
Altair PBS Professional 2022.1

Big Book

You are reading the Altair PBS Professional 2022.1

Big Book (IG, AG, HG, RG, UG, PG, CG, BG, SG)

(Installation & Upgrade, Administrator's, Hooks, Reference, User's, Programmer's, Cloud, Budgets, and Simulate guides)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

About PBS Documentation

The PBS Professional guides and release notes apply to the commercial releases of PBS Professional.

Document Conventions

Abbreviation

The shortest acceptable abbreviation of a command or subcommand is underlined

Attribute

Attributes, parameters, objects, variable names, resources, types

Command

Commands such as qmgr and scp

Definition

Terms being defined

File name

File and path names

Input

Command-line instructions

Method

Method or member of a class

Output

Output, example code, or file contents

Syntax

Syntax, template, synopsis

Utility

Name of utility, such as a program

Value

Keywords, instances, states, values, labels

Notation

Optional Arguments

Optional arguments are enclosed in square brackets. For example, in the qstat man page, the -E option is shown this
way:

qstat [-E]
PBS Professional 2022.1 Big Book Main-v

About PBS Documentation

To use this option, you would type:

qstat -E

Variable Arguments

Variable arguments (where you fill in the variable with the actual value) such as a job ID or vnode name are enclosed in
angle brackets. Here's an example from the pbsnodes man page:

pbsnodes -v <vnode>

To use this command on a vnode named "my_vnode", you'd type:

pbsnodes -v my_vnode

Optional Variables

Optional variables are enclosed in angle brackets inside square brackets. In this example from the qstat man page, the
job ID is optional:

qstat [<job ID>]

To query the job named "1234@my_server", you would type this:

qstat 1234@my_server

Literal Terms

Literal terms appear exactly as they should be used. For example, to get the version for a command, you type the com-
mand, then "--version". Here's the syntax:

qstat --version

And here's how you would use it:

qstat --version

Multiple Alternative Choices

When there are multiple options and you should choose one, the options are enclosed in curly braces. For example, if
you can use either "-n" or "--name":

{-n | --name}

List of PBS Professional Documentation

The PBS Professional guides and release notes apply to the commercial releases of PBS Professional.

PBS Professional Release Notes

Supported platforms, what's new and/or unexpected in this release, deprecations and interface changes, open and
closed bugs, late-breaking information. For administrators and job submitters.

PBS Professional Big Book

All your favorite PBS guides in one place: Installation & Upgrade, Administrator's, Hooks, Reference, User's, Pro-
grammer's, Cloud, Budget, and Simulate guides in a single book.

PBS Professional Installation & Upgrade Guide

How to install and upgrade PBS Professional. For the administrator.

PBS Professional Administrator's Guide

How to configure and manage PBS Professional. For the PBS administrator.

PBS Professional Hooks Guide
Main-vi PBS Professional 2022.1 Big Book

About PBS Documentation

How to write and use hooks for PBS Professional. For the PBS administrator.

PBS Professional Reference Guide

Covers PBS reference material: the PBS commands, resource, attributes, configuration files, etc.

PBS Professional User's Guide

How to submit, monitor, track, delete, and manipulate jobs. For the job submitter.

PBS Professional Programmer's Guide

Discusses the PBS application programming interface (API). For integrators.

PBS Professional Manual Pages

PBS commands, resources, attributes, APIs.

PBS Professional Licensing Guide

How to configure licensing for PBS Professional. For the PBS administrator.

PBS Professional Cloud Guide

How to configure and use the PBS Professional Cloud feature in order to burst jobs to the cloud.

PBS Professional Budgets Guide

How to configure Budgets and use it to track and manage resource usage by PBS jobs.

PBS Professional Simulate Guide

How to configure and use the PBS Professional Simulate feature.

Where to Keep the Documentation

If you're not using the Big Book, make cross-references work by putting all of the PBS guides in the same directory.

Ordering Software and Licenses

To purchase software packages or additional software licenses, contact your Altair sales representative at
pbssales@altair.com.
PBS Professional 2022.1 Big Book Main-vii

About PBS Documentation
Main-viii PBS Professional 2022.1 Big Book

Main Table of Contents

About PBS Documentation Main-v

Installation & Upgrade Guide (IG)
Contents IG-v

1 PBS Architecture IG-1

2 Pre-Installation Steps IG-7

3 Installation IG-19

4 Communication IG-45

5 Initial Configuration IG-63

6 Upgrading IG-65

7 Installing and Upgrading on Cray IG-139

8 Starting & Stopping PBS on Linux IG-141

9 Starting & Stopping MoM on Windows IG-155

Index IG-161

Administrator’s Guide (AG)
Contents AG-v

1 New Features AG-1

2 Configuring the Server and Queues AG-19

3 Configuring MoMs and Vnodes AG-37

4 Scheduling AG-57

5 Using PBS Resources AG-227
PBS Professional 2022.1 Big Book Main-ix

6 Configuring and Using PBS with Cgroups AG-311

7 Configuring PBS for Containers AG-355

8 Making Your Site More Robust AG-367

9 Administration AG-419

10 Managing Jobs AG-455

11 Security AG-489

12 Accounting AG-529

13 Using MPI with PBS AG-559

14 Configuring PBS for SELinux AG-577

15 Managing Power Usage AG-583

16 Provisioning AG-591

17 Support for HPE AG-623

18 Support for NEC SX-Aurora TSUBASA AG-627

19 Mixed Linux-Windows Operation AG-631

20 Problem Solving AG-635

Index AG-649

Hooks Guide (HG)
Contents HG-v

1 New Hook Features HG-1

2 Introduction to Hooks HG-5

3 Quick Start with Hooks HG-11

4 Hook Basics HG-15

5 Creating and Configuring Hooks HG-29
Main-x PBS Professional 2022.1 Big Book

6 Hook Objects and Methods HG-81

7 Built-in Hooks HG-179

8 Debugging Hooks HG-183

9 Hook Examples HG-257

Index HG-319

Reference Guide (RG)
Contents RG-v

1 Glossary of Terms RG-1

2 PBS Commands RG-21

3 MoM Parameters RG-243

4 Scheduler Parameters RG-251

5 List of Built-in Resources RG-259

6 Attributes RG-277

7 Formats RG-353

8 States RG-361

9 The PBS Configuration File RG-369

10 Log Levels RG-375

11 Job Exit Status RG-377

12 Example Configurations RG-379

13 Run Limit Error Messages RG-385

14 Error Codes RG-387

15 Request Codes RG-393

16 PBS Environment Variables RG-397
PBS Professional 2022.1 Big Book Main-xi

17 File Listing RG-401

18 Introduction to PBS RG-409

Index RG-411

User’s Guide (UG)
Contents UG-v

1 Getting Started with PBS UG-1

2 Submitting a PBS Job UG-11

3 Job Input & Output Files UG-33

4 Allocating Resources & Placing Jobs UG-51

5 Multiprocessor Jobs UG-79

6 Controlling How Your Job Runs UG-109

7 Reserving Resources UG-137

8 Job Arrays UG-153

9 Working with PBS Jobs UG-167

10 Checking Job & System Status UG-175

11 Running Jobs in the Cloud CG-193

12 Using Budgets BG-197

13 Submitting Jobs to NEC SX-Aurora TSUBASA UG-205

14 Using MLS with PBS Professional UG-215

15 Using Provisioning UG-219

16 Using Accounting UG-225

Index UG-227

Programmer’s Guide (PG)
Main-xii PBS Professional 2022.1 Big Book

Contents PG-v

List of APIs PG-vii

21 PBS Architecture PG-1

22 Server Functions PG-5

23 Developer Headers and Libraries PG-19

24 Batch Interface Library (IFL) PG-21

25 TM Library PG-95

26 RM Library PG-101

27 TCL/tk Interface PG-105

28 Hooks PG-111

29 Custom Authentication and Encryption Library APIs PG-123

Index PG-135

Cloud Guide (CG)
Contents CG-i

1 Introduction to PBS Cloud CG-1

2 Installing PBS Cloud CG-5

3 Configuring PBS Cloud CG-21

4 Configuring the Cloud Bursting Hook CG-53

5 Using Cloud Provider Services CG-67

6 The Cloud Node Startup Script CG-155

7 Managing Cloud Bursting CG-163

8 Managing Cloud Jobs CG-169

9 Example Azure Head/Service Node CG-173
PBS Professional 2022.1 Big Book Main-xiii

10 Command Reference CG-177

Index CG-189

Budgets Guide (BG)
Contents BG-v

1 Introduction to Budgets BG-1

2 Installing and Upgrading Budgets BG-27

3 Configuring and Managing Budgets BG-61

4 Budgets Commands BG-77

5 Basic Install and Configure BG-137

6 Using Budgets BG-145

Index BG-153

Simulate Guide (SG)
Contents SG-v

1 Introduction to Simulate SG-1

1 Installing and Configuring Simulate SG-1

2 Using Simulate SG-5

3 Simulate Command Reference SG-21

Index SG-111

Main Index Main-1
Main-xiv PBS Professional 2022.1 Big Book

Altair PBS Professional 2022.1

Installation & Upgrade Guide

You are reading the Altair PBS Professional 2022.1

Installation & Upgrade Guide (IG)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation vii

1 PBS Architecture 1
1.1 What is PBS? . 1
1.2 PBS Daemons. 1
1.3 PBS Commands . 4
1.4 Scheduling Jobs . 5

2 Pre-Installation Steps 7
2.1 Prerequisites for Running PBS . 7
2.2 Important Considerations . 12
2.3 PBS Configurations for Windows . 13

3 Installation 19
3.1 Overview of Installation . 19
3.2 Licenses . 19
3.3 Major Steps for Installing PBS Professional . 20
3.4 All Installations . 20
3.5 Installing via RPM on Linux Systems . 23
3.6 Installing via dpkg on Ubuntu . 37
3.7 Installing PBS on Windows Hosts . 37

4 Communication 45
4.1 Communication Within a PBS Complex . 45
4.2 Terminology. 45
4.3 Prerequisites . 45
4.4 Communication Parameters . 45
4.5 Inter-daemon Communication Using TPP. 49
4.6 Ports Used by PBS . 58
4.7 PBS with Multihomed Systems . 59

5 Initial Configuration 63
5.1 Validate the Installation . 63
5.2 Support PBS Features . 63
PBS Professional 2022.1 Installation & Upgrade Guide IG-v

Contents
6 Upgrading 65
6.1 Types of Upgrades . 65
6.2 Differences from Previous Versions . 66
6.3 Caveats and Advice . 67
6.4 Introduction to Upgrading Under Linux . 70
6.5 Overlay Upgrade Under Linux. 70
6.6 Overlay Upgrade on One or More Machines Running Cpuset MoM. 82
6.7 Migration Upgrade Under Linux . 93
6.8 Upgrading a Windows/Linux Complex . 109
6.9 Upgrading from an All-Windows Complex. 125
6.10 After Upgrading . 137

7 Installing and Upgrading on Cray 139
7.1 Installing PBS with Shasta . 139

8 Starting & Stopping PBS on Linux 141
8.1 Platform Change . 141
8.2 Automatic Start on Bootup . 141
8.3 When to Restart PBS Daemons . 141
8.4 Methods for Starting, Stopping, or Restarting PBS. 142
8.5 Starting, Stopping, and Restarting PBS Daemons . 145
8.6 Impact of Stop-Restart on Running Linux Jobs. 152

9 Starting & Stopping MoM on Windows 155
9.1 Automatic Start on Bootup . 155
9.2 When to Restart PBS MoMs . 155
9.3 Starting, Stopping, and Restarting PBS . 155
9.4 Stopping PBS Using the qterm Command . 158
9.5 Impact of Stop-Restart on Running Windows Jobs. 158

Index 161
IG-vi PBS Professional 2022.1 Installation & Upgrade Guide

1

PBS Architecture

1.1 What is PBS?

PBS Professional is a distributed workload management system for managing and monitoring your computational work-
load. PBS consists of daemons and commands that you use to manage jobs on one or more machines. You can use PBS
to do tasks such as submitting, querying, altering, monitoring, moving, and deleting jobs. You can run jobs in one or
more clouds, you can manage job costs, and you can use simulation to tune your PBS configuration.

1.2 PBS Daemons

You use one PBS server to manage a group of machines. The server coordinates with one or more schedulers to schedule
where and when jobs run. Each machine where jobs run is managed by a MoM. Communication between server, sched-
ulers, and MoMs is handled by one or more communication daemons. We call each instance of server, schedulers,
MoMs, and communication daemons a PBS complex.

PBS daemons live in PBS_EXEC/sbin.

1.2.1 Server

The PBS server receives incoming job submissions, holds jobs that are waiting for execution, sends jobs for execution
when it's their turn, and ensures that work is completed by monitoring the complex for failures and rerunning jobs when
necessary. Commands communicate with the server, even if they affect other daemons. The server executable is named
pbs_server; it is located in $PBS_EXEC/sbin/pbs_server.

The server contains a licensing client which communicates with the licensing server for licensing PBS jobs.

For more about the server, see "Configuring the Server and Queues" on page 19 in the PBS Professional Administrator's
Guide.

1.2.2 Schedulers

PBS has a default scheduler; if you want to schedule individual partitions separately, you can add any number of addi-
tional schedulers, called multischeds. Each PBS scheduler follows its own scheduling policy.

Each scheduler daemon implements a policy that you define that controls when each job is run and on which resources.
See "About Schedulers" on page 91 in the PBS Professional Administrator's Guide.

Each scheduler makes a persistent connection to the server via pbs_connect(). If the scheduler does not have a con-
nection to the server, it continues trying every 2 seconds until it gets a connection.

1.2.3 MoM

The MoM daemon places each job into execution when it receives a copy of the job from the server. MoM creates a new
session that is as identical to a user login session as is possible. For example, if the user's login shell is csh, then MoM
creates a session in which .login is run as well as .cshrc. MoM also returns the job's output to the user. One MoM runs
on each computer executing PBS jobs. These computers are called execution hosts.
PBS Professional 2022.1 Installation & Upgrade Guide IG-1

Chapter 1 PBS Architecture
For a complete description of configuring MoM, see "Configuring MoMs and Vnodes" on page 37 in the PBS Profes-
sional Administrator's Guide.

1.2.4 Communication Daemon

The communication daemon, pbs_comm, handles communication between the other PBS daemons. For a complete
description, see section 4.5, "Inter-daemon Communication Using TPP", on page 49.

1.2.5 Typical Daemon Placements

1.2.5.1 Linux Layouts

The PBS server, scheduler, and communication daemons run on a Linux host. One or more communication daemons run
on other Linux hosts, if there are enough MoMs in the complex to require additional comm daemons. Typical layouts:

• One or more clusters of MPI-connected execution hosts where each host runs a MoM

• One or more Cray computers

• One or more HPE execution hosts, where each host is managed by a MoM and is made up of multiple blades

• Individual execution hosts on a network

• Any combination of the above

1.2.5.2 Windows Layouts

1.2.5.2.i Linux-Windows Complex

A Linux-Windows complex has a Linux server/scheduler/communication host and Windows execution and client hosts.

1.2.5.2.ii Mixed-mode Complex

A mixed-mode complex has a Linux server/scheduler/communication host, Linux execution and client hosts, and Win-
dows execution and client hosts.

1.2.6 Daemon Permissions

By default, the PBS daemons run as root. However, you can specify that the scheduler should run as some other user by
specifying that username in the PBS_DAEMON_SERVICE_USER parameter in /etc/pbs.conf. You can do this
either by setting PBS_DAEMON_SERVICE_USER in the environment when doing an rpm install, or by editing
/etc/pbs.conf. See "Specifying Scheduler Username" on page 420 in the PBS Professional Administrator's Guide.
IG-2 PBS Professional 2022.1 Installation & Upgrade Guide

PBS Architecture Chapter 1
1.2.7 Single Execution System

You can install and run all PBS components on a single machine. The following illustration shows how communication
works when PBS is on a single host:

Figure 1-1:PBS daemons on a single execution host

1.2.8 Single Execution System with Front End

The PBS server and scheduler (pbs_server and pbs_sched) can run on one system and jobs can execute on
another. The following illustration shows how communication works when the PBS server and scheduler are on a
front-end system and MoM is on a separate host:

Figure 1-2:PBS daemons on single execution system with front end

 All PBS components on a single host

Scheduler

MoM

ServerJobs

Commands
Kernel

Communication

Job
processes

Scheduler

MoM
Server

Jobs

Kernel

Single execution host

Commands

Front-end system

Communication

Job processes
PBS Professional 2022.1 Installation & Upgrade Guide IG-3

Chapter 1 PBS Architecture
1.2.9 Multiple Execution Systems

When you run PBS on several systems, the server (pbs_server), the scheduler (pbs_sched), and the communica-
tion daemon (pbs_comm) are installed on a front end system, and a MoM (pbs_mom) is installed and run on each exe-
cution host. The following diagram illustrates this:

Figure 1-3:Typical PBS daemon locations for multiple execution hosts

1.3 PBS Commands

PBS supplies command-line client commands that are used to submit, monitor, modify, and delete jobs. These client
commands can be installed on any system type supported by PBS and do not require the local presence of any of the other
components of PBS.

The privilege required to run each command varies with that command; see each command's description. PBS com-
mands are described in "PBS Commands" on page 21 of the PBS Professional Reference Guide.

Scheduler

MoM

Server
Jobs

 PBS
Commands

Execution Host

MoM

 Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

Communication
IG-4 PBS Professional 2022.1 Installation & Upgrade Guide

PBS Architecture Chapter 1
1.4 Scheduling Jobs

PBS runs jobs only on the execution hosts in the complex (hosts running a MoM). Each job is placed on a host or hosts
according to the job's request. The scheduler matches jobs with available resources such as CPUs, memory, required
software, licenses, etc. The scheduler follows rules for selecting hosts and parts of hosts that match each job's request.
Once the scheduler finds the resources that match a job's request, it allocates hosts or parts of hosts to the job, according
to how the host is configured and what the job requested.

Each task from a job can be placed on a different host, or a different part of a host. Alternatively, all tasks can be run on
a single host. The job can request exclusive use of each host or part of a host, or shared use with other jobs. For details,
see "Specifying Job Placement", on page 66 of the PBS Professional User's Guide.

Each scheduler can be configured so that it follows its own scheduling policy. Scheduling policy dictates which jobs are
allowed to run where, who can use how much of what, etc. See "Scheduling" on page 57 in the PBS Professional Admin-
istrator's Guide.
PBS Professional 2022.1 Installation & Upgrade Guide IG-5

Chapter 1 PBS Architecture
IG-6 PBS Professional 2022.1 Installation & Upgrade Guide

2

Pre-Installation Steps

This chapter describes the steps to take before installing PBS. Make sure that your setup meets the requirements
described here, and that you take the required steps to prepare for installing PBS.

2.1 Prerequisites for Running PBS

2.1.1 Run Same Version Within Complex

Do not mix different versions of PBS within a PBS complex. All machines using a particular PBS server (all machines in
the same PBS complex) must run the exact same version of PBS, except for platform differences. Do not mix major,
minor, or patch versions for any element of PBS such as daemons or commands. For example, do not run 2021.1.2 and
2021.1.3 in the same complex.

Do not mix different versions of PBS across PBS complexes, either.

2.1.2 Resources Required by PBS

The amount of memory required by the PBS server and scheduler depends on the number of hosts and the number of jobs
to be queued or running. You will need less than 512 bytes per host. The number of jobs is the important factor, since
each job needs about 10 KB at server startup and 5 KB when the server is running. The number of processors in the com-
plex is not a factor.

2.1.2.1 Memory Required By Server Running Hooks

A PBS server executing hook scripts can consume a larger amount of memory than one not executing hook scripts. For
example, a system consisting of a server and a MoM on a Linux machine handling 10,000 short-running jobs being sub-
mitted, modified, and moved causing execution of qsub, qalter, and movejob hooks will use around 40 MB of memory in
a span of 24 hours.

2.1.2.2 Memory Required for Job History

Enabling job history requires additional memory for the server. When the server is keeping job history, it needs 8k-12k
of memory per job, instead of the 5k it needs without job history. Make sure you have enough memory: multiply the
number of jobs being tracked by this much memory. For example, if you are starting 100 jobs per day, and tracking his-
tory for two weeks, you're tracking 1400 jobs at a time. On average, this will require 14.3M of memory.

If the server is shut down abruptly, there is no loss of job information. However, the server will require longer to start up
when keeping job history, because it must read in more information.

2.1.2.3 Amount of Memory in Complex

If the sum of all memory on all vnodes in a PBS complex is greater than 2 terabytes, then the server (pbs_server) and
scheduler (pbs_sched) must be run on a 64-bit architecture host, using a 64-bit binary.
PBS Professional 2022.1 Installation & Upgrade Guide IG-7

Chapter 2 Pre-Installation Steps
2.1.2.4 Adequate Space for Logfiles

PBS logging can fill up a filesystem. For customers running a large number of array jobs, we recommend that the file-
system where $PBS_HOME is located has at least 2 GB of free space for log files. It may also be necessary to rotate and
archive log files frequently to ensure that adequate space remains available. (A typical PBS Professional complex will
generate about 2 GB of log files for every 1,000,000 subjobs and/or jobs.)

2.1.2.5 Installation Disk Space

Make sure you have adequate disk space to install PBS. It is recommended to have at least 350 MB available, for instal-
lation alone.

2.1.2.6 Disk and Memory for Communication Daemon

By default, the communication daemon is installed on the server host.

Disk space used by the communication daemon is only for logfiles; make sure that your logging does not fill up the disk.

On any host running a communication daemon handling up to 5000 MoMs, make sure you have 500MB to 1GB of mem-
ory for the daemon.

2.1.2.7 Memory for Data Store

The data store itself requires around 100MB, but its size depends on the amount of memory required to store each job
script. The total memory required is the size of all job scripts plus 100MB.

2.1.3 Name Resolution and Network Configuration

Do NOT skip this section. PBS cannot function if your hostname resolution or network is configured incorrectly.

2.1.3.1 Firewalls

PBS needs to be able to use any port for outgoing connections, but only specific ports for incoming connections. If you
have firewalls running on the server or execution hosts, be sure to allow incoming connections on the appropriate ports
for each host. By default, the PBS server and MoM daemons use ports 15001 through 15004 for incoming connections,
the PBS communication daemon listens on port 17001, and daemons use any port below 1024 for outgoing connections.
See section 4.6, "Ports Used by PBS", on page 58 for a list of ports.

Firewall-based issues are often associated with server-MoM communication failures and messages such as 'premature
end of message' in the log files.

To allow interactive jobs, make sure that the ephemeral port range in your firewall is open (make sure that MoMs can
connect to an ephemeral port on submission hosts). Check your OS documentation for the correct range.

2.1.3.2 Network Tuning

Depending on your network, you may need to tune kernel settings or other configuration parameters. Make sure that
your kernel settings support PBS. For example, check your IP tuning parameters, including UDP and TCP, and check
your ARP, routing, and name resolution settings.
IG-8 PBS Professional 2022.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
2.1.3.3 Planning for Number of Machines Connected to Complex

Configure your server host with sufficient ARP cache entries in order to allow at least one connection per ethernet
address that will connect to the server or to which the server will connect. This includes execution hosts, client hosts,
peered servers, storage machines, or machines where the scheduler may execute scripts. Check your ARP table tuning
settings.

2.1.3.4 Required Name Resolution

Make sure that the following are true:

• Use only one canonical name per host. The canonical name must be unambiguous.

• On the server/scheduler/communication host, the short name must resolve to the correct IP address.

• On the server/scheduler/communication host, the IP address must reverse resolve to the canonical name.

• Make sure that different resolvers cannot disagree when resolving the server host, whether you are using
/etc/hosts, DNS, LDAP, NIS, or something else.

• Every MoM must resolve each MoM to the same IP address that the server recognizes for that MoM. So if the
server recognizes MoM A at IP address w.x.y.z, all other MoMs must resolve MoM A to w.x.y.z.

• Make sure that the IP address of each machine in the complex resolves to the fully qualified domain name for that
machine, and vice versa. Forward and reverse hostname resolution must work consistently between all machines.

• The server must be able to look up the IP addresses for any execution host, any client host, and itself.

• Make sure that forward and reverse name lookup operate according to the IETF standard. The network on which
you will be deploying PBS must be configured according to IETF standards.

2.1.3.5 Required Network Configuration

• PBS can use a static address mapping only.

• Communications between daemons must be robust and must have sufficient capacity. Make sure that your network
does not present any limitations to PBS. For example, the ARP table size limit must not interfere when you have a
large number of MoMs. Configure your server with sufficient ARP cache entries to allow at least one connection per
ethernet address that will connect to the server or to which the server will connect. This includes execution hosts,
client hosts, peered servers, storage machines, or machines where the scheduler may execute scripts. See section
2.1.3.1, "Firewalls", on page 8.
PBS Professional 2022.1 Installation & Upgrade Guide IG-9

Chapter 2 Pre-Installation Steps
2.1.3.6 Recommendations for Name Resolution and Network

Configuration

• Test name resolution using the ping command.

• Test the connections between server and MoM daemons on every physical network. You should test TCP and UDP,
and make sure that the connection can handle large packets. You can use a tool such as ttcp, with packets of
size16k, for testing.

• For multihomed MoMs, keep all PBS traffic on the same control network or subnet.

• Keep different types of traffic on separate interfaces to reduce jitter.

• When configuring /etc/hosts, do the following:

• Use the server's FQDN as the first item on the first line on the PBS-to-PBS interface

• Use different FQDNs as the first item on other lines

• Use a name on only one line

• If you want redundancy in your network interface, consider using bonding. Aside from presenting a transparent
interface, this can allow you to load-balance network traffic across different networks.

• If name resolution is a problem in a network that should be working, tell nscd not to cache the host name of the
machine with the problem.

• If you are using nscd and you change an IP address or hostname, restart nscd on all hosts.

2.1.3.6.i Recommendations for Name Resolution and Network Configuration
on Windows

• On Windows, make sure the first nameserver resolves all the needed hostnames, including the server hostname and
the domain controller host for active directory queries.

• On Windows, put explicit IP-to-hostname addresses in the C:\windows\system32\drivers\etc\hosts
file. Otherwise your site will experience extreme slowdowns. If you make these changes to a running PBS com-
plex, you must then restart all the PBS daemons (services).

2.1.3.7 Order of Operations for Name Resolution and Network

Configuration

You can take care of some of the name resolution testing before you install PBS. However, you must do some testing
using the pbs_hostn command, after you install PBS. The "Initial Configuration" chapter follows the "Installation"
chapter, and includes steps to test name resolution. We include an overview of the whole process here for clarity:

1. Set up firewall

2. Set up name resolution

3. Test name resolution by using ping command; if necessary, fix & re-test

4. Install PBS

5. Test name resolution by using pbs_hostn command.

6. If name resolution does not work correctly:

a. Uninstall PBS

b. Fix name resolution

c. Install PBS

d. Test using pbs_hostn
IG-10 PBS Professional 2022.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
2.1.3.8 Server Hostname

The PBS_SERVER entry in pbs.conf cannot be longer than 255 characters. If the short name of the server host
resolves to the correct IP address, you can use the short name for the value of the PBS_SERVER entry in pbs.conf. If
only the FQDN of the server host resolves to the correct IP address, you must use the FQDN for the value of
PBS_SERVER.

2.1.3.9 Sockets

Some PBS processes cause network sockets to be opened between submission and execution hosts. For more informa-
tion about these processes, see "Sockets and Checkpointing" on page 400 in the PBS Professional Administrator's Guide.
Make sure your network and firewalls are set up to handle sockets correctly.

2.1.3.10 Mounting NFS File Systems

Asynchronous writes to an NFS server can cause reliability problems. If using an NFS file system, mount the NFS file
system synchronously (without caching.)

2.1.3.11 Making Ports Available

The ports used by the PBS daemons must be available during the installation. See section 4.6, "Ports Used by PBS", on
page 58.

2.1.4 HPE Prerequisites

2.1.4.1 HPE MPI Recommendation

For HPE MC990X, HPE Superdome Flex, and HPE 8600 machines, we recommend using HPE MPI.

As of PBS version 2020.1, pbs_mom.cpuset is no longer available. Instead, use standard MoM, and use the cgroups
hook to manage cgroups.

2.1.4.2 Power File Requirement

When using PBS Power Provisioning on HPE, ensure that the following file exists:

/opt/clmgr/power-service

2.1.5 License Server Requirement

Make sure that the ALM license server is at version 14.5 before installing PBS.

2.1.6 System Clocks in Sync

We recommend that clocks on all participating systems be in sync.

2.1.7 User Requirements on Linux

2.1.7.1 User Accounts

Users who will submit jobs must have accounts at the server and at each execution host.
PBS Professional 2022.1 Installation & Upgrade Guide IG-11

Chapter 2 Pre-Installation Steps
2.1.7.2 Linux User Authorization

When the user submits a job from a system other than the one on which the PBS server is running, system-level user
authorization is required. This authorization is needed for submitting the job and for PBS to return output files (see also
"Managing Output and Error Files", on page 42 of the PBS Professional User's Guide and "Input/Output File Staging",
on page 33 of the PBS Professional User's Guide).

The username under which the job is to be executed is selected according to the rules listed under the "-u" option to
qsub. The user submitting the job must be authorized to run the job under the execution username (whether explicitly
specified or not).

Such authorization is provided by any of the following methods:

1. The host on which qsub is run (i.e. the submission host) is trusted by the server. This permission may be granted at
the system level by having the submission host as one of the entries in the server's hosts.equiv file naming the sub-
mission host. For file delivery and file staging, the host representing the source of the file must be in the receiving
host's hosts.equiv file. Such entries require system administrator access.

2. The host on which qsub is run (i.e. the submission host) is explicitly trusted by the server via the user's .rhosts
file in his/her home directory. The .rhosts must contain an entry for the system from which the job is submitted,
with the username portion set to the name under which the job will run. For file delivery and file staging, the host
representing the source of the file must be in the user's .rhosts file on the receiving host. It is recommended to
have two lines per host, one with just the "base" host name and one with the full hostname, e.g.: host.domain.name.

3. PBS may be configured to use the Secure Copy (scp) for file transfers. The administrator sets up SSH keys as
described in "Enabling Passwordless Authentication" on page 448 in the PBS Professional Administrator's Guide.
See also "Setting File Transfer Mechanism" on page 441 in the PBS Professional Administrator's Guide.

4. User authentication may also be enabled by setting the server's flatuid attribute to True. See the
pbs_server_attributes(7B) man page and "Flatuid and Access" on page 506 in the PBS Professional
Administrator's Guide. Note that flatuid may open a security hole in the case where a vnode has been logged into by
someone impersonating a genuine user.

2.2 Important Considerations

2.2.1 Avoiding Datastore Corruption from Job Spool Files

Job spool files can fill up the PBS_HOME filesystem. This can corrupt the datastore and cause a failure that requires recov-
ering from backups. Consider moving the spool directory to a dedicated file system, or using quotas.

Job spool files are saved on the server on job rerun, and on the MoM for running jobs.

2.2.2 Using noexec on /tmp

If you need to have noexec on your /tmp, do one of the following:

• Set the TMPDIR environment variable; the shared library that is extracted to /tmp/xf-dll follows TMPDIR if it is
set

• Install a soft link from /tmp/xf-dll pointing to a location on a filesystem that does not have the "noexec" mount
flag

Why? The ALSDK liblmx-altair.so self-extracts a DSO into /tmp/xf-dll, and then tries to map it. If it fails to do so
because noexec is set, the ALSDK routines simply perform an exit(1),which terminates the server, without any log
message in the server log.
IG-12 PBS Professional 2022.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
2.3 PBS Configurations for Windows

2.3.1 Definitions

Active Directory

Active Directory is an implementation of LDAP directory services by Microsoft to use in Windows environ-
ments. It is a directory service used to store information about the network resources (e.g. user accounts and
groups) across a domain. Active Directory is fully integrated with DNS and TCP/IP; DNS is required. To be
fully functional, the DNS server must support SRV resource records or service records.

Admin (Windows)

As referred to in various parts of this document, this is a user logged in from an account who is a member of any
group that has full control over the local computer, domain controller, or is allowed to make domain and schema
changes to the Active directory.

Administrators

A group that has built-in capabilities that give its members full control over the local system, or the domain con-
troller host itself.

Delegation

A capability provided by Active Directory that allows granular assignment of privileges to a domain account or
group. So for instance, instead of adding an account to the "Account Operators" group which might give too
much access, then delegation allows giving the account read access only to all domain users and groups infor-
mation. This is done via the Delegation wizard.

Domain Admin Account

This is a domain account on Windows that is a member of the "Domain Admins" group.

Domain Admins

A global group whose members are authorized to administer the domain. By default, the Domain Admins group
is a member of the Administrators group on all computers that have joined a domain, including the domain con-
trollers.

Domain User Account

It is a domain account on Windows that is a member of the "Domain Users" group.

Domain Users

A global group that, by default, includes all user accounts in a domain. When you create a user account in a
domain, it is added to this group automatically.

Enterprise Admins

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make forest-wide changes in Active Directory, such as adding child domains.

Install Account, Installation Account

The account used by the person who installs PBS.

Schema Admins

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make schema changes in Active Directory.

PBS service account

The account that is used to execute pbs_mom via the Service Control Manager on Windows. This account can
have any name. The default name is pbsadmin.
PBS Professional 2022.1 Installation & Upgrade Guide IG-13

Chapter 2 Pre-Installation Steps
2.3.2 Domained Environment Required

All Windows hosts and users must be in a domained environment.

2.3.3 Permission Requirement

On Windows 7 and later with UAC enabled, if you will use the cmd prompt to operate on hooks, or for any privileged
command such as qmgr, you must run the cmd prompt with option Run as Administrator.

2.3.4 Daemon Layout for Windows

As of PBS 19.4.1, all PBS complexes run the PBS server, scheduler, and comm daemons on Linux hosts. You can run all
MoMs and client commands on Windows hosts, or some on Windows and some on Linux.

2.3.5 Windows Configuration in a Domained Environment

2.3.5.1 Machines

• Any Windows client commands and MoMs must run on a set of Windows machines networked in a single domain.

• The machines must be members of this one domain, and they must be dependent on a centralized database located
on the primary/secondary domain controllers.

• The domain controllers must be running on a Server type of Windows host, using Active Directory configured in
"native" mode.

• The choice of DNS must be compatible with Active Directory.

• The PBS server and scheduler run on a Linux host.

• PBS must not be installed or run on a Windows machine that is serving as the domain controller (running Active
Directory) to the PBS hosts.

2.3.5.2 User Accounts

• Windows job submitters must have an account at all PBS hosts involved in a job: the server, the execution hosts, and
the client host.

• All user accounts must be in the same domain as the Windows client and execution hosts.

• Each user must explicitly be assigned a HomeDirectory sitting on some network path. PBS does not support a
HomeDirectory that is not network-mounted. PBS currently supports network-mounted directories that are using
the Windows network share facility.

• If a user was not assigned a HomeDirectory, then PBS uses PROFILE_PATH\My Documents\PBS Pro, where
PROFILE_PATH could be, for example, "\Documents and Settings\username".
IG-14 PBS Professional 2022.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
2.3.5.3 User Jobs

• All users must submit and run PBS jobs using only their domain accounts (no local accounts), and domain groups. If
a user has both a domain account and local account, then PBS will ensure that the job runs under the domain
account.

• Each user must always supply an initial password in order to submit jobs. This is done by running the pbs_login
command at least once to supply the password that PBS will use to run the user's jobs.

• Access by jobs to network resources, such as a network drive, requires a password.

• All job scripts, as well as input, output, error, and intermediate files of a PBS job must reside in an NTFS directory.

2.3.6 User Authorization Under Windows

Windows job submitters must cache a password for authorization. To do this, each job submitter must run pbs_login at
each client host initially and for each password change.

The username under which the job is to be executed is selected according to the rules listed under the "-u" option to
qsub. See "qsub" on page 216 of the PBS Professional Reference Guide. The user submitting the job must be autho-
rized to run the job under the execution username (whether explicitly specified or not). Authorization is provided by
either of the following methods:

2.3.6.1 Requirements for Non-admin Users

Under Windows, if a user has a non-admin account, the server hosts.equiv file is used to determine whether that user
can run a job at a given server.

The Windows hosts.equiv file determines the list of non-Administrator accounts that are allowed access to the local
host, that is, the host containing this file. This file also determines whether a remote user is allowed to submit jobs to the
local PBS server, with the user on the local host being a non-Administrator account.

This file is usually: %WINDIR%\system32\drivers\etc\hosts.equiv.

The format of the hosts.equiv file is as follows:

[+|-] hostname username

'+' means enable access, whereas '-' means to disable access. If '+' or '-' is not specified, then this implies enabling of
access. If only hostname is given, then users logged into that host are allowed access to like-named accounts on the local
host. If only username is given, then that user has access to all accounts (except Administrator-type users) on the local
host. Finally, if both hostname and username are given, then user at that host has access to like-named account on local
host.

The hosts.equiv file must be owned by an admin-type user or group, with write access granted to an admin-type user
or group.

Table 2-1: Requirements for Non-admin User to Submit Job

File Submission Host Username vs. Server Host Username

UserS Same as UserS UserS Different from UserA

hosts.equiv on ServerA <HostS> <HostS> UserS
PBS Professional 2022.1 Installation & Upgrade Guide IG-15

Chapter 2 Pre-Installation Steps
2.3.6.2 Requirements for Admin Users

For an admin account, [PROFILE_PATH].\rhosts is used, and the server's acl_roots attribute must be set to allow
job submissions.

2.3.7 Windows User HOMEDIR

Each Windows user must have a home directory (HOMEDIR) where their PBS job will initially be started. For jobs that do
not have their staging and execution directories created by PBS, the home directory is also the starting location of file
transfers when users specify relative path arguments to qsub/qalter -W stagein/stageout options.

PBS supports network mounted home directories.

2.3.7.1 Configuring User HOMEDIR

The home directory can be configured by an Administrator by setting the user's HomeDirectory field in the user database,
via the User Management Tool. It is important to include the drive letter when specifying the home directory path. The
directory specified for the home folder must be accessible to the user. If the directory has incorrect permissions, PBS will
be unable to run jobs for the user.

2.3.7.2 Directory Must Exist Already

You must specify an already existing directory for home folder. If you don't, the system will create it for you, but set the
permissions to that which will make it inaccessible to the user.

2.3.7.3 Default Directory

If a user has not been explicitly assigned a home directory, then PBS will use this Windows-assigned default, local home
directory as base location for its default home directory. More specifically, the actual home path will be:

[PROFILE_PATH]\My Documents\PBS Pro

For instance, if a userA has not been assigned a home directory, it will default to a local home directory of:

\Documents and Settings\userA\My Documents\PBS Pro

UserA's job will use the above path as working directory, and for jobs that do not have their staging and execution direc-
tories created by PBS, any relative pathnames in stagein, stageout, output, error file delivery will resolve to the above
path.

Table 2-2: Requirements for Admin User to Submit Job

Location/Action
Submission Host Username vs. Server Host

Username

UserS Same as UserS
UserS Different from

UserA

[PROFILE_PATH]\.rhosts contains For UserS on ServerA, add
<HostS> UserS

For UserA on ServerA, add
<HostS> UserS

set ServerA's acl_roots attribute qmgr> set server
acl_roots=UserS

qmgr> set server
acl_roots=UserA
IG-16 PBS Professional 2022.1 Installation & Upgrade Guide

Pre-Installation Steps Chapter 2
Note that Windows can return as PROFILE_PATH one of the following forms:

\Documents and Settings\username

\Documents and Settings\username.local-hostname

\Documents and Settings\username.local-hostname.00N where N is a number

\Documents and Settings\username.domain-name

2.3.8 Windows Caveats

2.3.8.1 Installation of Microsoft Redistributable Pack

The PBS installer installs the Microsoft redistributable pack of vc++ redistributable binaries into the system root
(C:\Windows) directory.

2.3.8.2 Make Sure ComSpec Environment Variable Is Set

Check that in the pbs_environment file, the environment variable ComSpec is set to C:\WIN-
DOWS\system32\cmd.exe. If it is not, set it to that value:

1. Change directory:
cmd.admin> cd \Program Files\PBS\home

2. Edit the pbs_environment file:

cmd.admin> edit pbs_environment

3. Add the following entry to the pbs_environment file:

ComSpec=C:\WINDOWS\system32\cmd.exe

4. Restart the MoM:

net stop pbs_mom

net start pbs_mom

Simply setting this variable inside a job script doesn't work. The ComSpec variable must be set before PBS executes
cmd. cmd invokes the user's submission script.

2.3.8.3 Unsupported Windows Configurations

The following Windows configurations are currently unsupported:

• Using NIS/NIS+ for authentication on non-domain accounts.

• Using RSA SecurID module with Windows logons as a means of authenticating non-domain accounts.
PBS Professional 2022.1 Installation & Upgrade Guide IG-17

Chapter 2 Pre-Installation Steps
IG-18 PBS Professional 2022.1 Installation & Upgrade Guide

3

Installation

3.1 Overview of Installation

3.1.1 Prerequisite Reading

This chapter shows how to install PBS Professional. You should read the Release Notes and Chapter 2, "Pre-Installation
Steps", on page 7 before installing the software.

3.1.2 Replacing an Older Version of PBS

If you are installing on a system where PBS is already running, follow the instructions for an upgrade. Go to Chapter 6,
"Upgrading", on page 65.

3.1.3 Package Naming

Download the package for your platform from our website, and uncompress it. Packages are named like this:

PBSPro_<version>-<platform>_<hardware>.tar.gz.

For example, the PBS 19.2.2 package for CentOS 7 is named PBSPro_19.2.2-CentoOS7.tar.gz. When you uncompress
it, you'll find the following sub-package RPMs:

• Server/scheduler/MoM/communication/commands:
pbspro-server-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

• MoM/commands:
pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

• Commands:
pbspro-client-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

For example, for CentOS 7, the sub-packages are:

pbspro-server-19.2.2-<date etc.>-0.el7.x86_64.rpm

pbspro-execution-19.2.2-<date etc.>-0.el7.x86_64.rpm

pbspro-client-19.2.2-<date etc.>-0.el7.x86_64.rpm

3.2 Licenses

In order for a job to run, it must be running on a licensed host. Make sure that you have access to an Altair License Man-
ager (ALM) license server that is hosting the licenses you need. Your license server can host either of these:

• Node licenses, which license a certain amount of hardware. Node licenses are obtained from Altair.

• Socket licenses, which are tied to hosts.

Each PBS complex can be licensed using PBSProNodes licenses or PBSProSockets licenses, but not both, so the ALM
license server will provide one or the other. See the PBS Works Licensing Guide.
PBS Professional 2022.1 Installation & Upgrade Guide IG-19

Chapter 3 Installation
3.2.1 Licensing Caveats

If you do not tell PBS where to find the license server, the pbs_license_info attribute is left as is, which could be set to
some previous value or unset. It is usually set to some previous value when doing an overlay or migration upgrade.

If the license server location is incorrectly initialized (e.g. the hostname or port number is incorrect), PBS may not be
able to pinpoint the misconfiguration as the cause of the failure to reach a license server. The PBS server's first attempt to
contact the license server results in the following message on the server's log file:

"unable to connect to license server at ..."

3.3 Major Steps for Installing PBS Professional

1. Set up your ALM license server with enough licenses for your site. See the PBS Works Licensing Guide.

2. Create accounts used by PBS. See section 3.5.1.3, "Create PBS Data Service Management Account", on page 23
and section 3.7.8, "Create Installation and Service Accounts", on page 39.

3. Download the correct PBS Professional package for each host. The PBS Professional package is available on the
PBS download page at https://secure.altair.com/UserArea/.

4. Please read section 3.4, "All Installations", on page 20. Then install PBS Professional on the server host and all exe-
cution hosts, without starting any daemons. For instructions, see section 3.5, "Installing via RPM on Linux Sys-
tems", on page 23 or section 3.7, "Installing PBS on Windows Hosts", on page 37.

5. Optionally, install additional communication daemons.

6. If you have additional communication daemons, start them using systemd or the PBS start/stop script. See section
8.4, "Methods for Starting, Stopping, or Restarting PBS", on page 142.

7. Install PBS commands on any client hosts.

8. Start PBS on each execution host using systemd or the PBS start/stop script. See section 8.4, "Methods for Start-
ing, Stopping, or Restarting PBS", on page 142.

9. Start PBS on the server host using systemd or the PBS start/stop script. See section 8.4, "Methods for Starting,
Stopping, or Restarting PBS", on page 142.

10. Set the server's pbs_license_info attribute to point to the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

11. Using the qmgr command, define the vnodes that the server will manage. See "Creating Vnodes" on page 42 in the
PBS Professional Administrator's Guide.

12. Perform post-installation tasks such as validation. See Chapter 5, "Initial Configuration", on page 63.

3.4 All Installations

3.4.1 Automatic Installation of Database

Installing PBS automatically installs (and upgrades) the database used by PBS for its data store.
IG-20 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.4.2 Choosing Installation Sub-package

On each PBS host, install the sub-package corresponding to the task(s) that host will perform. The task you give a host
determines what we call the host. For example, a host that runs job tasks is called an "execution host". Sometimes there
is more than one title that means the same thing; for example, some people call the server host the "headnode". Select the
sub-package (or, for Windows, the installation option) that matches the desired task:

3.4.2.1 Pathname Conventions

The term PBS_HOME refers to the location where the daemon/service configuration files, accounting logs, etc. are
installed.

The term PBS_EXEC refers to the location where the executable programs are installed.

3.4.3 Installing Additional Communication Daemons

By default, one communication daemon is installed on each server host. If you are configuring failover, your site will
automatically have two communication daemons and all PBS daemons will automatically connect to them.

You may want to install additional communication daemons. For some rough guidelines on when you might want addi-
tional communication daemons, see section 4.5.4, "Recommendations for Maximizing Communication Performance",
on page 51.

Table 3-1: Choosing Installation Type

Option Host Role Task Package Contents
Parameters in

pbs.conf for Default
Start

1 Server host,
headnode,
front end
machine

Runs server, scheduler, and
communication daemons.
Optionally runs MoM dae-
mon. Client commands are
included.

If using failover, install on both
server hosts.

Server/scheduler/communi-
cation/MoM/client com-
mands

PBS_START_SERVER=1

PBS_START_SCHED=1

PBS_START_COMM=1

To run MoM, add:

PBS_START_MOM =1

2 Execution
host, MoM
host

Runs MoM. Executes job
tasks. Client commands are
included.

Install on each execution host.

Execution/client commands PBS_START_MOM =1

3 Client host,
submit host,
submission
host

Users can run PBS commands
and view man pages.

Install on each client host.

Client commands None
PBS Professional 2022.1 Installation & Upgrade Guide IG-21

Chapter 3 Installation
To install just the communication daemon:

1. Download the appropriate PBS package

2. Uncompress the package

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25

4. Install the server sub-package:

rpm -i
<path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

5. Edit pbs.conf to run only the communication daemon:

PBS_START_COMM=1

PBS_START_MOM=0

PBS_START_SCHED=0

PBS_START_SERVER=0

6. Start PBS:

systemctl start pbs

or

<path to script>/pbs start

7. Check to see that the communication daemon is running:

ps -ef | grep pbs

You should see that the pbs_comm daemon is running.

3.4.4 Deciding to Run a MoM After Installation

When you initially start PBS on a host that is configured not to run a MoM, PBS does not create MoM's home directory.
If you later decide to run a MoM on this host:

1. Edit pbs.conf on that host and set PBS_START_MOM=1

2. You may find it helpful to source your /etc/pbs.conf file.

3. Run the pbs_habitat script:

$PBS_EXEC/libexec/pbs_habitat

4. Start PBS on the host:

systemctl start pbs

or

<path to start/stop script>/pbs start
IG-22 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.4.5 Installation Method and Instructions by Platform

The procedure for installing PBS is the same on most platforms. Some platforms have a few minor differences, and
some require special instructions. The following table lists instructions by platform:

3.5 Installing via RPM on Linux Systems

3.5.1 Prerequisites for Installing on Linux Systems

3.5.1.1 Prerequisite Reading

Please do not jump straight to this section in your reading. Before downloading and installing PBS, please make sure
that you have read the following and taken any required steps:

• Prerequisites: All of Section 2.1, "Prerequisites for Running PBS", and Section 2.1.7, "User Requirements on Linux"
and their subsections.

• Please read Section 3.1, "Overview of Installation".

• Make sure that you know how you will proceed by reading Section 3.3, "Major Steps for Installing PBS Profes-
sional".

• Please check all of Section 3.4, "All Installations" and its subsections to make sure you have prepared properly.

3.5.1.2 Permissions

The location for the installation of the PBS Professional software binaries (PBS_EXEC) and private directo-
ries(PBS_HOME) must be owned and writable by root, and must not be writable by other users.

3.5.1.3 Create PBS Data Service Management Account

Before you install PBS, you must create the PBS data service management account.

Table 3-2: Installation Method and Instructions by Platform

Platform Installation Method Installation Instructions

RHEL package manager, e.g. RPM section 3.5, "Installing via RPM on Linux Systems", on page 23

CentOS package manager, e.g. RPM section 3.5, "Installing via RPM on Linux Systems", on page 23

HPE MC990X,
Superdome Flex

package manager, e.g. RPM section 3.5.3, "Installing on MC990X or Superdome Flex", on page 28

HPE 8600 package manager, e.g. RPM section 3.5.4, "Installing PBS on the HPE 8600", on page 30

SuSE package manager, e.g. RPM section 3.5, "Installing via RPM on Linux Systems", on page 23

CLE RPM "Installing and Upgrading on Cray" on page 139

Ubuntu deb section 3.6, "Installing via dpkg on Ubuntu", on page 37

Windows PBS installation program
provided by Altair

section 3.7, "Installing PBS on Windows Hosts", on page 37
PBS Professional 2022.1 Installation & Upgrade Guide IG-23

Chapter 3 Installation
Note that there are two accounts related to the data service. Both have the same account name, but one is a Linux
account and one is internal to the data service:

PBS data service management account

Created by administrator. Linux account with a Linux system password.

Data service account

Created by PBS on installation. Account that is internal to the data service, with its own data service password.
Used by PBS to log into and do operations on the data service. PBS maps this account to the PBS data service man-
agement account. Must have same name as PBS data service management account.

Create the PBS data service management account with the following characteristics:

• Non-root account

• Account must be for a system user; the UID must be less than 1000. Otherwise, the data service may be killed at
inopportune times.

• Account is enabled

• If you are using failover, the UID of this account must be the same on both primary and secondary server hosts

• We recommend that the account is called pbsdata.

• The installer looks for an account called pbsdata. If this account exists, the installer does not need to prompt
for a username, and can install silently.

• If you choose to use an account named something other than pbsdata, make sure you export an environment
variable named PBS_DATA_SERVICE_USER with the value set to the desired existing PBS data service
management account name.

• Root must be able to su to the PBS data service management account and run commands as that user. Do not add
lines such as 'exec bash' to the .profile of the PBS data service management account. If you want to use
bash or similar, set this in the /etc/passwd file, via the OS tools for user management.

• The PBS data service management account must have a home directory.

• Do not put a CPU time limit on the data service Linux account. If you do, the datastore will die and kill the server.

3.5.1.4 Unset PBS_EXEC Environment Variable

Unset the PBS_EXEC environment variable.

3.5.2 Generic Installation on Linux

For all platforms except those listed here, follow the generic instructions. The following platforms require their own
steps:

• HPE MC990X and Superdome Flex: Go to section 3.5.3, "Installing on MC990X or Superdome Flex", on page 28

• HPE 8600: Go to section 3.5.4, "Installing PBS on the HPE 8600", on page 30

3.5.2.1 Downloading PBS

1. Download the PBS tar.gz package

2. Extract the tar file. For example:

tar zxvf PBSPro_<version>-linux26_i686.tar.gz
IG-24 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.2.2 Setting Installation Parameters

Make sure that the PBS_EXEC, PBS_HOME, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER parameters are specified at install time. You may want to run the scheduler as
PBS_DAEMON_SERVICE_USER. PBS has default locations for PBS_EXEC and PBS_HOME, and default values
for PBS_DAEMON_SERVICE_USER and PBS_DATA_SERVICE_USER, but you must specify the others.

You can override defaults at install time, in this order of precedence:

1. Via arguments to the package manager

2. Via environment variables

3. By specifying the desired parameters in /etc/pbs.conf. For details see "The PBS Configuration File" on page 421
in the PBS Professional Administrator's Guide

This table lists each parameter, its default value, and how it can be set at install time:

3.5.2.2.i Caveats for Installation Parameters

Any PBS_START_* parameters set in the environment are not picked up and set in pbs.conf. You must specify these
in pbs.conf; do not export them.

Table 3-3: Setting Installation Parameters

Parameter Default Value
Specify via
pbs.conf

Specify via
Environment

Variable

Specify via
rpm

Command

PBS_DAEMON_SERV
ICE_USER

root Yes Yes No

PBS_DATA_SERVICE
_USER

pbsdata No - ignored Yes - environment
variable only

No

PBS_EXEC /opt/pbs No - value in
pbs.conf is over-
ridden at install
time. Note that
changing this in
pbs.conf breaks
rpm

No - ignored --prefix
<location>

PBS_HOME /var/spool/pbs Yes Yes No

PBS_LICENSE_INFO None No - ignored Yes - environment
variable only. Can
set
pbs_license_info
server attribute via
qmgr

No

PBS_SERVER For server installation: output of
hostname command up to first
period.

For all other installations:
"CHANGE_THIS_TO_PBS_P
RO_SERVER_HOSTNAME"

Yes Yes No
PBS Professional 2022.1 Installation & Upgrade Guide IG-25

Chapter 3 Installation
3.5.2.3 Installing on a Standalone Linux Machine

Make sure that you have covered the prerequisites in section 3.5.1, "Prerequisites for Installing on Linux Systems", on
page 23. The following example shows an installation on a single host on which all PBS components will run, and from
which users will also submit jobs. The process may vary depending on the native package installer on your system.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25

5. Install the server sub-package:

rpm -i
<path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

6. Edit pbs.conf to set PBS_START_MOM=1

7. Start PBS:

systemctl start pbs

or

<path to script>/pbs start

8. Check to see that the server, scheduler, MoM, and communication daemons are running:

ps -ef | grep pbs

You should see that the following daemons are running: pbs_mom, pbs_server, pbs_sched, pbs_comm

9. Make sure that user paths work, and submit sleep jobs. See section 3.5.5, "Making User Paths Work", on page 36.

10. Verify that the jobs are running:

/opt/pbs/bin/qstat -a

11. Verify that you are running the correct version:

/opt/pbs/bin/qstat --version

12. Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

3.5.2.4 Installing on a Linux Cluster

Make sure that you have covered the prerequisites in section 3.5.1, "Prerequisites for Installing on Linux Systems", on
page 23.

You may or may not want to run batch jobs on the server/scheduler/communication host. First, install and start PBS on
each execution host. Then install PBS on the server host. Follow these steps:
IG-26 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.2.4.i Install PBS on Execution Hosts

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25

5. Install the PBS execution sub-package on each execution host:

rpm -i
<path/to/sub-package>pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hardware>.rp
m

6. Start PBS:

systemctl start pbs

or

<path to script>/pbs start

Instead of running the installer by hand on each machine, you can use a command such as pdsh. The one-line format for
a non-default install is:

PBS_SERVER=<server name> PBS_HOME=<new home location> rpm -i --prefix <new exec location>
pbspro-<sub-package>-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

3.5.2.4.ii Install PBS on Server Host

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25

5. If you want to run batch jobs on the front-end host, create or edit the pbs.conf file on the front-end machine so that
a MoM runs there:

PBS_START_MOM=1

6. Install the server sub-package:

rpm -i
<path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

3.5.2.4.iii Start PBS on Server Host

Start PBS on the server machine by running systemd or the PBS start/stop script. If /etc/init.d exists, the script is
in /etc/init.d/pbs, otherwise /etc/rc.d/init.d/pbs:

systemctl start pbs

or

<path to script>/pbs start

3.5.2.4.iv Configure Licensing

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'
PBS Professional 2022.1 Installation & Upgrade Guide IG-27

Chapter 3 Installation
3.5.2.4.v Install PBS on Client Hosts

Install PBS on each client host.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25

5. Install the PBS client sub-package on each execution host:

rpm -i
<path/to/sub-package>pbspro-client-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

3.5.2.4.vi Define Vnodes

Using the qmgr command, define the vnodes that the server will manage. See "Creating Vnodes" on page 42 in the PBS
Professional Administrator's Guide.

3.5.2.4.vii Check User Paths

Make sure that user paths work. See section 3.5.5, "Making User Paths Work", on page 36.

3.5.3 Installing on MC990X or Superdome Flex

3.5.3.1 Prerequisites for Installing on a MC990X or Superdome Flex

Make sure that you have covered the prerequisites in section 3.5.1, "Prerequisites for Installing on Linux Systems", on
page 23. On these machines, you install the PBS server package and use cgroups to manage cpusets.

3.5.3.2 Download and Install the New PBS

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25

5. Install the server sub-package:

rpm -i
<path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

3.5.3.3 Start PBS

1. Edit pbs.conf to set PBS_START_MOM=1

2. Start the PBS daemons by running systemd or the PBS start/stop script. The location of the script varies depend-
ing on system configuration.

systemctl start pbs

or

<path to script>/pbs start
IG-28 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.3.4 Configure Licensing

Set the pbs_license_info server attribute to the location of the license server(s):

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

3.5.3.5 Test the New PBS

1. Check to see that the PBS daemons are running. You should see that there are four daemons running: pbs_mom,
pbs_server, pbs_sched, pbs_comm:
ps -ef | grep pbs

2. Submit jobs as a normal user.

Submit a job to the default queue:

echo "sleep 60" | /opt/pbs/bin/qsub

3. Verify that the jobs are running:

/opt/pbs/bin/qstat -an

3.5.3.6 Configure Cgroups to Manage Cpusets

1. Make sure that your cgroups hook is enabled and that you can use cgroups. See "Configuring and Using PBS with
Cgroups" on page 311 in the PBS Professional Administrator's Guide.

2. Export the cgroups hook configuration file to pbs_cgroups.json:

qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

3. You can make the cgroups hook mimic the behavior of the cpuset MoM in previous versions:

a. Create one vnode for each NUMA node. Edit pbs_cgroups.json as follows (important):

"vnode_per_numa_node" : true,

b. Edit pbs_cgroups.json as follows (recommended):

"use_hyperthreads" : true,

4. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

5. Import the modified configuration (make sure you use "x-config"):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'
PBS Professional 2022.1 Installation & Upgrade Guide IG-29

Chapter 3 Installation
3.5.3.7 Restart MoMs

On each execution host, restart MoM :

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

3.5.4 Installing PBS on the HPE 8600

3.5.4.1 HPE 8600 Components

An 8600 system consists of one Admin node, one or more Service (login) nodes, and a set of one or more compute racks.
Each compute rack consists of one or more IRU nodes and one or more compute nodes per IRU. The racks are diskless.
The root file system of the IRU and compute nodes are mounted read-only from a NAS managed by the Admin node.
There is a single image of the root file system for all of the compute nodes and a separate image for all of the IRU nodes.
HPE Performance Cluster Manager node management commands are used to publish the image to the various nodes in a
process that involves powering down the nodes, pushing a new image, and re-powering the nodes.

In a typical configuration, user home file systems are mounted from NAS, and each node has a separately mounted file
system for /var/spool.

HPE follows a naming convention when preparing a system for shipment. Service nodes are named "service0",
"service1", … Compute nodes are named "rRiLnN" where 'R' is the rack number starting with 1; 'L' is the IRU node
number within a rack starting with 0 in each rack; N is the node number, starting with 0, under the specific Rack Leader.
For example, two racks with 2 IRUs per rack and 4 nodes per IRU are named:

Table 3-4: Node Names

IRU Rack 1 Rack 2

IRU 0 r1i0n0 r2i0n0

r1i0n1 r2i0n1

r1i0n2 r2i0n2

r1i0n3 r2i0n3

IRU 1 r1i1n0 r2i1n0

r1i1n1 r2i1n1

r1i1n2 r2i1n2

r1i1n3 r2i1n3
IG-30 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.4.2 Requirements for the HPE 8600 with HPE MPI

• Make sure that you have covered the prerequisites in section 3.5.1, "Prerequisites for Installing on Linux Systems",
on page 23.

• In order to run PBS on the HPE 8600 with HPE MPI, HPE Performance Cluster Manager node management tools
must already be installed. You will be using the following HPE Performance Cluster Manager commands:

• You must use the correct names for the Admin and Service nodes in any commands.

3.5.4.3 Choosing Whether PBS Will Manage Cpusets with HPE 8600

Running HPE MPI

You can use cpusets on an HPE 8600 running PBS, whether or not PBS manages the cpusets. If PBS manages the
cpusets for you, that means that PBS dynamically creates a cpuset for each job and confines job processes to that cpuset.
If PBS does not manage the cpusets for you, then jobs are not confined to cpusets. You can use the PBS cgroups hook to
manage the cpusets on the 8600; see section 3.5.4.10, "Configure Cgroups to Manage Cpusets", on page 35.

3.5.4.4 Installation of the PBS Server, Scheduler, and

Communication Daemons

Install the PBS server, scheduler, communication daemon, and commands on a single service node; here we assume this
node is "service0":

1. Log on to service0 as root.

2. Unzip and untar the appropriate package.

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25

4. Install the server sub-package:

rpm -i
<path/to/sub-package>pbspro-server-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

5. Do not start PBS

Table 3-5: Performance Cluster Manager Commands

Performance Cluster Manager
Command

Description

cnodes --ice-compute List the compute node names; useful in scripting operations

cpower node off <node name> Powers down

cpower node on <node name> Powers up the named nodes

cimage --… Manages the file system image for the various nodes
PBS Professional 2022.1 Installation & Upgrade Guide IG-31

Chapter 3 Installation
3.5.4.5 Installation of the PBS MoM

You install and configure MoM once on the root file system, then you push the image to all of the compute nodes by
propagating it to the rack leaders. Then you reboot each node with the new image.

1. Log on to the Admin node as root.

2. Determine which image file is being used on the compute nodes. To list the nodes on rack 1:

cimage --list-nodes r1

It will show output in the form "node: image_name kernel" similar to

r1i0n0: compute-sles15sp1 2.6.26.46-0.12-smp

Thus node r1i0n0 is running the image "compute-sles15sp1" and the kernel version "2.6.26.46-0.12-smp".
For the remaining steps, it is assumed that those are the images and kernel available.

3. List the available images:

cimage --list-images

which will list the images available for the compute nodes. Each image may have multiple kernels.

4. Unless you are experienced in managing the image files, we suggest that you create a copy of the image in use and
install PBS in that copy. To copy an image:

cinstallman --create-image --clone --source compute-sles15sp1 --image compute-sles15sp1pbs

5. The image file lives in the directory /opt/clmgr/image/images, so change into the tmp directory found in the
new image just cloned:

cd /opt/clmgr/image/images/compute-sles15sp1pbs/tmp

6. Chroot to the new image file:

chroot /opt/clmgr/image/images/compute-sles15sp1pbs /bin/sh

The new root is in effect.

7. Download, unzip and untar the PBS package

8. Make sure that parameters for PBS_HOME, PBS_EXEC and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25

9. Install the PBS execution sub-package in the normal execution directory, /opt/pbs, in this system image:

rpm -i <path/to/sub-package>pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hard-
ware>.rpm

10. Do not start PBS

11. Exit from the chroot shell and return to root's normal home directory.

12. Power down each rack of compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node off $n

done

13. Publish the new system image to the compute nodes:

cimage --push-rack compute-sles15sp1pbs r*
IG-32 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
This instruction will take several minutes to finish.

14. Set the new image and kernel to be booted. This need not be done if: (1) rather than cloning a new image, you have
installed PBS into the image already running on the compute nodes; or (2) you are using an image that was already
pushed to the nodes.

cimage --set compute-sles15sp1pbs 2.6.26.46-0.12-smp r*i*n*

15. Power up the compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node on $n

done

It will take several minutes for the compute nodes to reboot.

3.5.4.6 Start PBS Server

1. Log on to the Service node as root

2. On the Service node, start the PBS server, scheduler, and communication daemons:

systemctl start pbs

or

<path to script>/pbs start

3.5.4.7 Configure Licensing

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

3.5.4.8 Add Compute Nodes

Using qmgr, add the compute nodes to the PBS configuration:

for N in `cnodes --ice-compute`

do

qmgr -c "create node $N"

done

If you use the IP address for the name of the vnode:

1. Add PBS_MOM_NODE_NAME=<IP address> to pbs.conf on the execution host

2. Restart MoM

3.5.4.9 Configuring Placement Sets on the HPE 8600

Placement sets improve job placement on execution nodes. If you want to use cgroups, you can generate placement set
information. See "Placement Sets" on page 167 in the PBS Professional Administrator's Guide.

Placement sets can be defined only after you have defined the compute nodes as in the previous section. Put placement
set resource information in a Version 2 configuration file for each host. Make sure that the vnode names you use in your
Version 2 configuration file are exactly the same as the names generated by the cgroups hook.
PBS Professional 2022.1 Installation & Upgrade Guide IG-33

Chapter 3 Installation
Steps to generate placement sets:

1. Shut down the server.

2. Add a resource named "router" (the script uses this exact name):

Qmgr: create resource router type=string_array, flag=h

3. Restart the server

4. Generate your placement sets and set their resource values at vnodes; you can use the sgiICEplacement.sh script,
which is in the unsupported directory, as an example

5. Verify the result:

a. Run the pbsnodes -a command

b. Look for the line "resources_available.router" at each vnode. The value assigned to the "router"
resource should be in the form "r#,r#i#", where r identifies the rack number and i identifies the IRU number.
IG-34 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.5.4.10 Configure Cgroups to Manage Cpusets

Do the following steps as root on the server node (service0).

1. Make sure that cgroups subsystems including cpuset are mounted on the compute nodes. See "Configuring and
Using PBS with Cgroups" on page 311 in the PBS Professional Administrator's Guide.

2. Modify the cgroups hook configuration file:

a. Export the cgroups hook configuration file:

qmgr -c "export hook pbs_cgroups application/x-config default" > pbs_cgroups.json

b. Edit the cgroups configuration file. To get default cpuset behavior, set these:

"vnode_per_numa_node" : true,

"use_hyperthreads" : true,

"ncpus_are_cores" : false,

We describe how to manage hyperthreading behavior in "Configuring Hyperthreading Support" on page 323 in
the PBS Professional Administrator's Guide.

c. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook config-
uration file. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

d. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

e. Read in the updated cgroups hook configuration:

qmgr -c "import hook pbs_cgroups application/x-config default pbs_cgroups.json"

3. Enable the cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

4. Restart the MoMs, using either systemctl or the start/stop script:

for n in `cnodes --ice-compute`; do

ssh $n "systemctl restart pbs"

done

or

for n in `cnodes --ice-compute`; do

ssh $n "<path to script>/pbs restart"

done

5. Check that you have created one vnode for each NUMA node, and that the vnode state is free:

pbsnodes -av
PBS Professional 2022.1 Installation & Upgrade Guide IG-35

Chapter 3 Installation
3.5.5 Making User Paths Work

If you're installing PBS for the first time, make sure that user PATHs include the location of the PBS commands. If users
already have paths to PBS commands, you can either make symbolic links so that users don't have to change their
PATHs, or users can set their PATHs to the locations of the commands.

3.5.5.1 Setting User Paths to Location of Commands

Users should set their path to include PBS_EXEC/bin and PBS_EXEC/sbin. For example, if PBS_EXEC is /opt/pbs, by
including /opt/pbs/bin, users will have PBS executables in their path.

3.5.5.2 Making Existing User Paths Work with New Location

You may need to make users' PATH variable point to the new PBS_EXEC directory, especially if PBS_EXEC is in a
non-default location, or if you're using a new location. You can use symbolic links to enable users to access PBS com-
mands via their current PATH:

<user PATH>/bin -> <PBS_EXEC>/bin

<user PATH>/sbin -> <PBS_EXEC>/sbin

For example if the old location was /usr/pbs_bin, create the link /usr/pbs_bin/bin -> /opt/pbs/bin.

3.5.5.3 Testing User Paths

• Test that a normal user can submit a job. As a normal user, type:
echo "sleep 60" | /opt/pbs/bin/qsub

This submits a job to the queue named 'workq' (the queue that is automatically defined as the default queue)

• If you've changed the location of PBS commands and used symbolic links to allow users to keep their old PATHs,
verify that the old paths work:
echo "sleep 60" | <old user path>/bin/qsub

3.5.6 Caveats for Uninstalling on Linux

Using rpm -e, even on an older package than the one you are currently using, will cause any currently running PBS
daemons to shut down, and will also remove the system V init and/or systemd service startup files. This will prevent
PBS daemons from starting automatically at system boot time. If you wish to remove an older RPM without these
effects, use rpm -e --noscripts.
IG-36 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.6 Installing via dpkg on Ubuntu

To install PBS Professional on Ubuntu, use the following steps:

1. Choose the .deb package to install. Make sure it is appropriate for the host's function, which could be server, execu-
tion, or client host.

2. Use dpkg -i to install the .deb package:

dpkg -i <.deb package>

3. Update /etc/pbs.conf: set the PBS_START_* parameters to the appropriate values. Here is an example where
one host will run all daemons:

PBS_EXEC=/opt/pbs

PBS_SERVER=<hostname>

PBS_START_SERVER=1

PBS_START_SCHED=1

PBS_START_COMM=1

PBS_START_MOM=1

PBS_HOME=/var/spool/pbs

PBS_CORE_LIMIT=unlimited

PBS_SCP=/usr/bin/scp

4. Each hostname must resolve to at least one non-loopback IP address. Typically, the default /etc/hosts file does
not conform to this prerequisite, so you probably need to do additional network configuration to make PBS work on
Ubuntu. You can do this by using DNS or by adding a new entry into /etc/hosts that associates the hostname with
a non-loopback IP address. To update /etc/hosts:

Update the IP address for the server host:

127.0.0.1 localhost

192.168.238.135 <server hostname>

The following lines are desirable for IPv6-capable hosts:

::1 ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

5. If the PBS Data service management account, usually called pbsdata, does not already exist, create it. See section
3.5.1.3, "Create PBS Data Service Management Account", on page 23.

6. Start PBS:

/etc/init/pbs start

3.7 Installing PBS on Windows Hosts

3.7.1 Daemon Layout

MoMs and client commands can run on Windows machines, but all other PBS components are installed on Linux hosts.
Install the Windows MoM and client packages, and install your chosen Linux server/scheduler/comm package.
PBS Professional 2022.1 Installation & Upgrade Guide IG-37

Chapter 3 Installation
3.7.2 Prerequisites

Please do not jump straight to this section in your reading. Before downloading and installing PBS, please make sure
that you have read the following and taken any required steps:

• Prerequisites: All of Section 2.1, "Prerequisites for Running PBS", Section 2.3, "PBS Configurations for Windows",
Section 2.3.6, "User Authorization Under Windows", and Section 2.3.8, "Windows Caveats" and their subsections.

• Please read Section 3.1, "Overview of Installation".

• Please start your installation by following the steps in Section 3.3, "Major Steps for Installing PBS Professional".

• Please check all of Section 3.4, "All Installations" and its subsections to make sure you have prepared properly.

3.7.3 Default Installation Locations

On Windows systems, PBS is installed in \Program Files (x86)\PBS\.

Default installation directories:

PBS_HOME: C:\Program Files (x86)\PBS\home

PBS_EXEC: C:\Program Files (x86)\PBS\exec

3.7.4 Where to Run Daemons (Services)

When PBS is installed on a complex, the MoM must be run on each execution host. The server, scheduler, and communi-
cation daemons are installed on a Linux front-end system. The PBS Windows package contains the following:

• PBS Professional software

• Supporting text files (README etc.)

3.7.5 PBS Requirements on Windows

All Windows hosts in a PBS complex must be in the same domain.

PBS Professional is supported if the domain controller server is configured "native". Running PBS in an environment
where the domain controllers are configured in "mixed-mode" is not supported.

You must install PBS Professional from an Administrator account.

Before you install PBS on Windows, make sure you are using the correct type of account. See section 2.3.5, "Windows
Configuration in a Domained Environment", on page 14.

PBS Professional requires that the drive that PBS was installed under (e.g. \Program Files\PBS or \Program
Files (x86)\PBS) be configured as an NTFS filesystem.

Before installing PBS Professional, be sure to uninstall any old PBS Professional files. For details see "Uninstalling PBS
Professional on Windows” on page 44.

You can specify the destination folder for PBS using the "Ask Destination Path" dialog during setup.

3.7.6 Make Sure Hostnames Resolve Correctly

Make sure that all of your hosts consistently resolve to the correct IP addresses. Wrong IP address to hostname transla-
tion will cause errors for PBS.

Configure your system to talk to a properly configured and functioning DNS server.
IG-38 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
On each host, add the correct host entries to the following files:

c:\windows\system32\drivers\etc\hosts

hosts.equiv

Make each etc\hosts file identical on each host, and make each hosts.equiv file identical on each host.

Example 3-1: Your server is serverA, your execution host is exec01, and your client hosts are client001 and client002.
Hostnames and IP addresses look like this:

Here's what etc\hosts should look like at each host:

192.168.0.101 server

192.168.0.102 mom

192.168.0.103 client001

192.168.0.104 client002

Here's what hosts.equiv should look like at each host:

server

mom

client001

client002

3.7.7 Create Job Submission Accounts

Set up any user accounts that will be used to run PBS jobs. All job submission accounts must be part of the same domain
as any Windows hosts. The accounts should not be Administrator-type accounts, that is, not a member of the "Domain
Administrators" or local "Administrators" group, so that basic authentication using hosts.equiv can be used.

Once the accounts have been set up, list all PBS hosts (server, execution, client, file storage) in the hosts.equiv or job
submitters' .rhosts files. Do this on all the hosts, to allow accounts on these hosts to access PBS services such as job
submission and remote file copying.

The hosts.equiv file can usually be found in the following location:

C:\windows\system32\drivers\etc\hosts.equiv

3.7.8 Create Installation and Service Accounts

Before you install PBS, you must create the accounts that PBS requires.

On Windows, the PBS data service management account is the same as the PBS Windows service account. You do not
need to create a separate data service account.

You need to create the installation and service accounts. We give instructions below.

Table 3-6: Example Host Names and Addresses

Hostname Host IP Address

serverA 192.168.0.101

exec01 192.168.0.102

client001 192.168.0.103

client002 192.168.0.104
PBS Professional 2022.1 Installation & Upgrade Guide IG-39

Chapter 3 Installation
You do not need to create the following accounts:

PBS data service management account

On Windows, the PBS data service management account is the same as the PBS Windows service account. You do
not need to create a separate PBS data service management account.

Data service account

Account that is internal to the data service, and has its own data service password. On installation, PBS creates the
internal data service account, and maps it to the PBS service account. The data service account name must be the
same as the PBS service account.

You do need to create the installation and service accounts, and we give instructions below.

3.7.8.1 Creating Installation Account in Domained Environment

The installation account is the account from which PBS is installed. The installation account must be the only account
that will be used for all steps of PBS installation including modifying configuration files, setting up failover, and so on.
If any of the PBS configuration files are modified by an account that is not the installation account, permissions/owner-
ships of the files could be reset, rendering them inaccessible to PBS. For domained environments, the installation
account must be a member of the local Administrators group on the local computer.

3.7.8.2 Creating PBS Service Account in Domained Environment

The PBS service account is the account under which the PBS service (pbs_mom) will run.

• This account can have any name.

• The name of the account defaults to pbsadmin.

• This account must exist while any PBS services are running.

• The password for this account should not be changed while PBS is running.

• Create the PBS service account before installing PBS.

• For domained environments, the PBS service account must:

a. be a domain account

b. be a member of the "Domain Users" group, and only this group

c. have "domain read" privilege to all users and groups.

• For a domained environment, delegate "read access to all users and groups information" to the PBS service account.
See section 3.7.8.2.i, "Delegating Read Access to PBS Service Account in Domained Environment", on page 41.

• If the PBS service account is set up with no explicit domain read privilege, MoM may hang. The hang happens
when users submit jobs from a network mapped drive without the -o/-e option for redirecting files. When this
happens, bring up Task manager, look for a "cmd" process by the user who owned the job, and kill it. After the first
cmd process is killed, you may have to look for a second one (the first one copies the output file, the second one
does the error file). This should un-hang the MoM.

• The PBS service account must be a member of the local Administrators group. Add the PBS service account to the
local Administrators group:
net localgroup Administrators <domain name>\<service account name> /add

• Do not put a CPU time limit on the service account . If you do, the datastore will die and kill the server.
IG-40 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.7.8.2.i Delegating Read Access to PBS Service Account in Domained
Environment

• To delegate "read access to users and groups information" to the PBS service account:

a. On the domain controller host, bring up Active Directory Users and Computers.

b. Select <domain name>, right mouse click, and choose "Delegate Control". This will bring up the "Delegation of
Control Wizard".

c. When it asks for a user or group to which to delegate control, select the name of the PBS service account.

d. When it asks for a task to delegate, specify "Create a custom task to delegate".

e. For active directory object type, select the "this folder, existing objects in this folder, and creation of objects in
this folder" button.

f. For permissions, select "Read" and "Read All Properties".

g. Exit out of Active Directory.

3.7.8.2.ii Service Account Caveats

If you change the name of the PBS service account:

• You must restart the daemons on that host

• On Windows, you must re-register the MoM service

3.7.9 Installation Notes for Domained Environment

3.7.9.1 Installation Path

• The destination/installation path of PBS must be NTFS. All PBS configuration files must reside on an NTFS filesys-
tem.

3.7.9.2 Notes on Installation

• The installation account must be used in all future invocations of the install program when setting up a complex of
PBS hosts.

• The install program requires the installer to supply the password for the PBS service account. This same password
must be supplied to future invocations of the install program on other hosts.

