources. Since
consumable resources do not generate usage, the scheduler will create virtual usage for
jobs which either request a consumable resource, or receive a default value according to
the complex configuration. A use case for using a consumable resource is a site which
has a consumable resource called estmem which represents “estimated memory”. In this
use case, each job submitted requests a certain amount of estimated memory (gsub -I est-
mem=1G...). Each queue or host is configured with an amount of estimated memory. The
share tree is configured to schedule based on estimated memory usage.

Here is an example of how to configure the share tree for the estimated memory consum-
able resource.

1. Create estimated memory consumable resource called “estmem”

> qconf -mc
#name shortcut type relop requestable consumable default urgency aapre

estmem em MEMORY <= YES YES 1G 0 YES

2. Add “estmem” to the usage_weight_list attribute in the scheduler configuration. This
will cause the scheduler to create virtual usage and to use “estmem” usage for share
tree scheduling decisions.

> qconf -msconf

usage_weight_list estmem=1.000000

3. To monitor the estimated memory usage in the share tree, use the new -a option to
sge_share_mon

> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -a

Applying Share Tree policy based on slots instead of jobs

In order to reach the target sharing ratios defined in the share tree, the scheduler attempts
to balance the active jobs to push users and projects toward their sharing targets. For

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 151

3 Special Activities

example, if two projects have pending jobs, and projectA is supposed to get 75% of the
resources and projectB is supposed to get 25% of the resources, the scheduler will try to
schedule 3 projectA jobs for every one projectB job. However, when scheduling a mix of
sequential and parallel jobs (each using a different number of slots), this method is not
likely to produce the desired results. The previous Share Tree Policy algorithm did not take
into account slot use which means that if a mix of parallel and serial jobs were running
or queued, the number of tickets granted to pending jobs would not result in the correct
run-time sharing ratios and the share tree targets would not be met. When the scheduler
configuration params attribute SHARE_BASED_ON_SLOTS is set to 1 or TRUE, the scheduler
will now consider the number of slots being used by running jobs and by pending jobs
when pushing users and projects toward their sharing targets as defined by the share tree.
That is, a parallel job using 4 slots will be considered to be equal to 4 serial jobs. When
the parameter is set to FALSE (default), every job is considered equal. The urgency_slots PE
attribute in sge_pe(5) will be used to determine the number of slots when a job is submitted
with a PE range.

To turn on sharing based on slots, add SHARE_BASED_ON_SLOTS to the scheduler configu-
ration params attribute.

> qconf -msconf

params SHARE_BASED_ON_SLOTS=true
Demonstration of sharing based on slots versus sharing based on jobs.
1. Create projects “a” and “b”

> qconf -aprj
name a
oticket O
fshare 0

acl NONE
xacl NONE

> gconf -aprj
name b
oticket O
fshare 0

acl NONE
xacl NONE

2. Create or modify parallel environment OpenMP

> gconf -ap OpenMP

pe_name OpenMP
slots 0
user_lists NONE
xuser_lists NONE

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 152

3 Special Activities

start_proc_args NONE
stop_proc_args NONE
allocation_rule $pe_slots
control_slaves FALSE
job_is_first_task TRUE
urgency_slots min
accounting_summary FALSE

daemon_forks_slaves FALSE
master_forks_slaves FALSE

3. Create project share tree with equal projects “a” and “b”

> vi sharetree
id=0

name=Root
type=1

shares=1
childnodes=1,2
id=1

name=a

type=1
shares=100
childnodes=NONE
id=2

name=b

type=0
shares=100
childnodes=NONE

> qconf -Astree sharetree

4, Configure share tree policy
> qconf -msconf
jgg_load_adjustments NONE
fééams SHARE_BASED_ON_SLOTS=true
ﬁéiftime 12
%éight_tickets_share 10000
%éight_ticket 100.000000
weight_waiting_time 0.000000
weight_deadline 3600000.000000

weight_urgency 0.000000
weight_priority 0.000000

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

153

3 Special Activities

5. Configure queue with 16 slots

> qconf -mqg all.q

slots 1, [davidson-desktop=16]

6. Disable queue and delete any existing jobs

> gmod -d all.q
> qdel -u “whoami~

7. Clear the share tree usage

> qconf -clearusage
8. Submit multiple 8 slot jobs under the “a" project

> for i in “seq 1 87; do gsub -P a -pe OpenMP 4 $SGE_ROOT/examples/jobs/sleeper.sh 90; done
9. Submit multiple 1 slot jobs under the “b" project

> for i in “seq 1 327; do gsub -P b -pe OpenMP 1 $SGE_ROOT/examples/jobs/sleeper.sh 90; done

10. Show pending jobs. Notice the order of the pending jobs contains an equal number
of jobs for project “a” and “b".

> gstat -ext | head -16

11. Configure sharing based on slots by adding SHARE_BASED_ON_SLOTS=true to the
scheduler configuration params attribute.

> $ gconf -msconf

params SHARE_BASED_ON_SLOTS=true

12. Enable the queue and show the running and pending jobs. Notice that 2 jobs from
project “a” get started (using 8 slots) and 8 jobs from “b” get started (using 8 slots)
resulting in equal sharing of the resources.

> $ gmod -e all.q
> gstat -ext | head -16

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 154

3 Special Activities

Features

Occasionally it might be useful to completely reset the usage for all users and projects back
to zero. This can be done using the clear usage command.

> qconf -clearusage

The long term usage which is displayed by the sge_share_mon program can also be cleared
using the clear long term usage command.

> gconf -clearltusage

3.6.2 Functional Ticket Policy

The functional policy is derived in each scheduler run from scratch and does not incorpo-
rate any historical data. It is based on four entities: the submitting user, the job itself, the
project in which the job is running, and the department of the user. Each of these is as-
signed an arbitrary weight in order to map the desired business rules into the functional

policy.
The policy isturned onin the scheduler configuration by setting weight_tickets_functional
to a high value. The value determines how many tickets are distributed.

> qconf -msconf
weight_tickets_functional 1000

The relative weight of all entities is configured through the weight values weight_user,
weight_project, weight_department, and weight_job, which must add up to 1. Because
ticket calculation takes time in a scheduling run, the number of jobs considered for the
functional ticket policy can be limited with the max_functional_jobs_to_schedule param-
eter. The share_functional_shares parameter determines whether each job entitled to
functional shares receives the full number of tickets and whether the tickets are distributed
among the jobs.

The shares can be configured in the Altair Grid Engine object itself. In the following example,
the shares of two projects are modified in a way that mytestproject receives 70 shares and
mytestproject2 receives 30 shares.

> qconf -mprj mytestproject
name mytestproject

fshare 70

> gconf -mprj mytestproject2
name mytestproject

fshare 30

Grid Engine Administrator's Guide v 2025.1.0 (8.10.0) 155

3 Special Activities

The share of the user is modified similarly by using qconf -mu <username> to adapt fshare.
Departments are a special form of user access lists, with the ability to specify functional
shares. They can be modified through the qconf -mu <departmentname> command. Job
shares are assigned at the time of submission with the -js gsub parameter.

If there is more than one job per user in the pending job list at scheduling time, the full
number of calculated tickets is available only to the first job of a user. The second job
receives only 1/2 the number of tickets, the third job gets 1/3, and the nth job gets 1/n of
the calculated number of tickets.

3.6.3 Override Ticket Policy

The override ticket policy is very helpful for temporary changes in the overall scheduling
behavior. With this policy an administrator can grant extra tickets to the following entities:
users, departments, projects and pending jobs. It allows a temporary override of a config-
ured and applied policy such as the share tree or functional ticket policy. The advantage is
that the other policies don't need to be touched just to obtain precedence for special users
or projects for a short time.

The override tickets are directly set in the objects such as in the functional ticket policy, with
the difference that the attribute value is named oticket. To grant extra tickets at the job
level the pending jobs can be altered with the -ot <ticketamount> option.

Example:

The pending job list with granted tickets from the functional policy looks like the following:

> gstat -ext -u *

job-ID prior ntckts name user project ... tckts ovrts otckt ftckt stckt ...
620 1.00000 1.00000 sleep daniel mytestproject2 ... 1000 0 0 1000 0
615 0.45000 0.45000 sleep daniel mytestproject2 ... 450 0 0 450 0
616 0.30000 0.30000 sleep daniel mytestproject2 ... 300 0 0 300 0
617 0.22500 0.22500 sleep daniel mytestproject2 ... 225 0 0 225 0
618 0.18000 0.18000 sleep daniel mytestproject2 ... 180 0 0 180 0
619 0.15000 0.15000 sleep daniel mytestproject2 ... 150 0 0 150 0

All jobs have functional project tickets. Job 620 is the highest priority job, so it gets the initial
900 tickets. Job 620 has an additional 100 functional user tickets. The user's second job has
only project tickets, and because it is job 2 it receives 1/2 of the initial tickets (450). Job 616
receives a third (300) and so on.

Without any override, job 619 has 150 tickets (tckts). However, it is boosted using the over-
ride policy, adding 1000 override tickets. This can only be done by the operator or adminis-
trator of the cluster:

> galter -ot 1000 619
admin@hostl sets override tickets of job 619 to 1000

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 156

3 Special Activities

> gstat -ext -u *

job-ID prior ntckts name user project ... tckts ovrts otckt ftckt stckt ...
619 0.15000 0.15000 sleep daniel mytestproject2 ... 1900 1000 1000 900 0
620 1.00000 1.00000 sleep daniel mytestproject2 ... 550 0 0 550 0
615 0.45000 0.45000 sleep daniel mytestproject2 ... 300 0 0 300 0
616 0.30000 0.30000 sleep daniel mytestproject2 ... 225 0 0 225 0
617 0.22500 0.22500 sleep daniel mytestproject2 ... 180 0 0 180 0
618 0.18000 0.18000 sleep daniel mytestproject2 ... 150 0 0 150 0

Now job 619 has 1000 tickets from the override policy and 900 from the functional ticket
policy (project tickets). The 900 project tickets are now fully counted because the job is of
the highest priority for the user. At this point, job 620 is no longer the highest priority, so it
receives 100 functional user tickets and 450 functional project tickets. The rest of the jobs
have just functional project tickets.

3.6.4 Job Shares

The job shares switch (-js) adds job shares to a job and increases the priority of a pending
job. The default value is 0 and positive job shares can be added at submit time or with
galter. To reset job shares run galter -js 0.

The examples below assume that all jobs follow the other main scheduling policies (urgency
policy and Posix priority) or the same. Should e.g. a job have a higher Posix priority than
other jobs and the weighting factor of the Posix priority (weight_priority) is higher than the
weighting factor of the ticket policy (weight_ticket) the Posix priority will have the dominat-
ing impact on the order of the pending job list.

Depending on the setup of Functional Policy or the Share Tree Policy job shares have a
different impact on the pending job priority.

1. Project share tree with no user leaf nodes

In this setup fair sharing among projects is achieved and the pending order of jobs within
a project is by their submit time (first come first serve). When a job submitted in a project
gets job shares, it becomes the highest-priority job within the project even if there are jobs
from other users. The job does not get a higher priority relative to other projects. Only the
relative order of jobs in the same project is affected.

2. Project share tree with user leaf nodes

In this setup fair sharing among projects and fair sharing among jobs from different users
in the same project is achieved. When a job from a user gets job shares, the relative order
of the jobs from the user is affected but the job does not get higher priority relative to jobs
from other users in the same project. It also does not get a higher priority relative to other
projects.

3. User share tree

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 157

3 Special Activities

In a user share tree job shares affect the relative priority of the jobs from the same user.
The result is the same as described in the Project share tree with user leaf nodes above.

4. Functional policy

When the functional policy is configured, adding job shares moves the job to the top of
the pending job list. In many cases this behavior is not wanted. As all users can use the
-js switch it is possible to add a server-side JSV which sets the job shares to 0. In addition,
the -js for qalter is prohibited by not adding js in the global cluster configuration under
jsv_allowed_mod.

3.6.5 Handling of Array Jobs with the Ticket Policies

For array jobs a single ticket value is calculated for the whole job. This per-job ticket value is
used when calculating the overall priority of an array task in order to sort the job list before
dispatching jobs.

Example:

> gstat -g d -ext

job-ID prior ntckts name ... state ... tckts ...slots ja-task-ID
3000000003 0.00000 0.00000 sleep ... qw ... 2500 11
3000000003 0.00000 0.00000 sleep ... qw ... 2500 ... 12
3000000003 0.00000 0.00000 sleep ... qw ... 2500 13

Array tasks that have already been running and have become pending again (e.g. as they
were rescheduled) are treated individually, and their number of tickets can differ from the
job's ticket count.

Example:

> gstat -g d -ext

job-ID prior ntckts name ... state ... tckts ...slots ja-task-ID
3000000003 0.55976 1.00000 sleep ... Rq ... 2500 11
3000000003 0.55101 0.12500 sleep ce.oqw ... 1250 ... 12
3000000003 0.55101 0.12500 sleep co.oqw ... 1250 13

The number of array tasks that are treated individually during ticket calculation can be de-
fined with the global configuration gmaster_params MIN_PENDING_ENROLLED_TASKS.

Valid settings for MIN_PENDING_ENROLLED_TASKS are:

+ 0: no pending array task will be enrolled (will be treated individually from the job)
* a positive number: this number of pending array tasks will be enrolled

+ -1: all pending array tasks will be enrolled

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 158

3 Special Activities

Example with MIN_PENDING_ENROLLED_TASKS=5

> gstat -g d -ext

job-ID prior ntckts name ... state ... tckts ...slots ja-task-ID
3000000004 0.00000 0.00000 sleep qw 2500 11
3000000004 0.00000 0.00000 sleep qw 1250 12
3000000004 0.00000 0.00000 sleep ... QW ... 833 ... 13
3000000004 0.00000 0.00000 sleep ... Qqw ... 625 ... 14
3000000004 0.00000 0.00000 sleep qw 500 15
3000000004 0.00000 0.00000 sleep qw 416 16
3000000004 0.00000 0.00000 sleep qw 416 17

3.6.6 Urgency Policy

The urgency policies can be divided into two groups, depending on whether the urgency is
time- or resource-based. The time-based urgencies are wait time urgency and deadline
urgency. In Altair Grid Engine there is just one: a very flexible resource-based urgency.

Wait Time Urgency

Most computer resources tend to be occupied, forcing low-priority jobs to remain in the
pending job list (in the ‘gw’ state). While this is the desired behavior for other policy con-
figuration, the problem of job starvation can arise. The wait time urgency addresses this
problem by adding priority to jobs over time. This means that the priority of a job can be
increased in relation to the length of time it has spent in the job pending queue.

The wait time urgency is configured in the scheduler configuration:

> qconf -ssconf

weight_ticket 0.010000

**weight_waiting_time*x 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

The relevance can be adjusted according to the result of all ticket policies in com-
bination (weight_ticket), the deadline policy (weight_deadline), the urgency policy
(weight_urgency), and the POSIX priority (weight_priority).

Deadline Urgency

The deadline urgency comes into play when jobs are submitted with a special deadline
(gconf -dl). The deadlineisthe last time by which the job should be scheduled. The urgency
grows continuously from the time of submission until the deadline. In order to submit jobs
with a deadline the user must be in the deadlineusers list. The reason for this is to prevent
the abuse of this functionality by unauthorized users. The weight of the urgency itself is
configured in the scheduler configuration:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 159

3 Special Activities

> qconf -ssconf

weight_ticket 0.010000

weight_waiting_time 0.000000
xyeight_deadlinexx 3600000.000000
weight_urgency 0.100000
weight_priority 0.000000

The high value is grounded in the calculation of the deadline contribution value:

deadline contribution = max(weight_deadline /
seconds till deadline is reached , weight_deadline)

When the deadline is missed the weight_deadline is taken in contribution value. Higher
values prioritize those jobs with the most pressing deadlines.

Example

In the following example, a user is added to the deadlineusers list. Afterwards 3 jobs are
submitted, one without a deadline, one with a deadline a few minutes in the future, and
the third with a deadline a few hours in the future.

> qconf -mu deadlineusers
name deadlineusers
type ACL

fshare O

oticket O

entries daniel

> gqsub -b y sleep 100
Your job 33 ("sleep") has been submitted

> gsub -b y -dl1 201105041410 sleep 100
Your job 34 ("sleep") has been submitted

> gqsub -b y -d1 201105050000 sleep 100
Your job 35 ("sleep") has been submitted

The urgency can be viewed using the gstat parameter -urg:

> gstat -urg

job-ID prior nurg urg rrcontr wtcontr dlcontr...submit/start at deadline
34 0.60500 1.00000 12215 1000 0 11215 ...05/04/2011 14:04:17 05/04/2011 14:10:00
35 0.50590 0.00899 1101 1000 0 101 ...05/04/2011 14:04:35 05/05/2011 00:00:00
33 0.50500 0.00000 1000 1000 0 0 ...05/04/2011 14:04:03

After a few seconds, the different increases of the deadline contribution can be seen:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 160

3 Special Activities

> gstat -urg

job—-ID prior nurg urg rrcontr wtcontr dlcontr...submit/start at deadline
34 0.60500 1.00000 24841 1000 0 23841 ... 05/04/2011 14:04:17 05/04/2011 14:10:00
35 0.50542 0.00425 1101 1000 0 101 ... 05/04/2011 14:04:35 05/05/2011 00:00:00
33 0.50500 0.00000 1000 1000 0 0 s ... 05/04/2011 14:04:03

Resource-Dependent Urgencies

With resource-dependent urgencies it is possible to prioritize jobs depending on the re-
sources (complexes) that are requested. Sometimes it is desirable to have valuable re-
sources always occupied while cheaper resources remain unused for a specific time. There-
fore jobs requesting the valuable resources may obtain these urgencies in order to get a
higher position in the scheduler list. The priority of a resource is defined in the last column
of the complex configuration:

> qconf -mc

#name shortcut type relop requestable consumable default **urgency*x*...
__
arch a RESTRING #i# YES NO NONE 0

calendar c RESTRING #i# YES NO NONE 0

slots s INT <= YES YES 1 1000

As shown, the slots complex has an urgency of 1000 while all other resources have an
urgency of 0 in a default configuration. The reason why slots has a predefined urgency
is that it is more difficult for parallel jobs, which require more slots, to have requests filled
than it is for sequential jobs. The urgency value is taken into account for a job only when it
requests it as a hard resource request (in contrast to a soft resource request).

The weight is again configured in the scheduler configuration:

> qconf -ssconf

weight_ticket 0.010000

weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

Fair Urgency
Fair Urgency is an extension of the resource-dependent urgencies.
It can be used to achieve an even distribution of jobs over multiple resources.

Example:

* In a cluster there are multiple file servers providing access to multiple file systems.

+ Jobs are accessing data from specific file systems.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 161

3 Special Activities

* File system utilization shall be balanced to optimize file system throughput.

Fair urgency works on resource urgency. Resource urgency is configured by assigning ur-
gency to complex attributes.

For the example scenario, 3 complex attributes are created, each with an urgency of 1000.

$ qconf -mc

#name shortcut type relop requestable consumable default urgency...
__
filesystem_1 fsi1 BOOL ## YES NO 0 1000
filesystem_2 £s2 BOOL ## YES NO 0 1000
filesystem_3 £s3 BOOL ## YES NO 0 1000

As all 3 complex attributes have the same urgency, jobs requesting these resources all get
the same urgency. Assuming no other policies are in place, jobs are scheduled in the order
of submission.