• The install program will enable the following rights to the PBS service account: "Create Token Object", "Replace
Process Level Token", "Log On As a Service", and "Act As Part of the Operating System".

• The install program will enable Full Control permission to local "Administrators" group on the install host for all
PBS-related files.

• The install program will give you a specific error if the PBS service account is not a member of the local Administra-
tors group on the local computer. It will quit at this point, and you must go back:

a. Make the PBS service account be a member of the local Administrators group on the local computer:

net localgroup Administrators <name of PBS service account> /add

b. Re-run the install program.
PBS Professional 2022.1 Installation & Upgrade Guide IG-41

Chapter 3 Installation
3.7.10 Steps to Install PBS on Windows

1. On each execution and client host, do the following:

a. Log in with the installation account.

b. Install the KB2999226 update for Windows on all Windows Server 2012 execution and client machines.

c. Download the MSI installer (the .msi file).

d. Double-click the MSI installer; the splash screen is displayed.

e. Click the Next button to move to the license page. Accept the license.

f. Click the Next button and choose the path where you will install the PBS executable. By default this path
points to "C:\Program Files (x86)\PBS\".

g. Using "Run As Administrator", open a Command prompt.

2. Install the server/scheduler package on a Linux host. See section 3.5.2.4.ii, "Install PBS on Server Host", on page
27.

3.7.11 Post-installation Steps

3.7.11.1 Configuring MoMs

On each execution host, manually execute the win_postinstall.py script as shown below. When you specify the PBS
service account, whether or not you are on a domain machine, include only the username, not the domain. For example,
if the full username on a domain machine is <domain>\<username>, pass only username as an argument:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t execution -c <path to scp.exe>

3.7.11.2 Configuring Client Hosts

On each client host, manually execute the win_postinstall.py script as shown below. When you specify the PBS ser-
vice account, whether or not you are on a domain machine, include only the username, not the domain. For example, if
the full username on a domain machine is <domain>\<username>, pass only username as an argument:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t client -c <path to scp.exe>

3.7.11.3 Defining Vnodes

Using the qmgr command, define the vnodes that the server will manage. See "Creating Vnodes" on page 42 in the PBS
Professional Administrator's Guide.

3.7.11.4 Configuring Remote File Copy

If you will use scp for your remote file copy mechanism, configure passwordless ssh. If you will use $usecp to spec-
ify your remote file copy mechanism, you do not need to configure passwordless ssh. See "Setting File Transfer Mech-
anism" on page 441 in the PBS Professional Administrator's Guide.
IG-42 PBS Professional 2022.1 Installation & Upgrade Guide

Installation Chapter 3
3.7.12 Post-installation Considerations on Windows

3.7.12.1 File Creation

The installation process automatically creates the following file:

[PBS Destination folder]\pbs.conf

containing at least the following entries:

PBS_EXEC=[PBS Destination Folder]\exec

PBS_HOME=[PBS Destination Folder]\home

PBS_SERVER=<server name>

PBS_START_SERVER=<value>

PBS_START_SCHED=<value>

PBS_START_MOM=<value>

PBS_START_COMM=<value>

PBS_AUTH_METHOD=pwd

where PBS_EXEC will contain subdirectories where the executable and scripts reside, PBS_HOME will house the log
files, job files, and other processing files, and server-name will reference the system running the PBS server. The
pbs.conf file can be edited by calling the PBS program "pbs-config-add". For example:

\Program Files (x86)\PBS\exec\bin\pbs-config-add "PBS_SCP=C:\Windows\System32\OpenSSH\scp.exe"

Don't edit pbs.conf directly as the permission on the file could get reset causing other users to have a problem running
PBS.

3.7.12.2 File Access on Windows

Upon installation, some PBS directories have restricted access. The following directories have files that are readable by
the \\Everyone group but writable only by Administrators-type accounts:

PBS_HOME/mom_logs/

PBS_HOME/spool/

The following directories have files that are only accessible to Administrators-type accounts:

PBS_HOME/mom_priv/

3.7.13 Startup on Windows

• The auto-startup of the MoM service is controlled by the PBS pbs.conf file as well as the Services dialog. You
invoke this via Settings->Control Panel->Administrative Tools->Services. If the service fails to start up with
the message, "incorrect environment", it means that the PBS_START_MOM pbs.conf variable is set to 0
(False).

• On Windows, sometimes PBS may fail to start automatically after the boot. We recommend that you change the
startup mode from " [Startup type: Automatic]" to "[Startup type: Automatic (Delayed Start)]", which means
"shortly after boot".

Open regedit to change the registry keys. These are, in some versions of Windows: HKLM\SYSTEM\Current-
ControlSet\services\<PBS Professional>\DelayedAutostart.

When startup is delayed, this has the value 1. When not delayed, its value is 0.
PBS Professional 2022.1 Installation & Upgrade Guide IG-43

Chapter 3 Installation
3.7.13.1 Setting Up User Accounts and Directories

You should review the recommended steps for setting up user accounts and home directories, as documented in section
2.3.6, "User Authorization Under Windows", on page 15.

3.7.14 Uninstalling PBS Professional on Windows

For uninstalling versions 5.4.2 through 8.0, use a domain admin account. For later versions, use an Administrator
account. Note that as of 19.4.1, the only PBS service on Windows is PBS_MOM.

1. Use the Task Manager to stop/kill the services: PBS_SERVER, PBS_SCHED, PBS_COMM, PBS_MOM, and
PBS_RSHD.

2. Manually de-register the PBS services:

pbs_account --unreg pbs_server

pbs_account --unreg pbs_sched

pbs_account --unreg pbs_comm

pbs_account --unreg pbs_mom

pbs_account --unreg pbs_rshd

3. Use the MSI installer to uninstall the PBS package. At the second double click, you get the "Remove" option.

4. Manually delete the PBS directory at "C:\\program Files (x86)\PBS"
IG-44 PBS Professional 2022.1 Installation & Upgrade Guide

4

Communication

4.1 Communication Within a PBS Complex

There are two primary communication methods in PBS: TCP, where a client sends a request to a server using a non-per-
manent TCP connection, and TPP, in which daemons establish permanent TCP connections to one or more pbs_comm
daemons and use these permanent connections to reach other daemons. TPP stands for "TCP-based Packet Protocol".

A PBS complex using TPP can handle much greater throughput than in previous versions of PBS, and the scheduler can
start jobs much faster. A PBS complex using TPP does not need as many reserved ports as previous versions.

4.2 Terminology

Endpoint

A PBS server, scheduler, or MoM daemon.

Communication daemon, comm

The daemon which handles communication between the server, scheduler, and MoMs. Executable is
pbs_comm.

Leaf

An endpoint (a server, scheduler, or MoM daemon.)

TPP

TCP-based Packet Protocol. Protocol used by pbs_comm.

4.3 Prerequisites

Each hostname must resolve to at least one non-loopback IP address.

4.4 Communication Parameters

4.4.1 Location of Communication Daemon for Endpoint

You can tell each endpoint which communication daemon it should talk to. Specifying the port is optional.

PBS_LEAF_ROUTERS
Parameter in /etc/pbs.conf. Tells an endpoint where to find its communication daemon.

Format: PBS_LEAF_ROUTERS=<host>[:<port>][,<host>[:<port>]]
PBS Professional 2022.1 Installation & Upgrade Guide IG-45

Chapter 4 Communication
4.4.2 Location of Other Communication Daemons

When you add a communication daemon, you must tell it about the other pbs_comms in the complex. When you inform
communication daemons about each other, you only tell one of each pair about the other. Do not tell both about each
other. We recommend that an easy way to do this is to tell each new pbs_comm about each existing pbs_comm, and
leave it at that.

PBS_COMM_ROUTERS
Parameter in /etc/pbs.conf. Tells a pbs_comm where to find its fellow communication daemons.

Format: PBS_COMM_ROUTERS=<host>[:<port>][,<host>[:<port>]]

4.4.3 Number of Threads for Communication Daemon

By default, each pbs_comm process starts four threads. You can configure the number of threads that each pbs_comm
uses. Usually, you want no more threads than the number of processors on the host.

PBS_COMM_THREADS
Parameter in /etc/pbs.conf. Tells pbs_comm how many threads to start.

Maximum allowed value: 100

Format: Integer

Example:

PBS_COMM_THREADS=8

4.4.4 Daemon Log Mask

By default, pbs_comm produces few log messages. You can choose more logging, usually for troubleshooting. See sec-
tion 4.5.10, "Logging and Errors with TPP", on page 54 for logging details. The daemon rereads this parameter when
HUPed.

PBS_COMM_LOG_EVENTS
Parameter in /etc/pbs.conf. Tells pbs_comm which log mask to use.

Format: Integer

Default: 511

Example:

PBS_COMM_LOG_EVENTS=<log level>

4.4.5 Name of Endpoint Host

By default, the name of the endpoint's host is the hostname of the machine. You can set the name that the endpoint uses
for its host. This is useful when you have multiple networks configured, and you want PBS to use a particular network.
TPP internally resolves the name to a set of IP addresses, so you do not affect how pbs_comm works.
IG-46 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
PBS_LEAF_NAME
Parameter in /etc/pbs.conf. Tells endpoint what name to use for network. The value does not include a
port, since that is usually set by the daemon.

Canonicalized value of this becomes the value of resources_available.host.

By default, the name of the endpoint's host is the hostname of the machine. You can set the name where an end-
point runs. This is useful when you have multiple networks configured, and you want PBS to use a particular
network.

The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom
attribute; if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom
attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not affect how pbs_comm works.

Format: String

Example:

PBS_LEAF_NAME=host1

4.4.6 Whether Host Runs Communication Daemon

Just as with the other PBS daemons, you can specify whether each host should start pbs_comm.

PBS_START_COMM
Parameter in /etc/pbs.conf. Tells PBS init script whether to start a pbs_comm on this host if one is
installed. When set to 1, pbs_comm is started.

Format: Boolean

Default: 0

Example:

PBS_START_COMM=1

4.4.7 Scheduler Throughput Mode

You can tell the scheduler to run asynchronously, so it doesn't wait for each job to be accepted by MoM, which means it
also doesn't wait for an execjob_begin hook to finish. Especially for short jobs, this can give you better scheduling per-
formance. You can run the scheduler asynchronously only when the complex is using TPP mode.

throughput_mode
Scheduler attribute. When set to True, the scheduler runs asynchronously and can start jobs faster. Only avail-
able when complex is in TPP mode.

Format: Boolean

Default: True

Example:

qmgr -c "set sched throughput_mode=<Boolean value>"

Trying to set the value to a non-Boolean value generates the following error message:

qmgr obj= svr=default: Illegal attribute or resource value

qmgr: Error (15014) returned from server
PBS Professional 2022.1 Installation & Upgrade Guide IG-47

Chapter 4 Communication
4.4.8 Managing Communication Behavior

rpp_highwater
Server attribute.

This is the maximum number of messages per stream (meaning the maximum number of messages between
each pair of endpoints).

Format: Integer

Valid values: Greater than or equal to one

Default: 1024

Python type: int

rpp_max_pkt_check
Server attribute.

Maximum number of TPP messages processed by the main server thread per iteration.

Format: Integer

Default: 64

Python type: int

rpp_retry
Server attribute.

In a fault-tolerant setup (multiple pbs_comms), when the first pbs_comm fails partway through a message,
this is number of times TPP tries to use any other remaining pbs_comms to send the message.

Format: Integer

Valid values: Greater than or equal to zero

Default: 10

Python type: int
IG-48 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
4.5 Inter-daemon Communication Using TPP

The PBS server, scheduler, and MoM daemons communicate with each other using TPP through the communication dae-
mon pbs_comm, except for scheduler-server and server-server communication, which uses TCP. The server, scheduler,
and MoMs are communication endpoints, connected by one or more pbs_comm daemons. The following figure illus-
trates communication within a PBS complex using TPP.

Figure 4-1:Communication Within PBS Complex Using TPP

Communication daemons are connected to each other. If there are multiple pbs_comms, and two endpoints on different
pbs_comms transmit data, communication between endpoints goes from the first endpoint, to the endpoint's configured
pbs_comm daemon, to the pbs_comm configured for the receiving endpoint, to the receiving endpoint.

4.5.1 Inter-daemon Connection Behavior Using TPP

When each endpoint starts up, it automatically attempts to connect to the configured or default pbs_comm daemon. If
the pbs_comm daemon is available, the connection attempt succeeds; if not, the endpoint continues to attempt to con-
nect to the pbs_comm daemon using a background thread. The order in which endpoints and pbs_comms are started is
not important. Connections are completed when the pbs_comm daemon becomes available. If you have configured
multiple pbs_comms, each endpoint continues to periodically attempt to connect to each one until all connections suc-
ceed.

If the connection from an endpoint to a pbs_comm daemon fails, the endpoint attempts to find another already-con-
nected pbs_comm daemon to send data via that connection. When the original failed connection is reestablished (via
automatic periodic background attempts to connect to the failed daemon) data exchange switches over to the original
connection.

When a pbs_comm daemon is configured to talk to other pbs_comms, it behaves exactly the same way as an endpoint.

Just after you start a MoM, it may not appear to be up, because there is a delay between endpoint connection attempts.
The MoM may need up to 30 seconds to show up.

If you have only one communication daemon installed (failover is not configured), and that communication daemon is
killed, vnodes become unreachable.
PBS Professional 2022.1 Installation & Upgrade Guide IG-49

Chapter 4 Communication
4.5.1.1 Sending and Receiving

Endpoints have a built-in retry mechanism to re-send information that has not been acknowledged by the receiver. The
receiving endpoint can determine whether it has received duplicate data packets.

4.5.1.2 Data Compression

Some jobs cause the server and MoMs to exchange a very large amount of data. The communication daemon automati-
cally compresses the data before communication. In communications, there is usually benefit from compression,
because communication is usually CPU-bound, not I/O-bound.

4.5.2 Communication Daemon Syntax

4.5.2.1 Usage on Linux

On Linux, the pbs_comm executable takes the following options:

pbs_comm [-N] [-r <other routers>] [-t <number of threads>]

-r
Used to specify the list of other pbs_comm daemons to which this pbs_comm must connect. This is equivalent
to the pbs.conf variable PBS_COMM_ROUTERS. The command line overrides the variable. Format:

<host>[:<port>][,<host>[:<port>]]

-t
Used to specify the number of threads the pbs_comm daemon uses. This is equivalent to the pbs.conf vari-
able PBS_COMM_THREADS. The command line overrides the variable. Format:

Integer

-N
The communication daemon runs in standalone mode.

4.5.3 Adding Communication Daemons

4.5.3.1 Installation Location of Communication Daemons

The pbs_comm daemon can be installed on any host that is connected to the PBS complex. By default, a pbs_comm is
installed on the server host(s), and all endpoints will connect to it (them) by default.

4.5.3.2 Configuring Communication Daemons

Make sure that when you configure additional communication daemons, you only point one of each pair of pbs_comms
to the other; do not point both at each other. We recommend that an easy way to do this is to tell each new pbs_comm
about each existing pbs_comm, and leave it at that.
IG-50 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
Steps to configure additional pbs_comms:

1. Tell each endpoint that goes with the new pbs_comm where to find the new pbs_comm. Edit the pbs.conf file
on the endpoint's host, and add:
PBS_LEAF_ROUTERS=<host>[:<port>][,<host>[:>port>]]

2. For each new pbs_comm, tell each new pbs_comm about previous pbs_comms. Do not tell existing pbs_comms
about new pbs_comms. So if you have an existing pbs_comm C1 and add a new pbs_comm C2, only point C2 to
C1. In pbs.conf on C2's host, add:

PBS_COMM_ROUTERS=<C1 host>[:<C1 port>]

If you add C3, point C3 to both C1 and C2. On C3's host, add:

PBS_COMM_ROUTERS=<C1 host>[:<C1 port>],<C2 host>[:<C2 port>]

3. Optionally, set the number of threads the new pbs_comm will use. The default is 4. We recommend not specifying
more threads than processors on the host. In pbs.conf, add:

PBS_COMM_THREADS=<number of threads>

4. Optionally, set the desired log level for the new pbs_comm. In pbs.conf, add:

PBS_COMM_LOG_EVENTS=<log level>

5. On the new pbs_comm host, tell the init script to start pbs_comm. In pbs.conf, add:

PBS_START_COMM=1

1. If you are running a PBS complex that contains both Linux and Windows execution hosts, on any hosts running
comms, configure sssd so that the users of the Windows domain can log in to the Linux host on which
pbs_server and sssd run. See "Mixed Linux-Windows Operation" on page 631 in the PBS Professional
Administrator's Guide.

For an example, see section 11.4.5, "Configuring SSSD", on page 510. For information on configuring sssd, see
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/
index#sssd-ad-proc and https://access.redhat.com/articles/3023951.

If you want the Linux host to automatically create a home directory for an Active Directory user if that home direc-
tory does not exist at login, you may have to set SELinux to permissive mode. This is optional.

4.5.3.2.i Caveats for Configuring Communication Daemons

When you HUP the communication daemon, it reads only PBS_COMM_LOG_EVENTS from pbs.conf. If you
change any of its other parameters, you must restart the communication daemon:

<path to start/stop script>/pbs restart

4.5.4 Recommendations for Maximizing Communication

Performance

You can partition your endpoints so that each group of endpoints has its own pbs_comm(s). Keeping the workload for
each pbs_comm below the level that degrades performance will speed up your complex. Your site's characteristics
determine how many pbs_comms you need. Here are some rules of thumb for adding pbs_comms:

• One pbs_comm per 2000 MoMs, where communication is light

• One pbs_comm per rack of ~150 - 200 MoMs, where communication is heavier

• If server start time doubles, add a pbs_comm

• If the CPU usage for a pbs_comm is above 10 or 15 percent, add a pbs_comm

• If performance drops, consider adding a pbs_comm
PBS Professional 2022.1 Installation & Upgrade Guide IG-51

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc
https://access.redhat.com/articles/3023951

Chapter 4 Communication
4.5.5 Robust Communication with TPP

4.5.5.1 Failover and Communication Daemons

When failover is configured, endpoints automatically connect to the pbs_comm daemons running on either the primary
or secondary PBS server hosts, allowing for communication failover. If both pbs_comms are available, communication
goes through the pbs_comm on the primary server host. If the primary server host fails, communication automatically
goes through the pbs_comm on the secondary server host. When the primary server host comes back up, communica-
tion is automatically resumed by the pbs_comm on the primary server host. If failover is configured and the only
pbs_comms are on the primary and secondary server hosts, and both of those hosts fail, communication between end-
points is unavailable.

4.5.5.2 Fault Tolerance

By default, endpoints automatically connect to the pbs_comm daemon running at the server host.

You can configure each endpoint to connect to multiple communication daemons. If one of the communication daemons
fails, the endpoint can still communicate with the rest of the complex using the alternate communication daemons. When
a failed pbs_comm comes back online, it automatically resumes handling communications.

If you have configured failover, you have communication fault tolerance to the extent of one of the pbs_comms on the
primary or secondary server host failing. If you want fault tolerance beyond or instead of failover, you must explicitly
install and configure additional pbs_comm daemons.

4.5.6 Extending Your Complex

To add a new rack to a PBS complex using TCP, take the following steps:

1. Install MoMs as usual on the new execution hosts.

2. Optionally, edit the configuration file on the new MoM hosts to include failover settings.

3. You can configure new MoMs to communicate via existing pbs_comms. However, if you are adding many MoMs,
we recommend deploying additional pbs_comms. Follow the steps in "Adding Communication Daemons” on
page 50.

4. Start the daemons in the new rack, and tell the server about the new vnodes:

qmgr -c "create node <vnode name>"

If you use the IP address for the name of the vnode:

a. Add PBS_MOM_NODE_NAME=<IP address> to pbs.conf on the execution host

b. Restart MoM

4.5.7 Changing IP Address of pbs_comm Host

To change the IP address of a pbs_comm host:

1. Change the IP address of the host

2. Update the DNS

3. Restart pbs_comm on that host
IG-52 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
Each endpoint or pbs_comm periodically retries the connection to each pbs_comm that it knows about. When a
pbs_comm becomes unavailable, all connections to it are automatically retried until they succeed. Endpoint and
pbs_comm IP addresses to target pbs_comms are internally cached for a short time, so if you change the IP address of
a target, they will not be able to connect for this time. When this time runs out, endpoints and pbs_comms refresh their
IP addresses, and connections are reestablished.

4.5.8 Configuring Communication for Internal and External

Networks

PBS complexes often use an internal network and an external network. PBS clients such as qsub and qstat communi-
cate to the server over the external network. The daemons communicate with each other over the internal network. In
this case, the server host is configured with multiple network interfaces, one for each of the different networks.

The default value of the endpoint's name is the hostname. The TPP network resolves the endpoint's name to the IP
address of the machine, and could end up using the external IP address of the host. When this endpoint, for example the
server, sends a message to another endpoint, say the MoM, it would embed this external IP address in the message. The
MoM detects that this message has arrived from an external IP address and could reject the message, since the MoM is
typically configured to use only the internal network and is unaware of the external IP address.

Instead of letting the endpoint use the machine hostname as the endpoint's name (which is the default), set the endpoint's
name to a variable that resolves to only the internal network address(es) of the server host. To do that, set the
PBS_LEAF_NAME pbs.conf variable to the internal network name of the host.

The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom attribute; if
you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom attribute at vnode
creation.

4.5.9 Troubleshooting Communication with TPP

New connections are being dropped at a pbs_comm

Check whether the pbs_comm log has messages saying that the process has exceeded the configured nfiles (the open
file limit). If so, increase the allowed max open files limit, and restart the pbs_comm daemon.

Message saying NOROUTE to destination xxx:nnn

The "noroute" message shows the destination address and the pbs_comm daemon or endpoint which generated the error.
Example:

Received noroute to dest ::1:15003, msg:pbs_comm:::1:17001: Dest not found

The above message means that the pbs_comm running at address ::1:17001 has responded that the destination address
(MoM, in this case) ::1:15003 is not known to it. This means the MoM at localhost:15003 was not started (it is down)
and/or did not register its address with this pbs_comm. Check the MoM logs for that MoM, and see whether it was
started, and if so, what addresses it registered and to which pbs_comm daemon. These log lines from the pbs_mom logs
may be useful:

Registering address ::1:15003 to pbs_comm

Registering address 192.168.184.156:15003 to pbs_comm

…

….

Connecting to pbs_comm hostname:port

The above messages list the actual pbs_comm daemon that the MoM or any endpoint is connected to, and when it con-
nected. After connection, it registered the endpoint with the addresses as listed in the "Registering address" messages,
before the connect message.
PBS Professional 2022.1 Installation & Upgrade Guide IG-53

Chapter 4 Communication
Corresponding to the above messages in the endpoint log, (in this case, MoM), there should be messages in the associ-
ated pbs_comm daemon's logs, as follows:

tfd=14: Leaf registered address ::1:15003

tfd=14: Leaf registered address 192.168.184.156:15003

The above messages mean that a connection from socket file descriptor 14 at the pbs_comm daemon received data to
register the endpoint with addresses ::1:15003 and 192.168.184.156:15003.

The above messages from the endpoint and the associated pbs_comm daemon tell us whether there are address mis-
matches, or the endpoints never connected, or connected to the wrong MoMs, or the endpoints are not configured to use
TCP.

MoM down/stale on pbsnodes -av output

• Check whether the respective MoM is actually up.

• Check that the MoM that is showing as down is actually pointing to the correct pbs_comm daemon, by checking
whether it is the default or PBS_LEAF_ROUTERS is set.

• Check that the pbs_comms that are handling the pbs_server and the MoM in question are running, and that
none of them have a system error in their logs such as no files etc.

• Check the connection settings between this pair of pbs_comms is as intended. Check each of the pbs_comm's
PBS_COMM_ROUTERS settings.

• Follow a "noroute" message to trace where the "noroute" is originating, and troubleshoot why the route is not being
found .

4.5.10 Logging and Errors with TPP

4.5.10.1 Communication Daemon Logfiles

The pbs_comm daemon creates its log files under $PBS_HOME/comm_logs. This directory is automatically created
by the PBS installer.

In a failover configuration, this directory is shared as part of the shared PBS_HOME by the pbs_comm daemons running
on both the primary and secondary servers. This directory must never be shared across multiple pbs_comm daemons in
any other case.

The log filename format is yyyymmdd (the same as for other PBS daemons).

Whenever a new log file is opened, the communication daemon logs PBS_LEAF_NAME,
PBS_MOM_NODE_NAME, and the hostname. The daemon also logs all network interfaces, listing each interface and
all of the hostnames associated with that interface. In addition, it logs the PBS version and the build information.

The log record format is the same as used by other PBS daemons, with the addition of the thread number and the daemon
name in the log record. The log record format is as follows:

date-time;event_code;daemon_name(thread number);object_type;object_name;message

An example is as follows:

03/25/2014 15:13:39;0d86;host1.example.com;TPP;host1.example.com(Thread 2);Connection from leaf
192.168.184.156:19331, tfd=81 down
IG-54 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
4.5.10.2 Messages from Endpoints

Connected to pbs_comm %s

Endpoint was able to connect to the named pbs_comm daemon.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Connection to pbs_comm %s down

The endpoint's connection to the specified pbs_comm daemon is down.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Connection to pbs_comm %s failed

The endpoint failed to connect to the specified pbs_comm daemon. A system/socket error message may
accompany this message.

Log level: PBSEVENT_ERROR

Registering address %s to pbs_comm

The endpoint logs the list of IP addresses it is registering with the pbs_comm daemon.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

sd %d, Received noroute to dest %s, msg:%s

Specified stream sd (stream descriptor) has received a "noroute" message from the pbs_comm daemon indicat-
ing that the destination is not known to the pbs_comm daemon. An additional message from pbs_comm is
also printed.

Log level: PBSEVENT_ERROR

Single pbs_comm configured, TPP Fault tolerant mode disabled

Only one pbs_comm daemon was configured, so fault tolerant mode is disabled.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN
PBS Professional 2022.1 Installation & Upgrade Guide IG-55

Chapter 4 Communication
4.5.10.3 Messages from Communication Daemons

tfd=%d: endpoint registered address %s

Endpoint registered this address.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Connection from leaf %s, tfd=%d down

The connection from an endpoint just went down.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

pbs_comm %s connected

Another pbs_comm daemon connected to this pbs_comm daemon.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

pbs_comm %s accepted connection

Specified pbs_comm daemon accepted connection from this pbs_comm.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

pbs_comms should have at least 2 threads

Number of threads configured for the daemon is too few. There should be a minimum of two threads. The dae-
mon will abort.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Received TPP_CTL_NOROUTE for message, %s(sd=%d) -> %s: %s

The pbs_comm daemon received a "noroute" message from a destination endpoint. This means that the desti-
nation stream was not found in that endpoint.

Log level: PBSEVENT_ERROR

Connection from non-reserved port, rejected

The pbs_comm received a connection request from an endpoint or another pbs_comm or an endpoint, but
since the connection originated from a non-reserved port, it was not accepted.

Log level: PBSEVENT_ERROR

Failed initiating connection to pbs_comm %s

This pbs_comm daemon failed to initiate a connection to another pbs_comm.

Log level: PBSEVENT_ERROR
IG-56 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
4.5.10.4 Important Messages from Communication or Other Daemons

Compression failed

Compression routine failed. Usually due to memory constraints.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Decompression failed

Decompression routine failed due to bad input data. Usually a transmission/network error.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Error %d resolving %s

There was an error in name resolution of a hostname.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

Error %d while binding to port %d

There was an error in binding to the specified port. Usually this means the address is already in use.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE

No reserved ports available

No more reserved ports are available. Cannot initiate connection to a pbs_comm daemon. Not applicable on
Windows.

Log level: PBSEVENT_ERROR

Out of memory <in an operation>

An out-of-memory condition occurred.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN | PBSEVENT_FORCE
PBS Professional 2022.1 Installation & Upgrade Guide IG-57

Chapter 4 Communication
4.5.10.5 Informational Messages from Communication or Other

Daemons

Initializing TPP transport Layer

Starting the initialization of the TPP layer: starting threads etc.; creating internal data structures.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

TPP initialization done

Initialization completed successfully; system ready to transmit data.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Shutting down TPP transport Layer

TPP was asked to shut down.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Max files allowed = %ld

Logs the nfiles currently configured.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

Max files too low - you may want to increase it

If nfiles is <1024, the pbs_comm daemon emits the message. If nfiles configured is <100, the startup aborts.
Usually nfiles must be configured to allow the number of connections (usually the number of MoMs) the
pbs_comm process is going to handle.

Log level: PBSEVENT_SYSTEM | PBSEVENT_ADMIN

Thread exiting, had %d connections

Each thread in the TPP layer logs the number of connections it was handling. For pbs_comm, this is usually
the number of MoMs that were handled by each thread. This gives you information useful for deciding when to
increase the threads in order to distribute the load.

Log level: PBSEVENT_DEBUG | PBSEVENT_DEBUG2

4.6 Ports Used by PBS

PBS daemons listen for inbound connections at specific network ports. These ports have defaults, but can be configured
if necessary. PBS daemons use any ports numbered less than 1024 for outbound communication. For PBS dae-
mon-to-daemon communication over TCP, the originating daemon will request a privileged port for its end of the com-
munication.

PBS makes use of fully-qualified host names for identifying jobs and their locations. A PBS installation is known by the
host name on which the server is running. The canonical host name is used to authenticate messages, and is taken from
the primary name field, h_name, in the structure returned by the library call gethostbyaddr(). According to the
IETF RFCs, this name must be fully qualified and consistent for any IP address assigned to that host.

Port numbers can be set via /etc/services, the command line, or in pbs.conf. If not set by any of these means,
they will be set to the default values. The PBS components and the commands will attempt to use the system services
file to identify the standard port numbers to use for communication. If the port number for a PBS daemon can't be found
in the system file, a default value for that daemon will be used. The server and MoM daemons have startup options for
setting port numbers. In the PBS Professional Reference Guide, see "pbs_mom” on page 71, "pbs_sched” on page 105,
and "pbs_server” on page 107.

For port settings in pbs.conf, see section 9.2, "Contents of Configuration File", on page 369.
IG-58 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
A scheduler connects to the server via a persistent connection, and uses any privileged port (less than 1024) as the outgo-
ing port to talk to the server.

Under Linux, the services file is named /etc/services.

Under Windows, it is named %WINDIR%\system32\drivers\etc\services.

The port numbers listed are the default numbers used by PBS. If you change them, be careful to use the same numbers on
all systems.

4.6.1 Ports Used by PBS in TPP Mode

The table below lists the default port numbers for PBS daemons in TPP mode:

4.6.2 Port Settings in pbs.conf

You can set the following in pbs.conf:

4.7 PBS with Multihomed Systems

PBS expects the network to function according to IETF standards. Please make sure that your addresses resolve cor-
rectly. You can set host name parameters in pbs.conf to disambiguate addresses for contacting the server, sending mail,
delivering output and error files, and establishing outgoing connections.

When setting these parameters, use fully qualified host names where you could have host name collisions, for example
master.foo.example.com and master.bar.example.com. See the following sections for details.

Table 4-1: Ports Used by PBS Daemons in TPP Mode

Daemon Listening at
Port

Port
Number

Protocol Type of Communication

pbs_server 15001 TPP (TCP) All communication to server

pbs_mom 15002 TPP (TCP) All communication to MoM

pbs_datastore 15007 proprietary PBS information storage and retrieval

License server 6200 proprietary All communication to license server

pbs_comm 17001 TPP (TCP) All communication to pbs_comm

Table 4-2: Port Parameters in pbs.conf

Parameter Description

PBS_BATCH_SERVICE_PORT Port server listens on

PBS_BATCH_SERVICE_PORT_DIS DIS port server listens on

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data ser-
vice. Default is 15007.

PBS_MANAGER_SERVICE_PORT Port MoM listens on

PBS_MOM_SERVICE_PORT Port MoM listens on
PBS Professional 2022.1 Installation & Upgrade Guide IG-59

Chapter 4 Communication
Before tackling this section, make sure that you have taken care of everything listed in section 2.1.3, "Name Resolution
and Network Configuration", on page 8.

PBS uses only IPv4, so all names must resolve to IPv4 addresses.

4.7.1 Contacting the Server

Use the PBS_SERVER_HOST_NAME parameter in pbs.conf on each host in the complex to specify the FQDN of
the server, under these circumstances:

• The host on which the PBS server runs has multiple interfaces and some of these interfaces are limited to a private
network that might not be addressable outside of the immediate complex

• The server name to be used in Job IDs needs to be different from the PBS_SERVER parameter. It might become
impossible for a client to contact the server where this option is not used or is misconfigured. Take extreme care
when using PBS_SERVER_HOST_NAME for this reason.

You can specify the server name with the following order of precedence, highest first:

• Specifying server name at the client

• Specifying server name at the command line, e.g. pbsnodes -s <server name>

• Setting the PBS_PRIMARY and PBS_SECONDARY environment variables

• Setting the PBS_SERVER_HOST_NAME environment variable

• Setting the PBS_SERVER environment variable

• Setting PBS_PRIMARY and PBS_SECONDARY in pbs.conf

• Setting PBS_SERVER_HOST_NAME in pbs.conf

• Setting PBS_SERVER in pbs.conf

4.7.2 Delivering Output and Error Files

You can specify the host name portions of paths for standard output and standard error for jobs. To specify the host
where the job's standard output and error files are delivered, use the PBS_OUTPUT_HOST_NAME parameter in
pbs.conf on the server host. It is useful when submission and execution hosts are not visible to each other.

• If the job submitter specifies an output or error path with both file path and host name, PBS uses that path.

• If the job submitter specifies an output or error path containing only a file path:

• If PBS_OUTPUT_HOST_NAME is set, PBS uses that as the host name portion of the path

• If PBS_OUTPUT_HOST_NAME is not set, PBS follows the rules in "Default Behavior For Output and Error
Files", on page 42 of the PBS Professional User's Guide.

• If the job submitter does not specify an output or error path, PBS uses the current working directory of qsub, fol-
lowing the naming rules in "Default Paths for Output and Error Files", on page 44 of the PBS Professional User's
Guide, and appends an at sign ("@") and the value of PBS_OUTPUT_HOST_NAME.

4.7.3 When Installing and Upgrading

During installation or upgrade:

1. When asked whether you want to start the new version of PBS, reply "no"

2. Edit pbs.conf to set the desired network address parameters

3. Start the new version of PBS:

systemctl start pbs
IG-60 PBS Professional 2022.1 Installation & Upgrade Guide

Communication Chapter 4
or

<path to script>/pbs start

You may see differences in new job IDs. For example, if the prior value of PBS_SERVER was set to the fully qualified
host name, the existing jobs will have IDs containing the full hostname, for example 123.server.example.com. If the
current value of PBS_SERVER is a short name, then new jobs will have IDs with the short form of the host name, in
this case, 123.server.

With version 13.0, PBS supports host names up to 255 characters. The format of the job files written by pbs_mom has
changed due to this. If there are existing job files during an overlay upgrade, PBS prints a summary message showing
the number of job files successfully upgraded and the total number of job files. For each job file that was not success-
fully upgraded, PBS prints a message that the job file was not successfully upgraded and gives the full path to that job
file.

4.7.4 Hostname Parameters in pbs.conf

The following table describes the hostname parameters in the pbs.conf configuration file:

Table 4-3: Hostname Parameters in pbs.conf

Parameter Description

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the daemon.

By default, the name of the endpoint's host is the hostname of the machine. You can
set the name where an endpoint runs. This is useful when you have multiple net-
works configured, and you want PBS to use a particular network.

The server only queries for the canonicalized address of the MoM host, unless you
let it know via the Mom attribute; if you have set PBS_LEAF_NAME in
/etc/pbs.conf to something else, make sure you set the Mom attribute at vnode
creation.

TPP internally resolves the name to a set of IP addresses, so you do not affect how
pbs_comm works.

PBS_MAIL_HOST_NAME Optional. Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation's Mail_Users attribute. See "Specifying
Mail Delivery Domain" on page 22 in the PBS Professional Administrator's Guide.

Should be a fully qualified domain name. Cannot contain a colon (":").

PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child vnodes. If
this is not set, MoM defaults to using the non-canonicalized hostname returned by
gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP address>
in pbs.conf on the execution host.

This parameter cannot contain dots unless it is for an IP address.

PBS_OUTPUT_HOST_NAME Optional. Host to which all job standard output and standard error are delivered.
See section 4.7.2, "Delivering Output and Error Files", on page 60.

Should be a fully qualified domain name. Cannot contain a colon (":").

PBS_PRIMARY Hostname of primary server. Overrides PBS_SERVER_HOST_NAME.
PBS Professional 2022.1 Installation & Upgrade Guide IG-61

Chapter 4 Communication
PBS_SECONDARY Hostname of secondary server. Overrides PBS_SERVER_HOST_NAME.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 characters. If the
short name of the server host resolves to the correct IP address, you can use the
short name for the value of the PBS_SERVER entry in pbs.conf. If only the
FQDN of the server host resolves to the correct IP address, you must use the
FQDN for the value of PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME Optional. The FQDN of the server host. Used by clients to contact server. See
section 4.7.1, "Contacting the Server", on page 60.

Should be a fully qualified domain name. Cannot contain a colon (":").

Table 4-3: Hostname Parameters in pbs.conf

Parameter Description
IG-62 PBS Professional 2022.1 Installation & Upgrade Guide

5

Initial Configuration

After you have installed PBS Professional, perform the following steps:

5.1 Validate the Installation

• Check files and directories: To validate the installation of PBS Professional, at any time, run the pbs_probe com-
mand. It will review the installation (installed files, directory and file permissions, etc) and report any problems
found. For details, see "pbs_probe" on page 80 of the PBS Professional Reference Guide.

The pbs_probe command is not available under Windows.

• Check PBS version. Use the qstat command to find out what version of PBS Professional you have:
qstat -fB

• Check hostname resolution:

• At the server, use the pbs_hostn command with the name of each host in the complex. This should complain
if hostname resolution is not working correctly. See "pbs_hostn" on page 64 of the PBS Professional Reference
Guide.

• Make sure that rcp and/or scp work correctly. They must work outside of PBS before PBS can use them Run
rcp and/or scp between machines in the complex to make sure they work. If there are problems, see section
2.1.3, "Name Resolution and Network Configuration", on page 8.

• Windows: turn firewall off for execution hosts: see "Windows Firewall" on page 525 in the PBS Professional
Administrator's Guide

5.2 Support PBS Features

• Configure PBS inter-daemon communication. See Chapter 4, "Communication", on page 45.

• Define PATHs for users: set paths for all users to include PBS commands and man pages. For paths, see section
3.5.2.2, "Setting Installation Parameters", on page 25. Administrator commands are in PBS_EXEC/sbin, and user
commands are in PBS_EXEC/bin. Man pages are PBS_HOME/man.

• Support X forwarding:

• Edit each MoM's PATH variable to include the directory containing the xauth utility.

• Add the path to the xauth binary to each MoM's pbs_environment file. For example, if you start with this
path:

/bin:/user/bin

and the xauth utility is here:

/usr/bin/X11/xauth

The entry in the pbs_environment file would be the following:

PATH=/bin:/usr/bin:/usr/bin/X11

• In the ssh_config file for each machine that will use X forwarding, put this line:

ForwardX11Trusted yes
PBS Professional 2022.1 Installation & Upgrade Guide IG-63

Chapter 5 Initial Configuration
X forwarding is not available under Windows.

• Allow interactive jobs. For interactive jobs, MoMs establish a connection back to the submission host:

• Make sure that the ephemeral port range in your firewall is open (make sure that MoMs can connect to an
ephemeral port on submission hosts). Check your OS documentation for the correct range.

• Allow interactive jobs under Windows: see "Allowing Interactive Jobs on Windows" on page 483 in the PBS
Professional Administrator's Guide

• Create and configure vnodes: see "About Vnodes: Virtual Nodes" on page 41 in the PBS Professional Administra-
tor's Guide

• Create and configure queues: see "Queues" on page 23 in the PBS Professional Administrator's Guide

• Manage cgroups and cpusets: see "Configuring and Using PBS with Cgroups" on page 311 in the PBS Professional
Administrator's Guide

• Configure resources: see "Using PBS Resources" on page 227 in the PBS Professional Administrator's Guide

• Set up resource limits: see "Managing Resource Usage" on page 283 in the PBS Professional Administrator's Guide

• Define scheduling policy: see "Scheduling" on page 57 in the PBS Professional Administrator's Guide

• Create hooks: see the PBS Professional Hooks Guide.

• Integrate with an MPI: see "Using MPI with PBS" on page 559 in the PBS Professional Administrator's Guide

• Use containers: see "Configuring PBS for Containers" on page 355 in the PBS Professional Administrator's Guide

• Use provisioning: see "Provisioning" on page 591 in the PBS Professional Administrator's Guide

• Set up failover: see "Failover" on page 367 in the PBS Professional Administrator's Guide

• Set up checkpointing: see "Checkpoint and Restart" on page 387 in the PBS Professional Administrator's Guide

• Minimize communication problems: see "Preventing Communication and Timing Problems" on page 410 in the PBS
Professional Administrator's Guide

• Manage security features, including authentication and encryption: see "Security" on page 489 in the PBS Profes-
sional Administrator's Guide

• Required on Windows: set up encryption via TLS. See "Encrypting PBS Communication" on page 517 in the
PBS Professional Administrator's Guide.

• Set up desired file transfer mechanism: see "Setting File Transfer Mechanism" on page 441 in the PBS Professional
Administrator's Guide

• Configure where PBS components will put temporary files: see "Temporary File Location for PBS Components" on
page 450 in the PBS Professional Administrator's Guide
IG-64 PBS Professional 2022.1 Installation & Upgrade Guide

6

Upgrading

This chapter shows how to upgrade from a previous version of PBS Professional. If PBS Professional is not installed on
your system, go instead to Chapter 3, "Installation", on page 19.

6.1 Types of Upgrades

There are two types of upgrades available for PBS Professional:

overlay upgrade

Installs the new PBS_HOME and PBS_EXEC on top of the old ones. Jobs cannot be running during an overlay
upgrade.

migration upgrade

You install the new PBS_HOME and PBS_EXEC in a separate location from the old PBS_HOME and PBS_EXEC.
The new PBS_HOME can be in the standard location if the old version has been moved. Jobs are moved from
the old server to the new one, and cannot be running during the move.

6.1.1 Choosing Upgrade Type on Linux

Usually, you can do an overlay upgrade on Linux systems. However, the following require migration upgrades:

• When moving between hosts

• When upgrading from an open-source version of PBS Professional

• When certain European or Japanese characters are stored in the data store

For specific upgrade recommendations and updates, see the Release Notes.

6.1.2 Upgrading Existing All-Windows Complex

If your existing complex runs a PBS server on a Windows host, "upgrading" means doing a fresh install for the
server/schedulers/comms, and upgrading your Windows MoMs. You cannot preserve any jobs in any state during the
upgrade. See Chapter 6, "Upgrading from an All-Windows Complex", on page 125.

6.1.3 Upgrading from Windows/Linux Combination to

Windows/Linux Combination

Upgrading on Windows/Linux requires a migration upgrade; see section 6.8, "Upgrading a Windows/Linux Complex",
on page 109.
PBS Professional 2022.1 Installation & Upgrade Guide IG-65

Chapter 6 Upgrading
6.2 Differences from Previous Versions

6.2.1 New Way to Manage Vnode Attributes

As of version 2020.1, PBS can use the cgroups hook to manage cpusets and create child vnodes on multi-vnode
machines.

If you use the cgroups hook on a host where you want to set the sharing attribute or define the placement sets, you can
use an exechost_startup hook or a Version 2 configuration file for this, but make sure that you refer precisely to the
vnodes that were created by the cgroups hook. Do not accidentally create new vnodes by defining them (that is, using a
vnode name unknown to the cgroups hook).

6.2.2 New Scheduler Attributes

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were scheduler
parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler attributes with
the same names and formats. Schedulers now have a log_events attribute that replaces the log_filter scheduler parame-
ter. You use qmgr to set these attributes.

6.2.3 Option to Run Scheduler as Non-Root User

By default, the PBS daemons run as root. However, you can specify that the scheduler should run as some other user.
You can do this either by setting PBS_DAEMON_SERVICE_USER in the environment when doing an rpm install, or
by specifying the username in the PBS_DAEMON_SERVICE_USER parameter in /etc/pbs.conf. See "Specifying
Scheduler Username" on page 420 in the PBS Professional Administrator's Guide.

6.2.4 Using RPM Instead of INSTALL (14.2)

You use RPM or another native package manager such as yum or zypper to install PBS, instead of the INSTALL script.

6.2.5 Using systemd Instead of Start/stop Script (14.2)

PBS uses systemd instead of the PBS start/stop script on Linux platforms that support systemd. On Linux platforms
that do not support systemd, PBS still uses the start/stop script. You will see a choice of instructions for starting or
stopping PBS.

6.2.6 Automatic Upgrade of Database (13.0)

The PBS installer automatically upgrades the database used by PBS for its data store.

6.2.7 Installing Communication Daemon (13.0)

As of 13.0, PBS uses a new daemon, pbs_comm, for communication. One communication daemon is automatically
installed on each server host, and all daemons automatically connect to it. If you require additional communication dae-
mons, you must install and configure them. See section 4.5.3, "Adding Communication Daemons", on page 50.
IG-66 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.2.8 Default Location of PBS_EXEC and PBS_HOME

PBS_EXEC is the directory that contains the PBS binaries. The default location for PBS_EXEC is /opt/pbs. PBS_HOME
is the directory where PBS information is stored. The default location for PBS_HOME is /var/spool/pbs.

6.2.9 Use PBS Start Script or systemd During Overlay

Upgrade

During an overlay upgrade, you must start the PBS server using systemd on platforms that support it, or the start/stop
script where systemd is not supported, so that the server is initialized correctly. The instructions in this manual for
overlay upgrading specify using systemd or the start script.

6.3 Caveats and Advice

6.3.1 Licensing

PBS starts faster if you install, configure, and start the Altair license server before starting PBS. We recommend that you
follow the steps for installing and starting the license server before upgrading. See the Altair License Management Sys-
tem Installation and Operations Guide, available at www.altair.com. Do not attempt to use any license server other than
the Altair license server.

6.3.2 Making Time to Upgrade

If you want to avoid having to work around running jobs when you perform an upgrade, you can set PBS up so that there
are no running jobs when you want to do the upgrade. Follow these steps:

1. Figure out how much walltime the longest-running jobs are likely to need, e.g. two weeks

2. Pick a time further into the future than that, e.g. 3 weeks

3. On all PBS hosts, create dedicated time or a reservation for the amount of time you think the upgrade will require,
e.g. a day

• You can use a dedicated time slot, making it so that no jobs will be scheduled for that dedicated time. The sys-
tem can be shut down all at once at the start of the dedicated time. See "Dedicated Time" on page 127 in the
PBS Professional Administrator's Guide.

• You can create a reservation that reserves an entire host by using -l place=exclhost. The following reser-
vation creates a reservation for the host mars, from 10am to 10pm:

pbs_rsub -R 1000 -D 12:00:00 -l select = host=mars -l place=exclhost

For more on creating reservations, see "pbs_rsub" on page 96 of the PBS Professional Reference Guide.

6.3.3 Upgrading Database

PBS automatically upgrades the database used for its data store. If the process of upgrading the database fails, you must
restore the database to its pre-upgrade state in order to upgrade PBS.
PBS Professional 2022.1 Installation & Upgrade Guide IG-67

Chapter 6 Upgrading
6.3.4 Data Service Account Must Be Same as When Installed

The data service account you use when upgrading PBS must be the same as when you installed the old version of PBS,
otherwise the upgrade will fail. The workaround is to change the data service user ID to the ID used for installation of
the old PBS data service, perform the upgrade, then change the ID back.

1. Identify the user who originally created the data store:

a. Log in to the data store:

su - <data service account> -s /bin/sh -c "LD_LIBRARY_PATH=$PBS_EXEC/pgsql/lib
$PBS_EXEC/pgsql/bin/psql -U <data service account> -p <data service port> -d
pbs_datastore"

The default data service port is 15007

The default data service account is pbsdata

b. Run a query to get the list of users in the database:

pbs_datastore=# select pg_authid.oid, rolname from pg_authid;

oid | rolname

------+--------

10 | pbsdata

16541 | <username>

(2 rows)

c. Find the original user who created the database:

pbs_datastore=# select pg_authid.oid, rolname from pg_authid where pg_authid.oid=10;

oid | rolname

----+--------

10 | pbsdata

(1 row)

2. Exit the database

3. Create the original data service account in system if it is not available.

4. Update the current database user to the original data service account.

pbs_ds_password -C <original username>

5. Perform the overlay upgrade

6. Reset the current database user to desired username:

pbs_ds_password -C <later username>

See "Setting Data Service Account Name and Password" on page 440 in the PBS Professional Administrator's Guide.

6.3.5 Updating Hooks for New Python Version

As of version 19.4.1, PBS uses Python 3.6, so you need to make sure that your hooks and their configuration files are
compatible with Python 3.6. To do this, you export each hook and configuration file in ASCII format, make sure it is
compliant with Python 3.6, then import the 3.6-ready hook and configuration file in ASCII format. We include a link to
a site with instructions for making your Python code compatible with version 3.6. We include all of these steps in the
instructions.
IG-68 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.3.6 New Server Requires New MoMs

As of version 12.0, you must not attempt to run a newer server with older MoMs. You must start the new server only
when all MoMs have been upgraded. Follow the steps in this chapter.

6.3.7 Do Not Unset default_chunk.ncpus

Do not unset the value for the default_chunk.ncpus server attribute. It is set by the server to 1. You can set it to
another non-zero value, but a value of 0 will produce undefined behavior. When the PBS server initializes and the
default_chunk server attribute has not been specified during a prior run, the server will internally set the following:

default_chunk.ncpus=1

This ensures that each "chunk" of a job's select specification requests at least one CPU.

If you explicitly set the default_chunk server attribute, that setting will be retained across server restarts.

6.3.8 Unset PBS_EXEC Environment Variable

Make sure that the PBS_EXEC environment variable is unset.

6.3.9 Saving and Re-creating Vnode Configuration

For an overlay upgrade, you do not need to save and re-create vnodes. For a migration upgrade, you can save your vnode
configuration and re-create it using this sequence:

qmgr -c 'print node @default' > nodes.new

<clean up nodes.new>

qmgr < nodes.new

Why clean up nodes.new before reading it back in?

• PBS (the cgroups hook or MoM) should create all child vnodes (vnodes that are not parent vnodes). If you create
these child vnodes using qmgr, you can end up with duplicate vnode objects.

• The state attribute and the arch, and host, and vnode resources are set automatically while creating vnodes. Do
not set them explicitly. Doing so can get you into trouble especially if you are changing how hostname resolution
works.

• The qmgr command overrides resource settings in Version 2 configuration files. If you use qmgr to set vnode
resources, you can't set them later in Version 2 configuration files.

• MoM reports mem, vmem and ncpus. You can use qmgr to set these if they need to be explicitly set; otherwise,
don't include these lines in nodes.new.

• Leave only the creation lines for parent vnodes and any resources you want managed on the server side through
qmgr.

We include this step in the upgrading instructions; we explain why here.

6.3.10 Upgrading with Failover

If you are upgrading and using failover, do not start the new secondary server until the new primary has finished starting.

If your secondary server has a STONITH script, before you perform an upgrade, prevent the STONITH script from run-
ning by setting its permissions to 0644. After the upgrade, you can set the permissions back to 0755. We include these
steps in the upgrade instructions.
PBS Professional 2022.1 Installation & Upgrade Guide IG-69

Chapter 6 Upgrading
6.4 Introduction to Upgrading Under Linux

When you get your new version of PBS, unpack it (unzip, untar) as a non-privileged user. When you follow the upgrad-
ing instructions below, all of the steps should be performed as root.

6.4.1 Directories

The location of PBS_HOME is specified in the file /etc/pbs.conf, but defaults to /var/spool/pbs if not specified.
The default for PBS_EXEC is /opt/pbs. You can specify a non-default location for PBS_EXEC via the --prefix option to
rpm when installing the new PBS.

6.4.2 Upgrading on Multiple Machines

Instead of running the installer by hand on each machine, you can use a command such as pdsh. The one-line format for
a non-default install is:

PBS_SERVER=<server name> PBS_HOME=<new/home/location/pbs> rpm -i --prefix <new/exec/location/pbs>
pbspro-<daemon>-<version>-0.<platform-specific-dist-tag>.<hardware>.rpm

6.4.3 Upgrading on a Machine Running the Cpuset MoM

Machines running the cpuset MoM typically include HPE MC990X, HPE Superdome Flex, or HPE 8600.

When upgrading on a machine running the cpuset MoM, follow the instructions in section 6.6, "Overlay Upgrade on One
or More Machines Running Cpuset MoM", on page 82.

6.5 Overlay Upgrade Under Linux

The steps in this section are for machines that are not running a cpuset MoM. Machines running the cpuset MoM typi-
cally include HPE MC990X, HPE Superdome Flex, or HPE 8600. When upgrading on a machine running the cpuset
MoM, follow the instructions in section 6.6, "Overlay Upgrade on One or More Machines Running Cpuset MoM", on
page 82.

The following commands must be run as root.

6.5.1 Prevent Jobs From Being Started

Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:

qmgr -c "set sched <scheduler name> scheduling = false"

6.5.2 Allow Running Jobs to Finish, or Requeue Them

You cannot perform an upgrade while jobs are running. Either let running jobs finish, or requeue them. (You can also
delete them.)
IG-70 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | grep jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...

To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

$PBS_HOME/mom_priv/jobs/*.JB

6.5.3 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.

6.5.4 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.5.5 Unwrap Any Wrapped MPIs

If you used the pbsrun_wrap mechanism with your old version of PBS, you must first unwrap any MPIs that you
wrapped. This includes MPICH-GM, MPICH-MX, MPICH2, etc. You can re-wrap your MPIs after upgrading PBS.

For example, you can unwrap an MPICH2 MPI:

pbsrun_unwrap pbsrun.mpich2_64

See "pbsrun_unwrap" on page 51 of the PBS Professional Reference Guide.
PBS Professional 2022.1 Installation & Upgrade Guide IG-71

https://www.pbsworks.com

Chapter 6 Upgrading
6.5.6 Save Execution Host Configuration Information

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir /tmp/pbs_mom_backup

2. Make a copy of the Version 1 configuration file:

cp $PBS_HOME/mom_priv/config /tmp/pbs_mom_backup/config.backup

3. Make a copy of the Version 2 configuration files:

mkdir /tmp/pbs_mom_backup/mom_configs

pbs_mom -s list | egrep -v '^PBS' | while read file

do

 pbs_mom -s show file > /tmp/pbs_mom_backup/mom_configs/$file

done

6.5.7 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.5.8 Update Hooks and Hook Configuration Files for New

Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like "/tmp/<hook name>.new3.6"

2. Check that the contents of the configuration file are correct for Python 3.6

6.5.9 Shut Down Your Existing PBS

1. Shut down the server(s), default scheduler, and MoMs:
qterm -t immediate -m -s -f
IG-72 PBS Professional 2022.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If your server is not running in a failover environment, the "-f" option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you'll see "pbs_sched", but for multischeds, you'll see "pbs_sched -I <multisched
name>".

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.5.10 Back Up Existing PBS Files

On each PBS host, make a tar file of the PBS_HOME and PBS_EXEC directories.

1. Make a backup directory:
mkdir /tmp/pbs_backup

2. Make a tar file of PBS_HOME:

cd $PBS_HOME/..

tar -cvf /tmp/pbs_backup/PBS_HOME_tarbackup.tar $PBS_HOME

3. Make a tar file of PBS_EXEC:

cd $PBS_EXEC/..

tar -cvf /tmp/pbs_backup/PBS_EXEC_tarbackup.tar $PBS_EXEC

4. Make a copy of your configuration file:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

5. If this is a scheduler or multisched host, make a copy of the scheduler's directory to modify:

cp -r $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.work

or

cp -r $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.work

6.5.11 Install the New Version of PBS

For an overlay upgrade, you install the new PBS in the same location as the existing PBS. The default location for
PBS_HOME is /var/spool/pbs, and the default for PBS_EXEC is /opt/pbs.
PBS Professional 2022.1 Installation & Upgrade Guide IG-73

Chapter 6 Upgrading
6.5.11.1 Install New PBS Server(s)

Install the new version of PBS without uninstalling the previous version. If you are using failover, do not upgrade the
primary and secondary servers simultaneously. Upgrade the primary first, then once that is complete, upgrade the sec-
ondary.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See "Configuring the
pbs.conf File for Failover" on page 378 in the PBS Professional Administrator's Guide.

4. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.5.11.2 Install New PBS MoMs

Install the new version of PBS on all execution hosts without uninstalling the previous version:

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25

4. Install the execution sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/execution sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/execution sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

Do not start PBS now.
IG-74 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.5.11.3 Install New PBS Client Commands

Install the new version of PBS on all hosts without uninstalling the previous version:

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25.

4. Install the client command sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/client command sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/client command sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

6.5.11.4 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25

4. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

5. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.5.12 Prepare Configuration File for New Scheduler(s)

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. We explicitly list the step;
don't worry.
PBS Professional 2022.1 Installation & Upgrade Guide IG-75

Chapter 6 Upgrading
For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to the old
%PBS_HOME/sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched
name>/sched_config. This is saved in the backup directory /tmp/pbs_backup/sched_priv.work.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e.
$PBS_HOME/sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched
name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.5.13 Update Holidays File

Make sure your new holidays file is up to date.

6.5.14 Modify the New PBS Configuration File

Your new pbs.conf needs to reflect any changes that you made to the old file.

If you will use failover:

• Edit pbs.conf on the primary server host to include failover settings. See "Configuring Failover For the Primary
Server on Linux" on page 380 in the PBS Professional Administrator's Guide. Make any other changes to this file
that you made to the old pbs.conf.

• Edit pbs.conf on the secondary server host to include failover settings. See "Configuring Failover For the Second-
ary Server on Linux" on page 382 in the PBS Professional Administrator's Guide. Make any other changes to this
file that you made to the old pbs.conf. You can use the following steps:

• Copy pbs.conf from primary to secondary

• Modify pbs.conf on secondary for failover (PBS_START_SCHED = 0)

• Edit pbs.conf on all execution and client hosts to include failover settings. See "Configuring Failover For Execu-
tion and Client Hosts on Linux" on page 383 in the PBS Professional Administrator's Guide. Make any other
changes to this file that you made to the old pbs.conf.

If you will not use failover, edit pbs.conf on each host to include changes that you made to the old pbs.conf.

6.5.15 Configure Communication Daemons

If you are using additional communication daemons (more than those automatically installed on server hosts), configure
them. See section 4.5.3.2, "Configuring Communication Daemons", on page 50.
IG-76 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.5.16 Start Then Stop New PBS Servers (If Using Failover)

6.5.16.1 Start New Servers

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

1. If you will run a MoM on each server host, disable MoM start in pbs.conf, so that it contains this:
PBS_START_MOM=0

2. Start PBS on the primary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

3. Once the primary is finished starting, start PBS on the secondary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.5.16.2 Stop the Servers

If you are not using failover, skip this step.

1. On the primary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is installed, enable it by setting PBS_START_MOM=1 in pbs.conf

2. On the secondary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is installed, enable it by setting PBS_START_MOM=1 in pbs.conf
PBS Professional 2022.1 Installation & Upgrade Guide IG-77

Chapter 6 Upgrading
6.5.17 Start New PBS MoMs, Schedulers, Servers, and

Comms

6.5.17.1 Start PBS on Execution Hosts

On each execution host, first update PBS_HOME by running the start/stop script or systemctl start, then start the
MoMs:

1. Prevent the script from starting MoMs by setting PBS_START_MOM=0 in pbs.conf

2. Start PBS:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

3. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

4. Enable starting MoMs by setting PBS_START_MOM=1 in pbs.conf

5. Start MoM:

$PBS_EXEC/sbin/pbs_mom

6.5.17.2 Start PBS on Server Hosts

If failover is configured, start PBS on the primary server host before the secondary.

1. Prevent the script from starting MoMs by setting PBS_START_MOM=0 in pbs.conf

2. Start PBS on the primary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

3. Once the primary is finished starting, start PBS on the secondary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

4. If a MoM will run on the server host(s):

a. Enable starting MoMs by setting PBS_START_MOM=1 in pbs.conf

b. Start MoM:

$PBS_EXEC/sbin/pbs_mom

6.5.17.3 Restart Multischeds

To start a multisched, call pbs_sched and specify the name you already gave it. For each multisched:

pbs_sched -I <name of multisched>
IG-78 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.5.17.4 Start PBS on Communication-only Hosts

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.5.18 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.5.18.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.5.18.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use "x-config"):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.5.18.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"
PBS Professional 2022.1 Installation & Upgrade Guide IG-79

Chapter 6 Upgrading
6.5.18.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.5.18.5 Restart MoMs

On each execution host, restart MoM :

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.5.19 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

6.5.20 Configure Sharing and Placement Sets

6.5.20.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine if you set
vnode_per_numa_node to true; in this case, it is important that any Version 2 configuration files refer only to these
vnodes. Use Version 2 configuration files only to set the sharing attribute and optionally to set resources that will be
used for placement sets. The default value for the sharing attribute of the vnodes is "sharing=default_shared". You can
change this, for example to "sharing=default_excl".

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named "vnodedefs" that has MoM's list of vnodes; see "Version 2 Vnode Configuration Files" on page
46 in the PBS Professional Administrator's Guide
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in
/tmp/pbs_mom_backup/mom_configs/ in step "Save Execution Host Configuration Information” on page 72

3. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.5.20.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.
IG-80 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
On each execution host:

1. Create a file named "vnodedefs"; see "Version 2 Vnode Configuration Files" on page 46 in the PBS Professional
Administrator's Guide

2. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.5.21 Set New Scheduler Attributes

For the default scheduler and all multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
"Scheduler Attributes" on page 298 of the PBS Professional Reference Guide.

• The scheduler's log_filter configuration parameter is obsolete. The scheduler's log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler's log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 430 in the PBS Professional Administrator's
Guide.

6.5.22 Re-wrap Any MPIs

If you want any wrapped MPIs, wrap them. See "Integration by Wrapping" on page 563 in the PBS Professional Admin-
istrator's Guide.

6.5.23 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.5.24 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.

6.5.25 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'
PBS Professional 2022.1 Installation & Upgrade Guide IG-81

https://www.pbsworks.com

Chapter 6 Upgrading
6.5.26 Shut Down and Restart Servers

1. Shut down both servers:
qterm -f

2. Restart PBS on the server hosts. On each server host, primary first:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.5.27 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.6 Overlay Upgrade on One or More Machines

Running Cpuset MoM

Machines running the cpuset MoM typically included HPE MC990X, HPE Superdome Flex, or HPE 8600, for versions
of PBS before 2020.1.

As of 2020.1, we no longer provide pbs_mom.cpuset; instead, we use standard pbs_mom, and the cgroups hook
manages the cpusets for jobs. We include the instructions on making the change from the cpuset MoM to the cgroups
hook below.

You must run the following commands as root.

6.6.1 Prevent Jobs From Being Started

Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:

qmgr -c 'set sched <scheduler name> scheduling = false'

6.6.2 Allow Running Jobs to Finish, or Requeue Them

You cannot perform an upgrade while jobs are running. Either let running jobs finish, or requeue them. (You can also
delete them.)

To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | grep jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...
IG-82 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

$PBS_HOME/mom_priv/jobs/*.JB

6.6.3 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor's Guide.

6.6.4 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.6.5 Unwrap Any Wrapped MPIs

If you used the pbsrun_wrap mechanism with your old version of PBS, you must first unwrap any MPIs that you
wrapped. This includes MPICH-GM, MPICH-MX, MPICH2, etc. You can re-wrap your MPIs after upgrading PBS.

For example, you can unwrap an MPICH2 MPI:

pbsrun_unwrap pbsrun.mpich2_64

See "pbsrun_unwrap" on page 51 of the PBS Professional Reference Guide.

6.6.6 Save Execution Host Configuration Information

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir /tmp/pbs_mom_backup

2. Make a copy of the Version 1 configuration file:

cp $PBS_HOME/mom_priv/config /tmp/pbs_mom_backup/config.backup

3. Make a copy of the Version 2 configuration files:

mkdir /tmp/pbs_mom_backup/mom_configs

pbs_mom -s list | egrep -v '^PBS' | while read file

do

pbs_mom -s show file > /tmp/pbs_mom_backup/mom_configs/$file

done
PBS Professional 2022.1 Installation & Upgrade Guide IG-83

Chapter 6 Upgrading
6.6.7 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. You must use the new hook and config-
uration file, but you may want to modify the configuration file, so if you have made any changes to your existing
pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use the saved information to
modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.6.8 Update Hooks and Hook Configuration Files for New

Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like "/tmp/<hook name>.new3.6"

2. Check that the contents of the configuration file are correct for Python 3.6

6.6.9 Remove Old PBS Configuration and Resource

Conflicts

1. Ensure that each cpuset MoM host has its values for resources_available.(mem|vmem|ncpus) unset:
Qmgr: unset node <hostname> resources_available.mem
Qmgr: unset node <hostname> resources_available.ncpus
Qmgr: unset node <hostname> resources_available.vmem

2. Remove the old PBS reserved files. On each execution host:

rm /var/spool/pbs/mom_priv/config.d/PBSvnodedefs

3. Delete the old default vnodes. On the server host:

qmgr -c "delete node @default"

6.6.10 Shut Down Your Existing PBS

1. Shut down the server(s), default scheduler, and MoMs:
qterm -t immediate -m -s -f
IG-84 PBS Professional 2022.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If your server is not running in a failover environment, the "-f" option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you'll see "pbs_sched", but for multischeds, you'll see "pbs_sched -I <multisched
name>".

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.6.11 Back Up Existing PBS Files

On each PBS host, make a tar file of the PBS_HOME and PBS_EXEC directories. On the MC990X, make sure you copy
your backups to the server host, because otherwise they will be lost during the upgrade.

1. Make a backup directory:
mkdir /tmp/pbs_backup

2. Make a tar file of PBS_HOME:

cd $PBS_HOME/..

tar -cvf /tmp/pbs_backup/PBS_HOME_tarbackup.tar $PBS_HOME

3. Make a tar file of PBS_EXEC:

cd $PBS_EXEC/..

tar -cvf /tmp/pbs_backup/PBS_EXEC_tarbackup.tar $PBS_EXEC

4. Make a copy of your configuration file:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

5. If this is a scheduler host, make a copy of the scheduler's directory to modify:

cp -r $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.work

or

cp -r $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.work
PBS Professional 2022.1 Installation & Upgrade Guide IG-85

Chapter 6 Upgrading
6.6.12 Install the New Version of PBS

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See "Configuring the
pbs.conf File for Failover" on page 378 in the PBS Professional Administrator's Guide.

4. Install the server sub-package:

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -Uhv <path/to/server sub-package>pbspro-<daemon>-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

6.6.12.1 Installing MoM on non-HPE 8600

On execution-only hosts, install the MoM sub-package:

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/MoM sub-package>pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hard-

ware>.rpm

• When upgrading from 14.2 or a later version:
rpm -Uhv <path/to/MoM sub-package>pbspro-execution-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

6.6.12.2 Installing MoM on HPE 8600

You install and configure MoM once on the root file system, then you push the image to all of the compute nodes by
propagating it to the rack leaders. Then you reboot each node with the new image.

1. Log on to the Admin node as root.

2. Determine which image file is being used on the compute nodes. To list the nodes on rack 1:

cimage --list-nodes r1

It will show output in the form "node: image_name kernel" similar to

r1i0n0: compute-sles15sp1 2.6.26.46-0.12-smp

Thus node r1i0n0 is running the image "compute-sles15sp1" and the kernel version "2.6.26.46-0.12-smp".
For the remaining steps, it is assumed that those are the images and kernel available.

3. List the available images:

cimage --list-images
IG-86 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
which will list the images available for the compute nodes. Each image may have multiple kernels.

4. Unless you are experienced in managing the image files, we suggest that you create a copy of the image in use and
install PBS in that copy. To copy an image:

cinstallman --create-image --clone --source compute-sles15sp1 --image compute-sles15sp1pbs

5. The image file lives in the directory /opt/clmgr/image/images, so change into the tmp directory found in the
new image just cloned:

cd /opt/clmgr/image/images/compute-sles15sp1pbs/tmp

6. Chroot to the new image file:

chroot /opt/clmgr/image/images/compute-sles15sp1pbs /bin/sh

The new root is in effect.

7. Download, unzip and untar the PBS package

8. Make sure that parameters for PBS_HOME, PBS_EXEC and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25

9. Install the PBS execution sub-package in the normal execution directory, /opt/pbs, in this system image:

rpm -U <path/to/sub-package>pbspro-execution-<version>-0.<platform-specific-dist-tag>.<hard-
ware>.rpm

10. Do not start PBS

11. Exit from the chroot shell and return to root's normal home directory.

12. Power down each rack of compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node off $n

done

13. Publish the new system image to the compute nodes:

cimage --push-rack compute-sles15sp1pbs r*

This instruction will take several minutes to finish.

14. Set the new image and kernel to be booted. This need not be done if: (1) rather than cloning a new image, you have
installed PBS into the image already running on the compute nodes; or (2) you are using an image that was already
pushed to the nodes.

cimage --set compute-sles15sp1pbs 2.6.26.46-0.12-smp r*i*n*

15. Power up the compute nodes:

for n in `cnodes --ice-compute` ; do

cpower node on $n

done

It will take several minutes for the compute nodes to reboot.
PBS Professional 2022.1 Installation & Upgrade Guide IG-87

Chapter 6 Upgrading
6.6.13 Prepare Configuration File for New Scheduler(s)

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. We explicitly list the step;
don't worry.

For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to the old
%PBS_HOME/sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched
name>/sched_config. This is saved in the backup directory /tmp/pbs_backup/sched_priv.work.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e.
$PBS_HOME/sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched
name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.6.14 Update Holidays File

Make sure your new holidays file is up to date.

6.6.15 Modify the New PBS Configuration File

Your new pbs.conf needs to reflect any changes that you made to the old file.

If you will use failover:

• Edit pbs.conf on the primary server host to include failover settings. See "Configuring Failover For the Primary
Server on Linux" on page 380 in the PBS Professional Administrator's Guide. Make any other changes to this file
that you made to the old pbs.conf.

• Edit pbs.conf on the secondary server host to include failover settings. See "Configuring Failover For the Second-
ary Server on Linux" on page 382 in the PBS Professional Administrator's Guide. Make any other changes to this
file that you made to the old pbs.conf. You can use the following steps:

• Copy pbs.conf from primary to secondary

• Modify pbs.conf on secondary for failover (PBS_START_SCHED = 0)

• Edit pbs.conf on all execution and client hosts to include failover settings. See "Configuring Failover For Execu-
tion and Client Hosts on Linux" on page 383 in the PBS Professional Administrator's Guide. Make any other
changes to this file that you made to the old pbs.conf.

If you will not use failover, edit pbs.conf on each host to include changes that you made to the old pbs.conf.
IG-88 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.6.16 Configure Communication Daemons

If you are using additional communication daemons (more than those automatically installed on server hosts), configure
them. See section 4.5.3.2, "Configuring Communication Daemons", on page 50.

6.6.17 Start Then Stop New PBS Servers (If Using Failover)

6.6.17.1 Start New Servers

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

Start PBS on the server host. The start/stop script is located here:

If /etc/init.d exists

/etc/init.d/pbs

Else

/etc/rc.d/init.d/pbs

1. If you will run a MoM on each server host, disable MoM start in pbs.conf, so that it contains this:
PBS_START_MOM=0

2. Start PBS on the primary server host and then the secondary server host:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.17.2 Stop the Servers

If you are not using failover, skip this step.

1. On the primary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is to run, enable it by setting PBS_START_MOM=1 in pbs.conf

2. On the secondary server host:

a. Stop PBS:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

b. If a MoM is to run, enable it by setting PBS_START_MOM=1 in pbs.conf
PBS Professional 2022.1 Installation & Upgrade Guide IG-89

Chapter 6 Upgrading
6.6.18 Start New PBS MoMs, Schedulers, Servers, and

Comms

6.6.18.1 Start PBS on Execution Hosts

On each execution host, start MoM :

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.18.2 Start PBS on Server Hosts

If failover is configured, start the primary server host, wait until the primary is finished starting, then start the secondary:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.18.3 Restart Multischeds

To start a multisched, call pbs_sched and specify the name you already gave it. For each multisched:

pbs_sched -I <name of multisched>

6.6.18.4 Start PBS on Communication-only Hosts

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.6.19 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.6.19.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'
IG-90 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.6.19.2 Modify Cgroups Hook Configuration File

1. Export the cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. You can make the cgroups hook mimic the behavior of the cpuset MoM in previous versions:

a. Create one vnode for each NUMA node. Edit pbs_cgroups.json as follows (important):

"vnode_per_numa_node" : true,

b. Edit pbs_cgroups.json as follows (recommended):

"use_hyperthreads" : true,

c. Set the value of the ncpus_are_cores parameter; see "Configuring Hyperthreading Support" on page 323 in
the PBS Professional Administrator's Guide

3. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

4. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

5. Import the modified configuration (make sure you use "x-config"):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.6.19.3 Enable Cgroups Hook

6. Enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.6.19.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.6.19.5 Restart MoMs

On each execution host, restart MoM :

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom
PBS Professional 2022.1 Installation & Upgrade Guide IG-91

Chapter 6 Upgrading
6.6.20 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

6.6.21 Configure Sharing and Placement Sets

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; it is important that any Ver-
sion 2 configuration files refer only to these vnodes. Use Version 2 configuration files only to set the sharing attribute
and optionally to set resources that will be used for placement sets. The default value for the sharing attribute of the
vnodes is "sharing=default_shared". You can change this, for example to "sharing=default_excl".

Make sure that a Version 2 configuration file matches your available vnodes every time MoM is started. If your machine
reboots with a hardware change, your earlier placement set information will not make sense because child vnode names
will not match the available hardware. You can use a script to regenerate this file each time the machine starts, and run
the script before MoM is restarted.

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named "vnodedefs" that has MoM's list of vnodes; see "Version 2 Vnode Configuration Files" on page
46 in the PBS Professional Administrator's Guide:
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in
/tmp/pbs_mom_backup/mom_configs/ in step "Save Execution Host Configuration Information” on page 83

3. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.6.22 Re-Wrap Any MPIs

If you want any wrapped MPIs, wrap them. See "Integration by Wrapping" on page 563 in the PBS Professional Admin-
istrator's Guide.

6.6.23 Shut Down and Restart Servers

1. Shut down both servers:
qterm -f

2. Restart PBS on the server hosts. On each server host, primary first:

systemctl start pbs

or

<path to init.d>/init.d/pbs start
IG-92 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.6.24 Set New Scheduler Attributes

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were scheduler
parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler attributes with
the same names and formats. Make sure that you use qmgr to set the attributes as desired. See "Scheduler Attributes" on
page 298 of the PBS Professional Reference Guide.

The scheduler's log_filter configuration parameter is obsolete. The scheduler's log filter now uses the same bitmask sys-
tem as the other daemons. The new default value is 767. Use qmgr to set the scheduler's log_events attribute to the
value you want. See "Specifying Scheduler Log Events" on page 430 in the PBS Professional Administrator's Guide.

6.6.25 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.6.26 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.

6.6.27 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'

6.6.28 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.7 Migration Upgrade Under Linux

Use these instructions:

• When moving between hosts

• When upgrading from an open-source version of PBS Professional

• When certain European or Japanese characters are stored in the data store

For specific upgrade recommendations and updates, see the Release Notes.

For a migration upgrade, you kill or requeue all jobs, install the new PBS with PBS_EXEC and PBS_HOME in different loca-
tions from those of the old version of PBS, run both the old and new instances of PBS at the same time, and qmove the
jobs from the old server to the new one.

During a migration upgrade, jobs cannot be running. You can let any jobs finish before the upgrade. You can check-
point, terminate and requeue all possible jobs and requeue non-checkpointable but rerunnable jobs. Your options with
non-rerunnable jobs are to either let them finish or kill them.
PBS Professional 2022.1 Installation & Upgrade Guide IG-93

https://www.pbsworks.com

Chapter 6 Upgrading
In the instructions below, file and directory pathnames are the PBS defaults. If you installed PBS in different locations,
use your locations instead. PBS_EXEC_OLD refers to your existing, pre-upgrade location for PBS_EXEC.

The following commands must be run as root.

6.7.1 Set Paths for Old PBS

To use the following commands without having to substitute actual paths, on the server host, source your /etc/pbs.conf
file.

We recommend using /opt as the location where you'll run your old PBS during the job transfer phase, rather than /tmp.

• Choose where you want to copy your old PBS_EXEC; set PBS_EXEC_OLD to this location, and export it

• Choose where you want to copy your old PBS_HOME; set PBS_HOME_OLD to this location, and export it

6.7.2 Prevent Jobs From Being Enqueued or Started

You must deactivate the scheduler(s) and queues. When the scheduling attribute is false, jobs are not started by the
scheduler. When the queues' enabled attribute is false, jobs cannot be enqueued.

1. Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:
qmgr -c "set sched <scheduler name> scheduling = false"

2. Print a list of all queues managed by the server. Save the list of queue names for the next step:

qstat -q

3. Disable queues to stop jobs from being enqueued. Do this for each queue in your list from the previous step:

qdisable <queue name>

6.7.3 Allow Running Jobs to Finish, or Requeue Them

You cannot perform a migration upgrade while jobs are running. Either let running jobs finish, or requeue them. (You
can also delete them.)

To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | grep jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...

To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

$PBS_HOME/mom_priv/jobs/*.JB
IG-94 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.4 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.

6.7.5 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.7.6 Unwrap Any Wrapped MPIs

If you used the pbsrun_wrap mechanism with your old version of PBS, you must first unwrap any MPIs that you
wrapped. This includes MPICH-GM, MPICH-MX, MPICH2, etc. You can re-wrap your MPIs after upgrading PBS.

For example, you can unwrap an MPICH2 MPI:

pbsrun_unwrap pbsrun.mpich2_64

See "pbsrun_unwrap" on page 51 of the PBS Professional Reference Guide.

6.7.7 Save Server Host Information To Be Used for New PBS

At the server:

1. Create a backup directory called /tmp/pbs_backup
mkdir /tmp/pbs_backup

2. Make a copy of the server's configuration for the new PBS:

qmgr -c "print server" > /tmp/pbs_backup/server.new

3. Make a copy of the vnode attributes for the new PBS:

qmgr -c "print node @default" > /tmp/pbs_backup/nodes.new

4. Make a copy of all scheduler attributes for the new PBS (this prints all settable attributes for the default and multi-
scheds):

qmgr -c "print sched" > /tmp/pbs_backup/sched_attrs.new

5. Print reservation information to a file:

pbs_rstat -f > /tmp/pbs_backup/reservations

6. Make a copy of pbs.conf for the new PBS. This command is all one line:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

7. Make a copy of each scheduler's directory for the new PBS. For the default scheduler and each multisched:

cp -rp $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.new

or

cp -rp $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.new
PBS Professional 2022.1 Installation & Upgrade Guide IG-95

https://www.pbsworks.com

Chapter 6 Upgrading
6.7.8 Save Execution Host Configuration Files

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir /tmp/pbs_mom_backup

2. Make a copy of the Version 1 configuration file:

cp $PBS_HOME/mom_priv/config /tmp/pbs_mom_backup/config.backup

3. Make a copy of the Version 2 configuration files:

mkdir /tmp/pbs_mom_backup/mom_configs

$PBS_EXEC_OLD/sbin/pbs_mom -s list | egrep -v '^PBS' | while read file

do

 $PBS_EXEC_OLD/sbin/pbs_mom -s show file > /tmp/pbs_mom_backup/mom_configs/$file

done

6.7.9 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.7.10 Update Hooks and Hook Configuration Files for New

Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like "/tmp/<hook name>.new3.6"

2. Check that the contents of the configuration file are correct for Python 3.6

6.7.11 Shut Down Your Existing PBS

Use the -t immediate option to qterm so that all possible running jobs will be requeued. If you are using failover,
this will stop the secondary server as well:

1. Shut down the server, scheduler, and MoMs:
qterm -t immediate -m -s -f
IG-96 PBS Professional 2022.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If your server is not running in a failover environment, the "-f" option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you'll see "pbs_sched", but for multischeds, you'll see "pbs_sched -I <multisched
name>".

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.7.12 Back Everything Up to Transfer Location

Later, you will run the old PBS server from the backup location while you are moving jobs to the new server. You must
do a copy, not a move, because the installation software depends on the old version of PBS being available for it to
remove. You'll be running commands from the backup directory, so we recommend a directory under /opt.

6.7.12.1 Back Up Server/scheduler/communication Host

On the server host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location.

1. Copy PBS_HOME to the backup directory:
cp -rp $PBS_HOME $PBS_HOME_OLD

2. Copy PBS_EXEC to the backup directory:

cp -rp $PBS_EXEC $PBS_EXEC_OLD

6.7.12.2 Back Up Execution Host Information

On each execution host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location. This is just for
safekeeping.

1. Copy PBS_HOME to the backup directory:
cp -rp $PBS_HOME /tmp/pbs_mom_backup/pbs_mom_home_backup

2. Copy PBS_EXEC to the backup directory:

cp -rp PBS_EXEC /tmp/pbs_mom_backup/pbs_mom_exec_backup
PBS Professional 2022.1 Installation & Upgrade Guide IG-97

Chapter 6 Upgrading
6.7.13 Install the New Version of PBS

For a migration upgrade, use rpm -i so that the old version of PBS can still be used to move the jobs. You might think
that you'd use rpm -U, but that removes the old PBS, and you still need it until the jobs are moved.

6.7.13.1 Install New PBS Server

On the server host, install the new version of PBS without uninstalling the previous version.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25.
Make sure that PBS_HOME and PBS_EXEC are in locations that are different from your existing PBS.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See section 3.5.2.2, "Set-
ting Installation Parameters", on page 25 and "Configuring the pbs.conf File for Failover" on page 378 in the PBS
Professional Administrator's Guide.

4. Install the server sub-package:

rpm -i --prefix=<new PBS_EXEC location> <path/to/server sub-package>/pbspro-server-<ver-
sion>-0.<platform-specific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.7.13.2 Install New PBS MoMs

On each execution host, install the new version of PBS without uninstalling the previous version. You can install new
MoMs in the same locations as the old MoMs.

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25.

4. Install the execution sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/execution sub-package>/pbspro-execution-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/execution sub-package>/pbspro-execution-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

Do not start PBS now.
IG-98 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.13.3 Install New PBS Client Commands

On each client command host, install the new version of PBS without uninstalling the previous version:

1. Download the appropriate PBS package

2. Uncompress the package as an unprivileged user

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you're using for the new PBS.

4. Install the client command sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/client command sub-package>/pbspro-client-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/client command sub-package>/pbspro-client-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

6.7.13.4 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Download the appropriate PBS package

2. Uncompress the package

3. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you are using for the new PBS.

4. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

5. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>/pbspro-server-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>/pbspro-server-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.7.14 Switch To New PBS_EXEC Path

Source your new /etc/pbs.conf file.
PBS Professional 2022.1 Installation & Upgrade Guide IG-99

Chapter 6 Upgrading
6.7.15 Create PBS_HOME

Create the subdirectories under PBS_HOME by running pbs_habitat. On the new PBS server host and on each execu-
tion host:

$PBS_EXEC/libexec/pbs_habitat

6.7.16 Start and Stop the New Server (If Using Failover)

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

When the new server starts up it will have default queue "workq" and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

1. Start the new server with empty queue and vnode configurations:
$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying "Create mode and server database exists, do you wish to continue?"

Type "y" to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.

2. Shut down PBS:

qterm -t immediate -m -s -f

3. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_comm, or pbs_mom process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.7.17 Start the New Server Without Defined Queues or

Vnodes

When the new server starts up it will have default queue "workq" and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

Start the new server with empty queue and vnode configurations:

$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying "Create mode and server database exists, do you wish to continue?"

Type "y" to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.
IG-100 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.18 Re-wrap Any MPIs

If you want any wrapped MPIs, wrap them. See "Integration by Wrapping" on page 563 in the PBS Professional Admin-
istrator's Guide.

6.7.19 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'

6.7.20 Clean Up Configuration Information

6.7.20.1 Clean Up Scheduler Configuration Files

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to your old sched-
uler configuration file, saved in %PBS_HOME/sched_priv/sched_config or
%PBS_HOME/sched_priv_<multisched name>/sched_config.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e.
$PBS_HOME/sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched
name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.7.20.2 Clean Up Scheduler Attributes

For each scheduler, clean up the attributes saved in /tmp/pbs_backup/<scheduler name>/sched_attrs.new. When you
read in multisched attributes, you'll re-create the multischeds, so make sure your new multischeds are what you want:

• Remove read-only attributes

• Remove lines containing the following:
pbs_version
PBS Professional 2022.1 Installation & Upgrade Guide IG-101

Chapter 6 Upgrading
For the new default scheduler and all new multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
"Scheduler Attributes" on page 298 of the PBS Professional Reference Guide.

• The scheduler's log_filter configuration parameter is obsolete. The scheduler's log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler's log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 430 in the PBS Professional Administrator's
Guide.

6.7.20.3 Clean Up Server Configuration

Remove read-only attributes from the server's configuration information in server.new. For example, remove lines con-
taining the following:

license_count

pbs_version

Remove creation commands for any reservation queues. You will create reservations and their queues separately.

6.7.20.4 Copy User Credentials to New Server

PBS caches user credentials in $PBS_HOME/server_priv/users. PBS stores the credential for each user in a file named
<username>.CR. Normally this directory is created by PBS when users log in. If you installed the new version of PBS
in the same location as the old one, you do not need to copy user credentials.

However, if the new version of PBS is in a different location, you need to create the directory and copy the credential
files, keeping the permissions the same:

1. Create the user credential directory:
mkdir -p $PBS_HOME/server_priv/users/

2. Copy the user credential files to the new directory:

cp -rpu $PBS_HOME_OLD/server_priv/users/* $PBS_HOME/server_priv/users/

6.7.20.5 Clean up Vnode Configuration

Here you prepare the vnode attribute input to the new qmgr.

If your system has multi-vnode hosts:

1. Copy your saved node configuration file /tmp/pbs_backup/nodes.new. into two files:

• qmgr_parent_vnode.out, which contains all the configuration information for parent vnodes

• qmgr_child_vnode.out, which contains all the configuration information for vnodes that aren't parent vnodes

2. Continue by preparing configuration information for parent vnodes. You will prepare the configuration information
for the other vnodes after they have been created, because the vnode names in your file must be precisely the same as
the ones created by PBS.

If your system has only single-vnode hosts, follow the steps below for preparing configuration information for parent
vnodes only.

6.7.20.5.i Prepare Configuration Information for Parent Vnodes

Edit qmgr_parent_vnode.out:
IG-102 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
Leave only the the following creation lines:

• Those for parent vnodes

• Any resources you want managed on the server side through qmgr

• Custom resources on the parent vnodes

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the vnode's
host OS is reporting. For example, delete:

• Child vnodes, that should be created by MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

6.7.21 Create and Configure New Multischeds

Create the directories required for each new multisched, and configure each multisched. See "Creating and Configuring
a Multisched" on page 59 in the PBS Professional Administrator's Guide.

6.7.22 Start New Server and New Schedulers

1. Start the new server and new default scheduler. On the server host:
systemctl restart pbs

or

<path to init.d>/init.d/pbs restart

2. Start multischeds. To start a multisched, call pbs_sched and specify the name you already gave it. For each mul-
tisched:

pbs_sched -I <name of multisched>

6.7.23 Replicate Queue, Server, Scheduler, and Vnode

Configurations

6.7.23.1 Replicate Server and Queue Attributes

1. Give the new server the old server's configuration, but modified for the new PBS:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/server.new

2. Verify the configuration was read in properly:

$PBS_EXEC/bin/qmgr -c "print server"

6.7.23.2 Replicate Scheduler Attributes

1. Give the new default scheduler the old default scheduler's attributes, and re-create your multischeds:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/<scheduler name>/sched_attrs.new

2. Verify the configurations were read in properly.

You can see all schedulers at once:

$PBS_EXEC/bin/qmgr -c "print sched"
PBS Professional 2022.1 Installation & Upgrade Guide IG-103

Chapter 6 Upgrading
Or for each scheduler:

$PBS_EXEC/bin/qmgr -c "print sched default"

or

$PBS_EXEC/bin/qmgr -c "print sched <multisched name>"

6.7.23.3 Replicate Vnode Attributes

Replicate vnode configuration, also modified for the new PBS:

1. Read in the parent vnode configuration file:
$PBS_EXEC/bin/qmgr < qmgr_parent_vnode.out

2. Wait until MoM or the cgroups hook creates any vnodes that are not parent vnodes. Check:

pbsnodes -av

3. Prepare configuration information for child vnodes:

Edit qmgr_child_vnode.out. Make sure that the vnode names in this file are exactly what MoM or the cgroups
hook created. It's easiest to put all resource information into a Version 2 configuration file, rather than using qmgr.

Leave only the the following creation lines:

• Any resources you want managed on the server side through qmgr

• Custom resources on the other vnodes (but this may be easier in a Version 2 configuration file)

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the
vnode's host OS is reporting. For example, delete:

• Vnodes that should be created by the cgroups hook or MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

4. Read in the configuration file for child vnodes (not parent vnodes):

$PBS_EXEC/bin/qmgr < qmgr_child_vnode.out

5. Verify the configurations were read in properly:

$PBS_EXEC/bin/pbsnodes -a

6.7.24 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.7.24.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'
IG-104 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.24.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use "x-config"):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.7.24.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.7.24.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.7.25 Start New MoMs

You can start the MoMs in any order.

• On each execution host:
systemctl start pbs

or

<path to init.d>/init.d/pbs start

• Optionally start a MoM on the new server host. If your old configuration had a MoM running on the server host, and
you wish to replicate the configuration, you can start a MoM on that machine:
$PBS_EXEC/sbin/pbs_mom
PBS Professional 2022.1 Installation & Upgrade Guide IG-105

Chapter 6 Upgrading
6.7.26 Configure Sharing and Placement Sets

6.7.26.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; if you will use the cgroups
hook, it is important that any Version 2 configuration files refer only to these vnodes. Use Version 2 configuration files
only to set the sharing attribute and optionally to set resources that will be used for placement sets. The default value for
the sharing attribute of the vnodes is "sharing=default_shared". You can change this, for example to "shar-
ing=default_excl".

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named "vnodedefs" that has MoM's list of vnodes; see "Version 2 Vnode Configuration Files" on page
46 in the PBS Professional Administrator's Guide
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in
/tmp/pbs_mom_backup/mom_configs/ in step "Save Execution Host Configuration Files” on page 96

3. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.7.26.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named "vnodedefs"; see "Version 2 Vnode Configuration Files" on page 46 in the PBS Professional
Administrator's Guide

2. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.7.27 Start New Communication Daemons

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start
IG-106 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.28 Verify Communication Between Server and MoMs

All new MoMs on all execution hosts should be running and communicating with the new server. Run pbsnodes -a
on the new server host to see if it can communicate with the execution hosts in your complex. If a host is down, go to the
problem host and restart the MoM:

ps -eaf | grep pbs_mom

kill <MoM PID>

/opt/pbs/sbin/pbs_mom

6.7.29 Re-create Reservations

You must re-create each reservation that was on the old server, using the pbs_rsub command. Each reservation is cre-
ated as a new reservation. You can use all of the information about the old reservation except for its start time. Be sure
to give each reservation a start time in the future. Use the information stored in /tmp/pbs_backup/reserva-
tions.

6.7.30 Change Ports and PBS_EXEC Path in pbs.conf for Old

PBS

You must edit the pbs.conf file of the old PBS so that all old services use ports that won't clash with those of the new
PBS. Edit /tmp/pbs_backup/pbs.conf.backup.

You must change the port numbers for these PBS daemons: server and data service. You do not need to change the port
number for the comm, MoM, or scheduler.

You must also make sure that the PBS_EXEC entry in the old pbs.conf points to the path for the old PBS_EXEC.

Edit /tmp/pbs_backup/pbs.conf.backup so that the entries look like those in the following table:

6.7.31 Start the Old Server

You must start the old server in order to move jobs to the new server. The old server must be started on alternate ports.
These are specified in /tmp/pbs_backup/pbs.conf.backup.

Table 6-1: Entries in Old PBS Configuration File

New Entry in pbs.conf Description

PBS_EXEC=<path to PBS_EXEC_OLD> Location where PBS_EXEC for your old PBS was copied

PBS_HOME=<path to PBS_HOME_OLD> Location where PBS_HOME for your old PBS was copied

PBS_START_SERVER=1 Unchanged

PBS_START_MOM=1 Unchanged

PBS_START_SCHED=1 Unchanged

PBS_SERVER=<hostname> Unchanged

PBS_BATCH_SERVICE_PORT=13001 This is the changed port number for the old server

PBS_DATA_SERVICE_PORT=13007 This is the changed port number for the old data service
PBS Professional 2022.1 Installation & Upgrade Guide IG-107

Chapter 6 Upgrading
Start the old server daemon and point it to the old configuration file:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/sbin/pbs_server

6.7.32 Verify Old Server is Running on Alternate Ports

Verify that the old pbs_server is running on the alternate ports by running the following:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

6.7.33 Move Existing Jobs to the New Server

You must move existing jobs from the old server to the new server. To do this, you run the qmove commands from the
old server, and give the new server's port number, 15001, in the destination. See "qmove" on page 175 of the PBS Pro-
fessional Reference Guide or the qmove(1B) man page. When moving jobs from reservation queues, be sure to move
them into the equivalent new reservation queues.

If your jobs have dependencies, move them according to the order in which they appear in the dependency chain. If job
A depends on the outcome of job B, move job B first.

If your old server host also ran a MoM, you will need to delete that vnode from the old server.

Delete the vnode on the old server host:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmgr -c "d n <old server host>"
<old server host>:13001

Move jobs from the old server to the new one:

1. Print the list of jobs on the old server:
PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

2. Move each job from each queue. Make sure that you move jobs in old reservation queues to their counterparts on
the new server:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmove <new queue name>@<new
server host>:15001 <job id>@<old server host>:13001

You can use qselect to select all the jobs in a queue instead of moving each job individually.

3. Move all jobs in a queue:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup

for jobname in $($PBS_EXEC_OLD/bin/qselect -q <queue name>@<old server host>:13001);

do

$PBS_EXEC_OLD/bin/qmove <queue name>@<new server host>:15001 ${jobname}@<old server
host>:13001;

done

If you see the error message "Too many arguments...", there are too many jobs to fit in the shell's command line
buffer. You can continue moving jobs one at a time until there are few enough.

6.7.34 Shut Down Old Server

Shut down the old server daemon:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qterm -t quick <old server
host>:13001
IG-108 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.7.35 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.7.36 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.

6.7.37 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'

6.7.38 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.8 Upgrading a Windows/Linux Complex

As of version 19.4.1, Windows MoMs and client commands run with a Linux server, scheduler(s), and comm(s). PBS
servers, schedulers, and comms run on Linux only. These instructions are for upgrading from a Windows execution
host/Linux server complex to a Windows execution host/Linux server complex. If your existing complex is all Windows,
see section 6.9, "Upgrading from an All-Windows Complex", on page 125.

You must use a migration upgrade with a Windows/Linux complex. During the migration upgrade, you can install the
new version of PBS in the same place or in a new location, which can be the default location or a non-default location.

You will probably want to move jobs from the old system to the new. During a migration upgrade, jobs cannot be run-
ning. You can requeue rerunnable jobs. Your can let non-rerunnable jobs finish, or you can kill them.

On the Windows hosts, the account from which you install PBS (the installation account) must be a member of the local
Administrators group on the local computer.

In the instructions below, file and directory pathnames are the PBS defaults. If you installed PBS in different locations,
use your locations instead. Where you see %WINDIR%, it will be automatically replaced by the correct directory.

The name of the default server host is specified in /etc/pbs.conf.

The default installation location on Windows systems is \Program Files (x86)\PBS\.

You perform a migration upgrade by copying your old PBS to a temporary location and running it from that temporary
location so that you can migrate jobs to the new PBS.

6.8.1 Set Paths for Old PBS

To use the following commands without having to substitute actual paths, on the server host, source your /etc/pbs.conf
file.
PBS Professional 2022.1 Installation & Upgrade Guide IG-109

https://www.pbsworks.com

Chapter 6 Upgrading
We recommend using /opt as the location where you'll run your old PBS during the job transfer phase, rather than /tmp.

• Choose where you want to copy your old PBS_EXEC; set PBS_EXEC_OLD to this location, and export it

• Choose where you want to copy your old PBS_HOME; set PBS_HOME_OLD to this location, and export it

6.8.2 Prevent Jobs From Being Enqueued or Started

You must deactivate the scheduler(s) and queues. When the scheduling attribute is false, jobs are not started by the
scheduler. When the queues' enabled attribute is false, jobs cannot be enqueued.

1. Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:
qmgr -c "set sched <scheduler name> scheduling = false"

2. Print a list of all queues managed by the server. Save the list of queue names. You will need it in the next step and
when moving jobs:

qstat -q

3. Disable queues to stop jobs from being enqueued. Do this for each queue in your list from the previous step:

qdisable <queue name>

6.8.3 Allow Running Jobs to Finish, or Requeue Them

You cannot perform a migration upgrade while jobs are running. Either let running jobs finish, or requeue them. (You can
also delete them.)

To requeue any running jobs:

1. List the jobs. This will list some jobs more than once. You only need to requeue each job once:
pbsnodes <hostname> | findstr jobs

2. Requeue the jobs:

qrerun <job ID> <job ID> ...

To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | grep jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

To drain the host, wait until any running jobs have finished.

Make sure that there are no old job files on any execution hosts. Remove any of the following:

C:\Program Files (x86)\PBS\home\mom_priv\jobs*.JB

6.8.4 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.
IG-110 PBS Professional 2022.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
6.8.5 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running by setting its permissions to
0644.

6.8.6 Save Server Host Information To Be Used for New PBS

At the server:

1. Create a backup directory called /tmp/pbs_backup
mkdir /tmp/pbs_backup

2. Make a copy of the server's configuration for the new PBS:

qmgr -c "print server" > /tmp/pbs_backup/server.new

3. Make a copy of the vnode attributes for the new PBS:

qmgr -c "print node @default" > /tmp/pbs_backup/nodes.new

4. Make a copy of all scheduler attributes for the new PBS (this prints all settable attributes for the default and multi-
scheds):

qmgr -c "print sched" > /tmp/pbs_backup/sched_attrs.new

5. Print reservation information to a file:

pbs_rstat -f > /tmp/pbs_backup/reservations

6. Make a copy of pbs.conf for the new PBS. This command is all one line:

cp /etc/pbs.conf /tmp/pbs_backup/pbs.conf.backup

7. Make a copy of each scheduler's directory for the new PBS. For the default scheduler and each multisched:

cp -rp $PBS_HOME/sched_priv /tmp/pbs_backup/sched_priv.new

or

cp -rp $PBS_HOME/sched_priv_<multisched name> /tmp/pbs_backup/sched_priv_<multisched name>.new

6.8.7 Save Execution Host Configuration Files

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir "%WINDIR%\TEMP\PBS_MoM_Backup"

2. Make a copy of the Version 1 configuration file:

copy "C:\Program Files (x86)\PBS\home\mom_priv\config" "%WINDIR%\TEMP\PBS_MoM_Backup\con-
fig.backup"

3. Make a copy of the Version 2 configuration files:

mkdir "%WINDIR%\TEMP\PBS_MoM_Backup\mom_config"

for /f %a in (' "C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s list') do

"C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s show %a >
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config\%a"
PBS Professional 2022.1 Installation & Upgrade Guide IG-111

Chapter 6 Upgrading
6.8.8 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default /tmp/<hook name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.8.9 Update Hooks and Hook Configuration Files for New

Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like "/tmp/<hook name>.new3.6"

2. Check that the contents of the configuration file are correct for Python 3.6

6.8.10 Shut Down Your Existing PBS

Use the -t immediate option to qterm so that all possible running jobs will be requeued. If you are using failover,
this will stop the secondary server as well:

1. Shut down the server, scheduler, and MoMs:
qterm -t immediate -m -s -f

If your server is not running in a failover environment, the "-f" option is not required.

2. Shut down any multischeds. On each multisched host:

a. Find the PID you want:

ps –ef | grep pbs_sched

For the default scheduler, you'll see "pbs_sched", but for multischeds, you'll see "pbs_sched -I <multisched
name>".

b. Stop the scheduler or multisched:

kill <multisched PID>

3. On the server host and any other comm hosts, shut down the communication daemon:

systemctl stop pbs

or

<path to script>/pbs stop

4. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs
IG-112 PBS Professional 2022.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
If you see the pbs_server, pbs_sched, pbs_mom, or pbs_comm process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

or

net stop pbs_mom

6.8.11 Back Everything Up to Transfer Location

Later, you will run the old PBS server from the backup location while you are moving jobs to the new server. You must
do a copy, not a move, because the installation software depends on the old version of PBS being available for it to
remove. You'll be running commands from the backup directory, so we recommend a directory under /opt.

6.8.11.1 Back Up Server/scheduler/communication Host

On the server host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location.

1. Copy PBS_HOME to the backup directory:
cp -rp $PBS_HOME $PBS_HOME_OLD

2. Copy PBS_EXEC to the backup directory:

cp -rp $PBS_EXEC $PBS_EXEC_OLD

6.8.11.2 Back Up Execution Host Information

On each execution host, copy the existing PBS_HOME and PBS_EXEC hierarchies to the backup location. This is just for
safekeeping.

1. Copy PBS_HOME to the backup directory:
xcopy /o /E /C "C:\Program Files (x86)\PBS\home" %WINDIR%\TEMP\PBS_MoM_Backup

2. Copy PBS_EXEC to the backup directory:

xcopy /o /E /C "C:\Program Files (x86)\PBS\exec" %WINDIR%\TEMP\PBS_MoM_Backup

6.8.12 Install the New Version of PBS

For a migration upgrade, use rpm -i so that the old version of PBS can still be used to move the jobs. You might think
that you'd use rpm -U, but that removes the old PBS, and you still need it until the jobs are moved.

6.8.12.1 Install New PBS Server

On the server host, install the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package as an unprivileged user

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25.
Make sure that PBS_HOME and PBS_EXEC are in locations that are different from your existing PBS.
PBS Professional 2022.1 Installation & Upgrade Guide IG-113

Chapter 6 Upgrading
If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See section 3.5.2.2, "Set-
ting Installation Parameters", on page 25 and "Configuring the pbs.conf File for Failover" on page 378 in the PBS
Professional Administrator's Guide.

5. Install the server sub-package:

rpm -i --force --prefix=<new PBS_EXEC location> <path/to/server sub-package>/pbspro-server-<ver-
sion>-0.<platform-specific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.8.12.2 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you are using for the new PBS.

5. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

6. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>/pbspro-server-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>/pbspro-server-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.8.12.3 Switch To New PBS_EXEC Path

On the server host, source your new /etc/pbs.conf file.

6.8.12.4 Create PBS_HOME

Create the subdirectories under PBS_HOME by running pbs_habitat. On the new PBS server host:

$PBS_EXEC/libexec/pbs_habitat
IG-114 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.12.5 Install New PBS MoMs and Client Commands

On each execution and client host, do the following:

1. Log in with the installation account.

2. Install the KB2999226 update for Windows on all Windows Server 2012 execution and client machines.

3. Download the MSI installer (the .msi file).

4. Double-click the MSI installer; the splash screen is displayed.

5. Click the Next button to move to the license page. Accept the license.

6. Click the Next button and choose the path where you will install the PBS executable. By default this path points to
"C:\Program Files (x86)\PBS\".

7. Using "Run As Administrator", open a Command prompt.

6.8.12.6 Configure New PBS MoMs and Client Hosts

On each execution and client host, manually execute the win_postinstall.py script as shown below. When you specify
the PBS service account, whether or not you are on a domain machine, include only the username, not the domain. For
example, if the full username on a domain machine is <domain>\<username>, pass only username as an argument.

On each execution host:

• Delete the "home" folder inside "C:\Program Files (x86)\PBS\" if it exists

• Run win_postinstall:
<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p

<PBS service account password> -s <server name> -t execution -c <path to scp.exe>

On each client host:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t client -c <path to scp.exe>

6.8.13 Start and Stop the New Server (If Using Failover)

If you are not using failover, skip this step. If you are using failover, this pair of start and stop steps really is necessary.
Bear with us.

When the new server starts up it will have default queue "workq" and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

1. Start the new server with empty queue and vnode configurations:
$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying "Create mode and server database exists, do you wish to continue?"

Type "y" to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"
PBS Professional 2022.1 Installation & Upgrade Guide IG-115

Chapter 6 Upgrading
This message is expected. Continue to the next step in these instructions.

2. Shut down PBS:

qterm -t immediate -m -s -f

3. Verify that PBS daemons are not running in the background:

ps -ef | grep pbs

If you see the pbs_server, pbs_sched, pbs_comm, or pbs_mom process running, manually terminate that
process. If using failover, check both primary and secondary server hosts:

kill -9 <daemon PID>

6.8.14 Start the New Server Without Defined Queues or

Vnodes

When the new server starts up it will have default queue "workq" and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

Start the new server with empty queue and vnode configurations:

$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying "Create mode and server database exists, do you wish to continue?"

Type "y" to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.

6.8.15 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'
IG-116 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.16 Clean Up Configuration Information

6.8.16.1 Clean Up Scheduler Configuration Files

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to your old sched-
uler configuration file, saved in (Windows) "%WINDIR%\TEMP\PBS_Backup\sched_priv.sched_config" or
"%WINDIR%\TEMP\PBS_Backup\sched_priv_<multisched name>.sched_config", or in (Linux)
%PBS_HOME/sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched
name>/sched_config.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e.
$PBS_HOME/sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched
name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.8.16.2 Clean Up Scheduler Attributes

For each scheduler, clean up the attributes saved in /tmp/pbs_backup/<scheduler name>/sched_attrs.new. When you
read in multisched attributes, you'll re-create the multischeds, so make sure your new multischeds are what you want:

• Remove read-only attributes

• Remove lines containing the following:
pbs_version

For the new default scheduler and all new multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
"Scheduler Attributes" on page 298 of the PBS Professional Reference Guide.

• The scheduler's log_filter configuration parameter is obsolete. The scheduler's log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler's log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 430 in the PBS Professional Administrator's
Guide.

6.8.16.3 Clean Up Server Configuration

Remove read-only attributes from the server's configuration information in server.new. For example, remove lines con-
taining the following:

license_count

pbs_version
PBS Professional 2022.1 Installation & Upgrade Guide IG-117

Chapter 6 Upgrading
Remove creation commands for any reservation queues. You will create reservations and their queues separately.

6.8.16.4 Copy User Credentials to New Server

PBS caches user credentials in $PBS_HOME/server_priv/users. PBS stores the credential for each user in a file named
<username>.CR. Normally this directory is created by PBS when users log in. If you installed the new version of PBS
in the same location as the old one, you do not need to copy user credentials.

However, if the new version of PBS is in a different location, you need to create the directory and copy the credential
files, keeping the permissions the same:

1. Create the user credential directory:
mkdir -p $PBS_HOME/server_priv/users/

2. Copy the user credential files to the new directory:

cp -rpu $PBS_HOME_OLD/server_priv/users/* $PBS_HOME/server_priv/users/

6.8.16.5 Clean up Vnode Configuration

Here you prepare the vnode attribute input to the new qmgr.

If your system has multi-vnode hosts:

• Copy your saved node configuration file "%WINDIR%\TEMP\PBS_Backup\nodes.new" into two files:

• qmgr_parent_vnode.out, which contains all the configuration information for parent vnodes

• qmgr_child_vnode.out, which contains all the configuration information for vnodes that aren't parent vnodes

• Continue by preparing configuration information for parent vnodes. You will prepare the configuration information
for the child vnodes after they have been created, because the vnode names in your file must be precisely the same as
the ones created by PBS.

If your system has only single-vnode hosts, follow the steps below for preparing configuration information for parent
vnodes only.

6.8.16.5.i Prepare Configuration Information for Parent Vnodes

Edit qmgr_parent_vnode.out:

Leave only the the following creation lines:

• Those for parent vnodes

• Any resources you want managed on the server side through qmgr

• Custom resources on the parent vnodes

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the vnode's
host OS is reporting. For example, delete:

• Child vnodes, that should be created by MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

6.8.17 Create and Configure New Multischeds

Create the directories required for each new multisched, and configure each multisched. See "Creating and Configuring
a Multisched" on page 59 in the PBS Professional Administrator's Guide.
IG-118 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.18 Start New Server and New Schedulers

1. Start the new server and new default scheduler. On the server host:
systemctl restart pbs

or

<path to init.d>/init.d/pbs restart

2. Start multischeds. To start a multisched, call pbs_sched and specify the name you already gave it. For each mul-
tisched:

pbs_sched -I <name of multisched>

6.8.19 Replicate Queue, Server, Scheduler, and Vnode

Configurations

6.8.19.1 Replicate Server and Queue Attributes

1. Give the new server the old server's configuration, but modified for the new PBS:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/server.new

2. Verify the configuration was read in properly:

$PBS_EXEC/bin/qmgr -c "print server"

6.8.19.2 Replicate Scheduler Attributes

1. Give the new default scheduler the old default scheduler's attributes, and re-create your multischeds:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/<scheduler name>/sched_attrs.new

2. Verify the configurations were read in properly.

You can see all schedulers at once:

$PBS_EXEC/bin/qmgr -c "print sched"

Or for each scheduler:

$PBS_EXEC/bin/qmgr -c "print sched default"

or

$PBS_EXEC/bin/qmgr -c "print sched <multisched name>"

6.8.19.3 Replicate Vnode Attributes

Replicate vnode configuration, also modified for the new PBS:

1. Read in the parent vnode configuration file:
$PBS_EXEC/bin/qmgr < qmgr_parent_vnode.out

2. Wait until MoM or the cgroups hook creates any child vnodes. Check:

pbsnodes -av

3. Prepare configuration information for child vnodes:

Edit qmgr_child_vnode.out. Make sure that the vnode names in this file are exactly what MoM or the cgroups
hook created. It's easiest to put all resource information into a Version 2 configuration file, rather than using qmgr.
PBS Professional 2022.1 Installation & Upgrade Guide IG-119

Chapter 6 Upgrading
Leave only the the following creation lines:

• Any resources you want managed on the server side through qmgr

• Custom resources on the child vnodes (but this may be easier in a Version 2 configuration file)

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the
vnode's host OS is reporting. For example, delete:

• Child vnodes, that should be created by the cgroups hook or MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

4. Read in the configuration file for child vnodes (not parent vnodes):

$PBS_EXEC/bin/qmgr < qmgr_not_parent_vnode.out

5. Verify the configurations were read in properly:

$PBS_EXEC/bin/pbsnodes -a

6.8.20 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.8.20.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'
IG-120 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.20.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the new cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use "x-config"):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'

6.8.20.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.8.20.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.8.20.5 Start MoMs

On each execution host, start MoM :

net start pbs_mom

6.8.21 Configure Sharing and Placement Sets

6.8.21.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; if you will use the cgroups
hook, it is important that any Version 2 configuration files refer only to these vnodes. Use Version 2 configuration files
only to set the sharing attribute and optionally to set resources that will be used for placement sets. The default value for
the sharing attribute of the vnodes is "sharing=default_shared". You can change this, for example to "shar-
ing=default_excl".
PBS Professional 2022.1 Installation & Upgrade Guide IG-121

Chapter 6 Upgrading
Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named "vnodedefs" that has MoM's list of vnodes; see "Version 2 Vnode Configuration Files" on page
46 in the PBS Professional Administrator's Guide
pbsnodes -av | awk -F'=' '{printf "%s:\tsharing = default_excl\n", $2}' > vnodedefs

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config" in step "Save Execution Host Configuration Files” on page 111

3. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.8.21.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named "vnodedefs"; see "Version 2 Vnode Configuration Files" on page 46 in the PBS Professional
Administrator's Guide

2. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.8.22 Start New Communication Daemons

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.8.23 Verify Communication Between Server and MoMs

All new MoMs on all execution hosts should be running and communicating with the new server. Run pbsnodes -a
on the new server host to see if it can communicate with the execution hosts in your complex. If a host is down, go to the
problem host and restart the MoM:

net stop pbs_mom

net start pbs_mom
IG-122 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.8.24 Re-create Reservations

You must re-create each reservation that was on the old server, using the pbs_rsub command. Each reservation is cre-
ated as a new reservation. You can use all of the information about the old reservation except for its start time. Be sure
to give each reservation a start time in the future. Use the information stored in /tmp/pbs_backup/reserva-
tions.

6.8.25 Change Ports and PBS_EXEC Path in pbs.conf for Old

PBS

You must edit the pbs.conf file of the old PBS so that all old services use ports that won't clash with those of the new
PBS. Edit /tmp/pbs_backup/pbs.conf.backup.

You must change the port numbers for the PBS server and data service. You do not need to change the port numbers for
the comm, MoM, or scheduler.

You must also make sure that the PBS_EXEC entry in the old pbs.conf points to the path for the old PBS_EXEC.

Edit /tmp/pbs_backup/pbs.conf.backup so that the entries look like those in the following table:

6.8.26 Start the Old Server

You must start the old server in order to move jobs to the new server. The old server must be started on alternate ports.
These are specified in /tmp/pbs_backup/pbs.conf.backup.

Start the old server daemon and point it to the old configuration file:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/sbin/pbs_server

6.8.27 Verify Old Server is Running on Alternate Ports

Verify that the old pbs_server is running on the alternate ports by running the following:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

Table 6-2: Entries in Old PBS Configuration File

New Entry in pbs.conf Description

PBS_EXEC=<path to PBS_EXEC_OLD> Location where PBS_EXEC for your old PBS was copied

PBS_HOME=<path to PBS_HOME_OLD> Location where PBS_HOME for your old PBS was copied

PBS_START_SERVER=1 Unchanged

PBS_START_MOM=1 Unchanged

PBS_START_SCHED=1 Unchanged

PBS_SERVER=<hostname> Unchanged

PBS_BATCH_SERVICE_PORT=13001 This is the changed port number for the old server

PBS_DATA_SERVICE_PORT=13007 This is the changed port number for the old data service
PBS Professional 2022.1 Installation & Upgrade Guide IG-123

Chapter 6 Upgrading
6.8.28 Move Existing Jobs to the New Server

You must move existing jobs from the old server to the new server. To do this, you run the qmove commands from the
old server, and give the new server's port number, 15001, in the destination. See "qmove" on page 175 of the PBS Pro-
fessional Reference Guide or the qmove(1B) man page. When moving jobs from reservation queues, be sure to move
them into the equivalent new reservation queues.

If your jobs have dependencies, move them according to the order in which they appear in the dependency chain. If job
A depends on the outcome of job B, move job B first.

If your old server host also ran a MoM, you will need to delete that vnode from the old server.

Delete the vnode on the old server host:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmgr -c "d n <old server host>"
<old server host>:13001

Move jobs from the old server to the new one:

1. Print the list of jobs on the old server:
PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qstat @<old server host>:13001

2. Move each job from each queue. Make sure that you move jobs in old reservation queues to their counterparts on
the new server:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qmove <new queue name>@<new
server host>:15001 <job id>@<old server host>:13001

You can use qselect to select all the jobs in a queue instead of moving each job individually.

3. Move all jobs in a queue:

export PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup

for jobname in $($PBS_EXEC_OLD/bin/qselect -q <queue name>@<old server host>:13001);

do

$PBS_EXEC_OLD/bin/qmove <queue name>@<new server host>:15001 ${jobname}@<old server
host>:13001;

done

If you see the error message "Too many arguments...", there are too many jobs to fit in the shell's command line
buffer. You can continue moving jobs one at a time until there are few enough.

6.8.29 Shut Down Old Server

Shut down the old server daemon:

PBS_CONF_FILE=/tmp/pbs_backup/pbs.conf.backup $PBS_EXEC_OLD/bin/qterm -t quick <old server
host>:13001

6.8.30 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.8.31 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.
IG-124 PBS Professional 2022.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
6.8.32 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'

6.8.33 Removing Old PBS

If you decide to remove the old version of PBS after upgrading, be sure to use the --noscripts option when using
rpm -e. Using rpm -e without this option, even on an older package than the one you are currently using, will cause
any currently running PBS daemons to shut down, and will also remove the system V init and/or systemd service startup
files. This will prevent PBS daemons from starting automatically at system boot time. If you wish to remove an older
RPM without these effects, use rpm -e --noscripts.

6.9 Upgrading from an All-Windows Complex

As of version 19.4.1, Windows MoMs and client commands run with a Linux server, scheduler(s), and comm(s). PBS
servers, schedulers, and comms run on Linux only. If you are already using a Linux server with Windows MoMs, see
.section 6.8, "Upgrading a Windows/Linux Complex", on page 109.

These instructions are for upgrading from a Windows/Windows complex to a Windows/Linux complex.

If your existing complex runs a PBS server on a Windows host, "upgrading" means doing a fresh install for the
server/schedulers/comms, and upgrading your Windows MoMs. You cannot preserve any jobs in any state during the
upgrade. Your can let jobs finish, or you can kill them.

On the Windows hosts, the account from which you install PBS (the installation account) must be a member of the local
Administrators group on the local computer.

In the instructions below, file and directory pathnames are the PBS defaults. If you installed PBS in different locations,
use your locations instead. Where you see %WINDIR%, it will be automatically replaced by the correct directory.

The name of the old default server host is specified in \Program Files (x86)\PBS\pbs.conf.

On Windows systems, PBS is install ed in \Program Files (x86)\PBS\.

6.9.1 Prevent Jobs From Being Enqueued or Started

You must deactivate the scheduler(s) and queues. When the scheduling attribute is false, jobs are not started by the
scheduler. When the queues' enabled attribute is false, jobs cannot be enqueued.

1. Prevent the scheduler(s) from starting jobs. Set scheduling to false for the default scheduler and each multisched:
qmgr -c "set sched <scheduler name> scheduling = false"

2. Print a list of all queues managed by the server. Save the list of queue names. You will need it in the next step and
when moving jobs:

qstat -q

3. Disable queues to stop jobs from being enqueued. Do this for each queue in your list from the previous step:

qdisable <queue name>

6.9.2 Allow Running Jobs to Finish, or Kill Them

You cannot perform this upgrade while jobs are running or queued. Either let running jobs finish, or kill them.
PBS Professional 2022.1 Installation & Upgrade Guide IG-125

Chapter 6 Upgrading
To drain the host, wait until any running jobs have finished. To kill the jobs:

1. List the jobs. This will list some jobs more than once. You only need to kill each job once:
pbsnodes <hostname> | findstr jobs

2. Use the qdel command to kill each job by job ID:

qdel <job ID> <job ID> ...

Make sure that there are no old job files on any execution hosts. Remove any of the following:

C:\Program Files (x86)\PBS\home\mom_priv\jobs*.JB

6.9.3 Disable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, disable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.

6.9.4 Disable STONITH Script

If your secondary server has a STONITH script, prevent the STONITH script from running.

6.9.5 Save Server Host Information To Be Used for New PBS

At the server:

1. Make a backup directory:
mkdir "%WINDIR%\TEMP\PBS_Backup"

2. Make a copy of the server's configuration for the new PBS:

qmgr -c "print server" > "%WINDIR%\TEMP\PBS_Backup\server.new"

3. Make a copy of the vnode attributes for the new PBS:

qmgr -c "print node @default" > "%WINDIR%\TEMP\PBS_Backup\nodes.new"

4. Make a copy of all scheduler configurations for the new PBS (this prints settable attributes for default and multi-
scheds):

qmgr -c "print sched" > "%WINDIR%\TEMP\PBS_Backup\sched_attrs.new"

5. Print reservation information to a file:

pbs_rstat -f > "%WINDIR%\TEMP\PBS_Backup\reservations"

6. Make a copy of pbs.conf for the new PBS. This command is all one line:

copy "\Program Files (x86)\PBS\pbs.conf" "%WINDIR%\TEMP\PBS_Backup\pbs.conf.new"

7. Make a copy of each scheduler's directory for the new PBS. For the default scheduler and each multisched:

xcopy /o /E /C "C:\Program Files (x86)\PBS\home\sched_priv"
"%WINDIR%\TEMP\PBS_Backup\sched_priv.work"

or

xcopy /o /E /C "C:\Program Files (x86)\PBS\home\sched_priv_<multisched name>"
"%WINDIR%\TEMP\PBS_Backup\sched_priv_<multisched name>.work"
IG-126 PBS Professional 2022.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
When you see this message:

Does C:\Windows\TEMP\PBS_Backup\sched_priv.work specify a file name or directory name on the
target (F = file, D = directory)?

Type this:

D

6.9.6 Save Execution Host Configuration Files

On each PBS execution host, copy the Version 1 and Version 2 configuration files:

1. Make a backup directory:
mkdir "%WINDIR%\TEMP\PBS_MoM_Backup"

2. Make a copy of the Version 1 configuration file:

copy "C:\Program Files (x86)\PBS\home\mom_priv\config" "%WINDIR%\TEMP\PBS_MoM_Backup\con-
fig.backup"

3. Make a copy of the Version 2 configuration files:

mkdir "%WINDIR%\TEMP\PBS_MoM_Backup\mom_config"

for /f %a in (' "C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s list') do

"C:\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe" -N -s show %a >
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config\%a"

6.9.7 Save Hooks and Hook Configuration Files

Save your hooks and hook configuration files in ASCII format so you can check them and import them later. The new
version of PBS includes a new pbs_cgroups hook with a new configuration file. If you use the cgroups hook, you must
use the new hook and configuration file, but you may want to modify the configuration file, so if you have made any
changes to your existing pbs_cgroups hook configuration file, you need to save it before you upgrade. Later, you can use
the saved information to modify the new configuration file.

For each hook:

1. Save the hook. Export the hook:
qmgr -c 'export hook <hook name> application/x-python default %WINDIR%\TEMP\PBS_Backup\<hook

name>.old2.7'

2. Save your hook configuration file. Export the configuration file:

qmgr -c 'export hook <hook name> application/x-config default %WINDIR%\TEMP\PBS_Backup\<hook
name>.configcheck'

3. Run dos2unix to convert the hooks and hook configuration files from DOS to UNIX format:

dos2unix /tmp/pbs_backup/<saved file>
PBS Professional 2022.1 Installation & Upgrade Guide IG-127

Chapter 6 Upgrading
6.9.8 Update Hooks and Hook Configuration Files for New

Python

PBS 19.4.1 and later uses Python 3.6, so if you have not already, update all of your site-defined hooks (not the built-in
hooks) to Python 3.6. For each hook except for the pbs_cgroups hook:

1. Update your hook to Python 3.6. See https://docs.python.org/3.6/howto/pyporting.html. Name your updated hook
file differently; use something like "WINDIR%\TEMP\PBS_Backup\<hook name>.new3.6"

2. Check that the contents of the configuration file are correct for Python 3.6

6.9.9 Shut Down Your Existing PBS

Use the -t immediate option to qterm so that all possible running jobs will be requeued. If you are using failover,
this will stop the secondary server as well:

1. Shut down the server, scheduler, and MoMs:
qterm -t immediate -m -s -f

If your server is not running in a failover environment, the "-f" option is not required.

2. Shut down any multischeds. On each multisched host:

net stop pbs_sched

3. On the server host and any other comm hosts, shut down the communication daemon:

net stop pbs_comm

6.9.10 Install the New Version of PBS

6.9.10.1 Install New PBS Server

On the server host, install the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package as an unprivileged user

4. Make sure that parameters for PBS_HOME, PBS_EXEC, PBS_LICENSE_INFO, PBS_SERVER and
PBS_DATA_SERVICE_USER are set correctly; see section 3.5.2.2, "Setting Installation Parameters", on page 25.
Make sure that PBS_HOME and PBS_EXEC are in locations that are different from your existing PBS.

If you are using failover, pay special attention to your configuration parameters, including PBS_HOME and
PBS_MOM_HOME, when installing the server sub-package on the secondary server host. See section 3.5.2.2, "Set-
ting Installation Parameters", on page 25 and "Configuring the pbs.conf File for Failover" on page 378 in the PBS
Professional Administrator's Guide.

5. Install the server sub-package:

rpm -i --prefix=<new PBS_EXEC location> <path/to/server sub-package>/pbspro-server-<ver-
sion>-0.<platform-specific-dist-tag>.<hardware>.rpm

Do not start PBS now.
IG-128 PBS Professional 2022.1 Installation & Upgrade Guide

https://docs.python.org/3.6/howto/pyporting.html

Upgrading Chapter 6
6.9.10.2 Install New PBS Communication Daemons

If you are installing a communication daemon on a communication-only host, install the server-scheduler-communica-
tion-MoM sub-package, and disable the server, scheduler, and MoM on that host. (MoM is disabled by default.) Install
the new version of PBS without uninstalling the previous version.

1. Log in as root

2. Download the appropriate PBS package

3. Uncompress the package

4. Make sure that parameters for PBS_HOME, PBS_EXEC, and PBS_SERVER are set correctly; see section
3.5.2.2, "Setting Installation Parameters", on page 25. Make sure that PBS_HOME and PBS_EXEC point to the
locations you are using for the new PBS.

5. Disable the server, scheduler, and MoM. In pbs.conf:

PBS_START_SERVER=0

PBS_START_SCHED=0

PBS_START_MOM=0

6. Install the server sub-package. The method you use depends on the version you are upgrading from.

• When upgrading from 13.2 or an earlier version:
rpm -i <path/to/server sub-package>/pbspro-server-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

• When upgrading from 14.2 or a later version:
rpm -U <path/to/server sub-package>/pbspro-server-<version>-0.<platform-spe-

cific-dist-tag>.<hardware>.rpm

Do not start PBS now.

6.9.10.3 Create PBS_HOME

Create the subdirectories under PBS_HOME by running pbs_habitat. On the new PBS server host:

$PBS_EXEC/libexec/pbs_habitat

6.9.10.4 Install New PBS MoMs and Client Commands

On each execution and client host, do the following:

1. Log in with the installation account.

2. Install the KB2999226 update for Windows on all Windows Server 2012 execution and client machines.

3. Download the MSI installer (the .msi file).

4. Double-click the MSI installer; the splash screen is displayed.

5. Click the Next button to move to the license page. Accept the license.

6. Click the Next button and choose the path where you will install the PBS executable. By default this path points to
"C:\Program Files (x86)\PBS\".

7. Using "Run As Administrator", open a Command prompt.
PBS Professional 2022.1 Installation & Upgrade Guide IG-129

Chapter 6 Upgrading
6.9.10.5 Configure New PBS MoMs and Client Hosts

On each execution and client host, manually execute the win_postinstall.py script as shown below. When you specify
the PBS service account, whether or not you are on a domain machine, include only the username, not the domain. For
example, if the full username on a domain machine is <domain>\<username>, pass only username as an argument.

On each execution host:

• Delete the "home" folder inside "C:\Program Files (x86)\PBS\" if it exists

• Run win_postinstall:
<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p

<PBS service account password> -s <server name> -t execution -c <path to scp.exe>

On each client host:

<PBS_EXEC>\python\python.exe <PBS_EXEC>\etc\win_postinstall.py -u <PBS service account> -p <PBS
service account password> -s <server name> -t client -c <path to scp.exe>

6.9.11 Start the New Server Without Defined Queues or

Vnodes

When the new server starts up it will have default queue "workq" and the server host already defined. You want to start
the new server with empty configurations so that you can import your old settings.

Start the new server with empty queue and vnode configurations:

$PBS_EXEC/sbin/pbs_server -t create

A message will appear saying "Create mode and server database exists, do you wish to continue?"

Type "y" to continue.

Because of the new licensing scheme an additional message may appear:

"One or more PBS license keys are invalid, jobs may not run"

This message is expected. Continue to the next step in these instructions.

6.9.12 Set License Location Server Attribute

Set the pbs_license_info server attribute to the location of the license server:

qmgr -c 'set server pbs_license_info=<port>@<license server hostname>'
IG-130 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.9.13 Clean Up Configuration Information

6.9.13.1 Clean Up Scheduler Configuration Files

If you were running one or more multischeds with your old version of PBS, make sure you update their configuration
files along with that of the default scheduler. Note that the preempt_order, preempt_prio, preempt_queue_prio,
preempt_sort, and log_events scheduler attributes are new; some were parameters in sched_config with the same
names. In a later step (after the server is running), you will use qmgr to set the attributes. For each scheduler:

1. Make a copy of the new sched_config, which is in PBS_EXEC/etc/pbs_sched_config.
cp $PBS_EXEC/etc/pbs_sched_config $PBS_EXEC/etc/pbs_sched_config.new

2. Update PBS_EXEC/etc/pbs_sched_config.new with any modifications that were made to your old sched-
uler configuration file, saved in (Windows) "%WINDIR%\TEMP\PBS_Backup\sched_priv.sched_config" or
"%WINDIR%\TEMP\PBS_Backup\sched_priv_<multisched name>.sched_config", or in (Linux)
%PBS_HOME/sched_priv/sched_config or %PBS_HOME/sched_priv_<multisched
name>/sched_config.

3. If you were using vmem at the queue or server level before the upgrade, then after upgrading you must add vmem
to the resource_unset_infinite sched_config option. Otherwise jobs requesting vmem will not run.

4. Move PBS_EXEC/etc/pbs_sched_config.new to the correct name and location, i.e.
$PBS_HOME/sched_priv/sched_config or $PBS_HOME/sched_priv_<multisched
name>/sched_config:

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv/sched_config

or

mv $PBS_EXEC/etc/pbs_sched_config.new $PBS_HOME/sched_priv_<multisched name>/sched_config

6.9.13.2 Clean Up Scheduler Attributes

For each scheduler, clean up the attributes saved in "%WINDIR%\TEMP\PBS_Backup\sched_attrs.new". When you read
in multisched attributes, you'll re-create the multischeds, so make sure your new multischeds are what you want:

• Remove read-only attributes

• Remove lines containing the following:
pbs_version

For the new default scheduler and all new multischeds:

• The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were sched-
uler parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler
attributes with the same names and formats. Make sure that you use qmgr to set the attributes as desired. See
"Scheduler Attributes" on page 298 of the PBS Professional Reference Guide.

• The scheduler's log_filter configuration parameter is obsolete. The scheduler's log filter now uses the same bitmask
system as the other daemons. The new default value is 767. Use qmgr to set the scheduler's log_events attribute
to the value you want. See "Specifying Scheduler Log Events" on page 430 in the PBS Professional Administrator's
Guide.

6.9.13.3 Clean Up Server Configuration

Remove read-only attributes from the server's configuration information in server.new. For example, remove lines con-
taining the following:

license_count

pbs_version
PBS Professional 2022.1 Installation & Upgrade Guide IG-131

Chapter 6 Upgrading
Remove creation commands for any reservation queues. You will create reservations and their queues separately.

6.9.13.4 Clean up Vnode Configuration

Here you prepare the vnode attribute input to the new qmgr.

If your system has multi-vnode hosts:

• Copy your saved node configuration file "%WINDIR%\TEMP\PBS_Backup\nodes.new" into two files:

• qmgr_parent_vnode.out, which contains all the configuration information for parent vnodes

• qmgr_child_vnode.out, which contains all the configuration information for vnodes that aren't parent vnodes

• Continue by preparing configuration information for parent vnodes. You will prepare the configuration information
for the child vnodes after they have been created, because the vnode names in your file must be precisely the same as
the ones created by PBS.

If your system has only single-vnode hosts, follow the steps below for preparing configuration information for parent
vnodes only.

6.9.13.4.i Prepare Configuration Information for Parent Vnodes

Edit qmgr_parent_vnode.out:

Leave only the the following creation lines:

• Those for parent vnodes

• Any resources you want managed on the server side through qmgr

• Custom resources on the parent vnodes

Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the vnode's
host OS is reporting. For example, delete:

• Child vnodes, that should be created by MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

6.9.14 Create and Configure New Multischeds

Create the directories required for each new multisched, and configure each multisched. See "Creating and Configuring
a Multisched" on page 59 in the PBS Professional Administrator's Guide.

6.9.15 Start New Server and New Schedulers

1. Start the new server and new default scheduler. On the server host:
systemctl restart pbs

or

<path to init.d>/init.d/pbs restart

2. Start multischeds. To start a multisched, call pbs_sched and specify the name you already gave it. For each mul-
tisched:

pbs_sched -I <name of multisched>
IG-132 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.9.16 Replicate Queue, Server, Scheduler, and Vnode

Configurations

6.9.16.1 Replicate Server and Queue Attributes

1. Give the new server the old server's configuration, but modified for the new PBS:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/server.new

2. Verify the configuration was read in properly:

$PBS_EXEC/bin/qmgr -c "print server"

6.9.16.2 Replicate Scheduler Attributes

1. Give the new default scheduler the old default scheduler's attributes, and re-create your multischeds:
$PBS_EXEC/bin/qmgr < /tmp/pbs_backup/<scheduler name>/sched_attrs.new

2. Verify the configurations were read in properly.

You can see all schedulers at once:

$PBS_EXEC/bin/qmgr -c "print sched"

Or for each scheduler:

$PBS_EXEC/bin/qmgr -c "print sched default"

or

$PBS_EXEC/bin/qmgr -c "print sched <multisched name>"

6.9.16.3 Replicate Vnode Attributes

Replicate vnode configuration, also modified for the new PBS:

1. Read in the parent vnode configuration file:
$PBS_EXEC/bin/qmgr < qmgr_parent_vnode.out

2. Wait until MoM or the cgroups hook creates any child vnodes. Check:

pbsnodes -av

3. Prepare configuration information for child vnodes:

Edit qmgr_not_parent_vnode.out. Make sure that the vnode names in this file are exactly what MoM or the
cgroups hook created. It's easiest to put all resource information into a Version 2 configuration file, rather than using
qmgr.

Leave only the the following creation lines:

• Any resources you want managed on the server side through qmgr

• Custom resources on the child vnodes (but this may be easier in a Version 2 configuration file)
PBS Professional 2022.1 Installation & Upgrade Guide IG-133

Chapter 6 Upgrading
Delete any lines for resources managed through Version 2 configuration files or that MoM reports from what the
vnode's host OS is reporting. For example, delete:

• Child vnodes, that should be created by the cgroups hook or MoM (vnodes that are NOT parent vnodes)

• Lines that set the sharing attribute

• The ncpus, mem, and vmem resources, unless they should explicitly be set via qmgr

4. Read in the configuration file for child vnodes (not parent vnodes):

$PBS_EXEC/bin/qmgr < qmgr_not_parent_vnode.out

5. Verify the configurations were read in properly:

$PBS_EXEC/bin/pbsnodes -a

6.9.17 Import and Configure Hooks

Make sure you do not overwrite the new pbs_cgroups hook or its configuration file by importing the old ones. Instead,
use the saved information from your old hook to modify the new hook and configuration file.

6.9.17.1 Import Old Hooks Except for Cgroups Hook

1. Do not import your old pbs_cgroups hook. Import your other hooks and their configuration files. For each hook
except for pbs_cgroups:
qmgr -c 'import hook <hook name> application/x-python default /tmp/<hook name>.new3.6'

qmgr -c 'import hook <hook name> application/x-config default /tmp/<hook name>.configcheck'

6.9.17.2 Modify Cgroups Hook Configuration File

If you will use the cgroups hook:

1. Export the new cgroups hook configuration file to pbs_cgroups.json:
qmgr -c 'export hook pbs_cgroups application/x-config default' > pbs_cgroups.json

2. If the cgroups memory subsystem is not mounted on the system, disable 'memory' in the cgroups hook configura-
tion file:

a. Check to see whether it is mounted:

mount | grep cgroup | grep memory

If the memory subsystem is mounted, the command returns something like "cgroup on /sys/fs/cgroup/mem-
ory type cgroup (rw,nosuid,nodev,noexec,relatime,memory".

b. If this returns empty, edit the pbs_cgroups.json file so that 'enabled' parameter for 'memory' under cgroup is
false:

"cgroup": {

 ...

"memory": {

"enabled": false,

3. If you made changes to the old cgroups configuration file, you may want to make those changes in the new configu-
ration file. Use the information saved in /etc/pbs_cgroups.old2.7

4. Import the modified configuration (make sure you use "x-config"):

qmgr -c 'import hook pbs_cgroups application/x-config default pbs_cgroups.json'
IG-134 PBS Professional 2022.1 Installation & Upgrade Guide

Upgrading Chapter 6
6.9.17.3 Enable Cgroups Hook

If you will use the cgroups hook, enable the pbs_cgroups hook:

qmgr -c "set hook pbs_cgroups enabled=true"

6.9.17.4 Write and Deploy New Hooks

If you have written new hooks for the new version of PBS, deploy them now. See the PBS Professional Hooks Guide.

6.9.17.5 Start MoMs

On each execution host, start MoM :

net start pbs_mom

6.9.18 Configure Sharing and Placement Sets

6.9.18.1 Configuration with Cgroups Hook

As of version 2020.1, the cgroups hook creates the child vnodes on a multi-vnode machine; if you will use the cgroups
hook, it is important that any Version 2 configuration files refer only to these vnodes. Use Version 2 configuration files
only to set the sharing attribute and optionally to set resources that will be used for placement sets. The default value for
the sharing attribute of the vnodes is "sharing=default_shared". You can change this, for example to "shar-
ing=default_excl".

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.

On each execution host:

1. Create a file named "vnodedefs" that has MoM's list of vnodes; see "Version 2 Vnode Configuration Files" on page
46 in the PBS Professional Administrator's Guide

2. Edit the file to reflect what you want for the sharing attribute and placement sets. Use the information saved in
"%WINDIR%\TEMP\PBS_MoM_Backup\mom_config" in step "Save Execution Host Configuration Files” on page 127

3. Create your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

4. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.9.18.2 Configuration without Cgroups Hook

Do not set resources_available.mem, resources_available.ncpus, or resources_available.vmem in the Version 2
configuration file.
PBS Professional 2022.1 Installation & Upgrade Guide IG-135

Chapter 6 Upgrading
On each execution host:

1. Create a file named "vnodedefs"; see "Version 2 Vnode Configuration Files" on page 46 in the PBS Professional
Administrator's Guide

2. Insert your new Version 2 configuration file and name it for example "vnodedefs":

pbs_mom -s insert vnodedefs vnodedefs

3. Restart pbs_mom:

net stop pbs_mom

net start pbs_mom

6.9.19 Start New Communication Daemons

Start PBS on any communication-only hosts. On each communication-only host, type:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

6.9.20 Verify Communication Between Server and MoMs

All new MoMs on all execution hosts should be running and communicating with the new server. Run pbsnodes -a
on the new server host to see if it can communicate with the execution hosts in your complex. If a host is down, go to the
problem host and restart the MoM:

net stop pbs_mom

net start pbs_mom

6.9.21 Re-create Reservations

You must re-create each reservation that was on the old server, using the pbs_rsub command. Each reservation is cre-
ated as a new reservation. You can use all of the information about the old reservation except for its start time. Be sure
to give each reservation a start time in the future. Use the information stored in /tmp/pbs_backup/reserva-
tions.

6.9.22 Enable STONITH Script

If your secondary server has a STONITH script, allow the STONITH script to run by setting its permissions to 0755.

6.9.23 Enable Cloud Bursting

If you are using Altair Control for cloud bursting with PBS, enable cloud bursting. See the Altair Control Administra-
tor's Guide, at www.pbsworks.com.

6.9.24 Enable Scheduling

If you disabled scheduling earlier, enable it for the default scheduler and any multischeds:

qmgr -c 'set sched <scheduler name> scheduling = true'
IG-136 PBS Professional 2022.1 Installation & Upgrade Guide

https://www.pbsworks.com

Upgrading Chapter 6
6.10 After Upgrading

6.10.1 Making Upgrade Transparent for Users

You may wish to make the upgrade transparent for users, if the installation program hasn't done that already. See section
3.5.5, "Making User Paths Work", on page 36.
PBS Professional 2022.1 Installation & Upgrade Guide IG-137

Chapter 6 Upgrading
IG-138 PBS Professional 2022.1 Installation & Upgrade Guide

7

Installing and Upgrading on

Cray

7.1 Installing PBS with Shasta

To install the PBS server and client packages on Shasta, follow the instructions supplied by Cray.

To install the PBS MoM and comm packages on Shasta, follow the standard Linux instructions. You can install comms
on compute nodes. See Chapter 3, "Installation", on page 19.

7.1.1 Prerequisites for PBS on Shasta

If you want to be able to use pbs_snapshot, install the file command.
PBS Professional 2022.1 Installation & Upgrade Guide IG-139

Chapter 7 Installing and Upgrading on Cray
IG-140 PBS Professional 2022.1 Installation & Upgrade Guide

8

Starting & Stopping PBS on

Linux

8.1 Platform Change

As of version 2021.1.3, support for init.d is deprecated.

8.2 Automatic Start on Bootup

On installation, PBS is configured to start automatically. Under Linux, PBS starts on bootup using init (deprecated)
or systemd. PBS uses systemd for automatic startup on platforms that support systemctl; for platforms that sup-
port only init, PBS uses init for automatic startup.

You specify which PBS daemons start on each host on bootup in that host's /etc/pbs.conf. The table below lists the
parameters that control startup of daemons:

8.2.1 Shutting Down Host

When a host running PBS is shut down or rebooted, PBS is shut down via the start/stop script or systemd.

8.3 When to Restart PBS Daemons

• Restart PBS if you make changes to the hardware or a change occurs in the number of CPUs or amount of memory
that is available to PBS. You should restart PBS by typing the following:
<path-to-script>/pbs restart

• Restart PBS after making changes to the /etc/hosts file. See section 2.1.3, "Name Resolution and Network
Configuration", on page 8

• Restart PBS after changing the name of the PBS service account

• Restart the scheduler(s) if you added a new custom resource to the resources: line in sched_config

Table 8-1: Daemon Start Parameters in pbs.conf

Parameter Description

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Set this to 1 if a scheduler is to run on this host.

PBS_START_SERVER Set this to 1 if server is to run on this host.
PBS Professional 2022.1 Installation & Upgrade Guide IG-141

Chapter 8 Starting & Stopping PBS on Linux
8.4 Methods for Starting, Stopping, or Restarting

PBS

The PBS daemons can be started by different types of methods. These types are not equivalent. You can use init (dep-
recated), systemd, or the PBS command that starts the daemon.

The following table shows how to start, stop, restart, or status PBS on the local host:

8.4.1 Using systemd

When you use systemctl to start PBS, it uses a PBS unit file. PBS supports systemd where it's available.

8.4.1.1 Required Privilege

You must be root to run systemctl.

8.4.1.2 Effect of systemctl on Jobs

When you use systemctl to start or stop PBS, any running jobs and subjobs are killed. When you use systemd to
stop PBS, MoM kills her jobs and exits. When you use it to restart PBS, jobs are requeued.

When you use systemd by typing "systemctl stop pbs", the following take place:

• The server gets a qterm -t quick

• MoM gets a SIGTERM: MoM terminates all running children and exits

• The communication daemon gets a SIGTERM and exits

Table 8-2: Commands to Start, Stop, Restart, Status PBS

Effect init (deprecated) systemd Command

Start
PBS

/etc/init.d/pbs start

or

/etc/rc.d/init.d/pbs start

systemctl start pbs pbs_server

pbs_sched

pbs_mom

pbs_comm

Stop
PBS

/etc/init.d/pbs stop

or

/etc/rc.d/init.d/pbs stop

systemctl stop pbs qterm (stops server, sched-
uler(s), MoM)

kill -INT <PID of
pbs_comm>

Status
PBS

/etc/init.d/pbs status

or

/etc/rc.d/init.d/pbs status

systemctl status pbs qstat

Restart
PBS

/etc/init.d/pbs restart

or

/etc/rc.d/init.d/pbs restart

systemctl restart pbs ---
IG-142 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.4.1.3 Caveats for Using systemctl

PBS supports most systemctl options, including start, stop, restart, and status. However, PBS does not
support the reload option.

systemd uses the settings in pbs.conf to determine which daemons to start and stop. If you specify in pbs.conf
that a daemon should not start, systemd also will not stop it if it is running. For example, setting PBS_START_MOM
to 0 effectively makes systemd ignore the MoM, and if you do the following steps, the pbs_mom process is not
stopped:

1. Start pbs_mom

2. Set PBS_START_MOM to 0

3. Run systemd with stop as the argument

8.4.2 Using init with PBS Start/Stop Script

As of version 2021.1.3, support for init.d is deprecated.

When you use init to start PBS, init runs the PBS start/stop script. PBS supports init on all Linux systems.

The script starts, stops, or restarts PBS daemons on the local machine. It can also be used to report the PID of any PBS
daemon on the local machine. The PBS start/stop script reads the pbs.conf file to determine which components
should be started. The start/stop script runs automatically at boot time, starting PBS upon bootup. The start/stop script
runs on and affects only the local host.

The PBS start/stop script is named pbs. To run it, you type the following:

<path to script>/pbs [start|stop|restart|status]

See "pbs" on page 29 of the PBS Professional Reference Guide.

8.4.2.1 Required Privilege

You must be root to run the start/stop script.

8.4.2.2 Using Start/Stop Script to Check Status of Daemons

You can check whether or not each daemon is running by using the PBS start/stop script with the status option. To
check the status of MoM, do the following on MoM's host:

<path to script>/pbs status

8.4.2.3 Location of the PBS Start/Stop Script

If /etc/init.d exists

/etc/init.d/pbs

Else

/etc/rc.d/init.d/pbs
PBS Professional 2022.1 Installation & Upgrade Guide IG-143

Chapter 8 Starting & Stopping PBS on Linux
8.4.2.4 Effect of Start/Stop Script on Jobs

When you use the PBS start/stop script to start or stop PBS, any running jobs and subjobs are killed on the host where
you run the script. When you use the PBS start/stop script to stop PBS on the local host, MoM kills her jobs and exits.
When you use it to restart PBS, jobs are requeued; note that there is a short but non-zero amount of time after MoM and
the server are restarted, when jobs from MoM's previous session are visible via qstat but not running, before the server
requeues them. If you stop one MoM for a multihost job, that job will probably be killed.

When you use the PBS start/stop script by typing "pbs stop", the following take place:

• The server gets a qterm -t quick

• MoM gets a SIGTERM: MoM terminates all running children and exits

• The communication daemon gets a SIGTERM and exits

8.4.2.5 Start/Stop Script Caveats

• The PBS start/stop script uses the settings in pbs.conf to determine which daemons to start and stop. If you spec-
ify in pbs.conf that a daemon should not start, the script also will not stop it if it is running. For example, setting
PBS_START_MOM to 0 effectively makes the start/stop script or systemd ignore the MoM, and if you do the
following steps, the pbs_mom process is not stopped:

a. Start pbs_mom

b. Set PBS_START_MOM to 0

c. Run the PBS start/stop script or systemd with stop as the argument

• If you start PBS using the start/stop script, you cannot use systemctl to status PBS.

8.4.3 Using the qterm Command to Stop PBS

You use the qterm command to shut down your choice of the following PBS daemons:

• Primary server

• Secondary server

• Whichever default scheduler is running (primary or secondary)

• All MoMs

The qterm command does not shut down pbs_comm.

If you have failover configured, you can choose to shut down either or both servers, or you can shut down the primary
and leave the secondary idle.

You can specify how running jobs and subjobs are treated during shutdown by specifying the type of shutdown. The type
of shutdown performed by the qterm command defaults to "-t quick", which preserves running jobs and subjobs:

qterm -t quick

The following command shuts down the primary server, the scheduler(s), and all MoMs in the complex. If configured,
the secondary server becomes active. Running jobs and subjobs continue to run:

qterm -s -m

The following command shuts down the primary server, the secondary server, the scheduler(s), and all MoMs in the com-
plex. Running jobs and subjobs continue to run:

qterm -s -m -f

See "qterm" on page 236 of the PBS Professional Reference Guide.
IG-144 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.4.3.0.i qterm Caveats

• The qterm command does not stop the pbs_comm daemon. You must stop pbs_comm using the start/stop script,
systemd, the service command, or the kill command.

• Shutting PBS down using the qterm command does not perform any of the other cleanup operations that are per-
formed by the PBS start/stop script.

8.5 Starting, Stopping, and Restarting PBS

Daemons

8.5.1 Daemon Execution Requirements

The server, scheduler(s), communication, and MoM processes must run with the real and effective UID of root.

8.5.2 Required Privilege

You must be root to run pbs_server, pbs_mom, pbs_comm, and pbs_sched.

8.5.3 Recommendation for Daemon Start Order

We recommend starting the communication daemon before starting the MoMs, but you can also start it after the MoMs
and before the server.

We recommend starting MoMs before starting the server. This way, MoM will be ready to respond to the server's "are
you there?" ping, preventing the server from attempting to contact a MoM that is still down. This will cut down on
inter-daemon traffic, especially in larger complexes.

8.5.4 Creation of MoM Home Directory

When you run systemctl or the PBS start/stop script on an execution host, PBS creates MoM's home directory if it
does not already exist.

8.5.5 Server: Starting, Stopping, Restarting

8.5.5.1 Starting Server Without Failover

On the local host:

PBS_EXEC/sbin/pbs_server [options]
PBS Professional 2022.1 Installation & Upgrade Guide IG-145

Chapter 8 Starting & Stopping PBS on Linux
8.5.5.2 Starting Servers With Failover

You can start the servers in any order. If you want to let running jobs and subjobs continue running, use the
pbs_server command to start the servers. Starting via the start/stop script or systemctl kills running jobs and sub-
jobs. If you want to start the primary server when the secondary server is the active server, you do not need to stop the
secondary. When the primary server starts, it will inform the secondary that the primary is taking over and the secondary
can become idle.

• On the primary host, start the primary server:
pbs_server

• You can start the secondary server while it is the active server. On the secondary server host:
pbs_server -F -1

The secondary server makes one attempt to contact the primary server, and becomes active immediately if it cannot.

If there is a network outage while the primary starts and the secondary cannot contact it, the secondary will assume the
primary is still down, and remain active, resulting in two active servers. In this case, stop the secondary server, and
restart it when the network is working:

qterm -F

pbs_server

8.5.5.3 Stopping Server Without Failover

To stop the server and leave running jobs and subjobs running:

qterm

8.5.5.3.i Stopping Server via Signals

If you send the server a SIGTERM, the server does a quick shutdown, equivalent to receiving a qterm -t quick.

See "pbs_server" on page 107 of the PBS Professional Reference Guide and "qterm" on page 236 of the PBS Profes-
sional Reference Guide.

8.5.5.4 Stopping Servers With Failover

If you have failover configured, and want to stop the servers but allow running jobs and subjobs to continue running, use
the qterm command. Both the start/stop script and systemctl kill running jobs and subjobs.

• To stop both servers when the primary server is active, and the secondary server is running and idle, do the follow-
ing:
qterm -f

• To stop the primary server and leave the secondary server idle:
qterm -i

• To stop the secondary server only:
qterm -F

8.5.5.5 Restarting Server Without Failover

qterm -t quick

PBS_EXEC/sbin/pbs_server
IG-146 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.5.5.6 Restarting Servers with Failover

8.5.5.6.i Stopping Servers

If you have failover configured, and want to stop the servers but allow running jobs and subjobs to continue running, use
the qterm command. Both the start/stop script and systemctl kill running jobs and subjobs.

• To stop both servers when the primary server is active, and the secondary server is running and idle, do the follow-
ing:
qterm -f

• To stop the primary server and leave the secondary server idle:
qterm -i

• To stop the secondary server only:
qterm -F

8.5.5.6.ii Starting Servers

You can start the servers in any order. If you want to let running jobs and subjobs continue running, use the
pbs_server command to start the servers. Starting via the start/stop script or systemctl kills running jobs and sub-
jobs. If you want to start the primary server when the secondary server is the active server, you do not need to stop the
secondary. When the primary server starts, it will inform the secondary that the primary is taking over and the secondary
can become idle.

• On the primary host, restart the primary server:
pbs_server

• To restart the secondary server while it is the active server:
pbs_server -F -1

The secondary server makes one attempt to contact the primary server, and becomes active immediately if it cannot.

8.5.5.6.iii Network Outage

If there is a network outage while the primary starts and the secondary cannot contact it, the secondary will assume the
primary is still down, and remain active, resulting in two active servers. In this case, stop the secondary server, and
restart it when the network is working:

qterm -F

pbs_server

8.5.5.7 Restarting Server To Resume Previously-running Jobs

If, when the server was shut down, running jobs and subjobs were killed and requeued, then starting the server with the
-t hot option puts those jobs back in the Running state first. See "pbs_server" on page 107 of the PBS Professional
Reference Guide for details and the options to the pbs_server command.

8.5.6 Scheduler(s): Starting, Stopping, Restarting

8.5.6.1 Starting Default Scheduler

To start the default scheduler directly, do the following:

PBS_EXEC/sbin/pbs_sched [options]
PBS Professional 2022.1 Installation & Upgrade Guide IG-147

Chapter 8 Starting & Stopping PBS on Linux
8.5.6.2 Starting Multisched

To start a multisched, call pbs_sched and specify the name you already gave it:

pbs_sched -I <name of multisched>

For example:

pbs_sched -I multisched_1

When you start a multisched, you must specify its name.

See "pbs_sched" on page 105 of the PBS Professional Reference Guide for more information and a description of avail-
able options.

8.5.6.3 Stopping Scheduler or Multisched

1. Find the PID you want:
ps –ef | grep pbs_sched

For the default scheduler, you'll see "pbs_sched", but for multischeds, you'll see "pbs_sched -I <multisched name>".

2. Stop the scheduler or multisched:

kill <scheduler PID>

8.5.6.4 Stopping Scheduler(s) via Signals

You can stop a scheduler by sending it SIGTERM or SIGINT. These result in an orderly shutdown of the scheduler.

8.5.6.5 Restarting and Reinitializing Scheduler or Multisched

8.5.6.5.i When to Restart or Reinitialize Scheduler or Multisched

• Restart the scheduler(s) after you change pbs.conf.

• HUP the scheduler(s) if you added any custom resources to the resources: line in <sched_priv direc-
tory>/sched_config.

8.5.6.5.ii Restarting Scheduler or Multisched

1. Find the PID you want:
ps –ef | grep pbs_sched

For the default scheduler, you'll see "pbs_sched", but for multischeds, you'll see "pbs_sched -I <multisched name>".

2. Stop the scheduler or multisched:

kill <scheduler PID>

3. Start the scheduler or multisched:

• To start the default scheduler:

PBS_EXEC/sbin/pbs_sched [options]
• To start a multisched, call pbs_sched and specify the namet you already gave it:

pbs_sched -I <name of multisched>

8.5.6.5.iii Reinitializing Scheduler or Multisched

Find the PID you want:

ps –ef | grep pbs_sched
IG-148 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
For the default scheduler, you'll see "pbs_sched", but for multischeds, you'll see "pbs_sched -I <multisched name>".

kill -HUP <scheduler PID>

8.5.7 MoMs: Starting, Stopping, Restarting

8.5.7.1 Starting MoM

You start the PBS MoM directly via the pbs_mom command. See "pbs_mom" on page 71 of the PBS Professional Ref-
erence Guide.