Fair urgency is enabled by listing the resources for which fair urgency scheduling shall be
done in the scheduler configuration, attribute fair_urgency_list:

gconf -msconf

fair_urgency_list fs1,fs2,fs3

For testing fair urgency we submit 3 groups of 10 jobs. The jobs in one group all request
the same file system resource, but each group requests a different file system resource:

gsub -1 fsl1 -N fsl1 <job_script>
(repeat 10 times)

gqsub -1 fs2 -N fs2 <job_script>
(repeat 10 times)

gsub -1 £s3 -N fs3 <job_script>
(repeat 10 times)

Due to fair urgency the jobs are not executed in order of submission, but are interleaved
by file system:

> gstat
job-ID prior name user state submit/start at queue jclass slots ja-task-ID
31 0.60500 fs1 sgetestl qw 05/18/2012 12:06:14

0 1
41 0.60500 fs2 sgetestl qw 05/18/2012 12:06:24 1
51 0.60500 fs3 sgetestl qw 05/18/2012 12:06:33 1
32 0.54944 fs1 sgetestl qw 05/18/2012 12:06:15 1
42 0.54944 fs2 sgetestl qw 05/18/2012 12:06:25 1

0 1

52 0.54944 £s3 sgetestl qw 05/18/2012 12:06:34

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 162

3 Special Activities

33 0.53093 fs1 sgetestl quw 05/18/2012 12:06:16 1
43 0.53093 fs2 sgetestl qw 05/18/2012 12:06:25 1
53 0.53093 fs3 sgetestl qw 05/18/2012 12:06:34 1
34 0.52167 fsl1 sgetestl qw 05/18/2012 12:06:16 1
44 0.52167 fs2 sgetestl qw 05/18/2012 12:06:26 1
54 0.52167 fs3 sgetestl quw 05/18/2012 12:06:35 1
35 0.51611 fs1 sgetestl qw 05/18/2012 12:06:17 1

Fair urgency can be combined with other policies, e.g. with the ticket policies.

Example: Functional policy is configured for users to achieve an even balancing of resource
usage by users:

Enable functional policy in the scheduler configuration:

qconf -msconf

weight_tickets_functional 10000

Give users functional tickets:

qconf -muser <user>
fshare 1000

Every user submit jobs as shown above (10 jobs per file system).

Jobs are now scheduled to be balanced both by user and by file system:

$ gstat -u *

job-ID prior name user state submit/start at queue jclass slots ja-task-ID
31 0.61000 fsl1 sgetestl qw 05/18/2012 12:06:14 1
41 0.60045 fs2 sgetestl qw 05/18/2012 12:06:24 1
51 0.60024 fs3 sgetestl qw 05/18/2012 12:06:33 1
61 0.55250 fsl sgetest2 qw 05/18/2012 12:09:06 1
71 0.54795 fs2 sgetest2 qw 05/18/2012 12:09:17 1
81 0.54774 fs3 sgetest2 qw 05/18/2012 12:09:25 1
32 0.53250 fs1 sgetestl qw 05/18/2012 12:06:15 1
42 0.53042 fs2 sgetestl qw 05/18/2012 12:06:25 1
52 0.53023 fs3 sgetestl qw 05/18/2012 12:06:34 1
62 0.52375 fsl sgetest2 qw 05/18/2012 12:09:08 1
72 0.52167 fs2 sgetest2 qw 05/18/2012 12:09:18 1
82 0.52148 fs3 sgetest2 qw 05/18/2012 12:09:26 1
33 0.51767 fsl sgetestl aqw 05/18/2012 12:06:16 1

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 163

3 Special Activities

3.6.7 User Policy: POSIX Policy

The POSIX policy (also called custom policy) is defined per job at the time of job submission.
The relevant gsub parameter is -p <value>. Possible values are those from -1023 to 1024.
Values above 0 can be set by the administrator only. This feature allows a user to bring a
specific order to their own jobs.

Example

In the following example, several jobs with different priorities are submitted by the admin-
istrator (this allows positive priorities).

> gqsub -b y -p 1 sleep 60
Your job 6 ("sleep") has been submitted

> gsub -b y -p 10 sleep 60
Your job 7 ("sleep") has been submitted

> gqsub -b y -p 100 sleep 60
Your job 8 ("sleep") has been submitted

> gqsub -b y -p 1000 sleep 60
Your job 9 ("sleep") has been submitted

An attempt to submit with an invalid priority results in the following error message appear-
ing:

> gqsub -b y -p 10000 sleep 60
gsub: invalid priority 10000. must be an integer from -1023 to 1024

> gqsub -b y -p -1 sleep 60
Your job 10 ("sleep") has been submitted

> gqsub -b y -p -10 sleep 60
Your job 11 ("sleep") has been submitted

> gqsub -b y -p -100 sleep 60
Your job 12 ("sleep") has been submitted

> gsub -b y -p -1000 sleep 60
Your job 13 ("sleep") has been submitted

The effect of the priorities can be seen with the gstat command:

> gstat -pri
job=ID prior nurg npprior ntckts **pprix* name user state submit/start at

9 1.04328 0.50000 0.98828 0.50000 1000 sleep daniel qw 05/05/2011 09:09:47
8 0.60383 0.50000 0.54883 0.50000 100 sleep daniel qw 05/05/2011 09:09:44

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 164

3 Special Activities

7 0.55988 0.50000 0.50488 0.50000 10 sleep daniel qw 05/05/2011 09
6 0.55549 0.50000 0.50049 0.50000 1 sleep daniel qw 05/05/2011 09
4 0.55500 0.50000 0.50000 0.50000 0 sleep daniel qw 05/05/2011 09
10 0.55451 0.50000 0.49951 0.50000 -1 sleep daniel qw 05/05/2011 09
11 0.55012 0.50000 0.49512 0.50000 -10 sleep daniel qw 05/05/2011 09:
12 0.50617 0.50000 0.45117 0.50000 -100 sleep daniel qw 05/05/2011 09:
13 0.06672 0.50000 0.01172 0.50000 -1000 sleep daniel qw 05/05/2011 09:

A job submitted without any priority (job 4) has the priority 0, which results in a normalized
priority value (npprior) of 0.5. The lower the priority, the lower the normalized value. The
absolute weight of the POSIX priority is again defined in the scheduler configuration.

> qconf -ssconf

weight_ticket 0.010000

weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

3.7 Job Placement

Job placement is the main task of the scheduler component within the Altair Grid Engine
sge_gmaster process. Job placement is a term for multiple steps that need to be done
to correctly decide whether and where jobs can be started and which resources they can
consume. The rules that the scheduler uses to drive those decisions are manager-defined
settings in the system.

The scheduler algorithm that is repeatedly triggered starts new incoming jobs and handles
all steps required for jobs that leave the system because they have finished. To dispatch
new jobs the scheduler puts all waiting jobs into an order that obeys policies and priorities.
Then it does the same for hosts and queues that provide resources for jobs. The final and
most important step is to try to match waiting jobs to hosts and queues according to policy,
priority, underlying resource requirements, and access rights. The sorting steps for pending
jobs and hosts/queues influence the dispatching step that follows afterwards. They are the
major rules that influence job placement.

Characteristics that influence job sorting of pending jobs are described in more detail in the
section Managing Priorities and Usage Entitlements

The following subsections show the different parts that influence the host/queue sorting,
and describe how to configure the scheduler so that it consumes the correct host/queue
resources first.

3.7.1 Host/Queue Sorting

The following general characteristics influence host sort order:

* Host load

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 165

:09
:09
:09:
:09:
10:
10:
10:

141
:36

21
58
01
04
08

3 Special Activities

+ Affinity of jobs already running on a host (host affinity)
Queue sorting can be influenced by:

* Queue Sequence Number
+ Affinity of jobs already running in a queue (queue affinity)
+ Outcome of host sorting (host load and host affinity)

If and to what extent a specific characteristic will be considered by the host/queue sorting
depends on a set of weighting factors that are described in more detail in the sections
below.

Host Load

Host sorting can be influenced by one or more load values that are reported by hosts. These
load values are defined using the host_sort_formula. The formula allows individual load
values and complex values defined for all hosts to be weighted and combined into one
final value.

host_sort_formula := weighted_value [operator weighted_value]
operator := ‘+’ | ‘-7 |

weighted_value := weight | load_value [‘*’ weight]

weight := <positive_integer> .

load_value represents a load value (see sge_execd(8)) or consumable resource being tracked
for each host (see complex(8)), or an administrator-defined load value (see the load_sensor
parameter in sge_conf(5)). positive_integer represents a positive integer value. np_load_avg
is the default setting for host_sort_formula.

The extent to which the final load value is considered for host sorting can be adjusted with
the weight_host_sort parameter in the scheduler configuration.

> qconf -ssconf

host_sort_formula np_load_avg
weight_host_affinity 0.0
weight_host_sort 1.0
weight_queue_affinity 0.0
weight_queue_host_sort 1.0
weight_queue_seqgno 0.0

The example above shows an excerpt of a scheduler configuration that enables host and
queue sorting according to the load value np_load_avg. Sorting according to sequence num-
ber or affinity is disabled. As a consequence the scheduler will favor hosts with lower system
loads when starting new jobs.

Affinity

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 166

3 Special Activities

Affinity is an optional value which is assigned to hosts or queue instances based on the
running jobs and their resource requests.

Sorting can be done according to affinity by setting the weight_host_affinity and/or the
weight_queue_affinity weighting factors.

Positive affinity values will cause hosts/queue instances to be sorted to the top of the
host/queue instance list; negative values (anti-affinity) will cause hosts/queue instances to
be sorted to the bottom of the host/queue instance list.

> qconf -ssconf

weight_host_affinity 1.0
weight_host_sort 0.0
weight_queue_affinity 1.0
weight_queue_host_sort 1.0
weight_queue_seqgno 0.0

The example above shows an excerpt of a scheduler configuration that enables host and
queue sorting according to affinity. Under the assumption that the affinity value of the
complex attribute ‘slots’ has been changed to a positive value (e.g. 1.0) this will cause jobs
to build clusters on hosts/queues where other jobs are already running. With a negative
value (e.g. -1.0) jobs will fill up hosts and queues evenly.

See also Affinity, Anti-Affinity, Best Fit.
Sequence Number

The sequence number is a manager-definable attribute of a queue that will influence the
queue sorting when weight_queue_seqgno is set accordingly.

> qconf -ssconf

weight_host_affinity 0.0
weight_host_sort 1.0
weight_queue_affinity 0.0
weight_queue_host_sort 1.0
weight_queue_seqno 100.

The example above shows an excerpt of a scheduler configuration that enables sequence
number based scheduling. The configuration defines a preference for individual queues
residing on a host.

Combining Multiple Placement Policies

It is possible to combine multiple job placement policies by adjusting the weighting factors
of each characteristic accordingly:
> qconf -ssconf

host_sort_formula np_load_avg

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 167

3 Special Activities

weight_host_affinity 10.0
weight_host_sort 1.0
weight_queue_affinity 10.0
weight_queue_host_sort 1.0
weight_queue_seqno 100.0

With the scheme above the the scheduler will utilize queues according to the defined queue
sequence number first. If there are multiple queues with the same sequence number, it
will utilize those according to queue affinity. Host affinity and host load will have the least
impact.

Defaults for All Weighting Factors That Influence Host/Queue Sorting

These are the defaults for all parameters that influence host/queue sorting:

> qconf -ssconf

host_sort_formula np_load_avg
weight_host_affinity 0.0
weight_host_sort 1.0
weight_queue_affinity 0.0
weight_queue_host_sort 1.0
weight_queue_seqno 0.0

The influence of affinity and sequence number of queues is disabled by default. Hosts will
be sorted according to np_load_avg only.

3.7.2 Affinity, Anti-Affinity, Best Fit

The affinity concept is new since Altair Grid Engine 8.6.0 and it allows the assignment of
each host or queue an affinity value for each consumed resource used by jobs that are
running on the host or queue.

Affinity can be positive or negative. Positive affinity will attract other pending jobs, and
negative affinity will reject other pending jobs. Attraction/rejection will work on the host
and/or queue level if it is enabled by setting the weighting parameters weight_host_affinity
and/or weight_queue_affinity.

The affinity values are used in sorting the host list and/or the queue instance list. Sorting
based on the affinity value will cause

+ affinity (so that jobs build clusters on hosts or queues),

+ anti-affinity (so that jobs are distributed on hosts in the cluster or queues residing on
hosts)

+ or best fit (if a mixture of positive and negative affinity values is defined for different
resources)

The affinity value is calculated for every resource (complex value) that a running job has
requested and which is defined for a host or queue instance, either via manual definition
in the complex_values of the host or queue instance, or via load value.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 168

3 Special Activities

For all resource types (also non-number-based complexes such as restring) the absolute
number of the affinity complex attribute will be used as the affinity for the corresponding
resource request of a job. For consumable resources the affinity value of a resource will act
as multiplier for the underlying resource requests of a job that are granted.

This means that one big running job attracts/rejects to the same extent as multiple small
running jobs on the same host or queue as long as big and multiple small consume the
same amount of resources.

Where there are multiple resource requests for complex attributes with non-zero affinity,
setting the job's affinity value is the sum of the affinity values of corresponding resources.

Affinity Use Cases

Affinity Datawhichisrequired for running ajob is contained on a shared filesystem which
is auto-mounted at job start. We want to make use of the filesystem caches and make sure
that the file system is mounted on as few hosts as possible.

Create a complex attribute for the data source/filesystem with a positive affinity factor:

$ qconf -mc

#name shortcut type relop requestable consumable default urgency aapre affinity...
filesystem_A fs_A BOOL == YES NO 0 0 NO 1.000000. ..

Assign it to the hosts where the data can be made accessible.

$ qconf -mattr exechost complex_values filesystem_A=true qconf -shgrp_resolved
@data_hosts

Request the resource when submitting jobs:
$ gsub -l filesystem_A ...

The actual affinity value of a host / queue instance can be seen in gstat output:

$ gstat -F filesystem_A

queuename qtype resv/used/tot. np_load arch states

all.qG@host1l BIPC 0/2/100 0.00 1x-amd64
gf:filesystem_A=1 (haff=2.000000)

3000022205 0.55500 APP_A userl T 07/26/2018 17:12:57 1

3000022206 0.55500 APP_A userl r 07/26/2018 17:13:07 1

all.q@host2 BIPC 0/0/10 0.00 sol-amd64

gf:filesystem_A=1

Anti-Affinity A certain application is causing high network load. Therefore we want to
distribute jobs running this application over a high number of hosts. We use anti-affinity
for this purpose.

Create a complex variable for applications causing high network load:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 169

3 Special Activities

$ qconf -mc
#name shortcut type relop requestable consumable default urgency aapre affinity
high network hn BOOL == YES NO 0 0 NO -1.000000

The jobs can run on any host, so we define it on a global level:

$ qconf -me global
complex_values high_network=true

Request the high_network resource when submitting jobs:
$ gsub -1 hn ...
Anti-Affinity values can be seen in gstat output:

$ gstat -F hn

queuename qtype resv/used/tot. np_load arch states
all.qg@host1 BIPC 0/1/100 0.00 1x-amd64
gf:high network=1 (haff=-1.000000)
3000022207 0.55500 HN userl r 07/26/2018 17:40:34 1
all.q@host2 BIPC 0/1/10 0.00 sol-amd64
gf:high_network=1 (haff=-1.000000)
3000022208 0.55500 HN userl r 07/26/2018 17:40:43 1

Best Fit Let's assume we have a combination of the two previous examples. Applications
need data from a certain filesystem and we want to make uses of filesystem caching, so
we want to use affinity to run jobs on hosts where jobs requesting the same filesystem are
already running.

On the other hand, one of these applications needing access to the filesystem produces
high network load, so we want to distribute those instances over multiple hosts.

If we combine both Affinity and Anti-Affinity this is called Best Fit.

With the settings used in the two examples above, submit the following jobs:

gqsub -1 hn -1 fs_A ...
gqsub -1 hn -1 fs_A ...
gsub -1 fs_A ...
qsub -1 fs_A ...
qsub -1 fs_A ...
qsub -1 fs_A ...
qsub -1 fs_A ...

gsub -1 fs_A ...

P H P P P P P P

This will result in the following resource assignment and affinity values:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 170

3 Special Activities

$ gstat -F fs_A,hn
queuename qtype resv/used/tot. np_load arch states
all.q@hostl BIPC 0/1/10 0.00 1x-amd64

gf:high network=1 (haff=-1.000000)

gf:filesystem_A=1 (haff=1.000000)
3000022218 0.55500 APP_A_HN userl T 07/27/2018 09:15:35 1
all.q@host2 BIPC 0/6/10 0.00 1x-amd64

gf:high network=1 (haff=-1.000000)

gf:filesystem_A=1 (haff=6.000000)

3000022219 0.55500 APP_A_HN userl r 07/27/2018 09:15:36 1
3000022220 0.55500 APP_A userl r 07/27/2018 09:15:46 1
3000022221 0.55500 APP_A userl r 07/27/2018 09:15:48 1
3000022222 0.55500 APP_A userl r 07/27/2018 09:16:08 1
3000022223 0.55500 APP_A userl r 07/27/2018 09:16:09 1
3000022224 0.55500 APP_A userl r 07/27/2018 09:16:10 1
all.q@host3 BIPC 0/0/100 0.07 1x-amd64

gf:high network=1
gf:filesystem_A=1

3.8 Advanced Management for Different Types of Workloads

3.8.1 Parallel Environments
Altair Grid Engine supports the execution of shared memory or distributed memory parallel
applications. Such parallel applications require some kind of parallel environment.

Examples for such parallel environments are:

* shared memory parallel operating systems
+ the distributed memory environments named Message Passing Interface (MPI)

+ the distributed memory environments named Parallel Virtual Machine (PVM).

These environments are either provided by hardware vendors or in different forms as
open source software. Depending on implementation and their characteristics and require-
ments, these parallel environments need to be integrated differently to be used in combi-
nation with our software.

Altair Grid Engine provides an adaptive object to integrate parallel environments with the
system. The administrator of a Altair Grid Engine system has to deploy this object via pre-
defined scripts that are included in the distribution, so that users can easily deploy parallel
jobs. Note that the administrator has the ability to:

+ define access rules that allow or deny the use of a parallel environment

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 171

3 Special Activities

+ define boundary conditions for how the resources are consumed within a parallel
environment.

+ limit access to a parallel environment by reducing the number of available slots or
queues

Commands to Configure Parallel Environment Objects

To integrate arbitrary parallel environments with Altair Grid Engine it is necessary to define
a set of specific parameters and procedures for each. Parallel environment objects can be
created, modified or deleted with the following commands.

* gconf -ap pe_name
This is the command to add a parallel environment object. It opens an editor and
shows the default parameters for a parallel environment. After configuring and saving
necessary values and closing the editor, a new environment is created.

* gqconf -Ap filename|dirname
Adds a new parallel environment object whose specification is stored in a file. If a
directory is specified, parallel environment objects for every configuration file in the
directory are added.

* gconf -dp pe_name
Deletes the parallel environment object with the given name.

* qconf -Dp filename|dirname
Deletes a parallel environment object from the specified file or from every file in a
given directory.

* gconf -mp pe_name

Opens an editor and shows the current specification of the parallel environment with
the name pe_name. After changing attributes, saving the modifications ,and closing the
editor, the object is modified accordingly.

* gqconf -Mp filename|dirname

Modifies a parallel environment object from the specified file. If a directory is specified,
parallel environment objects for every configuration file in the directory are modified.

* gconf -sp pe_name

Shows the current specification of the parallel environment with the name pe_name.
* gconf spl

Shows the list of names of available parallel environments.

* qconf -spld [pe_list]

Shows a detailed list of all parallel environment objects of an Altair Grid Engine cluster
or objects in <pe_list>.

Configuration Parameters of Parallel Environments

Each parallel environment object supports the following set of configuration attributes:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 172

3 Special Activities

* Attribute: pe_name Value Specification: The name of the parallel environment to be used
when attaching it to queues or when administering its definition. This name has be
be specified by users who explicitly request a certain type of parallelism for jobs.

* Attribute: slots Value Specification: The total number of parallel processes allowed to
run concurrently under the parallel environment.

* Attribute: user_lists Value Specification: Acomma-separated list of user access names.
Each user contained in at least one of the enlisted access lists has access to the parallel
environment as long as it is not also explicitly excluded via the xuser_lists parameter
described below.