8.5.7.2 Stopping MoM

8.5.7.2.i Stopping MoM via Signals

You can stop MoM using the following signals:

8.5.7.2.ii Recommendation to Offline Vnodes Before Stopping MoM

We recommend that you offline vnodes before stopping the MoM. The server tries to keep continual contact with each
MoM. If you offline the vnode before stopping the MoM, the server does not try to stay in contact with the MoM. This
reduces network traffic.

8.5.7.3 Restarting and Reinitializing MoM

8.5.7.4 Whether to Restart or Reinitialize MoM

When you change configuration files on Linux, whether the MoM must be restarted or reinitialized depends on which
MoM configuration file has been changed.

• If only the Version 1 MoM configuration file was changed, you only need to HUP the MoM.

• If you used the pbs_mom -s insert command to add to or change anything in the Version 2 MoM config file,
you can HUP the MoM.

• If you used the pbs_mom -s insert command to remove anything from the Version 2 MoM config file, you
must restart the MoM.

Table 8-3: Signals Handled by MoM

Signal Effect

SIGTERM If a MoM is killed with the signal SIGTERM, jobs are killed before MoM exits. Notification of the ter-
minated jobs is not sent to the server until the MoM is restarted. Jobs will still appear to be in the "R"
(running) state.

SIGINT If a MoM is killed with this signal, jobs are not killed before the MoM exits. MoM exits after cleanly
closing network connections.

SIGKILL If a MoM is killed with this signal, jobs are not killed before the MoM exits.
PBS Professional 2022.1 Installation & Upgrade Guide IG-149

Chapter 8 Starting & Stopping PBS on Linux
8.5.7.5 Restarting MoM

You can restart MoM with the following options:

See "pbs_mom" on page 71 of the PBS Professional Reference Guide.

8.5.7.5.i Preserving Existing Jobs When Restarting MoM

By default, when MoM is started, she allows running processes to continue to run, but tells the server to requeue her
jobs. You can direct MoM to preserve running jobs and subjobs and to track them, by using the -p option to the
pbs_mom command. If you have not just rebooted, you can preserve existing jobs:

1. Use the ps command to determine MoM's process ID. Note that ps arguments vary among Linux systems, thus
"-ef" may need to be replaced by "-aux".
ps –ef | grep pbs_mom

2. Terminate MoM using the kill command, with MoM's PID as an argument. The syntax will vary depending on
your system:

kill -INT <MoM PID>

or

kill -s INT <MoM PID>

3. Restart MoM, allowing running jobs and subjobs to continue running through the restart. If your custom resource
query script/program takes longer than the default ten seconds, you can change the alarm timeout via the -a alarm
command line start option:

PBS_EXEC/sbin/pbs_mom -p [-a timeout]

8.5.7.5.ii Caveats for Restarting MoM After a Reboot

Never restart pbs_mom with the -p or the -r option following a reboot of the host system.

When a Linux operating system is first booted, it begins to assign process IDs (PIDs) to processes as they are created.
PID 1 is always assigned to the system "init" process. As new processes are created, they are either assigned the next
PID in sequence or the first empty PID found, which depends on the operating system implementation. Generally, the
session ID of a session is the PID of the top process in the session.

The PBS MoM keeps track of the session IDs of the jobs. If only MoM is restarted on a system, those session IDs/PIDs
have not changed and apply to the correct processes.

If the entire system is rebooted, the assignment of PIDs by the system will start over. Therefore the PID which MoM
thinks belongs to an earlier job will now belong to a different later process. If you restart MoM with -p, she will believe
the jobs are still valid jobs and the PIDs belong to those jobs. When she kills the processes she believes to belong to one
of her earlier jobs, she will now be killing the wrong processes, those created much later but with the same PID as she
recorded for that earlier job.

Table 8-4: MoM Restart Options

Option Effect on Jobs

pbs_mom Job processes continue to run, but the jobs themselves are requeued.

pbs_mom -r Running processes associated with jobs that were running before MoM was terminated are killed.
Running jobs and subjobs are requeued or deleted. Do not use this option after a reboot, because pro-
cess numbers will be incorrect and processes unrelated to jobs may be killed.

pbs_mom -p Jobs which are running when MoM is terminated remain running. Do not use after reboot.
IG-150 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
8.5.7.5.iii Killing Existing Jobs When Restarting MoM

If you wish to kill all existing processes, use the -r option to pbs_mom.

To kill existing jobs, start MoM with the command line:

PBS_EXEC/sbin/pbs_mom -r

8.5.7.5.iv Starting MoM on the HPE MC990X, HPE Superdome Flex, or HPE 8600

For a cpusetted MC990X, Superdome Flex, or 8600, start MoM using the PBS start/stop script or systemd.

8.5.7.5.v Using Existing CPU and Memory for cpusets

By default, MoM removes existing cpusets when she starts. You can specify that MoM is to use existing CPU and mem-
ory allocations for cpusets by using the -p option to the pbs_mom command. This option also preserves running jobs
and subjobs. See "Options to pbs_mom" on page 72 of the PBS Professional Reference Guide.

Vnode definition files are not created when the pbs_mom command is used; use it only when you know that they are
already up to date.

8.5.7.5.vi Effect of Stopping Sister MoM on Multihost Jobs

Stopping a sister MoM for a multi-vnode job may cause the job to be requeued if the primary MoM loses contact with the
sister MoM.

8.5.7.6 Reinitializing MoM

1. Use the ps command to determine MoM's process ID. Note that ps arguments vary among Linux systems, thus
"-ef" may need to be replaced by "-aux".
ps –ef | grep pbs_mom

2. HUP MoM using the kill command, with MoM's PID as an argument:

kill -HUP <MoM PID>

See "pbs_mom" on page 71 of the PBS Professional Reference Guide.

8.5.8 Comms: Starting, Stopping, Restarting

8.5.8.1 Starting Communication Daemon

To start the communication daemon directly, do the following on the local host:

PBS_EXEC/sbin/pbs_comm [-N] [-r <other routers>] [-t <number of threads>]

See "pbs_comm" on page 58 of the PBS Professional Reference Guide.

8.5.8.2 Stopping Communication Daemon via Signals

You can stop the communication daemon using a SIGTERM.
PBS Professional 2022.1 Installation & Upgrade Guide IG-151

Chapter 8 Starting & Stopping PBS on Linux
8.6 Impact of Stop-Restart on Running Linux Jobs

8.6.1 Whether to Use Script, Command, or Signal for

Shutdown and Restart

Use the qterm command to shut the server down when running jobs and subjobs must be checkpointed before shut-
down, allowed to run to completion before shutdown, or preserved through shutdown and restart. To preserve running
jobs and subjobs, stop MoM using KILL -INT and use the pbs_mom -p command when restarting MoM.

When you use the PBS start/stop script or systemd to stop PBS, MoM kills her jobs and exits. When you use it to
restart MoM, jobs are requeued.

8.6.2 Scenarios for Stopping Then Restarting Daemons

Choose one of the following recommended sequences, based on the desired impact on jobs, to stop and restart PBS:

• To allow running jobs and subjobs to continue to run:

Shutdown:

qterm -t quick -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

pbs_server -t warm

pbs_mom -p

pbs_sched

pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs that were previously running:

Shutdown:

qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

pbs_mom

pbs_server -t hot

pbs_sched

pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs without taking prior state into account:

Shutdown:

qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)
IG-152 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping PBS on Linux Chapter 8
Restart:

pbs_mom

pbs_server -t warm

pbs_sched

pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)
PBS Professional 2022.1 Installation & Upgrade Guide IG-153

Chapter 8 Starting & Stopping PBS on Linux
IG-154 PBS Professional 2022.1 Installation & Upgrade Guide

9

Starting & Stopping MoM on

Windows

9.1 Automatic Start on Bootup

On Windows, the PBS MoM daemons are registered as system services, and are automatically started and stopped when
the system boots and shuts down.

• The auto-startup of MoM is controlled by the PBS pbs.conf file and the Services dialog. You invoke this via
Settings->Control Panel->Administrative Tools->Services. Make sure that in pbs.conf your setting for
PBS_START_MOM is correct. If this is set to 0, the service will fail to start up with the message, "incorrect envi-
ronment".

• On Windows, sometimes MoM may fail to start automatically after the boot. We recommend that you change the
startup mode from " [Startup type: Automatic]" to "[Startup type: Automatic (Delayed Start)]", which means
"shortly after boot".

At the command prompt:

sc config <service name> start= delayed-auto

9.2 When to Restart PBS MoMs

Restart MoM:

• If you make changes to the hardware or a change occurs in the number of CPUs or amount of memory that is avail-
able to PBS

• After creating a Version 2 configuration file

• After changing the name of the PBS service account

• After changing the PBS service account to a non-domain administrator account

• After making changes to the %WINDIR%\system32\dirvers\etc\hosts file

9.3 Starting, Stopping, and Restarting PBS

9.3.1 Required Privilege

To stop or start MoM, you must have Administrator privilege.

9.3.2 Recommendation for Service Start Order

We recommend starting the communication daemon before starting the MoMs, but you can also start it after the MoMs
and before the server.
PBS Professional 2022.1 Installation & Upgrade Guide IG-155

Chapter 9 Starting & Stopping MoM on Windows
We recommend starting MoMs before starting the server. This way, MoM will be ready to respond to the server's "are
you there?" ping, preventing the server from attempting to contact a MoM that is still down. This will cut down on
inter-daemon traffic, especially in larger complexes.

9.3.3 Creation of MoM Home Directory

When you run systemctl or the PBS start/stop script on an execution host, PBS creates MoM's home directory if it
does not already exist.

9.3.4 Windows-specific Service Options

The Windows MoM has the following Windows-only option:

-N
The service runs in standalone mode, not as a Windows service.

9.3.5 Configuring Startup Options to MoM

You can use the startup options to the pbs_mom command when starting the MoM.

The procedure to specify startup options to the MoM is as follows:

1. Go to the Services menu.

2. Select "PBS_MOM". The MoM service dialog box comes up.

3. Enter the desired options in the "Start parameters" entry line. For example, to specify an alternate MoM configu-
ration file, you might specify the following input:

On Windows systems:

-c "\Program Files (x86)\PBS\home\mom_priv\config2"

4. Click on "Start" to start the MoM service.

9.3.5.1 Saving Startup Options

You can save your options for the future. If PBS_EXEC and PBS_HOME are set:

sc config pbs_mom binpath="%PBS_EXEC%\sbin\pbs_mom.exe -c ""%PBS_HOME%\mom_priv\config2"""

If you don't save your startup options, the Windows services dialog does not remember the "Start parameters" value
when you close the dialog. You will have to specify the "Start parameters" value for each future restart.

9.3.6 MoMs: Starting, Stopping, Restarting

On Windows, you must restart MoM when any MoM configuration file has been changed.

9.3.6.1 Starting MoM as a Service

On the local host:

net start pbs_mom
IG-156 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping MoM on Windows Chapter 9
9.3.6.2 Starting MoM in Standalone Mode

On the local host:

pbs_mom -N <options>

9.3.6.3 Stopping MoMs

On the local host:

net stop pbs_mom

9.3.6.3.i Effect of Stopping Sister MoM on Multihost Jobs

Stopping a sister MoM for a multi-vnode job may cause the job to be requeued if the primary MoM loses contact with the
sister MoM.

9.3.6.3.ii Recommendation: Offline Vnodes Before Stopping MoM

We recommend that you offline vnodes before stopping the MoM. The server tries to keep continual contact with each
MoM. If you offline the vnode before stopping the MoM, the server does not try to stay in contact with the MoM. This
reduces network traffic.

9.3.6.4 Restarting MoMs

You can restart MoM with the following options:

See section 9.3.5, "Configuring Startup Options to MoM", on page 156.

On the local host:

Admin> net stop pbs_mom

Admin> net start pbs_mom

9.3.6.4.i Preserving Existing Jobs When Restarting MoM

By default, when MoM is started, she allows running processes to continue to run, but tells the server to requeue her
jobs. You can direct MoM to preserve running jobs and subjobs and to track them, by using the -p option to the
pbs_mom command.

9.3.6.4.ii Caveats for Preserving Existing Jobs When Restarting MoM

• If you restart a sister MoM for a multi-vnode job, the job may be killed because the primary MoM may lose contact
with the sister MoM and requeue the job.

• Never use the -p option to pbs_mom after a reboot.

Table 9-1: MoM Restart Options

Option Effect on Jobs

pbs_mom Job processes will continue to run, but the jobs themselves are requeued.

pbs_mom -p Jobs which were running when MoM terminated remain running.

pbs_mom -r Processes associated with the job are killed. Running jobs and subjobs are returned to the server to
be requeued or deleted. This option should not be used if the system has just been rebooted as the
process numbers will be incorrect and a process not related to the job would be killed.
PBS Professional 2022.1 Installation & Upgrade Guide IG-157

Chapter 9 Starting & Stopping MoM on Windows
9.4 Stopping PBS Using the qterm Command

The qterm command is used to shut down, selectively or inclusively, the PBS server, scheduler(s), and MoMs. The
qterm command does not shut down pbs_comm. If you have a failover server configured, then when the primary
server is shut down, the secondary server becomes active unless you shut it down as well. The qterm command can be
run at any PBS host.

You can specify how running jobs and subjobs are treated during shutdown by specifying the type of shutdown. The type
of shutdown performed by the qterm command defaults to "-t quick", which preserves running jobs and subjobs:

qterm -t quick

The following command shuts down the primary server, the scheduler(s), and all MoMs in the complex. If configured,
the secondary server becomes active. Running jobs and subjobs continue to run:

qterm -s -m

The following command shuts down the primary server, the secondary server, the scheduler(s), and all MoMs in the com-
plex. Running jobs and subjobs continue to run:

qterm -s -m -f

See "qterm" on page 236 of the PBS Professional Reference Guide.

9.4.0.0.i qterm Caveats

• The qterm command does not stop the pbs_comm service. You must stop pbs_comm using the start/stop script
or the kill command.

• Shutting PBS down using the qterm command does not perform any of the other cleanup operations that are per-
formed by the net stop command.

9.5 Impact of Stop-Restart on Running Windows

Jobs

The methods you can use to shut down PBS, and which daemons are shut down, will affect running jobs and subjobs dif-
ferently. You can leave jobs and subjobs running during shutdown.

The impact of a shutdown (and subsequent restart) on running jobs and subjobs depends on whether you use net stop
or the qterm command to shut down PBS, and how pbs_mom is restarted.

You can use the qterm command to shut the server down.

Jobs are not killed when pbs_mom is stopped via net stop; whether they are killed depends on how MoM is
restarted.

Use the qterm command to shut the server down when running jobs and subjobs must be checkpointed before shut-
down, allowed to run to completion before shutdown, or preserved through shutdown and restart.

To preserve running jobs and subjobs, use the -p option to the pbs_mom command when restarting MoM.

9.5.1 Scenarios for Stopping Then Restarting Services

Choose one of the following recommended sequences, based on the desired impact on jobs, to stop and restart PBS.

The start/stop script is located in /etc/init.d/pbs or /etc/rc.d/init.d/pbs.

• To allow running jobs and subjobs to continue to run:
IG-158 PBS Professional 2022.1 Installation & Upgrade Guide

Starting & Stopping MoM on Windows Chapter 9
Shutdown:

qterm -t quick -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

PBS_EXEC/sbin/pbs_server -t warm

pbs_mom -p

PBS_EXEC/sbin/pbs_sched

PBS_EXEC/sbin/pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)
net start pbs_mom (with -p startup option set)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs that were previously running:
qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

net start pbs_mom

PBS_EXEC/sbin/pbs_server -t hot

PBS_EXEC/sbin/pbs_sched

PBS_EXEC/sbin/pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)

• To checkpoint and requeue checkpointable jobs, requeue rerunnable jobs, kill any non-rerunnable jobs, then restart
and run jobs without taking prior state into account:

Shutdown:

qterm -t immediate -m -s

<path to start/stop script>/pbs stop (on communication-only host)

Restart:

net start pbs_mom

PBS_EXEC/sbin/pbs_server -t warm

PBS_EXEC/sbin/pbs_sched

PBS_EXEC/sbin/pbs_comm (on server host)
<path to start/stop script>/pbs start (on communication-only host)
PBS Professional 2022.1 Installation & Upgrade Guide IG-159

Chapter 9 Starting & Stopping MoM on Windows
IG-160 PBS Professional 2022.1 Installation & Upgrade Guide

Index

A
account

installation IG-13
PBS service IG-13

Active Directory IG-13
Admin IG-13
administrators IG-13
authorization IG-12

B
backup directory

overlay upgrade IG-72, IG-73, IG-83, IG-85, IG-96
Windows upgrade IG-111, IG-126, IG-127

C
CentOS IG-23
client commands IG-4
commands IG-4

D
delegation IG-13
DIS IG-59
DNS IG-38
Domain Admin Account IG-13
Domain Admins IG-13
Domain User Account IG-13
Domain Users IG-13
domains

mixed IG-17

E
empty queue, node configurations

migration under Linux IG-100, IG-115, IG-116,
IG-130

Enterprise Admins IG-13

F
failover

migration IG-73, IG-85, IG-97, IG-112, IG-128
file

.rhosts IG-12

.shosts IG-12
hosts.equiv IG-15, IG-39
pbs.conf IG-43
services IG-59

G
gethostbyaddr IG-58

H
headnode IG-21

I
IETF IG-9, IG-58
installation

Windows MoMs IG-37
installation account IG-13

M
migration upgrade IG-65

Linux IG-93
Windows IG-109, IG-125

mixed domains IG-17
MoM IG-4
moving jobs

migration upgrade under Linux IG-107, IG-123

N
network

ports IG-58
services IG-58

NTFS IG-41

O
output files IG-12
overlay upgrade IG-65

backup directory IG-72, IG-73, IG-83, IG-85, IG-96
Linux IG-70

P
PBS service account IG-13
PBS_BATCH_SERVICE_PORT IG-59
PBS_BATCH_SERVICE_PORT_DIS IG-59
PBS_DATA_SERVICE_PORT IG-59
PBS_EXEC IG-21, IG-43
PBS_EXEC/pbs_sched_config

overlay upgrade IG-76, IG-88, IG-101, IG-117,
IG-131

PBS_HOME IG-21, IG-43
PBS_LEAF_NAME IG-61
PBS Professional 2022.1 Installation & Upgrade Guide IG-161

Index
PBS_MAIL_HOST_NAME IG-61
PBS_MANAGER_SERVICE_PORT IG-59
pbs_mom IG-4

starting during overlay IG-78
PBS_MOM_HOST_NAME IG-61
PBS_MOM_SERVICE_PORT IG-59
PBS_OUTPUT_HOST_NAME IG-61
PBS_PRIMARY IG-61
pbs_probe IG-63
pbs_sched IG-3, IG-4
PBS_SECONDARY IG-62
PBS_SERVER IG-62
pbs_server IG-3, IG-4
PBS_SERVER_HOST_NAME IG-62
PBS_START_COMM IG-141
PBS_START_MOM IG-141
PBS_START_SCHED IG-141
PBS_START_SERVER IG-141
primary server IG-61

Q
qalter IG-16
qsub IG-16

R
Red Hat Enterprise Linux IG-23
Release Notes

upgrade recommendations IG-65, IG-93

S
scheduler IG-4
Schema Admins IG-13
scp IG-12
secondary server IG-62
secure copy IG-12
server IG-4

primary IG-61
secondary IG-62

service account
PBS IG-13

ssh IG-12
starting

MoM IG-149
SuSE IG-23

T
tar file

overlay upgrade IG-73, IG-85

U
upgrade

migration IG-65

migration under Linux IG-93
migration under Windows IG-109, IG-125
overlay IG-65

upgrading
Linux IG-70
Windows IG-109, IG-125

W
Windows IG-15, IG-17, IG-23

X
X forwarding IG-63
xauth IG-63
IG-162 PBS Professional 2022.1 Installation & Upgrade Guide

Altair PBS Professional 2022.1

Administrator's Guide

You are reading the Altair PBS Professional 2022.1

Administrator’s Guide (AG)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation xi

1 New Features 1
1.1 New Features in This Release . 1
1.2 Changes in Previous Releases . 2
1.3 Commercial-only Features . 17
1.4 Backward Compatibility . 17

2 Configuring the Server and Queues 19
2.1 The Server. 19
2.2 How PBS Uses Mail . 21
2.3 Queues . 23

3 Configuring MoMs and Vnodes 37
3.1 About MoMs . 37
3.2 About Vnodes: Virtual Nodes . 41
3.3 Creating Vnodes . 42
3.4 Configuring Vnodes. 45
3.5 Deleting Vnodes . 53

4 Scheduling 57
4.1 Chapter Contents . 57
4.2 Scheduling Each Partition Separately . 59
4.3 Scheduling Policy Basics . 66
4.4 Choosing a Policy . 81
4.5 About Schedulers . 91
4.6 Using Queues in Scheduling . 101
4.7 Scheduling Restrictions and Caveats . 101
4.8 Errors and Logging . 102
4.9 Scheduling Tools. 102
PBS Professional 2022.1 Administrator’s Guide AG-v

Contents
5 Using PBS Resources 227
5.1 Chapter Contents . 227
5.2 Introduction to PBS Resources . 228
5.3 Glossary . 228
5.4 Categories of Resources. 230
5.5 Resource Types . 234
5.6 Resource Formats. 234
5.7 Setting Values for Resources . 236
5.8 Overview of Ways Resources Are Used . 239
5.9 Resources Allocated to Jobs and Reservations . 240
5.10 Using Resources to Track and Control Allocation. 249
5.11 Using Resources for Topology and Job Placement . 250
5.12 Using Resources to Prioritize Jobs . 251
5.13 Using Resources to Restrict Server or Queue Access . 251
5.14 Custom Resources . 252
5.15 Managing Resource Usage. 283
5.16 Where Resource Information Is Kept . 305
5.17 Viewing Resource Information . 307
5.18 Resource Recommendations and Caveats. 309

6 Configuring and Using PBS with Cgroups 311
6.1 Chapter Contents . 311
6.2 Introduction to Cgroups. 311
6.3 Why Use Cgroups? . 312
6.4 How PBS Uses Cgroups . 313
6.5 Configuring Cgroups . 316
6.6 Configuring MPI for Cgroups. 350
6.7 Managing Jobs with Cgroups . 352
6.8 Caveats and Errors . 353

7 Configuring PBS for Containers 355
7.1 Introduction . 355
7.2 The PBS Container Hook . 360
7.3 Prerequisites . 360
7.4 Configuring PBS for Containers . 361
7.5 Caveats and Restrictions . 366
7.6 Errors and Logging . 366

8 Making Your Site More Robust 367
8.1 Robustness . 367
8.2 Failover . 367
8.3 Checkpoint and Restart. 387
8.4 Reservation Fault Tolerance . 401
8.5 Vnode Fault Tolerance for Job Start and Run. 403
8.6 Preventing Communication and Timing Problems . 410
8.7 Preventing File System Problems . 417
8.8 OOM Killer Protection . 418
AG-vi PBS Professional 2022.1 Administrator’s Guide

Contents
9 Administration 419
9.1 Specifying Scheduler Username. 420
9.2 The PBS Configuration File. 421
9.3 Environment Variables . 427
9.4 Event Logging . 428
9.5 Managing Machines . 435
9.6 Managing the Data Service . 439
9.7 Setting File Transfer Mechanism. 441
9.8 Some Performance Tips . 449
9.9 Temporary File Location for PBS Components. 450
9.10 Administration Caveats . 451
9.11 Support for Globus . 451
9.12 Support for Hyperthreading . 452
9.13 How To... 452

10 Managing Jobs 455
10.1 Routing Jobs . 455
10.2 Limiting Number of Jobs Considered in Scheduling Cycle . 455
10.3 Allocating Resources to Jobs . 455
10.4 Grouping Jobs By Project . 457
10.5 Job Prologue and Epilogue . 458
10.6 Linux Shell Invocation . 463
10.7 When Job Attributes are Set . 464
10.8 Job Termination. 466
10.9 Job Exit Status Codes. 469
10.10 Rerunning or Requeueing a Job . 471
10.11 Job IDs . 472
10.12 Where to Find Job Information . 472
10.13 Job Directories . 473
10.14 The Job Lifecycle . 477
10.15 Managing Job History . 479
10.16 Environment Variables . 482
10.17 Adjusting Job Running Time . 482
10.18 Managing Number of Run Attempts . 483
10.19 Managing Amount of Memory for Job Scripts . 483
10.20 Allowing Interactive Jobs on Windows . 483
10.21 Releasing Unneeded Vnodes from Jobs. 486
10.22 Tolerating Vnode Faults . 486
10.23 Managing Job Array Behavior . 487
10.24 Recommendations . 487
PBS Professional 2022.1 Administrator’s Guide AG-vii

Contents
11 Security 489
11.1 Configurable Features. 489
11.2 User Roles and Required Privilege . 489
11.3 Using Access Control Lists . 492
11.4 Authentication for Daemons & Users . 508
11.5 Encrypting PBS Communication . 517
11.6 Restricting Execution Host Access . 521
11.7 Changing the PBS Service Account Password. 522
11.8 Paths and Environment Variables . 523
11.9 File and Directory Permissions . 523
11.10 Root-owned Jobs . 524
11.11 Passwords. 524
11.12 Windows Firewall . 525
11.13 Logging Security Events . 525
11.14 Securing Containers . 527

12 Accounting 529
12.1 The Accounting Log File . 529
12.2 Viewing Accounting Information . 530
12.3 Format of Accounting Log Messages . 530
12.4 Types of Accounting Log Records . 532
12.5 Timeline for Accounting Messages . 545
12.6 Resource Accounting . 551
12.7 Options, Attributes, and Parameters Affecting Accounting . 555
12.8 Accounting Caveats and Advice . 557

13 Using MPI with PBS 559
13.1 Integration with MPI. 559
13.2 Prerequisites . 559
13.3 Types of Integration. 559
13.4 Transparency to the User . 561
13.5 Integrating Intel MPI 4.0.3 On Linux Using Environment Variables . 561
13.6 Integrating Intel MPI 4.0.3 on Windows Using Wrapper Script . 562
13.7 Integrating MPICH2 1.4.1p1 on Windows Using Wrapper Script . 562
13.8 Integration Using the TM Interface . 562
13.9 Integration on the Fly using the pbs_tmrsh Command . 562
13.10 Integration by Wrapping . 563
13.11 Wrapping an MPI Using the pbsrun_wrap Script . 565
13.12 Unwrapping MPIs Using the pbsrun_unwrap Script . 568
13.13 Integration By Hand. 568
13.14 How Processes are Started Using MPI and PBS . 573
13.15 Limit Enforcement with MPI. 575
13.16 Restrictions and Caveats for MPI Integration . 576
AG-viii PBS Professional 2022.1 Administrator’s Guide

Contents
14 Configuring PBS for SELinux 577
14.1 Overview of PBS Support for MLS-compliant SELinux. 577
14.2 Terminology. 577
14.3 How Support for SELinux Works. 577
14.4 Enforcement of Permissions . 578
14.5 Special Attributes and Directories . 578
14.6 Prerequisites . 579
14.7 Caveats and Restrictions . 579
14.8 Installing PBS For Use With SELinux . 579
14.9 Configuring PBS for SELinux . 581
14.10 Managing an SELinux System . 582

15 Managing Power Usage 583
15.1 Monitoring and Controlling Job Power Usage. 583
15.2 Power Management Attributes, Resources, Etc.. 587
15.3 Caveats and Restrictions for Power Management . 589

16 Provisioning 591
16.1 Introduction . 591
16.2 Definitions . 591
16.3 How Provisioning Can Be Used . 591
16.4 How Provisioning Works . 592
16.5 Configuring Provisioning . 599
16.6 Viewing Provisioning Information . 604
16.7 Requirements and Restrictions . 607
16.8 Defaults and Backward Compatibility . 609
16.9 Example Scripts . 609
16.10 Advice and Caveats . 617
16.11 Errors and Logging . 619

17 Support for HPE 623
17.1 Support for HPE with Cpusets. 623
17.2 Support for HPE Cray Shasta . 624

18 Support for NEC SX-Aurora TSUBASA 627
18.1 Vnodes for NEC SX-Aurora TSUBASA. 627
18.2 Terminology. 627
18.3 Resources for SX-Aurora TSUBASA . 628
18.4 Configuring PBS for NEC SX-Aurora TSUBASA . 629
18.5 Debugging on NEC SX-Aurora TSUBASA . 630
18.6 Suspending and Resuming Jobs. 630
18.7 Job Accounting on NEC SX-Aurora TSUBASA. 630

19 Mixed Linux-Windows Operation 631
19.1 Introduction to Mixed Linux-Windows Operation. 631
19.2 Configuration . 631
19.3 Troubleshooting Mixed Linux-Windows Complex . 633
PBS Professional 2022.1 Administrator’s Guide AG-ix

Contents
20 Problem Solving 635
20.1 Debugging Tools . 635
20.2 Security and Permissions Problems . 636
20.3 Troubleshooting Jobs . 636
20.4 Troubleshooting Daemons . 640
20.5 Troubleshooting Vnodes . 642
20.6 Troubleshooting Client Commands. 643
20.7 Troubleshooting PBS Licenses . 644
20.8 Crash Recovery. 645
20.9 Other Troubleshooting. 646
20.10 Getting Help . 647

Index 649
AG-x PBS Professional 2022.1 Administrator’s Guide

1

New Features

This chapter briefly lists new features by release, with the most recent listed first.

For deprecations, please see the Release Notes.

The Release Notes included with this release of PBS Professional list all new features in this version of PBS Professional,
and any warnings or caveats. Be sure to review the Release Notes, as they may contain information that was not available
when this book was written.

1.1 New Features in This Release

Cloud Costs Integrated with Budgets

You can get quotes for and manage cloud job costs. See the PBS Professional Budgets Guide.

New Hooks

PBS has the new hook events postqueuejob, management, modifyvnode, jobobit, resv_begin, resv_confirm, and
modifyresv. See the PBS Professional Hooks (Plugins) Guide.

New Option to pbs_ralter to Specify Allowed Idle Time

PBS lets you alter a reservation to specify its allowed idle time. See “pbs_ralter” on page 85 of the PBS Professional
Reference Guide.

Choice of Mailer is Configurable

You can choose the mailer PBS uses via the new mailer server attribute. See section 2.2, “How PBS Uses Mail”, on page
21.

Multi-host Jobs Can Resume After MoM Restart

Multi-vnode jobs can survive a MoM restart when using pbs_mom -p. See “pbs_mom” on page 71 of the PBS Profes-
sional Reference Guide.

MoM Can Use Custom Command for Local Copy

You can configure MoM to use a custom command for local copy, by specifying the command in the PBS_CP parame-
ter in pbs.conf. See section 9.7, “Setting File Transfer Mechanism”, on page 441.

Scheduler Can Run as Non-root User

The scheduler(s) can run as a user other than root. See section 9.1, “Specifying Scheduler Username”, on page 420.

Scheduler Makes Persistent Connection to Server

Each scheduler makes a persistent connection to the server. See “Schedulers” on page 1 in the PBS Professional Installa-
tion & Upgrade Guide.

Ability to Obfuscate Existing Snapshots

You can obfuscate existing snapshots. See “pbs_snapshot” on page 111 of the PBS Professional Reference Guide.

Adding Resources to Running Reservations

You can add resources to a running reservation. See section 4.9.37.4, “Modifying Reservations”, on page 200.
PBS Professional 2022.1 Administrator’s Guide AG-1

Chapter 1 New Features
1.2 Changes in Previous Releases

PBS Cloud Uses Simulate for Bursting to Cloud (2021.1.3)

PBS Cloud uses Simulate to figure out which nodes to burst and which jobs to run. See the PBS Professional Cloud
Guide.

Budgets Provides Cost Estimate (2021.1.3)

Budgets can provide the job submitter with an estimate of the cost for running a job. See the PBS Professional Budgets
Guide.

Managing GPUs Outside of Cgroups (2021.1.3)

You can use other methods besides the cgroups hook to manage GPUs on specific nodes, while still running the cgroups
hook. See section 6.5.5.6, “Not Using Cgroups to Manage GPUs”, on page 349 and section 5.14.7, “Using GPUs”, on
page 279.

New Option to Specify that User’s Home Directory is Shared (2021.1.1)

The administrator can specify that the user's home directory is shared in order to prevent sister MoMs from prematurely
removing job files. See Chapter 10, "Staging and Execution Directories for Job", on page 473/

New Postpaid Mode for Budgets (2021.1.1)

You can use Budgets in postpaid or prepaid mode. See “Two Modes: Postpaid and Prepaid” on page 1 of the PBS Profes-
sional Budgets Guide.

Support for NVIDIA MIG (2021.1.1)

PBS supports NVIDIA MIGs. See Chapter 6, "Configuring and Using PBS with Cgroups", on page 311.

Improvements to Cgroups Hook (2021.1.1)

The cgroups hook has improvements to help manage swap and device discovery, and better default values for configura-
tion file parameters mem_fences, reserve_amount in memory subsystem, vnode_hidden_mb. See Chapter 6,
"Configuring and Using PBS with Cgroups", on page 311.

Better License Management for Cloud (2021.1.1)

PBS Cloud checks for application license availability; see the PBS Cloud Guide.

Offline Install Procedure for Cloud (2021.1.1)

You can install PBS Cloud on an offline host. See the PBS Cloud Guide.

New Options for Altering Reservations (2021.1)

You can change a reservation's select specification, and the administrator can override the scheduler to change the start
time, end time, and duration of a reservation. See “pbs_ralter” on page 85 of the PBS Professional Reference Guide.

Integration with NEC SX-Aurora TSUBASA (2021.1)

PBS provides topologically aware job resource requests and scheduling. For configuration information, see Chapter 18,
"Support for NEC SX-Aurora TSUBASA", on page 627. For job submission instructions, see "Submitting Jobs to NEC
SX-Aurora TSUBASA", on page 205 of the PBS Professional User’s Guide.

Integration with Container Access Control (2021.1)

PBS allows you to whitelist container registries, and supports logging into private container registries. You can also
manage mount paths for greater security. See Chapter 7, "Configuring PBS for Containers", on page 355.

Managing Shared Job Directory Behavior (2021.1)

You can prevent sister MoMs from prematurely removing shared job directories and files during node release. See sec-
tion 10.13.1, “Staging and Execution Directories for Job”, on page 473.
AG-2 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
Limiting Number of Subjobs Running at One Time (2021.1)

Job submitters can limit the number of simultaneously running subjobs for an array job; see "Limiting Number of Simul-
taneously Running Subjobs", on page 156 of the PBS Professional User’s Guide.

New Cgroups Hook (2020.1)

PBS has an expanded cgroups hook with many new capabilities. This hook replaces the cpuset MoM. See Chapter 6,
"Configuring and Using PBS with Cgroups", on page 311.

Cloud Bursting Feature (2020.1)

PBS now has its own cloud bursting feature. See the PBS Cloud Guide.

Budget Allocation Feature (2020.1)

PBS now has its own budget allocation feature. See the PBS Budgets Guide.

Workload Simulation Feature (2020.1)

PBS now has its own workload simulation feature. See the PBS Simulate Guide.

Timeout for Dynamic Server Resource Scripts (2020.1)

By default, PBS allows a dynamic server resource script 30 seconds to run. You can configure the timeout; see section
5.14.3.1, “Creating Server Dynamic Resource Scripts”, on page 263.

Specifying Hosts or Vnodes to Keep when Releasing Unneeded Vnodes (2020.1)

You can specify how many hosts or which vnodes to keep when releasing unneeded vnodes. See “pbs_release_nodes”
on page 92 of the PBS Professional Reference Guide.

Using Undo Live Recorder to Capture Daemon Execution Recordings (2020.1) (Removed 2021.1.2)

You can use Undo Live Recorder to capture execution history for analysis by Altair support. See section 20.1.4, “Finding
PBS Version Information”, on page 635.

PBS Reconfirms Degraded Reservations (2020.1)

If reservation vnodes become unavailable, PBS looks for replacements. See section 8.4.2, “Finding Replacement
Vnodes for Degraded and In-conflict Reservations”, on page 402.

New Default for TPP Message Processing (2020.1)

The default for the number of TPP messages the server can process per thread iteration is now 64. See
“rpp_max_pkt_check” on page 295 of the PBS Professional Reference Guide.

Automatic Deletion of Idle Reservations (2020.1)

PBS can automatically delete idle reservations. See "Introduction to Creating and Using Advance and Standing Reserva-
tions", on page 138 of the PBS Professional User’s Guide.

Flexible Job-specific Reservations (2020.1)

You can create flexible job-specific reservations for queued or running jobs. See "Job-specific Reservations", on page
142 of the PBS Professional User’s Guide.

Altering Reservation Duration, Authorized Groups, Authorized Users (2020.1)

You can alter the duration of a reservation; see “pbs_ralter” on page 85 of the PBS Professional Reference Guide.

Accounting Record for Job Suspend and Resume (2020.1)

PBS records job suspension and resumption in the accounting log. See Chapter 12, "Accounting", on page 529.

Managing Number of Scheduler Threads (2020.1)

You can set the maximum number of threads used by each scheduler. See section 4.5.8.3, “Setting Number of Scheduler
Threads”, on page 101.
PBS Professional 2022.1 Administrator’s Guide AG-3

Chapter 1 New Features
Configurable Authentication Methods (2020.1)

You can use various authentication methods with PBS; see section 11.4, “Authentication for Daemons & Users”, on page
508.

Using TLS for Encryption (2020.1)

You can use TLS encryption with PBS. See section 11.5, “Encrypting PBS Communication”, on page 517.

Mixed Operation on Linux and Windows (2020.1)

You can use both Linux and Windows execution and client hosts in the same PBS complex. See Chapter 19, "Mixed
Linux-Windows Operation", on page 631.

Run Jobs on First Available Resources (Beta 2020.1; no longer beta 2022.1)

You can submit a set of jobs that would all accomplish the same thing, but that specify different resources. PBS runs
only the first that can run. See "Running Your Job on First Available Resources", on page 110 of the PBS Professional
User’s Guide.

New pbs_login Command (2020.1)

PBS includes a new command for user authentication called pbs_login. See “pbs_login” on page 69 in the PBS Pro-
fessional Installation & Upgrade Guide.

One way to sort jobs for preemption (2020.1)

Jobs are chosen for preemption only by which have been running the shortest time. See section 4.9.33, “Using Preemp-
tion”, on page 179.

New Threading Option for Schedulers (2020.1)

You can specify the number of threads each scheduler runs. See “pbs_sched” on page 105 of the PBS Professional Ref-
erence Guide.

License Server for Node and Socket Licenses (2020.1)

PBS uses a license server to license hosts in the complex. See the PBS Works Licensing Guide.

Specifying Additional Arguments for Container Engines (2020.1)

Job submitters can specify additional container engine arguments such as secondary groups and shared memory; see
"Specifying Additional Arguments to Container Engine", on page 134 of the PBS Professional User’s Guide.

Update to SELinux Support

Support for SELinux is updated. See Chapter 14, "Configuring PBS for SELinux", on page 577.

Preemption via Deletion (19.4)

You can use deletion to preempt jobs. See section 4.9.33, “Using Preemption”, on page 179.

New Scheduler Attributes for Preemption (19.4)

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings are now scheduler
attributes with the same names and formats. See “Scheduler Attributes” on page 298 of the PBS Professional Reference
Guide.

All Groups Included in Group ACLs (19.4)

All of a user's groups are included in the list of groups in group ACLs. See section 11.3.4.5, “Contents of Group ACLs”,
on page 494.

Changes to qstat Job Output (19.4)

Wide output lines can be displayed for any default or alternate qstat job output formats, and when output size is too
large for a field, the last character is replaced with an asterisk. See “qstat” on page 200 of the PBS Professional Refer-
ence Guide.
AG-4 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
Subjob Run Count Tracking (19.4)

PBS tracks the run_count attribute for subjobs, and holds job arrays whose subjobs hit the run count limit. See section
10.18, “Managing Number of Run Attempts”, on page 483.

Faster Read of Custom Job Resources by Execution Hooks (19.4)

You can specify which custom resources are cached at MoMs so that execution hooks can read them faster. See section
5.14.2.5, “Specifying Whether Resource is Cached at MoM”, on page 259.

Applications Running in Containers Can Use Ports (19.4)

PBS can provide ports for applications running in containers. See "Configuring PBS for Containers".

Support for Singularity Containers (19.4)

You can run PBS jobs in Singularity containers. See "Configuring PBS for Containers".

New Post-suspend and Pre-resume Hooks (19.4)

PBS has two new hook events for just after suspending a job and just before resuming it. See "Event Types" on page 87
in the PBS Professional Hooks Guide.

Scheduler Logging Consistent with Other Daemons (19.4)

Schedulers use the same logging scheme as other daemons. See “Event Logging” on page 428 of the PBS Professional
Reference Guide.

Option to Capture Only PBS Configuration Information with pbs_snapshot (19.4)

You can use the new pbs_snapshot --basic option to capture just PBS configuration information. See
“pbs_snapshot” on page 111 of the PBS Professional Reference Guide.

Support for Cray Shasta Systems (19.4)

PBS is supported on Cray's Shasta systems.

Expanded and New Accounting Records (19.4)

PBS writes a new "a" accounting record when a job is altered, and the "Q" record is expanded to include more informa-
tion. See section 12.4, “Types of Accounting Log Records”, on page 532.

IP Address Can Be Used for Vnode Name (19.4)

You can use the IP address as the vnode name. See “Vnode Name” on page 358 of the PBS Professional Reference
Guide.

Developer Libraries and Headers in Developer Package (19.4)

The libraries and headers needed for development but not for running PBS have been moved to a developer package. See
"Developer Headers and Libraries" on page 19 in the PBS Professional Programmer’s Guide.

PBS Uses Python 3 (19.4)

As of 19.4.1, PBS uses Python 3.

New Basic Option to pbs_snapshot (19.4)

The pbs_snapshot command has a new --basic option. See “pbs_snapshot” on page 111 of the PBS Professional
Reference Guide.

New Maintenance Reservation (19.4)

PBS provides a new type of reservations for performing maintenance. See section 4.9.37, “Reservations”, on page 195.

Windows MoMs and Clients Run with Linux Server, Schedulers, Comms (19.4)

As of 19.4.1, PBS complexes that run Windows MoMs and Clients run with Linux server, schedulers, and comms.
PBS Professional 2022.1 Administrator’s Guide AG-5

Chapter 1 New Features
Undo Live Recorder Debugger (19.4) (Removed 2021.1.2)

Undo's Live Recorder integration enhances our ability to pinpoint root causes of problematic behavior. (This capability
is used under the direction of Altair support staff to speed troubleshooting.)

PBS Defaults to 24/7 Primetime (19.2)

You can use PBS without configuring primetime and/or holidays. See section 4.9.34, “Using Primetime and Holidays”,
on page 189

Microsecond Logging (19.2)

You can choose to have daemons log with microsecond resolution. See section 9.4.4.1, “Event Logfile Format”, on page
431.

Limiting ncpus Count to Cores (19.2)

You can opt not to include hyperthreads when calculating the value for ncpus that MoM reports to the server. See Chap-
ter 6, "Configuring and Using PBS with Cgroups", on page 311.

Change in Enabling Power Provisioning (19.2)

You enable power provisioning by enabling the PBS_power hook. See Chapter 15, "Managing Power Usage", on page
583.

Settable Maximum Job ID (19.2)

You can set the maximum value for job IDs, job array IDs, and reservation IDs, using the max_job_sequence_id server
attribute.

Job Vnode Fault Tolerance (19.2)

You can allocate extra vnodes to jobs to allow jobs to successfully start and run despite vnode failures. See section 8.5,
“Vnode Fault Tolerance for Job Start and Run”, on page 403.

Hooks Support Reliable Job Startup and Run (19.2)

Hooks have been enhanced to allow you to provide jobs with extra vnodes in case of vnode failure. See section 8.5,
“Vnode Fault Tolerance for Job Start and Run”, on page 403.

New Reservation End Hook (19.2)

You can create hooks for the end of a reservation. See "resv_end: Event when Reservation Ends" on page 100 in the PBS
Professional Hooks Guide.

Enhancements to pbs_snapshot (19.2)

You can run pbs_snapshot without root privilege, and the command captures JSON output. See “pbs_snapshot” on
page 111 of the PBS Professional Reference Guide.

Tunable Job Release Wait Time for Cray (19.2)

You can set the amount of time that PBS waits between sending release requests to ALPS.

Managing Power Usage on Cray (18.2)

You can power nodes up and down, limit ramp rate, and use power profiles for jobs. See Chapter 15, "Managing Power
Usage", on page 583.

On Cray, PBS Creates One Vnode per Compute Node (18.2)

Default behavior on the Cray has changed to create one vnode per compute node.

Suspend and Resume on Cray (18.2)

You can use suspend and resume on Cray.

Installing PBS on Cray CLE 5.2 via RPM (18.2)

PBS is installed on Cray CLE 5.2 via RPM. (No longer available)
AG-6 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
Performance Enhancement for PBS on Cray via Improved MoM Reporting (18.2)

You can improve the performance of PBS on Cray by using the vnode_pool vnode attribute. This allows only one MoM
to report inventory, and reduces communication traffic.

Periodic Synchronization of Inventory on Cray (18.2)

PBS periodically makes sure that its inventory matches what ALPS reports.

On Cray, Automatic Creation of One Vnode Per Compute Node (18.2)

PBS automatically creates one vnode for each compute node.

Installing PBS on CLE 6 via IMPS (18.2)

(No longer available)

Support for Xeon Phi (18.2)

PBS supports Xeon Phi.

1.2.1 New Scheduling Features

Restricting Placement Set Creation to Resources with Values that Have Been Set (18.2)

See section 4.9.32, “Placement Sets”, on page 167.

Soft Walltimes for Jobs (18.2)

You can set a soft walltime for jobs, and PBS can estimate a job's soft walltime. See section 4.9.44, “Using Soft Wall-
time”, on page 217

Formula Uses Fairshare (18.2)

You can use fairshare in the job sorting formula. See section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 150.

Manage Partitions with Multischeds (18.2)

You can schedule each partition separately. See section 4.2, “Scheduling Each Partition Separately”, on page 59.

Run Jobs in a Cloud (18.2)

PBS can burst jobs to a cloud. See the PBS Professional Cloud Guide.

1.2.2 New Hooks Features

The execjob_prologue Hook Runs on All Sister MoMs (18.2)

The execjob_prologue hook runs on all sister MoMs. See "execjob_prologue: Event Just Before Execution of
Top-level Job Process" on page 104 in the PBS Professional Hooks Guide.

Python Version Changed to 2.7.1 (18.2)

PBS 18.2.1 uses Python 2.7.1. The use of Python 2.5.1 is deprecated.

Periodic Server Hook (18.2)

PBS has a periodic hook that runs at the server. See "periodic: Periodic Event at Server Host" on page 101 in the PBS
Professional Hooks Guide.

Hook to Run Job Start Time Estimator (18.2)

PBS has a built-in hook named PBS_est that can run the job start time estimator. See section 4.9.15, “Estimating Job
Start Time”, on page 132.
PBS Professional 2022.1 Administrator’s Guide AG-7

Chapter 1 New Features
Configurable Python Interpreter Restarts (18.2)

You can configure how often you want the Python interpreter to restart. See "Restarting the Python Interpreter" on page
24 in the PBS Professional Hooks Guide.

PBS Can Report Custom Resources Set in Hooks (18.2)

MoM can accumulate and report custom resources that are set in a hook. See "Setting Job Resources in Hooks" on page
50 in the PBS Professional Hooks Guide

1.2.3 Other New Features

Managing Job Resource Use with Cgroups (18.2)

You can use cgroups to manage the resources used by jobs. See Chapter 6, "Configuring and Using PBS with Cgroups",
on page 311.

Running Jobs in Containers (18.2)

Job submitters can run each job in its own container. See Chapter 7, "Configuring PBS for Containers", on page 355 and
"Running Your Job in a Container", on page 132 of the PBS Professional User’s Guide.

Power Provisioning (18.2)

PBS can monitor and control job power usage. See Chapter 15, "Managing Power Usage", on page 583.

Collecting Diagnostic Information with pbs_snapshot Command (18.2)

See “pbs_snapshot” on page 111 of the PBS Professional Reference Guide.

New pbs_ralter Command (18.2)

You can change reservations using the pbs_ralter command. See "Modifying Reservations", on page 144 of the
PBS Professional User’s Guide.

Privileged Access to Server for MoMs (18.2)

You can give all MoMs privileged access to the server without having to explicitly add their hosts to the acl_hosts
server attribute. See section 11.3.7.3, “Access to Server for MoMs”, on page 500.

Releasing Unneeded Vnodes from Jobs (18.2)

You can release vnodes that were allocated to jobs when those vnodes are no longer needed. See "Releasing Unneeded
Vnodes from Your Job", on page 129 of the PBS Professional User’s Guide.

Running Subjobs Survive Server Restart (18.2)

Subjobs of an array job will continue to run during a restart of the server.

Writing Output and Error Files Directly to Final Destination (18.2)

You can have PBS write your standard output and error files directly to their final destination. See "Writing Files
Directly to Final Destination", on page 47 of the PBS Professional User’s Guide.

Deleting Output and Error Files (18.2)

You can have PBS delete your standard output and error files. See "Avoiding Creation of stdout and/or stderr", on page
45 of the PBS Professional User’s Guide.

Output for qstat in JSON and DSV Formats; qstat Attribute Output on Single Line (18.2)

You can get output from qstat in JSON or DSV formats. You can also print out attribute information in one unbroken
line. See “qstat” on page 200 in the PBS Professional Installation & Upgrade Guide.

Specifying Resources to Release on Suspension (18.2)

You can specify which resources you want released when jobs are suspended. See section 5.9.6.2, “Job Suspension and
Resource Usage”, on page 247.
AG-8 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
Maintenance State for Powered-up Vnodes (18.2)

You can suspend a job and put all the vnodes belonging to a job into the maintenance state. See section 9.5.2, “Per-
forming Maintenance on Powered-up Vnodes”, on page 436.

Debuginfo RPM Package (18.2)

PBS is packaged with a debuginfo RPM package. See section 20.1.3, “Using the debuginfo RPM Package”, on page
635.

Logging Hostname and Interfaces (18.2)

Each time a log file is opened, PBS logs the hostname and interface information. See section 9.4, “Event Logging”, on
page 428.

Subjobs Survive Server Restarts (18.2)

Subjobs keep running after you stop the server. See “Impact of Stop-Restart on Running Linux Jobs” on page 152 in the
PBS Professional Installation & Upgrade Guide and “Impact of Stop-Restart on Running Windows Jobs” on page 158 in
the PBS Professional Installation & Upgrade Guide.

You can see all attributes for subjobs; see "Viewing Status of a Job Array", on page 161 of the PBS Professional User’s
Guide.

Jobs Can Use Provisioning for Some Chunks (18.2)

Jobs can request an AOE for some chunks as long as all chunks use the same AOE. See Chapter 15, "Using Provision-
ing", on page 219.

Node Licenses (18.2)

You can license your hosts using node licenses. See the PBS Works Licensing Guide.

PBS Can Send Mail for Subjobs (18.2)

PBS can send mail for subjobs. See "Specifying Email Notification", on page 25 of the PBS Professional User’s Guide.

Server Periodic Hook (14.2)

You can run a hook periodically at the server. See "periodic: Periodic Event at Server Host" on page 101 in the PBS Pro-
fessional Hooks Guide.

Hook to Run Job Start Time Estimator (14.2)

PBS has a built-in hook named PBS_est that can run the job start time estimator. See section 4.9.15, “Estimating Job
Start Time”, on page 132.

PBS Can Report Custom Resources Set in Hooks (14.2)

MoM can accumulate and report custom resources that are set in a hook. See section 5.2.4.12, “Setting Job Resources in
Hooks”, on page 50.

Configurable Python Interpreter Restarts (14.2)

You can configure how often you want the Python interpreter to restart. See "Restarting the Python Interpreter" on page
24 in the PBS Professional Hooks Guide.

Python Version Changed to 2.7.1 (14.2)

PBS 14.2.1 uses Python 2.7.1. The use of Python 2.5.1 is deprecated.

Name for MoM to Use for Parent Vnode (14.2)

You can specify the name that MoM should use for her parent vnode and child vnodes. See section 3.3.2, “How to
Choose Vnode Names”, on page 42.

Grouping Jobs and Sorting by ID (14.2)

When getting job status, you can group jobs and sort them by ID. See "Grouping Jobs and Sorting by ID", on page 181
of the PBS Professional User’s Guide.
PBS Professional 2022.1 Administrator’s Guide AG-9

Chapter 1 New Features
Support for systemd (14.2)

PBS supports using sytemctl commands to start, stop, restart, and status PBS. See “Methods for Starting, Stopping, or
Restarting PBS” on page 142 in the PBS Professional Installation & Upgrade Guide.

Support for Native Package Managers on Linux (14.2)

PBS supports use of RPM for installation and upgrading. See “Installation” on page 19 in the PBS Professional Installa-
tion & Upgrade Guide and “Upgrading” on page 65 in the PBS Professional Installation & Upgrade Guide.

Server Sets Job Comment on Run or Reject (14.2)

The server sets the job comment when the job is run or rejected. See section 10.7.3.1, “Comment Set When Running
Job”, on page 465.

Update to Accounting R Record (14.2)

PBS writes the R accounting record when MoM is restarted with -p or -r. See section , “R”, on page 539.

Interactive GUI Jobs on Windows (13.1)

Users can run interactive GUI jobs on Windows. See "Submitting Interactive GUI Jobs on Windows", on page 127 of the
PBS Professional User’s Guide.

Administrators can choose a remote viewer for interactive GUI jobs. See section 10.20.1, “Configuring PBS for Remote
Viewer on Windows”, on page 483.

MUNGE Integration (13.1)

PBS can use MUNGE to create and validate credentials. See section 11.4.4, “Authentication via MUNGE”, on page 509.

Controlling Backfill Depth at the Queue (13.1)

Administrators can choose the backfilling depth independently at each queue. See section 4.9.3, “Using Backfilling”, on
page 108.

Optional Scheduler Cycle Speedup (13.1)

You can optionally speed up the scheduling cycle. See section 4.9.40, “Scheduler Cycle Speedup”, on page 208.

Preventing Some Jobs from Being Top Jobs (13.1)

You can prevent a job from being a top job by setting its topjob_ineligible attribute to True. See section 4.9.17.1, “Mak-
ing Jobs Ineligible to be Top Jobs”, on page 138.

Improved Mail on Windows (13.1)

Under Windows, you can specify an SMTP server. (As of 19.4.1, PBS does not use an SMTP server.)

New Hook Events (13.0)

PBS provides three new hook events:

• An execjob_launch hook runs just before MoM runs the user's program

• An execjob_attach hook runs when pbs_attach is called

• An exechost_startup hook runs when MoM starts up

See "When and Where Hooks Run" on page 15 in the PBS Professional Hooks Guide, "execjob_launch: Event when
Execution Host Receives Job" on page 106 in the PBS Professional Hooks Guide, "execjob_attach: Event when
pbs_attach() runs" on page 107 in the PBS Professional Hooks Guide, and "exechost_startup: Event When Execution
Host Starts Up" on page 114 in the PBS Professional Hooks Guide.

Configuration Files for Hooks (13.0)

You can use configuration files with hooks. See "Using Hook Configuration Files" on page 33 in the PBS Professional
Hooks Guide.
AG-10 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
Configuring Vnodes in Hooks (13.0)

You can use hooks to configure vnode attributes and resources. See "Setting and Unsetting Vnode Resources and
Attributes" on page 49 in the PBS Professional Hooks Guide.

Adding Custom Resources in Hooks (13.0)

You can use hooks to add custom non-consumable host-level resources. See "Adding Custom Host-level Resources" on
page 69 in the PBS Professional Hooks Guide.

Node Health Hook Features (13.0)

PBS has node health checking features for hooks. You can offline and clear vnodes, and restart the scheduling cycle. See
"Offlining and Clearing Vnodes Using the fail_action Hook Attribute" on page 72 in the PBS Professional Hooks Guide
and "Restarting Scheduler Cycle After Hook Failure" on page 69 in the PBS Professional Hooks Guide.

Hook Debugging Enhancements (13.0)

You can get hooks to produce debugging information, and then read that information in while debugging hooks. See
"Debugging Hooks" on page 183 in the PBS Professional Hooks Guide.

Managing Built-in Hooks (13.0)

You can enable and disable built-in hooks. See "Managing Built-in Hooks" on page 179 in the PBS Professional Hooks
Guide.

Scheduler Does not Trigger modifyjob Hooks (13.0)

The scheduler does not trigger modifyjob hooks. See the PBS Professional Hooks Guide.

Faster, Asynchronous Communication Between Daemons (13.0)

PBS has a communication daemon that provides faster, asynchronous communication between the server, scheduler, and
MoM daemons. See “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Enhanced Throughput of Jobs (13.0)

By default, the scheduler runs asynchronously to speed up job start, and jobs that have been altered via qalter,
server_dyn_res, or peering can run in the same scheduler cycle in which they were altered. See section 4.5.8.1,
“Improving Throughput of Jobs”, on page 100.

Creating Custom Resources via qmgr (13.0)

You can create any custom resources using nothing but the qmgr command. See section 5.14.2.6, “Defining Custom
Resources via qmgr”, on page 259.

Job Sorting Formula: Python Math Functions and Threshold (13.0)

You can use standard Python math functions in the job sorting formula. You can also set a threshold for job priority,
below which jobs cannot run. See section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page
150.

Fairshare: Formula and Decay Factor (13.0)

You can use a mathematical formula for fairshare, and you can set a custom decay factor. See section 4.9.19, “Using
Fairshare”, on page 138.

Preempted Jobs can be Top Jobs (13.0)

You can specify that preempted jobs should be classified as top jobs. See section 4.9.16, “Calculating Job Execution Pri-
ority”, on page 135. You can use a new scheduler attribute called sched_preempt_enforce_resumption for this; see
section 4.9.3, “Using Backfilling”, on page 108.

Limiting Preemption Targets (13.0)

You can specify which jobs can be preempted by a given job. See section 4.9.33.4.i, “Setting Job Preemption Targets”,
on page 181.
PBS Professional 2022.1 Administrator’s Guide AG-11

Chapter 1 New Features
Limiting Number of Jobs in Execution Queues (13.0)

You can speed up the scheduling cycle by limiting the number of jobs in execution queues. See section 4.5.8.2, “Limit-
ing Number of Jobs Queued in Execution Queues”, on page 100.

Improved Round-robin Behavior (13.0)

The round_robin scheduler parameter produces improved behavior. See section 4.9.38, “Round Robin Queue Selec-
tion”, on page 203.

Limiting Resources Allocated to Queued Jobs (13.0)

You can set limits on the amounts of resources allocated to queued jobs specifically. See section 5.15.1, “Managing
Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.

Running qsub in the Foreground (13.0)

By default, the qsub command runs in the background. You can run it in the foreground using the -f option. See
“qsub” on page 216 of the PBS Professional Reference Guide.

Windows Users can Use UNC Paths (13.0)

Windows users can use UNC paths for job submission and file staging. See "Set up Paths", on page 8 of the PBS Profes-
sional User’s Guide and "Using UNC Paths", on page 37 of the PBS Professional User’s Guide.

Automatic Installation and Upgrade of Database (13.0)

PBS automatically installs or upgrades its database. See “Automatic Upgrade of Database (13.0)” on page 66 in the PBS
Professional Installation & Upgrade Guide.

Longer Job and Reservation Names (13.0)

You can use job and reservation names up to 236 characters in length. See “Formats” on page 353 of the PBS Profes-
sional Reference Guide.

Address Disambiguation for Multihomed Systems (13.0)

You can disambiguate addresses for contacting the server, sending mail, sending outgoing traffic, and delivering output
and error files. See “PBS with Multihomed Systems” on page 59 in the PBS Professional Installation & Upgrade Guide.

Support for Hydra Process Manager in Intel MPI (13.0)

Intel MPI is integrated with PBS. See "Integrating Intel MPI 4.0.3 On Linux Using Environment Variables” on page 561.

Enhancements to pbsnodes Command (13.0)

You can now use the pbsnodes command to edit the comment attribute of a host, to write out host information, and to
operate on specific vnodes. See "pbsnodes” on page 36.

Primary Group of Job Owner or Reservation Creator Automatically Added to Job group_list (13.0)

The job submitter's and reservation creator's primary group is automatically added to the job or reservation group_list
attribute. See "qsub” on page 216 and "pbs_rsub” on page 96.

Intel MPI Integrated under Windows (13.0)

MPI is integrated with PBS under Windows (as well as Linux). See "Integrating Intel MPI 4.0.3 on Windows Using
Wrapper Script” on page 562.

MPICH2 Integrated under Windows (13.0)

MPICH2 is integrated with PBS under Windows (as well as Linux). See "Integrating MPICH2 1.4.1p1 on Windows
Using Wrapper Script” on page 562.

PBS pbsdsh Command Available under Windows (13.0)

The pbsdsh command is available under Windows. See "pbsdsh” on page 30.
AG-12 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
PBS TM APIs Available under Windows (13.0)

The PBS TM APIs are available under Windows. See "TM Library” on page 95 of the PBS Professional Programmer's
Guide.

PBS pbs_attach Command Available under Windows (13.0)

The pbs_attach command is available under Windows. See "pbs_attach” on page 56.

Xeon Phi Reported on Cray (13.0)

PBS automatically detects and reports a Xeon Phi in the ALPS inventory.

Command Line Editing in qmgr (12.2)

The qmgr command provides a history and allows you to edit command lines. See “Reusing and Editing the qmgr Com-
mand Line” on page 153 of the PBS Professional Reference Guide.

Interactive Jobs Available under Windows (12.2)

Job submitters can run interactive jobs under Windows. See "Running Your Job Interactively", on page 123 of the PBS
Professional User’s Guide.

Job Run Count is Writable (12.2)

Job submitters and administrators can set the value of a job's run count. See section 10.18, “Managing Number of Run
Attempts”, on page 483 and "Controlling Number of Times Job is Re-run", on page 121 of the PBS Professional User’s
Guide.

runjob Hook can Modify Job Attributes (12.2)

The runjob hook can modify a job's attributes and resources. See "Using Attributes and Resources in Hooks" on page 45
in the PBS Professional Hooks Guide.

Jobs can be Suspended under Windows (12.2)

You can suspend and resume a job under Windows.

Configuration of Directory for PBS Component Temporary Files (12.2)

You can configure the root directory where you want PBS components to put their temporary files. See section 9.9,
“Temporary File Location for PBS Components”, on page 450.

Execution Event and Periodic Hooks (12.0)

You can write hooks that run at the execution host when the job reaches the execution host, when the job starts, ends, is
killed, and is cleaned up. You can also write hooks that run periodically on all execution hosts. See the PBS Professional
Hooks Guide.

Shrink-to-fit Jobs (12.0)

PBS allows users to specify a variable running time for jobs. Job submitters can specify a walltime range for jobs where
attempting to run the job in a tight time slot can be useful. Administrators can convert non-shrink-to-fit jobs into
shrink-to-fit jobs in order to maximize machine use. See "Adjusting Job Running Time", on page 112 of the PBS Profes-
sional User’s Guide and section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

PBS Supports Socket Licensing (11.3)

PBS lets you use socket licenses to license hosts. See the PBS Works Licensing Guide.

Deleting Job History (11.3)

You can delete job histories. See section 10.15.9, “Deleting Moved Jobs and Job Histories”, on page 482.

Managing Resource Usage by Project (11.2)

You can set resource usage limits for projects, at the server and queue. You can set limits for the amount of each resource
being used, or for the number of jobs. Jobs have a new attribute called project. See section 5.15.1, “Managing Resource
Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.
PBS Professional 2022.1 Administrator’s Guide AG-13

Chapter 1 New Features
PBS Daemons Protected from OOM Killer (11.2)

PBS daemons are protected from being terminated by an OOM killer. See section 8.8, “OOM Killer Protection”, on page
418.

PBS Supports X Forwarding for Interactive Jobs (11.2)

PBS allows users to receive X output from interactive jobs. See "Receiving X Output from Interactive Linux Jobs", on
page 126 of the PBS Professional User’s Guide, and section 9.3.1.1, “Contents of Environment File”, on page 427.

Support for Accelerators on Cray (11.2)

PBS provides tight integration for accelerators on Cray.

Support for Interlagos on Cray (11.1)

No longer supported.

Improved Cray Integration (11.0)

PBS is more tightly integrated with Cray systems. You can use the PBS select and place language when submitting Cray
jobs.

Vnode Access for Hooks (11.0)

Hooks have access to vnode attributes and resources. See the PBS Professional Hooks Guide.

Enhanced Job Placement (11.0)

PBS allows job submitters to scatter chunks by vnode in addition to scattering by host. PBS also allows job submitters to
reserve entire hosts via a job's placement request. See "Specifying Job Placement", on page 66 of the PBS Professional
User’s Guide.

Choice in PBS service account Name (11.0)

Under Windows, the PBS service account used to run PBS daemons can have any name. See “Creating PBS Service
Account in Domained Environment” on page 40 in the PBS Professional Installation & Upgrade Guide.

Change of Licensing Method (11.0)

As of 11.0, PBS is licensed using a new Altair license server. See the PBS Works Licensing Guide.

Change in Data Management (11.0)

PBS uses a new data service. See section 9.6, “Managing the Data Service”, on page 439.

Choice in Job Requeue Timeout (11.0)

You can choose how long the job requeue process should be allowed to run. See section 8.6.3, “Setting Job Requeue
Timeout”, on page 414.

Backfilling Around Top N Jobs (10.4)

PBS can backfill around the most deserving jobs. You can configure the number of jobs PBS backfills around. See sec-
tion 4.9.3, “Using Backfilling”, on page 108.

Estimating Job Start Times (10.4)

PBS can estimate when jobs will run, and which vnodes each job will use. See section 4.9.15, “Estimating Job Start
Time”, on page 132.

Unified Job Submission (10.4)

PBS allows users to submit jobs using the same scripts, whether the job is submitted on a Windows or Linux system. See
"Python Job Scripts", on page 14 of the PBS Professional User’s Guide.

Provisioning (10.2)

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application. See Chapter 16, "Provisioning", on page 591.
AG-14 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
New Hook Type (10.2)

PBS has a new hook type which can be triggered when a job is to be run. See the PBS Professional Hooks Guide.

New Scheduler Attribute (10.2)

PBS allows the administrator to set the scheduler's cycle time using the new sched_cycle_length scheduler attribute.
See the pbs_sched_attributes(7B) manual page.

Walltime as Checkpoint Interval Measure (10.2)

PBS allows a job to be checkpointed according to its walltime usage. See the pbs_job_attributes(7B) manual
page.

Managing Resource Usage (10.1)

You can set separate limits for resource usage by individual users, individual groups, generic users, generic groups, and
the total used. You can limit the amount of resources used, and the number of queued and running jobs. These limits can
be defined separately for each queue and for the server. See section 5.15.1, “Managing Resource Usage By Users,
Groups, and Projects, at Server & Queues”, on page 283. These new limits are incompatible with the limit attributes
existing before Version 10.1.

Managing Job History (10.1)

PBS Professional can provide job history information, including what the submission parameters were, whether the job
started execution, whether execution succeeded, whether staging out of results succeeded, and which resources were
used. PBS can keep job history for jobs which have finished execution, were deleted, or were moved to another server.
See section 10.15, “Managing Job History”, on page 479.

Reservation Fault Tolerance (10.1)

PBS attempts to reconfirm reservations for which associated vnodes have become unavailable. See section 8.4, “Reser-
vation Fault Tolerance”, on page 401.

Checkpoint Support via Epilogue (10.1)

Checkpointed jobs can be requeued if the epilogue exits with a special value. See section 8.3.7.3, “Requeueing via Epi-
logue”, on page 398.

Hooks (10.0)

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or modify
the upcoming action. This provides job filtering, patches or workarounds, and extends the capabilities of PBS, without
the need to modify source code. See the PBS Professional Hooks Guide.

Versioned Installation (10.0)

PBS is now automatically installed in versioned directories. For most platforms, different versions of PBS can coexist,
and upgrading is simplified. See Chapter 3, "Installation", on page 19 and Chapter 6, "Upgrading", on page 65 in the
PBS Professional Installation and Upgrade Guide.

Resource Permissions for Custom Resources (9.2)

You can set permissions on custom resources so that they are either invisible to users or cannot be requested by users.
This also means that users cannot modify a resource request for those resources via qalter. See section 5.14.2.4,
“Specifying Resource Visibility”, on page 257.

Extension to Job Sorting Formula (9.2)

The job sorting formula has been extended to include parentheses, exponentiation, division, and unary plus and minus.
See section 4.9.3, “Using Backfilling”, on page 108.
PBS Professional 2022.1 Administrator’s Guide AG-15

Chapter 1 New Features
Eligible Wait Time for Jobs (9.2)

A job that is waiting to run can be accruing "eligible time". Jobs can accrue eligible time when they are blocked due to a
lack of resources. This eligible time can be used in the job sorting formula. Jobs have two new attributes, eligible_time
and accrue_type, which indicates what kind of wait time the job is accruing. See section 4.9.13, “Eligible Wait Time for
Jobs”, on page 128.

Job Staging and Execution Directories (9.2)

PBS now provides per-job staging and execution directories. Jobs have new attributes sandbox and jobdir, the MoM has
a new option $jobdir_root, and there is a new environment variable called PBS_JOBDIR. If the job's sandbox
attribute is set to PRIVATE, PBS creates a job-specific staging and execution directory. If the job's sandbox attribute is
unset or is set to HOME, PBS uses the user's home directory for staging and execution, which is how previous versions
of PBS behaved. If MoM's $jobdir_root is set to a specific directory, that is where PBS will create job-specific
staging and execution directories. If MoM's $jobdir_root is unset or set to PBS_USER_HOME, PBS will create
the job-specific staging and execution directory under the user's home directory. See section 10.13.1, “Staging and Exe-
cution Directories for Job”, on page 473.

Standing Reservations (9.2)

PBS now provides both advance and standing reservation of resources. A standing reservation is a reservation of
resources for specific recurring periods of time. See section 4.9.37, “Reservations”, on page 195.

New Server Attribute for Job Sorting Formula (9.1)

The new server attribute "job_sort_formula" is used for sorting jobs according to a site-defined formula. See section
4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 150.

Change to sched_config (9.1)

The default for job_sort_key of "cput" is commented out in the default sched_config file. It is left in as a usage
example.

Change to Licensing (9.0)

PBS now depends on an Altair license server that will hand out licenses to be assigned to PBS jobs. See the PBS Works
Licensing Guide. PBS Professional versions 8.0 and below will continue to be licensed using the proprietary licensing
scheme.

Installing With Altair Licensing (9.0)

If you will use floating licenses, we recommend that you install and configure the Altair license server before installing
and configuring PBS. PBS starts up faster. See “Overview of Installation” on page 19 in the PBS Professional Installa-
tion & Upgrade Guide.

Unset Host-level Resources Have Zero Value (9.0)

An unset numerical resource at the host level behaves as if its value is zero, but at the server or queue level it behaves as
if it were infinite. An unset string or string array resource cannot be matched by a job's resource request. An unset bool-
ean resource behaves as if it is set to "False". See section 4.9.28.7, “Matching Unset Resources”, on page 159.

Better Management of Resources Allocated to Jobs (9.0)

The resources allocated to a job from vnodes will not be released until certain allocated resources have been freed by all
MoMs running the job. The end of job accounting record will not be written until all of the resources have been freed.
The "end" entry in the job end ('E') record will include the time to stage out files, delete files, and free the resources. This
will not change the recorded "walltime" for the job.
AG-16 PBS Professional 2022.1 Administrator’s Guide

New Features Chapter 1
1.3 Commercial-only Features

PBS is dual-licensed. Altair releases a commercial version and an open-source version. The core of the product is the
same, but the commercial version contains additional features available only in the commercial (licensed) version of
PBS. We list some examples here, but there are more:

• Estimated start times for non-top jobs via pbs_est

• Container integration

• PBS licensing

1.4 Backward Compatibility

1.4.1 New and Old Resource Usage Limits Incompatible

The new resource usage limits are incompatible with the old resource usage limits. See section 5.15.1.15, “Old Limit
Attributes: Server and Queue Resource Usage Limit Attributes Existing Before Version 10.1”, on page 298, section
5.15.1.13.v, “Do Not Mix Old And New Limits”, on page 297, and section 5.15.1.14.i, “Error When Setting Limit
Attributes”, on page 297.

1.4.2 Job Dependencies Affected By Job History

Enabling job history changes the behavior of dependent jobs. If a job j1 depends on a finished job j2 for which PBS is
maintaining history, PBS releases j1's dependency, and takes appropriate action. If job j1 depends on a finished job j3 that
has been purged from job history, j1 is rejected just as in previous versions of PBS where the job was no longer in the
system.

1.4.3 PBS path information no longer saved in

AUTOEXEC.BAT

Any value for PATH saved in AUTOEXEC.BAT may be lost after installation of PBS. If there is any path information
that needs to be saved, AUTOEXEC.BAT must be edited by hand after the installation of PBS. PBS path information is
no longer saved in AUTOEXEC.BAT.

1.4.4 OS-level Checkpointing Not Supported

PBS does not directly support OS-level checkpointing. PBS supports checkpointing using site-supplied methods. See
section 8.3, “Checkpoint and Restart”, on page 387.

1.4.5 Scheduler Parameters Changed to Scheduler

Attributes (19.4.1)

The preempt_order, preempt_prio, preempt_queue_prio, and preempt_sort preemption settings were scheduler
parameters in $PBS_HOME/sched_priv/sched_config in older versions of PBS. They are now scheduler attributes with
the same names and formats. You cannot use the old parameters. Make sure that you use qmgr to set the attributes as
desired. See “Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-17

Chapter 1 New Features
1.4.6 Old -l nodes Syntax Incompatible with Cgroups

The cgroups hook does not transform old "-lnodes" syntax into the new select and place directives. If you need to sup-
port the old syntax on hosts managed by the cgroups hook, you can write a queuejob hook to do that for you, or you can
have job submitters explicitly specify mem, vmem, and cgswap for jobs.
AG-18 PBS Professional 2022.1 Administrator’s Guide

2

Configuring the Server and

Queues

This chapter describes how to configure the server and any queues.

2.1 The Server

2.1.1 Configuring the Server

You configure the server by setting server attributes via the qmgr command:

Qmgr: set server <attribute> = <value>

For a description of the server attributes, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

For a description of the qmgr command, see “qmgr” on page 152 of the PBS Professional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-19

Chapter 2 Configuring the Server and Queues
2.1.2 Default Server Configuration

The default configuration from the binary installation sets the default server settings. An example server configuration is
shown below:

qmgr

Qmgr: print server

#

Create queues and set their attributes.

Create and define queue workq

#

create queue workq

set queue workq queue_type = Execution

set queue workq enabled = True

set queue workq started = True

#

Set server attributes.

#

set server default_queue = workq

set server log_events = 511

set server mail_from = adm

set server query_other_jobs = True

set server resources_default.ncpus = 1

set server resv_enable = True

set server node_fail_requeue = 310

set server max_array_size = 10000

set server default_chunk.ncpus=1

2.1.3 The PBS Node File

The server creates a file of the nodes managed by PBS. This node file is written only by the server. On startup each
MoM sends a time-stamped list of her known vnodes to the server. The server updates its information based on that
message. If the time stamp on the vnode list is newer than what the server recorded before in the node file, the server will
create any vnodes which were not already defined. If the time stamp in the MoM's message is not newer, then the server
will not create any missing vnodes and will log an error for any vnodes reported by MoM but not already known.

Whenever new vnodes are created, the server sends a message to each MoM with the list of MoMs and each vnode man-
aged by the MoMs. The server will only delete vnodes when they are explicitly deleted via qmgr.

This is different from the node file created for each job. See "The Job Node File", on page 79 of the PBS Professional
User’s Guide.

2.1.4 Server Configuration Attributes

See “Server Attributes” on page 281 of the PBS Professional Reference Guide for a table of server attributes.
AG-20 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.1.5 Recording Server Configuration

If you wish to record the configuration of a PBS server for re-use later, you may use the print subcommand of
qmgr(8B). For example,

qmgr -c "print server" > /tmp/server.out

qmgr -c "print node @default" > /tmp/nodes.out

will record in the file /tmp/server.out the qmgr subcommands required to recreate the current configuration
including the queues. The second file generated above will contain the vnodes and all the vnode properties. The com-
mands could be read back into qmgr via standard input:

qmgr < /tmp/server.out

qmgr < /tmp/nodes.out

2.1.6 Support for Globus

Globus can still send jobs to PBS, but PBS no longer supports sending jobs to Globus. The Globus MoM is no longer
available.

2.1.7 Configuring the Server for Licensing

The PBS server must be configured for licensing. You must set the location where PBS will look for the license
server(s), by setting the server attribute pbs_license_info, then force the server to re-query for licenses by setting the
server's scheduling attribute to True. The other server licensing attributes have defaults, but you may wish to set them
as well. See the PBS Works Licensing Guide.

You may also wish to have redundant license servers. See the Altair License Management System Installation and Oper-
ations Guide, available at www.pbsworks.com.

2.2 How PBS Uses Mail

PBS sends mail to the administrator for administration-related issues, and to job submitters for job-related issues. See
"Specifying Email Notification", on page 25 of the PBS Professional User’s Guide for information about mail PBS sends
to job submitters.

PBS sends mail to the administrator under the following circumstances:

• When failover occurs, PBS sends an email is sent to and from the account defined in the server's mail_from
attribute.

• When the database is stopped unexpectedly. For example:
"Panic shutdown of Server on database error. Please check PBS_HOME file system for no space

condition."

• When your license is expiring, PBS sends mail once a day.

2.2.1 Configuring Choice of Mailer

You may want to wrap sendmail, or preprocess emails before sending them to users, for example deleting certain mail
or aggregating it.

You can specify the mailer PBS uses by setting the server's mailer attribute to the path to the mailer. For example:

qmgr -c 'set server mailer = '/usr/bin/pbs_mail_preprocessing'
PBS Professional 2022.1 Administrator’s Guide AG-21

Chapter 2 Configuring the Server and Queues
This attribute defaults to SENDMAIL_CMD. The default mail server PBS uses on Linux is /usr/lib/sendmail.

2.2.1.1 Requirements for Mailer

The mailer you choose needs to work similarly to sendmail, as follows:

• Read the body from stdin

• Accept "-f $from" as a parameter

• Accept an email address as the last parameter

2.2.2 Configuring Server Mail Address

You can configure the account that is used as the address to both send and receive administrative mail. These are the
same account. For example, when failover occurs, an email is sent to and from the account defined in the server's
mail_from attribute, saying that failover has occurred.

Use the qmgr command to set the mail_from server attribute to an address that is monitored regularly:

Qmgr: s server mail_from=<address>

2.2.3 Specifying Mail Delivery Domain

You can use the PBS_MAIL_HOST_NAME parameter in pbs.conf on the server host to direct mail to a domain in
which the user can receive it. For example, if a job is submitted from a cluster node, it may not be possible for mail to be
delivered there, especially if the job runs on a different cluster.

You can specify the destination domain for email that is sent by the server to the administrator or to job submitters or res-
ervation creators by setting the PBS_MAIL_HOST_NAME parameter in pbs.conf.

2.2.3.1 Delivering Mail to Administrator

The default username for administrative mail is "adm". The following table shows where PBS sends administrator mail:

Table 2-1: How PBS Sets Administrator Mail

Value of mail_from Destination

<username>@<hostname> <username>@<hostname>

user user

(Destination depends on mail server configuration)

unset adm

(Destination depends on mail server configuration)
AG-22 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.2.3.2 Delivering Mail to Job Submitter or Reservation Creator

The Mail_Users attribute is a list of one or more usernames. For each entry in the list, PBS handles the entry according
to the rules in the following table showing where PBS sends job or reservation mail:

2.2.4 Attributes, Parameters Etc. Affecting Mail

mailer
Server attribute specifying mailer that PBS should use. Default value: SENDMAIL_CMD.

mail_from
Server attribute. Mail is sent from and to this account when failover occurs.

Mail_Points
Job and reservation attribute. List of events where PBS sends mail to users who are the job or reservation
owner, or are listed in the Mail_Users job or reservation attribute.

Mail_Users
Job and reservation attribute. List of users to whom mail about job or reservation is sent.

PBS_MAIL_HOST_NAME
Parameter in pbs.conf. Optional. Used in addressing mail regarding jobs and reservations that is sent to users
specified in a job or reservation's Mail_Users attribute. See section 2.2.3, “Specifying Mail Delivery Domain”,
on page 22.

Should be a fully qualified domain name. Cannot contain a colon (":").

PBS_O_MAIL
Value of MAIL environment variable, taken from job submitter's environment.

2.3 Queues

When a job is submitted to PBS and accepted, it is placed in a queue. Despite the fact that the name implies first-in,
first-out ordering of jobs, this is not the case. Job submission order does not determine job execution order. See Chapter
4, "Scheduling", on page 57.

Table 2-2: How PBS Sets Job or Reservation Mail

Value of
Mail_Users

Value of PBS_MAIL_HOST_NAME

Set Unset

<user-
name>@<ho
stname>

Linux: <username>@<hostname> <username>@<hostname>

user user@PBS_MAIL_HOST_NAME user@<server FQDN from Job_Owner
attribute of job>

unset <job owner>@ PBS_MAIL_HOST_NAME Linux: <job owner>@ <server FQDN from
Job_Owner attribute of job>
PBS Professional 2022.1 Administrator’s Guide AG-23

Chapter 2 Configuring the Server and Queues
You can create different queues for different purposes: queues for certain kinds of jobs, queues for specific groups,
queues for specific vnodes, etc. You can tell PBS how to automatically route jobs into each queue. PBS has a default
execution queue named workq, where jobs are placed when no queue is requested; you can specify a different default
queue. See section 2.3.14, “Specifying Default Queue”, on page 35.

2.3.1 Kinds of Queues

2.3.1.1 Execution and Routing Queues

There are two main types of PBS queues: routing and execution.

• A routing queue is used only to move jobs to other queues (destination queues). These destination queues can be
routing or execution queues, and can be located at different PBS servers. For more information on creating and
using routing queues, see section 2.3.6, “Routing Queues”, on page 27.

• An execution queue is used as the home for a waiting or running job. A job must reside in an execution queue to be
eligible to run. The job remains in the execution queue during the time it is running. See section 2.3.5, “Execution
Queues”, on page 25.

2.3.1.2 Available Kinds of Queues

PBS supplies the following kinds of execution and routing queues:

Table 2-3: Kinds of Queues

Kind of Queue Description Link

Routing queues Used for moving jobs to another queue See section 2.3.6, “Routing Queues”, on page
27

Execution
queues

Reservation
queues

Created for reservation. Do not operate
on these directly; instead, operate on
the reservation.

See section 2.3.5.2.iv, “Reservation Queues”,
on page 27

Dedicated time
queues

Holds jobs that run only during dedi-
cated time.

See section 2.3.5.2.i, “Dedicated Time
Queues”, on page 26

Primetime
queues

Holds jobs that run only during prime-
time.

See section 2.3.5.2.ii, “Primetime and
Non-Primetime Queues”, on page 26

Non-primetime
queues

Holds jobs that run only during
non-primetime.

See section 2.3.5.2.ii, “Primetime and
Non-Primetime Queues”, on page 26

Anytime queues Queue with no dedicated time or
primetime restrictions

See section 2.3.5.2.iii, “Anytime Queues”, on
page 26

Express queues High-priority queue; priority is set to
the level signifying that it is an express
queue

See section 2.3.5.3.i, “Express Queues”, on
page 27

Anti-express
queue

Low-priority queue designed for work
that should run only when no other jobs
need the resources

See section 4.9.1, “Anti-Express Queues”, on
page 105
AG-24 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.3.2 Basic Queue Use

The simplest form of PBS uses just one queue. The queue is an execution queue named workq. This queue is always
created, enabled, and started for you during installation. After a basic installation, this queue is ready to hold jobs sub-
mitted by users.

2.3.3 Creating Queues

To create a queue, use the qmgr command to create it and set its queue_type attribute:

Qmgr: create queue <queue name>
Qmgr: set queue <queue_name> queue_type = <execution or route>

For example, to create an execution queue named exec_queue, set its type, start it, and enable it:

Qmgr: create queue exec_queue
Qmgr: set queue exec_queue queue_type = execution
Qmgr: set queue exec_queue enabled = True
Qmgr: set queue exec_queue started = True

Now we will create a routing queue, which will send jobs to our execution queue:

Qmgr: create queue routing_queue
Qmgr: set queue routing_queue queue_type = route
Qmgr: set queue routing_queue route_destinations = exec_queue

2.3.4 Enabling, Disabling, Starting, and Stopping Queues

When you enable a queue, you allow it to accept jobs, meaning that jobs can be enqueued in the queue. When you dis-
able a queue, you disallow it from accepting jobs. Queues are disabled by default. You enable a queue by setting its
enabled attribute to True:

Qmgr: set queue <queue name> enabled = True

When you start a queue, you allow the jobs in the queue to be executed. Jobs are selected to be run according to the
scheduling policy. When you stop a queue, you disallow jobs in that queue from running, regardless of scheduling pol-
icy. Except for the default queue, queues are stopped by default. You start a queue by setting its started attribute to
True:

Qmgr: set queue <queue name> started = True

2.3.5 Execution Queues

Execution queues are used to run jobs; jobs must be in an execution queue in order to run. PBS does not route from exe-
cution queues.

2.3.5.1 Where Execution Queues Get Their Jobs

By default, PBS allows jobs to be moved into execution queues via the qmove command, by hooks, from routing
queues, and by being submitted to execution queues. You can specify that an execution queue should accept only those
jobs that are routed from a routing queue by PBS, by setting the queue's from_route_only attribute to True:

Qmgr: set queue <queue name> from_route_only = True
PBS Professional 2022.1 Administrator’s Guide AG-25

Chapter 2 Configuring the Server and Queues
2.3.5.2 Execution Queues for Specific Time Periods

PBS provides a mechanism that allows you to specify that the jobs in an execution queue can run only during specific
time periods. PBS provides a different kind of execution queue for each kind of time period. The time periods you can
specify are the following:

Reservations

You can create an advance, standing, job-specific, or maintenance reservation. See section 4.9.37, “Reserva-
tions”, on page 195.

Dedicated time

Dedicated time is a period of time with a defined beginning and end. You can define multiple dedicated times.

Primetime

Primetime is a recurring time period with a defined beginning and end. You can define primetime to be different
for each day of the week.

Non-primetime

Non-primetime is a recurring time period with a defined beginning and end. Non-primetime begins when
primetime ends, and vice versa.

Holidays

Holidays are dates defined in the <sched_priv directory>/holidays file. PBS provides an example
file with everything commented out, and you define your own holidays and primetime. Holiday time is treated
like non-primetime, meaning jobs in non-primetime queues run during holiday time.

Anytime queue

The term "anytime queue" means a queue that is not a primetime or a non-primetime queue.

2.3.5.2.i Dedicated Time Queues

The jobs in a dedicated time execution queue can run only during dedicated time. Dedicated time is defined in
<sched_priv directory>/dedicated_time. See section 4.9.10, “Dedicated Time”, on page 127.

To specify that a queue is a dedicated time queue, you prefix the queue name with the dedicated time keyword. This key-
word defaults to "ded", but can be defined in the dedicated_prefix scheduler parameter in <sched_priv direc-
tory>/sched_config. See “dedicated_prefix” on page 252 of the PBS Professional Reference Guide.

2.3.5.2.ii Primetime and Non-Primetime Queues

The jobs in a primetime queue run only during primetime, and the jobs in a non-primetime queue run only during
non-primetime. Primetime and non-primetime are defined in <sched_priv directory>/holidays. See section
4.9.34, “Using Primetime and Holidays”, on page 189.

To specify that a queue is a primetime or non-primetime queue, you prefix the queue name with the primetime or
non-primetime keyword. For primetime, this keyword defaults to "p_", and for non-primetime, the keyword defaults to
"np_", but these can be defined in the primetime_prefix and nonprimetime_prefix scheduler parameters in
<sched_priv directory>/sched_config. See “Scheduler Parameters” on page 251 of the PBS Professional
Reference Guide.

2.3.5.2.iii Anytime Queues

An anytime queue is a queue whose jobs can run at any time. An anytime queue is simply a queue that is not a dedicated
time, primetime, or non-primetime queue.
AG-26 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.3.5.2.iv Reservation Queues

When the pbs_rsub command is used to create a reservation or to convert a job into a reservation job, PBS creates a
reservation queue. Jobs in the queue run only during the reservation. Do not operate on these queues directly; instead,
operate on the reservations. See section 4.9.37, “Reservations”, on page 195.

2.3.5.3 Prioritizing Execution Queues

You can set the priority of each execution queue as compared to the other queues in this complex by specifying a value
for the priority queue attribute:

Qmgr: set queue <queue name> priority = <value>

A higher value for priority means the queue has greater priority. There is no limit to the priority that you can assign to a
queue, however it must fit within integer size. See “Queue Attributes” on page 311 of the PBS Professional Reference
Guide.

For how queue priority is used in scheduling, see section 4.9.36, “Queue Priority”, on page 194.

2.3.5.3.i Express Queues

A queue is an express queue if its priority is greater than or equal to the value that defines an express queue. This value
is set in the preempt_queue_prio parameter in <sched_priv directory>/sched_config. The default value
for preempt_queue_prio is 150.

You do not need to set by_queue to True in order to use express queues.

For how express queues can be used, see section 4.9.18, “Express Queues”, on page 138.

2.3.6 Routing Queues

A routing queue is used only to route jobs to other queues; jobs cannot run from a routing queue.

A routing queue has the following properties:

• Can route to multiple destination queues

• For each job, tries destination queues in the order listed, starting at the top of the list.

• Can route to execution queues

• Can route to other routing queues

• Can route to queues in other complexes (at other servers)

Destinations can be specified in the following ways:

route_destinations = Q1

route_destinations = Q1@Server1

route_destinations = "Q1, Q2@Server1, Q3@Server2"

route_destinations += Q1

route_destinations += "Q4, Q5@Server3"
PBS Professional 2022.1 Administrator’s Guide AG-27

Chapter 2 Configuring the Server and Queues
2.3.6.1 How Routing Works

Whenever a job is in a started routing queue, PBS immediately attempts to route the job to a destination queue. When
PBS routes a job, it starts at the top of the destination list and tries each destination in the order listed. The job's destina-
tion is the first queue that accepts it. The result is one of the following:

• The job is routed to one of the destination queues.

• The attempt to route is permanently rejected by each destination queue, and the job is deleted.

• Every destination queue rejects the job, but at least one rejection is temporary. In this case, the destination is tried
again later, after the amount of time specified in the routing queue's route_retry_time attribute.

• If the job exceeds the time set in the queue's route_lifetime attribute, the job is deleted.

If there are multiple routing queues containing jobs to be routed, the routing queues are processed in the order in which
they are displayed in the output of a qstat -Q command.

Queue priority does not play a role in routing jobs.

2.3.6.2 Requirements for Routing Queues

• A routing queue's destination queues must be created before being specified in the routing queue's
route_destinations attribute.

• A routing queue's route_destinations attribute must be specified before enabling and starting the routing queue.

• A routing queue must be enabled in order to route jobs.

2.3.6.3 Caveats and Advice for Routing Queues

• Avoid routing loops. If a job makes more than 20 routing hops, it is discarded, and PBS sends mail to the job owner
if the job's Mail_Points attribute contains "a" for "abort". Avoid setting a routing queue's destination to be the rout-
ing queue itself.

• When routing to a complex that is using failover, it's a good idea to include the names of both primary and secondary
servers in a routing destination:
route_destinations = "destQ@primary_server, destQ@secondary_server"

• When routing a job between complexes, the job's owner must be able to submit a job to the destination complex.

• When routing to a destination in another complex, the source and destination complexes should use the same version
of PBS. If not, you may need a submission hook to modify incoming jobs.

• It is recommended to list the destination queues in order of the most restrictive first, because the first queue which
meets the job's requirements and is enabled will be its destination

2.3.6.4 Using Resources to Route Jobs Between Queues

You can use resources to direct jobs to the desired queues. The server will automatically route jobs that are in routing
queues, based on job resource requests. The destination queue can be at the local server or at another server. If you have
more than one PBS complex, you may want to route jobs between the complexes, depending on the resources available at
each complex.

You can set up queues for specific kinds of jobs, for example jobs requesting very little memory, a lot of memory, or a
particular application. You can then route jobs to the appropriate queues.

A routing queue tests destination queues in the order listed in the queue's route_destinations attribute. The job is placed
in the first queue that meets the job's request and is enabled.

Please read all of the subsections for this section.
AG-28 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.3.6.4.i How Queue and Server Limits Are Applied, Except Running Time

The following applies to to all resources except for min_walltime and max_walltime.

You can set a minimum and a maximum for each resource at each queue using the resources_min.<resource name>
and resources_max.<resource name> queue attributes. Any time a job is considered for entry into a queue, the job's
resource request is tested against resources_min.<resource name> and resources_max.<resource name> for that
queue. The job's resource request must be greater than or equal to the value specified in resources_min.<resource
name>, and less than or equal to the value specified in resources_max.<resource name>.

The job is tested only against existing resources_min.<resource name> and resources_max.<resource name> for
the queue.

Only those resources that are specified in the job's resource request are tested, so if a job does not request a particular
resource, and did not inherit a default for that resource, the minimum and maximum tests for that resource are not applied
to the job.

If you want jobs requesting only a specific value for a resource to be allowed into a queue, set the queue's
resources_min.<resource name> and resources_max.<resource name> to the same value. This resource can be
numeric, string, string array, or Boolean.

If you limit queue access using a string array, a job must request one of the values in the string array to be allowed into
the queue. For example, if you set resources_min.strarr and resources_max.strarr to "blue,red,black", jobs can
request –l strarr=blue, -l strarr=red, or –l strarr=black to be allowed into the queue.

2.3.6.4.ii How Queue and Server Running Time Limits are Applied

For shrink-to-fit jobs, running time limits are applied to max_walltime and min_walltime, not walltime. To set a running
time limit for shrink-to-fit jobs, you cannot use resources_max or resources_min for max_walltime or min_walltime.
Instead, use resources_max.walltime and resources_min.walltime. See section 4.9.42.6, “Shrink-to-fit Jobs and
Resource Limits”, on page 212.

2.3.6.4.iii Resources Used for Routing and Admittance

You can route jobs using the following kinds of resources:

• Any server-level or queue-level (job-wide) built-in or custom resource, whether it is numeric, string, or Boolean, for
example ncpus and software

When routing jobs with min_walltime and/or max_walltime, PBS examines the values for resources_min.walltime
and resources_max.walltime at the server or queue. See section 2.3.6.4.ii, “How Queue and Server Running Time
Limits are Applied”, on page 29.

• The following built-in chunk-level resources:

mem

mpiprocs

ncpus

nodect

vmem

• Custom vnode-level (chunk-level) resources that are global and have the n, q, or f flags set

• Any resource in the job's Resource_List attribute; see section 5.9.2, “Resources Requested by Job”, on page 241.
For string or string array resources, see section 2.3.6.4.iv, “Using String, String Array, and Boolean Values for Rout-
ing and Admittance”, on page 30.

When jobs are routed using a chunk-level resource, routing is based on the sum of that resource across all chunks.
PBS Professional 2022.1 Administrator’s Guide AG-29

Chapter 2 Configuring the Server and Queues
2.3.6.4.iv Using String, String Array, and Boolean Values for Routing and
Admittance

When using strings or string arrays for routing or admittance, you can use only job-wide (server-level or queue-level)
string or string array resources. String or string array resources in chunks are ignored. The resources_min and
resources_max attributes work as expected with numeric values. In addition, they can be used with string and Boolean
values to force an exact match; this is done by setting both to the same value. For example, to limit jobs entering queue
big to those that specify arch=unicos8, or that do not specify a value for arch:

Qmgr: set q App1Queue resources_max.software=App1
Qmgr: set q App1Queue resources_min.software=App1

2.3.6.4.v Examples of Routing Jobs

You can force all jobs into a routing queue, or you can allow users to request some queues but not others. If you set up
the default queue as a routing queue, and make all execution queues accept jobs only from routing queues, all jobs are
initially forced into a routing queue.
AG-30 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
Alternatively, you can set up one routing queue and a couple of execution queues which accept jobs only from routing
queues, but add other queues which can be requested. Or you could allow jobs to request the execution queues, by mak-
ing the execution queues also accept jobs that aren't from routing queues.

Example 2-1: Jobs can request one execution queue named WorkQ. All jobs that do not request a specific queue are
routed according to their walltime:

• Create a routing queue RouteQ and make it the default queue:
Qmgr: create queue RouteQ queue_type = route
Qmgr: set server default_queue = RouteQ

• Create two execution queues, LongQ and ShortQ. One is for long-running jobs, and one is for short-running jobs:
Qmgr: create queue LongQ queue_type = execution
Qmgr: create queue ShortQ queue_type = execution

• Set resources_min.walltime and resources_max.walltime on these queues:
Qmgr: set queue LongQ resources_min.walltime = 5:00:00
Qmgr: set queue ShortQ resources_max.walltime = 4:59:00

• For LongQ and ShortQ, disallow jobs that are not from a route queue:
Qmgr: set queue LongQ from_route_only = True
Qmgr: set queue ShortQ from_route_only = True

• Set the destinations for RouteQ to be LongQ and ShortQ:
Qmgr: set queue RouteQ route_destinations = "ShortQ, LongQ"

• Create a work queue that can be requested:
Qmgr: create queue WorkQ queue_type = execution

• Enable and start all queues:
Qmgr: active queue RouteQ,LongQ,ShortQ,WorkQ
Qmgr: set queue enabled = True
Qmgr: set queue started = True

• Set default for walltime at the server so that jobs that don't request it inherit the default, and land in ShortQ:
Qmgr: set server resources_default.walltime = 4:00:00

Example 2-2: Jobs are not allowed to request any queues. All jobs are routed to one of three queues based on the job's
walltime request:

• Create a routing queue RouteQ and make it the default queue:
Qmgr: create queue RouteQ queue_type = route
Qmgr: set server default_queue = RouteQ

• Create three execution queues, LongQ, MedQ, and ShortQ. One is for long-running jobs, one is for medium jobs,
and one is for short-running jobs:
Qmgr: create queue LongQ queue_type = execution
Qmgr: create queue MedQ queue_type = execution
Qmgr: create queue ShortQ queue_type = execution

• Set resources_min.walltime and resources_max.walltime on these queues:
Qmgr: set queue LongQ resources_min.walltime = 10:00:00
Qmgr: set queue MedQ resources_max.walltime = 9:59:00
Qmgr: set queue MedQ resources_min.walltime = 5:00:00
Qmgr: set queue ShortQ resources_max.walltime = 4:59:00

• For LongQ, MedQ, and ShortQ, disallow jobs that are not from a route queue:
Qmgr: set queue LongQ from_route_only = True
Qmgr: set queue MedQ from_route_only = True
Qmgr: set queue ShortQ from_route_only = True
PBS Professional 2022.1 Administrator’s Guide AG-31

Chapter 2 Configuring the Server and Queues
• Set the destinations for RouteQ to be LongQ, MedQ and ShortQ:
Qmgr: set queue RouteQ route_destinations = "ShortQ, MedQ, LongQ"

• Enable and start all queues:
Qmgr: active queue RouteQ,LongQ,ShortQ,MedQ
Qmgr: set queue enabled = True
Qmgr: set queue started = True

2.3.6.4.vi Caveats for Queue Resource Limits

If a job is submitted without a request for a particular resource, and no defaults for that resource are set at the server or
queue, and either the server or queue has resources_max.<resource name> set, the job inherits that maximum value.
If the queue has resources_max.<resource name> set, the job inherits the queue value, and if not, the job inherits the
server value.

2.3.6.5 Using Access Control to Route Jobs

You can route jobs based on job ownership by setting access control limits at destination queues. A queue's access con-
trol limits specify which users or groups are allowed to have jobs in that queue. Default behavior is to disallow an entity
that is not listed, so you need only list allowed entities.

To set the list of allowed users at a queue:

Qmgr: set queue <queue name> acl_users = "User1@*.example.com, User2@*.example.com"

To enable user access control at a queue:

Qmgr: set queue <queue name> acl_user_enable = True

To set the list of allowed groups at a queue:

Qmgr: set queue <queue name> acl_groups = "Group1, Group2"

To enable group access control at a queue:

Qmgr: set queue <queue name> acl_group_enable = True

For a complete explanation of access control, see section 11.3, “Using Access Control Lists”, on page 492.

2.3.6.6 Allowing Routing of Held or Waiting Jobs

By default, PBS will not route jobs that are held. You can allow a routing queue to route held jobs by setting the queue's
route_held_jobs attribute to True:

Qmgr: set queue <queue name> route_held_jobs = True

By default, PBS will not route jobs whose execution_time attribute has a value in the future. You can allow a routing
queue to route jobs whose start time is in the future by setting the queue's route_waiting_jobs attribute to True:

Qmgr: set queue <queue name> route_waiting_jobs = True

2.3.6.7 Setting Routing Retry Time

The default time between routing retries is 30 seconds. To set the time between routing retries, set the value of the
queue's route_retry_time attribute:

Qmgr: set queue <queue name> route_retry_time = <value>
AG-32 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
2.3.6.8 Specifying Job Lifetime in Routing Queue

By default, PBS allows a job to exist in a routing queue for an infinite amount of time. To change this, set the queue's
route_lifetime attribute:

Qmgr: set queue <queue name> route_lifetime = <value>

2.3.7 Queue Requirements

• Each queue must have a unique name. The name must be alphanumeric, and must begin with an alphabetic charac-
ter

• A server may have multiple queues of either or both types, but the server must have at least one execution queue
defined.

2.3.8 Queue Configuration Attributes

Queue configuration attributes fall into three groups:

• Those which apply to both types of queues

• Those which apply only to execution queues

• Those which apply only to routing queues

If an "execution queue only" attribute is set for a routing queue, or vice versa, it is ignored. However, as this situation
might indicate the administrator made a mistake, the server will write a warning message on stderr about the conflict.
The same message is written when the queue type is changed and there are attributes that do not apply to the new type.

See “Queue Attributes” on page 311 of the PBS Professional Reference Guide for a table of queue attributes.

2.3.9 Viewing Queue Status

To see the status of a queue, including values for attributes, use the qstat command:

qstat -Qf <queue name>

To see the status of all queues:

qstat -Qf

The status of the queue is reported in the State field. The field shows two letters. One is either E (enabled) or D (dis-
abled.) The other is R (running, same as started) or S (stopped.) Attributes with non-default values are displayed. See
“qstat” on page 200 of the PBS Professional Reference Guide.

The following queue attributes contain queue status information:
PBS Professional 2022.1 Administrator’s Guide AG-33

Chapter 2 Configuring the Server and Queues
total_jobs
state_count
resources_assigned
hasnodes (deprecated)
enabled
started

2.3.10 Deleting Queues

Use the qmgr command to delete queues.

Qmgr: delete queue <queue name>

2.3.10.1 Caveats for Deleting Queues

• A queue that has queued or running jobs cannot be deleted.

• The vnode queue attribute is deprecated. A queue that is associated with a vnode via that vnode's queue attribute
cannot be deleted. To remove the association, save the output of pbsnodes -a to a file and search for the queue.
Unset the queue attribute for each associated vnode.

2.3.11 Defining Queue Resources

For each queue, you can define the resources you want to have available at that queue. To set the value for an existing
resource, use the qmgr command:

Qmgr: set queue <queue name> resources_available.<resource name> = <value>

For example, to set the value of the Boolean resource RunsMyApp to True at QueueA:

Qmgr: set queue QueueA resources_available.RunsMyApp = True

For information on how to define a new resource at a queue, see section 5.14, “Custom Resources”, on page 252.

For information on defining default resources at a queue, see section 5.9.3.3, “Specifying Job-wide Default Resources at
Queue”, on page 243 and section 5.9.3.2.ii, “Specifying Chunk Default Resources at Queue”, on page 242.

2.3.12 Setting Queue Resource Defaults

The jobs that are placed in a queue inherit the queue's defaults for any resources not specified by the job's resource
request. You can specify each default resource for each queue. This is described in section 5.9.3, “Specifying Job
Default Resources”, on page 241. Jobs inherit default resources according to the rules described in section 5.9.4, “Allo-
cating Default Resources to Jobs”, on page 244.

2.3.13 How Default Server and Queue Resources Are Applied

When Jobs Move

When a job is moved from one server to another, the following changes happen:

• Any default resources that were applied by the first server are removed

• Default resources from the new server are applied to the job
AG-34 PBS Professional 2022.1 Administrator’s Guide

Configuring the Server and Queues Chapter 2
When a job is moved from one queue to another, the following changes happen:

• Any default resources that were applied by the first queue are removed

• Default resources from the new queue are applied to the job

For more details on how default resources are inherited when a job is moved, see section 5.9.4.3, “Moving Jobs Between
Queues or Servers Changes Defaults”, on page 245.

2.3.14 Specifying Default Queue

PBS has a default execution queue named workq, where jobs are placed when no queue is requested. You can specify
which queue should be the default. To specify the queue which is to accept jobs when no queue is requested, set the
server's default_queue attribute to the name of the queue:

Qmgr: set server default_queue = <queue name>

2.3.15 Associating Queues and Vnodes

You can set up vnodes so that they accept jobs only from specific queues. See section 4.9.2, “Associating Vnodes with
Queues”, on page 106.

2.3.16 Configuring Access to Queues

You can configure each queue so that only specific users or groups can submit jobs to the queue. See section 11.3,
“Using Access Control Lists”, on page 492.

2.3.17 Setting Limits on Usage at Queues

You can set limits on different kinds of usage at each queue:

• You can limit the size of a job array using the max_array_size queue attribute

• You can limit the number of jobs or the usage of each resource by each user or group, or overall. See section 5.15.1,
“Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283

2.3.18 Queues and Failover

For information on configuring routing queues and failover, see section 8.2.6.1, “Configuring Failover to Work with
Routing Queues”, on page 384.

2.3.19 Additional Queue Information

For a description of each queue attribute, see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

For information on using queues for scheduling, see section 4.6, “Using Queues in Scheduling”, on page 101.
PBS Professional 2022.1 Administrator’s Guide AG-35

Chapter 2 Configuring the Server and Queues
AG-36 PBS Professional 2022.1 Administrator’s Guide

3

Configuring MoMs and Vnodes

3.1 About MoMs

A MoM runs and manages the jobs on each execution host. The pbs_mom daemon starts jobs on the execution host,
monitors and reports resource usage, enforces resource usage limits, manages job file transfer, and notifies the server
when the job is finished. When the MoM starts a job, she creates a new session that is as identical to the user's login ses-
sion as is possible. For example, under Linux, if the user's login shell is csh, then MoM creates a session in which
.login and .cshrc are run. MoM returns the job's output to the user. The MoM performs any communication with job
tasks and with other MoMs. The MoM on the first vnode on which a job is running manages communication with the
MoMs on the remaining vnodes on which the job runs. The MoM on the first vnode is called the primary execution
host MoM.

The MoM writes a log file in PBS_HOME/mom_logs. The MoM writes an error message in its log file when it encoun-
ters any error. The MoM also writes other miscellaneous information to its log file. If it cannot write to its log file, it
writes to standard error.

You start a MoM via the pbs_mom command. The executable for pbs_mom is in PBS_EXEC/sbin, and can be run
only by root. For Linux, see “MoMs: Starting, Stopping, Restarting” on page 149 in the PBS Professional Installation &
Upgrade Guide, and for Windows, see “MoMs: Starting, Stopping, Restarting” on page 156 in the PBS Professional
Installation & Upgrade Guide.

The MoM also runs any prologue scripts before the job runs, and runs any epilogue scripts after the job runs.

PBS supplies a hook that you can use to manage cgroups on each execution host, and via the hook, cpusets. See Chapter
6, "Configuring and Using PBS with Cgroups", on page 311. If you are running the cgroups hook, any epilogue script
will not run. The cgroups hook has an execjob_epilogue event which takes precedence over an epilogue script, so if
you are running the cgroups hook, make your epilogue script into an execjob_epilogue hook instead.

3.1.1 Configuring MoMs

3.1.1.1 MoM Configuration File

During the installation process, PBS creates a Version 1 configuration file for each MoM. Each parameter in this file
controls some aspect of MoM's behavior. To configure MoM's behavior, edit this file, and set each parameter as desired.

The default location for the Version 1 configuration file is on MoM's host, in PBS_HOME/mom_priv/config, or if
PBS_MOM_HOME is defined, PBS_MOM_HOME/mom_priv/config. It can be in a different location; in that case, MoM must be
started with the -c option. See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

If you add or change anything via a Version 1 configuration file, you can HUP the MoM, but if you remove anything, you
must either restart the MoM so that the default value is re-applied, or change the removed value back to its default and
then HUP the MoM. If you simply HUP the MoM after removing a line, MoM will not notice the removal.

The Version 1 configuration file must be secure. It must be owned by a user ID and group ID both less than 10 and must
not be world-writable.

For a complete description of the syntax and contents of the Version 1 configuration file, see “MoM Parameters” on page
243 of the PBS Professional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-37

Chapter 3 Configuring MoMs and Vnodes
3.1.1.2 Editing Version 1 Files

Use your favorite text editor to edit Version 1 configuration files.

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

3.1.1.3 Caveats and Restrictions for Configuration Files

• The pbs_mom -d option changes where MoM looks for PBS_HOME, and using this option will change where
MoM looks for all configuration files. If you use the -d option, MoM will look in the new location for all MoM and
vnode configuration files. Instead, we recommend setting the location of PBS_HOME or PBS_MOM_HOME in
/etc/pbs.conf on MoM's host.

• When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad
application does not automatically add a newline at the end of a file; you must explicitly add the newline.

3.1.1.4 When MoM Reads Configuration Files

MoM reads pbs.conf at startup, and her own configuration files at startup and reinitialization. On Linux, this is when
pbs_mom receives a SIGHUP signal or is started or restarted, and on Windows, when MoM is started or restarted.

If you make changes to the hardware or a change occurs in the number of CPUs or amount of memory that is available to
PBS, such as a non-PBS process releasing a cpuset, you should restart PBS, by typing the following:

<path-to-script>/pbs restart

The MoM daemon is normally started by the PBS start/stop script.

When MoM is started, it opens its Version 1 configuration file, mom_priv/config, in the path specified in
pbs.conf, if the file exists. If it does not, MoM will continue anyway. The config file may be placed elsewhere or
given a different name, by starting pbs_mom using the -c option with the new file and path specified. See “MoMs:
Starting, Stopping, Restarting” on page 156 in the PBS Professional Installation & Upgrade Guide.

The files are processed in this order:

1. Version 1 configuration file

2. PBS reserved configuration files

3. Version 2 configuration files

Within each category, the files are processed in lexicographic order.

The contents of a file that is read later will override the contents of a file that is read earlier.

If there is an error in mom_priv/config, MoM will not start.

3.1.2 Configuring MoM Polling Cycle

3.1.2.1 Cgroups Hook Can Replace Polling

The cgroups hook (see Chapter 6, "Configuring and Using PBS with Cgroups", on page 311) can provide accurate
accounting information and job resource usage management, so that MoM does not need to perform periodic job
resource usage polling. If you use the cgroups hook to manage jobs at a host, MoM does not need to poll throughout the
life of the job, and the server and the datastore experience less traffic.

Each time a MoM polls, the server rewrites all of the job's data to the datastore, causing traffic to the data store. If you
have smaller jobs, MoM needs to poll often in order to get reasonably accurate information. If you have many of these
jobs, this slows the server and reduces throughput.
AG-38 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
Each job is always polled at the start and end, regardless of periodic polling. MoM polls at job end, before running the
epilogue, when she detects that the last job task is done. If the job was spawned with tm_spawn, MoM can get an accu-
rate value for cput. If the job was tm_attached and the cgroups hook is not running on the host, she cannot get an
accurate value for cput, because a process other than MoM reaped the job. For example, if memory is reaped by some-
thing other than MoM, there is no way to get usage. However, if the cgroups hook is managing that job, the hook can get
accurate usage.

If the cgroups hook manages the jobs at a host, MoM does not need to do any periodic job polling at that host.

3.1.2.2 Polling on Linux

MoM's polling cycle is determined by the values of $min_check_poll and $max_check_poll in the Version 1 configu-
ration file. The interval between each poll starts at $min_check_poll and increases with each cycle until it reaches
$max_check_poll, after which it remains the same. The amount by which the cycle increases is the following:

(max_check_poll - min_check_poll + 19) / 20

The default value for $max_check_poll is 120 seconds. The minimum is 1 second.

The default value for $min_check_poll is 10 seconds. The minimum is 1 second.

The start of a new job resets the polling for all of the jobs being managed by this MoM.

MoM polls for resource usage for cput, walltime, mem and ncpus.

3.1.2.2.i Linux Polling Caveats

Please note that polling intervals cannot be considered to be exact:

• The polling calculation simply provides a minimum amount of time between one poll and the next.

• The actual time between polls can vary. The actual time taken by MoM also depends on the other tasks MoM is per-
forming, such as starting jobs, running a prologue or epilogue, etc.

• The timing of MoM's activities is not completely under her control, because she is a user process.

• The finest granularity for calculating polling is in seconds.

3.1.2.3 Polling on Windows

On Windows, MoM updates job usage at fixed intervals of 10 seconds. The $min_check_poll and $max_check_poll
parameters are not used by MoM on Windows. MoM looks for any job that has exceeded a limit for walltime, mem, or
cput, and terminates jobs that have exceeded the limit.

3.1.2.4 How Polling is Used

• Job-wide limits are enforced by MoM using polling. See section 5.15.2.4.i, “Job Memory Limit Enforcement on
Linux”, on page 302. MoM can enforce cpuaverage and cpuburst resource usage. See section 5.15.2.5.i, “Aver-
age CPU Usage Enforcement”, on page 303 and section 5.15.2.5.ii, “CPU Burst Usage Enforcement”, on page 304.

• MoM enforces the $restrict_user access restrictions on the polling cycle controlled by $min_check_poll and
$max_check_poll. See section 9.5.7, “Restricting User Access to Execution Hosts”, on page 438.

• Cycle harvesting has its own polling interval. See “$kbd_idle <idle wait> <min use> <poll interval>” on page 247
of the PBS Professional Reference Guide for information on $kbd_idle.
PBS Professional 2022.1 Administrator’s Guide AG-39

Chapter 3 Configuring MoMs and Vnodes
3.1.2.5 Polling for Multi-host Jobs

Polling cycles are different on the primary execution host MoM and sister MoMs.

• The primary execution host MoM polls immediately when a task is started and again after the minimum polling
period, then continues polling at each maximum polling period

• Sister MoMs poll a full cycle after the first task is created there

3.1.2.6 Recommendations for Polling Interval

Consider the workload at the host, and the overall workload at the server, when you set polling intervals. MoM's polling
period should depend on the length of the typical job, and the importance for your site of accurate accounting. If you
have many small jobs, frequent polling can take up a lot of MoM's cycles, and cause heavy traffic for the datastore and
the server.

You may want to set $min_check_poll and $max_check_poll to somewhat higher values than the defaults. For exam-
ple, for a 1-hour job, you could poll at 10-minute intervals. We do not recommend a value for $max_check_poll of less
than 30 seconds. We do not recommend setting $min_check_poll to less than 10 seconds.

3.1.3 Files and Directories Used by MoM

If PBS_MOM_HOME is present in the pbs.conf file, pbs_mom will use that directory for its "home" instead of
PBS_HOME.

3.1.3.1 Linux Files and Directories Used by MoM

Under Linux, all files and directories that MoM uses must be owned by root. MoM uses the following files and directo-
ries:

Table 3-1: MoM Files and Directories Under Linux

File/Directory Description Permissions

/etc/pbs.conf File 0644

aux Directory 0755

checkpoint Directory 0700

checkpoint script File 0755

mom_logs Directory 0755

mom_priv Directory 0751

mom_priv/jobs Directory 0751

mom_priv/config File 0644

mom_priv/prologue File 0755

mom_priv/epilogue File 0755

pbs_environment File 0644

spool Directory 1777 (drwxrwxrwt)

undelivered Directory 1777 (drwxrwxrwt)
AG-40 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.1.3.2 Linux Files and Directories Used by MoM

Under Windows, these directories must have at least Full Control permission for the local Administrators group. MoM
uses the following files and directories:

3.2 About Vnodes: Virtual Nodes

A virtual node, or vnode, is an abstract object representing a set of resources which form a usable part of a machine. This
could be an entire host, a NUMA node, a nodeboard, or a blade. A single host can be represented by one vnode or multi-
ple vnodes. PBS views hosts as being composed of one or more vnodes, and PBS can manage and schedule each vnode
independently. One PBS MoM manages all of the vnodes for each host.

Version 2 configuration files (optional) Files 0755

PBS reserved configuration files Files ----

Job temporary directory Directory 1777

Table 3-2: MoM Files and Directories Under Windows

File/Directory Description Ownership/Permission

pbs.conf File

auxiliary Directory At least Full Control permission for the local Administrators group and
read-only access to Everyone

checkpoint Directory At least Full Control permission for the local Administrators group

checkpoint script File At least Full Control permission for the local Administrators group

mom_logs Directory At least Full Control permission for the local Administrators group and
read-only access to Everyone

mom_priv Directory At least Full Control permission for the local Administrators group and
read-only access to Everyone

mom_priv/jobs Directory At least Full Control permission for the local Administrators group and
read-only access to Everyone

mom_priv/con-
fig

File At least Full Control permission for the local Administrators group

pbs_environme
nt

File At least Full Control permission for the local Administrators group and
read-only to Everyone

spool Directory Full access to Everyone

undelivered Directory Full access to Everyone

Job's temporary
directory

Directory Writable by Everyone

Table 3-1: MoM Files and Directories Under Linux

File/Directory Description Permissions
PBS Professional 2022.1 Administrator’s Guide AG-41

Chapter 3 Configuring MoMs and Vnodes
3.2.1 Parent Vnodes and Child Vnodes

Each machine is represented by at least one vnode. The main vnode is called the parent vnode. Vnodes that represent
machine resources such as CPUs are called child vnodes.

For single-vnode machines, the parent vnode is also the child vnode, and this vnode represents all of the machine's
resources, including its hardware.

For machines with more than one vnode, the parent vnode does not correspond to any actual hardware; instead, it is a col-
lection of information that applies to the host but not the individual vnodes, such as dynamic host-level resources and
shared resources. On multi-vnode machines, resources such as CPUs are represented in child vnodes.

3.3 Creating Vnodes

3.3.1 Overview of Creating Vnodes

1. For each machine, you create one parent vnode using qmgr. See "Creating the Parent Vnode” on page 44.

For a single-vnode machine, vnode creation is done.

2. For a machine which will have more than one vnode, after you create the parent vnode, PBS handles creation of the
child vnodes:

• If you run the cgroups hook with vnode_per_numa_node set to true, the cgroups hook creates all the local
child vnodes. We recommend using the cgroups hook for hosts where you need to fence jobs in or take advan-
tage of the topology to keep job processes on nearby resources. See "Creating Child Vnodes via Cgroups
Hook” on page 44.

• If you are not using the cgroups hook to create child vnodes, you can have PBS create any child vnodes. You
tell MoM which vnodes to create and how to set their attributes and resources by specifying them in a Version 2
configuration file. See "Creating Child Vnodes via Version 2 Configuration File” on page 44.

3. After all vnodes have been created, you can set vnode attributes and resources if necessary. See "Configuring
Vnodes” on page 45.

3.3.2 How to Choose Vnode Names

MoM needs to know what name you will use for the parent vnode when she starts up. So if you decide to use a
non-default name, define the name before starting MoM.

By default, the cgroups hook and MoM use the non-canonicalized hostname returned by gethostname() for the host
as the vnode name. If you use the hostname, use the part before the first dot. You can use the hostname() command
without any extra flags to get the hostname:

hostname<return>

For example, if this returns "myhost.mydomain", use "myhost".

You can choose the name for the parent vnode, such as an alias, or a name bound to another IP address on the host.

You can use the IP address as the name of the parent vnode.

To use any parent vnode name that is not the default, you must specify the name by setting the
PBS_MOM_NODE_NAME parameter in the host's /etc/pbs.conf. For example, if you use a name that has a dot in it
and you don't set PBS_MOM_NODE_NAME, hooks will fail.
AG-42 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
If you've already started MoM, then in order for MoM to be able to use the non-default name, you need to make the name
available to her, then restart her. For example, to use the IP address:

1. Add PBS_MOM_NODE_NAME=<IP address> to pbs.conf on the execution host

2. Restart MoM

When PBS_MOM_NODE_NAME is defined, MoM performs a sanity check to ensure that the value is a resolvable
host.

3.3.2.1 Names of Child Vnodes

If the cgroups hook creates child vnodes, it creates them with the same name as the parent vnode, with an index number.
For example, on a machine with two NUMA nodes where each NUMA node is represented by a vnode, you'll have the
parent vnode plus two child vnodes; if the parent vnode is named "myhost", they are named "myhost[0]" and
"myhost[1]".

If you create child vnodes via a Version 2 configuration file, each vnode in your complex must have a unique name
within the complex. We recommend using or at least including the name of the parent vnode, to ensure uniqueness and to
make vnodes recognizable. Do not use square brackets for anything but the index.

3.3.2.2 Caveats for Vnode Names

• Do not change the name of the parent vnode after you create it

• If there is a dot in the name, you must set resources_available.host by hand; otherwise the part after the dot is
stripped

• If you use an IP address as the name of a vnode, you must set it in PBS_MOM_NODE_NAME

• You cannot use a vnode attribute as the name of a vnode

• Vnode names are case-insensitive

• If you create a vnode with a different name from the short name returned by hostname, and you don't set it in
PBS_MOM_NODE_NAME, the following happens:

• MoM creates a vnode whose name is the short name returned by hostname()

• The vnode you created is not recognized by MoM, and is marked stale

3.3.2.3 Errors and Logging for Vnode Names

• If PBS_MOM_NODE_NAME is unset and the call to gethostname() fails, or if PBS_MOM_NODE_NAME
is set and the value does not conform to RFCs 952 and 1123, the following message is printed to the MoM log:
Unable to obtain my host name

• Once the hostname is obtained, MoM ensures the hostname resolves properly. If the hostname fails to resolve, the
following message is printed to the MoM log:
Unable to resolve my host name
PBS Professional 2022.1 Administrator’s Guide AG-43

Chapter 3 Configuring MoMs and Vnodes
3.3.3 Creating the Parent Vnode

1. Make sure MoM can look up the name of the parent vnode when she starts. Follow the rules in section 3.3.2, “How
to Choose Vnode Names”, on page 42. Choose the name for the parent vnode:

• If you will use the default, make sure that PBS_MOM_NODE_NAME is not set, or set it to the default. To get
the default name, run this at MoM's host, and use the part before the dot:
hostname<return>

• If you will use a non-default name, set it in PBS_MOM_NODE_NAME in /etc/pbs.conf on the MoM host.
For example, to use the IP address for the name of the vnode, add this to /etc/pbs.conf on the execution host:

PBS_MOM_NODE_NAME=<IP address>

2. Start MoM using systemd or the PBS start/stop script:

systemctl start pbs

or

<path to script>/pbs start

For details on starting and stopping MoM, see “Methods for Starting, Stopping, or Restarting PBS” on page 142 in
the PBS Professional Installation & Upgrade Guide.

3. Use the qmgr command to create the parent vnode:

qmgr -c 'create node <vnode name> [<attribute>=<value>]'

All comma-separated attribute-value strings must be enclosed in quotes:

qmgr -c 'create node <vnode name> ["<attribute>=<value>, <attribute>=<value>"]'

Attributes and their possible values are listed in “Vnode Attributes” on page 320 of the PBS Professional Reference
Guide.

3.3.4 Creating Child Vnodes for Multi-vnode Machines

3.3.4.1 Creating Child Vnodes via Cgroups Hook

If you are running the cgroups hook with vnode_per_numa_node set to true, the hook creates the local child vnodes.

1. If you have not done so yet, create the parent vnode; see Chapter 3, "Creating the Parent Vnode", on page 44.

2. Configure and enable the cgroups hook. Follow all the instructions in Chapter 6, "Configuring and Using PBS with
Cgroups", on page 311.

3. Restart the MoM:

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

3.3.4.2 Creating Child Vnodes via Version 2 Configuration File

1. If you have not done so yet, create the parent vnode; see Chapter 3, "Creating the Parent Vnode", on page 44.

2. If you are not using the cgroups hook, you can create any child vnodes by defining the child vnodes you want in a
Version 2 configuration file, so MoM creates the vnodes for you.
AG-44 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
Note that in prior versions of PBS, a Version 2 configuration file was the preferred method for advanced GPU con-
figuration (see "Advanced GPU Scheduling” on page 280). As of version 2020.1, the cgroups hook makes it much
easier for job submitters to request exclusive use of GPUs. However, if you want to continue to use Version 2 con-
figuration files for managing GPUs, you can do so.

See section 3.4.3.1, “Creating Version 2 Configuration Files”, on page 47.

3. Restart the MoM:

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

4. Check for stale vnodes. Make sure you spell "Stale" with a capital S:

qmgr -c 'print node @default' | grep "Stale"

3.3.5 Caveats for Creating Vnodes

When using qmgr to create vnodes, create only the parent vnode on each host. Do not use qmgr to create child vnodes
on a multi-vnode host; MoM will not know about these, and cannot use them.

3.4 Configuring Vnodes

Each vnode has an associated set of attributes and resources, such as CPUs, memory, and partition. Vnode attributes are
listed and described in “Vnode Attributes” on page 320 of the PBS Professional Reference Guide. Vnode resources can
be built-in or custom (defined by you.) See Chapter 5, "Using PBS Resources", on page 227.

3.4.1 Methods for Configuring Vnodes

You may need to configure vnodes after you create them. You can use the following methods:

• Using exechost_startup hooks to set vnode attributes and resources

This method is powerful and flexible. You can interrogate the host; for example, you can check whether a vnode
exists before setting values for it. You can use this to set the sharing attribute and resources_available.host. If
the cgroups hook creates your vnodes, make sure that the cgroups hook runs before the hook that configures the
vnodes. Your exechost_startup hooks run when MoM is restarted. See "Setting and Unsetting Vnode Resources
and Attributes" on page 49 in the PBS Professional Hooks Guide.

• Using Version 2 vnode configuration files, either to modify vnodes created by the cgroups hook, or to tell MoM to
create the vnodes you specify. See section 3.4.3, “Version 2 Vnode Configuration Files”, on page 46.

Make sure that a Version 2 configuration file matches your available vnodes every time MoM is started. If your
machine reboots with a missing blade, your earlier placement set information will not make sense because child
vnode names will not match the available hardware. You can use a script to regenerate this file each time the
machine starts, and run the script before MoM is restarted.

You can use a Version 2 configuration file to set the sharing attribute and the value of resources_available.host
(you cannot set these via qmgr).

An advantage of using a Version 2 configuration file is that if you delete and re-create the parent vnode, you don't
have to re-create this file. MoM automatically picks up everything in a Version 2 configuration file, whereas if you
use qmgr you have to re-run all your configuration commands.
PBS Professional 2022.1 Administrator’s Guide AG-45

Chapter 3 Configuring MoMs and Vnodes
If you use the cgroups hook to create child vnodes, and you want to modify these child vnodes, make sure you create
the Version 2 configuration file after the vnodes are created, and that you use the exact vnode names that the cgroups
hook knows about, by checking the output of pbsnodes -av.

If you set a value using qmgr, this value overrides the existing value, and you cannot change the value using another
method, such as a Version 2 configuration file. If you want to use a different method to set a value that has been set
via qmgr, use qmgr to unset the value, then HUP the MoM.

Version 2 configuration files are read when MoM is restarted. See section 3.4.3, “Version 2 Vnode Configuration
Files”, on page 46.

• Using the qmgr command to set vnode attribute and resource values

You can easily use qmgr to set values across your complex. You cannot use this to set the sharing attribute or
resources_available.host. If you delete and re-create a vnode, the effects of your configuration commands are
lost. Changes take place immediately. See “qmgr” on page 152 of the PBS Professional Reference Guide.

• Using the pbsnodes -o or pbsnodes -r command to mark all vnodes on a host as offline or not offline

You must use qmgr to change the state of a single vnode in a multi-vnode host. Changes take place immediately.
See “pbsnodes” on page 36 of the PBS Professional Reference Guide.

3.4.2 Rules for Configuring Vnodes

• If you are using the cgroups hook to create child vnodes and manage subsystems, do not change attribute or resource
values that are set by the cgroups hook.

• To set the sharing attribute or resources_available.host, you must use an exechost_startup hook or a Version 2
configuration file. You cannot use qmgr. See section 3.4.4, “Configuring the Vnode Sharing Attribute”, on page 50.

• Set the Mom attribute for the parent vnode only. You can set the initial value only via qmgr -c 'create node
<vnode name>' to tell the server at what IP address MoM is located. The server will later update it based on the
MoM's response. The server only queries for the canonicalized address of the MoM host, unless you let it know via
the Mom attribute; if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the
Mom attribute at vnode creation.

3.4.3 Version 2 Vnode Configuration Files

Version 2 configuration files contain settings for vnode attributes and resources. For example, to change the sharing
vnode attribute or resources_available.host, you can use a Version 2 configuration file, or an exechost_startup hook,
but not qmgr. You can use more than one Version 2 configuration file per host, but make sure they do not conflict.

PBS places Version 2 configuration files in an area that is private to each installed instance of PBS.

It's best to automate updates to Version 2 configuration files so that they are created at boot time to match available hard-
ware, because a change in hardware may create a mismatch with an old Version 2 configuration file. This ensures that a
Version 2 configuration file matches your available hardware every time MoM is started. If your machine reboots with a
missing blade, your earlier placement set information will not make sense because child vnode names will be not match
the available hardware. You can use a script to regenerate this file each time the machine starts, and run the script before
MoM is restarted.

An advantage of using a Version 2 configuration file is that if you delete and re-create the parent vnode, you don't have to
re-create this file. MoM automatically picks up everything in a Version 2 configuration file, whereas if you use qmgr
you have to rerun all your configuration commands.
AG-46 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.4.3.1 Creating Version 2 Configuration Files

Version 2 configuration files are created by PBS, through a process where you write a source file and then PBS copies it
to the location where Version 2 files are used. Instead of editing one of these directly, you create an input file and give it
as an argument to the pbs_mom -s insert option on the local host (pbs_mom -N -s insert on Windows), and
PBS creates a new configuration file for you.

You use the pbs_mom -s insert command to create Version 2 configuration files. On Windows, use the pbs_mom
command in standalone mode: pbs_mom -N -s insert.

First, you create an input file which is to be the contents of the configuration file. Then, you use the pbs_mom -s
insert command, on the host you want to configure:

Linux:

pbs_mom -s insert <Version 2 configuration file> <input file name>

Windows:

pbs_mom -N -s insert <Version 2 configuration file> <input file name>

After you create the new Version 2 configuration file, restart the MoM.

3.4.3.1.i Syntax of Version 2 Configuration Files

In a Version 2 configuration file, you tell PBS that it's a Version 2 MoM configuration file by putting a special tag on the
first line:

$configversion 2

The rest of the file describes vnodes, with one attribute specification per line.

The format of the remaining contents of the file is the following:

<vnode name> : <attribute name> = <attribute value>

where

<vnode name>

Sequence of characters not including a colon (":"). The vnode name must be unique in this PBS complex. Vnode
names are case-insensitive. See “Vnode Name” on page 358 of the PBS Professional Reference Guide.

If you're modifying vnodes created by the cgroups hook, the vnode name must exactly match the output of pbsn-
odes -av.

<attribute name>

Name of the attribute being specified. See “Attribute Name” on page 353 of the PBS Professional Reference Guide.

<attribute value>

Value being specified. Sequence of characters not including an equal sign ("="). See “Resource Formats” on page
359 of the PBS Professional Reference Guide.

White space around the colon and equal sign is ignored.

In a Version 2 configuration file, do not use quotes around string array values. This is different from using the qmgr
command; in the qmgr command line, you need to put quotes around the value.

Make sure that the first vnode entry is for the parent vnode. If you don't need to set anything, you can set the ntype
attribute to "PBS" (the default).

Make sure that there is a newline at the end of the file. Under Windows, the Notepad application does not automatically
add a newline at the end of a file; you must explicitly add the newline.

Make sure that entries do not conflict, whether within one file or multiple files.

Do not use Version 1 (MoM configuration file) syntax or contents in Version 2 files, and vice versa.
PBS Professional 2022.1 Administrator’s Guide AG-47

Chapter 3 Configuring MoMs and Vnodes
3.4.3.1.ii Example of Creating Version 2 Configuration File

Example 3-1: If your machine named "myhost" has 4 vnodes, where two are big (myhost[0] and myhost[1]), and two are
small (myhost[2] and myhost[3]), and you want big jobs to have exclusive use of myhost[0] and myhost[1], and
small jobs to share myhost[2] and myhost[3]:

a. Set sharing for big and small vnodes by creating a file "set_sharing" containing the following:

$configversion 2

myhost: ntype = PBS

myhost[0]: sharing = default_excl

myhost[0]: resources_available.nodetype=big

myhost[1]: sharing = default_excl

myhost[1]: resources_available.nodetype=big

myhost[2]: sharing = default_shared

myhost[2]: resources_available.nodetype=small

myhost[3]: sharing = default_shared

myhost[3]: resources_available.nodetype=small

b. Use the pbs_mom -s insert <filename> <script> option at myhost to create its configuration file:

Linux:

pbs_mom -s insert sharing_config set_sharing

Windows:

pbs_mom -N -s insert sharing_config set_sharing

PBS creates the new Version 2 configuration file called "sharing_config". Its contents will override previ-
ously-read sharing settings.

c. Restart the MoM after changing the configuration file:

Linux:

kill -INT <MoM PID>

PBS_EXEC/sbin/pbs_mom

or

systemctl restart pbs

or

<path to start/stop script>/pbs restart

Windows:

net stop pbs_mom

net start pbs_mom

Jobs can then request nodetype = big or nodetype=small, or you can use a hook to route jobs, etc.

3.4.3.2 Listing and Viewing Version 2 Configuration Files

You can list and view the Version 2 configuration files at each host.

To see the list of Version 2 configuration files:

Linux:

pbs_mom -s list

Windows:

pbs_mom -N -s list
AG-48 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
To display the contents of a Version 2 configuration file:

Linux:

pbs_mom -s show <filename>

Windows:

pbs_mom -N -s show <filename>

See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

3.4.3.3 Moving Version 2 Configuration Files

To move a set of Version 2 configuration files from one MoM host to another:

1. List the Version 2 files at the source instance:
pbs_mom -s list

2. Save a copy of each file at the source instance:

pbs_mom -s show <V2 filename> > <new input file>

3. Create the new Version 2 configuration files at the destination host. For each file:

pbs_mom -s insert <Version 2 file> <new input file>

3.4.3.4 Removing Version 2 Configuration Files

You can remove a Version 2 configuration file:

Linux:

pbs_mom -s remove <filename>

Windows:

pbs_mom -N -s remove <filename>

See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

3.4.3.5 Caveats for Version 2 Configuration Files

• If you are using the cgroups hook to create child vnodes at a host, and you use a Version 2 configuration file to mod-
ify those child vnodes:

• Make sure that you use exactly the same vnode names in the Version 2 configuration file as those that the
cgroups hook has created; check the output of pbsnodes -av.

• Do not use a Version 2 configuration file to change hardware settings for that host.

• If you set a value using qmgr, this value overrides the existing value, and you cannot change the value using another
method, such as a Version 2 configuration file. If you want to use a different method to set a value that has been set
via qmgr, use qmgr to unset the value, then HUP the MoM.

• The pbs_mom -d option changes where MoM looks for PBS_HOME, and using this option will change where
MoM looks for all configuration files. If you use the -d option, MoM will look in the new location for all MoM and
vnode configuration files. Instead, we recommend setting the location of PBS_HOME or PBS_MOM_HOME in
/etc/pbs.conf on MoM's host.

• When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad
application does not automatically add a newline at the end of a file; you must explicitly add the newline.
PBS Professional 2022.1 Administrator’s Guide AG-49

Chapter 3 Configuring MoMs and Vnodes
3.4.3.6 PBS Reserved Configuration Files

PBS reserved configuration files are created by PBS and are prefixed with "PBS". You cannot create or modify a config-
uration file whose name begins with "PBS". Do not move PBS reserved configuration files.

3.4.4 Configuring the Vnode Sharing Attribute

When PBS places a job, it can do so on hardware that is either already in use or has no jobs running on it. PBS can make
the choice at the vnode level or at the host level. How this choice is made is controlled by a combination of the value of
each vnode's sharing attribute and the placement requested by a job.

You can set each vnode's sharing attribute so that the vnode or host is always shared, is always exclusive, or so that it
honors the job's placement request. If the vnode attribute is set to force_shared or force_excl, the value of a vnode's
sharing attribute takes precedence over a job's placement request. If the vnode attribute is set to default_, the job
request overrides the vnode attribute.

Each vnode can be allocated exclusively to one job (each job gets its own vnodes), or its resources can be shared among
jobs (PBS puts as many jobs as possible on a vnode). If a vnode is allocated exclusively to a job, all of its resources are
assigned to the job. The state of the vnode becomes job-exclusive. No other job can use the vnode.

Hosts can also be allocated exclusively to one job, or shared among jobs. If a host is to be allocated exclusively to one
job, all of the host must be used: if any vnode from a host has its sharing attribute set to either default_exclhost or
force_exclhost, all vnodes on that host must have the same value for the sharing attribute.

For a complete description of the sharing attribute, and a table showing the interaction between the value of the sharing
attribute and the job's placement request, see “sharing” on page 324 of the PBS Professional Reference Guide.

3.4.4.1 Sharing on a Multi-vnode Machine

On a multi-vnode shared-memory machine, a scheduler will share memory from a chunk even if all the CPUs are used by
other jobs. It will first try to put a chunk entirely on one vnode. If it can, it will run it there. If not, it will break the
chunk up across any vnode it can get resources from, even for small amounts of unused memory.

To keep a job in a single vnode, use -lplace=group=vnode; if you want to restrict it to larger sets of vnodes, identify
those sets using a custom string or string_array resource and use it in -lplace=group=<resource>. If you already have
resources used in node_group_key you can usually use these.

3.4.4.2 Setting the sharing Vnode Attribute

To set the sharing attribute for a vnode, use either:

• An exechost_startup hook; see "Setting and Unsetting Vnode Resources and Attributes" on page 49 in the PBS
Professional Hooks Guide

• A Version 2 configuration file; see section 3.4.4, “Configuring the Vnode Sharing Attribute”, on page 50

3.4.4.3 Viewing Sharing Information

You can use the qmgr or pbsnodes commands to view sharing information. See “qmgr” on page 152 of the PBS Pro-
fessional Reference Guide and “pbsnodes” on page 36 of the PBS Professional Reference Guide.
AG-50 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.4.4.4 Sharing Caveats

• The term "sharing" is also used to describe the case where MoM manages a resource that is shared among her
vnodes, for example an application license shared by the vnodes of a multi-vnode machine.

• The term "sharing" is also used to mean oversubscribing CPUs, where more than one job is run on one CPU; the jobs
are "sharing" a CPU. See section 8.6.5, “Managing Load Levels on Vnodes”, on page 414

• If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode from a host has its sharing
attribute set to either default_exclhost or force_exclhost, all vnodes on that host must have the same value for the
sharing attribute.

• For vnodes with sharing=default_shared, jobs can share a vnode, so that unused memory on partially-allocated
vnodes is allocated to a job. The exec_vnode attribute will show this allocation.

3.4.5 Configuring Vnode Resources

Before configuring vnode (host-level) resources, consider how you will use them. When configuring static resources, it
is best to configure global static resources. Even though they are global, they can be configured at the host level. Global
resources can be operated on via the qmgr command and viewed via the qstat command. When configuring dynamic
resources, if you need the script to run at the execution host, configure local dynamic resources. These resources cannot
be operated on via the qmgr command or viewed via the qstat command. See section 5.4, “Categories of Resources”,
on page 230.

3.4.5.1 Configuring Global Static Vnode Resources

You can create global custom static host-level resources that can be reported by MoM and used for jobs. Follow the
instructions in section 5.14.4.2, “Static Host-level Resources”, on page 265.

You can set values for built-in and custom global static vnode resources; see section 3.4.5, “Configuring Vnode
Resources”, on page 51.

3.4.5.2 Configuring Local Dynamic Vnode Resources

You can create local custom dynamic host-level resources. The primary use of this feature is to add site-specific
resources, such as software application licenses or scratch space. Follow the instructions in section 5.14.4.1, “Dynamic
Host-level Resources”, on page 265.
PBS Professional 2022.1 Administrator’s Guide AG-51

Chapter 3 Configuring MoMs and Vnodes
3.4.5.3 Rules for Configuring Vnode Resources

• In general, it is not advisable to set resources_available.ncpus or resources_available.mem to a value greater
than PBS has detected on the machine. This is because you do not want MoM to try to allocate more resources than
are available. However, if you have lots of I/O-bound jobs, you might get away with oversubscribing CPUs.

• In general, it is safe to set resources_available.ncpus or resources_available.mem to a value less than PBS has
detected. If you are using a Version 2 configuration file, consider setting ncpus lower to set aside some of the
resource for the operating system.

• For the parent vnode on a multi-vnode machine, set all values for resources_available.<resource name> to zero
(0), unless the resource is being shared among child vnodes via indirection. Here is an example of the vnode defini-
tion for a parent vnode:
host03: pnames = cbrick, router

host03: sharing = ignore_excl

host03: resources_available.ncpus = 0

host03: resources_available.mem = 0

host03: resources_available.vmem = 0

• When MoM creates a vnode, she automatically sets values for the following resources according to information
from the host:

resources_available.ncpus

resources_available.arch

resources_available.mem

• If you set the value of a resource via qmgr, that setting is carried forth across server restarts.

• If you add or change a value via a Version 2 configuration file, you can HUP the MoM. If you remove a value, you
must restart MoM so that she uses the default. (Hint: to avoid restarting MoM, use the configuration file to set the
default.)

• You can set values for the sharing attribute and resources_available.host only in an exechost_startup or
exechost_periodic hook, or in a Version 2 configuration file. You cannot use qmgr to set these.

• Version 2 configuration files take effect before exechost_startup hooks.

3.4.6 Configuring Vnodes via the qmgr Command

You can use the qmgr command to set attribute and resource values for individual vnodes, for single-vnode and
multi-vnode machines.

To set a vnode's attribute:

qmgr -c 'set node <vnode name> <attribute> = <value>'

We describe the qmgr command in “qmgr” on page 152 of the PBS Professional Reference Guide.
AG-52 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
3.4.6.1 Caveats for Setting Values via qmgr Command

• When setting hardware resources, be careful about setting these to values that are higher than what MoM or the
cgroups hook did. If you have lots of I/O-bound jobs, you might get away with oversubscribing CPUs.

• It is usually safe to set hardware resources to values lower than what MoM or the cgroups hook did.

• If you are not using the cgroups hook, consider setting ncpus to a slightly lower value than what MoM reports, to
give some to the operating system.

• If you set a value using qmgr, this value overrides the existing value, and you cannot change the value using another
method, such as a Version 2 configuration file. If you want to use a different method to set a value that has been set
via qmgr, use qmgr to unset the value, then HUP the MoM.

• You cannot set the value of resources_available.host via the qmgr command.

3.4.7 Configuring Vnodes via the pbsnodes Command

You can use the pbsnodes command to set the state all of the vnodes on a host to be offline or not offline. To set the
state attribute of one or more hosts to offline:

pbsnodes -o <hostname [hostname ...]>

To remove the offline setting from the state attribute of one or more hosts:

pbsnodes -r <hostname [hostname ...]>

See “pbsnodes” on page 36 of the PBS Professional Reference Guide.

3.4.7.1 Caveats for pbsnodes Command

For multi-vnode hosts, the pbsnodes command operates on all of the host's vnodes only. You cannot use it on individ-
ual vnodes where those vnodes are on multi-vnode machines. To operate on individual vnodes, use the qmgr command:

qmgr -c 'set node <vnode name> state = <new state>'

When you specify a hostname, the pbsnodes command looks for the value of a vnode's resources_available.host
resource. If this is different from the PBS_MOM_NODE_NAME parameter, it may be helpful to use a Version 2 con-
figuration file to set resources_available.host to match the PBS_MOM_NODE_NAME parameter (you cannot use
qmgr for this).

Make sure that resources_available.host is unique for each host in your complex.

The pbsnodes -o <target host> command offlines everything with a matching resources_available.<target
host>.

3.5 Deleting Vnodes

3.5.1 Deleting the Vnode on a Single-vnode Machine

Use the qmgr command to delete the vnode:

Qmgr: delete node <vnode name>
PBS Professional 2022.1 Administrator’s Guide AG-53

Chapter 3 Configuring MoMs and Vnodes
3.5.2 Deleting Vnodes on a Multi-vnode Machine

3.5.2.1 Deleting Vnodes When Not Using Version 2 Configuration

File

4. Use the qmgr command to delete the vnodes:

Qmgr: delete node <vnode name>

3.5.2.2 Deleting Vnodes When Using Version 2 Configuration File

To delete one or more vnodes on a multi-vnode machine where there is a Version 2 configuration file, you must first
remove the configuration file. Then you can delete the vnodes. You may want to save the existing configuration file and
edit it down to just the vnodes you want to preserve. On the local host:

1. To see the list of Version 2 configuration files:

Linux:

pbs_mom -s list

Windows:

pbs_mom -N -s list

2. To save the contents of a Version 2 configuration file in "tempconfig":

Linux:

pbs_mom -s show <filename> > tempconfig

Windows:

pbs_mom -N -s show <filename> > tempconfig

3. Edit tempconfig so that it describes only the vnodes you want to keep.

4. Use pbs_mom -s remove to remove the old Version 2 configuration file:

On Linux:

pbs_mom -s remove <filename>

On Windows:

pbs_mom -N -s remove <filename>

5. Use pbs_mom -s insert to create a new Version 2 configuration file describing the vnodes to be retained. If
you created tempconfig, it is your input file:

On Linux:

pbs_mom -s insert <configuration file target> <input file>

On Windows:

pbs_mom -N -s insert <configuration file target> <input file>

6. Restart the MoM:

<path to start/stop script>/pbs restart
AG-54 PBS Professional 2022.1 Administrator’s Guide

Configuring MoMs and Vnodes Chapter 3
or

systemctl restart pbs

7. Use the qmgr command to remove the vnodes no longer appearing in your configuration file:

Qmgr: delete node <vnode name>

8. Check for stale vnodes. Make sure you spell "Stale" with a capital S:

qmgr -c 'print node @default' | grep "Stale"
PBS Professional 2022.1 Administrator’s Guide AG-55

Chapter 3 Configuring MoMs and Vnodes
AG-56 PBS Professional 2022.1 Administrator’s Guide

4

Scheduling

The "Scheduling Policy Basics" section of this chapter describes what PBS can do, so that you can consider these capa-
bilities when choosing how to schedule jobs. The "Choosing a Policy" section describes how PBS can meet the schedul-
ing needs of various workloads. The "Scheduling Tools" section describes each scheduling tool offered by PBS.

4.1 Chapter Contents

4.1 Chapter Contents . 57
4.2 Scheduling Each Partition Separately . 59

4.2.1 Creating and Configuring a Multisched . 59
4.2.2 Starting a Multisched . 60
4.2.3 Configuring Your Partitions for Multischeds. 61
4.2.4 Using the Default Scheduler with Multischeds . 61
4.2.5 Multisched Caveats and Restrictions . 62
4.2.6 Attributes Used with Multischeds . 62
4.2.7 Multisched Errors and Logging . 64
4.2.8 Multisched Deprecations . 65

4.3 Scheduling Policy Basics . 66
4.3.1 How Scheduling Can Be Used . 66
4.3.2 What Is Scheduling Policy? . 66
4.3.3 Basic PBS Scheduling Behavior. 66
4.3.4 Sub-goals . 67
4.3.5 Job Prioritization and Preemption . 67
4.3.6 Resource Allocation to Users, Projects & Groups . 72
4.3.7 Time Slot Allocation . 74
4.3.8 Job Placement Optimization. 75
4.3.9 Resource Efficiency Optimizations . 78
4.3.10 Overrides . 80

4.4 Choosing a Policy . 81
4.4.1 Overview of Kinds of Policies . 81
4.4.2 FIFO: Submission Order . 81
4.4.3 Prioritizing Jobs by User, Project or Group . 82
4.4.4 Allocating Resources by User, Project or Group . 82
4.4.5 Scheduling Jobs According to Size Etc. 84
4.4.6 Scheduling Jobs into Time Slots . 86
4.4.7 Default Scheduling Policy . 88
4.4.8 Examples of Workload and Policy . 90

4.5 About Schedulers . 91
4.5.1 Configuring a Scheduler. 91
4.5.2 Making a Scheduler Read its Configuration. 97
4.5.3 Scheduling on Resources . 97
4.5.4 Specifying Scheduler Username. 97
4.5.5 Starting, Stopping, and Restarting a Scheduler . 97
4.5.6 The Scheduling Cycle. 98
4.5.7 How Available Consumable Resources are Counted . 99
PBS Professional 2022.1 Administrator’s Guide AG-57

Chapter 4 Scheduling
4.5.8 Improving Scheduler Performance. 100
4.6 Using Queues in Scheduling . 101
4.7 Scheduling Restrictions and Caveats . 101

4.7.1 One Policy Per Scheduler . 101
4.7.2 Jobs that Cannot Run on Current Resources . 102
4.7.3 Resources Not Controlled by PBS . 102
4.7.4 No Pinning of Processes to Cores. 102

4.8 Errors and Logging . 102
4.8.1 Logfile for scheduler . 102

4.9 Scheduling Tools. 102
4.9.1 Anti-Express Queues . 105
4.9.2 Associating Vnodes with Queues . 106
4.9.3 Using Backfilling . 108
4.9.4 Examining Jobs Queue by Queue. 112
4.9.5 Checkpointing. 113
4.9.6 Organizing Job Chunks . 114
4.9.7 cron Jobs . 114
4.9.8 Using Custom and Default Resources . 115
4.9.9 Using Idle Workstation Cycle Harvesting . 116
4.9.10 Dedicated Time. 127
4.9.11 Dependencies . 128
4.9.12 Dynamic Resources . 128
4.9.13 Eligible Wait Time for Jobs . 128
4.9.14 Sorting Jobs by Entity Shares (Was Strict Priority) . 132
4.9.15 Estimating Job Start Time . 132
4.9.16 Calculating Job Execution Priority. 135
4.9.17 Calendaring Jobs. 137
4.9.18 Express Queues. 138
4.9.19 Using Fairshare. 138
4.9.20 FIFO Scheduling. 149
4.9.21 Using a Formula for Computing Job Execution Priority . 150
4.9.22 Gating Jobs at Server or Queue . 156
4.9.23 Managing Application Licenses . 157
4.9.24 Limits on Per-job Resource Usage . 157
4.9.25 Limits on Project, User, and Group Jobs . 158
4.9.26 Limits on Project, User, and Group Resource Usage . 158
4.9.27 Using Load Balancing . 158
4.9.28 Matching Jobs to Resources . 158
4.9.29 Node Grouping . 160
4.9.30 Overrides . 161
4.9.31 Peer Scheduling . 163
4.9.32 Placement Sets . 167
4.9.33 Using Preemption . 179
4.9.34 Using Primetime and Holidays. 189
4.9.35 Provisioning . 194
4.9.36 Queue Priority. 194
4.9.37 Reservations . 195
4.9.38 Round Robin Queue Selection . 203
4.9.39 Routing Jobs . 204
4.9.40 Scheduler Cycle Speedup . 208
4.9.41 Shared vs. Exclusive Use of Resources by Jobs. 209
4.9.42 Using Shrink-to-fit Jobs . 210
4.9.43 SMP Cluster Distribution . 216
4.9.44 Using Soft Walltime . 217
AG-58 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.45 Sorting Jobs on a Key. 219
4.9.46 Sorting Jobs by Requested Priority . 221
4.9.47 Sorting Queues into Priority Order. 221
4.9.48 Using Strict Ordering . 222
4.9.49 Sorting Vnodes on a Key . 223

4.2 Scheduling Each Partition Separately

You can leave your complex as a single default partition, or you can divide your complex into partitions, and run a sepa-
rate scheduler for each partition. PBS automatically creates a default partition containing all queues and vnodes that are
not explicitly labeled with a partition name. You can create named partitions, simply by labeling each queue and vnode
with the desired partition. You can choose whether to assign each queue and vnode to a specific partition, or to have it
remain as part of the default partition.

PBS has two kinds of schedulers:

• A default scheduler that handles the workload for the default partition (all queues and vnodes that have not been
explicitly assigned to a named partition)

The default scheduler runs its own scheduling policy.

You cannot assign any non-default partitions to the default scheduler.

The default scheduler runs only on the server host.

• A multisched that handles a named, non-default partition

Each multisched runs its own scheduling policy, and can schedule jobs for one named partition.

A multisched requires at least one queue and one vnode in its partition in order to be able to schedule jobs.

Multischeds cannot share partitions.

A multisched can run on any host.

A named partition is a collection of vnodes labeled with a partition name, along with one or more queues also labeled
with the same partition name. A vnode can be in at most one partition. You can put some or all of your vnodes into par-
titions, where they will be scheduled by the multisched assigned to the partition. You can also leave vnodes out of named
partitions; those vnodes will be scheduled by the default scheduler.

You can have as many named partitions and multischeds as you want. Each partition can have only one multisched. Each
partition requires at least one execution queue.

Each multisched schedules only from the queue(s) in its partition, and only to the vnode(s) in its partition. Jobs do not
span partitions.

You can define a unique policy for each scheduler.

4.2.1 Creating and Configuring a Multisched

4.2.1.1 Prerequisites for Creating a Multisched

You must be a PBS administrator or Manager to create a scheduler.

You must supply a name when you create a multisched. The maximum length for the name is 15 characters.
PBS Professional 2022.1 Administrator’s Guide AG-59

Chapter 4 Scheduling
Before you start a multisched, you must create the sched_priv and sched_log directories for it.

• The default name for the sched_priv directory is sched_priv_<multisched name>, and the default location is on
the server/scheduler host, directly under PBS_HOME, alongside the sched_priv of the default scheduler. You can set
the name and location as desired, but we recommend keeping it in PBS_HOME. The sched_priv directory should have
permissions 750, and should be readable and writable by the multisched. It should be owned by root. It cannot be
shared with another multisched.

• Populate the sched_priv directory with the following:
sched_config

Required.

holidays

Required.

resource_group

Necessary for fairshare tree.

dedicated_time

Required.

We provide default copies of these files in PBS_EXEC/etc.

• The default name and location for the multisched logging directory is sched_logs_<multisched name> (note the
plural), on the server/scheduler host, directly under PBS_HOME, alongside the sched_logs of the default scheduler.
You can set the name and location as desired, but we recommend keeping it in PBS_HOME. The sched_log directory
should have permissions 755, and should be readable and writable by the multisched. It should be owned by root. It
cannot be shared with another multisched.

4.2.1.2 Creating a Multisched

You use the qmgr command to create a scheduler:

qmgr -c "create sched <multisched name>"

For example:

qmgr -c "create sched multisched_1"

This creates a multisched with its attributes set to the defaults.