Attribute: xuser_lists Value Specification: The xuser_lists parameter contains a
comma-separated list of user access lists. Any user listed in xuser_list is not allowed
to access the parallel environment. If the xuser_lists parameter is set to NONE (the
default) any user has access. If a user is listed in both xuser_lists and a user_lists
the user is denied access to the parallel environment.

* Attribute: start_proc_args Value Specification: This parameter defines the command
line of a start-up procedure for the parallel environment. The keyword NONE can be
used to disable the execution of a start-up script. The specified start-up procedure is
invoked on the execution host of the job before executing the job script. Its purpose is
it to set up the parallel environment corresponding to its needs. The syntax for the pa-
rameter value is: [username@]path [arg ...] The optional username prefix specifies
the user under which this procedure is started. The standard output of the start-up
procedure is redirected to the file NAME. poJID in the job's working directory, with NAME
being the name of the job and JID being the job's identification number. Likewise,
the standard error output is redirected to NAME. peJID. The following special variables
expanded at runtime can be used along with any other strings which have to be inter-
preted by the start and stop procedures to constitute a command line: $pe_hostfile
The pathname of a file containing a detailed description of the layout of the parallel
environment to be set up by the start-up procedure. Each line of the file refers to a
host on which parallel processes are to be run. The first entry of each line denotes the
hostname, the second entry is the number of parallel processes to be run on the host,
the third entry is the name of the queue, and the fourth entry is a processor range to
be used when operating with a multiprocessor machine. $host The name of the host
on which the startup or stop procedures are started. $job_owner The username of the
job owner. $job_id Altair Grid Engine’s unique job identification number. $job_name
The name of the job. $pe The name of the parallel environment in use. $pe_slots
Number of slots granted for the job. $processors The processor’s string as contained
in the queue configuration of the primary queue where the parallel job is started (mas-
ter queue). $queue The cluster queue of the queue instance where the parallel job is
started.

* Attribute: stop_proc_args Value Specification: The invocation command line of a shut-
down procedure for the parallel environment. Similar to start_proc_args this method
is executed on the execution host. The keyword NONE can be used to disable the ex-
ecution of a shutdown procedure. If specified this procedure is used after the job
script has finished. Its purpose is it to stop the parallel environment and to remove it
from all participating systems. Syntax, output files and special variables that can be
specified are the same as for start_proc_args.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 173

3 Special Activities

* Attribute: allocation_rule Value Specification: The allocation rule is interpreted by
the scheduler of the Altair Grid Engine system. This parameter helps the scheduler
decide how to distribute parallel processes among the available machines. If, for in-
stance, a parallel environment is built for shared memory applications only, all paral-
lel processes must be assigned to a single machine regardless of how many suitable
machines are available. If, however, the parallel environment follows the distributed
memory paradigm, an even distribution of processes among machines may be favor-
able. The current version of the scheduler understands the following allocation rules:

* $£ill_up

Starting from the best suitable host/queue, all available slots are allocated. Further
hosts and queues are filled as long as a job requires slots for parallel tasks.

* $round_robin

From each suitable host a single slot is allocated until all tasks requested by the par-
allel job are dispatched. If more tasks are requested than suitable hosts are found,
allocation starts again from the first host. The allocation scheme walks through suit-
able hosts in a best-suited-first order.

+ Positive number or $pe_slots

An integer number fixing the number of processes per host. If the number is 1, all
processes have to reside on different hosts. If the special denominator $pe_slots is
used, the full range of processes as specified with the gsub -pe has to be allocated on
a single host no matter which value belonging to the range is finally chosen for the job
to be allocated.

* Attribute: control_slaves Value Specification: This parameter can be set to TRUE or
FALSE. It indicates whether Altair Grid Engine is the creator of the slave tasks of a par-
allel application on the execution host and thus has full control over all processes in a
parallel application, which enables capabilities such as resource limitation and correct
accounting. However, to gain control over the slave tasks of a parallel application, a
sophisticated parallel environment interface is required, which works closely together
with Altair Grid Engine facilities. FALSE is the default for this parameter.

Attribute: job_is_first_task Value Specification: The job_is_first_task parameter
can be set to TRUE or FALSE. A value of TRUE indicates that the Altair Grid Engine
job script will also start one of the tasks of the parallel application, while a value of
FALSE indicates that the job script and its child processes are not part of the parallel
program. In this case the number of slots reserved for the job is the number of tasks
requested with the -pe switch of the submit application, but the number of tasks is
the number of tasks requested plus one additional task. The allocation_rule does
not apply to this additional task, i.e. with an allocation_rule of 2, the job script and
two tasks are put on the first host. On later hosts, only two tasks are scheduled.

With the introduction of per-PE task requests (-petask submit option), specific
resource requests can be assigned to the job script and to each single parallel task.
If job_is_first_task is set to FALSE, the additional task that is added automatically
gets the ID 1. Because it might depend on which PE was assigned to the job by
the Altair Grid Engine Scheduler (one with job_is_first_task FALSE or one with
job_is_first_task TRUE configured?) if the resource requests for PE task ID 1
refer to the automatically added task or to the first explicitly requested task, setting

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 174

3 Special Activities

job_is_first_task FALSE is not recommended. Instead, set job_is_first_task
TRUE and specify the resource requests for the job script and all tasks properly.

« Attribute: urgency_slots Value Specification: For pending jobs with a slot range parallel
environment request, the number of slots is not determined. This setting specifies the
method to be used by Altair Grid Engine to assess the number of slots such jobs might
finally get. The following methods are supported:

* Positive number
The specified number is directly used as the prospective slot amount.

* min

The slot range minimum is used as the prospective slot amount. If no lower bound is
specified, range 1 is assumed.

¢ max

The value of the slot range maximum is used as the prospective slot amount. If no
upper bound is specified with the range, the absolute maximum possible for the PE's
slot setting is assumed.

s avg

The average of all numbers occurring within the job’s parallel range request is as-
sumed.

* Attribute: accounting_summary Value Specification: This parameter is only checked if
control_slaves is set to TRUE. In this case accounting information is available for every
single slave task of a parallel job. These parameters can be set to TRUE so that only a
single accounting record will be written to the accounting file.

Note that the functionality of the start-up and shutdown procedures is the responsibility of
the administrator configuring the parallel environment. Altair Grid Engine will invoke these
procedures and evaluate their exit status. If the procedures do not perform their tasks
properly or if the parallel environment or the parallel application behave unexpectedly, Al-
tair Grid Engine has no means of detecting this.

Set Up Parallel Environment for PVM Jobs

A central part of the parallel environment integration with Altair Grid Engine is the correct
setup of the startup and shutdown procedures. The Altair Grid Engine distribution con-
tains various script and C program examples that can be used as the starting point for a
PVM or MPI integration. These examples are located in the directories $SGE_RO0T/pvm and
$SGE_ROOT/mp1i.

Let's have a more detailed look at the startup procedure of the PVM integration. The script
is $SGE_ROOT/pvm/startpvm.sh. This script requires three command-line arguments:

* The firstis the path of a file generated by Altair Grid Engine. The content of that file is
needed by PVM.

+ The second parameter is the hostname of an execution host where the startpvm.sh
script is started.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 175

3 Special Activities

* The last parameter is the path of the PVM root directory.

The host file that is created by Altair Grid Engine contains a description of all resources that
have been assigned to the parallel job that is in the process of being started. This file has
the following format:

* The first entry in each line is an execution host name.
* The second entry defines the number of slots to be available on the host.
*+ The third entry defines the queue that controls the corresponding available slots.

+ The last parameter entry specifies a processor range to be used for a multiprocessor
machine.

PVM also needs a host file but the file format is slightly different from the default file format
generated by Altair Grid Engine. Therefore the startpvm.sh script uses the content of the
default file to generate one that is PVM-specific. After doing this, the script starts the PVM
parallel environment. In case this PVM setup has any errors, the startpvm.sh script will
return with an exit status not equal to zero. Altair Grid Engine will not start the job script
in this case and instead will indicate an error. If the startup script was successful, the job
script will be started and will use the prepared parallel environment.

A parallel job that has been set up correctly and either finishes or is terminated via a termi-
nation request will use the termination method set up in the parallel environment. For the
PVM example above, this would mean that the stoppvm.sh script is triggered. This script is
responsible for halting the parallel environment and terminating processing of the parallel
job.

Submitting Parallel Jobs

To run parallel jobs under the control of a certain parallel environment, this parallel envi-
ronment has to be associated with one or more queues. Parallel jobs have to request the
parallel environment in order to use the needed resources. The queue where the job script
of a parallel job is executed is the so-called master queue whereas all other queues that
provide compute resources for a parallel job are slave queues.

When job_is_first_task is set to FALSE, the master queue is only used to set up the par-
allel job. In most cases it will not extensively use the underlying compute resources of the
host where the master queue is located. In such setups it might make sense to select a
master queue manually with the -masterq switch of the gsub command to avoid having the
job script of the parallel job started on resources that should be consumed by compute-
intensive slave tasks of the parallel job.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 176

3 Special Activities

Table 77: Submit parameters influencing parallel jobs

Parameter

Description

-pe

-petask

-masterq

-masterl

-v and -V

gsub, gsh, qrsh, qlogin or qalter switch is followed by a parallel
environment specification in the following format: pe_name
pe_min[-[pe_max]], [-]1pe_max where pe_name specifies the
parallel environment to instantiate and pe_min and pe_max
specify the minimum or maximum number of slots that can be
used by the parallel application.

This parameter is available for gsub, gsh, grsh and qalter in
combination with parallel jobs. It defines or redefines resource
or queue requests specific to a group of parallel tasks. For this
group, the job requests specified with -q and -1 do not apply;
instead, the requests following the -petask parameter apply.
This parameter is available for gsub, gsh, grsh and qalter in
combination with parallel jobs. It defines or redefines a list of
cluster queues, queue domains and queue instances which may
be used to become the master queue of the parallel job. The
master queue is defined as the queue where the parallel job is
started. The other queues to which the parallel job spawns
tasks are called slave queues. A parallel job has only one master
gueue. With the introduction of the -petask parameter,
-masterq is deprecated. Use -petask master -q ... instead.
This parameter is available for gsub, gsh, qrsh and gqalter in
combinatin with parallel jobs. It defines or redefines resource
requests for the master task of the parallel job only. With the
introduction of the -petask parameter, -masterl is deprecated.
Use -petask master -1 ... instead.

These parameters are available for gsub and qalter. The gsh
and qrsh support it partly (see grsh man page). They define or
redefine the environment variables to be exported to the
execution environment of the job. The same set of variables is
also available in the start-up and stop scripts configured in
parallel environments.

The following command submits a parallel job:

gsub -pe mpi 32-128 \
-v SHARED_MEM=TRUE,MODEL_SIZE=HUGE \
-petask controller -q big.q \
pe_job.sh huge.data

+ Depending on the definition of the mpi parallel environment, the job will use a mini-
mum of 32 slots but a maximum of 128 slots.

* The master queue will be biq.q

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 177

3 Special Activities

+ Two environment variables are passed with the job. They will be available in the ex-
ecution context of the job but also in the start-up and stop scripts configured in the
mpi parallel environment

* The job name is pe_job.sh with one parameter huge.data

3.8.2 Setting Up Support for Interactive Workloads

To run interactive jobs immediately (see also User Guide -> Interactive Jobs) the executing
gqueue needs to have interactive as queue-type.

Set or change queue-type:
qconf -mgq <queue_name>

INTERACTIVE needs to be added to the qtype-line.
Check whether gtype is INTERACTIVE:

gstat -f

queuename qtype resv/used/tot. load_avg arch states
all.qg@hostl IpP 0/0/10 0.01 1x-amd64
test.q@hostl BIPC 0/0/10 0.01 1x-x86

gtype has to have “I" included.

3.8.3 Setting Up Support for Checkpointing Workloads

Checkpointing is a mechanism that allows a “freeze” of a running application so that it can
be restored at a later pointin time. This is especially useful for applications that take a long
time to complete and when it would be a waste of compute resources to start it from the
point at which the application was interrupted (e.g. system crash due to hardware error).

In principle it is possible to distinguish between user-level checkpointing and kernel-level
checkpointing. Kernel-level checkpointing must be supported by the underlying operating
system where the application is running. If this is the case, applications can be checkpointed
without additional effort to rebuild the application. In contrast, user-level checkpointing re-
quires some work from the author of the application so that it supports checkpointing. The
application has to be designed so that the calculation algorithm is able to trigger checkpoint-
ing regularly or so that it can be triggered outside the application. Some hardware vendors
support this by providing checkpointing libraries that can be linked against the application
code.

Altair Grid Engine does not provide checkpointing for jobs but it does provide the environ-
ment in which to integrate jobs already supporting certain levels of checkpointing. The
necessary object within Altair Grid Engine is called the checkpointing environment.

Commands to Configure Checkpointing Environments

This checkpointing environment can be set up using the following commands:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 178

3 Special Activities

* gconf -ackpt ckpt_name
This is the command to add a new checkpointing environment. It opens an editor and
shows the default parameters for a checkpointing environment. After modifying and
saving necessary values and closing the editor a new environment is created.

* gqconf -Ackpt filename|dirname
Add a new checkpointing environment whose specification is stored in a file. If a di-
rectory is specified, checkpointing environments for every configuration file in the di-
rectory are added.

* gconf -dckpt ckpt_name
Deletes the checkpointing environment with the given name.

* gconf -Dckpt filename|dirname
Deletes a checkpointing environment from the specified file or from every file in a
given directory.

* gconf -mckpt ckpt_name

Opens an editor and shows the current specification of the checkpointing environ-
ment with the name ckpt_name. After modifyinging attributes, saving the modifica-
tions, and closing the editor the object is modified accordingly.

* qconf -Mckpt filename

Modifies a checkpointing environment from the specified file. If a directory is specified,
checkpointing environments for every configuration file in the directory are modified.

* gconf -sckpt ckpt_name

Shows the current specification of the checkpointing environment with the name
ckpt_name.

* gconf -sckptl
Shows the list of names of available checkpointing environments.

* qconf -sckptld [ckpt_list]

Shows a detailed list of all checkpointing environments for an Altair Grid Engine cluster
or environments in <ckpt_list>.

Configuration Parameters for Checkpointing Environments
Each checkpointing environment supports the following set of configuration attributes:

Checkpointing environment configuration attributes

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 179

3 Special Activities

Table 78: Checkpointing environment configuration attributes

Attribute Description

ckpt_name The name of the checkpointing environment to be used when
attaching it to queues or when administering its definition. This
name has to be specified by users who explicitly request a
certain type of checkpointing for jobs.

interface The type of checkpointing to be used. Currently, the following
values are supported: hibernator The Hibernator kernel-level
checkpointing interface is used. cpr The SGI kernel-level
checkpointing is used. cray-ckpt The Cray kernel-level
checkpointing is assumed. transparent Altair Grid Engine
assumes that jobs that are submitted with reference to this
checkpointing environment use a public-domain checkpointing
environment such as Condor. userdefined Jobs submitted with
reference to this type of checkpointing interface use their own
private checkpointing method. application-level In this case
all interface commands specified with this object will be used.
One exception is the restart_command. Instead of that
command the job script itself is restarted.

ckpt_command A command-line type command string to be executed by Altair
Grid Engine in order to initiate a checkpoint.
migr_command A command-line type command string to be executed by Altair

Grid Engine during a migration of a checkpointing job from one
host to another.

restart_command A command-line type command string to be executed by Altair
Grid Engine when restarting a previously checkpointed job.
clean_command A command-line type command string to be executed by Altair

Grid Engine in order to clean up after a checkpointing
application has finished.

ckpt_dir A file system location to which checkpoints of potentially
considerable size should be written.
ckpt_signal A UNIX signal to be sent to a job by Altair Grid Engine to initiate

a checkpoint. The value for this field can be either a symbolic
name from the list produced via ki1l -1 command or an
integer number which must be a valid signal on the system
used for checkpointing.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 180

3 Special Activities

Attribute Description

when Defines the points in time when checkpoints are expected to be
generated. Valid values for this parameter are composed of the
letters s, m, x and r and any combination thereof without any
separating character in between. The same letters are allowed
for the gsub -c command which will overwrite the definitions in
the checkpointing environment used. The meaning of the
letters is defined as follows: s A job is checkpointed, aborted
and if possible, migrated if the corresponding sge\ _execd is
shut down where the job is executed. m Checkpoints are
generated periodically at the min_cpu_interval defined by the
queue in which a job is running. x A job is checkpointed,
aborted and if possible migrated as soon as the job gets
suspended (manually or automatically). r A job will be
rescheduled (not checkpointed) when the host on which the job
currently runs goes into an unknown state.

The Altair Grid Engine distribution contains a set of commands that can be used for the pa-
rameters ckpt_command, migr_command Or restart_command. These commands are located
in the directory $SGE_ROOT/ckpt.

3.8.4 Enabling Reservations

To prevent job starvation, the Altair Grid Engine system has three capabilities: resource
reservation, backfilling and advance reservation.

Aresource reservation is a job-specific reservation created by the scheduler component for
a pending job. During the reservation the resources for jobs of lower-priority are blocked
so that “job starvation” does not occur.

An advance reservation is a resource reservation completely independent of a particular job
that can be requested by a user or administrator and is created by the Altair Grid Engine
system. That advance reservation causes the requested resources to be blocked for other
jobs that are submitted later on.

Backfilling is the process of starting jobs from the priority list despite pending jobs of higher
priority that might own a future reservation with the same requested resources. Backfilling
has meaning only in the context of resource reservations and advance reservations.

Reservations and Backfilling

Resource reservations can be used to guarantee resources dedicated to jobs in job priority
order. Agood way to explain the problem solved with resource reservation and backfilling is
the “large parallel job starvation problem”. In this scenario there is one pending job of high
priority (possibly parallel) named A that requires a large amount of a particular resource
in addition to a stream of smaller jobs of lower-priority B(i) and C(i) requiring a smaller
amount of the same resource.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 181

3 Special Activities

A
B(0) B(1) 2 BB .
Position in
Top Bottom Pending Job List
The cluster where the jobs are waiting to be scheduled is already full with running B(i) jobs.
Resource

1 .
Ml [-—--—-

By{-&] B{-3]

B{-7) B{-4) B{-1)

Bi-5) B{-2)

. & Time
MNaxt Scheduler Bun

Without a resource reservation, an assignment for A cannot be guaranteed, assum-
ing the stream of B(i) and C(i) jobs does not stop - even if job A actually has
higher priority than the B(i) and c(i) jobs. Without a reservation, the scheduler
sees only the green area in the resource diagram, and it is too small for job A. The
red area (future) is out of the scope of the scheduler. Without a reservation for
job A, the scheduler will schedule all lower-priority jobs, leading to job starvation.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 182

3 Special Activities

Resource
Ml T '
B{-6) B{-3)
B(-7) Bi-4) Bi-1)
Bi(-5} B(-2) Bi1)

= Time

Mext Scheduler Bun

With a resource reservation, the scheduler will plan resource usage for the future. Job A
receives a reservation that blocks lower-priority B(i) jobs and thus guarantees resources
will be available for A as soon as possible.

Resource
Max T ,
B{-6) B(-3) :
B(-7) B(-4) B-1) A .
Bi-5} B(-2) ,

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

= Time

Mext Scheduler Bun

Backfilling allows for the utilization of resources blocked due to reservations and advance
reservations. Backfilling can take place only if there is an executable job with a prospective
runtime small enough (like ¢(0) and ¢(1)) to allow the blocked resource to be used without
endangering the reservation of a job with higher priority. The benefit of backfilling is that
of improved resource utilization.

183

3 Special Activities

Resource

Wi
By-5) B(-3) N

B(-7) Bi-4) B(-1) A

Bi-5) B{-2)

; = Time
Mext Schaduler Run

Since resource scheduling requires Altair Grid Engine to look ahead, it is more compute
intensive in reservation mode than in non-reservation mode. In smaller clusters the addi-
tional effort is certainly negligible as long as there are only a few pending jobs. As a cluster
grows however and in particular with a larger number of pending jobs, the additional effort
makes sense. The key with tuning resource reservations is to determine the overall number
that is made during a scheduler interval.

To accomplish this some command-line switches and scheduling parameters are available:

Table 79: Command-line parameters that influence reserva-
tions

Parameter Description

-R This submit option is available for gsub, qrsh, qsh, qlogin and
qalter.This option allows the restriction of resource reservation
scheduling only to those jobs that are critical. In the example above
there is no need to schedule B(i) job reservations for the sake of
guaranteeing the job A resource assignment. The only job that
needs to be submitted with the -R y is job A. This means all B(i)
jobs can be submitted with the -R n without actually endangering
the reservation for A. Default is -R n if no other is specified.

-now Although it can be requested, reservation is never created for
immediate jobs using -now yes option.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 184

3 Special Activities

Table 80: Parameters in scheduler configuration that influence
reservations

Parameter

Description

max_reservation

MONITOR

DURATION_OFFSET

For limiting the absolute number of reservations made during a
scheduling interval, the max_reservation parameter in the scheduler
configuration can be used by Altair Grid Engine administrators. E.g.
when max_reservation is set to 20, no more than 20 reservations are
made within a scheduling interval and as a result the additional effort
for reservation scheduling is limited.

If MONITOR is added to the params parameter in the scheduler
configuration, the scheduler records information for each scheduling
run allowing for the reproduction of job resource utilization in the file
$SGE_ROOT/$SGE_CELL/common/schedule.

If DURATION _OFFSET is set, this overrides the default of 60 seconds that
is assumed as offset by the Altair Grid Engine scheduler when
planning resource utilization as delta between net job runtimes and
gross time until resources are available. A job’s net runtime as
specified with-1 h_rt=... 0or-1 s_rt=... or default_duration
always differs from job’s gross runtime due to delays before and after
job start time. Among these delays before job start, the time until the
end of a schedule_interval, the time it takes to deliver a job to
sge_execd, the time prolog and starter_method in queue
configuration need and the start_proc_args in parallel environments
may be affected. The delays after a job's actual run include delays due
to a forced job termination (notify, terminate_method Or various
checkpointing methods), procedure runs after actual job completion
such as stop_proc_args in parallel configurations or epilog in queues
and the delay until a new schedule_interval. If the offset is too low,
resource reservations can be delayed repeatedly.

Advance Reservation

Advance reservations can be compared to the ticket reservation system of a cinema. If a
group of people intends to see a specific movie, someone can reserve a specified number
of tickets. If the tickets are reserved, people can meet when the movie begins. A seat is
available to them during the movie but they must leave when the movie ends so that the
theater is available again for the next showing.

An advance reservation is defined as a reservation of resources made by the scheduler to
accommodate a user or administrator request. This reservation is made at the beginning
independent of a particular job. After it is created, multiple users may submit jobs to an
advance reservation to use the reserved resources.

Advance reservations have the following characteristics:

« defined start time

+ defined duration

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 185

3 Special Activities

« defined set of resources

The absence of one of these characteristics makes it impossible for the Altair Grid Engine
scheduler to find the necessary resources to schedule the advance reservation.

Rasourcea

!

i
M ax ;
J(-3) .
' AR
Ji-4) Ji-1) :
L]
J(-2) :
: 'I' 'I' = Time
Mext Scheduler Run start tme end time

An advance reservation has the following states:

Table 81: States of an advance reservation

Description

=

Running. Start time has been reached.

Deleted. The AR was manually deleted.

Exited. The end time has been reached.

Error. The AR became invalid after the start time has been
reached

Waiting. The AR was scheduled but start time has not been
reached

Warning. The AR became invalid because resources that were

reserved are not available in the cluster any more.

The following commands create or modify advance reservations:

* gqrsub

Used to submit a new advance reservation. Returns the identifier {ar_id} that is
needed as parameter for other commands.

* gralter

Command to modify existing advance reservations.

* grdel {ar_id}
Deletes the advance reservation with ID {ar_id}.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0)

186

3 Special Activities

* grstat
Command to view the status of advance reservations.

* gconf -au {username} arusers
Adds a user with name {username} to the list of users who are allowed to
add/change/delete advance reservation objects.

* gsub -ar {arid}
Submits a job into a specific advance reservation with the ID {ar_id}.

If an AR is submitted with grsub, the start or end time plus the duration of the job must
be specified. Other parameters are similar to those of the gsub command. Note that only
users who are in the arusers access list have the right to submit advance reservations.

Table 82: qrsub command-line switches

Switch Description

-a {date_time} Defines the activation (start) date and time of the advance
reservation. The switch is not mandatory. If omitted, the current
date and time is assumed. Either a duration or end date and time
must also be specified. Format of -a {date_time} is:
[[cclYYIMMDDhhmm[.ss] where CC denotes the century, YY the year,
MM the month, DD the day, hh the hour, mm the minutes and ss the
seconds when the job can be started.

-A Identifies the account to which the resource reservation of the AR

{account_string} should be charged.

-ckpt Selects the checkpointing environment the AR jobs may request.

{ckpt_name} Using this option guarantees that only queues providing this
checkpointing environment will be reserved.

-d {time} Defines the duration of the advance reservation. The use of this

switch is optional if an end date and time is specified with -e

-e {date_time} Defines the end date and time of the advance reservation. The use
of this switch is optional if -d is requested. Format of {date_time}
is the same as for -a.

-he {y_or_n} Specifies the behavior when the AR goes into an error state. This
will happen when a reserved host goes into an unknown state, a
queue error happens, or when a queue is disabled or suspended. A
hard error means that as long as the AR is in an error state jobs
requiring the AR will not be scheduled. If a soft error is specified
(with -he y), the AR stays usable with the remaining resources. By
default, soft error handling is used.

-1 {requests} The created AR will provide the given resources specified in
{requests}. Format of {requests} is the same as for gsub -1,
except that the consumable attribute of the underlying complex
variable can be overwritten. See man page qrsub.1

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 187

3 Special Activities

Switch Description

-m {occasion} Defines under which circumstances mail is sent to the AR owner or
to the users defined via the -M option. {occasion} can be a letter
combination of the letters b, e and a or the letter n where bis a
beginning mail, e an end mail, a a mail when the AR goes into an
error state and n will disable sending of any mail. By default, no
mail will be sent.

-now {y_or_n} This option impacts the queue selection for reservation. With y,
only queues with the type INTERACTIVE assigned will be considered
for reservation and n is default.

-N {name} The name of the advance reservation.

-pe {name} Selects the parallel environment the AR jobs may request. Using

{range} this option guarantees the queues providing this parallel
environment will be reserved.

-w {level} Specifies the validation level applied to the AR request. v does not

submit the AR but prints a validation report whereas e means that
an AR should be rejected if requirements cannot be fulfilled. e is
the default.

3.8.5 Simplifying Job Submission Through the Use of Default Requests
Default requests are job requests that are normally specified at time of submission in the
form of command-line switches and arguments to applications such as gsub, qsh or qrsh.

These requests are:

* resource requests for resources that are needed to execute a job successfully (e.g. -1,
-pe)

+ descriptions of execution environments defining the context in which jobs are exe-
cuted (e.g. -S, -shell, -notify)

+ certain hints for the scheduler to help identify resources that can be used for execu-
tion (e.g. -q, -pe, —cal, -ckpt)

* parameters that define the importance of a job compared to other jobs (e.g -p, -js)

+ identifiers that can be used later on for accounting (e.g. -N, -4) ...

In the absence of these parameters, additional work is required for the administrator or for
the user who discovers that jobs were not started at all or started using resources that are
not suitable for the job.

Using Altair Grid Engine itis possible to define default requests to solve that problem. These
default requests are used as job requests in the absence of a corresponding request in the
submission command-line specification.

Locations to set up such default requests are:

* the default request file located in $SGE_RO0T/$SGE_CELL/common

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 188

3 Special Activities

+ the user default request file .sge_request located in $HOME of the submit user
+ the user default request file .sge_request located in the current working directory
where the submit client application is executed.

If these files are available, they will be used for every job that is submitted. They are pro-
cessed in the order mentioned above. After that, the submit options embedded in the
job script will be handled as the last switches and parameters that were passed with the
command line of the submit application. When during this processing the -clear option is
detected, any previous settings are discarded.

The file format of default request files is as follows:

* Blank lines and lines beginning with a hash character (#) are skipped.
* Any other line has to contain one or more submit requests. These requests have the
same name and format as when used with the gsub command.

The following is an example of a default request definition file:

Default Requests File

request a host of architecture sol-sparc64 and a CPU-time of 5hr
-1 arch=sol-sparc64,s_cpu=5:0:0

job is not restarted in case of a system crash

-r n

Defining a default request definition file like this and submitting a job as follows:
gsub test.sh
wil have precisely the same effect as if the job were submitted with:

gsub -1 arch=sol-sparc64,s_cpu=5:0:0 -r n test.sh

3.8.6 Job Submission Verifiers

Job Submission Verifiers (JSVs) are UNIX processes that communicate with Altair Grid En-
gine components to verify jobs before they enter the Altair Grid Engine system. These JSV
processes decide whether Altair Grid Engine should accept a job, modify the job before it is
accepted or completely reject a job. Accepted jobs will be put into the list of pending jobs.

The Altair Grid Engine admin user can define JSVs to:

* ensure the accuracy of submitted jobs.

+ verify additional things that might be needed during job execution which are out of
the scope of Altair Grid Engine such as certain access rights to hardware or software.

+ inform the user of details of job submission, estimated execution times, cluster poli-
cies, ...

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 189

3 Special Activities

* integrate additional software components
Also users submitting jobs can set up JSVs to:

* set up job templates for those jobs that are submitted often.
* ensure that certain environment variables are passed with jobs so that they can be
executed successfully.

Using JSVs for Ensuring Correctness of Job Submissions

Altair Grid Engine uses two different JSV types that are named Client JSV and Server JSV.
Client and Server JSVs have slightly different characteristics:

Table 83: Client/Server JSV Characteristics

Client JSV Server JSV

Can be defined by users that submit jobs and/or Only administrators can define
administrators. server JSVs.

Always executed on the submit host where the Server JSV instances are executed
user tries to submit a job. on the machine where the

sge_gmaster process is running.
Are executed under the submit user account with Either executed as admin user or

the environment of the submit user under an account specified by the
administrator.
Client JSVs communicate with the submit client Server JSVs exchange information

and therefore have the ability to send messages with gmaster users about certain
to the stdout stream of the corresponding submit conditions. Logging can be done to
client. This is helpful when administrators want the message file of sge_gmaster

to notify submit users about certain conditions. process.

They are terminated after one job verification. Live as long as sge_gmaster
process is alive and JSV script does
not change.

Has no direct impact on the cluster throughput. Have to be written carefully. Due

to the fact that these JSVs directly
communicate with gmaster this
JSV type may decrease submission
rate and cluster throughput.

Locations to Enable JSV

To enable the JSV infrastructure, the submit or admin user of an Altair Grid Engine system
has to prepare one or multiple script or binary applications. The path to JSV must be config-
ured within Altair Grid Engine so that the corresponding application will be triggered when
a new job tries to enter the system. In principle it is possible to specify the -jsv parame-
ter with various submit clients. The jsv_url parameter can be defined within the cluster
configuration. This allows the specification of JSVs at the following locations:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 190

3 Special Activities

* -jsv used as command-line parameter with the submit client

« —jsv usedin the .sge_request file located in the current working directory where the
submit client is executed

+ —jsv used in the .sge_request file located in $HOME of the user who tries to submit a
job

+ —jsv used in the global sge_request file in $SGE_RO0T/$SGE_CELL/common

+ jsv_url defined in the cluster configuration.

IfJSV is defined at one of the five locations, it will be instantiated and used to verify incoming
jobs in a Altair Grid Engine system. JSV 1, 2, 3, and 4 are client JSVs. JSV 5 is a server JSV. The
question of how many JSVs are needed in a cluster and where the best location is to set up
a JSV depends on the tasks to be achieved by the JSVs. JSV 1, 2, 3 and 4 are started as the
submitting user, whereas for JSV 5 the administrator can define the user under which the
JSV is executed.

In the extreme case where all configuration locations are used to set up JSVs, this results in
up to 5JSV instances. The instance 1 would get the specification of a job as it was defined
in the submit client. If it would allow the submission of this job or when the job is accepted
with some corrections, the new job specification would be passed to SV instance 2. Also this
JSV would have the capacity to accept or modify the job. The result of each JSV verification
or modification process would be passed on to the next instance until JSV 5 either accepts,
corrects or rejects the job.

The verification process is aborted as soon as one JSV rejects a job. In this case the submit
user will get a corresponding error message. If the job is accepted or corrected, gmaster
will accept the job and put it into the list of pending jobs to be scheduled later on.

JSV Language Support

JSV processes are started as child processes either from a submit client or from the
sge_gmaster process. The stdin/stdout/stderr channels of a]SV process are connected to
the parent process via UNIX pipes so that processes can exchange information such as
job specifications, environments and verification results. Due to this common setup it is
possible to write JSVs in any principal programming language.

Perl, TCL, Bourne Shell and JavaJSVs are supported out of the box because the Altair Grid En-
gine distribution contains modules/libraries that implement the necessary communication
protocol to exchange data between Altair Grid Engine components and JSVs. The communi-
cation protocol is documented so that other language supports may be easily implemented.
Note that due to performance reasons it is recommended to write Server JSVs in Perl or TCL.
Never use Bourne Shell scripts for production systems. Use them only for evaluation of JSVs.

Predefined language modules for the different scripting languages and example JSV scripts
can be foundin the directory $SGE_RO0T/dist/util/resources/jsv. These modules provide
functions to perform the following tasks:

+ To implement the main loop of the script

* To handle the communication protocol to communicate with Altair Grid Engine com-
ponents

*+ To provide access functions to the job submit parameters

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 191

3 Special Activities

+ To provide access functions to the job environment specification
* To define reporting functions

+ To define logging infrastructure

If these predefined modules are used, only two functions have to be written to create a fully
working JSV script.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

#!/bin/sh

jsv_on_start()
{

return

}

jsv_on_verify()

{
jsv_accept "Job is accepted"
return

}
. ${SGE_RO0T}/util/resources/jsv/jsv_include.sh

jsv_main

If this JSV is started, it will source the predefined Bourne Shell language module (line
14)

With the call of jsv_main () function (line 15) the main loop of the JSV script handles the
communication protocol which triggers two callback functions when a job verification
should be started

Function jsv_on_start () (line 3) is triggered to initiate a job verification. In this func-
tion certain things can be initialized, or information can be requested from the com-
munication partner. In this example the function simply returns.

The function jsv_on_verify() (line 8) is automatically triggered shortly after
jsv_on_start() has returned. The time in between those two calls is used to
exchange job-related information between client/sge_gmaster and the JSV process.

In this small example the function jsv_on_verify() simply accepts the job without
further verification. This is done using the function jsv_accept () (line 10)

Note that for a client JSV, the JSV process terminates shortly after jsv_on_verify() is re-
turned and before the submit client terminates. For a server JSV, the process remains
running since both defined functions will be triggered one after another for each job
requiring verification.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 192

3 Special Activities

JSV Script Interface Functions

This section lists the provided interface functions that are defined in script language mod-
ules and that can be used with jsv_on_start() and jsv_on_verify() to implement job ver-
ification.

Accessing Job Parameters

The following functions can be used to access job specification within a JSV that was defined
in the submit environment, the submit client, or switches used in combination with a submit
client to submit a job. The param_name parameter that has to be passed to those function
is a string representing a submit client switch. In most cases the name of param_name is the
same as the switch name used in combination with the gsub command. Sometimes multiple
param_nameS have to be used to retrieve the information in aJSV that has been defined at the
command line using only one switch. The functions also accept some pseudo-param_names
to find more detailed information about the submit client. A full list of param_names can be
found in the following sections.

* jsv_is_param(param_name)

Returns information about whether specific job parameters are available for the job
being verified. Either the string true or false will be returned.

* jsv_get_param(param_name)

Returns the value of a specific job parameter. This value for a param_name is only avail-
able if jsv_is_param(param_name) returns true. Otherwise an empty string will be re-
turned.

* jsv_set_param(param_name, param_value)

This function sets the job parameter param_name to param_value. If param_value is an
empty string, the corresponding job param_name will be deleted, similarly to using the
function jsv_del_param(param_name). As a result the job parameter is not available
since the corresponding command-line switch is not specified during job submission.
For boolean parameters that only accept the values yes and no as well as for the pa-
rameters c and m, it is not allowed to pass an empty string as param_value.

* jsv_del_param(param_name)

Deletes the job parameter param_name from the job specification as if the correspond-
ing submit switch had not been used during submission.

Examples

01 jsv_on_verify()

02 {

03

04

05 if [“jsv_is_param b~ = "true" -a "~ jsv_get_param b* = "y"]; then
06 jsv_reject "Binary job is rejected."

07 return

08 fi

09

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 193

3 Special Activities

10
11 }

The script above is an excerpt of a jsv_on_start () function (Bourne shell):
* The first part of the expression in line 5 tests whether the -b switch is used during the
job submission.
* The second part of the expression tests whether the passed parameter is y

+ If a binary job is submitted, the corresponding job will be rejected in line 6.

+ The error message to be returned by gsub is passed as a parameter to jsv_reject ()

01 if [""jsv_get_param pe_name " != ""]; then

02 slots="jsv_get_param pe_min"

03 i="expr $slots % 16°

04

05 if [$1 -gt 0]; then

06 jsv_reject "Parallel job does not request a multiple of 16 slots"
07 return

08 fi

09 fi

The section above can be used in jsv_on_start () function (Bourne shell):

* Line 1 checks whether -pe switch was used at command line

* The pe_min value contains the slot specification. If a job was specified e.g with gsub
-pe pe_name 17, pe_min Will have a value of 17.

 Line 3 calculates the remainder of the division.

+ Line 5 uses this remainder to see whether the specified slots value was a multiple of
16.

* The job is rejected in line 6.

Accessing List-based Job Parameters

Some job parameters are lists that can contain multiple variables with an optional value. Ex-
amples for those parameters include job context specifications, resource request lists and
requested queue lists. To access these parameters and their values, the following functions
have to be used:

* jsv_sub_is_param(param_name, variable_name)

This function returns true if the job parameter list param_name contains a variable with
the name variable_name and false otherwise. false can also indicate that the param-
eter list itself is not available. The function jsv_is_param(param_name) can be used to
check whether the parameter list is available.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 194

3 Special Activities

jsv_sub_get_param(param_name, variable_name)

This function returns the value of variable_name in the parameter list param_name.
For list elements that have no value, an empty string will be returned, as well as for
the following param_names: hold_jid, M, masterq, q_hard, q_soft. For the param_names
1_hard and 1_soft the value is optional. The absence of a value does not indicate
that variable_name is not contained in the list. jsv_is_sub_param(param_name) can
be used to check this.

jsv_sub_add_param(param_name, variable_name, variable_value)

This function adds a variable_name/variable_value entry into the parameter list
param_name. |f variable_name is already contained in that list the corresponding value
will be replaced. variable_value can be an empty string. For certain param_names
the variable_value must be an empty string. Find the list above in the section
jsv_sub_is_param(param_name, variable_name)

jsv_sub_del_param(param_name, variable_name)

Deletes a variable and if available the corresponding value from the list with the name
param_name.

Example

01 1_hard="jsv_get_param 1_hard"

02 if ["$1_hard" != ""]; then

03 has_soft_lic="jsv_sub_is_param 1_hard soft_lic"
04

05 if ["$has_soft_lic" = "true"]; then

06 jsv_sub_add_param 1_hard h_vmem 4G

07 fi

08 fi

Line 1 returns the value of the -1 command-line switch.

If the value for that parameter is not empty, there is at least one resource request
passed during job submission.