4.2.1.3 Configuring a Multisched

You must set the partition multisched attribute:

qmgr -c "set sched <multisched name> partition = <partition name>"

4.2.1.4 Enabling a Multisched

To enable a multisched, set its scheduling attribute to True:

qmgr -c "set sched <scheduler name> scheduling = 1"

4.2.2 Starting a Multisched

Do not start a multisched until:

• Its sched_priv directory is ready. See section 4.2.1.1, “Prerequisites for Creating a Multisched”, on page 59

• You have assigned it a partition. See section 4.2.1.3, “Configuring a Multisched”, on page 60
AG-60 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.2.2.1 Starting a Multisched on Linux

Start a multisched by calling pbs_sched and specifying the name you already gave it:

pbs_sched -I <name of multisched>

For example:

pbs_sched -I multisched_1

When you start a multisched, you must specify its name.

4.2.3 Configuring Your Partitions for Multischeds

To schedule using partitions, compose each partition and start its multisched:

• Put each vnode into at most one partition, or leave it in the default partition; partitions cannot share vnodes. If put-
ting the vnode into a named partition, set the value of the partition vnode attribute to the name of its partition:

qmgr -c set node <vnode name> partition=<partition name>

For example:

qmgr -c set node <vnode1> partition=<part1>

• Assign at least one execution queue to each named partition: set the value of the partition queue attribute to the
name of its partition:

qmgr -c set queue <queue name> partition=<partition name>

For example:

qmgr -c set queue <queue1> partition=<part1>

• Create the desired multisched. See section 4.2.1, “Creating and Configuring a Multisched”, on page 59.

• Assign a multisched to each named partition: set the value of the partition multisched attribute to the name of its par-
tition:

qmgr -c "set sched <multisched name> partition=<partition name>"

For example:

qmgr -c "set sched multisched_1 partition=part1"

• Enable the multisched:

qmgr -c 'set sched <multisched name> scheduling=1'
For example:
qmgr -c 'set sched multisched_1 scheduling=1'

• Start the multisched:

pbs_sched -I <name of multisched>

For example:

pbs_sched -I multisched_1

4.2.4 Using the Default Scheduler with Multischeds

PBS automatically creates the default scheduler; its name is "default". The sched_priv directory of the default scheduler
is always $PBS_HOME/sched_priv. The default scheduler writes its logs in $PBS_HOME/sched_logs. If you do nothing,
the default scheduler uses the default scheduling policy defined in the default sched_config file. Default behavior is
described in section 4.4.7, “Default Scheduling Policy”, on page 88. You can set the desired policy for the default sched-
uler. The default scheduler schedules jobs using queues and vnodes in the default partition.
PBS Professional 2022.1 Administrator’s Guide AG-61

Chapter 4 Scheduling
4.2.4.1 Configuring the Default Scheduler

When you use the qmgr command to configure the default scheduler, specify its name:

qmgr -c "set sched default <attribute> = <value>"

For example:

qmgr -c "set sched default job_sort_formula_threshold = <value>"

4.2.5 Multisched Caveats and Restrictions

• You cannot delete the default scheduler.

• You cannot change the name of the default scheduler.

• You cannot set sched_priv for the default scheduler.

• If you create a new queue or vnode without assigning it to a specific partition, it is scheduled by the default sched-
uler.

• You cannot assign a new multisched to a partition that is already assigned to a multisched, or vice versa. To make
the change, offline the vnodes, wait for jobs to finish running, then un-assign and re-assign the multisched or parti-
tion.

• You cannot change a queue to a routing queue when the queue has its partition attribute set.

• You cannot associate a vnode and a queue and assign them separate partitions.

• If there is more than one scheduler, job run limits for the entire complex set at the server are not supported. Queue
limits are enforced.

• All schedulers in the complex have as a default value for backfill_depth the value that is set at the server. For each
scheduler, this is overridden by the setting at a scheduler's queue.

• All schedulers in the complex use the same value for job_sort_formula, so all schedulers use the same formula.

• If the complex has more than one scheduler, you cannot use complex-wide fairshare. Each scheduler manages its
own fairshare tree.

4.2.6 Attributes Used with Multischeds

partition
Scheduler attribute. Partition for which this scheduler is to run jobs. Cannot be set on default scheduler.

Format: String

Default: "None"

partition
Vnode attribute. Name of partition to which this vnode is assigned. A vnode can be assigned to at most one
partition.

Settable by Manager and Operator, viewable by all.

Format: String
AG-62 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
partition
Queue attribute. Name of partition to which this queue is assigned.

Cannot be set for routing queue.

An execution queue cannot be changed to a routing queue while this attribute is set.

Settable by Manager, administrator, viewable by all.

Format: String

sched_log
Scheduler attribute. Directory where this scheduler writes its logs. Permissions should be 755. Must be owned
by root. Cannot be shared with another scheduler. For default scheduler, directory is always
PBS_HOME/sched_log.

Settable by Manager, administrator, viewable by all.

Default: $PBS_HOME/sched_logs_<scheduler name>

sched_host
Scheduler attribute. Hostname on which scheduler runs.

Default value for default scheduler is set by server to server hostname.

Settable by Manager or administrator, viewable by all.

scheduling
Scheduler attribute. Enables scheduling of jobs. If you set the server's scheduling attribute, that value is
assigned to the default scheduler's scheduling attribute, and vice versa.

Settable by Manager or administrator, viewable by all.

Default value for default scheduler: True

Default value for multisched: False

scheduler_iteration
Scheduler attribute. Time between scheduling iterations. If you set the server's scheduler_iteration attribute,
that value is assigned to the default scheduler's scheduler_iteration attribute, and vice versa.

Settable by Manager, administrator, viewable by all.

Default: 600

sched_priv
Scheduler attribute. Directory where this scheduler keeps fairshare usage, resource_group, holidays, and
sched_config. Must be owned by root. For default scheduler, directory is always PBS_HOME/sched_priv.

Settable by Manager or administrator, viewable by all.

Default: $PBS_HOME/sched_priv_<scheduler name>

state
Scheduler attribute. State of this scheduler.

Set by server. Readable by all.

Valid values: one of down, idle, scheduling

down: scheduler is not running

idle: scheduler is running and is waiting for a scheduling cycle to be triggered

scheduling: scheduler is running and is in a scheduling cycle

Format: String

Default value for default scheduler: idle

Default value for multisched: down
PBS Professional 2022.1 Administrator’s Guide AG-63

Chapter 4 Scheduling
comment
Scheduler attribute. Can be set by PBS or administrator. For certain scheduler errors, PBS sets the scheduler's
comment attribute to specific error messages. You can use the comment field to notify another administrator
of something, but PBS does overwrite the value of comment under certain circumstances.

Format: String

4.2.6.1 Behavior of Attributes Shared by Server and Scheduler

If you set the server's scheduling or scheduler_iteration attributes, the changes are applied to the default scheduler, and
its corresponding scheduling or scheduler_iteration attributes are given the new setting(s). The reverse is also true.

4.2.7 Multisched Errors and Logging

4.2.7.1 Multisched Error Messages Appearing in Scheduler

Comment

A scheduler's comment attribute can be set to specific error messages.

• Setting the sched_log attribute to an invalid value produces a scheduler comment. If the log directory is not acces-
sible by the scheduler:
Unable to change the sched_log directory

In addition, the scheduling attribute is set to False.

• Attempting to set the sched_priv attribute to an invalid value:
Unable to change the sched_priv directory

In addition, the scheduling attribute is set to False.

• Setting sched_priv to a directory that fails validation checking produces a scheduler comment. If the sched_priv
directory is not accessible by the scheduler, or the scheduler files are not found in the directory:
PBS failed validation checks for sched_priv directory

In addition, the scheduling attribute is set to False.

4.2.7.2 Multisched Error Messages Appearing in Scheduler Logs

• Attempting to start a multisched before assigning it a partition:
Scheduler does not contain a partition

• When the partition has been removed from a multisched, the multisched is shut down.
Scheduler does not contain a partition

• When the scheduler cannot get its attribute information from the server:
Unable to retrieve the scheduler attributes from server
AG-64 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.2.7.3 Multisched Error Messages Appearing in Server Logs

• Attempting to set sched_priv for the default scheduler:
Operation is not permitted on default scheduler

• Attempting to set the partition for the default scheduler:
Operation is not permitted on default scheduler

In addition, the error code is set to 15223.

• Attempting to assign a sched_priv to a multisched while that directory is already assigned to another multisched:
Another scheduler has same value for its sched_priv directory

In addition, the error code is set to 15216.

• Attempting to assign a sched_log to a multisched while that directory is already assigned to another multisched:
Another scheduler has same value for its sched_log directory

In addition, the error code is set to 15215.

• If the server is not able to reach a scheduler one of the following messages appears:
Unable to reach scheduler associated with partition [<partition ID>]

Unable to reach scheduler associated with job <job ID>

4.2.7.4 Multisched Errors Returned by qmgr Command

• Attempting to associate a vnode with a queue that has not been assigned to the same partition:
qmgr obj=<vnode name> svr=<server name>: Partition <partition name> is not part of queue for node

qmgr: Error (15220) returned from server

• Attempting to assign a partition to a vnode when that vnode is associated with a queue and the queue is not assigned
to the same partition:
qmgr obj=<vnode name> svr=<server name>: Queue <queue name> is not part of partition for node

qmgr: Error (15219) returned from server

• When a queue is associated with one or more vnodes, and a partition is assigned to the queue and vnodes, attempting
to change the queue's partition:
qmgr obj=<queue name> svr=<server name>: Invalid partition in queue

qmgr: Error (15221) returned from server

• Attempting to assign a partition to a multisched while that partition is already assigned to another multisched:
Partition <partition name> is already associated with scheduler <scheduler name>.

• Attempting to set the partition attribute for a routing queue:
qmgr obj=<queue name> svr=<server name>: Cannot assign a partition to route queue

qmgr: Error (15217) returned from server

• Attempting to change an execution queue to a routing queue while the partition attribute is set:
qmgr obj=<queue name> svr=<server name>: Cannot queue_type=route if partition is set

qmgr: Error (15218) returned from server

4.2.8 Multisched Deprecations

Using qmgr on the default scheduler, without specifying it name, is deprecated. The old syntax is supported for back-
ward compatibility.

Example of old syntax:

qmgr -c "set sched job_sort_formula_threshold = <value>"
PBS Professional 2022.1 Administrator’s Guide AG-65

Chapter 4 Scheduling
Same with new syntax:

qmgr -c "set sched default job_sort_formula_threshold = <value>"

4.3 Scheduling Policy Basics

4.3.1 How Scheduling Can Be Used

You can use the scheduling tools provided by PBS to implement your chosen scheduling policy, so that your jobs run in
the way you want.

Your policy can do the following:

• Prioritize jobs according to your specification

• Run jobs according to their relative importance

• Award specific amounts of resources such as CPU time to projects, users, and groups according to rules that you set

• Make sure that resources are not misused

• Optimize how jobs are placed on vnodes, so that jobs run as efficiently as possible

• Use special time slots for particular tasks

• Optimize throughput or turnaround time for jobs

4.3.2 What Is Scheduling Policy?

Scheduling policy determines when each job is run and on which resources. In other words, a scheduling policy
describes a goal, or intended behavior. For convenience, we describe a scheduling policy as being a combination of
sub-goals, for example a combination of how resources should be allocated and how efficiency should be maximized.

You implement a scheduling policy using the tools PBS provides. A scheduling tool is a feature that allows you control
over some aspect of scheduling. For example, the job sorting formula is a tool that allows you to define how you want
job execution priority to be computed. Some scheduling tools are supplied by the PBS scheduler(s), and some are sup-
plied by other elements of PBS, such as the hooks, server, queues or resources.

You can group the resources in your complex into partitions, and you can run a separate scheduling policy on each parti-
tion.

4.3.3 Basic PBS Scheduling Behavior

The basic behavior of PBS is that it always places jobs where it finds the resources requested by the job. PBS will not
place a job where that job would use more resources than PBS thinks are available. For example, if you have two jobs,
each requesting 1 CPU, and you have one vnode with 1 CPU, PBS will run only one job at a time on the vnode. You do
not have to configure PBS for this basic behavior.

PBS determines what hardware resources are available and configures them for you. However, you do have to inform
PBS which custom resources and non-hardware resources are available and where, how much, and whether they are con-
sumable or not. In addition, in order to ensure that jobs are sent to the appropriate vnodes for execution, you also need to
make sure that they request the correct resources. You can do this either by having users submit their jobs with the right
resource requests, using hooks that set job resources, or by configuring default resources for jobs to inherit.
AG-66 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.3.4 Sub-goals

Your scheduling policy is the combination that you choose of one or more sub-goals. For example, you might need to
meet two particular sub-goals: you might need to prioritize jobs a certain way, and you might need to use resources effi-
ciently. You can choose among various outcomes for each sub-goal. For example, you can choose to prioritize jobs
according to size, owner, owner's usage, time of submission, etc.

In the following sections, we describe the tools PBS offers for meeting each of the following sub-goals.

• Job prioritization and preemption; see section 4.3.5, “Job Prioritization and Preemption”, on page 67.

• Resource allocation & limits; see section 4.3.6, “Resource Allocation to Users, Projects & Groups”, on page 72.

• Time slot allocation; see section 4.3.7, “Time Slot Allocation”, on page 74.

• Job placement optimizations; see section 4.3.8, “Job Placement Optimization”, on page 75.

• Resource efficiency optimizations; see section 4.3.9, “Resource Efficiency Optimizations”, on page 78.

• Overrides; see section 4.3.10, “Overrides”, on page 80.

4.3.5 Job Prioritization and Preemption

Job prioritization is any technique you use to come up with a ranking of each job's relative importance. You can specify
separate priority schemes for both execution and preemption.

4.3.5.1 Where PBS Uses Job Priority

PBS calculates job priority for two separate tasks: job execution and job preemption. Job execution priority is used with
other factors to determine when to run each job. Job preemption priority is used to determine which queued jobs are
allowed to preempt which running jobs in order to use their resources and run. These two tasks are independent, and it is
important to make sure that you do not make them work at cross-purposes. For example, you do not want to have a class
of jobs having high execution priority and low preemption priority; these jobs would run first, and then be preempted
first.

Preemption comes into play when a scheduler examines the top job and determines that it cannot run now. If preemption
is enabled, a scheduler checks to see whether the top job has sufficient preemption priority to be able to preempt any run-
ning jobs, and then if it does, whether preempting jobs would yield enough resources to run the top job. If both are true,
a scheduler preempts running jobs and runs the top job.

If you take no action to configure how jobs should be prioritized, they are considered in submission order, one queue at a
time. If you don't prioritize queues, the queues are examined in an undefined order.

4.3.5.2 Overview of Prioritizing Jobs

PBS provides several tools for setting job execution priority. There are queue-based tools for organizing jobs, moving
them around, and specifying the order in which groups of jobs should be examined. There are tools for sorting jobs into
the order you want. There is a meta-tool (strict ordering) that allows you to specify that the top job must go next, regard-
less of whether the resources it requires are available now.

A scheduler can use multiple sorting tools, in succession. You can combine your chosen sorting tools with queue-based
tools to give a wide variety of behaviors. Most of the queue-based tools can be used together. A scheduler can treat all
jobs as if they are in a single queue, considering them all with respect to each other, or it can examine all queues that have
the same priority as a group, or it can examine jobs queue by queue, comparing each job only to other jobs in the same
queue.

You can change how execution priority is calculated, depending on which time slot is occurring. You can divide time up
into primetime, non-primetime, and dedicated time.
PBS Professional 2022.1 Administrator’s Guide AG-67

Chapter 4 Scheduling
When a scheduler calculates job execution priority, it uses a built-in system of job classes. PBS runs special classes of
jobs before it considers queue membership. These classes are for reservation, express, and preempted jobs. Please see
section 4.9.16, “Calculating Job Execution Priority”, on page 135. After these jobs are run, a scheduler follows the rules
you specify for queue behavior. Within each queue, jobs are sorted according to the sorting tools you choose.

4.3.5.3 Using Queue-based Tools to Prioritize Jobs

4.3.5.3.i Using Queue Order to Affect Order of Consideration

When a scheduler examines queued jobs, it can consider all of the jobs in its partition as a whole, it can round-robin
through groups of queues where the queues are grouped by priority, or it can examine jobs in only one queue at a time.
These three systems are incompatible. Queues are always sorted by priority.

The by_queue scheduler parameter controls whether a scheduler runs all the jobs it can from the highest-priority queue
before moving to the next, or treats all jobs as if they are in a single queue. By default, this parameter is set to True.
When examining jobs one queue at a time, a scheduler runs all of the jobs it can from the highest-priority queue first,
then moves to the next highest-priority queue and runs all the jobs it can from that queue, and so on. See section 4.9.4,
“Examining Jobs Queue by Queue”, on page 112.

The round_robin scheduler parameter controls whether or not a scheduler round-robins through queues. When a sched-
uler round-robins through queues, it groups the queues by priority, and round-robins first through the highest-priority
group, then the next highest-priority group, and so on, running all of the jobs that it can from that group. So within each
group, if there are multiple queues, a scheduler runs the top job from one queue, then the top job from the next queue, and
so on, then goes back to the first queue, runs its new top job, goes to the next queue, runs its new top job, and so on until
it has run all of the jobs it can from that group. All queues in a group must have exactly the same priority. The order in
which queues within a group are examined is undefined. If all queues have different priorities, a scheduler starts with the
highest-priority queue, runs all its jobs, moves to the next, runs its jobs, and so on until it has run all jobs from each
queue. This parameter overrides by_queue. See section 4.9.38, “Round Robin Queue Selection”, on page 203.

If you want queues to be considered in a specific order, you must assign a different priority to each queue. Queues are
always sorted by priority. See section 4.9.47, “Sorting Queues into Priority Order”, on page 221. Give the queue you
want considered first the highest priority, then the next queue the next highest priority, and so on. If you want groups of
queues to be considered together for round-robining, give all queues in each group one priority, and all queues in the next
group a different priority. If the queues don't have priority assigned to them, the order in which they are considered is
undefined. To set a queue's priority, use the qmgr command to assign a value to the priority queue attribute. See section
2.3.5.3, “Prioritizing Execution Queues”, on page 27.

4.3.5.3.ii Using Express Queues in Job Priority Calculation

You can create express queues, and route jobs into them, if you want to give those jobs special priority.

An express queue is a queue whose priority is high enough to qualify as an express queue; the default for qualification is
150, but this can be set using the preempt_queue_prio scheduler attribute. For information on configuring express
queues, see section 2.3.5.3.i, “Express Queues”, on page 27.

When calculating execution priority, a PBS scheduler uses a built-in job class called "Express" which contains all jobs
that have a preemption level greater than that of the normal_jobs level. By default, those jobs are jobs in express queues.
See section 4.9.16, “Calculating Job Execution Priority”, on page 135.

You can create preemption levels that include jobs in express queues. Jobs in higher preemption levels are allowed to
preempt jobs in lower levels. See section 4.9.33, “Using Preemption”, on page 179.

4.3.5.3.iii Routing Jobs into Queues

You can configure PBS to automatically put each job in the most appropriate queue. There are several approaches to this.
See section 4.9.39, “Routing Jobs”, on page 204.
AG-68 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.3.5.3.iv Using Queue Priority when Computing Job Priority

You can configure a scheduler so that job priority is partly determined by the priority of the queue in which the job
resides. See section 4.9.36, “Queue Priority”, on page 194.

4.3.5.4 Using Job Sorting Tools to Prioritize Jobs

A scheduler can use multiple job sorting tools in succession to determine job execution priority. A scheduler groups all
jobs waiting to run into classes, and then applies the sorting tools you choose to all jobs in each class.

• You can create a formula that a scheduler uses to sort jobs. A scheduler applies this formula to all jobs in its parti-
tion, using it to calculate a priority for each job. For example, you can specify in the formula that jobs requesting
more CPUs have higher priority. If the formula is defined, it overrides fairshare and sorting jobs on keys. See sec-
tion 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 150.

• You can use the fairshare algorithm to sort jobs. This algorithm allows you to set a resource usage goal for users or
groups. Jobs are prioritized according to each entity's usage; jobs whose owners have used the smallest percentage
of their allotment go first. For example, you can track how much CPU time is being used, and allot each group a
percentage of the total. See section 4.9.19, “Using Fairshare”, on page 138.

• You can sort jobs according to the same usage allotments you set up for fairshare. In this case, jobs whose owners
are given the highest allotment go first. See section 4.9.14, “Sorting Jobs by Entity Shares (Was Strict Priority)”, on
page 132.

• You can sort jobs on one or more keys, for example, you can sort jobs first by the number of CPUs they request, then
by the amount of memory they request. You can specify that either the high or the low end of the resulting sort has
higher priority.

You can create a custom resource, and use a hook to set a value for that resource for each job, and then sort on the
resource.

See section 4.9.45, “Sorting Jobs on a Key”, on page 219.

• You can run jobs in the order in which they were submitted. See section 4.9.20, “FIFO Scheduling”, on page 149.

• You can run jobs according to the priority requested for each job at submission time. This priority can be set via a
hook. See section 4.9.46, “Sorting Jobs by Requested Priority”, on page 221 and the PBS Professional Hooks
Guide.

4.3.5.5 Prioritizing Jobs by Wait Time

You can use the amount of time a job has been waiting to run in the priority calculation. You use eligible waiting time,
which is how long a job has been waiting to run due to a shortage of resources, rather than because its owner isn't allowed
to run jobs now. See section 4.9.13, “Eligible Wait Time for Jobs”, on page 128.

You can use a job's eligible waiting time in the job sorting formula. See section 4.9.21, “Using a Formula for Computing
Job Execution Priority”, on page 150.

4.3.5.6 Calculating Preemption Priority

Execution priority and preemption priority are two separate systems of priority.

By default, if the top job cannot run now, and it has high preemption priority, a scheduler will use preemption to run the
top job. A scheduler will preempt jobs with lower preemption priority so that it can use the resources to run the top job.
The default definition of jobs with high preemption priority is jobs in express queues. You can configure many levels of
preemption priority, specifying which levels can preempt which other levels. See section 4.9.33, “Using Preemption”, on
page 179.
PBS Professional 2022.1 Administrator’s Guide AG-69

Chapter 4 Scheduling
4.3.5.7 Making Preempted Jobs Top Jobs

You can specify that a scheduler should make preempted jobs be top jobs. See section 4.9.3.6, “Configuring Backfill-
ing”, on page 110.

4.3.5.8 Preventing Jobs from Being Preempted

You may have jobs that should not be preempted, regardless of their priority. These can be jobs which cannot be effec-
tively preempted, so that preempting them would waste resources. To prevent these jobs from being preempted, do one
or both of the following:

• Set a value for the preempt_targets resource at all jobs that specify a value for a custom resource. For example,
define a Boolean resource named Preemptable, and add "Resource_List.Preemptable=true" to preempt_targets for
all jobs. Then set the value of Resource_List.Preemptable to False for the jobs you don't want preempted.

For example, if we want JobA and JobB to be able to preempt Job1 and Job2, but not Job3:

Define a Boolean resource named "Preemptable"

For Job1 and Job2, set Resource_List.Preemptable to True:

qsub ... -l Preemptable=True ...

or

qalter -l Preemptable=True Job1 Job2

For Job3, set Resource_List.Preemptable to False:

qalter -l Preemptable=False Job3

For JobA and JobB, set Resource_List.preempt_targets to "Preemptable=True":

qalter -l preempt_targets=Resource_List.Preemptable=True JobA JobB

• Route jobs you don't want preempted to one or more specific queues, and then use a hook to make sure that no jobs
specify these queues in their preempt_targets.

4.3.5.9 Meta-priority: Running Jobs Exactly in Priority Order

By default, when scheduling jobs, PBS orders jobs according to execution priority, then considers each job, highest-pri-
ority first, and runs the next job that can run now. If a job cannot run now because the resources required are unavailable,
the default behavior is to skip the job and move to the next in order of priority.

You can tell PBS to use a different behavior called strict ordering. This means that you tell PBS that it must not skip a
job when choosing which job to run. If the top job cannot run, no job runs.

You can see that using strict ordering could lead to decreased throughput and idle resources. In order to prevent idle
resources, you can tell PBS to run small filler jobs while it waits for the resources for the top job to become available.
These small filler jobs do not change the start time of the top job. See section 4.9.48, “Using Strict Ordering”, on page
222 and section 4.9.3, “Using Backfilling”, on page 108.

4.3.5.10 Using Different Calculations for Different Time Periods

PBS allows you to divide time into two kinds, called primetime and non-primetime. All time is covered by one or the
other of these two kinds of time. The times are arbitrary; you can set them up however you like. You can also choose not
to define them, and instead to treat all time the same.

You can configure two separate, independent ways of calculating job priority for primetime and non-primetime. The
same calculations are used during dedicated time; dedicated time is a time slot made up of primetime and/or non-prime-
time. Many scheduler parameters are prime options, meaning that they can be configured separately for primetime and
non-primetime. For example, you can configure fairshare as your sorting tool during primetime, but sort jobs on a key
during non-primetime.
AG-70 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
If you use the formula, it is in force all of the time.

See section 4.9.34, “Using Primetime and Holidays”, on page 189.

4.3.5.11 When Priority Is Not Enough: Overrides

Sometimes, the tools available for setting job priority don't do everything you need. For example, it may be necessary to
run a job right away, regardless of what else is running. Or you may need to put a job on hold. Or you might need to
tweak the way the formula works for the next N jobs. See section 4.9.30, “Overrides”, on page 161.

4.3.5.12 Elements to Consider when Prioritizing Jobs

• Whether users, groups, or projects affect job priority: for techniques to use user, group, or project to affect job prior-
ity, see section 4.4.3, “Prioritizing Jobs by User, Project or Group”, on page 82.

• Reservation jobs: jobs in reservations cannot be preempted.

• Express jobs: PBS has a built-in execution priority for express jobs. You can set the preemption priority for express
jobs; see section 4.9.33, “Using Preemption”, on page 179.

• Preempted jobs: PBS has a built-in execution priority for preempted jobs. See section 4.9.16, “Calculating Job Exe-
cution Priority”, on page 135.

• Large or small jobs: you may want to give large and/or small jobs special treatment. See section 4.4.5, “Scheduling
Jobs According to Size Etc.”, on page 84.

• User's priority request for job: the job submitter can specify a priority for the job at submission. You can sort jobs
according to each job's specified priority. See section 4.9.46, “Sorting Jobs by Requested Priority”, on page 221.

• Whether the top job must be the next to run, regardless of whether it can run now; see section 4.9.48, “Using Strict
Ordering”, on page 222.

4.3.5.13 List of Job Sorting Tools

4.3.5.13.i Queue-based Tools for Organizing Jobs

• Queue-by-queue: PBS runs all the jobs it can from the first queue before moving to the next queue. Queue order is
determined by queue priority. See section 4.9.4, “Examining Jobs Queue by Queue”, on page 112.

• Round-robin job selection: PBS can select jobs from queues with the same priority in a round-robin fashion. See
section 4.9.38, “Round Robin Queue Selection”, on page 203.

• Queue priority: Queues are always ordered according to their priority; jobs in higher-priority queues are examined
before those in lower-priority queues. See section 2.3.5.3, “Prioritizing Execution Queues”, on page 27.

• Sorting queues: PBS always sorts queues into priority order. See section 4.9.47, “Sorting Queues into Priority
Order”, on page 221.

• Express queues: Jobs in express queues are assigned increased priority. See section 2.3.5.3.i, “Express Queues”, on
page 27, and section 4.3.5.3.ii, “Using Express Queues in Job Priority Calculation”, on page 68.

• Routing: You can set up a queue system so that jobs with certain characteristics are routed to specific queues. See
section 4.9.39, “Routing Jobs”, on page 204.
PBS Professional 2022.1 Administrator’s Guide AG-71

Chapter 4 Scheduling
4.3.5.13.ii Job Sorting Tools

You can use multiple job sorting tools, one at a time in succession. You can use different sorting tools for primetime and
non-primetime.

• Job sorting formula: You create a formula that PBS uses to calculate each job's priority. See section 4.9.21, “Using a
Formula for Computing Job Execution Priority”, on page 150.

• Fairshare: PBS tracks past usage of specified resources, and starts jobs based on specified usage ratios. See section
4.9.19, “Using Fairshare”, on page 138.

• Sorting jobs on keys: PBS can sort jobs according to one or more keys, such as requested CPUs or memory; see sec-
tion 4.9.45, “Sorting Jobs on a Key”, on page 219.

• Entity shares (strict priority): Jobs are prioritized according to the owner's fairshare allocation. See section 4.9.14,
“Sorting Jobs by Entity Shares (Was Strict Priority)”, on page 132.

• FIFO: Jobs can be run in submission order. See section 4.9.20, “FIFO Scheduling”, on page 149.

• Job's requested priority: you can sort jobs on the priority requested for the job; see section 4.9.46, “Sorting Jobs by
Requested Priority”, on page 221.

4.3.5.13.iii Other Job Prioritization Tools

• Strict ordering: you can specify that jobs must be run in priority order, so that a job that cannot run because resources
are unavailable is not skipped. See section 4.9.48, “Using Strict Ordering”, on page 222.

• Waiting time: PBS can assign increased priority to jobs that have been waiting to run. See section 4.9.13, “Eligible
Wait Time for Jobs”, on page 128.

• Setting job execution priority: PBS can set job execution priority according to a set of rules. See section 4.9.16,
“Calculating Job Execution Priority”, on page 135.

• Preemption: PBS preempts lower-priority jobs in order to run higher-priority jobs. See section 4.9.33, “Using Pre-
emption”, on page 179.

• Preventing preemption: You can prevent certain jobs from being preempted. See section 4.3.5.8, “Preventing Jobs
from Being Preempted”, on page 70.

• Making preempted jobs top jobs: PBS can backfill around preempted jobs. See section 4.9.3.5, “Backfilling Around
Preempted Jobs”, on page 109.

• Behavior overrides: you can intervene manually in how jobs are run. See section 4.9.30, “Overrides”, on page 161.

4.3.6 Resource Allocation to Users, Projects & Groups

If you need to ensure fairness, you may need to make sure that resources are allocated fairly. If different users, groups, or
projects own or pay for different amounts of hardware or machine time, you may need to allocate resources according to
these amounts or proportions.

You can allocate hardware-based resources such as CPUs or memory, and/or time-based resources such as walltime or
CPU time, according to to the agreed amounts or proportions. You can also control who starts jobs.

4.3.6.1 Limiting Amount of Resources Used

4.3.6.1.i Allocation Using Resource Limits

You can use resource limits as a way to enforce agreed allocation amounts. This is probably the most straightforward
way, and the easiest to explain to your users. PBS provides a system for limiting the total amount of each resource used
by projects, users, and groups at the server and at each queue. For example, you can set a limit on the number of CPUs
that any generic user can use at one time at QueueA, but set three different individual limits for each of three users that
have special requirements, at the same queue. See section 5.15.1, “Managing Resource Usage By Users, Groups, and
Projects, at Server & Queues”, on page 283.
AG-72 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.3.6.1.ii Allocation Using Fairshare

The PBS fairshare tool allows you to start jobs according to a formula based on resource usage by job owners. You can
designate who the valid job owners are, which resources are being tracked, and how much of the resources each owner is
allowed to be using. Fairshare uses a moving average of resource usage, so that a user who in the recent past has not used
their share can use more now. For example, you can track usage of the cput resource, and give one group 40 percent of
usage, one 50 percent, and one group, 10 percent. See section 4.9.19, “Using Fairshare”, on page 138.

4.3.6.1.iii Allocation Using Routing

If you do not want to place usage limits directly on projects, users, or groups, you can instead route their jobs to specific
queues, where those queues have their own resource usage limits.

To route jobs this way, force users to submit jobs to a routing queue, and set access control limits at each execution
queue. See section 11.3, “Using Access Control Lists”, on page 492. Make the routing queue be the default queue:

Qmgr: set server default_queue = <routing queue name>

Using this method, you place a limit for total resource usage at each queue, for each resource you care about. See section
5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.

You can also route jobs to specific queues, where those queues can send jobs only to specific vnodes. See section 4.9.2,
“Associating Vnodes with Queues”, on page 106.

4.3.6.2 Limiting Jobs

4.3.6.2.i Limiting Number of Jobs per Project, User, or Group

You can set limits on the numbers of jobs that can be run by projects, users, and groups. You can set these limits for each
project, user, and group, and you can set them at the server and at each queue. You can set a generic limit for all projects,
users, or groups, and individual limits that override the generic limit. For example, you can set a limit that says that no
user at its partition can run more than 8 jobs. Then you can set a more specific limit for QueueA, so that users at QueueA
can run 4 jobs. Then you can set a limit for User1 and User2 at QueueA, so that they can run 6 jobs. See section 5.15.1,
“Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.

4.3.6.2.ii Allocation Using Round-robin Queue Selection

PBS can select jobs from queues by examining groups of queues in round-robin fashion, where all queues in each group
have the same priority. When using the round-robin method, a scheduler considers the first queue in a group, tries to run
the top job from that queue, then considers the next queue, tries to run the top job from that queue, then considers the
next queue, and so on, in a circular fashion. A scheduler runs all the jobs it can from the highest-priority group first, then
moves to the group with the next highest priority.

If you want a simple way to control how jobs are started, you can use round-robin where each queue in a group belongs
to a different user or entity. See section 4.9.38, “Round Robin Queue Selection”, on page 203.

4.3.6.2.iii Limiting Resource Usage per Job

If you are having trouble with large jobs taking up too much of a resource, you can limit the amount of the resource being
used by individual jobs. You can set these limits at each queue, and at the server. See section 5.15.2, “Placing Resource
Limits on Jobs”, on page 300.
PBS Professional 2022.1 Administrator’s Guide AG-73

Chapter 4 Scheduling
4.3.6.3 Resource Allocation Tools

The following is a list of scheduling tools that you can use for allocating resources or limiting resources or jobs:

• Matching: PBS places jobs where the available resources match the job's resource requirements; see section 4.9.28,
“Matching Jobs to Resources”, on page 158.

• Reservations: Users can create advance and standing reservations for specific resources for specific time periods.
See section 4.9.37, “Reservations”, on page 195.

• Fairshare: PBS tracks past usage of specified resources, and starts jobs based on specified usage ratios. See section
4.9.19, “Using Fairshare”, on page 138.

• Routing: You can set up a queue system so that jobs with certain characteristics are routed to specific queues. See
section 2.3.6, “Routing Queues”, on page 27 and section 4.9.39, “Routing Jobs”, on page 204.

• Limits on resource usage by projects, users, and groups: You can set limits on user and group resource usage. See
section 4.9.26, “Limits on Project, User, and Group Resource Usage”, on page 158.

• Round-robin job selection: PBS can select jobs from queues that have the same priority in a round-robin fashion.
See section 4.9.38, “Round Robin Queue Selection”, on page 203.

• Sorting queues: PBS always sorts queues into priority order. See section 4.9.47, “Sorting Queues into Priority
Order”, on page 221.

• Limits on number of jobs for projects, users, and groups: You can set limits on the numbers of jobs that can be run by
projects, users, and groups. See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at
Server & Queues”, on page 283.

• Limits on resources used by each job: You can set limits on the amount of each resource that any job can use. See
section 4.9.24, “Limits on Per-job Resource Usage”, on page 157.

• Using custom resources to limit resource usage: You use custom resources to manage usage. See section 4.9.8,
“Using Custom and Default Resources”, on page 115.

• Gating and admission requirements: You can specify admission requirements for jobs. See section 4.9.22, “Gating
Jobs at Server or Queue”, on page 156.

• Making jobs inherit default resources: You can use default resources to manage jobs. See section 4.9.8, “Using Cus-
tom and Default Resources”, on page 115.

4.3.7 Time Slot Allocation

Time slot allocation is the process of creating time slots within which only specified jobs are allowed to run.

4.3.7.1 Why Allocate Time Slots

You may want to set up blocks of time during which only certain jobs are allowed to run. For example, you might need
to ensure that specific high-priority jobs have their own time slot, so that they are guaranteed to be able to run and finish
before their results are required.

You may want to divide jobs into those that run at night, when no one is around, and those that run during the day,
because their owners need the results then.

You might want to run jobs on desktop clusters only at night, when the primary users of the desktops are away.

When you upgrade PBS, a chunk of dedicated time can come in very handy. You set up dedicated time for a time period
that is long enough for you to perform the upgrade, and you make sure the time slot starts far enough out that no jobs will
be running.

You may want to run different scheduling policies at different times or on different days.
AG-74 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.3.7.2 How to Allocate Time Slots

Time slots are controlled by queues: primetime queues, non-primetime queues, dedicated time queues, and reservation
queues. For this, you use your favorite routing method to move jobs into the desired queues. See section 4.9.39, “Rout-
ing Jobs”, on page 204.

4.3.7.2.i Allocation Using Primetime and Holidays

You can specify how to divide up days or weeks, and designate each time period to be either primetime or non-prime-
time. You can use this division in the following ways:

• You can run a different policy during primetime from that during non-primetime

• You can run specific jobs during primetime, and others during non-primetime

See section 4.9.34, “Using Primetime and Holidays”, on page 189.

4.3.7.2.ii Allocation Using Dedicated Time

Dedicated time is a time period where the only jobs that are allowed to run are the ones in dedicated time queues. The
policy you use during dedicated time is controlled by the normal primetime and non-primetime policies; those times
overlap dedicated time.

If you don't allow any jobs into a dedicated time queue, you can use it to perform maintenance, such as an upgrade.

See section 4.9.10, “Dedicated Time”, on page 127.

4.3.7.2.iii Allocation Using Reservations

You and any other PBS user can create advance and standing reservations. These are time periods with a defined start
and end, for a specific, defined set of resources. Reservations are used to make sure that specific jobs can run on time.
See section 4.9.37, “Reservations”, on page 195.

4.3.7.2.iv Allocation Using cron Jobs

You can use cron to run jobs at specific times. See section 4.9.7, “cron Jobs”, on page 114.

4.3.7.3 Time Slot Allocation Tools

The following is a list of scheduling tools that you can use to create time slots:

• Primetime and holidays: You can specify days and times that are to be treated as prime execution time. See section
4.9.34, “Using Primetime and Holidays”, on page 189.

• Dedicated time: You can set aside blocks of time reserved for certain system operations. See section 4.9.30.6,
“Using Dedicated Time”, on page 163.

• cron jobs: You can use cron to run jobs. See section 4.9.30.7, “Using cron Jobs”, on page 163.

• Reservations: Users can create advance and standing reservations for specific resources for specific time periods.
See section 4.9.37, “Reservations”, on page 195.

4.3.8 Job Placement Optimization

PBS automatically places jobs where they can run, but you can refine how jobs are placed.

Optimizations are the techniques you use to increase throughput, turnaround, or efficiency, by taking advantage of where
jobs can be run.

PBS places jobs according to placement optimization settings in tools to specify how vnodes should be organized, how
jobs should be distributed, and how resources should be used.
PBS Professional 2022.1 Administrator’s Guide AG-75

Chapter 4 Scheduling
4.3.8.1 Why Optimize Placement

PBS automatically places jobs where they can run, matching jobs to resources, so why optimize placement?

• You can help PBS refine its understanding of hardware topology, so that PBS can place jobs where they will run
most efficiently.

• If you have some vnodes that are faster than others, you can preferentially place jobs on those vnodes.

• You may need to place jobs according to machine ownership, so that for example only jobs owned by a specific
group run on a particular machine.

• You can take advantage of unused workstation computing capacity.

• You can balance the workload between two or more PBS partitions or complexes, trading jobs around depending on
the workload on each partition or complex.

• You can specify whether or not certain vnodes should be used for more than one job at a time.

• You can tell PBS to avoid placing jobs on highly-loaded vnodes

4.3.8.2 Matching Jobs to Resources

By default, PBS places jobs where the available resources match the job's resource requirements. See section 4.9.28,
“Matching Jobs to Resources”, on page 158.

4.3.8.3 Organizing and Selecting Vnodes

By default, the order in which PBS examines vnodes is undefined. The default setting for vnode sorting is the following:

node_sort_key: "sort_priority HIGH all"

However, sort_priority means sort on each vnode's priority attribute, but by default, that attribute is unset.

PBS can organize vnodes into groups. By default, PBS does not organize vnodes into groups.

By default, when PBS chooses vnodes for a job, it runs down its list of vnodes, searching until it finds vnodes that can
supply the job with the requested resources. You can improve this in two ways:

• PBS provides a way to organize your vnodes so that jobs can run on groups of vnodes, where the selected group of
vnodes provides the job with good connectivity. This can improve memory access and interprocess communication
timing. PBS then searches through these groups of vnodes, called placement sets, looking for the smallest group that
satisfies the job's requirements. Each placement set is a group of vnodes that share a value for a resource. An illus-
trative example is a group of vnodes that are all connected to the same high speed switch, so that all of the vnodes
have the same value for the switch resource. For detailed information on how placement sets work and how to con-
figure them, see section 4.9.32, “Placement Sets”, on page 167.

• By default, the order in which PBS examines vnodes, whether in or outside of placement sets, is undefined. PBS can
sort vnodes on one or more keys. Using this tool, you can specify which vnodes should be selected first. For infor-
mation on sorting vnodes on keys, see section 4.9.49, “Sorting Vnodes on a Key”, on page 223.

You can sort vnodes in conjunction with placement sets.

4.3.8.4 Distributing Jobs

All of the following methods for distributing jobs can be used together.
AG-76 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.3.8.4.i Filtering Jobs to Specific Vnodes

If you want to run certain kinds of jobs on specific vnodes, you can route those jobs to specific execution queues, and tie
those queues to the vnodes you want. For example, if you want to route jobs requesting large amounts of memory to
your large-memory machines, you can set up an execution queue called LMemQ, and associate that queue with the
large-memory vnodes. You can route any kind of job to its own special execution queue. For example, you can route jobs
owned by the group that owns a cluster to a special queue which is associated with the cluster. For details on routing jobs,
see section 4.9.39, “Routing Jobs”, on page 204. For details on associating vnodes and queues, see section 4.9.2, “Asso-
ciating Vnodes with Queues”, on page 106.

4.3.8.4.ii Running Jobs at Least-loaded Partition or Complex

You can set up cooperating PBS partitions and complexes that automatically run jobs from each other's queues. This
allows you to dynamically balance the workload across multiple, separate PBS partitions and complexes. See section
4.9.31, “Peer Scheduling”, on page 163.

4.3.8.4.iii Using Idle Workstations

You can run jobs on workstations whenever they are not being used by their owners. PBS can monitor workstations for
user activity or load, and run jobs when those jobs won't interfere with the user's operation. See section 4.9.9, “Using
Idle Workstation Cycle Harvesting”, on page 116.

4.3.8.4.iv Avoiding Highly-loaded Vnodes

You can tell PBS not to run jobs on vnodes that are above a specified load. This is in addition to the default behavior,
where PBS does not run jobs that request more of a resource than it thinks each vnode can supply. See section 4.9.27,
“Using Load Balancing”, on page 158.

4.3.8.4.v Placing Job Chunks on Desired Hosts

You can tell PBS to place each job on as few hosts as possible, to place each chunk of a job on a separate host, a separate
vnode, or on any vnode. You can specify this behavior for the jobs at a queue and at the server.

You can do the following

• Set default placement behavior for the queue or server: jobs inherit placement if they do not request it; see section
5.9.3.5, “Specifying Default Job Placement”, on page 243

• Use a hook to set each job's placement request (Resource_List.place). See the PBS Professional Hooks Guide

For more on placing chunks, see section 4.9.6, “Organizing Job Chunks”, on page 114.

For information on how jobs request placement, see section 2.57.2.6, “Requesting Resources and Placing Jobs”, on page
219.

4.3.8.5 Shared or Exclusive Resources and Vnodes

PBS can give jobs their own vnodes, or fill vnodes with as many jobs as possible. A scheduler uses a set of rules to deter-
mine whether a job can share resources or a host with another job. These rules specify how the vnode sharing attribute
should be combined with a job's placement directive. The vnode's sharing attribute supersedes the job's placement
request.

You can set each vnode's sharing attribute so that the vnode or host is always shared, always exclusive, or so that it hon-
ors the job's placement request. See section 4.9.41, “Shared vs. Exclusive Use of Resources by Jobs”, on page 209.
PBS Professional 2022.1 Administrator’s Guide AG-77

Chapter 4 Scheduling
4.3.8.6 Tools for Organizing Vnodes

• Placement sets: PBS creates sets of vnodes organized by the values of multiple resources. See section 4.9.32,
“Placement Sets”, on page 167.

• Sorting vnodes on keys: PBS can sort vnodes according to specified keys. See section 4.9.49, “Sorting Vnodes on a
Key”, on page 223.

4.3.8.7 Tools for Distributing Jobs

• Routing: You can set up a queue system so that jobs with certain characteristics are routed to specific queues. See
section 2.3.6, “Routing Queues”, on page 27 and section 4.9.39, “Routing Jobs”, on page 204.

• Associating vnodes with queues: You can specify that jobs in a given queue can run only on specific vnodes, and
vice versa. See section 4.9.2, “Associating Vnodes with Queues”, on page 106.

• Idle workstation cycle harvesting: PBS can take advantage of unused workstation CPU time. See section 4.9.9,
“Using Idle Workstation Cycle Harvesting”, on page 116.

• Peer scheduling: PBS partitions and complexes can exchange jobs. See section 4.9.31, “Peer Scheduling”, on page
163.

• Load balancing: PBS can place jobs so that machines have balanced loads. See section 4.9.27, “Using Load Balanc-
ing”, on page 158.

• SMP cluster distribution (deprecated): PBS can place jobs in a cluster as you specify. See section 4.9.43, “SMP
Cluster Distribution”, on page 216.

4.3.9 Resource Efficiency Optimizations

PBS automatically runs each job where the resources required for the job are available. You can refine the choices PBS
makes.

Resource optimizations are the techniques you use to increase throughput, turnaround, or efficiency, by taking advantage
of how resources are used.

Before reading this section, please make sure you understand how resources are used by reading section 4.9.28, “Match-
ing Jobs to Resources”, on page 158.

4.3.9.1 Why Optimize Use of Resources

You may want to take advantage of the following:

• If you are using strict ordering, you can prevent resources from standing idle while the top job waits for its resources
to become available

• PBS can estimate the start times of jobs, so that users can stay informed

• PBS can provision vnodes with the environments that jobs require

• PBS can track resources that are outside of the control of PBS, such as scratch space

• You can take advantage of unused workstation computing capacity

• You can balance the workload between two or more PBS partitions or complexes, trading jobs around depending on
the workload on each partition or complex.

• You can specify whether or not certain vnodes should be used for more than one job at a time.

• Users can specify that jobs that are dependent on the output of other jobs run only after the other jobs complete

• You can tell PBS to avoid placing jobs on highly-loaded vnodes
AG-78 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.3.9.2 How to Optimize Resource Use

4.3.9.2.i Backfilling Around Top Jobs

PBS creates a list of jobs ordered by priority, and tries to run the jobs in order of priority. You can force all jobs to be run
in exact order of their priority, using strict ordering. See section 4.9.48, “Using Strict Ordering”, on page 222. However,
this can reduce resource utilization when the top job cannot run now and must wait for resources to become available,
idling the entire partition or complex. You can offset this problem by using backfilling, where PBS tries to fit smaller
jobs in around the top job that cannot run. The start time of the top job is not delayed. Job walltimes are required in
order to use backfilling. You can specify the number of jobs around which to backfill. You can also disable this feature.
See section 4.9.3, “Using Backfilling”, on page 108.

PBS can shrink the walltime of shrink-to-fit jobs into available time slots. These jobs can be used to backfill around top
jobs and time boundaries such as dedicated time or reservations. See section 4.9.42, “Using Shrink-to-fit Jobs”, on page
210.

If you do not use strict ordering, PBS won't necessarily run jobs in exact priority order. PBS will instead run jobs so that
utilization is maximized, while trying to preserve priority order.

4.3.9.2.ii Using Dependencies

Job submitters can specify dependencies between jobs. For example, if you have a data analysis job that must run after
data collection and cleanup jobs, you can specify that. See section 4.9.11, “Dependencies”, on page 128.

4.3.9.2.iii Estimating Start Time for Jobs

You can tell PBS to estimate start times and execution vnodes for either the number of jobs being backfilled around, or
all jobs. Users can then see when their jobs are estimated to start, and the vnodes on which they are predicted to run. See
section 4.9.15, “Estimating Job Start Time”, on page 132.

4.3.9.2.iv Provisioning Vnodes with Required Environments

PBS can provision vnodes with environments (applications or operating systems) that jobs require. This means that a job
can request a particular environment that is not yet on a vnode, but is available to be instantiated there. See section
4.9.35, “Provisioning”, on page 194.

4.3.9.2.v Tracking Dynamic Resources

You can use dynamic PBS resources to represent elements that are outside of the control of PBS, typically for application
licenses and scratch space. You can represent elements that are available to the entire partition or PBS complex as
server-level resources, or elements that are available at a specific host or hosts as host-level resources. For an example of
configuring a server-level dynamic resource, see section 5.14.3.1.iii, “Example of Configuring Dynamic Server-level
Resource”, on page 264. For an example of configuring a dynamic host-level resource, see section 5.14.4.1.i, “Example
of Configuring Dynamic Host-level Resource”, on page 265.

For a complete description of how to create and use dynamic resources, see section 5.14, “Custom Resources”, on page
252.

4.3.9.3 Optimizing Resource Use by Job Placement

4.3.9.3.i Sending Jobs to Partition or Complex Having Lightest Workload

You can set up cooperating PBS partitions or complexes that automatically run jobs from each other's queues. This
allows you to dynamically balance the workload across multiple, separate partitions or complexes. See section 4.9.31,
“Peer Scheduling”, on page 163.
PBS Professional 2022.1 Administrator’s Guide AG-79

Chapter 4 Scheduling
4.3.9.3.ii Using Idle Workstations

You can run jobs on workstations whenever they are not being used by their owners. PBS can monitor workstations for
user activity or load, and run jobs when those jobs won't interfere with the user's operation. See section 4.9.9, “Using
Idle Workstation Cycle Harvesting”, on page 116.

4.3.9.3.iii Avoiding Highly-loaded Vnodes

You can tell PBS not to run jobs on vnodes that are above a specified load. This is in addition to the default behavior,
where PBS does not run jobs that request more of a resource than it thinks each vnode can supply. See section 4.9.27,
“Using Load Balancing”, on page 158.

4.3.9.4 Resource Efficiency Optimization Tools

The following is a list of scheduling tools that you can use to optimize how resources are used:

• Backfilling around most important job(s): PBS can place small jobs in otherwise-unused blocks of resources. See
section 4.9.3, “Using Backfilling”, on page 108.

• Dependencies: Users can specify requirements that must be met by previous jobs in order for a given job to run. See
section 4.9.11, “Dependencies”, on page 128.

• Estimating start time of jobs: PBS can estimate when jobs will start, so that users can be informed. See section
4.9.15, “Estimating Job Start Time”, on page 132.

• Provisioning vnodes with required environments: PBS can provision vnodes with the environments that jobs require.
See section 4.9.35, “Provisioning”, on page 194.

• Using dynamic resources: PBS can track resources such as scratch space and licenses. See section 4.9.12, “Dynamic
Resources”, on page 128.

• Idle workstation cycle harvesting: PBS can take advantage of unused workstation CPU time. See section 4.9.9,
“Using Idle Workstation Cycle Harvesting”, on page 116.

• Peer scheduling: PBS partitions and complexes can exchange jobs. See section 4.9.31, “Peer Scheduling”, on page
163.

• Load balancing: PBS can place jobs so that machines have balanced loads. See section 4.9.27, “Using Load Balanc-
ing”, on page 158.

4.3.10 Overrides

Overrides are the techniques you use to override the specified scheduling behavior of PBS.
AG-80 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.3.10.1 Why and How to Override Scheduling

• If you need to run a job immediately, you can tell PBS to run a job now. You can optionally specify the vnodes and
resources to run it. See section 4.9.30.1, “Run a Job Manually”, on page 161.

• If you need to prevent a job from running, you can tell PBS to place a hold on a job. See section 4.9.30.2, “Hold a
Job Manually”, on page 162.

• If you need to change how the formula computes job priority, you can make on-the-fly changes to how the formula is
computed. See section 4.9.30.5, “Change Formula On the Fly”, on page 163.

• If you need a block of time where you can control what's running, for example for upgrading PBS, you can create
dedicated time. See section 4.9.30.6, “Using Dedicated Time”, on page 163.

• If you need to submit jobs at a certain time, you can use cron to run jobs. See section 4.9.30.7, “Using cron Jobs”,
on page 163.

• If you need to change job resource requests, programs, environment, or attributes, you can use hooks to examine
jobs and alter their characteristics. See the PBS Professional Hooks Guide.

• If you need to prevent a scheduler from calendaring jobs, you can set their topjob_ineligible attribute to True. See
section 4.9.17, “Calendaring Jobs”, on page 137.

4.4 Choosing a Policy

4.4.1 Overview of Kinds of Policies

You can tune PBS to produce any of a wide selection in scheduling behaviors. You can choose from a wide variety of
behaviors for each sub-goal, resulting in many possible scheduling policies. However, policies can be grouped into the
following kinds:

• FIFO, where you essentially run jobs in the order in which they were submitted; see section 4.4.2, “FIFO: Submis-
sion Order”, on page 81

• According to user or group priority, where the job's priority is determined by the owner's priority; see section 4.4.3,
“Prioritizing Jobs by User, Project or Group”, on page 82

• According to resource allocation rules, where jobs are run so that they use resources following a set of rules for how
resources should be awarded to users or groups; see section 4.4.4, “Allocating Resources by User, Project or Group”,
on page 82

• According to the size of the job, for example measured by CPU or memory request; see section 4.4.5, “Scheduling
Jobs According to Size Etc.”, on page 84

• By setting up time slots for specific uses; see section 4.4.6, “Scheduling Jobs into Time Slots”, on page 86

4.4.2 FIFO: Submission Order

If you want jobs to run in the order in which they are submitted, use FIFO. You can use FIFO across the entire partition
or complex, or within each queue.

If it's important that jobs run exactly in submission order, use FIFO with strict ordering. However, if you don't want
resources to be idle while a top job is stuck, you can use FIFO with strict ordering and backfilling.

To run jobs in submission order, see section 4.9.20.1, “Configuring Basic FIFO Scheduling”, on page 149 .

To run jobs in submission order across the entire partition or complex, see section 4.9.20.2, “FIFO for Entire Partition Or
Complex”, on page 149.
PBS Professional 2022.1 Administrator’s Guide AG-81

Chapter 4 Scheduling
To run jobs in submission order, examining queues in order of queue priority, see section 4.9.20.3, “Queue by Queue
FIFO”, on page 150.

To run jobs in submission order, with strict ordering, see section 4.9.20.4, “FIFO with Strict Ordering”, on page 150.

To run jobs in submission order, with strict ordering and backfilling, see section 4.9.20.5, “FIFO with Strict Ordering and
Backfilling”, on page 150.

4.4.3 Prioritizing Jobs by User, Project or Group

If you need to run jobs from some users, groups, or projects before others, you can prioritize jobs using the following
techniques:

• Routing each entity's jobs to its own execution queue, assigning the queue the desired priority, and examining jobs
queue by queue. See the following:

• For routing: section 2.3.6, “Routing Queues”, on page 27

• For setting queue priority: section 2.3.5.3, “Prioritizing Execution Queues”, on page 27

• For examining jobs queue by queue: section 4.9.4, “Examining Jobs Queue by Queue”, on page 112

• Routing each entity's jobs to its own execution queue, where the jobs inherit a custom resource that you use in the
job sorting formula. See the following:

• For routing: section 2.3.6, “Routing Queues”, on page 27

• For inherited resources: section 10.3, “Allocating Resources to Jobs”, on page 455

• For the job sorting formula: section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page
150

• Using a hook to allocate a custom resource to each job, where the hook sets the value according to the priority of the
job's owner, group, or project, then using the resource in the job sorting formula. See the following:

• For hooks: the PBS Professional Hooks Guide

• For custom resources: section 5.14, “Custom Resources”, on page 252

• For the job sorting formula: section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page
150

• Assigning a greater fairshare allocation in the fairshare tree to the users or groups whose jobs must run first, and run-
ning jobs according to entity shares. See the following:

• For fairshare: section 4.9.19, “Using Fairshare”, on page 138

• For entity shares: section 4.9.14, “Sorting Jobs by Entity Shares (Was Strict Priority)”, on page 132

4.4.4 Allocating Resources by User, Project or Group

When you want to divide up hardware usage among users, groups, or projects, you can make sure you allocate resources
along those lines. You can do this in the following ways:

• Allocate portions of the entire partition or complex to each entity; see section 4.4.4.1, “Allocating Portions of Parti-
tion Or Complex”, on page 83

• Allocate portions of all machines or clusters to each entity, or use controlled allocation for some hardware, with a
free-for-all elsewhere; see section 4.4.4.2, “Allocating Portions of Machines or Clusters”, on page 83

• Lock entities into using specific hardware; see section 4.4.4.3, “Locking Entities into Specific Hardware”, on page
84
AG-82 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.4.4.1 Allocating Portions of Partition Or Complex

4.4.4.1.i Allocating Specific Amounts

To allocate specific amounts of resources across the entire partition or complex, you can use resource limits at the server.
These limits set the maximum amount that can be used, ensuring that projects, users, or groups stay within their bounds.
You can set a limit for each resource, and make it different for each project, user, and group. You can set a different limit
for each project, user, and group, for each resource.

For example, you can set a limit of 48 CPUs in use at once by most groups, but give groupA a limit of 96 CPUs. You can
give each individual user a limit of 8 CPUs, but give UserA a limit of 10 CPUs, and UserB a limit of 4 CPUs.

To set limits for usage across the entire partition or complex, set the limits at the server.

See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.

4.4.4.1.ii Allocating Percentages

To allocate a percentage of the resources being used in the partition managed by a scheduler, you can use fairshare. Fair-
share tracks a moving average of resource usage, so it takes past use into account. You choose which resources to track.
You can tune the influence of past usage.

To use fairshare across the entire partition or complex, make sure that both by_queue and round_robin are False.

Fairshare is described in section 4.9.19, “Using Fairshare”, on page 138.

4.4.4.2 Allocating Portions of Machines or Clusters

You can allocate fixed amounts of a machine or groups of machines. You can do this for as many machines as you want.
For example, on HostA, you can give GroupA 100 CPUs, GroupB 150 CPUs, and GroupC 50 CPUs, while at HostB,
GroupA gets 10, GroupB gets 8, and GroupC gets 25.

To allocate fixed portions of a specific machine or group of machines, you use these tools in combination:

• Create an execution queue for this machine; see section 2.3.3, “Creating Queues”, on page 25.

• Route jobs belonging to the users or groups who share this machine into a queue. Each machine or cluster that
requires controls gets its own queue. See section 4.9.39, “Routing Jobs”, on page 204.

• Associate the queue with the vnodes in question; see section 4.9.2, “Associating Vnodes with Queues”, on page 106.

• Set a limit at the queue for each resource that you care about, for each project, user, or group. These limits control
use of the vnodes associated with the queue only. See section 5.15.1, “Managing Resource Usage By Users, Groups,
and Projects, at Server & Queues”, on page 283.

You can prevent unauthorized usage by setting generic project, user, and group limits for the machine's queue to zero.
However, you probably don't want users to submit their jobs to a queue where they are not allowed to run, only to have
those jobs languish. You can avoid this by doing the following:

• Setting up a routing queue; see section 2.3.6, “Routing Queues”, on page 27.

• Making the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

• Making the routing queue the only queue that accepts job submission: set from_route_only to True on execution
queues tied to hardware. See section 2.3.5.1, “Where Execution Queues Get Their Jobs”, on page 25.

• Using queue access control to limit which jobs are routed into the execution queue; see section 2.3.6.5, “Using
Access Control to Route Jobs”, on page 32.

You can either set up allocations for every machine, or you can set up allocations for only some machines, leaving a
free-for-all for the others. If you want access to be unrestricted for some machines, do not set limits at the server.
PBS Professional 2022.1 Administrator’s Guide AG-83

Chapter 4 Scheduling
4.4.4.3 Locking Entities into Specific Hardware

You can send all jobs from some projects, users, or groups to designated hardware, essentially limiting them to a sand-
box. To do this, do the following:

• Create an execution queue for the sandbox hardware; see section 2.3.3, “Creating Queues”, on page 25.

• Create at least one other execution queue; see section 2.3.3, “Creating Queues”, on page 25.

• Create a routing queue; see section 2.3.3, “Creating Queues”, on page 25.

• Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

• Force all users to submit jobs to the routing queue: set from_route_only to True on all other queues. See section
2.3.5.1, “Where Execution Queues Get Their Jobs”, on page 25.

• Use queue access control to route according to user or group: route jobs from the controlled users or groups into the
sandbox queue only. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page 32.

• Use a job submission hook to route according to project: route the jobs from the desired project(s) to the sandbox
queue. See the PBS Professional Hooks Guide.

• Associate the sandbox queue with the sandbox vnodes. See section 4.9.2, “Associating Vnodes with Queues”, on
page 106.

Note that you can either allow all projects, users, or groups into the sandbox queue, or allow only the controlled projects,
users, or groups into the sandbox queue.

4.4.5 Scheduling Jobs According to Size Etc.

You may need to treat jobs differently depending on their size or other characteristics. For example, you might want to
run jobs differently depending on the number of CPUs or amount of memory requested by the job, or whether the job
requests GPUs.

• Give special priority to a group of jobs

• Run a group of jobs on designated hardware

• Run a group of jobs in designated time slots: reservations, dedicated time, and primetime or non-primetime

There are two main approaches to doing this. You can route jobs into queues, or you can use hooks to set values. Here is
an outline:

• Route certain kinds of jobs into their own queues, in order to treat each kind differently. This works for priority,
hardware, and time slots. See section 4.4.5.1, “Special Treatment via Routing”, on page 84

• Route each kind to its own queue, using queue-based routing or a submission hook;

• Use queue-based methods to set job priority or to run the jobs on certain hardware or in certain time slots

• Use hooks to set priority for jobs or to set a custom resource that will send jobs to certain hardware. This does not
work for time slots. See section 4.4.5.2, “Special Treatment via Hooks”, on page 86.

• Use a submission hook to set each job's Priority attribute, or set a value for a custom resource used in the job
sorting formula

• Use a submission hook to set a custom host-level resource value for each job, where the value matches the value
at the desired hardware

4.4.5.1 Special Treatment via Routing

Use a routing queue or a hook to route jobs into a special queue, where the jobs are given special priority, or are run on
special hardware, or are run in special time slots.
AG-84 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.4.5.1.i Routing via Queues

• Create your destination queues. See section 2.3.3, “Creating Queues”, on page 25.

• Set limits at the destination queues, so that each queue receives the correct jobs. See section 2.3.6.4, “Using
Resources to Route Jobs Between Queues”, on page 28.

• Create a routing queue, and set its destination queues. See section 2.3.6, “Routing Queues”, on page 27.

• Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

4.4.5.1.ii Using Hooks to Route Jobs

You can use a submission hook to move jobs into the queues you want. See section 4.9.39.2.ii, “Hooks as Mechanism to
Move Jobs”, on page 206.

4.4.5.1.iii Giving Routed Jobs Special Priority

You can give routed jobs special priority in the following ways:

• Have the jobs inherit a custom resource from the special queue, and use this resource in the job sorting formula.

• For how to have jobs inherit custom resources, see section 10.3, “Allocating Resources to Jobs”, on page 455.

• For how to use the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 150.

• Give the queue itself special priority, and use queue priority in the job sorting formula.

• For how to assign priority to queues, see section 2.3.5.3, “Prioritizing Execution Queues”, on page 27

• For how to use the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 150.

4.4.5.1.iv Running Jobs on Special Vnodes

Now that the special jobs are routed to a special queue, associate that queue with the special vnodes. See section 4.9.2,
“Associating Vnodes with Queues”, on page 106.

4.4.5.1.v Running Jobs in Special Time Slots

If you want to run jobs during dedicated time, route the jobs into one or more dedicated time queues. In the same way,
for primetime or non-primetime, route jobs into primetime or non-primetime queues. You can also route jobs into reser-
vation queues for reservations that you have created for this purpose.

For using dedicated time, see section 4.9.10, “Dedicated Time”, on page 127

For using primetime and non-primetime, see section 4.9.34, “Using Primetime and Holidays”, on page 189

For using reservations, see section 4.9.37, “Reservations”, on page 195
PBS Professional 2022.1 Administrator’s Guide AG-85

Chapter 4 Scheduling
4.4.5.2 Special Treatment via Hooks

4.4.5.2.i Setting Job Priority Via Hook

You can set a job's Priority attribute using a hook. Note that users can qalter the job's Priority attribute. Use a job
submission hook to set the job priority, by doing one of the following:

• Set a custom numeric resource for the job, and use the resource in the job sorting formula

• For how to use hooks, see the PBS Professional Hooks Guide

• For how to use the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 150.

• Set the job's Priority attribute, and sort jobs on a key, where the key is the job's Priority attribute.

• For how to set job attributes, see the PBS Professional Hooks Guide

• For how to sort jobs on a key, see section 4.9.45, “Sorting Jobs on a Key”, on page 219

4.4.5.2.ii Routing Jobs to Hardware via Hooks

You can send jobs to particular hardware without using a particular queue, by using a hook. See section 4.9.39.4.i,
“Using Hooks to Tag Jobs”, on page 207.

4.4.6 Scheduling Jobs into Time Slots

You can schedule jobs in time slots in the following ways:

• Set aside time slots for specific entities; see section 4.4.6.1, “Setting Aside Time Slots for Entities”, on page 86

• Lock entities into specific time slots; see section 4.4.6.2, “Locking Entities into Time Slots”, on page 87

4.4.6.1 Setting Aside Time Slots for Entities

You can set aside time slots that are reserved exclusively for certain users or groups. You can use reservations, dedicated
time, primetime, or non-primetime.

4.4.6.1.i Reservations

Reservations set aside one or more blocks of time on the requested resources. Users can create their own reservations, or
you can create them and set their access control to allow only specified users to submit jobs to them. See section 4.9.37,
“Reservations”, on page 195.

4.4.6.1.ii Dedicated Time

During dedicated time, the only jobs allowed to run are those in dedicated queues. The drawback to dedicated time is
that it applies to the entire partition or complex. If you want to set aside one or more dedicated time slots for a user or
group, do the following:

• Create a dedicated queue. See section 2.3.5.2.i, “Dedicated Time Queues”, on page 26.

• Define dedicated time. See section 4.9.10, “Dedicated Time”, on page 127.

• Set access control on the dedicated queue so that only the particular users or groups you want can submit jobs to the
queue. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page 32.

• If you want to limit access on a dedicated queue to a specific project, set the generic limit for queued jobs for
projects at that queue to zero, and then set the individual limit for the specific project higher.
AG-86 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.4.6.1.iii Non-primetime

You can set up primetime and non-primetime so that one of them, for example, non-primetime, is used as a special time
slot allocated to particular users or groups. The advantage of using non-primetime is that you can set up a separate
scheduling policy for it, for example, using fairshare during non-primetime and sorting jobs on a key during primetime.
Note that the formula, if defined, is in force all of the time. To use non-primetime, do the following:

• Create a non-primetime queue; see section 2.3.3, “Creating Queues”, on page 25 and section 2.3.5.2.ii, “Primetime
and Non-Primetime Queues”, on page 26.

• Define primetime and non-primetime; see section 4.9.34, “Using Primetime and Holidays”, on page 189.

• Set access control on the non-primetime queue so that only the particular users or groups you want can submit jobs
to the queue. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page 32.

• Make sure that the scheduling policy you want is in force during non-primetime. See section 4.9.34.1, “How Prime-
time and Holidays Work”, on page 189.

4.4.6.2 Locking Entities into Time Slots

You can make all jobs from some users or groups run during designated time slots. You can run them during a reserva-
tion, dedicated time, or non-primetime.

4.4.6.2.i Locking Entities into Reservations

To allow a user to submit jobs only into a reservation, do the following:

• Create a reservation for the resources and time(s) you want the controlled user(s) to use. When creating the reserva-
tion, set access control to allow the controlled user(s). See section 4.9.37, “Reservations”, on page 195 and section
11.3.8.3, “Setting and Changing Reservation Access”, on page 502.

• Set access control on all queues except the reservation's queue to deny the controlled user(s); see section 2.3.6.5,
“Using Access Control to Route Jobs”, on page 32.

4.4.6.2.ii Locking Entities into Dedicated Time

You can create a dedicated time queue, and send all jobs from controlled projects, users, or groups to that queue. You can
route their jobs to it, and you can allow them to submit directly to it. To lock one or more projects, users, or groups into
one or more dedicated time slots, do the following:

• Create a dedicated time queue; see section 2.3.3, “Creating Queues”, on page 25 and section 2.3.5.2.i, “Dedicated
Time Queues”, on page 26.

• Create at least one other execution queue; see section 2.3.3, “Creating Queues”, on page 25.

• Create a routing queue; see section 2.3.3, “Creating Queues”, on page 25.

• Prevent controlled users from submitting to non-dedicated time execution queues: set from_route_only to True on
the non-dedicated time execution queues. See section 2.3.5.1, “Where Execution Queues Get Their Jobs”, on page
25.

• Use queue access control to allow jobs from the controlled users or groups into the dedicated time queue only. See
section 2.3.6.5, “Using Access Control to Route Jobs”, on page 32

• Use a job submission hook to route jobs from controlled projects into the dedicated time queue. See the PBS Profes-
sional Hooks Guide

• .Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

Note that you can either allow all users into the dedicated time queue, or allow only the controlled users into the dedi-
cated time queue.
PBS Professional 2022.1 Administrator’s Guide AG-87

Chapter 4 Scheduling
4.4.6.2.iii Locking Entities into Non-primetime

You can create a non-primetime queue, and send all jobs from controlled users, groups, or projects to that queue. You
can route their jobs to it, and you can allow them to submit directly to it. To lock one or more users, groups, or projects
into one or more non-primetime slots, do the following:

• Create a non-primetime queue; see section 2.3.3, “Creating Queues”, on page 25 and section 2.3.5.2.ii, “Primetime
and Non-Primetime Queues”, on page 26.

• Create at least one other execution queue; see section 2.3.3, “Creating Queues”, on page 25.

• Create a routing queue; see section 2.3.3, “Creating Queues”, on page 25.

• Prevent controlled users from submitting to primetime execution queues: set from_route_only to True on the prime-
time execution queues. See section 2.3.5.1, “Where Execution Queues Get Their Jobs”, on page 25.

• Make the routing queue be the default queue:
Qmgr: set server default_queue = <routing queue name>

• Use queue access control to allow jobs from the controlled users or groups into the non-primetime queue only. See
section 2.3.6.5, “Using Access Control to Route Jobs”, on page 32.

• Use a job submission hook to route jobs from controlled projects into the non-primetime queue. See the PBS Profes-
sional Hooks Guide

• Define primetime and non-primetime; see section 4.9.34, “Using Primetime and Holidays”, on page 189.

• Make sure that the scheduling policy you want is in force during non-primetime. See section 4.9.34.1, “How Prime-
time and Holidays Work”, on page 189.

Note that you can either allow all users into the non-primetime queue, or allow only the controlled users into the
non-primetime queue.

4.4.7 Default Scheduling Policy

The default scheduling policy is determined by the default settings for all of the attributes, parameters, etc. that determine
a scheduler's behavior. For a list of all of these elements, see section 4.5.1, “Configuring a Scheduler”, on page 91.

The default behavior of a scheduler is the following:

• A scheduler matches jobs with available resources. This means that a scheduler places each job only where that job
has enough resources to run. See section 4.9.28, “Matching Jobs to Resources”, on page 158.

• A scheduler will not over-allocate the resources that are listed in the scheduler's resources parameter. The defaults
for these are ncpus, mem, arch, host, vnode, aoe. See section 4.9.28.1, “Scheduling on Consumable Resources”,
on page 158.

• A scheduler sorts vnodes according to its node_sort_key parameter, whose default setting is the following:
node_sort_key: "sort_priority HIGH all"

This means that vnodes are sorted by the value of their priority attribute, with high-priority vnodes used first. A
scheduler places jobs first on vnodes that are first in the sorted list.

Note that all vnodes have the same default priority upon creation, so the default sorted order for vnodes is undefined.
AG-88 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
See section 4.9.49, “Sorting Vnodes on a Key”, on page 223.

• Queues are sorted according to the value of their priority attribute, so that queues with a higher priority are consid-
ered before those with a lower priority. See section 2.3.5.3, “Prioritizing Execution Queues”, on page 27.

• Jobs are considered according to the priority of their queues. A scheduler runs all of the jobs that it can from the
highest-priority queue before moving to the next queue, and so on. See section 4.9.4, “Examining Jobs Queue by
Queue”, on page 112.

• Within each queue, jobs are considered in submission order.

• Jobs in an express queue are placed in the express_queue preemption priority level. They are also placed in the
Express execution priority class. The default priority for a queue to be an express queue is 150. See section
2.3.5.3.i, “Express Queues”, on page 27.

• Queued jobs are sorted according to their priority. Special jobs are all prioritized ahead of normal jobs, without
regard to the queue in which they reside. The order for job priority for special jobs, highest first, is reservation jobs,
jobs in express queues, preempted jobs. After this, a scheduler looks at normal jobs, queue by queue. All jobs in
express queues, and all preempted jobs are considered before a scheduler looks at the individual queues.

See section 4.9.16, “Calculating Job Execution Priority”, on page 135.

• A scheduler will preempt lower-priority jobs in order to run higher-priority jobs (preemptive_sched is True by
default). By default, it has two levels of job priority, express_queue, and normal_jobs, where express_queue
jobs can preempt normal_jobs. This is set in the scheduler's preempt_prio attribute.

When a scheduler chooses among jobs of the same priority for a job to preempt, it uses the only setting for
preempt_sort, which is min_time_since_start, choosing jobs that have been running for the shortest time.

When a scheduler chooses how to preempt a job, it uses the default setting for its preempt_order attribute, which is
SCR, meaning that first it will attempt suspension, then checkpointing, then if necessary requeueing.

See section 4.9.33, “Using Preemption”, on page 179.

• A scheduler will do its best to backfill smaller jobs around the job it has decided is the most important job. See sec-
tion 4.9.3, “Using Backfilling”, on page 108.

• Primetime by default is 24/7. Any holiday is considered non-primetime. You can define primetime and holidays in
the file <sched_priv directory>/holidays. These dates should be adjusted yearly to reflect your local hol-
idays. See section 4.9.34, “Using Primetime and Holidays”, on page 189.

• A scheduler runs every 10 minutes unless a new job is submitted or a job finishes execution. See section 4.5.6, “The
Scheduling Cycle”, on page 98.

• In TPP mode, a scheduler runs with the throughput_mode scheduler attribute set to True by default, so the sched-
uler runs asynchronously, and doesn't wait for each job to be accepted by MoM, which means it also doesn't wait for
an execjob_begin hook to finish. Especially for short jobs, this can give better scheduling performance.

When throughput_mode is True, jobs that have been changed can run in the same scheduling cycle in which they
were changed, for the following changes:

• Jobs that are qaltered

• Jobs that are changed via server_dyn_res scripts

• Jobs that are peered to a new queue

See “Scheduler Attributes” on page 298 of the PBS Professional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-89

Chapter 4 Scheduling
4.4.8 Examples of Workload and Policy

• If you need to have high-priority jobs run soon, and nothing distinguishes the high-priority jobs from the rest:

• Create advance reservations for the high-priority jobs, and have users submit those jobs to the reservations; see
section 4.9.37, “Reservations”, on page 195

• If you want to run jobs in submission order:

• FIFO; see section 4.9.20, “FIFO Scheduling”, on page 149

• If you have low-priority jobs that should run only when other jobs don't need the resources:

• Set up an anti-express queue; see section 4.9.1, “Anti-Express Queues”, on page 105

• If you have a mix of jobs, and want to run big jobs first:

• Sort jobs on a key, using ncpus as the key, to run big jobs first; see section 4.4.5, “Scheduling Jobs According to
Size Etc.”, on page 84

• If you have a mix of jobs, and want to give big jobs high priority, but avoid having idle resources:

• Sort jobs on a key, using ncpus as the key, to run big jobs first; see section 4.4.5, “Scheduling Jobs According to
Size Etc.”, on page 84

• Use backfilling; see section 4.9.3, “Using Backfilling”, on page 108

• If you want to have all users start about the same number of jobs:

• Use round robin, give each user their own queue, and give each queue the same priority; see section 4.9.38,
“Round Robin Queue Selection”, on page 203

• If you want to always give each user access to a certain amount of a resource, but allow more if no one else is using
it:

• Use soft limits for the amount each user can use; see section 5.15.1, “Managing Resource Usage By Users,
Groups, and Projects, at Server & Queues”, on page 283 and section 4.9.33, “Using Preemption”, on page 179

• If your partition or site has more than one funding source:

• See section 4.4.4, “Allocating Resources by User, Project or Group”, on page 82

• If you have lots of users in a partition or complex:

• Use resource limits; see section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server &
Queues”, on page 283, or

• Use fairshare; see section 4.9.19, “Using Fairshare”, on page 138

• If you have jobs that must run at the end of the day:

• Use dependencies for end-of-day accounting; see section 4.9.11, “Dependencies”, on page 128

• If you need to ensure that jobs run in certain hours on desktops:

• Use cycle harvesting; see section 4.9.9, “Using Idle Workstation Cycle Harvesting”, on page 116, or

• Use primetime & non-primetime for nighttime; see section 4.9.34, “Using Primetime and Holidays”, on page
189

• If you want to be sure a job will run:

• Create an advance reservation; see section 4.9.37, “Reservations”, on page 195

• If you have more than one partition or complex, and you want to balance the workload across the partitions or com-
plexes:

• Use peer scheduling; see section 4.9.31, “Peer Scheduling”, on page 163

• If you have some jobs that should prefer to run on one set of vnodes, and other jobs that should prefer to run on
another set of vnodes, but if the preferred vnodes are busy, a job can run on the non-preferred vnodes:

• Use peer scheduling. Set up two partitions or complexes, give the pulling queues low priority, and use queue
AG-90 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
priority in the job sorting formula. See section 4.9.31, “Peer Scheduling”, on page 163, section 2.3.5.3, “Priori-
tizing Execution Queues”, on page 27, and section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 150. You can use a routing queue to initially send jobs to the correct partition or complex. See
section 2.3.6, “Routing Queues”, on page 27

• If you have two (or more) sets of vnodes, and jobs should run on one set or the other, but not both. Additionally, jobs
should not have to request where they run. For example, one set of vnodes is new, and one is old:

• Use a routing queue and two execution queues. Associate each execution queue with one set of vnodes. Put the
execution queue for the preferred set of vnodes first in the routing list, but put a limit on the number of queued
jobs in the execution queues, so that both queues will fill up. Otherwise the routing queue will preferentially fill
the first in its routing list. See section 2.3.6, “Routing Queues”, on page 27, and section 4.9.2, “Associating
Vnodes with Queues”, on page 106

• If you need to apportion a single vnode or cluster according to ownership:

• See section 4.4.4, “Allocating Resources by User, Project or Group”, on page 82

• If you have more than one high-priority queue, and at least one low-priority queue, and you want all jobs in high-pri-
ority queues to be considered as one group, and run in submission order:

• Use the job sorting formula to sort jobs on queue priority:

set server job_sort_formula = queue_priority

• Give all queues whose jobs should be considered together the same priority

• Set the by_queue scheduler attribute to False

• If you want to place jobs on the vnodes with the fewest CPUs first, saving bigger vnodes for larger jobs:

• Sort vnodes so that those with fewer CPUs come first:

node_sort_key: "ncpus LOW"

4.5 About Schedulers

Each scheduler, pbs_sched, implements its own scheduling policy.