Line 3 checks whether it contains the soft_lic resource request.
has_soft_lic will be set to true in this case (line 5).

If this was specified, h_vmem will be set to 4G (line 6).

Preparing a Job Verification

This function can be used in jsv_on_start() to request more detailed information for the
job verification process before the verification is started:

jsv_send_env()

This function can be used only in jsv_on_start (). Ifitis used there, the full job environ-
ment information will be available in jsv_on_verify () for the job that should be veri-
fied next. This means that the functions jsv_is_env (), jsv_get_env(), jsv_add_env()

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 195

3 Special Activities

and jsv_mod_env() can be used with jsv_on_verify() to access, modify, or delete
environment-related information in the job specification. Job environment values can
be specified by using the -v or -V switches during job submission. By default, the job
environment is not passed to JSVs for performance reasons. Job environments can be-
come large (10K or more). Automatically transferring it for each job would slow down
the executing components. Also note that the data in the job environment cannot be
verified by Altair Grid Engine and this might therefore contain data which could be
misinterpreted in the script environment and cause security issues.

Logging Status

The following JSV logging functions are available.

jsv_log_info(message)

The passed message string is transferred to the submit client invoking the executing
client JSV, or it will be sent to the sge_gmaster process when using a server JSV. Sub-
mit clients will then write the message to the stdout stream of the submit application,
whereas with a server JSV the message is written as an info message into the message
file of sge_gmaster.

jsv_log_warning(message)

The passed message string will be transferred to the submit client that invoked the ex-
ecuting client JSV, or it will be sent to the sge_gmaster process when using a server
JSV. Submit clients will then write the message to the stdout stream of the submit ap-
plication, or with a server JSV the message is written as a warning message into the
message file of sge_gmaster.

jsv_log_error (message)

The passed message string will be transferred to the submit client that invoked the exe-
cuting client JSV, or it will be sent to the sge_gmaster process when using a server JSV.
Submit clients will then write the message to the stdout stream of the submit applica-
tion, or with a server JSV the message is written as an error message into the message
file of sge_gmaster.

Example

01 1_hard="jsv_get_param 1_hard"

02 if ["$1_hard" !'= ""]; then

03 context="jsv_get_param CONTEXT"

04 has_h_vmem="jsv_sub_is_param 1_hard h_vmem”
05

06 if ["$has_h_vmem" = "true"]; then

07 jsv_sub_del_param 1_hard h_vmem

08 if ["$context" = "client"]; then

09 jsv_log_info "h_vmem as hard resource requirement has been deleted"
10 fi

11 fi

12 fi

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 196

3 Special Activities

+ Line 3 identifies whether the JSV is a client or server JSV.
« For a server JSV (line 8) ...

* ... theJSV prints the log message "h_vmem as hard resource requirement has been
deleted". This message will appear on the stdout stream of the submit client applica-
tion.

Reporting Verification Result

One of the following functions has to be called at the end of the jsv_on_verify() function
after the job verification is done and just before jsv_on_verify() returns.

* jsv_accept(message)

A call to this function indicates that the job that is currently being verified should be
accepted as it was initially provided. All job modifications that might have been applied
before this function was called will be ignored. The message parameter has to be a
character sequence or an empty string. In the current implementation this string is
ignored and it will appear only if logging for JSV is enabled.

* jsv_correct (message)

The job that is currently being verified when this function is called will be accepted by
the current JSV instance. Modifications that were previously applied to the job will be
committed. The job will be passed either to the next JSV instance if there is one, or
to sge_gmaster so that it can be added to the masters data store when the function
returns. The message parameter has to be a character sequence or an empty string.
In the current implementation this string is ignored and it will appear only if logging
for JSV is enabled.

* jsv_reject(message) Of jsv_reject_wait(message)

The job currently being verified is rejected. The message parameter has to be a char-
acter sequence or an empty string. message will be passed as error message to the
client application that tried to summit the job. Command-line clients such as gsub will
print this message to notify the user that the submission has failed.

Accessing the Job Environment

The following function can be used to access the job environment that will be made
available when the job starts. At the command line this environment is formed with the
command-line switches -v and -V. The function can only be used when jsv_send_env()
was previously called in jsv_on_start Q.

* jsv_is_env(env_name)

Returns true when an environment variable with the name env_name exists in the job
currently being verified. In this case jsv_get_env(env_name) can be used to retrieve
the value of that variable.

* jsv_get_env(env_name)

Returns the value of a variable named env_name. If the variable is not available an
empty string will be returned. To distinguish non-existing variables and empty vari-
ables the function jsv_is_env(env_name) can be used.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 197

3 Special Activities

* jsv_add_env(env_name, env_value) and jsv_mod_env(env_name, env_value)

These functions add or modify an environment variable named env_name. The value
of the variable will be env_value. If jsv_add_env() is used on a variable that already
exists, the value is simply overwritten; when jsv_mod_env () is used on a variable that
does not already exist, it is silently added. env_name can be an empty string; in this
case only the variable is set.

* jsv_del_env(env_name, env_value)

Removes env_name from the set of environment variables that will be exported to the
job environment when the job is started.

Parameter Names of JSV Job Specifications

JSV functionality allows it to change various aspects of jobs that are submitted to Altair Grid
Engine systems. This can be done with predefined JSV scriptinterface functions. Those func-
tions require valid parameter names and corresponding values. The table below mentions
all supported parameter names and describes them in more detail.

Table 84:]SV Job Parameters

Parameter

Description

a

ac

ar

If a job has a specific start time and date at which it is eligible
for execution (specified with gsub -a at the command line),
the corresponding value is available in JSV as a parameter
with the name a. The value of this parameter has the
following format: [[CC]YYIMMDDhhmm[.ss] where CC denotes
the century, YY the year, MM the month, DD the day, hh the
hour, mm the minutes and ss the seconds when the job can be
started.

The value for the ac parameter represents the job context of
a job as it is specified at the command line with the
command-line switches -ac, -dc and -sc. The outcome of the
evaluation of all three switches will be passed to JSV as the
list parameter named ac. It is possible within JSV scripts to
modify this list with the jsv_sub_x_param() functions.

The ar parameter is available in JSV if an advance reservation
number was specified during the submission of a job. At the
command line this is done with the -ar switch. The value of
ar can be changed in JSV as long as the new value is a valid
advance reservation id.

If the parameter named b is available in JSV this shows that a
job was submitted as a binary job e.g with -b switch at the
command line. The value in this case is yes. The absence of
this parameter indicates that a non-binary job was submitted.
Independent of whether or not the parameter is available it
can be set or changed.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 198

3 Special Activities

Parameter Description

c_interval c_occasion The command-line switch -c of gsub can be used to define
the occasions when a checkpointing job should be
checkpointed. If a time interval is specified, this value will be
available in JSV as a parameter with the name c_interval
and when certain occasions are specified through characters,
this letter is available through the parameter c_occasion. Is
is possible to change both values in JSV. Note that a change
of c_occasion will automatically override the current value of
c_interval and vice versa.Valid values for c_occasion are the
letters n, s, m and x where n disables checkpointing, s triggers
a checkpoint when an execution daemon is shut down, m
checkpoints at the minimum CPU interval and x checkpoints
when the job gets suspended.The time value for c_occasion
has to be specified in the format hh:mm: ss where hh denotes
hours, mm denotes minutes and ss denotes the seconds of a
time interval between two checkpointing events.

ckpt The ckpt parameter is set for checkpointing jobs and
contains the name of the checkpointing environment that
can be defined at the command line via the -ckpt switch.

cwd The value of the cwd parameter is, if available, the path to the
working directory where the submit client was started. At the
command line this is set using the -cwd switch.

display The value of display is used by xterm to contact the X server.
At the command line the value for this parameter can be set
in gsh and qrsh via the -display switch. The format of the
display value must start with a hostname (e.g hostname:1).
Local display names (e.g. :13) cannot be used in grid
environments. Values set with the display variable in JSV will
overwrite settings from the submission environment and
environment variable values specified with -v command-line
option.

d1l The d1 parameter is available if a deadline time was specified
during the submission of a job. At the command line this can
be done with the -d1 switch. If available the value will have
the same format as the a parameter that specifies the start
time of a job.

e The e parameter defines or redefines the path used for the
standard error stream of a job. At the command line the
value for this parameter can be defined via the -e switch.

h The value of the h parameter indicates that a job was
submitted in a user hold state (e.g. with gsub -h). In this case
the parameter is available and it will be set to u. To change
this the parameter can be set to n.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 199

3 Special Activities

Parameter

Description

hold_jid

hold_jid_ad

jc

js

1_hard 1_soft

The hold_jid parameter contains job dependency
information for a job. Itis available when a job was
submitted with the -hold_jid command-line switch. If
available the list contains references in the form of job ids,
job names or job name patterns. Referenced jobs in this list
have to be owned by the same user as the referring job.

The hold_jid_ad parameter defines or redefines array job
interdependencies. It is available when a job was submitted
with -hold_jid_ad command-line switch. If available the list
contains references in form of job ids, job names or job
name patterns. Referenced jobs in this list have to be owned
by the same user as the referring job.

The i parameter defines or redefines the path used for the
standard input stream of a job. At the command line the
value for this parameter can be defined via the -i switch.
Similar to the -j command-line switch, the j parameter
defines or redefines whether the standard error stream
should be merged into the output stream of a job. In this
case the parameter is available and set to y. To change this,
the value can be set to n.

Defines or redefines the job class that should be used to
create the new job.

Defines or redefines the job share of a job relative to other
jobs. If the corresponding -js parameter was not specified
during submission of a job, the default job share is 0. In this
case the parameter is not available in JSV. Nevertheless it can
be changed.

At the command line job resource requests are specified with
the -1 switch. This switch can be used multiple times, and in
combination with the switches -hard and -soft to express
hard and soft job resource requirements. The sum of all hard
and soft requests a job has will be available in JSV with the
two parameters 1_hard and 1_soft. Note that if regular
expressions or shortcut resource names were used in the
command line, these expressions will also be passed to JSV.
They will not be expanded. It is possible in JSV scripts to
modify these resource lists with the jsv_sub_*_param()
functions.

The value of the m parameter defines or redefines when Grid
Engine sends mail to the job owner. Format is similar to the
command-line switch -m of the gsub command. n means that
there is no mail sent and different letter combinations of the
letters b, e, a and s can be used to define when mail is sent
where b means that mail is sent at the beginning of a job, e at
the end of a job, and a when the job is aborted or
rescheduled.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 200

3 Special Activities

Parameter Description

M Mis the list of mail addresses to which the Altair Grid Engine
system sends job-related mails. It is possible in JSV scripts to
modify these resource lists with the jsv_sub_*_param()
functions.

masterq masterq parameter defines candidate queues that can
become the master queue if the submitted job is a parallel
job. At the command line this is specified with the -masterq
commandline switch. In JSV the list can be accessed with the
jsv_sub_x_param() script functions.

notify Jobs where the notify parameter is available in JSV and
where it is set to y will receive a notify signal immediately
before a suspend or kill signal is delivered. If -notify was not
used during submission of a job, the notify parameter will
not be available.

now Not available in JSV.
N The value of N is the job name of the job to be submitted.
o The o parameter defines or redefines the path used for the

standard output stream of a job. At the command line the
value for this parameter can be defined via the -o switch.

P The p parameter defines or redefines job priority relative to
other jobs. It is only available if the value is not equal to 0.
Allowed values for this parameter are integer values in the
range between -1023 and 1024.

pe_name When parallel jobs are submitted with gsub, the -pe
command

pe_min -line switch has to be specified to define which parallel
environment

pe_max should be used and which slots are needed. The parameters

pe_name, pe_min and pe_max show parts of that specification.
pe_name is the name of the parallel environment. pe_min and
pe_max specify the biggest and smallest slot number used in
the slot specification. If multiple pe ranges are specified pe_n
will contain the number of ranges, pe_min_0 the minimum of
the first range, pe_max_0 the maximum of the first range,
pe_min_1 the minimum of the second range, etc.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 201

3 Special Activities

Parameter Description

pty This parameter is only available in Altair Grid Engine 8.0.1
and above (see UNIVA_EXTENSIONS pseudo parameter
below). The -pty switch of qrsh and gsh enforces that the
submitted job is started in a pseudoterminal. This
information will be exported to client and server JSV scripts
via the parameter named pty. If the command-line switch is
omitted, then this parameter has the value u which means
unset. Client applications and the executed job will use the
default behavior. y means that the use of a pseudoterminal
is enforced and n that no pseudo- terminal will be used. This
parameter can be changed in JSV scripts. This change will
influence the client applications and the executed job as if the
corresponding command-line switch had been used directly.

P Variable that holds the name of the project to which a job is
assigned. A change to this value will overwrite the value
specified with the -p command-line parameter.

q_hard q_soft The -q switch for the command-line application can be
combined with the -hard and -soft switches. As a result the
user specifies lists of hard and soft cluster queue, queue
domain and queue instance requests. Within JSV those lists
are available via the parameters q_hard and q_soft. Both of
them can be changed using the jsv_sub_#*_param() script
functions.

R If the R parameter is available and set to y, a reservation will
be created for the corresponding job. The request for
reservation can be undone in JSV when the parameter is set
ton.

T Jobs can be marked to be rerunnable with the -r
command-line switch. If this has been done, the r parameter
is available and set to y. To overwrite this the value can be
changed to n.

shell The parameter shell is defined and set to y if a command
shell should be used to start the job. To disable this JSV value
has to be changed to n.

sync This parameter is only available in Altair Grid Engine 8.0.1
and above (see UNIVA_EXTENSIONS pseudo parameter below).
When a command-line application is used with the -sync
command-line switch, the parameters with the name sync
will be available in client and server JSV, and it will be set to y.
The sync parameter is a read-only parameter in JSV. This
means that it is not possible to influence the behavior of the
command-line client by modifying this parameter in JSV.

S The s parameter specifies the interpreting shell for the job.

t_min t_max t_setp The -t parameter of gsub submits an array job. The task
range specification is available in JSV via three parameters:
t_min,t_maxandt_step’. All three values can be changed.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 202

3 Special Activities

Parameter Description

terse This parameter is only available in Altair Grid Engine 8.0.1
and above (see UNIVA_EXTENSIONS pseudo parameter below).
When a command-line application is used with the
terse-switch then the parameter named terse will be
available in client and server JSV scripts and it will be set to y.
If this parameter is set to n, the submit client will print the
regular “Your job ..."” message instead of the job ID. The
parameter value can be changed in JSV scripts.

v There is no v parameter in JSV. If information concerning the
resulting job environment is needed in JSV, this has to be
requested explicitly. When using the JSV script interface, this
can be done with a call of jsv_send_env() in jsv_on_start().
After that the jsv_x*_env () functions can be used to access
the job environment.

v This parameter is only available in Altair Grid Engine 8.0.1
and above (see UNIVA_EXTENSIONS pseudo parameter below).
The v parameter will be available in client and server SV
scripts and it will have the value y when the -v command-line
switch was used during the submission of a job. This
indicates that the full set of environment variables that were
set in the submission environment can be accessed from JSV.
If this parameter is not available or when it is set to n, only a
subset of the user environment can be accessed in JSV
scripts. Only those environment variables will be available
that were passed with the -v command line parameter.

wd See cwd

In addition to job parameters JSV provides a set of pseudo parameters

Table 85: JSV Pseudo Parameters

Parameter Description

CLIENT The value of the CLIENT is either qmaster for a server SV, or for
client JSVs the name of the submit client that tries to submit the
job. Valid client names are gsub, qrsh, gsh, qlogin and gmon. In
case of DRMAA clients the string drmaa is used. This value is
read-only. It cannot be changed by JSV.

CMDARG{i} Command-line arguments of the job script will be available in JSV
via multiple CMDARG{i} parameters, where {i} is replaced with by
the number of the position where the argument should appear.
{i} is a number in the range from O to CMDARGS - 1. This means
that the first argument will be available through the parameter

CMDARGO.

CMDARGS The value is an integer number representing the number of
command-line arguments that should be passed to the job when it
is started.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 203

3 Special Activities

Parameter Description

CMDNAME For a binary submission, CMDNAME contains the command name of
the binary to be executed. For non-binary jobs the full path to the
job script is specified. In Altair Grid Engine systems it is possible to
modify CMDNAME in client and server JSV scripts. CMDNAME can
be set to a script name or to a command name for a binary
submission. If script submission should be changed to binary
submission or binary submission should be changed to script
submission, the b parameter has to be changed in JSV before the
CMDNAME parameter is changed. for a script submission the
script has to be accessible on the master machine if the CMDNAME
parameter is changed in a server JSV. Submission parameters that
are embedded in the new script file will be ignored.

CONTEXT The CONTEXT can have two values. client or master depending on
which client host the JSV is currently executed. It is not possible to
change this value.

GROUP The value of GROUP is the primary group name of the user who
submitted the job. Cannot be changed via JSV.
SUBMIT_HOST This parameter is only available in Altair Grid Engine 8.0.1 and

above (see UNIVA_EXTENSIONS pseudo parameter below). In server
JSV's the read-only parameter SUBMIT_HOST is available. This
parameter contains the hostname where the submit application is
executed.

JOB_ID This variable is not available when CONTEXT is client (client JSV).
For a server JSV the value of JOB_ID is the job number the job will
get when it is accepted by the Altair Grid Engine system. This value
cannot be changed via JSV.

UNIVA_EXTENSIONS The JSV parameter named UNIVA_EXTENSIONS is available in Altair
Grid Engine 8.0.1 and above. This read-only parameter can be
used in client and server JSV scripts to detect whether a certain set
of JSV parameters can be accessed that are only available in the
Univa version of Grid Engine. If this parameter is not available or
when it is set to n, these extensions to JSV are missing (Open
Source version of Grid Engine). In this case it is not possible to
access the following parameters: pty, sync, terse, Vand
SUBMIT_HOST.

USER The value of USER is the UNIX username of the user who submitted
the job. Cannot be changed by JSV.
VERSION Shows the VERSION of the implementation of the JSV

communication protocol. VERSION is always available in JSV and it
is not possible to change the value. The format of the value is
{major}.{minor}. Since the first implementation of JSV the
communication protocol has not been changed so that the current
VERSION is still 1.0

Using JSVs for Integrating Altair Grid Engine With Other Facilities

Script-based JSVs are the best compromise of performance and flexibility for aligning jobs

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 204

3 Special Activities

according to the needs that predominate in a cluster. Other facilities that might need to be
integrated with Altair Grid Engine might have different requirements. Such facilities might
require that:

+ a special programming language is used.
* certain tasks should be achieved that cannot be done easily in a script language.

+ performance has to be optimized so that cluster throughput can be increased.

To be able to do so Altair Grid Engine provides information about the communication pro-
tocol that is used between active components so that administrators are able to write JSVs
in any programming language. Contact us to receive more detailed information.

The JSV protocol has meanwhile been implemented for the Java programming language.
JAR files and documentation are part of the distribution. Find it in the directories
$SGE_ROOT/util/resources/jsv and $SGE_ROOT/1ib.

3.8.7 Enabling and Disabling Core Binding

The core binding feature can be enabled and disabled at the host level. In a default Altair
Grid Engine installation, it is turned on for Linux hosts, while on Solaris architectures it must
be enabled by the administrator. The reason for this is that the functionality differs on
these two supported architectures. On Linux a bitmask is set for a process, which tells the
operating system scheduler not to schedule the process to specific cores. The net result is
a more streamlined process. The scheduler does not prevent other processes from being
scheduled on the specific cores (nevertheless it avoids this). On a Solaris processor sets
are used. They require root privileges and prevent other processes (even OS processes)
from running. Hence it would be possible for the user to occupy cores, even when the
application is granted just one slot. In order to avoid this, the administrator must ensure
that the number of cores is aligned with the number of granted slots. This can be done with
advanced JSV scripts.

To turn this feature on, add ENABLE_BINDING=true tO the execd_params on the specific exe-
cution host. The feature is explicitly disabled with ENABLE_BINDING=false.

Example: Enabling Core Binding on Host host1

> qconf -mconf hostl
mailer /bin/mail

execd_params ENABLE_BINDING=true

3.9 Ensuring High Availability

For an introduction to the shadow master concept see also Introduction Guide -> Concepts
and Components -> SGE_SHADOWD and the Shadow Master Hosts.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 205

3 Special Activities

With one Altair Grid Engine installation or multiple instances, sge_shadowd can monitor
sge_gmaster availability and during sge_gmaster outages, start a new sge_gmaster on a
shadow host.

The shadow master functionality uses the following algorithm: * during regular operation
sge_gmaster writes a heartbeat file at regular intervals (written every 30 seconds to file
<gmaster spool dir>/heartbeat)

+ all sge_shadowd instances monitor the heartbeat file

+ if asge_shadowd instance detects that the heartbeat file has not changed for a certain
time (see Tuning the sge_shadowd, it tries to take over the gmaster role, according to
the following algorithm:

- avoid multiple instances of sge_shadowd takeover (via a lock file)
- check whether the old gmaster is still down
- start up sge_gmaster

3.9.1 Prerequisites

Implementing high availability via sge_shadowd requires a specific setup regarding the
sge_gmaster spool directory and spooling method:
+ all shadow hosts must be administrative hosts

* the sge_gmaster spool directory must be shared among the master host and all the
shadow hosts

+ for gmaster spooling, the following options can be used:

- classic spooling on a shared file system

- LMDB spooling on a shared file system providing locking capabilities, e.g. NFS4 or
Lustre. The master host and all shadow hosts must have the same architecture
(Altair Grid Engine architecture string)

See also Installation Guide -> Selecting a File System for Persistency Spooling of Status Data
- Selecting a File System for Persistency Spooling of Status Data for selecting the spooling
method and file system.

3.9.2 Installation

For the installation of shadow hosts see Installation Guide -> Shadow master host installa-
tion - Shadow master host installation.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 206

3 Special Activities

3.9.3 Testing sge_shadowd Takeover

After doing the shadow host installation on one or multiple shadow hosts, make sure the
shadowd takeover actually works.

To test shadowd takeover, simulate the outage of the sge_gmaster or of the master host
by either:

+ unplugging the network interface of the master host

+ suspending or terminating the sge_gmaster process (do not gracefully shut down
sge_gmaster - in this case, sge_shadowd will not take over)

Monitor Altair Grid Engine functionality by calling gstat at regular intervals - gstat will fail
until one of the shadow hosts has taken over control.

When the shadowd mechanism has started up a shadow master, check $SGE_RO0T/$SGE_CELL/common/act_qmas
- it will contain the name of the new master host.

Monitor with ghost whether all execution hosts start using (register with) the sge_gmaster
on the shadow host.

3.9.4 Migrating the Master Host Back After a Takeover

It may be necessary to manually migrate sge_gmaster to a different host, e.g.
+ when some maintenance on the master host is done, migrate sge_gmaster to one of
the shadow hosts
+ after a shadow host takes over, migrate sge_gmaster back to the original master host
As root on the target sge_gmaster host, call $SGE_ROOT/$SGE_CELL/common/sgemaster
-migrate

This command:

+ shuts down the running sge_gmaster

+ starts up a sge_gmaster instance on the local host.

3.9.5 Tuning the sge_shadowd

Timing behavior for sge_shadowd can be configured via 3 environment variables:

* SGE_CHECK_INTERVAL: Controls the interval in which sge_shadowd checks the heart-
beat file. The default is 60 seconds. sge_gmaster writes the heartbeat file every 30
seconds.

* SGE_GET_ACTIVE_INTERVAL: When the heartbeat file has not changed in this number
of seconds, sge_shadowd will try to take over. Default is 240 seconds.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 207

3 Special Activities

* SGE_DELAY_TIME: If a sge_shadowd tried to take over, but detected that another
sge_shadowd already started the takeover procedure, it will wait for SGE_DELAY_TIME
seconds until it takes up checking the heartbeat file again. Default is 600 seconds.

See also the man page sge_shadowd.8.

Be careful tuning these parameters. Setting the values too small may result in sge_shadow
taking over in situations where the sge_gmaster has short outages, e.g. short network out-
ages or delays in propagating the contents of the heartbeat file from the master host to
shadow hosts due to high load on the NFS server.

Recommendation:

+ Start with the default values. This will result in a shadowd takeover that happens
within 6 minutes.

* Reducing the SGE_CHECK_INTERVAL is safe, e.g. setting it to 10 seconds can reduce
the takeover time by 50 seconds.

* Most benefit can come from tuning the SGE_GET_ACTIVE_INTERVAL parameter. Set-
ting the value too low can result in sge_shadowd trying to take over when short out-
ages occur, e.g. due to short network or NFS server outages or overload. Setting it for
example to 60, and setting SGE_GET_ACTIVE_INTERVAL to 10 seconds can result in a
shadow host takeover time of 70 seconds.

* Tuning the SGE_DELAY_TIME should usually not be necessary - it would be used to
reduce the time interval for a second shadow host takeover if the first shadow host
fails to take over. Be careful tuning this parameter. It should never be lower than
the time required for starting sge_gmaster in the cluster. Sge_gmaster startup time
depends on cluster size and the number of jobs being registered in the cluster. In a
big cluster with thousands of jobs being registered, the sge_gmaster startup time can
be in the magnitude of minutes.

3.9.6 Troubleshooting

How do | know which host is currently running sge_gmaster?

The name of the host running sge_gmaster can be found in the file
$SGE_ROOT/$SGE_CELL/common/act_gmaster

Where do I find run time information for active shadow daemons?

Every sge_shadowd writes run time information into its own message file, which can be
found at <gmaster spool dir>/messages_shadowd_<hostname>. It contains information
about the running sge_shadowd, e.g. its version, as well as monitoring information and
reports about shadow host activity, e.g.

05/02/2011 11:19:16| mainl|halapel|I|starting up UGE 8.0.0 beta (1x-x86)

05/02/2011 11:40:18| mainlhalapel|E|commlib error: got select error (No route to host)

05/02/2011 11:40:18| main|halape|W|starting program: /scratch/peter/clusters/shadow/
bin/1x-x86/sge_qmaster

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 208

3 Special Activities

Startup of sge_gmaster on a shadow host failed. Where do | find information for an-
alyzing the problem?

The file <gmaster spool dir>/messages_gmaster.<hostname> contains the time when
sge_shadowd on <hostname> started a sge_gmaster, as well as sge_gmaster output to
stdout and stderr at startup time.

3.10 Utilizing Calendar Schedules

Calendar objects within Altair Grid Engine are used to define time periods where certain
cluster resources are disabled, enabled, suspended or unsuspended. Time periods can be
be defined on a time of day, day of week or day of year basis.

Defined calendar objects can be attached to cluster queues or parts of cluster queues so
that they automatically change their state on behalf of that attached calendar.

Users submitting jobs can request queues with a certain calendar attached.

3.10.1 Commands to Configure Calendars

To configure a calendar, the qconf command can be used. This provides a number of
calendar-related options:

* gconf -acal calendar_name
The ‘add calendar’ options adds a new calendar configuration named calendar_name
to the cluster. When this command is triggered, an editor with a template calendar
configuration will appear.

* qconf -Acal filename|dirname
This command adds a calendar specified in filename to the Altair Grid Engine system.
If a directory is specified, calendars for every configuration file in the directory are
added.

* gconf -dcal calendar_name

The ‘delete calendar’ option deletes the specified calendar.

* qconf -Dcal filename|dirname

Delete a calendar from the specified file or from every filename in a given directory.

* gconf -mcal calendar_name
The ‘'modify calendar’ option shows an editor with an existing calendar configuration
for the calendar named calendar_name.

* gconf -Mcal filename|dirname
Modify a calendar according to a configuration file. If a directory is specified, calendars
for every configuration file in the directory are modified.

* gconf -scal calendar_name

The ‘show calendar’ option displays the configuration of the calendar calendar_name.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 209

3 Special Activities

* gconf -sscal

The 'show calendar’ list option shows all configured calendars for an Altair Grid Engine
system

* gconf -scalld [<cal_list>]

Shows a detailed list of all calendars for an Altair Grid Engine cluster or calendars in
<cal_list>.

3.10.2 Calendars Configuration Attributes

A calendar configuration uses the following configuration attributes:

Table 86: Calendar configuration attributes

Attribute Description

calendar_name The name of the calendar to be used when attaching it to queues or
when administering the calendar definition.

year The status definition on a day of year basis. This field generally
specifies the days on which a queue to which the calendar is
attached, will change according to a set state. The syntax of the year
field is defined as follows:
NONE
year_day_range_list = daytime_range_list [= state]
year_day_range_list [= daytime_range_list] = state
state
* NONE means no definition is made on a yearly basis.
* |f a definition is made on a yearly basis, at least one of the
year_day_range_list, daytime_range_list Or state have to be
present.
* switching the queue to ‘off' by disabling it assumes the state is
omitted.
* the queue is enabled for days that are neither referenced implicitly
by omitting the year_day_range_list nor explicitly.
The syntactical components are defined as follows:
year_day_range_list := yearday-yearday | yearday,

daytime_range_list := hour[:minute][:second]-
hour[:minute] [:second],
state := on | off | suspended
year_day := month_day.month.year
month day := 1| 2| ... | 31
month := jan | feb | ... | dec | 1 | 2 | ... | 12
year := 1970 | 1971 | ... | 2037
week The status is defined on a day of the week basis. This field generally

specifies the days of a week and the times at which a queue to which
the calendar is attached, will change to a certain state. The syntax of
the week field is defined as follows:

NONE

week_day_range_list[=daytime_range_list] [=state]

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 210

3 Special Activities

Attribute Description

[week_day_range_list=]daytime_range_list[=state]
[week_day_range_list=] [daytime_range_list=]state} ...

Where

* NONE means, no definition is made on the week basis

* if a definition is made on a week basis, at least one of
week_day_range_list, daytime_range_list or state always has to be
present.

* every day in the week is assumed if week_day_range_list is omitted.
* syntax and semantics of daytime_range_list and state are identical
to the definition given for the year field above.

* the queue is assumed to be enabled for days neither referenced
implicitly by imitating the week_day_range_list nor explicitly. Where
week_day_range_list is defined asweek_day_range_list :=
week_day-week_day | week_day, week_day := mon | tue | wed |
thu | fri | sat | sun withweek_day_range_listtheweek_day’
identifiers must be different.

Note that successive entries to the year or week fields (separated by blanks) are combined
according to the following rules:

+ off-areas are overridden by overlapping on- and suspend-areas. Suspend-areas are
overridden by on-areas. Hence an entry of the form week 12-18 tue=13-17=on means
that queues referencing the corresponding calendar are disabled for the entire week
from 12.00-18.00 with the exception of Tuesday between 13.00-17.00, when the
queues are available.

+ area overriding occurs only within a year or week area. If a year entry exists for a day,
only the year calendar is taken into account and no area overriding is done with a
possible conflicting week area.

* The second time specificationin adaytime_range_list may be before the firstone and
treated as expected. An entry like year 12.3.2011=12-11=0ff causes the queue(s) to
be disabled 12.3.2011 from 00:00:00-10:59:59 to 12:00:00-23:59:59.

3.10.3 Examples to lllustrate the use of Calendars

calendar_name night

year
1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999,18.5.1999-19.5.1999,
3.10.1999,25.12.1999,26.12.1999=0n

week mon-fri=6-20

* The calendar configuration above defines a night, weekend and public holiday calen-
dar

+ On public holidays, night queues are explicitly enabled.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 211

3 Special Activities

+ On working days, queues are disabled between 6.00 and 20.00.

+ Saturdays and Sundays are implicitly handled as enabled times.

calendar_name day

year
1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999,18.5.1999-19.5.1999,
3.10.1999,25.12.1999,26.12.1999

week mon-fri=20-6 sat-sun

* On public holidays day-queues are disabled.

+ On working days such queues are closed during the night between 20.00 and 6.00,
i.e. the queues are closed on Monday from 0.00 to 6.00 and on Friday from 20.00 to
24.00. On Saturdays and Sundays the queues are disabled.

calendar_name night_s
year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999, \
18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999=on
week mon-fri=6-20=suspended
* night_s is a night, weekend and public holiday calendar with suspension.
* This is essentially the same scenario as the first example in this section, but queues
are suspended instead of switched off.

calendar_name weekend_s
year NONE
week sat-sun=suspended

* Weekend calendar with suspension, ignoring public holidays.

+ Settings are only done on a weekly basis; there are no settings on a yearly basis.

3.11 Setting Up Nodes for Exclusive Use

Administrators can set up Altair Grid Engine in a way so that users can request hosts for
exclusive use independent of how many processors or cores are provided. This is done in-
dependently if the host is used for single-core batch jobs, bigger parallel jobs, or something
different.

Exclusive host usage can help:

*+ execute jobs independently that would otherwise interfere with other jobs or with
system resources that can only be used exclusively.

* set up security terms required for certain jobs

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 212

3 Special Activities

To enable hosts of an Altair Grid Engine cluster to be used for exclusive use, the adminis-
trator has to:

* Add an exclusive boolean consumable to the complex definition that specifies as relop
the EXCL keyword and that is requestable. The gconf -mc command can be used to
do so.

#name shortcut type relop requestable consumable default urgency aapre affinity

exclusive excl BOOL EXCL YES YES 0 1000 NO 0.000000 ...

+ Attach the consumable to hosts that should be used exclusively. This is done by
using the gconf -me host_name command. exclusive=true has to be added to the
complex_values Of the corresponding host.

Users who want to request a host exclusively have to

+ specify the consumable during job submission. Thisisdoneviathe -1 exclusive=true
parameter via the command-line applications

> gqsub -1 exclusive=true

3.12 Deviating from a Standard Installation

3.12.1 Utilizing Cells

Using Altair Grid Engine, the resources used in a single cluster or multiple individual clusters
sharing the same set of files (binaries, libraries, etc.) contained in the $SGE_ROQT directory
can be set up.

If multiple clusters are set up, these are uniquely identified by the $SGE_CELL environment
variable set during cluster installation. This variable contains a unique cell name that re-
mains valid until the cluster is uninstalled. A recommended cell name for the first installed
cluster is default.

After installing an Altair Grid Engine cell, the installer and the daemons write configuration
files for that cell. These can be located in $SGE_ROOT/$SGE_CELL.

Note that at the moment, cells are loosely coupled so that each cell has a full set of daemons
and other components acting independently from the daemons and components of other
cells. There is no automatic means to balance load between those clusters.

3.12.2 Using Path Aliasing

The Altair Grid Engine path aliasing facility provides administrators and users with the
means to reflect non-homogeneous file system structures in distributed environments.
One example for this is home directories that are mounted under different paths on
different hosts.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 213

3 Special Activities

Consider a user home directory that is exported via NFS or SMB. This directory
might be mounted via automounter to /home/username on some Linux hosts and to
/Users/username on hosts with Mac OS X as the operating system. On a Solaris host
/home/username might be a link to /tmp_mnt/home/username where the directory was
mounted by the automounter.

If a user submits a job using the -cwd switch somewhere in the home directory, the job
needs the home directory to be successfully found. If a job’s execution host is one where
the home directory is mounted differently, the system will not be able to locate the directory
in the execution environment.

To solve this problem Altair Grid Engine allows administrators to define a global path alias-
ing file in $SGE_ROOT/$SGE_CELL/common/sge_aliases. Users can also define a path aliasing
file in the directory $HOME/ . sge_aliases.

The format of the file is as follows:

+ Empty lines and lines beginning with a hash character (#) will be skipped.
+ Other lines must contain four strings separated by space or tab characters
* The first string specifies a source path where a job is submitted

* The third string defines an execution host, and the fourth string defines a destination
path

* The submit hostname and execution hostname can be replaced with an asterisk char-
acter (*) that matches any hostname.

If the -cwd flag to qsub is specified, the path aliasing mechanism is activated and the defined
files are processed as follows:

+ The global path aliasing file is read.

+ The user path aliasing file is read if present and it is appended to the global file.

* Lines not skipped will be processed from top to bottom.

+ All lines are selected where the hostname matches the submit hostname. The submit
client is executed where the source path forms the initial part of the current working
directory or one of the source path replacements that were previously selected.

+ All selected entries are passed along with the job to the execution host.

* The leading part of the current working directory on the execution host is replaced
by the source path replacement where execution host string matches. The current
working directory is changed further when there are entries where the host string
and the initial part of the modified working directory match.

Here is an example for a path aliasing file that replaces the occurrence of /tmp_mnt/ by /.

Path Aliasing File
src-path sub-host exec-host replacement
/tmp_mnt * * /

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 214

3 Special Activities

3.12.3 Host-name Resolving and Host Aliasing

For host-name resolving Altair Grid Engine uses the standard UNIX directory services like
DNS, NIS, and /etc/hosts depending on the operating system configuration. The resolved
names provided by such services are cached in the communication library. The hostname
cache is renewed from time to time. It is possible to change the re-resolution timeouts with
the following sge_gmaster configuration parameters (see also man sge_conf(5)):

- DISABLE_NAME_SERVICE_LOOKUP_CACHE
« NAME_SERVICE_LOOKUP_CACHE_ENTRY_LIFE_TIME

« NAME_SERVICE_LOOKUP_CACHE_ENTRY_UPDATE_TIME

« NAME_SERVICE_LOOKUP_CACHE_ENTRY_RERESOLVE_TIME

In rare cases these standard services cannot be set up cleanly and Altair Grid Engine com-
munication daemons running on different hosts are unable to automatically determine a
unique hostname for one or all hosts which can be used on all hosts. When packages from
the gmaster arrive at execution daemons (or vice versa), they can be rejected when they
come from a different IP address/hostname from that which the daemons are expecting.
In such situations a host aliases file can be used to provide the communication daemons
with a private and consistent hostname resolution database.

Hence Altair Grid Engine allows configuration of a host_aliases file. The file has to be lo-
cated in the $SGE_ROOT/$SGE_CELL/common/ directory of the installation. This file does a
mapping from all allowed hostnames to some unique hostname; the mapping is known to
the daemons via the Altair Grid Engine configuration.

Changes to the host_aliases file are not immediately active for components that are already
running. If the changes result e.g. in a different hostname for an execution daemon the dae-
mon must be restarted. At startup of sge_execd or sge_qgmaster the database configuration
is verified and adjusted. This is also the case if the resulting hostname of the UNIX direc-
tory services have changed. If the name of a sge_gmaster or sge_execd host has changed
at the UNIX directory services during runtime the running components should be restarted
to trigger an additional verification of the database. Without a restart of such daemons the
change will be effective once the cached value of the resolved hostname is renewed, and
it might result in unexpected behavior if previously used hostnames are not resolveable or
not unique anymore.

Adding new entries without restarting the sge_gmaster daemon is possible if the resulting
hostnames are not influencing the cluster configuration. The dependent configurations are
host configurations, admin host names, execd host names and submit host names. The
sge_gmaster daemon will re-read the host_aliases file during runtime from time to time
and add some information into the messages logging file. If it is necessary to restart the
sge_gmaster daemon this will also result in a log message in the sge_gmaster messages
file.

Note

If an already-used hostname should be changed either in the directory services or in the
host_aliases file without restarting the sge_gmaster, the affected host should be removed
from Altair Grid Engine first. Once all references to the old hostname are removed and
all daemons running on that host have been shut down, the hostname can be changed.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 215

3 Special Activities

Once the hostname has been changed the previous name may still be cached in the com-
munication library or in system services like named. Please make sure that the running
sge_gmaster resolves the hostname correctly before adding the renamed host again. This
verification can be done using gethostbyname -all_rr <hostname>.

Note

After creating or changing the host_aliases file, some daemons might have to be restarted.
This can be done by e.g. qconf -ke, gconf -km, manually shutting down the shadowd, and
finally running inst_sge -start-all to restart all daemons.