4.5.1 Configuring a Scheduler

4.5.1.1 Where a Scheduler Gets Its Information

Each scheduler has its own sched_priv directory, where it keeps scheduler-specific files. For a multisched, this is
$PBS_HOME/sched_priv_<scheduler name>; for the default scheduler, it is always $PBS_HOME/sched_priv/.

The behavior of a scheduler is controlled by the information provided by the following sources:

PBS_est

Hook that runs estimator process which calculates estimated start time and vnodes for jobs. See section 4.9.15,
“Estimating Job Start Time”, on page 132.

<sched_priv directory>/resource_group

Contains the description of the fairshare tree. Created by you. Can be edited. Read on startup and HUP of
scheduler.

<sched_priv directory>/usage

Contains the usage database. Do not edit. Instead, use the pbsfs command while a scheduler is stopped; see
“pbsfs” on page 32 of the PBS Professional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-91

Chapter 4 Scheduling
<sched_priv directory>/sched_config

Contains scheduler configuration options, also called scheduler parameters, e.g. fairshare_decay_time,
job_sort_key. Read on startup and HUP.

Can be edited. Each entry must be a single, unbroken line. Entries must be double-quoted if they contain
whitespace.

See “Scheduler Parameters” on page 251 of the PBS Professional Reference Guide.

<sched_priv directory>/dedicated_time

Contains definitions of dedicated time. Can be edited. Read on startup and HUP.

<sched_priv directory>/holidays

Where you define primetime, non-primetime, and holidays. Can be edited. Read on startup and HUP.

/etc/pbs.conf

Contains scheduler parameters:

PBS_DAEMON_SERVICE_USER
Sets the username under which scheduler(s) run. Default: root

PBS_SCHED_THREADS
Maximum number of scheduler threads. Scheduler automatically caps number of threads at the number of
cores (or hyperthreads if applicable), regardless of value of this variable.

Overridden by pbs_sched -t option and PBS_SCHED_THREADS environment variable.

Default: 1

Options to pbs_sched command

Control some scheduler behavior. Set on invocation. See “pbs_sched” on page 105 of the PBS Professional
Reference Guide.

Scheduler attributes

Control some scheduler behavior. Can be set using qmgr. Read every scheduling cycle. See “Scheduler
Attributes” on page 298 of the PBS Professional Reference Guide.

Server attributes

Several server attributes control scheduler behavior. Can be set using qmgr. The following table lists the
server attributes that affect scheduling, along with a brief description. Read every scheduling cycle.

Some limit attributes are marked as "old". These are incompatible with, and are replaced by, the new limit
attributes described in section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server &
Queues”, on page 283.

For a complete description of each attribute, see “Server Attributes” on page 281 of the PBS Professional Refer-
ence Guide.

Table 4-1: Server Attributes Involved in Scheduling

Attribute Effect

backfill_depth Specifies backfilling behavior. Sets the number of jobs that are to be
backfilled around.

default_queue Specifies queue for jobs that don't request a queue

eligible_time_enable Enables accruing wait time for jobs
AG-92 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
est_start_time_freq Obsolete. Not used. Interval at which PBS calculates estimated
start times and vnodes for all jobs.

job_sort_formula Formula for computing job priorities.

max_group_res Old. The maximum amount of the specified resource that any single
group may consume in this PBS complex.

max_group_res_soft Old. The soft limit for the specified resource that any single group
may consume in this complex.

max_group_run Old. The maximum number of jobs owned by the users in one group
allowed to be running within this complex at one time.

max_group_run_soft Old. The maximum number of jobs owned by the users in one group
allowed to be running in this complex at one time.

max_queued The maximum number of jobs allowed to be queued or running in
the partition managed by a scheduler. Can be specified for users,
groups, or all.

max_queued_res.<resource
name>

The maximum amount of the specified resource allowed to be allo-
cated to jobs queued or running in the partition managed by a sched-
uler. Can be specified for users, groups, or all.

max_run The maximum number of jobs allowed to be running in the partition
managed by a scheduler. Can be specified for users, groups, or all.

max_run_res.<resource name> The maximum amount of the specified resource allowed to be allo-
cated to jobs running in the partition managed by a scheduler. Can
be specified for users, groups, or all.

max_run_res_soft.<resource
name>

Soft limit on the amount of the specified resource allowed to be allo-
cated to jobs running in the partition managed by a scheduler. Can
be specified for users, groups, or all.

max_run_soft Soft limit on the number of jobs allowed to be running in the parti-
tion managed by a scheduler. Can be specified for users, groups,
or all.

max_running Old. The maximum number of jobs allowed to be selected for exe-
cution at any given time, from all possible jobs.

max_user_res Old. The maximum amount within this complex that any single user
may consume of the specified resource.

max_user_res_soft Old. The soft limit on the amount of the specified resource that any
single user may consume within a complex.

max_user_run Old. The maximum number of jobs owned by a single user allowed
to be running within the partition managed by a scheduler at one
time.

max_user_run_soft Old. The soft limit on the number of jobs owned by a single user
that are allowed to be running within this complex at one time.

Table 4-1: Server Attributes Involved in Scheduling

Attribute Effect
PBS Professional 2022.1 Administrator’s Guide AG-93

Chapter 4 Scheduling
Vnode attributes

Several vnode attributes control scheduler behavior. Can be set using qmgr. The following table lists the
vnode attributes that affect scheduling, along with a brief description. Read every scheduling cycle. For a com-
plete description of each attribute, see “Vnode Attributes” on page 320 of the PBS Professional Reference
Guide.

node_fail_requeue Controls whether running jobs are automatically requeued or are
deleted when the primary execution host fails. Number of seconds
to wait after losing contact with the primary execution host MoM
before requeueing or deleting jobs. See “node_fail_requeue” on
page 290 of the PBS Professional Reference Guide.

node_group_enable Specifies whether node grouping is enabled.

node_group_key Specifies the resource to use for node grouping.

resources_available The list of available resources and their values defined on the server.

resources_max The maximum amount of each resource that can be requested by any
single job in this complex, if there is not a resources_max value
defined for the queue at which the job is targeted.

scheduler_iteration deprecated The time between scheduling iterations.

scheduling deprecated Enables scheduling of jobs.

resources_assigned The total of each type of resource allocated to jobs running and exit-
ing in this complex, plus the total of each type of resource allocated
to any started reservations.

Table 4-2: Vnode Attributes Involved in Scheduling

Attribute Effect

current_aoe This attribute identifies the AOE currently instantiated on this vnode

no_multinode_jobs Controls whether jobs which request more than one chunk are allowed to execute on
this vnode

partition The partition to which this vnode is assigned

pcpus The number of physical CPUs on the vnode

priority The priority of this vnode compared with other vnodes

provision_enable Controls whether this vnode can be provisioned

queue deprecated The queue with which this vnode is associated

resources_assigned The total amount of each resource allocated to running and exiting jobs and started
reservations running on this vnode

resources_available The list of resources and the amounts available on this vnode

Table 4-1: Server Attributes Involved in Scheduling

Attribute Effect
AG-94 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
Queue attributes

Several queue attributes control scheduler behavior. Can be set using qmgr. The following table lists the queue
attributes that affect scheduling, along with a brief description. Read every scheduling cycle. For a complete
description of each attribute, see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

sharing Specifies whether more than one job at a time can use the resources of the vnode or
the vnode's host.

state Shows or sets the state of the vnode.

Table 4-3: Queue Attributes Involved in Scheduling

Attribute Effect

backfill_depth Specifies backfilling behavior. Sets the number of jobs that are to be
backfilled around.

enabled Specifies whether this queue accepts new jobs.

from_route_only Specifies whether this queue accepts jobs only from routing queues.

max_array_size The maximum number of subjobs that are allowed in an array job.

max_group_res Old. The maximum amount of the specified resource that any single
group may consume in this queue.

max_group_res_soft Old. The soft limit for the specified resource that any single group
may consume in this queue.

max_group_run Old. The maximum number of jobs owned by the users in one group
allowed to be running within this queue at one time.

max_group_run_soft Old. The maximum number of jobs owned by the users in one group
allowed to be running in this queue at one time.

max_queuable Old. The maximum number of jobs allowed to reside in the queue at
any given time.

max_queued The maximum number of jobs allowed to be queued in or running
from the queue. Can be specified for users, groups, or all.

max_queued_res.<resource
name>

The maximum amount of the specified resource allowed to be allo-
cated to jobs queued in or running from the queue. Can be specified
for users, groups, or all.

max_run The maximum number of jobs allowed to be running from the
queue. Can be specified for users, groups, or all.

max_run_res.<resource name> The maximum amount of the specified resource allowed to be allo-
cated to jobs running from the queue. Can be specified for users,
groups, or all.

Table 4-2: Vnode Attributes Involved in Scheduling

Attribute Effect
PBS Professional 2022.1 Administrator’s Guide AG-95

Chapter 4 Scheduling
max_run_res_soft.<resource
name>

Soft limit on the amount of the specified resource allowed to be allo-
cated to jobs running from the queue. Can be specified for users,
groups, or all.

max_run_soft Soft limit on the number of jobs allowed to be running from the
queue. Can be specified for users, groups, or all.

max_running Old. The maximum number of jobs allowed to be selected for exe-
cution at any given time, from all possible jobs.

max_user_res Old. The maximum amount of the specified resource that the jobs of
any single user may consume.

max_user_res_soft Old. The soft limit on the amount of the specified resource that any
single user may consume in this queue.

max_user_run Old. The maximum number of jobs owned by a single user allowed
to be running from the queue at one time.

max_user_run_soft Old. The soft limit on the number of jobs owned by a single user
that are allowed to be running from this queue at one time.

node_group_key Specifies the resource to use for node grouping.

Priority The priority of this queue compared to other queues of the same type
in this PBS partition or complex.

resources_assigned The total of each type of resource allocated to jobs running and exit-
ing in this queue

resources_available The list of available resources and their values defined on the queue.

resources_max The maximum amount of each resource that can be requested by any
single job in this queue.

resources_min The minimum amount of each resource that can be requested by a
single job in this queue.

route_destinations The list of destinations to which jobs may be routed.

route_held_jobs Specifies whether jobs in the held state can be routed from this
queue.

route_lifetime The maximum time a job is allowed to reside in a routing queue. If a
job cannot be routed in this amount of time, the job is aborted.

route_retry_time Time delay between routing retries. Typically used when the net-
work between servers is down.

route_waiting_jobs Specifies whether jobs whose execution_time attribute value is in
the future can be routed from this queue.

started Specifies whether jobs in this queue can be scheduled for execution.

state_count The number of jobs in each state currently residing in this queue.

Table 4-3: Queue Attributes Involved in Scheduling

Attribute Effect
AG-96 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
List of jobs and server-level resources queried from server

Read every scheduling cycle.

Resources in Resource_List job attribute

Read every scheduling cycle.

List of host-level resources queried from MoMs

Read every scheduling cycle.

4.5.1.2 Reference Copies of Files

PBS is installed with a reference copy of the holidays file in which everything is commented out, in
PBS_EXEC/etc/pbs_holidays.

4.5.2 Making a Scheduler Read its Configuration

If you change a scheduler's configuration file, the scheduler must re-read it for the changes to take effect. To get a sched-
uler to re-read its configuration information, without stopping the scheduler, you can HUP the scheduler:

kill -HUP <scheduler PID>

If you set a scheduler attribute using qmgr, the change takes effect immediately and you do not need to HUP the sched-
uler.

4.5.3 Scheduling on Resources

A scheduler honors all resources listed in the resources: line in <sched_priv directory>/sched_config.
If this line is not present, a scheduler honors all resources, built-in and custom. It is more efficient to list just the
resources that you want a scheduler to schedule on.

4.5.4 Specifying Scheduler Username

By default, the PBS daemons run as root. However, you can specify that the scheduler should run as some other user.
You can do this either by setting PBS_DAEMON_SERVICE_USER in the environment when doing an rpm install, or
by specifying the username in the PBS_DAEMON_SERVICE_USER parameter in /etc/pbs.conf. See section 9.1,
“Specifying Scheduler Username”, on page 420.

4.5.5 Starting, Stopping, and Restarting a Scheduler

4.5.5.1 When and How to Start a Scheduler

During normal operation, startup of the scheduler is handled automatically. The PBS daemons are started automatically
at bootup by the PBS start/stop script. During failover, the secondary server automatically tries to use the primary sched-
uler, and if it cannot, it starts its own scheduler.

To start the default scheduler by hand:

PBS_EXEC/sbin/pbs_sched [options]

See “pbs_sched” on page 105 of the PBS Professional Reference Guide.

For how to start a multisched, see section 4.2.2, “Starting a Multisched”, on page 60.
PBS Professional 2022.1 Administrator’s Guide AG-97

Chapter 4 Scheduling
4.5.5.2 When and How to Stop a Scheduler

You must stop a scheduler for the following operations:

• (Recommended) Using the pbsfs command; see “pbsfs” on page 32 of the PBS Professional Reference Guide.

• Upgrading PBS Professional; see “Upgrading” on page 65 in the PBS Professional Installation & Upgrade Guide.

A scheduler traps signals during the scheduling cycle. You can kill a scheduler at the end of the cycle, or if necessary,
immediately. A scheduler does not write the fairshare usage file when it is killed with -9, but it does write the file when
it is killed without -9.

You must be root on the scheduler's host.

To stop a scheduler at the end of a cycle:

kill <scheduler PID>

To stop a scheduler immediately:

kill -9 <scheduler PID>

4.5.5.3 When and How to Restart a Scheduler

Under most circumstances, when you restart a scheduler, you do not need to specify any options to the pbs_sched
command. See “pbs_sched” on page 105 of the PBS Professional Reference Guide. Start a scheduler this way:

PBS_EXEC/sbin/pbs_sched [options]

4.5.6 The Scheduling Cycle

A scheduler runs in a loop. Inside each loop, it starts up, performs all of its work, and then stops. The scheduling cycle
is triggered by a timer and by several possible events.

When there are no events to trigger the scheduling cycle, it is started by a timer. The time between starts is set in each
scheduler's scheduler_iteration server attribute. The default value is 10 minutes.

The maximum duration of the cycle is set in each scheduler's sched_cycle_length attribute. A scheduler will terminate
its cycle if the duration of the cycle exceeds the value of the attribute. The default value for the length of the scheduling
cycle is 20 minutes. A scheduler does not include the time it takes to query dynamic resources in its cycle measurement.
AG-98 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.5.6.1 Triggers for Scheduling Cycle

A scheduler starts when the following happen:

• The specified amount of time has passed since the previous start

• A job is submitted

• A job finishes execution.

• A new reservation is created

• A reservation starts

• Scheduling is enabled

• The server comes up

• A job is qrun

• A queue is started

• A job is moved to a local queue

• Eligible wait time for jobs is enabled

• A reservation is re-confirmed after being degraded

• A hook restarts the scheduling cycle

4.5.6.1.i Logging Scheduling Triggers

The server triggers scheduler cycles. The reason for triggering a scheduling cycle is logged by the server. See section
9.4.4.2, “Scheduler Commands”, on page 432.

4.5.6.2 Actions During Scheduling Cycle

The following is a list of a scheduler's actions during a scheduling cycle. The list is not in any special order.

• A scheduler gets the state of the world:

• A scheduler queries the server for the following:

• Status of jobs in queues

• All global server, queue, and host-level resources

• Server, queue, vnode, and scheduler attribute settings

• Reservations

• A scheduler runs dynamic server resource queries for resources listed in the "server_dyn_res" line in
sched_config

• A scheduler logs a message at the beginning of each scheduling cycle saying whether it is primetime or not, and
when this period of primetime or non-primetime will end. The message is of this form:
"It is primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS"

or

"It is non-primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS"

• Given scheduling policy, available jobs and resources, and scheduling cycle length, a scheduler examines as many
jobs as it can, and runs as many jobs as it can.

4.5.7 How Available Consumable Resources are Counted

When a scheduler checks for available consumable resources, it uses the following calculation:

resouces_available.<resource name> - total resources assigned for this resource
PBS Professional 2022.1 Administrator’s Guide AG-99

Chapter 4 Scheduling
total resources assigned is the total amount of resources_assigned.<resource name> for all other running and exit-
ing jobs and, at the server and vnodes, for started reservations.

For example, if a scheduler is calculating available memory, and two other jobs are running, each with 2GB of memory
assigned, and resources_available.mem is 8GB, the scheduler figures that it has 4GB to work with.

4.5.8 Improving Scheduler Performance

4.5.8.1 Improving Throughput of Jobs

You can tell a scheduler to run asynchronously, so it doesn't wait for each job to be accepted by MoM, which means it
also doesn't wait for an execjob_begin hook to finish. For short jobs, this can give you better scheduling performance.
To run a scheduler asynchronously, set the scheduler's throughput_mode attribute to True (this attribute is True by
default).

When throughput_mode is True, jobs that have been changed can run in the same scheduling cycle in which they were
changed, for the following changes:

• Jobs that are qaltered (for example, in cron jobs)

• Jobs that are changed via server_dyn_res scripts

• Jobs that are peered to a new queue

throughput_mode
Scheduler attribute. When set to True, this scheduler runs asynchronously and can start jobs faster. Only avail-
able when complex is in TPP mode.

Format: Boolean

Default: True

Example:

qmgr -c "set sched throughput_mode=<Boolean value>"

You can run a scheduler asynchronously only when the complex is using TPP mode. For details about TPP mode, see
“Communication” on page 45 in the PBS Professional Installation & Upgrade Guide. Trying to set the value to a
non-Boolean value generates the following error message:

qmgr obj= svr=default: Illegal attribute or resource value

qmgr: Error (15014) returned from server

4.5.8.2 Limiting Number of Jobs Queued in Execution Queues

If you limit the number of jobs queued in execution queues, you can speed up the scheduling cycle. You can set an indi-
vidual limit on the number of jobs in each queue, or a limit at the server, and you can apply these limits to generic and
individual users, groups, and projects, and to overall usage. You specify this limit by setting the
queued_jobs_threshold queue or server attribute. See section 5.15.1.9, “How to Set Limits at Server and Queues”, on
page 292.

If you set a limit on the number of jobs that can be queued in execution queues, we recommend that you have users sub-
mit jobs to a routing queue only, and route jobs to the execution queue as space becomes available. See section 4.9.39,
“Routing Jobs”, on page 204.
AG-100 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.5.8.3 Setting Number of Scheduler Threads

By default, each scheduler starts one thread on its host. You can modify the number of threads a scheduler starts, either
by starting the scheduler with pbs_sched -t <num threads>, or by setting the PBS_SCHED_THREADS con-
figuration parameter in pbs.conf, or the PBS_SCHED_THREADS environment variable. The pbs_sched -t
option overrides the environment variable, which overrides the value in pbs.conf.

4.6 Using Queues in Scheduling

A queue is a PBS mechanism for holding jobs. PBS has queue-based tools for handling jobs; for example, you can set
queue-based limits on resource usage by jobs. PBS uses queues for a variety of purposes. Before reading this section,
please familiarize yourself with the mechanics of creating and configuring queues, by reading section 2.3, “Queues”, on
page 23.

Queues are used in the following ways:

• Holding submitted jobs

• Prioritizing jobs and ordering job selection:

• PBS provides tools for selecting jobs according to the queue they are in; see section 4.3.5.3, “Using
Queue-based Tools to Prioritize Jobs”, on page 68

• Queue priority can be used in calculating job priority; see section 4.9.36, “Queue Priority”, on page 194

• Providing tools for managing time slots

• Reservations: you can reserve specific resources for defined time slots. Queues are used for advance and stand-
ing reservations; see section 4.9.37, “Reservations”, on page 195, and "Reserving Resources", on page 137 of
the PBS Professional User’s Guide

• Dedicated time; see section 4.9.10, “Dedicated Time”, on page 127

• Primetime and holidays; see section 4.9.34, “Using Primetime and Holidays”, on page 189

• Routing jobs: Many ways to route jobs are listed in section 4.9.39, “Routing Jobs”, on page 204

• Providing tools for managing resources

• Managing resource usage by users; see section 5.15.1, “Managing Resource Usage By Users, Groups, and
Projects, at Server & Queues”, on page 283

• Managing resource usage by jobs; see section 5.15.2, “Placing Resource Limits on Jobs”, on page 300

• Setting resource and job limits used for preemption: you can specify how much of a resource or how many jobs
a user or group can use before their jobs are eligible to be preempted. See section 5.15.1.4, “Hard and Soft Lim-
its”, on page 286 and section 4.9.33, “Using Preemption”, on page 179.

• Assigning default resources to jobs; see section 5.9.4, “Allocating Default Resources to Jobs”, on page 244

4.7 Scheduling Restrictions and Caveats

4.7.1 One Policy Per Scheduler

Each scheduler runs a single scheduling policy.
PBS Professional 2022.1 Administrator’s Guide AG-101

Chapter 4 Scheduling
4.7.2 Jobs that Cannot Run on Current Resources

A scheduler checks to see whether each job could possibly run now, counting resources as if there were no other jobs,
and all current resources could be used by this job. A scheduler counts resources only from those vnodes that are on line.
If a vnode is marked offline, its resources are not counted.

A scheduler determines whether a job cannot run on current resources only when backfilling is used. If backfilling is
turned off, then a scheduler won't determine whether or not a job has requested more than can be supplied by current
resources. It decides only that it can't run now. If the job cannot run now because vnodes are unavailable, there is no log
message. If the job requests more than is available in the partition managed by a scheduler, there is a log message. In
both cases, the job stays queued.

4.7.3 Resources Not Controlled by PBS

When a scheduler runs each cycle, it gets the state of its world, including dynamic resources outside of the control of
PBS. If non-PBS processes are running on the vnodes PBS uses, it is possible that another process will use enough of a
dynamic resource such as scratch space to prevent a PBS job that requested that resource from running.

4.7.4 No Pinning of Processes to Cores

PBS does not pin processes to cores. This can be accomplished in the job launch script using, for example, taskset or
dplace.

4.8 Errors and Logging

4.8.1 Logfile for scheduler

You can set a scheduler's logging to record different kinds of events. See section 9.4.3.1.iii, “Specifying Scheduler Log
Events”, on page 430.

The server triggers scheduler cycles. The reason for triggering a scheduling cycle is logged by the server. See section
9.4.4.2, “Scheduler Commands”, on page 432.

4.9 Scheduling Tools

In this section (all of section 4.9, “Scheduling Tools”, on page 102, and its subsections), we describe each scheduling
tool, including how to configure it.
AG-102 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
The following table lists PBS scheduling tools, with links to descriptions:

Table 4-4: List of Scheduling Tools

Scheduling Tool Incompatible Tools Link

Anti-express queue soft queue limits See section 4.9.1, “Anti-Express Queues”, on page
105

Associating vnodes with queues See section 4.9.2, “Associating Vnodes with
Queues”, on page 106

Backfilling fairshare or preemption
w/backfilling+strict ordering

See section 4.9.3, “Using Backfilling”, on page 108

Examining jobs queue-by-queue round robin, queues as fair-
share entities

See section 4.9.4, “Examining Jobs Queue by
Queue”, on page 112

Checkpointing See section 4.9.5, “Checkpointing”, on page 113

Organizing job chunks See section 4.9.6, “Organizing Job Chunks”, on page
114

cron jobs See section 4.9.7, “cron Jobs”, on page 114

Custom resources See section 4.9.8, “Using Custom and Default
Resources”, on page 115

Cycle harvesting reservations See section 4.9.9, “Using Idle Workstation Cycle
Harvesting”, on page 116

Dedicated time See section 4.9.10, “Dedicated Time”, on page 127

Default resources See section 4.9.8, “Using Custom and Default
Resources”, on page 115

Dependencies See section 4.9.11, “Dependencies”, on page 128

Dynamic resources (server &
host)

See section 4.9.12, “Dynamic Resources”, on page
128

Eligible wait time for jobs See section 4.9.13, “Eligible Wait Time for Jobs”, on
page 128

Entity shares (was strict priority) formula, fairshare, FIFO See section 4.9.14, “Sorting Jobs by Entity Shares
(Was Strict Priority)”, on page 132

Estimating job start time See section 4.9.15, “Estimating Job Start Time”, on
page 132

Calculating job execution priority See section 4.9.16, “Calculating Job Execution Prior-
ity”, on page 135

Express queues See section 4.9.18, “Express Queues”, on page 138

Fairshare strict ordering, using the
fairshare_perc option to
job_sort_key

See section 4.9.19, “Using Fairshare”, on page 138

FIFO See section 4.9.20, “FIFO Scheduling”, on page 149

Formula See section 4.9.21, “Using a Formula for Computing
Job Execution Priority”, on page 150
PBS Professional 2022.1 Administrator’s Guide AG-103

Chapter 4 Scheduling
Gating jobs at server or queue See section 4.9.22, “Gating Jobs at Server or Queue”,
on page 156

Managing application licenses See section 4.9.23, “Managing Application
Licenses”, on page 157

Limits on per-job resource usage See section 4.9.24, “Limits on Per-job Resource
Usage”, on page 157

Limits on project, user, and group
jobs

See section 4.9.25, “Limits on Project, User, and
Group Jobs”, on page 158

Limits on project, user, and group
resource usage

See section 4.9.26, “Limits on Project, User, and
Group Resource Usage”, on page 158

Load balancing node_sort_key using
unused or assigned
options,

See section 4.9.27, “Using Load Balancing”, on page
158

Matching jobs to resources See section 4.9.28, “Matching Jobs to Resources”, on
page 158

Node grouping See section 4.9.29, “Node Grouping”, on page 160

Overrides See section 4.9.30, “Overrides”, on page 161

Peer scheduling See section 4.9.31, “Peer Scheduling”, on page 163

Placement sets See section 4.9.32, “Placement Sets”, on page 167

Preemption cgroups hook cannot be used
with suspend/resume

See section 4.9.33, “Using Preemption”, on page 179

Preemption targets See section 4.9.33.4, “Using Preemption Targets”, on
page 181

Primetime and holidays See section 4.9.34, “Using Primetime and Holidays”,
on page 189

Provisioning See section 4.9.35, “Provisioning”, on page 194

Queue priority See section 4.9.36, “Queue Priority”, on page 194

Advance and standing reserva-
tions

cycle harvesting See section 4.9.37, “Reservations”, on page 195

Round robin queue examination by_queue See section 4.9.38, “Round Robin Queue Selection”,
on page 203

Routing jobs See section 4.9.39, “Routing Jobs”, on page 204

Shared or exclusive vnodes and
hosts

See section 4.9.41, “Shared vs. Exclusive Use of
Resources by Jobs”, on page 209

Shrinking jobs to fit See section 4.9.42, “Using Shrink-to-fit Jobs”, on
page 210

SMP cluster distribution avoid_provision See section 4.9.43, “SMP Cluster Distribution”, on
page 216

Table 4-4: List of Scheduling Tools

Scheduling Tool Incompatible Tools Link
AG-104 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.1 Anti-Express Queues

An anti-express queue is a preemptable low-priority queue, designed for jobs that should run only when no other jobs
need the resources. These jobs are preempted if any other job needs the resources. An anti-express queue has the lowest
priority of all queues in this queue's partition. Jobs in this queue have a soft limit of zero, so that any job running from
this queue is over its queue soft limit.

See section 4.9.33, “Using Preemption”, on page 179.

Soft walltime See section 4.9.44, “Using Soft Walltime”, on page
217.

Sorting jobs using job_sort_key See section 4.9.45, “Sorting Jobs on a Key”, on page
219

Sorting jobs on job's requested
priority

See section 4.9.46, “Sorting Jobs by Requested Prior-
ity”, on page 221

Sorting queues

(deprecated in 13.0)

See section 4.9.47, “Sorting Queues into Priority
Order”, on page 221

Strict ordering Backfilling combined with
fairshare

See section 4.9.48, “Using Strict Ordering”, on page
222

Sorting vnodes on a key smp_cluster_dist set to
other than pack, or load bal-
ancing, with unused or
assigned options to
node_sort_key

See section 4.9.49, “Sorting Vnodes on a Key”, on
page 223

Table 4-4: List of Scheduling Tools

Scheduling Tool Incompatible Tools Link
PBS Professional 2022.1 Administrator’s Guide AG-105

Chapter 4 Scheduling
4.9.1.1 Configuring Anti-express Queues via Priority

To configure an anti-express queue by using queue priority, do the following:

• Create an execution queue called lowprio:
Qmgr: create queue lowprio
Qmgr: set queue lowprio queue_type=e
Qmgr: set queue lowprio started=true
Qmgr: set queue lowprio enabled=true

• By default, all new queues have a priority of zero. Make sure all queues have a value set for priority, and that lowp-
rio has the lowest priority:
Qmgr: set queue workq priority=10

• Set the soft limit on the number of jobs that can run from that queue to zero for all users:
Qmgr: set queue lowprio max_run_soft = "[u:PBS_GENERIC=0]"

• Make sure that jobs over their queue soft limits have lower preemption priority than normal jobs. Edit
<sched_priv directory>/sched_config, and do the following:

• Put "normal_jobs" before "queue_softlimits". For example:

preempt_prio: "express_queue, normal_jobs, queue_softlimits"

• Use preemption:

preemptive_sched: True ALL

4.9.1.2 Configuring Anti-express Queues via Preemption Targets

To use preemption targets, include this queue in Resource_List.preempt_targets for all jobs. You can do this with a
hook, with server and/or queue defaults, or by qaltering the jobs. Set each job's
Resource_List.preempt_targets=queue=<name of anti-express queue>.

4.9.1.3 Anti-express Queue Caveats

If you use soft limits on the number of jobs that users can run at other queues, jobs that are over their soft limits at other
queues will also have the lowest preemption priority.

4.9.2 Associating Vnodes with Queues

You can associate each vnode with one or more queues. When a vnode is associated with a queue, that means it accepts
jobs from that queue only. You can associate one or more vnodes with multiple queues.

You do not need to associate vnodes with queues in order to have jobs run on the vnodes that have the right application,
as long as the application is a resource that can be requested by jobs.

You can use custom host-level resources to associate one or more vnodes with more than one queue. A scheduler will
use the resources for scheduling just as it does with any resource.

In order to map a vnode to more than one queue, you must define a new host-level string array custom resource. This
string array holds a string that has the same value for the queue and vnode you wish to associate. The mechanism of
association is that a job that lands in the queue inherits that value for the resource, and then the job can run only on
vnodes having a matching value for the resource. You can associate more than one queue with a vnode by setting the
resource to the same value at each queue.

In some cases, you can use the same resource to route jobs and to associate vnodes with queues. For the method
described here, you use host-level resources to associate vnodes with queues. The rules for which resources can be used
for routing are given in section 2.3.6.4.iii, “Resources Used for Routing and Admittance”, on page 29. How jobs inherit
resources is described in section 5.9.4, “Allocating Default Resources to Jobs”, on page 244.
AG-106 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.2.1 Procedure to Associate Vnodes with Queues

To associate one or more vnodes with one or more queues, do the following:

1. Define the new host-level resource:

qmgr -c 'create resource <new resource> type=string_array, flag=h'

2. Instruct the scheduler to honor the resource. Add the new resource to $<sched_priv direc-
tory>/sched_config:

resources: "ncpus, mem, arch, host, vnode, <new resource>"

3. HUP the scheduler:

kill -HUP <scheduler PID>

4. Set each queue's default_chunk for the new resource to the value you are using to associate it with vnodes:

Qmgr: set queue <queue name> default_chunk.<new resource> = <value>

For example, if one queue is "MathQ" and one queue is "SpareQ", and the new resource is "Qlist", and you want to
associate a set of vnodes and queues based on ownership by the math department, you can make the queue resource
value be "math":

Qmgr: set queue MathQ default_chunk.Qlist = math
Qmgr: set queue SpareQ default_chunk.Qlist = math

5. Set the value for the new resource at each vnode:

Qmgr: set node <vnode name> resources_available.<new resource> = <associating value>

For example, to have the vnode named "Vnode1" associated with the queues owned by the math department:

Qmgr: set node Vnode1 resources_available.Qlist = math

4.9.2.2 Example of Associating Multiple Vnodes with Multiple

Queues

Now, as an example, assume you have 2 queues: "PhysicsQ" and "ChemQ", and you have 3 vnodes: vn[1], vn[2], and
vn[3]. You want Physics jobs to run on vn[1] and vn[2], and you want Chem jobs to run on vn[2] and vn[3]. Each
department gets exclusive use of one vnode, but both must share a vnode.

 To achieve the following mapping:

PhysicsQ -->vn[1], vn[2]

ChemQ --> vn[2], vn[3]

Which is the same as:

vn[1] <-- PhysicsQ

vn[2] <-- PhysicsQ, ChemQ
PBS Professional 2022.1 Administrator’s Guide AG-107

Chapter 4 Scheduling
vn[3] <-- ChemQ

1. Define the new host-level resource:
Qmgr: create resource Qlist type=string_array, flag=h

2. Instruct the scheduler to honor the resource. Add the new resource to $<sched_priv direc-
tory>/sched_config:

resources: "ncpus, mem, arch, host, vnode, Qlist"

3. HUP the scheduler:

kill -HUP <scheduler PID>

4. Add queue to vnode mappings:

Qmgr: s n vn[1] resources_available.Qlist="PhysicsQ"
Qmgr: s n vn[2] resources_available.Qlist= "PhysicsQ,ChemQ"
Qmgr: s n vn[3] resources_available.Qlist="ChemQ"

5. Force jobs to request the correct Qlist values:

Qmgr: s q PhysicsQ default_chunk.Qlist=PhysicsQ
Qmgr: s q ChemQ default_chunk.Qlist=ChemQ

4.9.3 Using Backfilling

Backfilling means fitting smaller jobs around the higher-priority jobs that a scheduler is going to run next, in such a way
that the higher-priority jobs are not delayed. When a scheduler is using backfilling, the scheduler considers highest-pri-
ority jobs top jobs. Backfilling changes the algorithm that a scheduler uses to run jobs:

• When backfilling is not being used, a scheduler looks at each job in priority order, tries to run the job now, and if it
cannot, it moves on to the next-highest-priority job.

• When backfilling is being used, a scheduler tries to run the top job now, and if it cannot, it makes sure that no other
job that it runs in this cycle will delay the top job. It also fits smaller jobs in around the top job.

Backfilling allows you to keep resources from becoming idle when the top job cannot run.

Backfilling applies all of the time; it is not a prime option.

4.9.3.1 Glossary

Top job

A top job has the highest execution priority according to scheduling policy, and a scheduler plans resources and
start time for this job first. Top jobs exist only when a scheduler is using backfilling.

Filler job

Smaller job that fits around top jobs. Running a filler job does not change the start time or resources for a top
job. This job runs next only when backfilling is being used (meaning that a top job cannot start next because
insufficient resources are available for the top job, but whatever is available is enough for the filler job).

4.9.3.2 Backfilling Separately at the Server and Queues

You can configure the number of top jobs that PBS backfills around by setting the value of the backfill_depth server and
queue attributes. For example, if you set backfill_depth to 3, PBS backfills around the top 3 jobs. See “Server
Attributes” on page 281 of the PBS Professional Reference Guide.
AG-108 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
You can specify a different number of top jobs for each queue. You can also specify the number of top jobs for the
server. Any queues that do not have their own backfill depth share in the server's backfill depth count. For example, you
have three queues Q1, Q2, and Q3, and you set the backfill depth at Q1 to be 5 and the backfill depth at the server to be
3. In this example, the top 5 jobs in Q1 will run as soon as possible, and be backfilled around, but there are only 3 top job
slots allocated to the jobs in Q2 and Q3.

If you do not set a value for the backfill depth at the server, it defaults to 1.

4.9.3.3 How Backfilling Works

A scheduler makes a list of jobs to run in order of priority, for any queue that has an individual backfill depth, for the
server if there are queues without a backfill depth set. These lists are composed according to execution priority described
in section 4.9.16, “Calculating Job Execution Priority”, on page 135. These are top jobs.

If you use backfilling, a scheduler looks for smaller jobs that can fit into the usage gaps around the highest-priority jobs
in each list. A scheduler looks in each prioritized list of jobs and chooses the highest-priority smaller jobs that fit. Filler
jobs are run only if they will not delay the start time of top jobs.

A scheduler creates a fresh list of top jobs at every scheduling cycle, so if a new higher-priority job has been submitted, it
will be considered.

You can use shrink-to-fit jobs to backfill into otherwise unusable time slots. PBS checks whether a shrink-to-fit job
could shrink into the available slot, and if it can, runs it. See section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

Backfilling is useful in the following circumstances:

• When the strict_ordering scheduler parameter is turned on, filler jobs are fitted around higher-priority jobs. Without
backfilling, no job runs if the top job cannot run. See section 4.9.48, “Using Strict Ordering”, on page 222

4.9.3.4 Backfilling Around N Jobs

You can configure the number of top jobs that PBS backfills around by setting the value of the backfill_depth server
attribute. For example, if you set backfill_depth to 3, PBS backfills around the top 3 jobs. See “Server Attributes” on
page 281 of the PBS Professional Reference Guide.

4.9.3.5 Backfilling Around Preempted Jobs

When you set the sched_preempt_enforce_resumption scheduler attribute to True, a scheduler adds preempted jobs
to the set of jobs around which it backfills. A scheduler ignores backfill_depth when backfilling around jobs in the Pre-
empted execution class. By default the sched_preempt_enforce_resumption scheduler attribute is False.
PBS Professional 2022.1 Administrator’s Guide AG-109

Chapter 4 Scheduling
4.9.3.6 Configuring Backfilling

To configure backfilling, do the following:

1. Choose how many jobs to backfill around. If you want to backfill around more than 1 job, set the backfill_depth
server attribute to the desired number. The default is 1. Set this parameter to less than 100.

2. Choose whether you want any queues to share the list of top jobs at the server. Do not set backfill_depth at those
queues. If you want any queues to share this list, set the server's backfill_depth attribute to the desired value. The
default is 1. Set this parameter to less than 100.

3. For the queues where you want a separate backfill depth, choose how many jobs to backfill around at each queue.
Set the backfill_depth queue attribute to the desired number.

4. Make sure that jobs request walltime by making them inherit a walltime resource if they don't explicitly request it.
For options, see section 4.9.3.10.i, “Ensure Jobs Are Eligible for Backfilling”, on page 111.

5. Choose whether you want to backfill around preempted jobs. To do this, set the
sched_preempt_enforce_resumption scheduler attribute to True.

6. Make sure that the strict_ordering scheduler parameter is set to True for all time if you use backfilling.

When most jobs become top jobs, they are counted toward the limit set in backfill_depth. Some top jobs are not counted
toward backfill_depth. The following table shows how backfilling can be configured and which top jobs affect
backfill_depth. Unless explicitly stated, top jobs are counted towards backfill_depth. A scheduler stops considering
jobs as top jobs when it has reached backfill_depth, except for preempted jobs, which do not count toward that limit.
When backfill is off, a scheduler does not have a notion of "top jobs".

4.9.3.7 Backfilling and Strict Ordering

When you use strict ordering, a scheduler runs jobs in exactly the order of their priority. If backfill_depth is set to zero
and the top job cannot run, no job is able to run. Backfilling can prevent resources from standing idle while the top job
waits for its resources to become available. See section 4.9.48, “Using Strict Ordering”, on page 222.

Table 4-5: Configuring Backfilling

Parameter and Attribute Settings When Classes Are Top Jobs

backfill
_depth

strict_ordering
sched_preempt_enforce

_resumption
Express Preempted Normal

>0 T T Top jobs Top jobs, not counted
in backfill_depth

Top jobs

>0 T T Top jobs Top jobs, not counted
in backfill_depth

Top jobs

>0 T F Top jobs Top jobs Top jobs

>0 T F Top jobs Top jobs Top jobs

>0 F T No Top jobs, not counted
in backfill_depth

No

>0 F T No Top jobs, not counted
in backfill_depth

No

>0 F F No No No

>0 F F No No No
AG-110 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.3.8 Backfilling and Scheduler Cycle Speed

You can choose a trade-off between scheduling cycle speed and the fineness of the granularity with which estimated start
times are calculated. You do this by setting the opt_backfill_fuzzy scheduler attribute via qmgr. You can choose off,
low, medium, or high. For no speedup, choose off. For maximum speedup, choose high.

Qmgr: set sched opt_backfill_fuzzy [off | low | medium | high]

See section 4.9.40, “Scheduler Cycle Speedup”, on page 208.

4.9.3.9 Attributes and Parameters Affecting Backfilling

backfill_depth
Server and queue attribute. Specifies backfilling behavior. Sets the number of jobs that are to be backfilled
around. See “Server Attributes” on page 281 of the PBS Professional Reference Guide and “Queue Attributes”
on page 311 of the PBS Professional Reference Guide.

opt_backfill_fuzzy
Scheduler attribute. You can use this setting to trade between scheduling cycle speed and estimated start time
granularity. See “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

sched_preempt_enforce_resumption
Scheduler attribute. When this attribute is True and backfill_depth is greater than zero, a scheduler treats pre-
empted jobs like top jobs and backfills around them. This effectively increases the value of backfill_depth by
the number of preempted jobs.

The configuration parameters backfill_prime and prime_exempt_anytime_queues do not relate to backfilling. They
control the time boundaries of regular jobs with respect to primetime and non-primetime. See section 4.9.34, “Using
Primetime and Holidays”, on page 189.

4.9.3.10 Backfilling Recommendations and Caveats

4.9.3.10.i Ensure Jobs Are Eligible for Backfilling

When calculating backfilling, PBS treats a job that has no walltime specified as if its walltime is eternity. A scheduler
will never use one of these jobs as a filler job. You can avoid this by ensuring that each job has a realistic walltime, by
using the following methods:

• At qsub time via a hook

• By setting the queue's resources_default.walltime attribute

• By setting the server's resources_default.walltime attribute

• At qsub time via the server's default_qsub_arguments

4.9.3.10.ii Number of Jobs to Backfill Around

The more jobs being backfilled around, the longer the scheduling cycle takes.

4.9.3.10.iii Dynamic Resources and Backfilling

Using dynamic resources and backfilling may result in some jobs not being run because a dynamic resource is tempo-
rarily unavailable. This may happen when a job requesting a dynamic resource is selected as the top job. A scheduler
must estimate when resources will become available, but it can only query for resources available at the time of the
query, not resources already in use, so it will not be able to predict when resources in use become available. Therefore
the scheduler won't be able to schedule the job. In addition, since dynamic resources are outside of the control of PBS,
they may be consumed between the time a scheduler queries for the resource and the time it starts a job.
PBS Professional 2022.1 Administrator’s Guide AG-111

Chapter 4 Scheduling
4.9.3.10.iv Avoid Using Strict Ordering, Backfilling, and Fairshare

It is inadvisable to use strict ordering and backfilling with fairshare.

The results may be non-intuitive. Fairshare will cause relative job priorities to change with each scheduling cycle. It is
possible that while a large job waits for a slot, jobs from the same entity or group will be chosen as the filler jobs, and the
usage from these small jobs will lower the priority of the large job.

For example, if a user has a large job that is the most deserving but cannot run, smaller jobs owned by that user will chew
up the user's usage, and prevent the large job from ever being likely to run. Also, if the small jobs are owned by a user in
one area of the fairshare tree, no large jobs owned by anyone else in that section of the fairshare tree are likely to be able
to run.

4.9.3.10.v Using Preemption, Strict Ordering, and Backfilling

Using preemption with strict ordering and backfilling may reshuffle the top job(s) if high-priority jobs are preempted.

4.9.3.10.vi Warning About Backfilling and Provisioning

A scheduler will not run a job requesting an AOE on a vnode that has a top job scheduled on it in the future.

A scheduler will not use a job requesting an AOE as a top job.

4.9.3.10.vii Backfilling and Estimating Job Start Time

When a scheduler is backfilling around jobs, it estimates the start times and execution vnodes for the top jobs being back-
filled around. See section 4.9.15, “Estimating Job Start Time”, on page 132.

4.9.3.10.viii Using Strict Ordering and Backfilling with Only One of Primetime or
Non-primetime

If you use backfilling, it is used all of the time. However, you can use strict ordering during primetime, non-primetime,
or all the time. When PBS is using strict ordering and backfilling, a scheduler saves a spot for each high-priority job
around which it is backfilling. If you configure PBS to use strict ordering and backfilling for only one of primetime or
non-primetime, and you have large jobs that must wait a long time before enough resources are available, the saved spots
can be lost in the transition.

4.9.4 Examining Jobs Queue by Queue

When a scheduler examines waiting jobs, it can either consider all of the jobs in its partition as a whole, or it can consider
jobs queue by queue. When considering jobs queue by queue, a scheduler runs all the jobs it can from the first queue
before examining the jobs in the next queue, and so on. This behavior is controlled by the by_queue scheduler parame-
ter.

When the by_queue scheduler parameter is set to True, jobs in the highest-priority queue are evaluated as a group, then
jobs in the next-highest priority queue are evaluated. In this case, PBS runs all the jobs it can from each queue before
moving to the next queue, with the following exception: if there are jobs in the Reservation, Express, or Preempted
job execution classes, those are considered before any queue. These classes are described in section 4.9.16, “Calculating
Job Execution Priority”, on page 135.

The by_queue parameter applies to all of the queues in a scheduler's partition. This means that either all jobs are sched-
uled as if they are in one large queue, or jobs are scheduled queue by queue.

All queues are always sorted by queue priority. To set queue priority, set each queue's priority attribute to the desired
value. A queue with a higher value is examined before a queue with a lower value. If you do not assign priorities to
queues, their ordering is undefined. See section 4.9.36, “Queue Priority”, on page 194.

The by_queue parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.

See “by_queue” on page 252 of the PBS Professional Reference Guide.
AG-112 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.4.1 Configuring PBS to Consider Jobs Queue by Queue

• Set the by_queue scheduler parameter to True

• Assign a priority to each queue

• Choose whether you want queue by queue during primetime, non-primetime, or both. If you want separate behavior
for primetime and non-primetime, list by_queue twice. For example:
by_queue True prime

by_queue False non_prime

4.9.4.2 Parameters and Attributes Affecting Queue by Queue

• The by_queue scheduler parameter; see “by_queue” on page 252 of the PBS Professional Reference Guide.

• The priority queue attribute; see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

4.9.4.3 Caveats and Advice for Queue by Queue

• The by_queue scheduler parameter is overridden by the round_robin scheduler parameter when round_robin is set
to True.

• When by_queue is True, queues cannot be designated as fairshare entities, and fairshare will work queue by queue
instead of on all jobs at once.

• When by_queue is True, job execution priority may be affected. See section 4.9.16, “Calculating Job Execution
Priority”, on page 135.

• The by_queue parameter is not required when using express queues.

• You can have FIFO scheduling for all your jobs across a given scheduler's partition, if you are using a single execu-
tion queue or have by_queue set to False. However, you can have FIFO scheduling for the jobs within each queue
if you set by_queue to True and specify a different priority for each queue. See section 4.9.20, “FIFO Scheduling”,
on page 149.

4.9.5 Checkpointing

You can use checkpointing as a scheduling tool, by including it as a preemption method, an aid in recovery, a way to cap-
ture progress from a shrink-to-fit job, and when using the qhold command.

For a complete description of how to use and configure checkpointing, see section 8.3, “Checkpoint and Restart”, on
page 387.

4.9.5.1 Checkpointing as a Preemption Method

When a job is preempted via checkpointing, MoM runs the checkpoint_abort script, and PBS kills and requeues the job.
When a scheduler elects to run the job again, the MoM runs the restart script to restart the job from where it was check-
pointed. See section 4.9.33, “Using Preemption”, on page 179.

4.9.5.2 Checkpointing as a Way to Capture Progress and Help

Recover Work

When you use checkpointing to capture a job's progress before the job is terminated, for example when a shrink-to-fit
job's wall time is exceeded, MoM runs the snapshot checkpoint script, and the job continues to run. See section 8.3,
“Checkpoint and Restart”, on page 387.
PBS Professional 2022.1 Administrator’s Guide AG-113

Chapter 4 Scheduling
4.9.5.3 Checkpointing When Using the qhold Command

When the qhold command is used to hold a checkpointable job, MoM runs the checkpoint_abort script, and PBS kills,
requeues, and holds the job. A job with a hold on it must have the hold released via the qrls command in order to be eli-
gible to run. For a discussion of the use of checkpointing for the qhold command, see section 8.3.7.6, “Holding a Job”,
on page 399. See “qhold” on page 150 of the PBS Professional Reference Guide and “qrls” on page 183 in the PBS Pro-
fessional Installation & Upgrade Guide.

4.9.6 Organizing Job Chunks

You can specify how job chunks should be organized onto hosts or vnodes. Jobs can request their placement arrange-
ment, and you can set defaults at queues and at the server to be inherited by jobs that do not request a placement. You can
tell PBS to do the following:

• Put all chunks from a job onto a single host using the place=pack statement.

• Put each chunk on a separate host using the place=scatter statement. The number of chunks must be fewer than
or equal to the number of hosts.

• Put each chunk on a separate vnode using the place=vscatter statement. The number of chunks must be fewer
than or equal to the number of vnodes.

• Put each chunk anywhere using the place=free statement.

To specify a placement default, set resources_default.place=<arrangement>, where arrangement is pack, scatter,
vscatter, or free. For example, to have the default at QueueA be pack:

Qmgr: set queue QueueA resources_default.place=pack

You can specify that job chunks must be grouped in a certain way. For example, to require that chunks all end up on a
shared router, use this:

place=group=router

For more about jobs requesting placement, see “Requesting Resources and Placing Jobs” on page 219 of the PBS Profes-
sional Reference Guide.

4.9.6.1 Caveats for Organizing Job Chunks

A placement specification for arrangement, sharing, and grouping is treated as one package by PBS. This means that if a
job requests only one, any defaults set for the others are not inherited. For example, if you set a default of
place=pack:excl:group=router, and a job requests only place=pack, the job does not inherit excl or
group=router. See “Requesting Resources and Placing Jobs” on page 219 of the PBS Professional Reference Guide.

4.9.7 cron Jobs

You can use cron jobs to make time-dependent modifications to settings, where you are scheduling according to time
slots. For example, you can change settings for primetime and non-primetime configurations, making the following
changes:

• Set nodes offline or not offline

• Change the number of ncpus on workstations

• Change the priority of queues, for example to change preemption behavior

• Start or stop queues

• Set primetime & non-primetime options
AG-114 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.7.1 Caveats for cron Jobs

• Make sure that your cron jobs behave correctly when PBS is not running.

• Be careful when changing available resources, such as when offlining vnodes. You might prevent jobs from running
that would otherwise run. For details, see section 4.7.2, “Jobs that Cannot Run on Current Resources”, on page 102.

If PBS is down when your cron job runs, the change specified in the cron job won't happen. For example, if you
use cron to offline a vnode and then bring it online later, it won't come online if PBS is down during the second
operation.

4.9.8 Using Custom and Default Resources

The information in this section relies on understanding how jobs are allocated resources via inheriting defaults or via
hooks. Before reading this section, please read section 10.3, “Allocating Resources to Jobs”, on page 455.

For complete details of how to configure and use custom resources, please see section 5.14, “Custom Resources”, on
page 252.

You can use custom and default resources for several purposes:

• Routing jobs to the desired vnodes; see section 4.9.8.2, “Using Custom Resources to Route Jobs”, on page 115

• Assigning execution priority to jobs; see section 4.9.8.3, “Using Custom Resources to Assign Job Execution Prior-
ity”, on page 116

• Tracking and controlling the allocation of resources; see section 4.9.8.4, “Using Custom Resources to Track and
Control Resource Allocation”, on page 116

• Representing elements such as GPUs, FPGAs, and switches; see section 4.9.8.5, “Using Custom Resources to Rep-
resent GPUs, FPGAs, Switches, Etc.”, on page 116

• Shrinking job walltimes so that they can run in time slots that are less than the expected maximum. See section
4.9.42, “Using Shrink-to-fit Jobs”, on page 210.

4.9.8.1 Techniques for Allocating Custom Resources to Jobs

In addition to using custom resources to represent physical elements such as GPUs, you can use custom resources as tags
that you attach to jobs in order to help schedule the jobs. You can make these custom resources into tools that can be
used only for managing jobs, by making them unalterable and unrequestable, and if desired, invisible to users.

For how to assign custom and default resources to jobs, see section 10.3, “Allocating Resources to Jobs”, on page 455.

4.9.8.2 Using Custom Resources to Route Jobs

You can use several techniques to route jobs to the desired queues and/or vnodes. Depending on your partition's or site's
configuration, you may find it helpful to use custom resources with one or more of these techniques.

• You can force users to submit jobs to the desired queues by setting resource limits at queues. You can use custom
resources to represent arbitrary elements, for example, department. In this case you could limit which department
uses each queue. You can set a default value for the department at the server, or create a hook that assigns a value for
the department.

For how queue resource limits are applied to jobs, see section 2.3.6.4.i, “How Queue and Server Limits Are Applied,
Except Running Time”, on page 29.

• Use default resources or a hook to assign custom resources to jobs when the jobs are submitted. Send the jobs to
routing queues, then route them, using the resources, to other queues inside or outside the PBS partition or complex.
Again, custom resources can represent arbitrary elements.
PBS Professional 2022.1 Administrator’s Guide AG-115

Chapter 4 Scheduling
For how routing queues work, see section 2.3.6, “Routing Queues”, on page 27

• Use peer scheduling to send jobs between PBS partitions or complexes. You can set resource limits on the furnish-
ing queue in order to limit the kinds of jobs that are peer scheduled. You can assign custom resources to jobs to rep-
resent arbitrary elements, for example peer queueing only those jobs from a specific project. You can assign the
custom resource by having the job inherit it or via a hook.

For how to set up peer scheduling, see section 4.9.31, “Peer Scheduling”, on page 163

• You can route jobs from specific execution queues to the desired vnodes, by associating the vnodes with the queues.
See section 4.9.2, “Associating Vnodes with Queues”, on page 106.

• You can create placement sets so that jobs are placed according to resource values. Placement sets are created where
vnodes share a value for a resource; you can use custom resources to create the placement sets you want. See section
4.9.32, “Placement Sets”, on page 167.

4.9.8.3 Using Custom Resources to Assign Job Execution Priority

You can use custom resources as coefficients in the job sorting formula. You can assign custom resources to jobs using
the techniques listed in section 10.3, “Allocating Resources to Jobs”, on page 455. The value of each custom resource
can be based on a project, an application, etc.

For example, you can create a custom resource called "ProjPrio", and the jobs that request the "Bio" project can be given
a value of 5 for ProjPrio, and the jobs that request the "Gravel" project can be given a value of 2 for ProjPrio. You can
assign this value in a hook or by routing the jobs into special queues from which the jobs inherit the value for ProjPrio.

For information on using the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Pri-
ority”, on page 150.

4.9.8.4 Using Custom Resources to Track and Control Resource

Allocation

You can use resources to track and control usage of things like CPUs and memory. For example, you might want to limit
the number of jobs using a particular vnode. See section 5.10, “Using Resources to Track and Control Allocation”, on
page 249.

4.9.8.5 Using Custom Resources to Represent GPUs, FPGAs,

Switches, Etc.

You can use custom resources to represent GPUs, FPGAs, high performance switches, etc. For examples, see section
5.14.7, “Using GPUs”, on page 279, and section 5.14.8, “Using FPGAs”, on page 282.

4.9.9 Using Idle Workstation Cycle Harvesting

You can configure workstations at your partition or site so that PBS can run jobs on them when their "owners" are away
and they are idle. This is called idle workstation cycle harvesting. This can give your partition or site additional
resources to run jobs during nights and weekends, or even during lunch.

You can configure PBS to use the following methods to decide when a workstation is not being used by its owner:

• Keyboard/mouse activity

• X-Window monitoring

• Load average (not recommended)
AG-116 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
On some systems cycle harvesting is simple to implement, because the console, keyboard, and mouse device access
times are periodically updated by the operating system. The PBS MoM process can track this information, and mark the
vnode busy if any of the input devices is in use. On other systems, however, this data is not available: on some
machines, PBS can monitor the X-Window system in order to obtain interactive idle time, and on others, PBS itself mon-
itors keyboard and mouse activity.

Jobs on workstations that become busy are not migrated; they remain on the workstation until they complete execution,
are rerun, or are deleted.

4.9.9.1 Platforms Supporting Cycle Harvesting

Due to different operating system support for tracking mouse and keyboard activity, the availability and method of sup-
port for cycle harvesting varies based on the computer platform in question. The following table lists the method and sup-
port for each platform.

4.9.9.2 The $kbd_idle MoM Configuration Parameter

Cycle harvesting based on keyboard/mouse activity and X-Windows monitoring is controlled by the $kbd_idle MoM
configuration parameter in PBS_HOME/mom_priv/config on the workstation in question. This parameter has the
following format:

$kbd_idle <idle_wait> <min_use> <poll_interval>
Declares that the vnode will be used for batch jobs during periods when the keyboard and mouse are not in use.

idle_wait
Time, in seconds, that the workstation keyboard and mouse must be idle before being considered available
for batch jobs.

Must be set to value greater than 0 for cycle harvesting to be enabled.

Format: Integer

No default

min_use
Time, in seconds, during which the workstation keyboard or mouse must continue to be in use before the
workstation is determined to be unavailable for batch jobs.

Format: Integer

Default: 10

poll_interval
Interval, in seconds, at which MoM checks for keyboard and mouse activity.

Format: Integer

Default: 1

Table 4-6: Cycle Harvesting Support Methods

System Status Method Reference

Linux supported keyboard/mouse section 4.9.9.3, “Cycle Harvesting Based on Keyboard/Mouse Activ-
ity”, on page 118

Windows supported keyboard/mouse section 4.9.9.4, “Cycle Harvesting on Windows”, on page 118
PBS Professional 2022.1 Administrator’s Guide AG-117

Chapter 4 Scheduling
4.9.9.3 Cycle Harvesting Based on Keyboard/Mouse Activity

PBS can monitor a workstation for keyboard and mouse activity, and run batch jobs on the workstation when the key-
board and mouse are not being used. PBS sets the state of the vnode to either free or busy, depending on whether or not
there is keyboard or mouse activity, and runs jobs only when the state of the vnode is free. PBS sets the state of the
vnode to free when the vnode's mouse and keyboard have shown no activity for the specified amount of time. If PBS
determines that the vnode is being used, it sets the state of the vnode to busy and suspends any running jobs, setting their
state to U (user busy).

This method is used for Linux operating systems.

4.9.9.3.i Configuring Cycle Harvesting Using Keyboard/Mouse Activity

To configure cycle harvesting using keyboard and mouse activity, do the following:

1. Set the $kbd_idle MoM configuration parameter by editing the $kbd_idle parameter in
PBS_HOME/mom_priv/config on the workstation.

2. HUP the MoM on the workstation:

kill -HUP <pbs_mom PID>

4.9.9.3.ii Example of Cycle Harvesting Using Keyboard/Mouse Activity

The following is an example setting for the parameter:

$kbd_idle 1800 10 5

This setting for the parameter in MoM's config file specifies the following:

• PBS marks the workstation as free if the keyboard and mouse are idle for 30 minutes (1800 seconds)

• PBS marks the workstation as busy if the keyboard or mouse is used for 10 consecutive seconds

• The states of the keyboard and mouse are to be checked for activity every 5 seconds

Here, we walk through how this example would play out, to show the roles of the arguments to the $kbd_idle parameter:

Let's start with a workstation that has been in use for some time by its owner. The workstation is in state busy.

Now the owner goes to lunch. After 1800 seconds (30 minutes), PBS changes the workstation's state to free and
starts a job on the workstation.

Some time later, someone walks by and moves the mouse or enters a command. Within the next 5 seconds (idle poll
period), pbs_mom notes the activity. The job is suspended and placed in state U, and the workstation is marked
busy.

If 10 seconds pass and there is no additional keyboard/mouse activity, the job is resumed and the workstation again
is either free (if any CPUs are available) or job-busy (if all CPUs are in use.)

However, if keyboard/mouse activity continues during that 10 seconds, the workstation remains busy and the job
remains suspended for at least the next 1800 seconds.

4.9.9.3.iii Caveats for Cycle Harvesting Using Keyboard/Mouse Activity

• There is no default for idle_wait; you must set it to a value greater than 0 in order to enable cycle harvesting using
keyboard/mouse activity.

4.9.9.4 Cycle Harvesting on Windows

A process called pbs_idled monitors keyboard and mouse activity and keeps MoM informed of user activity. The
user being monitored can be sitting at the machine, or using a remote desktop.
AG-118 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
The pbs_idled process is managed in one of two ways. PBS can use a service called PBS_INTERACTIVE to moni-
tor the user's session. If the PBS_INTERACTIVE service is registered, MoM starts the service, and the service starts and
stops pbs_idled. The PBS_INTERACTIVE service runs under a local system account. PBS uses the
PBS_INTERACTIVE service only where partition or site policy allows a local system account to be a service account. If
this is not allowed (so the service is not registered), pbs_idled is started and stopped using the log on/log off script.
Do not use both the PBS_INTERACTIVE service and a log on/log off script.

A pbs_idled process monitors the keyboard and mouse activity while a user is logged in. This process starts when the
user logs on, and stops when the user logs off. Only a user with administrator privileges, or the user being monitored,
can stop pbs_idled.

MoM uses two files to communicate with pbs_idled:

• MoM creates PBS_HOME/spool/idle_poll_time and writes the value of her $kbd_idle polling interval
parameter to it. The pbs_idled process reads the value of the polling interval from idle_poll_time.

• MoM creates PBS_HOME/spool/idle_touch. The pbs_idled process updates the time stamp of the
idle_touch file when a user is active, and MoM reads the time stamp.

4.9.9.4.i Configuring Cycle Harvesting on Windows

To configure cycle harvesting, do the following:

1. Make sure that you are a user with administrator privileges.

2. Set the $kbd_idle MoM configuration parameter by editing the $kbd_idle parameter in
PBS_HOME/mom_priv/config on the workstation.

3. Configure how pbs_idled starts:

a. If your policy allows a local system account to be a service account, register the PBS_INTERACTIVE service:

pbs_interactive -R

b. If your policy does not allow a local system account to be a service account:

1. Configure the log on script as described in section 4.9.9.4.ii, “Configuring pbs_idled in Log On Script in
Domain Environment”, on page 120.

2. Configure the log off script as described in section 4.9.9.4.iii, “Configuring pbs_idled in Log Off Script in
Domain Environment”, on page 121.

4. Restart the MoM.
PBS Professional 2022.1 Administrator’s Guide AG-119

Chapter 4 Scheduling
4.9.9.4.ii Configuring pbs_idled in Log On Script in Domain Environment

1. You must be a user with administrator privileges.

2. On the domain controller host, open Administrator Tools.

3. In Administrator Tools, open Active Directory Users and Computers.

4. Right-click on the Organizational Unit where you want to apply the group policy for logging on and logging off.

5. Click on Properties.

6. Go to the Group Policy tab under the Properties window.

7. Click on New.

8. Type "LOG-IN-OUT-SCRIPT" as the name of the policy.

9. Select the Group Policy Object you have just created; click Edit. The Group Policy Object editing window will
open.

10. Open Window Settings in User Configuration.

11. Open Scripts (Logon/Logoff).

12. Open Logon. A Logon Properties window will open.

13. Open Notepad in another window. In Notepad, you create the command that starts the pbs_idled process:

pbs_idled start

14. Save that document as "pbs_idled_logon.bat".

15. In the Logon Properties window, click on Show Files. A logon script folder will open in a new window.

16. Copy pbs_idled_logon.bat into the logon script folder and close the logon script folder window.

17. In the Logon Properties window, click on Add, and then click on Browse. Select pbs_idled_logon.bat and then
click on Open.

18. Click on OK, then Apply, then again OK.

19. Close the Group Policy Object editor and the Properties window.

20. Close the Active Directory Users and Computers window.

21. Close the Administrator Tools window.
AG-120 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.9.4.iii Configuring pbs_idled in Log Off Script in Domain Environment

1. You must be a user with administrator privileges.

2. On the domain controller host, open Administrator Tools.

3. In Administrator Tools, open Active Directory Users and Computers.

4. Right-click on the Organizational Unit where you want to apply the group policy for logging on and logging off.

5. Click on Properties.

6. Go to the Group Policy tab under the Properties window.

7. Click on New.

8. Type "LOG-IN-OUT-SCRIPT" as the name of the policy.

9. Select the Group Policy Object you have just created; click Edit. The Group Policy Object editing window will
open.

10. Open Window Settings in User Configuration.

11. Open Scripts (Logon/Logoff).

12. Open Logoff. A Logoff Properties window will open.

13. Open Notepad in another window. In Notepad, you create the command that stops the pbs_idled process:

pbs_idled stop

14. Save that document as "pbs_idled_logoff.bat".

15. In the Logoff Properties window, click on Show Files. A logoff script folder will open in a new window.

16. Copy pbs_idled_logoff.bat into the logoff script folder and close the logoff script folder window.

17. In the Logoff Properties window, click on Add, and then click on Browse. Select pbs_idled_logoff.bat and then
click on Open.

18. Click on OK, then Apply, then again OK.

19. Close the Group Policy Object editor and the Properties window.

20. Close the Active Directory Users and Computers window.

21. Close the Administrator Tools window.

4.9.9.4.iv The PBS_INTERACTIVE Service

The PBS_INTERACTIVE service starts the pbs_idled process, as the current user, in the current active user's session.
Each time a user logs on, the service starts a pbs_idled for that user, and when that user logs off, the service stops that
user's pbs_idled process.

The service runs under a local system account. If your policy allows a local system account to be a service account, you
can use PBS_INTERACTIVE. Otherwise you must configure pbs_idled in log on/log off scripts.

If you have configured the $kbd_idle MoM parameter, and you have registered the service, MoM starts the service. The
service cannot be started manually.

If you will use PBS_INTERACTIVE, you must register the service. The installer cannot register the service.

• To register the PBS_INTERACTIVE service:
pbs_interactive -R
PBS Professional 2022.1 Administrator’s Guide AG-121

Chapter 4 Scheduling
Upon successful execution of this command, the following message is displayed:

"Service PBS_INTERACTIVE installed successfully"

• To unregister the PBS_INTERACTIVE service:
pbs_interactive -U

Upon successful execution of this command, the following message is displayed:

"Service PBS_INTERACTIVE uninstalled successfully"

• To see the version number for PBS_INTERACTIVE service:
pbs_interactive --version

4.9.9.4.v Errors and Logging

If the $kbd_idle MoM parameter is configured, MoM attempts to use cycle harvesting. MoM looks for the
PBS_INTERACTIVE service in the Service Control Manager. If she finds the service, she starts it.

1. If she cannot find the service, MoM logs the following message at event class 0x0002:
"Can not find PBS_INTERACTIVE service, Continuing Cycle Harvesting with Logon/Logoff Script"

2. MoM looks for PBS_HOME/spool/idle_touch. If she finds it, she uses cycle harvesting.

3. If she cannot find the file, MoM disables cycle harvesting and logs the following message at event class 0x0002:

"Cycle Harvesting Failed, Please contact Admin"

MoM logs the following messages at event class 0x0001.

• If MoM fails to open the Service Control Manager:
"OpenSCManager failed for PBS_INTERACTIVE"

• If MoM fails to open the PBS_INTERACTIVE service:
"OpenService failed for PBS_INTERACTIVE"

• If MoM fails to start the PBS_INTERACTIVE service:
"Could not start PBS_INTERACTIVE service"

• If MoM fails to get status information about the PBS_INTERACTIVE service:
"Can not get information about PBS_INTERACTIVE service"

• If MoM fails to send a stop control message to the PBS_INTERACTIVE service:
"Could not stop PBS_INTERACTIVE service"

• If the PBS_INTERACTIVE service does not respond in a timely fashion:
"PBS_INTERACTIVE service did not respond in timely fashion"

• If MoM fails to create idle_touch and idle_poll_time in PBS_HOME/spool directory:
"Can not create file < full path of idle file >"

• If MoM fails to write the idle polling interval into PBS_HOME/spool/idle_poll_time:
"Can not write idle_poll time into < full path of idle_poll_time file > file"

4.9.9.4.vi Caveats for Cycle Harvesting on Windows

• Under Windows, if the pbs_idled process is killed, cycle harvesting will not work.

• Under Windows, cycle harvesting may not work correctly on machines where more than one user is logged in, and
users are not employing Switch User.

• Do not use both the PBS_INTERACTIVE service and a log on/log off script.
AG-122 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.9.5 Cycle Harvesting by Monitoring X-Windows

On Linux machines where the OS does not periodically update console, keyboard, and mouse device access times, PBS
can monitor X-Window activity instead. PBS uses an X-Window monitoring process called pbs_idled. This process
runs in the background and monitors X and reports to the pbs_mom whether or not the vnode is idle. pbs_idled is
located in $PBS_EXEC/sbin.

To configure PBS for cycle harvesting by monitoring X-Windows, perform the following steps:

1. Create a directory for pbs_idled. This directory must have the same permissions as /tmp (i.e. mode 1777). This
will allow the pbs_idled program to create and update files as the user, which is necessary because the program
runs as the user. For example:
mkdir PBS_HOME/spool/idledir

chmod 1777 PBS_HOME/spool/idledir

2. Turn on keyboard idle detection in the MoM config file:

$kbd_idle <idle wait value>

3. Include pbs_idled as part of the X-Windows startup sequence.

The best and most secure method of starting pbs_idled is via the system-wide Xsession file. This is the script
which is run by xdm (the X login program) and sets up each user's X-Windows environment.

You must place the startup line for pbs_idled before that of the window manager.

You must make sure that pbs_idled runs in the background.

On systems that use Xsession to start desktop sessions, insert a line invoking pbs_idled near the top of the file.

For example, insert the following line in a Linux Xsession file:

/usr/pbs/sbin/pbs_idled &

If access to the system-wide Xsession file is not available, you can add pbs_idled to every user's personal
.xsession or .xinitrc file, depending on the local OS requirements for starting X-windows programs upon
login.

4.9.9.6 Cycle Harvesting Based on Load Average

As of version 2022.1, the load_balancing scheduler parameter is removed.

Cycle harvesting based on load average means that PBS monitors each workstation's load average, runs jobs where
workstations have loads below a specified level, and suspends any batch jobs on workstations whose load has risen above
the limit you set. When a workstation's owner uses the machine, the workstation's load rises.

When you configure cycle harvesting based on load average, you are performing the same configuration as for load bal-
ancing using load average. For a complete description of load balancing, see section 4.9.27, “Using Load Balancing”, on
page 158.

4.9.9.6.i Attributes and Parameters Affecting Cycle Harvesting Based on Load
Average

$ideal_load <load>
MoM parameter. Defines the load below which the vnode is not considered to be busy. Used with the
$max_load directive.

Example:

$ideal_load 1.8

Format: Float

No default
PBS Professional 2022.1 Administrator’s Guide AG-123

Chapter 4 Scheduling
$max_load <load> [suspend]
MoM parameter. Defines the load above which the vnode is considered to be busy. Used with the $ideal_load
directive. No new jobs are started on a busy vnode.

The optional suspend directive tells PBS to suspend jobs running on the node if the load average exceeds the
$max_load number, regardless of the source of the load (PBS and/or logged-in users). Without this directive,
PBS will not suspend jobs due to load.

We recommend setting this to a slightly higher value than your target load (which is typically the number of
CPUs), for example .25 + ncpus.

Example:

$max_load 3.25

Format: Float

Default: number of CPUs

resv_enable
Vnode attribute. Controls whether the vnode can be used for advance and standing reservations. When set to
True, this vnode can be used for reservations.

Format: Boolean

Default: True

no_multinode_jobs
Vnode attribute. Controls whether jobs which request more than one chunk are allowed to execute on this
vnode. When set to True, jobs requesting more than one chunk are not allowed to execute on this vnode.

Format: Boolean

Default: False

4.9.9.6.ii How Cycle Harvesting Based on Load Average Works

Cycle harvesting based on load average means that PBS monitors the load average on each machine. When the load on a
workstation is below what is specified in the $ideal_load MoM parameter, PBS sets the state of the workstation to free.
A scheduler will run jobs on vnodes whose state is free. When the load on a workstation exceeds the setting for
$max_load, PBS sets the state of the workstation to busy, and suspends jobs running on the workstation. PBS does not
start jobs on a vnode whose state is busy. When the load drops below the setting for $ideal_load, PBS sets the state to
free, and resumes the jobs that were running on the workstation.

PBS thinks that a 1-CPU job raises a vnode's load by 1. On machines being used for cycle harvesting, you set the values
for $max_load and $ideal_load to reasonable limits. On other machines, you set these to values that will never be
exceeded, so that load is effectively ignored.

On machines where these parameters are unset, the vnode's state is not set according to its load, so jobs are not suspended
because a vnode is busy. However, if $max_load and $ideal_load are unset, they are treated as if they have the same
value as resources_available.ncpus, and because there is usually a small background load, PBS will lose the use of a
CPU's worth of load.
AG-124 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.9.6.iii Configuring Cycle Harvesting Based on Load Average

To set up cycle harvesting for idle workstations based on load average, perform the following steps:

1. If PBS is not already installed on the target execution workstations, do so now, selecting the execution-only install
option. See the PBS Professional Installation & Upgrade Guide.

2. Edit the PBS_HOME/mom_priv/config configuration file on each target execution workstation, adding the
$max_load and $ideal_load configuration parameters. Make sure they have values that will not interfere with
proper operation. See section 4.9.9.6.v, “Caveats for Cycle Harvesting Based on Load Average”, on page 125.

$max_load <load limit that allows jobs to run>

$ideal_load <load at which to start jobs>

3. Edit the PBS_HOME/mom_priv/config configuration file on each machine where you are not using cycle har-
vesting, adding the $max_load and $ideal_load configuration parameters. Make sure they have values that will
never be exceeded.

$max_load <load limit that will never be exceeded>

$ideal_load <load limit that will never be exceeded>

4. HUP the MoM:

kill -HUP <pbs_mom PID>

5. If you wish to oversubscribe the vnode's CPU(s), set its resources_available.ncpus to a higher number. Do this
only on single-vnode machines. You must be cautious about matching ncpus and $max_load. See "Caveats for
Cycle Harvesting Based on Load Average" on page 125 in the PBS Professional Administrator’s Guide.

6. HUP the scheduler:

kill -HUP <pbs_sched PID>

7. Set the vnode's resv_enable attribute to False, to prevent the workstation from being used for reservations.

Qmgr: set node <vnode name> resv_enable = False

8. Set the vnode's no_multinode_jobs attribute to True, to prevent the workstation from stalling multi-chunk jobs.

Qmgr: set node <vnode name> no_multinode_jobs = True

4.9.9.6.iv Viewing Load Average Information

You can see the state of a vnode using the pbsnodes -a command.

4.9.9.6.v Caveats for Cycle Harvesting Based on Load Average

• Be careful with the settings for $ideal_load and $max_load. You want to make sure that when the workstation
owner is using the machine, the load on the machine triggers MoM to report being busy, and that PBS does not start
any new jobs while the user is working.

• For information about keeping your partition or site running smoothly using $max_load and $ideal_load, see sec-
tion 8.6.5, “Managing Load Levels on Vnodes”, on page 414

• If you set ncpus higher than the number of actual CPUs, and set $max_load higher to match, keep in mind that the
workstation user could end up with an annoyingly slow workstation. This can happen when PBS runs jobs on the
machine, but the combined load from the jobs and the user is insufficient for MoM to report being busy.
PBS Professional 2022.1 Administrator’s Guide AG-125

Chapter 4 Scheduling
4.9.9.7 Cycle Harvesting and File Transfers

The cycle harvesting feature interacts with file transfers in one of two different ways, depending on the method of file
transfer:

• If the user's job includes file transfer commands (such as rcp or scp) within the job script, and such a command is
running when PBS decides to suspend the job on the vnode, then the file transfer is suspended as well.

• If the job has PBS file staging parameters (i.e. stagein=, stageout=file1...), and the load goes above $max_load, the
file transfer is not suspended. This is because the file staging is not part of the job script execution, and is not subject
to suspension. See "Detailed Description of Job Lifecycle", on page 39 of the PBS Professional User’s Guide.