Note

Making changes to the behavior of the standard UNIX directory services might also make
it necessary to restart affected Altair Grid Engine daemons.

Note

If it is required to restart both sge_gmaster and some sge_execd daemons, the
sge_gmaster must be shut down before restarting all other Altair Grid Engine compo-
nents.

In order to test hostname resolution, gethostbyname -aname <alias> can be called on the
command line. When testing be sure that <alias> itself can be resolved. When the alias
is not known by the UNIX directory service, it will not work correctly and gethostbyname
will report an error. In that case use system commands like ping to check whether the
hostname can be resolved by the system itself.

In order to figure out the resulting name of a host at sge_gmaster gethostbyname -all_rr
<hostname> can be used; see also the man hostnameutils(1) man page. It will additionaly
show the name resolution of the <hostname> name on the current sge_gmaster host. In
order to use this option the sge_gmaster daemon must be reachable.

Format of the host_aliases file

Each line of the host_aliases file contains a space-separated list of host aliases. The first
entry is always the unique hostname.

Example:
SLES11SP1 SLES11SP1_interface2

In this example the host has two network interfaces. With this host_aliases line Altair Grid
Engine components will choose the “SLES11SP1” interface for binding a port or for opening
a connection.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 216

3 Special Activities

Note

All used hostnames must be resolveable via some reachable directory service otherwise
the entry is ignored.

Example:
hostfoo hostfoo.domain somehost somehost.domain

In this example the resolveable hosts “hostfoo.domain”, “somehost” and “some-
host.domain” all resolve to the unique host-name “hostfoo”.

3.13 Integration with NVIDIA DCGM

Altair Grid Engine 8.6.0 is integrated with NVIDIA's Data Center GPU Manager (DCGM) that
provides detailed information about GPU resources.

3.13.1 Enabling Support for NVIDIA DCGM

Support for DCGM can be enabled at the host level by setting the execd parameter
DCGM_PORT to the port DCGM uses to communicate on the specific host (the default port
is 5555). If DCGM is running Altair Grid Engine will automatically retrieve load values for
the installed and supported GPUs from DCGM. For each available device the load values
are reported in the format cuda.<cuda_id>.<attribute>=<value> and are visible via qconf
—-se.

cuda.0.affinity=SCTTCTTCTTCTTCTTCTTCTTCTTScttcttcttcttcttcttcttctt,
cuda.0.gpu_temp=36,

cuda.O.mem_free=16280.000000M,

cuda.0.mem_total=16280.000000M,

cuda.O0.mem_used=0.000000M,

cuda.O.name=Tesla P100-PCIE-16GB,

cuda.O.power_usage=28.527000,

cuda.0.verstr=390.46,
cuda.l.affinity=ScttcttcttcttcttcttcttcttSCTTCTTCTTCTTCTTCTTCTTCTT,
cuda.l.gpu_temp=40,

cuda.l.mem_free=16160.000000M,

cuda.l.mem_total=16160.000000M,

cuda.1l.mem_used=0.000000M,

cuda.l.name=Tesla V100-PCIE-16GB,

cuda.l.power_usage=27.298000,

cuda.l.verstr=390.46,

cuda.devices=2

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 217

3 Special Activities

3.13.2 Using Load Values from NVIDIA DCGM

If RSMAP complexes are used to manage GPUs, each RSMAP id can be mapped to a GPU
with the parameter cuda_id (each GPU can be represented by more than one RSMAP id).
The reported load values can then be used by AGE during the scheduling of GPU devices:

complex_values gpu=2(gpu0[cuda_id=0,device=/dev/nvidia0] \
gpul [cuda_id=1,device=/dev/nvidial])

CPU-GPU Affinity

If DCGM is enabled, Altair Grid Engine 8.6.0 allows requesting the special load value affinity.
A job requesting a GPU and affinity will automatically be bound to the cores that have a
good affinity to the assigned GPU. This ensures that the data between the CPU and GPU is
transferred in the fastest way possible. Currently affinity is treated as a hard request; if
it is requested and Altair Grid Engine cannot bind the CPU cores needed for a GPU device,
the job will not be scheduled. If fewer cores are needed the request can be combined with
the -binding switch.

The following job requests a GPU and is bound to the CPU cores that have a good affinity
to the assigned GPU:

> gsub -1 gpu=1[affinity=true] -b y sleep 1000
Your job 8 ("Sleeper") has been submitted

> gstat -j 8

job_number: 8

hard resource_list: gpu=1

granted devices 1: <host>: /dev/nvidiaO

binding 1: <host>=0,0:0,1:0,2:0,3:1,0:1,1:1,2:1,3
resource map 1: gpu=<host>=(gpu0)

The affinity load value of a GPU can be overridden by defining a topology mask for the
RSMAP id (see Configuring and Using the RSMAP Complex Type).

GPU Health

If a GPU is corrupt or in a bad health state the load value cuda.<cuda_id>.health and a
corresponding error message are reported. Altair Grid Engine will automatically skip GPUs
with a health load value != 0 during the scheduling process:

> qconf -se <host>
load_values ..
cuda.0.health=20, \
cuda.0.health_message_0=GPU failure, \
cuda.0.health_status_0=20, \

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 218

3 Special Activities

3.14 Integration with Docker Engine

Altair Grid Engine provides an integration with Docker Engine that allows running jobs in
Docker containers. This integration is implemented only on Linux execution hosts and
needs to have the Docker Engine properly installed on those execution hosts.

Altair Grid Engine automatically detects whether Docker Engine is installed on an execution
host. If a supported version of Docker Engine is installed and running on an execution host,
Altair Grid Engine reports the value 1 for the host load value docker, and the the host load
values docker_version and docker_api_version show the installed version of the

Docker Engine and the Docker API.

The Docker images that are available on that execution host are reported using the host
load value docker_images. This load value is one string of type RESTRING that contains all
available Docker images, separated by commas. This type was selected because there is
no better one available in Altair Grid Engine currently; a kind of string list would be more
adequate. See the example below to learn why. After the execution daemon starts, this load
value takes at least one load_report_time longer than all other load values to be reported.
Depending on the Docker daemon it can be even longer.

There are corresponding complex variables defined which are automatically set according
to the load values, so a job can to be started in a Docker container by requesting both the
“docker” resource and a specific Docker image to use. Because the docker_images variable
is of type RESTRING, this request must be a regular expression, e.g.:

-1 docker_images="*ubuntu:14.04x"

Without the asterisks, the request would match only if there is just the ubuntu: 14.04 image
available, but no others. A full job submit command line for a Docker job looks like this:

> gsub -1 docker,docker_images="#ubuntu:14.04*" -S /bin/sh -b y hostname

If Docker is installed on an execution host, but the “docker” host load value is reported as
0, there can be several reasons for this.

One reason could be that the Docker Engine version is not supported. Docker Engine ver-
sions from 1.8.3to 1.13.0 and 17.03 to 17.09 are supported, on OpenSUSE and SLES up to
1.12.6.

Another reason can be that the Docker daemon did not start properly. It has been ob-
served that after installation of the Docker Engine or after a reboot of the execution host,
the Docker daemon does not start properly. The service stays in starting state and never
becomes running. If run as root, the command

> systemctl status docker
shows the status of the service. To fix this, the service has to be restarted manually as root:

> systemctl restart docker

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 219

3 Special Activities

If Docker is not detected automatically, it doesn't help to overwrite the load value with a
configured complex value. In this case, the job will be dispatched to the execution host, but
cannot be started and will fail.

On the other hand, an execution host with a running Docker Engine can be disabled for
Docker jobs by configuring docker=0 in the complex_values list of the execution host. This
overwrites the load value, so no Docker jobs are subsequently scheduled to this execution
host.

Altair Grid Engine allows submitting jobs with a soft request for a Docker image. In this
case, Altair Grid Engine tries to find a matching execution host where this image is already
available. If it is not available, Altair Grid Engine selects a matching execution host with a
Docker Engine installed and running, and tells the Docker daemon to download the image
before job start.

It has been observed that this downloading is broken with some Linux distributions and
some Docker versions. In this case, the Docker images have to be downloaded manually to
that execution host using the docker run command, e.g.:

> docker run notavailableimage:latest hostname
will load the latest version of the notavailableimage.

3.14.1 Docker Images Suitable for Autostart Docker Jobs with Arguments

The so called autostart Docker jobs do not specify a job script or binary to start; instead
they use the keyword NONE to indicate the Docker container shall be started by running the
script or binary that is defined in the ENTRYPOINT of the Docker image.

The ENTRYPOINT can be viewed by running
$ docker inspect image:tag

The data in the section Config is relevant. When the Docker image is built it is possible to
specify the ENTRYPOINT in the Dockerfile in an informal way, e.g.:

ENTRYPOINT /path/to/script

The docker build command will accept this, but with such an image, no arguments can
be specified (while this might change with the exact Docker version). If the ENTRYPOINT
is specified properly, the arguments on the command line are forwarded to the script or
binary defined in the ENTRYPOINT, e.g.:

ENTRYPOINT ["/path/to/script"]
It is also possible to define arguments that are always provided to the script or binary, e.g.:

ENTRYPOINT ["/path/to/script", "fixedargl", "fixedarg2"]

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 220

3 Special Activities

The script or binary in the Docker container created from this image will always get
fixedargl as the first argument and fixedarg2 as the second argument. If there are
further arguments specified on the command line, they are appended to the “fixed” ones.
E.g. if the script just prints the arguments it gets, this command line would produce the
output:

$ docker run -it myimage:latest argl arg2 \
fixedargl fixedarg2 argl arg2

or with an Altair Grid Engine job:

$ gsub -1 docker,docker_images="+*myimage:latest*" -b y NONE argl arg?2
$ cat ~/NONE.ol
fixedargl fixedarg2 argl arg?2

Additionally, the cMD and RUN entries can affect the behavior of the Docker container and
could prevent the provided arguments from being forwarded properly.

An autostart Docker job can be submitted only as a batch job using gsub. It cannot be
submitted as an interactive job using qrsh or qlogin or as a parallel job.

3.14.2 Run container as root, allow running prolog etc. as a different user

With the execd_params START_CONTAINER_AS_ROOT it is now possible to let all Docker
containers be started as root and allow the prolog, pe_start, per_pe_task_prolog,
per_pe_task_epilog, pe_stop and epilog scripts to be started as a different user from
the job owner. This change does not apply to “autostart Docker jobs”, i.e. jobs that specify
-b y NONE as job script in order to use the entrypoint that is defined in the Docker image
instead of using the sge_container_shepherd as entrypoint.

3.14.3 Automatically map user ID and group ID of a user into the container

If the START_CONTAINER_AS_ROOT parameter is set to true, it is now necessary that the Altair
Grid Engine admin user, the job user and all pre- and post-script users are defined inside
the container. Because this is usually not the case, by setting the AUTOMAP_CONTAINER_USERS
parameter to TEMPORARY, Altair Grid Engine transfers the user ID and group ID of any of
these users from the host to the container. But only Altair Grid Engine itself can use this
information there; it is not available for the job or any of the scripts started by Altair Grid
Engine!

If AUTOMAP_CONTAINER_USERS is set to PERSISTENT, Altair Grid Engine writes an entry to the
/etc/passwd file inside the Docker container for all these users. This allows looking up the
user information via a script, but it does not allow switching to this user!

Caution! If AUTOMAP_CONTAINER_USERS=PERSISTENT is specfied, if a user maps the
/etc/passwd and /etc/group file into the container, the host files are modified!

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 221

3 Special Activities

3.14.4 Create a container_pe_hostfile with all container hostnames

If a parallel Docker job is started where the container hostnames are selected from
RSMAPs, the execution daemon of the master task writes a container_pe_hostfile
with all the container hostnames in the pe_hostfile format if the execd_params
CONTAINER_PE_HOSTFILE_COMPLEX is set to the name of the RSMAP complex that defines the
hostnames.

E.g.: If there is a RSMAP “cont_hosts” declared and on each execution host it defines values
like:

cont_host=4(hostl_contl hostl_cont2 hostl_cont3 hostl_cont4)
and a job is submitted using
gsub -pe mype 4 -1 docker,docker_images="*image:latest*",cont_host=1 job_script.sh

and the scheduler decides to schedule the master task to host1, two slave tasks to host2
and one slave task to host3, the container_pe_hostfile might contain:

hostl_cont3 1 <NULL> <NULL>
host2_contl 1 <NULL> <NULL>
host2_cont4 1 <NULL> <NULL>
host3_cont2 1 <NULL> <NULL>

This allows reading this information in a per_pe_task_prolog and setting the hostnames of
the containers inside of the containers accordingly.

3.14.5 Run tightly-integrated parallel jobs in Docker containers

What makes tightly-integrated parallel jobs different from sequential ones is the fact that
usually the master task of the job interacts with Altair Grid Engine in order to start the slave
tasks. While sequential jobs might also have certain requirements for their environment
and thus cannot run in an unprepared Docker container, for parallel jobs even the start can
fail if the Docker container is not set up properly.

Atightly-integrated parallel job consists of a master task and several slave tasks. While Altair
Grid Engine reserves the slots and other resources for the slave tasks, usually the master
task starts the slave tasks using qrsh -inherit <hostname>.

Because a parallel Docker jobs runs in a container that - by default - has its own separate
Docker network which is not part of the cluster network and that does not know the host-
names and IP addresses of the other cluster hosts, the master task running in this container
cannot submit slave tasks to the “physical” slave execution hosts.

In order to be able to do this, inside the container the following must be set properly:

¢ cluster network access
* hostname resolution

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 222

3 Special Activities

And,

Altair Grid Engine admin user, job user, prolog user, etc. and their respective groups
Altair Grid Engine CSP certificates, if CSP mode is selected

in order to allow the containers to communicate with each other, e.g. for the MPI

integration, the container must have a hostname and IP address that are known to other
containers.

1)

2

~

4)

Allow the container to participate in the cluster network:

The easiest way to achieve this should be using the submit option -xd "--net=host"
or -xd "--network host" (-xd means “external docker option” and allows forwarding
several docker run options to the execution host; see qsub -xd "--help" for a list of
supported options). This makes the container inherit both the hostname and the IP
address of the “physical” host.

Allow the container to resolve the names of physical hosts or other containers:

This can be achieved by mapping the /etc/hosts file of the physical host in the
container by specifying -xd "-v /etc/hosts:/etc/hosts" or by creating a temporary
hosts file from LDAP/NIS/etc. and mapping this into the container.

Define the various users inside the container:
If the container is started as root by configuring the execd_params
START_CONTAINER_AS_ROOT=TRUE
the sge_container_shepherd will try to start start and stop scripts such as the prolog as
the configured user and will do all file operations as the Altair Grid Engine admin user.
Because Altair Grid Engine transfers the user name, not the user ID, inside the con-
tainer the user name must be known and the user ID must be defined in order to work
properly. The user and group names and IDs can be defined in the container by spec-
ifying -xd "-v /etc/passwd:/etc/passwd" and -xd "-v /etc/group:/etc/group" on
the gsub command line. Again, instead of using these files from the physical host,
temporary files can be created from LDAP/NIS/etc. to be mapped into the container.
Of course, it is also possible to configure the Docker images to use LDP/NIS/etc. di-
rectly. See the Docker documentation for details about this.

Altair Grid Engine CSP certificates for CSP mode:

If the Altair Grid Engine CSP mode is used, the certificates must be mapped into the
container in order to allow the master task use qrsh -inherit. This is done by speci-
fying -xd "-v $PATH_TO_CERTS:$PATH_TO_CERTS" on the gsub or grsh command line.

Allow containers of an MPI Docker job to communicate with each other:

In order to allow a slave task running in one container to communicate with the slave
task in another container using MPI, the container hostnames must be set to known
values.

To achieve this, declare an RSMAP complex and define the hostname as described
in “Create a container_pe_hostfile with all container hostnames”. The container host-
names and IPs must be defined in DNS or /etc/hosts and be mounted to all contain-
ers as described in 2). Then, the prolog script must move the pe_hostsfile away and
rename the container_pe_hostfile to pe_hostfile. This way MPI knows the names
of the containers the slave tasks run in and can communicate with them.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 223

3 Special Activities

Examples:
All examples use the job script job.sh which uses qrsh -inherit $HOSTNAME ... to start
the slave tasks which run the task script task. sh.

$ cat job.sh

#!/bin/sh

set PATH to "qrsh" binary

export PATH=$SGE_0_PATH:$PATH

gqrsh -inherit -noshell -nostdin $HOSTNAME /home/user/task.sh $1 &
grsh -inherit -noshell -nostdin $HOSTNAME /home/user/task.sh $1 &
exit O

$HOSTNAME is set by AGE to the name of the physical host, not the container hostname,
also inside of the container.

$ cat task.sh

#!/bin/sh

echo "I am a task, it is now “date”! Now sleeping for $1 s."
sleep $1

echo "I am a task, it is now “date”! I'm done now."

exit O

The parallel environment docker. pe uses the allocation_rule $pe_slots.

Example A)
A parallel Docker job with the container running as the job user, using execd_params with
START_CONTAINER_AS_ROOT=false

One could think this is sufficient:
$ gsub -pe docker.pe 3 -1 docker,docker_images="*ubuntu:14.04*" job.sh 10

but then the qrsh command inside the job script cannot get information about the job user
that started it, and it fails. To fix this, add the option -xd "-v /tmp/my_passwd:/etc/passwd"
which maps the /tmp/my_passwd file that must contain information about the job user. This
file can be either the /etc/passwd file on the host, or a file that is generated from LDAP/NIS
etc. before job start.

As the next step, the gqrsh command inside the job script tries to resolve the host it is started
on. By default, Docker sets the hostname of the container to the first twelve characters of
the container ID, which isn't a known hostname in the cluster. It is possible to tell Docker
to let the container inherit the hostname and IP address of the host by specifying the -xd
"--net=host" option.

Furthermore it is necessary to mount the directory in which the task.sh script is located to
the container. In our example, it is located in /home/user, so the /home directory must be
mounted to the container, too.

These two enhancements lead to the following submit command line:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 224

3 Special Activities

$ gsub -pe docker.pe 3 -1 docker,docker_images="xubuntu:14.04*" \
-xd "-v /tmp/my_passwd:/etc/passwd","-v /home:/home","--net=host" \
~/job.sh 10

With this, our parallel test job now runs properly. This works only if all tasks of a parallel
job run on the same host, i.e. if the allocation_rule is $pe_slots or <int>.

If the slave tasks are distributed over different hosts, the job.sh script has to parse the
pe_hostfile and submit the qrsh -inherit $host ... to respective hosts.

Example B)
A parallel Docker job with the container running as root (START_CONTAINER_AS_ROOT=true)
that is distributed over several execution hosts

Sometimes it is necessary to run start and stop scripts such as the prolog as root in
the container in order to set up certain things. With the execd_params config option
START_CONTAINER_AS_ROOT=true, all containers are started as root. The start and stop
scripts can be run as the configured users and the job itself is still started as the job user.

In order to be able to run the prolog etc. as the configured user, it is necessary to make
these users known inside the container. There is the AUTOMAP_CONTAINER_USERS=PERSISTENT
execd_param that maps the necessary users into the container.

If these two configurations are made, the following command line is sufficient to run a
parallel Docker job on one host (i.e. allocation_rule is $pe_slots or <int>):

$ gsub -pe docker.pe 3 -1 docker,docker_images="*ubuntu:14.04*" \
-xd "-v /home:/home","--net=host" job.sh 10

Again, to start slave tasks on different hosts, the job.sh script has to parse the pe_hostfile
and submit the qrsh -inherit $host ... to these hosts.

3.14.6 Configuring the Docker daemon response timeout

The execd_params DOCKER_RESPONSE_TIMEOQUT allows definition of the time Altair Grid Engine
waits for a response from the Docker daemon to a request that Altair Grid Engine sent to
the Docker daemon earlier. This does not mean the full response must be received within
the timeout; the timeout counter is reset after each character Altair Grid Engine receives
from the Docker daemon in response to a specific request.

If this parameter is not specified, the default value of 60 seconds is used. The minimum time-
out is 10 seconds; the maximum timeout is 86400 seconds. If DOCKER_RESPONSE_TIMEOUT is
not within this range, the default value is used instead.

3.14.7 Support for nvidia-docker 2.0
NVIDIA provides version 2.0 of their Docker Container Runtime, which allows access to GPUs

from within Docker containers. Altair Grid Engine now supports using this version of Con-
tainer Runtime.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 225

3 Special Activities

In order to make use of this, first the installation on the execution host has to be performed
properly; see <https://github.com/NVIDIA/nvidia-docker>. The job that wants to use a
GPU must tell Docker to use the NVIDIA Runtime by specifying the -xd "--runtime=nvidia"
switch on the gsub or qrsh command line. In order to select a specific GPU, the environ-
ment variable NVIDIA_VISIBLE_DEVICES must be set for the whole container by specifying
it via the -xd "--env NVIDIA_VISIBLE_DEVICES=0" switch.

Altair Grid Engine also supports the Docker run option gpus to select GPUs for the con-
tainer. The switch accepts either all to select all GPUs on the host, any integer > 0 to select
a specific amount of GPUs, or the parameter device followed by a list of device ids to se-
lect specific GPUs, e.g. -xd "--gpus=device=\"0,1\"". Please note that -xd "--gpus=..."
requires Docker API version 1.40 or newer.

3.14.8 Authenticating at a Docker registry

Altair Grid Engine users can request Docker images to be downloaded from a remote reg-
istry if they are not available locally. The default registry is the public Docker registry which
does not demand authentication. Other registries can be configured or specified which
might require authentication.

Docker allows to register authentication information by running the “docker login” CLI com-
mand which writes the information to a “.docker/config.json” file in the user's home direc-
tory. If a “docker pull " is issued, the “docker” CLI command provides this information to the
local Docker daemon which uses it to authenticate at the registry.

Altair Grid Engine implements a special case of this:

When a Docker image needs to be downloaded from a registry, Altair Grid Engine first
checks if a file containing the authentication information was configured using the ex-
ecd_params “DOCKER_CREDENTIALS_FILE” and searches for authentication information
for the specified remote registry in that file. If such a file was not configured or if it does
not contain authentication information for the specified remote registry, Altair Grid Engine
searches in the “.docker/config.json” file in the home directory of the “root” user of the
execution host.

The host name of the remote registry is part of the name of the requested image. Itis in
the format

[host[:port]/][namespace/]limage[:tag]

e.g.: index.docker.io/johndoe/testimage:3.14

If the “host” part is missing, the default host name “index.docker.io” is used.
To register the authentication information, run:

docker login -u <registry_user> <registry_url>

e.g.:

docker login -u johndoe https://index.docker.io/v1l

The resulting “.docker/config.json” file is independent of the host it was created on, i.e. it can
be used everywhere or copied to all local home directories of user “root” on all execution
hosts.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 226

3 Special Activities

Altair Grid Engine does NOT use a “.docker/config.json” file which might exist in the
home directory of the job user, unless that would be configured using the execd_params
“DOCKER_CREDENTIALS_FILES".

3.15 Support for I/0 Monitoring Using Altair Mistral

3.15.1 Introduction
Altair Grid Engine 8.7.2 allows users to collect I/0 performance measurements for their Grid

Engine jobs via Altair's I/0 monitoring product Mistral. This version of AGE provides users
with a simplified method for setting up Mistral via configuration parameters.

3.15.2 Restrictions

* Monitoring is not yet supported for Docker jobs.
* This functionality is supported only on 32-bit and 64-bit Linux execution hosts.

* When both Breeze and Mistral are requested, only Breeze will be enabled

3.15.3 Grid Engine Cluster Configuration Parameters for Mistral

The following parameters in execd_params are for Mistral:

Table 87: Configuration parameters for Mistral

Configuration Parameter Description

AGE_MISTRAL_INSTALL_PATH This parameter is used to set the path where Mistral is
installed. This parameter is used for deriving the
Mistral starter binary and library paths, if they are not
already set in the configuration file. This parameter is
required for any job to be profiled by Mistral.

AGE_MISTRAL_LICENSE_PATH This parameter is used to set the path to the license
file for Mistral.

AGE_MISTRAL_LD PRELOAD This parameter is used to set the LD_PRELOAD library
which will be used by Mistral. If this is not set when
Mistral is requested, Grid Engine will derive the library
path relative to the Mistral installation path,
AGE_MISTRAL_INSTALL_PATH, as follows:

For Mistral releases pre 2024.1.0:
AGE_MISTRAL_INSTALL_PATH/dryrun/$LIB/libdryrun.so

For Mistral releases 2024.1.0 or later:
AGE MISTRAL INSTALL PATH/$LIB/libmistral.so

This parameter is optional.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 227

3 Special Activities

Configuration Parameter Description

AGE_MISTRAL_ENV This parameter is used to set the path to the Mistral
environment settings file. This file should contain
name=value pairs for the environment variables which
need to be set for a successful execution of Mistral
binaries. This parameter is required for any job to be
monitored by Mistral.

AGE_MISTRAL_MODE This parameter is used to set whether to enable or
disable job monitoring by Mistral.

If set to ALWAYS, Mistral is enabled for all jobs to be run
on the execution host, regardless of the value of the
AGE_MISTRAL environment variable.

If set to NEVER, Mistral is disabled for all jobs to be run
on the execution host.

If set to IF_REQUESTED, Mistral is activated only for jobs
requesting Mistral via the AGE_MISTRAL environment
variable.

If set to DEFAULT_ON, Mistral is activated for all jobs that
do not request no profiling via the AGE_MISTRAL
environment variable. (see ENVIRONMENTAL
VARIABLES section in gsub(1)).

Default value is NEVER.

When both Breeze and Mistral are requested, only
Breeze will be enabled.

3.15.4 Environment Variables for Monitoring

See User Guide -> Using Altair Mistral for Job I/0 Monitoring for a description of the envi-
ronment variables used to enable Mistral.

3.15.5 Configuring Mistral

*+ Setthe AGE_MISTRAL_LICENSE_PATH configuration parameter to the path to the Mistral
license file.

« Set any required Mistral environment variables in the Mistral environment
file - e.g. MISTRAL_INSTALL_DIRECTORY, MISTRAL_LOG and MISTRAL_CONFIG or
MISTRAL_CONTRACT. For more information on required variables please consult
the Mistral User Manual.

* Note that the environment file requires absolute paths.

* The environment file does not have a default location or name; the full location and
name needs to be set in AGE_MISTRAL_ENV in execd_params.

* To allow users to request hosts where Mistral is available, the Boolean complex re-
source mistral can to be set to 1 on the hosts where Mistral is installed.

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 228

3 Special Activities

3.16 Support for I/0 Profiling and Dependency Detection Using Altair

Breeze

3.16.1 Introduction

Altair Grid Engine 8.7.2 allows users to collect I/0 performance measurements for their Grid
Engine jobs via Altair's I/0 profiling and dependency detection tool Breeze. This version of
Grid Engine provides users with a simplified method for setting up Breeze via configuration

parameters.

3.16.2 Restrictions

* Profiling via Breeze is supported for batch jobs submitted with -b y only.

* Profiling is not yet supported for Docker jobs.

This functionality is supported only on 32-bit and 64-bit Linux execution hosts.

* When both Breeze and Mistral are requested, only Breeze will be enabled

3.16.3 Grid Engine Cluster Configuration Parameters for Breeze and Mistral

The following parameters in execd_params are for Breeze:

Table 88: Configuration parameters for Breeze

Configuration Parameter

Description

AGE_BREEZE_INSTALL_PATH

AGE_BREEZE_OUTPUT_DIRECTORY

AGE_BREEZE_STARTER_METHOD

This parameter is used to set the path where Breeze
has been installed. This parameter is used for deriving
the Breeze starter method, if it is not already set in the
configuration file. This parameter is required for any
job to be profiled by Breeze.

This parameter is used to set the path to the directory
where Breeze will write the output trace data. This
parameter is required for any job to be profiled by
Breeze.

This parameter is used to set the path to the Breeze
launcher method. If this is not set when profiling is
requested, Grid Engine will derive the path relative to
the Breeze installation path, AGE_BREEZE_INSTALL_PATH
as follows:

For Breeze releases pre 2024.1.0:
AGE_BREEZE_INSTALL_PATH/trace-program.sh

For Breeze releases 2024.1.0 and later:
AGE_BREEZE_INSTALL_PATH/bin/trace-program.sh

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 229

3 Special Activities

Configuration Parameter Description

AGE_BREEZE_MODE This parameter is used to set whether to enable or
disable job profiling by Breeze.
If set to ALWAYS, Breeze is activated for all jobs to be
run on the execution host, regardless of the value of
the AGE_BREEZE environment variable.
If set to NEVER, Breeze is disabled for all jobs to be run
on the execution host.
If set to IF_REQUESTED, Breeze is activated only for
jobs requesting Breeze via the AGE_BREEZE
environment variable.
If set to DEFAULT_ON, Breeze is activated for all jobs
that do not disable Breeze via the AGE_BREEZE
environment variable.
(see ENVIRONMENTAL VARIABLES section in gsub(1)).
Default value is NEVER.
When both Breeze and Mistral are requested, only
Breeze will be enabled.

3.16.4 Environment Variables for Profiling

See User Guide -> Using Altair Breeze Job Profiling and Dependency Detection for a descrip-
tion of the environment variables used to configure Breeze.

3.16.5 Configuring Breeze

* To allow users to request hosts where Breeze is available, the Boolean complex re-
source breeze can to be set to 1 on the hosts where Breeze is installed.

3.17 Enabling the GraphQL Web API

Altair Grid Engine allows the administrator to provide a GraphQL web API. The administrator
can enable the APl at installation via either the interactive or automated installation, or after
installation by modifying the bootstrap file and then restarting the sge_qgmaster process. In
all cases, the administrator needs to some additional configuration.

We describe how to enable the GraphQL web API after installation in this section. For in-
structions on enabling the GraphQL API at installation, see Install Guide -> Installing with
the Command-Line Installation Script.

Set the bootstrap configuration options below in the bootstrap file. See sge_bootstrap(5).

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 230

3 Special Activities

Table 89: Bootstrap options for the GraphQL web API

Bootstrap Option

Description

api_threads

api_port

otel_endpoint

tls_cert_path

tls_key_path

The number of API threads (allowed: 0-1, default set by
installation, off: 0). The API threads provide a grapgl API to
sge_gmaster(8).

The port number the API thread is listening on for incoming
http requests. The APl endpoint is
http://<gmaster_host>:<api_port>.

The API thread can send tracing information to an
opentelemetry service. When “otel_endpoint” is configured in
the format <hostname>:<port>, the API thread will provide
tracing data to the opentelemetry service.

“otel_endpoint” is an optional parameter. If it is not configured
in the bootstrap file or if its value is “none” (default), tracing is
disabled.

The API thread can be started in https mode instead of http if
both tls_cert_path and tls_key_path are pointing to a valid for
the corresponding file.

When “tls_cert_path” and “tls_key_path” are configured to valid
file paths the APl endpoint protocol will change from http to
https://<qmaster_host>:<api_port>.

“tIs_cert_path” is an optional parameter. If it is not configured in
the bootstrap file or if its value is “none” (default), the API
endpoint remains http://<qmaster_host>:<api_port>

The API thread can be started in https mode instead of http if
both “tls_cert_path” and “tls_key_path” are pointing to a valid
path for the corresponding file.

When “tIs_cert_path” and “tIs_key_path” are configured to valid
file paths the APl endpoint protocol will change from http to
https://<gmaster_host>:<api_port>

“tIs_key_path" is an optional parameter. If it is not configured in
the bootstrap file or if its value is “none” (default) the API
endpoint remains http://<qmaster_host>:<api_port>.

To enable the GraphQL web API, restart the sge_qmaster process.

Anyone who will use the GraphQL API needs to be in the sudoers user list. Add the users of
the GraphQL API to the sudoers user list. For example:

qconf -au <username> sudoers

Add the admin user to the sudomasters user list. For example, if we are adding root to the

list:

qconf -au root sudomasters

Add a custom resource to allow the web API to process slot requests. Open the editor:

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 231

3 Special Activities

qconf -mc
Add the following line to the table:
ncpus ncpus INT <= YES YES 1 O NO 0.000000 YES YES

Save the changes to the table.

3.18 Special Tools

3.18.1 The Loadcheck Utility
The loadcheck utility is located in the ‘utilbin’ directory of $SGE_ROOT. It retrieves and shows

load values for the host where it is started. It shows the number of detected processors,
the execution host topology (if it can be retrieved), and CPU/memory load values.

> ./loadcheck

arch 1x-amd64
num_proc 1

m_socket 1

m_core 1

m_thread 1

m_topology SC
load_short 0.07
load_medium 0.14
load_long 0.07
mem_free 1532.828125M
swap_free 2053.996094M
virtual_free 3586.824219M
mem_total 1960.281250M
swap_total 2053.996094M
virtual_total 4014.277344M
mem_used 427 .453125M
swap_used 0.000000M
virtual_used 427 .453125M
cpu 0.0%

The default format for the memory values can be converted to an integer format via the
parameter -int. Additionally it has a built-in debugging facility for obtaining more details
about the execution host topology and the core binding feature. When the application is
called with the -cb switch, it prints out internal kernel statistics (on Solaris), and on Linux it
prints the mapping of socket/core numbers to the internal processor IDs.

> ./loadcheck -cb
Your AGE Linux version has built-in core binding functionality!
Your Linux kernel version is: 2.6.34.7-0.7-desktop

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 232

3 Special Activities

Number of sockets: 1

Number of cores: 1

Number of threads: 1

Topology: SC

Mapping of logical socket and core numbers to internal
Internal processor ids for socket 0 core 0: 0

3.18.2 Utilities for LMDB spooling

Altair Grid Engine can be configured to use an LMDB for spooling in sge_gmaster.

LMDB comes with a number of command-line tools, some of which can be useful for oper-
ating and debugging Altair Grid Engine spooling.

&Warning

Do not use these tools on a database which is in use by an active sge_gmaster. Use the
tools only when advised to do so by a support engineer.

The following tools are delivered with Altair Grid Engine:
+ mdb_dump: Database dump utility - used for making a backup; called when using
inst_sge —bup

« mdb_load: Database load utility - used for restoring a database dump; called when
using inst_sge -rst

« mdb_stat: Statistics utility.

+ mdb_copy: LMDB environment copy tool

The LMDB man pages for these tools are part of the Altair Grid Engine distribution in the
common package. To access them, call man -M $SGE_ROOT/doc/Imdb/man mdb_dump

Grid Engine Administrator’s Guide v 2025.1.0 (8.10.0) 233

	Navigating and Understanding
	Navigating the System
	Location of Configuration Files and Binaries
	Displaying Status Information
	Understanding the Various Job States

	Understanding a Default Installation
	Default Queue
	Default PE
	Default User Set Lists
	Default Host Group List
	Default Complex Attributes

	Understanding Key Configuration Objects
	The Cluster Configuration
	The Scheduler Configuration
	Host and Queue Configurations

	Navigating the ARCo Database
	Accessing the ARCo Database
	Views to the Database
	Accounting

	message text a message describing the event
	Database Tables

	Common Administrative Tasks in a System
	Draining Then Stopping the Cluster
	Starting Up and Activating Nodes Selectively
	Adding New Execution Hosts to an Existing System
	Generate/Renew Certificates and Private Keys for Users
	Backup and Restore the Configuration
	Changing the admin password for all Starter Services on all execution hosts

	Managing User Access
	Setting Up a User
	Managers
	Operators and Owners
	Permissions of Managers, Operators, Job or Queue Owners
	User Access Lists and Departments
	Projects

	Understanding and Modifying the Cluster Configuration
	Commands to Add, Modify, Delete or List Global and Local Configurations
	Configuration Parameters for Global and Local Configurations

	Understanding and Modifying the Scheduler Configuration
	The Default Scheduling Scheme

	Configuring Properties of Hosts and Queues
	Configuring Hosts
	Configuring Queues
	Utilizing Complexes and Load Sensors
	Configuring and Using the RSMAP Complex Type
	Managing Access to Devices with RSMAPs
	Advanced Attribute Configuration
	Configuring and Using Linux cgroups

	Monitoring and Modifying User Jobs
	Diagnostics and Debugging
	KEEP_ACTIVE functionality
	Diagnosing Scheduling Behavior
	Location of Logfiles and How to Interpret Them
	Turning on Debugging Information

	Licensing - Summary concerning licensing of
	General Overview
	Licensed Resources
	License Usage Records
	Licensing Actions
	Licensing Algorithm
	Requirements
	Administrative Commands
	Display License Usage Over Time.
	Trigger License Verification Manually
	Enforce Reporting of Cloud Resources
	Disabling License Consumption for Specific Hosts and/or Resources
	AGERest interface

	Special Activities
	Tuning for High Throughput
	sge_qmaster Tuning
	Tuning Scheduler Performance
	Reducing Overhead on the Execution Side

	Optimizing Utilization
	Using Load Reporting to Determine Bottlenecks and Free Capacity
	Scaling the Reported Load
	Alternative Means to Determine the Scheduling Order

	Managing Capacities
	Using Resource Quota Sets
	Using Consumables

	Implementing Pre-emption Logic
	When to Use Pre-emption
	Utilizing Queue Subordination
	Utilizing Slot-wise Subordination
	Advanced Pre-emption Scenarios

	Integrating with a License Management System
	Managing Priorities and Usage Entitlements
	Share Tree (Fair-Share) Ticket Policy
	Functional Ticket Policy
	Override Ticket Policy
	Job Shares
	Handling of Array Jobs with the Ticket Policies
	Urgency Policy
	User Policy: POSIX Policy

	Job Placement
	Host/Queue Sorting
	Affinity, Anti-Affinity, Best Fit
	Affinity Use Cases
	Affinity
	Anti-Affinity
	Best Fit

	Advanced Management for Different Types of Workloads
	Parallel Environments
	Setting Up Support for Interactive Workloads
	Setting Up Support for Checkpointing Workloads
	Enabling Reservations
	Simplifying Job Submission Through the Use of Default Requests
	Job Submission Verifiers
	Enabling and Disabling Core Binding

	Ensuring High Availability
	Prerequisites
	Installation
	Testing sge_shadowd Takeover
	Migrating the Master Host Back After a Takeover
	Tuning the sge_shadowd
	Troubleshooting

	Utilizing Calendar Schedules
	Commands to Configure Calendars
	Calendars Configuration Attributes
	Examples to Illustrate the use of Calendars

	Setting Up Nodes for Exclusive Use
	Deviating from a Standard Installation
	Utilizing Cells
	Using Path Aliasing
	Host-name Resolving and Host Aliasing

	Integration with NVIDIA DCGM
	Enabling Support for NVIDIA DCGM
	Using Load Values from NVIDIA DCGM

	Integration with Docker Engine
	Docker Images Suitable for Autostart Docker Jobs with Arguments
	Run container as root, allow running prolog etc. as a different user
	Automatically map user ID and group ID of a user into the container
	Create a container_pe_hostfile with all container hostnames
	Run tightly-integrated parallel jobs in Docker containers
	Configuring the Docker daemon response timeout
	Support for nvidia-docker 2.0
	Authenticating at a Docker registry

	Support for I/O Monitoring Using Altair Mistral
	Introduction
	Restrictions
	 Cluster Configuration Parameters for Mistral
	Environment Variables for Monitoring
	Configuring Mistral

	Support for I/O Profiling and Dependency Detection Using Altair Breeze
	Introduction
	Restrictions
	 Cluster Configuration Parameters for Breeze and Mistral
	Environment Variables for Profiling
	Configuring Breeze

	Enabling the GraphQL Web API
	Special Tools
	The Loadcheck Utility
	Utilities for LMDB spooling