4.9.9.8 Parallel Jobs With Cycle Harvesting

Cycle harvesting is not recommended for hosts that will run multi-host jobs. However, you may find that your partition
or site benefits from using cycle harvesting on these machines. We provide advice on how to prevent cycle harvesting on
these machines, and advice on how to accomplish it.

4.9.9.8.i General Advice: Parallel Jobs Not Recommended

Cycle harvesting is somewhat incompatible with multi-host jobs. If one of the hosts being used for a parallel job running
on several hosts is being used for cycle harvesting, and the user types at the keyboard, job execution will be delayed for
the entire job because the tasks running on that host will be suspended.

To prevent a machine which is being used for cycle harvesting from being assigned a multi-host job, set the vnode's
no_multinode_jobs attribute to True. This attribute prevents a host from being used by jobs that span multiple hosts.

4.9.9.8.ii How to Use Cycle Harvesting with Multi-host Jobs

When a single-host job is running on a workstation configured for cycle harvesting, and that host becomes busy, the job
is suspended. However, suspending a multi-host parallel job may have undesirable side effects because of inter-process
communications. For a job which uses multiple hosts when one or more of the hosts becomes busy, the default action is
to leave the job running.

However, you can specify that the job should be requeued and subsequently re-scheduled to run elsewhere when any of
the hosts on which the job is running becomes busy. To enable this action, add the following parameter to MoM's config-
uration file:

$action multinodebusy 0 requeue

where multinodebusy is the action to modify; "0" (zero) is the action timeout value (it is ignored for this action); and
requeue is the new action to perform. The only action that can be performed is requeueing.

Multi-host jobs which are not rerunnable (i.e. those submitted with the qsub -rn option) will be killed if the requeue
argument is configured for the multinodebusy action and a vnode becomes busy.

4.9.9.9 Cycle Harvesting Caveats and Restrictions

4.9.9.9.i Cycle Harvesting and Multi-host Jobs

Cycle harvesting is not recommended for hosts that will run multi-host jobs. See section 4.9.9.8.i, “General Advice: Par-
allel Jobs Not Recommended”, on page 126.

4.9.9.9.ii Cycle Harvesting and Reservations

Cycle harvesting is incompatible with jobs in reservations. Reservations should not be made on a machine used for cycle
harvesting, because the user may appear during the reservation period and use the machine's keyboard. This will suspend
the jobs in the reservation, defeating the purpose of making a reservation.

To prevent a vnode which is being used for cycle harvesting from being used for reservations, set the vnode's
resv_enable attribute to False. This attribute controls whether the vnode can be used for reservations.
AG-126 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.9.9.iii File Transfers with Cycle Harvesting

File transfers behave differently depending on job details. See section 4.9.9.7, “Cycle Harvesting and File Transfers”, on
page 126.

4.9.9.9.iv Cycle Harvesting on Windows

• Under Windows, if the pbs_idled process is killed, cycle harvesting will not work.

• Under Windows, cycle harvesting may not work correctly on machines where more than one user is logged in.

4.9.10 Dedicated Time

PBS provides a feature called dedicated time which allows you to define times during which the only jobs that can run
are the ones in dedicated queues. You can use dedicated time for things like upgrades.

You can define multiple dedicated times. Any job in a dedicated time queue must have a walltime in order to run. Jobs
without walltimes will never run. PBS won't let a reservation conflict with dedicated time. Hooks should not access or
modify the dedicated time file.

For information on configuring dedicated time queues, see section 2.3.5.2.i, “Dedicated Time Queues”, on page 26.

4.9.10.1 Dedicated Time File

You define dedicated time by adding one or more time slots in the file <sched_priv direc-
tory>/dedicated_time. A time slot is a start date and start time and an end date and end time. Format:

<start date> <start time> <end date> <end time>

expressed as

MM/DD/YYYY HH:MM MM/DD/YYYY HH:MM

Any line whose first non-whitespace character is a pound sign ("#") is a comment.

Example:

#Dedicated time for maintenance

04/15/2007 12:00 04/15/2007 15:30

A sample dedicated time file (PBS_EXEC/etc/pbs_dedicated) is included in the installation.

The dedicated time file is read on startup and HUP.

4.9.10.2 Steps in Defining Dedicated Time

You define dedicated time by performing the following steps:

1. Edit the file <sched_priv directory>/dedicated_time and add one or more time slots.

2. HUP or restart the scheduler:

Linux:

kill -HUP <pbs_sched PID>

4.9.10.3 Recommendations for Dedicated Time

If you need to set up dedicated time for something like system maintenance, you may want to avoid having the machines
become idle for a significant period before dedicated time starts. You can allow jobs to shrink their walltimes to fit into
those shorter-than-normal slots before dedicated time. See section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.
PBS Professional 2022.1 Administrator’s Guide AG-127

Chapter 4 Scheduling
4.9.11 Dependencies

PBS allows job submitters to specify dependencies between jobs, for example specifying that job J2 can only run if job
J1 finishes successfully. In addition, you can add dependencies to existing jobs via a hook, default arguments to qsub,
or via the qalter command.

For a description of how job dependencies work, see "Using Job Dependencies", on page 109 of the PBS Professional
User’s Guide.

For how to use hooks, see the PBS Professional Hooks Guide.

For how to add default qsub arguments, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

For how to use the qalter command, see “qalter” on page 130 of the PBS Professional Reference Guide.

4.9.12 Dynamic Resources

You can use dynamic PBS resources to represent elements that are outside of the control of PBS, typically for application
licenses and scratch space. You can represent elements that are available to the entire PBS partition or complex as
server-level resources, or elements that are available at a specific host or hosts as host-level resources. For an example of
configuring a server-level dynamic resource, see section 5.14.3.1.iii, “Example of Configuring Dynamic Server-level
Resource”, on page 264. For an example of configuring a dynamic host-level resource, see section 5.14.4.1.i, “Example
of Configuring Dynamic Host-level Resource”, on page 265.

For a complete description of how to create and use dynamic resources, see section 5.14, “Custom Resources”, on page
252.

4.9.13 Eligible Wait Time for Jobs

PBS provides a method for tracking how long a job that is eligible to run has been waiting to run. By "eligible to run",
we mean that the job could run if the required resources were available. The time that a job waits while it is not running
can be classified as "eligible" or "ineligible". Roughly speaking, a job accrues eligible wait time when it is blocked due
to a resource shortage, and accrues ineligible wait time when it is blocked due to project, user, or group limits. A job can
be accruing any of the following kinds of time. A job can only accrue one kind of wait time at a time, and cannot accrue
wait time while it is running.

4.9.13.1 Types of Time Accrued

eligible_time

Job attribute. The amount of wall clock wait time a job has accrued because the job is blocked waiting for
resources, or any other reason not covered by the other kinds of time. For a job currently accruing
eligible_time, if we were to add enough of the right type of resources, the job would start immediately. View-
able via qstat -f by job owner, Manager and Operator. Settable by Operator or Manager.

ineligible_time

The amount of wall clock time a job has accrued because the job is blocked by limits on the job's project, owner,
or group, or because the job is blocked because of its state.

run_time

The amount of wall clock time a job has spent running.

exiting

The amount of wall clock time a job has spent exiting.
AG-128 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
initial_time

The amount of wall clock wait time a job has accrued before the type of wait time has been determined.

4.9.13.2 How Eligible Wait Time Works

A job accrues ineligible_time while it is blocked by project, user, or group limits, such as:

max_run

max_run_soft

max_run_res.<resource name>

max_run_res_soft.<resources>

A job also accrues ineligible_time while it is blocked due to a user hold or while it is waiting for its start time, such as
when submitted via

qsub -a <run-after> …

A job accrues eligible_time when it is blocked by a lack of resources, or by anything not qualifying as ineligible_time or
run_time. A job's eligible_time will only increase during the life of the job, so if the job is requeued, its eligible_time is
preserved, not set to zero. The job's eligible_time is not recalculated when a job is qmoved or moved due to peer sched-
uling.

For information on project, user, and group limits, see section 5.15.1, “Managing Resource Usage By Users, Groups, and
Projects, at Server & Queues”, on page 283.

The kind of time a job is accruing is sampled periodically, with a granularity of seconds.

A job's eligible_time attribute can be viewed via qstat -f.

4.9.13.3 Configuring Eligible Wait Time

To enable using eligible time as the job's wait time, set the eligible_time_enable server attribute to True.

4.9.13.4 How Eligible Wait Time Is Used

• When a job is requeued, for example being checkpointed and aborted or preempted, its accumulated queue waiting
time depends on how that time is calculated:

• If you are using eligible time, the accumulated waiting time is preserved

• If you are not using eligible time, the accumulated waiting time is lost

See section 8.3, “Checkpoint and Restart”, on page 387 and section 4.9.33, “Using Preemption”, on page 179.

4.9.13.5 Altering Eligible Time

A Manager or Operator can set the value for a job's eligible_time attribute using the qalter command, for example:

qalter -Weligible_time=<time> <job ID>
PBS Professional 2022.1 Administrator’s Guide AG-129

Chapter 4 Scheduling
4.9.13.6 Attributes Affecting Eligible Time

eligible_time_enable
Server attribute. Enables accumulation of eligible time for jobs.

On an upgrade from versions of PBS prior to 9.1 or on a fresh install, eligible_time_enable is set to False by
default.

When eligible_time_enable is set to False, PBS does not track eligible_time. Whether eligible_time contin-
ues to accrue for a job or not is undefined. The output of qstat -f does not include eligible_time for any
job. Accounting logs do not show eligible_time for any job submitted before or after turning
eligible_time_enable off. Log messages do not include accrual messages for any job submitted before or after
turning eligible_time_enable off. If the scheduling formula includes eligible_time, eligible_time evaluates to
0 for all jobs.

When eligible_time_enable is changed from False to True, jobs accrue eligible_time or ineligible_time or
run_time as appropriate. Changing the value of eligible_time_enable does not change the behavior of an
active scheduling cycle.

accrue_type
Job attribute. Indicates what kind of time the job is accruing.

The job's accrue_type attribute is visible via qstat only by Manager, and is set only by the server.

eligible_time
Job attribute. The amount of wall clock wait time a job has accrued because the job is blocked waiting for
resources, or any other reason not covered by ineligible_time. For a job currently accruing eligible_time, if we
were to add enough of the right type of resources, the job would start immediately. Viewable via qstat -f by
job owner, Manager and Operator. Settable by Operator or Manager.

4.9.13.7 Logging

The server prints a log message every time a job changes its accrue_type, with both the new accrue_type and the old
accrue_type. These are logged at the 0x0400 event class.

Server logs for this feature display the following information:

• Time accrued between samples

• The type of time in the previous sample, which is one of initial time, run time, eligible time or ineligible time

• The next type of time to be accrued, which is one of run time, eligible time or ineligible time

• The eligible time accrued by the job, if any, until the current sample

Table 4-7: The accrue_type Job Attribute

Type
Numeric

Representation
Type

JOB_INITIAL 0 initial_time

JOB_INELIGIBLE 1 ineligible_time

JOB_ELIGIBLE 2 eligible_time

JOB_RUNNING 3 run_time

JOB_EXIT 4 exit_time
AG-130 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
Example:

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 0 secs of initial_time, new
accrue_type=eligible_time, eligible_time=00:00:00

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 1821 secs of eligible_time, new
accrue_type=ineligible_time, eligible_time=01:20:22

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 2003 secs of ineligible_time, new
accrue_type=eligible_time, eligible_time=01:20:22

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 61 secs of eligible_time, new
accrue_type=run_time, eligible_time=01:21:23

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 100 secs of run_time, new
accrue_type=ineligible_time, eligible_time=01:21:23

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 33 secs of ineligible_time, new
accrue_type=eligible_time, eligible_time=01:21:23

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 122 secs of eligible_time, new
accrue_type=run_time, eligible_time=01:23:25

08/07/2007 13:xx:yy;0040;Server@host1;Job;163.host1;job accrued 1210 secs of run_time, new
accrue_type=exiting, eligible_time=01:23:25

The example shows the following changes in time accrual:

• initial to eligible

• eligible to ineligible

• ineligible to eligible

• eligible to running

• running to ineligible

• ineligible to eligible

• eligible to running

• running to exiting

The server also logs the change in accrual when the job's eligible_time attribute is altered using qalter. For example,
if the job's previous eligible time was 123 seconds, and it has been altered to be 1 hour and 1 minute:

Accrue type is eligible_time, previous accrue type was eligible_time for 123 secs, due to qalter
total eligible_time=01:01:00

4.9.13.8 Accounting

Each job's eligible_time attribute is included in the "E" and "R" records in the PBS accounting logs. See section 12.4,
“Types of Accounting Log Records”, on page 532.

Example:

08/07/2007 19:34:06;E;182.Host1;user=user1 group=user1 jobname=STDIN queue=workq ctime=1186494765
qtime=1186494765 etime=1186494765 start=1186494767 exec_host=Host1/0
exec_vnode=(Host1:ncpus=1) Resource_List.ncpus=1 Resource_List.nodect=1
Resource_List.place=pack Resource_List.select=1:ncpus=1 session=4656 end=1186495446
Exit_status=-12 resources_used.cpupercent=0 resources_used.cput=00:00:00
resources_used.mem=3072kb resources_used.ncpus=1 resources_used.vmem=13356kb
resources_used.walltime=00:11:21 eligible_time=00:10:00
PBS Professional 2022.1 Administrator’s Guide AG-131

Chapter 4 Scheduling
4.9.13.9 Caveats for Eligible Time

• A job that is dependent on another job can accrue eligible time only after the job on which it depends has finished.

• The action of a hook may affect a job's eligible time. See "Effect of Hooks on Job Eligible Time" on page 79 in the
PBS Professional Hooks Guide.

• A subjob that is not running because its array job has hit the max_run_subjobs limit accrues eligible time as long
as no other limits have been hit.

4.9.14 Sorting Jobs by Entity Shares (Was Strict Priority)

You can sort jobs according to how much of the fairshare tree is allocated to the entity that owns the job. The fairshare
percentages in the fairshare tree describe each entity's share. Using entity shares is sorting jobs on a key, using the
fairshare_perc option to the job_sort_key scheduler parameter.

Using entity shares, the jobs from an entity with greater allocation in the fairshare tree run before the jobs with a smaller
allocation.

4.9.14.1 Configuring Entity Shares

To configure entity shares, do the following:

• Define fairshare tree entity allocation in <sched_priv directory>/resource_group. See section 4.9.19,
“Using Fairshare”, on page 138. You can use a simple fairshare tree, where every entity's parent_group is root.

• Give each entity shares according to desired priority, with higher-priority entities getting larger allocations.

• Set the unknown_shares scheduler parameter to 1. This causes any entity not in your list of approved entities
to have a tiny allocation, and the lowest priority.

For example:

usr1 60 root 5

usr2 61 root 15

usr3 62 root 15

usr4 63 root 10

usr5 64 root 25

usr6 65 root 30

• Set fairshare_perc as the option to job_sort_key, for example:
job_sort_key: "fairshare_perc HIGH all"

4.9.14.2 Viewing Entity Shares

When you are root, you can use the pbsfs command to view the fairshare tree allocations.

4.9.15 Estimating Job Start Time

PBS can use a built-in hook called PBS_est that runs the job start time estimator, to estimate when jobs will run, and
which vnodes each job will use. PBS estimates job start times and vnodes for all jobs using an asynchronous process, not
the PBS server, scheduler, or MoM daemons. This estimator process is started by the PBS_est hook, whose default
interval is 120 seconds. By default, the PBS_est hook is disabled.

Jobs have an attribute called estimated for reporting estimated start time and estimated vnodes. This attribute reports the
values of two read-only built-in resources, start_time and exec_vnode. Each job's estimated start time is reported in esti-
mated.start_time, and its estimated vnodes are reported in estimated.exec_vnode.
AG-132 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
PBS automatically sets the value of each job's estimated.start_time value to the estimated start time for each job.

4.9.15.1 Configuring Start Time Estimation

When a scheduler is backfilling around top jobs, it estimates the start times and exec_vnode for those jobs being back-
filled around. By default, PBS_est is disabled. If you want PBS_est to estimate start times and exec_vnode for all
jobs, enable it:

• Enable the built-in PBS_est hook:
qmgr -c "set pbshook PBS_est enabled = true"

The default frequency for PBS_est is 120 seconds. You can set the frequency:

qmgr -c "set pbshook PBS_est freq = <interval in seconds>"

You set the number of jobs to be backfilled around by setting the server and/or queue backfill_depth attribute to the
desired number. See section 4.9.3, “Using Backfilling”, on page 108.

Example 4-1: To estimate start times for the top 5 jobs every scheduling cycle, and for all jobs every 3000 seconds:

qmgr -c 'set server backfill_depth=5'

qmgr -c 'set pbshook PBS_est enabled = true'

qmgr -c 'set pbshook PBS_est freq = 3000'

At each interval, the PBS_est hook checks whether the estimator process is running. If the estimator process is running
when the PBS_est hook hits an interval and performs this check, the PBS_est hook does not stop the estimator process
or start a new one. It allows the estimator process to finish running. If the estimator process is not running when the
PBS_est hook hits an interval, the PBS_est hook starts a new estimator process.

4.9.15.2 Controlling User Access to Start Times and Vnode List

4.9.15.2.i Making Start Time or Vnodes Invisible

You can make job estimated start times and vnodes invisible to unprivileged users by adding resource permission flags to
the start_time or exec_vnode resources. To do this, use qmgr to add the resource, and include the i flag, in the same
way you would for a custom resource being made invisible.

Example of making start_time and exec_vnode invisible to users:

qmgr -c 'set resource start_time flag=i'

qmgr -c 'set resource exec_vnode flag=i'

You can always make the start time and vnodes visible again to unprivileged users by removing the flags via qmgr.

See section 5.14.2.4, “Specifying Resource Visibility”, on page 257.

4.9.15.2.ii Allowing Users to See Only Their Own Job Start Times

If you want users to be able to see the start times for their own jobs, but not those of other users, set the server's
query_other_jobs attribute to False, and do not set the i or r permission flags. Setting the server's query_other_jobs
attribute to False prevents a user from seeing anything about other users' jobs.

4.9.15.3 Attributes and Parameters Affecting Job Start Time

Estimation

backfill
Server attribute

backfill_depth
Server attribute
PBS Professional 2022.1 Administrator’s Guide AG-133

Chapter 4 Scheduling
backfill_depth
Queue attribute

enabled
Hook attribute

estimated
Job attribute

freq
Hook attribute.

strict_ordering
Scheduler parameter

4.9.15.4 Viewing Estimated Start Times

You can view the estimated start times and vnodes of jobs using the qstat command. If you use the -T option to
qstat when viewing job information, the Est Start Time field is displayed. Running jobs are shown above queued
jobs.

See “qstat” on page 200 of the PBS Professional Reference Guide.

If the estimated start time or vnode information is invisible to unprivileged users, no estimated start time or vnode infor-
mation is available via qstat.

Example output:

qstat -T

 Est

 Req'd Req'd Start

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------- -------- ----- -------- ----- --- --- ------ ----- - -----

5.host1 user1 workq foojob 12345 1 1 128mb 00:10 R --

9.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 11:30

10.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Tu 15

7.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Jul

8.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 2010

11.host1 user1 workq foojob -- 1 1 128mb 00:10 Q >5yrs

13.host1 user1 workq foojob -- 1 1 128mb 00:10 Q --

4.9.15.5 Selecting Jobs By Estimated Start Time

You can use the qselect command to select jobs according to their start times by using the -t suboption to the -t
option. This selects jobs according to the value of the estimated.start_time attribute. See “qsig” on page 195 of the PBS
Professional Reference Guide.

4.9.15.6 Logging

Whenever a scheduler estimates the start time of a job, it logs the start time. A scheduler does not log the estimated
exec_vnode of a job.
AG-134 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.15.7 Caveats and Advice

• The estimated.start_time of a job array is the time calculated for the first queued subjob only.

• Cached estimated start times are only as fresh as the last time PBS calculated them.This should be taken into account
when setting the values of the PBS_est hook's freq attribute and backfill_depth.

• The frequency of calculating start times is a trade-off between having more current start time information and using
fewer computing cycles for non-job work. The background task of calculating start times can be computationally
intensive. This should be taken into account when setting the value of the PBS_est hook's freq attribute. Depending
on the size of your partition or site, it is probably a good idea not to set it to less than 10 minutes.

• The best value for the PBS_est hook's freq attribute is workload dependent, but we recommend setting it to two
hours as a starting point.

• If your partition or site has short scheduling cycles of a few minutes, and can use backfilling and strict ordering, you
can have the start times for all jobs calculated at each scheduling cycle. To do this, set backfill_depth to a value
greater than the number of jobs the partition or site will ever have, and do not set the PBS_est hook's freq attribute.

• We recommend setting backfill_depth to a value that is less than 100.

• The process of computing the estimated start time for jobs is not instantaneous.

• Note that setting backfill_depth changes your scheduling policy. See section 4.9.3, “Using Backfilling”, on page
108.

4.9.16 Calculating Job Execution Priority

When a scheduler examines jobs, either at the whole partition or complex or within a queue, it gives each job an execu-
tion priority, and then uses this job execution priority to select which job(s) to run. Job execution priority is mostly inde-
pendent of job preemption priority. We discuss only job execution priority in this section.

Some of a scheduler's policy for determining job execution priority is built into PBS, but you can specify how execution
priority is determined for most of the policy.

First, a scheduler divides queued jobs into classes. Then it sorts the jobs within each class.

4.9.16.1 Dividing Jobs Into Classes

PBS groups all jobs into classes, and handles one class at a time. There are special classes that supersede queue order,
meaning that whether or not queues are being examined separately, the jobs in each of those classes are handled before a
scheduler takes queues into account. Those jobs are not ordered according to which queue they reside in. For example,
all Express jobs are handled as a group. PBS has one non-special class called Normal for all non-special jobs. This
class typically contains most PBS jobs. Queue order is imposed on this class, meaning that queue priority affects job
execution order if queues are being handled separately.
PBS Professional 2022.1 Administrator’s Guide AG-135

Chapter 4 Scheduling
Job execution classes have a built-in order of precedence. All jobs in the highest class are considered before any jobs in
the next class, and so on. Classes are listed in the following table, highest first:

4.9.16.2 Selecting Job Execution Class

A scheduler places each job in the highest-priority class into which the job can fit. So, for example, if a job is both in a
reservation and is preempted, the job is placed in the Reservation class.

4.9.16.3 Sorting Jobs Within Classes

Jobs within each class are sorted according to rules specific to each class. The sorting applied to each class is listed in
Table 4-8, “Job Execution Classes,” on page 136.

• The Reservation class is made up of all jobs in reservations.

• The Reservation class is sorted within each reservation.

• The first sort is according to the formula or job_sort_key, depending on which is defined.

• The second sort key is submission time.

• The Express class is made up of all the jobs that have a higher priority than "normal_jobs" in the preempt_prio
scheduler attribute.

• The Express class is sorted first by applying the rules for preemption priority you set in a scheduler's
preempt_prio attribute, making preemption priority the first sort key.

• The second sort key is the time the job was preempted (if that happened), with the earliest-preempted job having
the highest priority (in this sort).

• The third sort key is the formula, fairshare, or job_sort_key, depending on which is defined.

• The fourth sort key is job submission time.

Jobs are sorted into this class only when preemption is enabled. See section 4.9.33, “Using Preemption”, on page
179. Please note that execution priority classes are distinct from preemption levels, and are used for different pur-
poses.

Table 4-8: Job Execution Classes

Class Description Sort Applied Within Class

Reservation Jobs submitted to an advance, standing, or job-spe-
cific reservation

Formula, job sort key, submission time

Express All jobs with preemption priority higher than normal
jobs. Preemption priority is defined in scheduler's
preempt_prio attribute.

Jobs are sorted into this class only when preemption is
enabled. See section 4.9.33, “Using Preemption”, on
page 179.

First by preemption priority, then by preemption
time, then by formula, then fairshare, then job
sort key, followed by job submission time

Preempted All jobs that have been preempted. See section
4.9.33, “Using Preemption”, on page 179.

First by preemption time, then by formula, then
fairshare, then job sort key, followed by job sub-
mission time

Normal Jobs that do not belong in any of the special classes Queue order, if it exists, then formula, then fair-
share, then job sort key, followed by job submis-
sion time
AG-136 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
For example, if preempt_prio is the following:

preempt_prio: "express_queue, normal_jobs"

The Express class contains all jobs that have preemption priority that is greater than that of normal jobs. In this
example, the Express class is prioritized with top priority for express queue jobs, followed by normal jobs.

• The Preempted class is made up of all preempted jobs.

• The first sort key is the time the job was preempted, with the earliest-preempted job having the highest priority
(in this sort).

• The second sort key is the formula, fairshare, or job_sort_key, depending on which is defined.

• The third sort key is job submission time.

When you set the sched_preempt_enforce_resumption scheduler attribute and the strict_ordering scheduler
parameter to True, a scheduler tries harder to run preempted jobs. By default the attribute is False, and in each
scheduling cycle, if a top job cannot run now, a scheduler moves on to the next top job and tries to run it. When the
attribute and the parameter are True, a scheduler treats the job like a top job: it makes sure that no lower-priority job
will delay this job, and it backfills around the job.

• The Normal class is for any jobs that don't fall into any of the other classes. Most jobs are in this class.

• If queue ordering exists (there are multiple queues, and queues have different priorities set, and round_robin or
by_queue is True), jobs are sorted first by queue order.

• If defined, the formula, fairshare, or job sort key is the second sort key.

• The third sort key is job submission time.

4.9.16.3.i Precedence of Sort Method Used Within Class

If the formula is defined, it overrides fairshare and the job sort key. If fairshare is defined, it overrides the job sort key. If
none are defined, jobs are ordered by their arrival time in the queue.

For the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 150.

For fairshare, see section 4.9.19, “Using Fairshare”, on page 138.

For sorting jobs on a key, see section 4.9.45, “Sorting Jobs on a Key”, on page 219.

4.9.16.4 Execution Priority Caveats

• Limits are not taken into account when prioritizing jobs for execution. Limits are checked only after setting priority,
when selecting a job to run. The only exception is in the Express class, where soft limits may be taken into account,
because execution priority for Express class jobs is calculated using preemption priority. For details, see section
4.9.33, “Using Preemption”, on page 179.

• When you issue "qrun <job ID>", without the -H option, the selected job is the only job considered to run during
that scheduling cycle.

• Jobs are sorted into the Express class only when preemption is enabled.

4.9.17 Calendaring Jobs

In each scheduling cycle, PBS runs through its list of jobs in the order that you have defined. The backfill depth deter-
mines the number of top jobs; these are the highest-priority jobs in its current list. When strict priority and backfilling are
in force, and PBS cannot run a top job right now, PBS holds a spot open for that job: PBS finds a future spot in the calen-
dar that fits the job's needs, and doesn't schedule any other jobs that would interfere with the top job.

PBS rebuilds the calendar with each scheduling cycle.
PBS Professional 2022.1 Administrator’s Guide AG-137

Chapter 4 Scheduling
4.9.17.1 Making Jobs Ineligible to be Top Jobs

By default, a job is eligible to be a top job, meaning that PBS holds resources for it if it cannot run right now (the
topjob_ineligible job attribute defaults to False). If you set the value of a job's topjob_ineligible attribute to True, that
job cannot become a top job, and PBS does not hold a spot open for that job if it cannot run the job right now. Having the
highest priority is not the same as being a top job.

4.9.17.1.i Caveats for Making Jobs Ineligible to be Top Jobs

When sched_preempt_enforce_resumption is set to True, all preempted jobs become top jobs, regardless of their set-
ting for topjob_ineligible.

4.9.18 Express Queues

An express queue is a queue whose priority is high enough to qualify as an express queue; the default for qualification is
150, but the cutoff can be set using the preempt_queue_prio scheduler attribute. For information on configuring
express queues, see section 2.3.5.3.i, “Express Queues”, on page 27.

You can use express queues as tools to manage job execution and preemption priority.

• You can set up execution priority levels that include jobs in express queues. For information on configuring job pri-
orities in a scheduler, see section 4.9.16, “Calculating Job Execution Priority”, on page 135.

• You can set up preemption levels that include jobs in express queues. For information on preemption, see section
4.9.33, “Using Preemption”, on page 179.

The term "express" is also used in calculating execution priority to mean all jobs that have a preemption level greater
than that of the normal_jobs level.

4.9.19 Using Fairshare

Fairshare provides a way to enforce a partition's or site's resource usage policy. It is a method for ordering the start times
of jobs based on two things: how a site's resources are apportioned, and the resource usage history of partition or site
members. Fairshare ensures that jobs are run in the order of how deserving they are. A scheduler performs the fairshare
calculations each scheduling cycle. If fairshare is enabled, all jobs have fairshare applied to them and there is no exemp-
tion from fairshare.

You can employ basic fairshare behavior, or a policy of the desired complexity.

The fair_share parameter is a primetime option, meaning that you can configure it for either primetime or non-prime-
time, or you can specify it for all of the time. You cannot configure different behaviors for fairshare during primetime
and non-primetime.

You can use fairshare information calculated by PBS in the job sorting formula. See section 4.9.19.6, “Computing Fair-
share Values”, on page 144 and section 4.9.21.7, “Using Fairshare in the Formula”, on page 152.

4.9.19.1 One Fairshare System Per Scheduler

Each scheduler runs one fairshare system. Each fairshare system is independent of any others. If you are running only
the default scheduler (no multischeds), it runs one fairshare system for the entire site. If you are using one or more mul-
tischeds, each of the multischeds runs its own fairshare system, and the default scheduler runs one fairshare system.

Each scheduler has its own usage, resource_group, etc., fairshare files in its sched_priv directory, and its own
sched_config configuration file.

The pbsfs command operates on one scheduler's fairshare database at a time. You specify which scheduler's database
to operate on using the pbsfs -I <scheduler name> option.

In the following sections on fairshare, we describe the behavior for any single scheduler.
AG-138 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.19.2 Outline of How Fairshare Works

The owner of a PBS job can be defined for fairshare purposes to be a user, a group, the job's accounting string, etc. For
example, you can define owners to be groups, and can explicitly set each group's relationship to all the other groups by
using the tree structure. If you don't explicitly list an owner, it will fall into the "unknown" catchall. All owners in
"unknown" get the same resource allotment. You can define one group to be part of a larger department.

You specify which resources to track and how you want usage to be calculated. So if you defined job owners to be
groups, then only the usage of groups is considered. PBS tries to ensure that each owner gets the amount of resources
that you have set for it.

4.9.19.3 Enabling Basic Fairshare

If the default fairshare behavior is enabled, PBS enforces basic fairshare rules where all users with queued jobs will get
an equal share of CPU time. The root vertex of the tree will have one child, the unknown vertex. All users will be put
under the unknown vertex, and appear as children of the unknown vertex.

Enable basic fairshare by doing the following:

• In the scheduler's sched_config file, set the scheduler configuration parameter fair_share to True

• Uncomment the unknown_shares setting so that it is set to unknown_shares: 10

• Specify how you want fairshare to work with primetime and non-primetime. If you want separate behavior for
primetime and non-primetime, list the fair_share parameter twice, once for each time slot. The default is both. For
example:
fair_share True prime

fair_share False non_prime

Note that a variant of basic fairshare has all users listed in the tree as children of root. Each user can be assigned a differ-
ent number of shares.

4.9.19.4 Configuring the Fairshare Tree

Fairshare uses a tree structure, where each vertex in the tree represents some set of job owners and is assigned usage
shares. Shares are used to apportion the partition's or site's resources. The default tree always has a root vertex and an
unknown vertex. The default behavior of fairshare is to give all users the same amount of the resource being tracked. In
order to apportion a partition's or site's resources according to a policy other than equal shares for each user, you create a
fairshare tree to reflect that policy. To do this, you edit the resource_group file in the scheduler's sched_priv direc-
tory, which describes that scheduler's fairshare tree.
PBS Professional 2022.1 Administrator’s Guide AG-139

Chapter 4 Scheduling
To configure non-default fairshare, set up a hierarchical tree structure made up of interior vertices and leaves. Interior
vertices are departments, which can contain both departments and leaves. Leaves are for fairshare entities, defined by
setting fairshare_entity to one of the following: euser, egroup, egroup:euser, Account_Name, or queue. Appor-
tioning of resources for the partition or site is among these entities. These entities' usage of the designated resource is
used in determining the start times of the jobs associated with them. All fairshare entities must be the same type. If you
wish to have a user appear in more than one department, you can use egroup:euser to distinguish between that user's
different resource allotments. Note that in the resource_group file and in the output of pbsfs, interior (non-leaf) ver-
tices are referred to as "groups", and exterior (leaf) vertices are referred to as "users".

4.9.19.4.i Allotting Shares in the Tree

You assign shares to each vertex in the tree. The actual number of shares given to a vertex or assigned in the tree is not
important. What is important is the ratio of shares among each set of sibling vertices. Competition for resources is
between siblings only. The sibling with the most shares gets the most resources.

4.9.19.4.ii Shares Among Unknown Entities

The root vertex always has a child called unknown. Any entity not listed in the scheduler's resource_group file will
be made a child of unknown, designating the entity as unknown. The shares used by unknown entities are controlled by
two parameters in the scheduler's sched_config file: unknown_shares and fairshare_enforce_no_shares.

The parameter unknown_shares controls how many shares are assigned to the unknown vertex. The shipped
sched_config file contains this line:

#unknown_shares 10

If you leave unknown_shares commented out, the unknown vertex will have 0 shares. If you simply remove the "#",
the unknown vertex's shares default to 10. The children of the unknown vertex have equal amounts of the shares
assigned to the unknown vertex.

The parameter fairshare_enforce_no_shares controls whether an entity without any shares can run jobs. If
fairshare_enforce_no_shares is True, entities without shares cannot run jobs. If it is set to False, entities without any
shares can run jobs, but only when no other entities' jobs are available to run.

4.9.19.4.iii Format for Describing the Tree

The file describing the fairshare tree contains four columns to describe the vertices in the tree. Here is the format for the
columns:

<Vertex name> <vertex fairshare ID> <parent of vertex> <#shares>

The columns are for a vertex's name, its fairshare ID, the name of its parent vertex, and the number of shares assigned to
this (not the parent) vertex. Vertex names and IDs must be unique. Vertex IDs are integers. The top row in
resource_group contains information for the first vertex, rather than column labels.

Table 4-9: Using Fairshare Entities

Keyword
Fairshare
Entities

Purpose

euser Username Individual users are allotted shares of the resource being tracked. Each
username may only appear once, regardless of group.

egroup OS group name Groups as a whole are allotted shares of the resource being tracked.

egroup:euser Combinations of user-
name and group name

Useful when a user is a member of more than one group, and needs to
use a different allotment in each group.

Account_Name Account IDs Shares are allotted by account string (Account_Name job attribute).

queue Queues Shares are allotted between queues.
AG-140 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
Neither the root vertex nor the unknown vertex is described in the resource_group file. They are always added
automatically. Parent vertices must be listed before their children.

For example, we have a tree with two top-level departments, Math and Phys. Under Math are the users Bob and Tom as
well as the department Applied. Under Applied are the users Mary and Sally. Under Phys are the users John and Joe.
Our <sched_priv directory>/resource_group looks like this:

Math 100 root 30

Phys 200 root 20

Applied 110 Math 25

Bob 101 Math 15

Tom 102 Math 10

Mary 111 Applied 1

Sally 112 Applied 2

John 201 Phys 2

Joe 202 Phys 2

If you wish to use egroup:euser as your entity, and Bob to be in two groups pbsgroup1 and pbsgroup2, and Tom to be in
two groups pbsgroup2 and pbsgroup3:

Math 100 root 30

Phys 200 root 20

Applied 110 Math 20

pbsgroup1:Bob 101 Phys 20

pbsgroup2:Bob 102 Math 20

pbsgroup2:Tom 103 Math 10

pbsgroup3:Tom 104 Applied 10

When a user submits a job using -Wgroup_list=<group>, the job's egroup will be <group>. For example, user
Bob is in pbsgroup1 and pbsgroup2. Bob uses "qsub -Wgroup_list= pbsgroup1" to submit a job that will be
charged to pbsgroup1, and "qsub -Wgroup_list=pbsgroup2" to submit a job that will be charged to pbsgroup2.

The first and third fields are alphanumeric. The second and fourth fields are numeric. Fields can be separated by spaces
and tabs.

4.9.19.4.iv Moving Entities within Fairshare Tree

To move an entity within the fairshare tree, change its parent:

1. Edit <sched_priv directory>/resource_group. Change the parent (column 3) to the desired parent

2. HUP or restart the scheduler

4.9.19.4.v Removing Entities from Fairshare Tree

You may want to remove an entity from the fairshare tree, either because they no longer run jobs, or because you don't
want them to have their own place in the tree. When an entity that is not in the fairshare tree runs a job, their past and
future usage, including that for jobs running while you remove the entity, shows up in the Unknown group. To remove
an entity from the fairshare tree:

1. Edit the resource_group file to remove the entity line

2. HUP or restart the scheduler
PBS Professional 2022.1 Administrator’s Guide AG-141

Chapter 4 Scheduling
If you do not want an entity's usage to show up in the Unknown group, use pbsfs -e [-I <multisched name>]
to remove the usage. If you are working on a partition managed by a multisched, you must specify the name of the mul-
tisched:

1. Prevent jobs from being scheduled

2. Run pbsfs -e [-I <multisched name>]

3. Resume scheduling jobs

If you have removed a user from the PBS partition or complex and don't want their usage to show up any more:

1. Prevent jobs from being scheduled

2. Edit the resource_group file

3. Run pbsfs -e [-I <multisched name>]

4. Resume scheduling jobs

4.9.19.5 Resource Usage for Fairshare

4.9.19.5.i Tracking Resource Usage

You choose which resources to track and how to compute the usage by setting the fairshare_usage_res scheduler con-
figuration parameter in the sched_config file to the fairshare resource formula you want. This parameter can contain
the following:

• Built-in and custom job resources

When you use a resource in the fairshare resource formula, if a value exists for resources_used.<resource
name>, this value is used in the fairshare resource formula. Otherwise, the value is taken from
Resource_List.<resource name>.

• Mathematical operators

You can use standard Python operators and the operators in the Python math module.

The default for the tracked resource is cput (CPU time).

4.9.19.5.ii Adding Usage

An entity's usage always starts at 1. Resource usage tracking begins when a scheduler is started. Each scheduler cycle,
the scheduler adds the usage increment between this cycle and the previous cycle to its sum for the entity.

A static resource does not change its usage from one cycle to the next. If you use a static resource such as ncpus, the
amount being tracked will not change during the lifetime of the job; it will only be added once when the job starts.

Note that if a job ends between two scheduling cycles, its resource usage for the time between the previous scheduling
cycle and the end of the job will not be recorded. A scheduler's default cycle interval is 10 minutes. The scheduling
cycle can be adjusted via the qmgr command. Use

Qmgr: set sched [sched name>] scheduler_iteration=<new value>

If the fairshare resource formula in fairshare_usage_res evaluates to a negative number, PBS uses zero instead. So
there is no way to accumulate negative usage.

4.9.19.5.iii Decaying Usage

Each entity's usage is decayed, or reduced periodically, at the interval set in the fairshare_decay_time parameter in the
sched_config file. This interval defaults to 24 hours.

The amount by which usage is decayed is set in the fairshare_decay_factor scheduler parameter.

An entity with a lot of current or recent usage will have low priority for starting jobs, but if the entity cuts resource usage,
its priority will go back up after a few decay cycles.
AG-142 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.19.5.iv Setting Decay Interval and Factor

You set the interval at which usage is decayed by setting the fairshare_decay_time scheduler parameter to the desired
time interval. The default value for this interval is 24 hours. For example, to set this interval to 14 hours and 23 minutes,
put this line in the sched_config file:

fairshare_decay_time: 14:23:00

You set the decay factor by setting the fairshare_decay_factor scheduler parameter to the desired multiplier for usage.
At each decay interval, the usage is multiplied by the decay factor. This attribute is a float whose value must be between
0 and 1. The value must be greater than 0 and less than 1. The default value for this multiplier is 0.5. For example, to set
this multiplier to 70 percent, put this line in sched_config:

fairshare_decay_factor: .7

4.9.19.5.v Examples of Setting Fairshare Usage

To use CPU time as the resource to be tracked, put this line in sched_config:

fairshare_usage_res: cput

To use ncpus multiplied by walltime as the resource to be tracked, put this line in sched_config:

fairshare_usage_res: ncpus*walltime

An example of a more complex formula:

fairshare_usage_res: "ncpus*pow(walltime,.25)*fs_factor"

4.9.19.5.vi Fairshare Resource Advice

We recommend including a time-based resource in the fairshare formula so that usage will grow over time.

4.9.19.5.vii Viewing and Managing Fairshare Usage Data

The pbsfs command provides a command-line tool for viewing and managing some fairshare data. You can display the
data as a tree, a table, or by entity. You can print all information about an entity, or set an entity's usage to a new value.
You can force an immediate decay of all the usage values in the tree. You can compare two fairshare entities. You can
also remove all entities from the unknown department. This makes the tree easier to read. The tree can become
unwieldy because entities not listed in the resource_group file all land in the unknown group. See “pbsfs” on page
32 of the PBS Professional Reference Guide.

To change fairshare resource usage data, do the following:

1. Stop scheduling:
Qmgr: set sched [<sched name>] scheduling = false

2. Wait until the current scheduling cycle finishes. Check the scheduler's log.

3. Trim the fairshare tree:

pbsfs -e [-I <multisched name>]

4. Set each entity's usage to one (cannot be zero). For each leaf entity:

pbsfs -s <entity name> 1 [-I <multisched name>]

5. Start scheduling:

Qmgr: set sched [<sched name>] scheduling = true

The fairshare usage data is written to the file usage file at each scheduling cycle. The usage data is always up to date.

For more information on using the pbsfs command, see “pbsfs” on page 32 of the PBS Professional Reference Guide
PBS Professional 2022.1 Administrator’s Guide AG-143

Chapter 4 Scheduling
4.9.19.6 Computing Fairshare Values

PBS provides fairshare_perc, fairshare_tree_usage, and fairshare_factor as terms to use in the job sorting formula.
You can also use fairshare_perc as an argument to the job_sort_key scheduler parameter.

4.9.19.6.i Computing Target Usage for Each Vertex (fairshare_perc)

How much resource each entity should use is its target usage, computed in fairshare_perc. Target usage is the percent-
age of the shares in the tree allotted to the entity. Target usage does not take history into account.

A vertex's portion of all the shares in the tree is its fairshare_perc. This is computed for all of the vertices in the tree.
Since the leaves of the tree represent the entities among which resources are to be shared, their fairshare_perc sums to
100 percent. Only the leaf nodes sum to 100%; if all of the nodes were summed, the result would be greater then 100%.
Only the leaf nodes of the tree are fairshare entities.

A scheduler computes the fairshare_perc for the vertices this way:

First, it gives the root of the tree a fairshare_perc of 100 percent. It proceeds down the tree, finding the fairshare_perc
first for immediate children of root, then their children, ending with leaves.

1. For each internal vertex A:

sum the shares of its children;

2. For each child J of vertex A:

divide J's shares by the sum to normalize the shares;

multiply J's normalized shares by vertex A's fairshare_perc to find J's fairshare_perc.

The fairshare_perc value can be used in the job sorting formula and as an argument to the job_sort_key scheduler
parameter.

4.9.19.6.ii Computing Effective Usage (fairshare_tree_usage)

An entity's effective usage is fairshare_tree_usage, and is a value between 0 and 1.

PBS calculates the value for fairshare_tree_usage this way:

For root's children:

fairshare_tree_usage = percent total usage
For entities below root's children:

fairshare_tree_usage = entity's percent total usage + ((parent's effective usage - entity's percent total usage) *
entity's relative percent of shares within sibling group)

where

entity's percent total usage = entity's usage / all usage in partition or complex

Summing effective usage for all leaves in the tree does not yield a useful number (such as 1).

4.9.19.6.iii Computing Relative Usage (fairshare_factor)

An entity's relative usage allows direct comparison between entities. Relative usage is fairshare_factor, and is a value
between 0 and 1. A value of 0.5 means that an entity is using exactly its target usage. A higher value indicates less
resource usage by the entity, meaning that the entity is more deserving. Calculated this way:

2^-(fairshare_tree_usage / entity's fairshare_perc)
AG-144 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.19.6.iv Example of Computing Fairshare Values

Example 4-2: The following fairshare tree shows shares and usage for two groups, each with two people:

Comparing Suzy and Bob:

Bob:

Percent total usage: 100/1200 = 0.083

Parent's effective usage: 0.1667

Bob's percentage of shares in group: Bob's 50 shares / (Bob's 50 shares+ Cathy's 50 shares) = 0.5

Bob's effective usage: Bob's percent total usage: 0.0833 + (group1's effective usage: 0.1667 - Bob's percent total
usage: 0.083) * 0.5 = 0.125

Relative usage formula: 2^-(0.125/0.2) = 0.648

Suzy:

Percent total usage: 0/1200 = 0

Parent's effective usage: 1000/1200 = 0.833

Suzy's percentage of shares in group: Suzy's 60 shares / (Suzy's 60 shares + Scott's 40 shares) = 0.6

Suzy's effective usage: Suzy's percent total usage: 0 + (group2's usage: 0.833 - Suzy's usage: 0) * 0.6 = 0.5

Relative usage formula: 2^-(0.5/0.36): 0.382

Even though Suzy had a higher fairshare_perc than Bob and less usage than Bob, her relative usage
(fairshare_factor) is quite a bit lower than his, because of the huge amount Scott used.

Table 4-10: Example Fairshare Tree

Vertex Shares
Actual
Usage

%
Total

Usage

%
Group
Shares

Target
Usage:

fairshare
_perc

Effective
Usage:

fairshare
_tree_us

age

Relative
Usage:

fairshare
_factor

root 1200 100 1.0 1.0 1.0 1.0

group1 40 200 0.1667 0.4 0.4 0.167 0.75

Bob 50 100 0.0833 0.5 0.2 0.125 0.65

Cathy 50 100 0.0833 0.5 0.2 0.125 0.65

group2 60 1000 0.833 0.6 0.6 0.833 0.38

Suzy 60 0 0 0 0.36 0.5 0.38

Scott 40 1000 0.833 1 0.24 0.833 0.09
PBS Professional 2022.1 Administrator’s Guide AG-145

Chapter 4 Scheduling
Output of pbsfs -g:

Our pbsfs output uses the same fairshare data as the previous example.

./pbsfs -g scott

fairshare entity: scott

Resgroup : 11

cresgroup : 15

Shares : 40

Percentage : 24.000000%

fairshare_tree_usage : 0.832973

usage : 1000 (cput)

usage/perc : 4167

Path from root:

TREEROOT : 0 1201 / 1.000 = 1201

group2 : 11 1001 / 0.600 = 1668

scott : 15 1000 / 0.240 = 4167

4.9.19.7 Choosing Which Job to Run

4.9.19.7.i Finding the Most Deserving Entity

The most deserving entity is found by starting at the root of the tree, comparing its immediate children, finding the most
deserving, then looking among that vertex's children for the most deserving child. This continues until a leaf is found. In
a set of siblings, the most deserving vertex will be the vertex with the lowest ratio of resource usage divided by
fairshare_perc.

4.9.19.7.ii Sorting and Selecting Jobs to Run

The job to be run next is selected from the set of jobs belonging to the most deserving entity. The jobs belonging to the
most deserving entity are sorted according to the methods a scheduler normally uses. This means that fairshare effec-
tively becomes the primary sort key. If the most deserving job cannot run, then the next most is selected to run, and so
forth. All of the most deserving entity's jobs are examined first, then those of the next most deserving entity, etcetera.

At each scheduling cycle, a scheduler attempts to run as many jobs as possible. It selects the most deserving job, runs it
if it can, then recalculates to find the next most deserving job, runs it if it can, and so on.

When a scheduler starts a job, all of the job's requested usage is added to the sum for the owner of the job for one sched-
uling cycle. The following cycle, the job's usage is set to the actual usage that occurred between the first and second
cycles. This prevents one entity from having all its jobs started and using up all of the resource in one scheduling cycle.

4.9.19.8 Files and Parameters Used in Fairshare

sched_config

File in the directory specified in the scheduler's sched_priv attribute
AG-146 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
PBS uses the following parameters from sched_config to compute fairshare values:

resource_group

File in the directory specified in the scheduler's sched_priv attribute

Contains the description of the fairshare tree.

usage

File in the directory specified in the scheduler's sched_priv attribute

Contains the usage database. Written by PBS. Do not edit. Written each scheduling cycle.

scheduler_iteration

Scheduler attribute. Specifies scheduler cycle frequency; default is 10 minutes.

Qmgr: set sched <scheduler name> scheduler_iteration=<new value>

resources_used.<resource name>

Job attribute. Contains resources used for tracking usage. Default is cput.

4.9.19.9 Ways to Use Fairshare

4.9.19.9.i Fairshare for Partition Or Complex or Within Queues

You can use fairshare to compare all jobs in the partition managed by a scheduler, or within each queue. Fairshare within
a queue means that a scheduler examines the jobs in a queue, and compares them to each other, to determine which job to
start next.

To use fairshare for the entire partition or complex, set the by_queue and round_robin scheduler configuration parame-
ters to False.

To use fairshare within queues, set the by_queue scheduler parameter to True, and round_robin to False. If you want
to examine queues in a particular order, prioritize the queues by setting each queue's priority attribute.

The scheduler configuration parameter by_queue in the sched_config file is set to True by default.

Table 4-11: sched_config Parameters used in Fairshare

Parameter Use

fair_share [True/False] Enable or disable fairshare

fairshare_usage_res Resource whose usage is to be tracked; default is cput

fairshare_decay_factor Amount to decay usage at each decay interval

fairshare_decay_time Decay interval; default is 24 hours

unknown_shares Number of shares for unknown vertex; default 10, 0 if commented out

fairshare_entity The kind of entity which is having fairshare applied to it. Leaves in the tree
are this kind of entity. Default: euser

fairshare_enforce_no_shares If an entity has no shares, this controls whether it can run jobs. T: an entity
with no shares cannot run jobs. F: an entity with no shares can only run jobs
when no other jobs are available to run. Default: True

by_queue If on, queues cannot be designated as fairshare entities, and fairshare will
work queue by queue instead of on all jobs at once.
PBS Professional 2022.1 Administrator’s Guide AG-147

Chapter 4 Scheduling
If by_queue is True, queues cannot be designated as fairshare entities.

4.9.19.9.ii Altering Fairshare According to Queue

You can introduce a fairshare factor that is different at each queue. To do this, create a custom floating point resource,
and set each queue's resources_default.<resource name> to the desired value. Use this resource in the
fairshare_usage_res computation. If you do not set this value at a queue, PBS uses zero for the value. To avoid hav-
ing to set a value at multiple queues, you can set the servers's resources_default.<resource name> to the default
value for all queues where the value is unset. The server value is used only where the queue value is unset; where the
queue value is set, the queue value takes precedence.

For example, to reduce the priority for jobs in the "expensive" queue by assigning them twice the usage of the jobs in
workq:

• Define the resource:
Qmgr: create resource fs_factor type = float, flag = i

• Set the resource values:
Qmgr: set server resources_default.fs_factor = 1
Qmgr: set queue workq resources_default.fs_factor = 0.3
Qmgr: set queue expensive resources_default.fs_factor = 0.6

• Edit sched_config:
fairshare_usage_res: "fs_factor*ncpus*walltime"

4.9.19.9.iii Using Fairshare in Job Execution Priority

Jobs are sorted as specified by the formula in job_sort_formula, if it exists, then by fairshare, if it is enabled, or if neither
of those is used, by job_sort_key. The job sorting formula can use the following calculated values: fairshare_perc, the
percentage of the fairshare tree for this job's entity, fairshare_tree_usage, an entity's effective usage, and
fairshare_factor, an entity's comparative usage. See section 4.9.16, “Calculating Job Execution Priority”, on page 135.

4.9.19.9.iv Using Fairshare in Job Preemption Priority

You can use the fairshare preemption level in determining job preemption priority. This level applies to jobs whose
owners are over their fairshare allotment. See section 4.9.33, “Using Preemption”, on page 179.

4.9.19.10 Fairshare Restrictions

• Entity shares (strict priority):

If you enable entity shares (strict priority), you use the same fairshare tree that you would use for fairshare. Fair-
share and entity shares (strict priority) are incompatible, so in order to use entity shares, you disable fairshare by set-
ting fair_share to False. For how to configure entity shares, see section 4.9.14, “Sorting Jobs by Entity Shares
(Was Strict Priority)”, on page 132.

• Requeued jobs:

When a job is requeued, it normally retains its original place in its execution queue with its former priority. The job
is usually the next job to be considered during scheduling, unless the relative priorities of the jobs in the queue have
changed. This can happen when the job sorting formula assigns higher priority to another job, another higher-priority
job is submitted after the requeued job started, this job's owner has gone over their fairshare limit, etc.

• With strict_ordering or backfilling:

We do not recommend using fairshare with strict_ordering, or with strict_ordering and backfilling. The results
may be non-intuitive. Fairshare will cause relative job priorities to change with each scheduling cycle. It is possible
that a job from the same entity or group as the top job will be chosen as the filler job. The usage from the filler job
will lower the priority of the most deserving, i.e. top, job. This could delay the execution of the top job.
AG-148 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
However, if all of your leaf entities are children of root (the tree has only two levels), and all users tend to submit the
same size jobs, results may be useful.

• With fairshare_perc option to job_sort_key:

Do not use fairshare when using the fairshare_perc option to job_sort_key. You can still use the value of
fairshare_perc in the job sorting formula.

• Static resources:

Do not use static resources such as ncpus as the resource to track. A scheduler adds the incremental change in the
tracked resource at each scheduling cycle, and a static resource will not change.

4.9.19.11 Fairshare Caveats and Advice

• The most deserving entity can change with every scheduling cycle, if each time a job is run, it changes usage suffi-
ciently.

• Fairshare dynamically reorders the jobs with every scheduling cycle. Strict ordering is a rule that says we always
run the next-most-deserving job. If there were no new jobs submitted, strict ordering could give you a snapshot of
how the jobs would run for the next n days. Hence fairshare appears to break that. However, looked at from a
dynamic standpoint, fairshare is another element in the strict order.

• The half_life parameter is deprecated and has been replaced by the fairshare_decay_time parameter.

• Beware of overflow: PBS stores fairshare allocations in a signed integer (32-bit on Linux x86_64 platforms), and
fairshare usage in a long (64-bit on Linux x86_64 platforms)

4.9.20 FIFO Scheduling

With FIFO scheduling, PBS runs jobs in the order in which they are submitted. You can use FIFO order for all of the jobs
in your partition or complex, or you can go queue by queue, so that the jobs within each queue are considered in FIFO
order.

4.9.20.1 Configuring Basic FIFO Scheduling

To configure basic FIFO scheduling, whether across all a scheduler's partition or queue by queue, set the following
scheduler parameters and queue/server attribute to these values:

round_robin: False ALL

job_sort_key: (commented out)

fair_share False ALL

backfill_depth: 0

job_sort_formula: (unset)

4.9.20.2 FIFO for Entire Partition Or Complex

To configure FIFO across your entire partition or complex, follow the steps above and do one of the following:

• Use only one execution queue

• Set the by_queue scheduler parameter to False
PBS Professional 2022.1 Administrator’s Guide AG-149

Chapter 4 Scheduling
4.9.20.3 Queue by Queue FIFO

To configure FIFO for each queue separately, first decide how you want queues to be selected. You can set the order in
which PBS chooses queues from which to run jobs, or you can allow the queues to be selected in an undefined way.
First configure this scheduler as in Section 4.9.20.1, "Configuring Basic FIFO Scheduling".

• To allow queues to be selected in an undefined way, set the by_queue scheduler parameter to True.

• To set the order in which queues are selected, do the following:

• Specify a priority for each queue

• Set the by_queue scheduler parameter to True

4.9.20.4 FIFO with Strict Ordering

If your jobs must run exactly in submission order, you can use strict ordering with FIFO scheduling. If you use strict
ordering with FIFO scheduling, this means that when the job that is supposed to run next cannot run, no jobs can run.
This can result in less throughput than you could otherwise achieve. To avoid that problem, you can use backfilling. See
the following section.

To use strict ordering with FIFO scheduling, use the following scheduler parameter settings in <sched_priv direc-
tory>/sched_config and queue/server attribute settings:

strict_ordering: True ALL

round_robin: False ALL

job_sort_key: (commented out)

fair_share False ALL

backfill_depth: 0

job_sort_formula: (unset)

4.9.20.5 FIFO with Strict Ordering and Backfilling

If you want to run your jobs in submission order, except for backfilling around top jobs that are stuck, use the following:

strict_ordering: True ALL

round_robin: False ALL

job_sort_key: (commented out)

fair_share False ALL

backfill_depth: <depth>

job_sort_formula: (unset)

4.9.21 Using a Formula for Computing Job Execution Priority

You can choose to use a formula by which to sort jobs at the finest-granularity level. The formula can only direct how
jobs are sorted at the finest level of granularity. However, that is where most of the sorting work is done.

When a scheduler sorts jobs according to the formula, it computes a priority for each job. The priority computed for each
job is the value produced by the formula. Jobs with a higher value get higher priority. See section 4.9.16.3, “Sorting
Jobs Within Classes”, on page 136 for how the formula is used in setting job execution priority.

Only one formula is used to prioritize all jobs. At each scheduling cycle, the formula is applied to all jobs, regardless of
when they were submitted. If you change the formula, the new formula is applied to all jobs.

For example, if you submit some jobs, change the formula, then submit more jobs, the new formula is used for all of the
jobs, during the next scheduling cycle.
AG-150 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
You can set a job priority threshold so that jobs with priority at or below the specified value do not run. See section
4.9.21.10, “Setting Minimum Job Priority Value for Job Execution”, on page 153.

You may find that the formula is most useful when you use it with custom resources inherited by or allocated to jobs. For
example, you may want to route all jobs from a particular project to a queue where they inherit a specific value for a cus-
tom resource. Other jobs may end up at a different queue, where they inherit a different value, or they may inherit no
value. You can then use this custom resource in the formula as a way to manage job priority. See section 10.3, “Allocat-
ing Resources to Jobs”, on page 455, and section 4.9.8, “Using Custom and Default Resources”, on page 115.

It may be helpful if these custom resources are invisible and unrequestable by users. See section 4.9.21.12, “Examples of
Using Resource Permissions in Job Sorting Formula”, on page 154.

4.9.21.1 When the Formula is Applied

Once you set job_sort_formula via qmgr, it takes effect with the following scheduling cycle.

Variables are evaluated at the start of the scheduling cycle.

4.9.21.2 Configuring the Job Sorting Formula

• Define the formula:

You specify the formula in the server's job_sort_formula attribute. To set the job_sort_formula attribute, use the
qmgr command. When specifying the formula, be sure to follow the requirements for entering an attribute value via
qmgr: strings containing whitespace, commas, or other special characters must be enclosed in single or double
quotes. See “Caveats and Restrictions for Setting Attribute and Resource Values” on page 162 of the PBS Profes-
sional Reference Guide. Format:

Qmgr: s s job_sort_formula = "<formula>"

• Optional: set a priority threshold. See section 4.9.21.10, “Setting Minimum Job Priority Value for Job Execution”,
on page 153

4.9.21.3 Requirements for Creating Formula

The job sorting formula must be created at the server host.

Under Linux, root privilege is required in order to operate on the job_sort_formula server attribute.

4.9.21.4 Format of Formula

The formula must be valid Python, and must use Python syntax.The formula can be made up of any number of expres-
sions, where expressions contain terms which are added, subtracted, multiplied, or divided. You can use parentheses,
exponents, unary + and - operators, and the ternary operator (which must be Python). All operators use standard mathe-
matical precedence. The formula can use standard Python mathematical operators and those in the Python math module.

The formula can be any length.

The range for the formula is defined by the IEEE floating point standard for a double.

4.9.21.5 Units in Formula

The variables you can use in the formula have different units. Make sure that some terms do not overpower others, by
normalizing them where necessary. Resources like ncpus are integers, size resources like mem are in kb, so 1gb is
1048576kb, and time-based resources are in seconds (e.g. walltime). Therefore, if you want a formula that combines
memory and ncpus, you'll have to account for the factor of 1024 difference in the units.
PBS Professional 2022.1 Administrator’s Guide AG-151

Chapter 4 Scheduling
The following are the units for the supported built-in resources:

Example 4-3: If you use '1 * ncpus + 1 * mem', where mem=2mb, ncpus will have almost no effect on the formula
result. However, if you use '1024 * ncpus + 1 * mem', the scaled mem won't overpower ncpus.

Example 4-4: You are using gb of mem:

Qmgr: s s job_sort_formula='1048576 * ncpus + 2 * mem'

Example 4-5: If you want to add days of walltime to queue priority, you might want to multiply the time by 0.0000115,
equivalent to dividing by the number of seconds in a day:

Qmgr: s s job_sort_formula = '.0000115*walltime + queue_priority'

Note that a Python bug may make it necessary to multiply by 1.0 in order to prevent rounding to the nearest integer.

4.9.21.6 Resources in Formula

The formula can use resources in the job's Resource_List attribute, but no other resources. The resources in the job's
Resource_List attribute are the numeric job-level resources, and may have been explicitly requested, inherited, or
summed from consumable host-level resources. See section 5.9.2, “Resources Requested by Job”, on page 241.

This means that all variables and coefficients in the formula must be resources that were either requested by the job or
were inherited from defaults at the server or queue. These variables and coefficients can be custom numeric resources
inherited by the job from the server or queue, or they are long integers or floats.

You may need to create custom resources at the server or queue level to be used for formula coefficients. See section
4.9.8, “Using Custom and Default Resources”, on page 115.

4.9.21.7 Using Fairshare in the Formula

PBS provides the following fairshare values for use as keywords in the job sorting formula:

See section 4.9.19, “Using Fairshare”, on page 138.

Table 4-12: Job Sorting Formula Units

Resource Units Example

Time resources Integer number of seconds 300

Memory kb 1gb => 1048576kb

ncpus Integer 8

Table 4-13: Fairshare Terms in Formula

Keyword Description

fairshare_perc (was
fair_share_perc)

Percentage of fairshare tree allotted to this job's entity. See section 4.9.19.6.i, “Computing
Target Usage for Each Vertex (fairshare_perc)”, on page 144.

fairshare_tree_usage Value between 0 and 1, reflecting an entity's effective usage. See section 4.9.19.6.ii, “Com-
puting Effective Usage (fairshare_tree_usage)”, on page 144.

fairshare_factor Value between 0 and 1, which allows direct comparison between entities. A value of 0.5
means that an entity is using exactly its allotted usage. A higher value indicates less resource
usage by the entity, meaning that the entity is more deserving. See section 4.9.19.6.iii, “Com-
puting Relative Usage (fairshare_factor)”, on page 144.
AG-152 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.21.8 Terms in Formula

4.9.21.9 Modifying Coefficients For a Specific Job

Formula coefficients can be altered for each job by using the qalter command to change the value of that resource for
that job. If a formula coefficient is a constant, it cannot be altered per-job.

4.9.21.10 Setting Minimum Job Priority Value for Job Execution

You can specify a minimum job priority value for jobs to run by setting the job_sort_formula_threshold scheduler
attribute. If the value calculated for a job by the job sorting formula is at or below this value, the job cannot run during
this scheduling cycle.

4.9.21.11 Examples of Using the Job Sorting Formula

Examples of formulas:

Example 4-6: 10 * ncpus + 0.01*walltime + A*mem

Table 4-14: Terms in Job Sorting Formula

Terms Allowable Value

Constants <number> or <number>.<number>

Attributes, key-
words, parame-
ters, etc.

queue_priority Value of priority attribute for queue in which job resides

job_priority Value of the job's priority attribute

fairshare_perc Percentage of fairshare tree allotted to this job's entity

fairshare_tree_usage The effective usage by the entity

fairshare_factor Value allowing direct comparison between entities

eligible_time Amount of wait time job has accrued while waiting for resources

accrue_type Kind of time job is accruing. See section 4.9.13, “Eligible Wait Time for
Jobs”, on page 128.

Resources ncpus

mem

walltime

cput

Custom numeric job-wide resources Uses the amount requested, not the amount used. Must be of type long,
float, or size. See section 5.14.2.2, “Custom Resource Values”, on page
255.
PBS Professional 2022.1 Administrator’s Guide AG-153

Chapter 4 Scheduling
Here, "A" is a custom resource.

Example 4-7: ncpus + 0.0001*mem

Example 4-8: To change the formula on a job-by-job basis, alter the value of a resource in the job's
Resource_List.<resource name>. So if the formula is A *queue_priority + B*job_priority + C*ncpus + D*wall-
time, where A-D are custom numeric resources. These resources can have a default value via resources_default.A
... resources_default.D. You can change the value of a job's resource through qalter.

Example 4-9: ncpus*mem

Example 4-10: Set via qmgr:

qmgr -c 'set server job_sort_formula= 5*ncpus+0.05*walltime'

Following this, the output from qmgr -c 'print server' will look like

set server job_sort_formula="5*ncpus+0.05*walltime"

Example 4-11:

Qmgr: s s job_sort_formula=ncpus

Example 4-12:

Qmgr: s s job_sort_formula='queue_priority + ncpus'

Example 4-13:

Qmgr: s s job_sort_formula='5*job_priority + 10*queue_priority'

Example 4-14: Sort jobs using the value of ncpus x walltime:

Formula expression: "ncpus * walltime"

Submit these jobs:

Job 1: ncpus=2 walltime=01:00:00 -> 2*60s = 120

Job 2: ncpus=1 walltime=03:00:00 -> 1*180s = 180

Job 3: ncpus=5 walltime=01:00:00 -> 5*60s = 300

The scheduler logs the following:

Job ;1.host1;Formula Evaluation = 120

Job ;2.host1;Formula Evaluation = 180

Job; 3.host1;Formula Evaluation = 300

The jobs are sorted in the following order:

Job 3

Job 2

Job 1

4.9.21.12 Examples of Using Resource Permissions in Job Sorting

Formula

See section 5.14.2.4, “Specifying Resource Visibility”, on page 257 for information on using resource permissions.

Example 4-15: You may want to create per-job coefficients in your job sorting formula which are set by system defaults
and which cannot be viewed, requested or modified by the user. To do this, you create custom resources for the for-
mula coefficients, and make them invisible to users. In this example, A, B, C and D are the coefficients. You then
use them in your formula:
AG-154 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
A *(Queue Priority) + B*(Job Class Priority) + C*(CPUs) + D*(Queue Wait Time)

Example 4-16: You may need to change the priority of a specific job, for example, have one job or a set of jobs run next.
In this case, you can define a custom resource for a special job priority. If you do not want users to be able to change
this priority, set the resource permission flag for the resource to r. If you do not want users to be able to see the pri-
ority, set its resource permission flag to i. For the job or jobs that you wish to give top priority, use qalter to set
the special resource to a value much larger than any formula outcome.

Example 4-17: To use a special priority:

sched_priority = W_prio * wait_secs + P_prio * priority + ... + special_priority

Here, special_priority is very large.

4.9.21.13 Supporting Starving via the Formula

The formula can support the use of starving information by including how long a job has waited to run in its calculations.

Crafting a formula will be different for every site, but the thing to know about adding eligible_time to the formula is to
correctly normalize it to the other factors. The eligible_time factor will grow to be large; for example, if a job waits for
one day, it is already 86400.

4.9.21.13.i Prerequisites for Starving Support via Formula

• Eligible time must be enabled:
qmgr -c 'set server eligible_time_enable = True'

• Strict ordering must be on to enable top job support. In sched_config:
strict_ordering: True ALL

4.9.21.13.ii Examples of Starving Support in Formula

Example 4-18: If there is no formula already, it is simple:

qmgr -c 'set sched job_sort_formula = eligible_time'

Example 4-19: Give shorter jobs priority over longer jobs:

qmgr -c 'set sched job_sort_formula = eligible_time / walltime'

Example 4-20: Give larger jobs priority. The eligible_time factor won't overtake the ncpus factor for 11.5 days. If this
is too short, increase the scaling factor on ncpus:

qmgr -c 'set sched job_sort_formula = 1000000*ncpus + eligible_time'

Example 4-21: Recreate help_starving_jobs exactly using the job_sort_formula:

qmgr -c 'set sched job_sort_formula = 10000 if eligible_time > 86400 else 0'
PBS Professional 2022.1 Administrator’s Guide AG-155

Chapter 4 Scheduling
4.9.21.14 Caveats and Error Messages

• If the formula overflows or underflows the sorting behavior is undefined.

• If you set the formula to an invalid formula, qmgr will reject it, with one of the following error messages:
"Invalid Formula Format"

"Formula contains invalid keyword"

"Formula contains a resource of an invalid type"

• If an error is encountered while evaluating the formula, the formula evaluates to zero for that job, and the following
message is logged at event class 0x0100:
"1234.mars;Formula evaluation for job had an error. Zero value will be used"

• The job sorting formula must be set via qmgr at the server host.

• When a job is moved to a new server or queue, it inherits new default resources from that server or queue. If it is
moved to a new server, it is prioritized according to the formula on that server, if one exists.

• If the job is moved to another server through peer scheduling and the pulling server uses queue priority in its job
sorting formula, the queue priority used in the formula will be that of the queue to which the job is moved.

• If you are using FIFO scheduling, the job_sort_formula server attribute must be unset.

• If you are using eligible time in the formula, and eligible_time_enable is False, each job's eligible time evaluates to
zero in the formula.

• If a job is requeued, and you are using the formula, the job may lose its place, because various factors may affect the
job's priority. For example, a higher-priority job may be submitted between the time the job is requeued and the time
it would have run, or another job's priority may be increased due to changes in which jobs are running or waiting.

• If the formula is configured, it is in force during both primetime and non-primetime.

• If an error is encountered while evaluating the formula, the formula evaluates to zero for that job, and the following
message is logged at event class 0x0100:
"1234.mars;Formula evaluation for job had an error. Zero value will be used"

• You may have to work around a Python bug by multiplying by 1.0, in order to prevent rounding to the nearest inte-
ger.

4.9.21.15 Logging

For each job, the evaluated formula answer is logged at the highest log level (0x0400):

"Formula Evaluation = <answer>"

4.9.22 Gating Jobs at Server or Queue

You can set resource limits at the server and queues so that jobs must conform to the limits in order to be admitted. This
way, you can reject jobs that request more of a resource than a scheduler's partition or a queue can supply.

You can also force jobs into specific queues where they will inherit the desired values for unrequested or custom
resources. You can then use these resources to manage jobs, for example by using the resources in the job sorting for-
mula or to route jobs to particular vnodes.

You can either force users to submit their jobs to specific queues, or you can have users submit jobs to routing queues,
and then route the jobs to the desired queues.

For information on using resources for gating, see section 5.13, “Using Resources to Restrict Server or Queue Access”,
on page 251.

For a description of which resources can be used for gating, see section 2.3.6.4.iii, “Resources Used for Routing and
Admittance”, on page 29.
AG-156 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
For how queue resource limits are applied to jobs, see section 2.3.6.4.i, “How Queue and Server Limits Are Applied,
Except Running Time”, on page 29.

For how routing queues work, see section 2.3.6, “Routing Queues”, on page 27.

For how to route jobs to particular vnodes, see section 4.9.2, “Associating Vnodes with Queues”, on page 106.

For how to use resources in the job sorting formula, see section 4.9.21, “Using a Formula for Computing Job Execution
Priority”, on page 150.

4.9.22.1 Gating Caveats

• For most resources, if the job does not request the resource, and no server or queue defaults are set, the job inherits
the maximum gating value for the resource. See section 5.9.3.6, “Using Gating Values As Defaults”, on page 243.

• For shrink-to-fit jobs, if a walltime limit is specified:

• Both min_walltime and max_walltime must be greater than or equal to resources_min.walltime.

• Both min_walltime and max_walltime must be less than or equal to resources_max.walltime.

4.9.23 Managing Application Licenses

PBS does not check application licenses out from the license server. PBS has no direct control over application licenses.
However, you can have a scheduler use a dynamic resource to track application license use. This way, a scheduler knows
how many application licenses are available, and how many have been checked out. For how to configure dynamic
resources to represent application licenses, see section 5.14.6, “Supplying Application Licenses”, on page 270.

Unfortunately, some jobs or applications don't check out all of the application licenses they use until they have been run-
ning for some time. For example, job J1, which requests licenses, starts running, but doesn't check them out for a few
minutes. Next, the scheduler considers job J2, which also requests licenses. The scheduler runs its query for the number
of available licenses, and the query returns with a sufficient number of licenses to run J2, so the scheduler starts J2.
Shortly afterward, J1 checks out licenses, leaving too few to run J2.

It might appear that you could track the number of application licenses being used with a static integer PBS resource, and
force jobs requesting application licenses to request this resource as well, but there is a drawback: if a job that has
requested this resource is suspended, its static resources are released, but its application licenses are not. In this case you
could end up with a deceptively high number for available licenses.

You can limit the number of jobs that request application licenses, if you know how many jobs can run at one time:

• Create a custom server-level consumable integer resource to represent these jobs. See section 5.14.3, “Creating
Server-level Custom Resources”, on page 263.

• Use qmgr to set resources_available.<job limit> at the server to the number of jobs that can run at one time.

• Force all jobs requesting the application to request one of these. See section 10.3, “Allocating Resources to Jobs”,
on page 455.

4.9.24 Limits on Per-job Resource Usage

You can specify how much of each resource any job is allowed to request, at the server and queue level. The server and
queues each have per-job limit attributes. The resources_min.<resource name> and resources_max.<resource
name> server and queue attributes are limits on what each individual job may request.

You cannot set resources_min or resources_max limits on min_walltime or max_walltime.

See section 5.15.2, “Placing Resource Limits on Jobs”, on page 300, and section 5.13, “Using Resources to Restrict
Server or Queue Access”, on page 251.
PBS Professional 2022.1 Administrator’s Guide AG-157

Chapter 4 Scheduling
4.9.25 Limits on Project, User, and Group Jobs

You can manage the number of jobs being run by users or groups, and the number of jobs being run in projects, at the
server or queue level. For example, you can limit the number of jobs enqueued in queue QueueA by any one group to
30, and by any single user to 5.

See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.

4.9.26 Limits on Project, User, and Group Resource Usage

You can manage the total amount of each resource that is used by projects, users, or groups, at the server or queue level.
For example, you can manage how much memory is being used by jobs in queue QueueA.

See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.

4.9.27 Using Load Balancing

As of version 2022.1, the load_balancing scheduler parameter is removed. We recommend sorting vnodes according to
load average, described in section 4.9.49.3, “Sorting Vnodes According to Load Average”, on page 224.

When managing load levels on vnodes, a scheduler only pays attention to the state of the vnode, and does not calculate
whether a job would put the vnode over its load limit. See section 8.6.5, “Managing Load Levels on Vnodes”, on page
414.

4.9.28 Matching Jobs to Resources

A scheduler places each job where the resources requested by the job are available. A scheduler handles built-in and cus-
tom resources the same way. For a complete description of PBS resources, see Chapter 5, "Using PBS Resources", on
page 227.

4.9.28.1 Scheduling on Consumable Resources

A scheduler constrains the use of a resource to the value that is set for that resource in resources_available.<resource
name>. For a consumable resource, a scheduler won't place more demand on the resource than is available. For exam-
ple, if a vnode has resources_available.ncpus set to 4, a scheduler will place jobs requesting up to a total of 4 CPUs on
that vnode, but no more.

A scheduler computes how much of a resource is available by subtracting the total of resources_assigned.<resource
name> for all running jobs and started reservations from resources_available.<resource name>.

4.9.28.2 Scheduling on Non-Consumable Resources

For non-consumable resources such as arch or host, a scheduler matches the value requested by a job with the value at
one or more vnodes. Matching a job this way does not change whether or not other jobs can be matched as well;
non-consumable resources are not used up by jobs, and therefore have no limits.

4.9.28.3 Scheduling on Dynamic Resources

At each scheduling cycle, a scheduler queries each dynamic resource. If a dynamic resource is not under the control of
PBS, jobs requesting it may run in an unpredictable fashion.
AG-158 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.28.4 Scheduling on the walltime Resource

A scheduler looks at each job in priority order, and tries to run the job. A scheduler checks whether there is an open time
slot on the requested resources that is at least as long as the job's walltime. If there is, the scheduler runs the job.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length is between the job's
min_walltime and max_walltime. If the job can fit somewhere, PBS sets the job's walltime to a duration that fits the time
slot, and runs the job. For more information about shrink-to-fit jobs, see section 4.9.42, “Using Shrink-to-fit Jobs”, on
page 210.

4.9.28.4.i Caveats for Scheduling on walltime

Do not set values for resources such as walltime at the server or a queue, because a scheduler will not allocate more than
the specified value. This means that if you set resources_available.walltime at the server to 10:00:00, and one job
requests 5 hours and one job requests 6 hours, only one job will be allowed to run at a time, regardless of other idle
resources.

4.9.28.5 Unrequestable or Invisible Resources

You can define custom resources that are invisible to and unrequestable by users, or simply unrequestable by users. A
scheduler treats these resources the same as visible, requestable resources. See section 5.14.2.4, “Specifying Resource
Visibility”, on page 257.

4.9.28.6 Enforcing Scheduling on Resources

A scheduler chooses which resources to schedule on according to the following rules:

• A scheduler always schedules jobs based on the availability of the following vnode-level resources:

vnode

host

Any Boolean resource

• A scheduler will schedule jobs based on the availability of other resources only if those resources are listed in the
"resources:" line in <sched_priv directory>/sched_config. Some resources are automatically
added to this line. You can add resources to this line. The following resources are automatically added to this line:

aoe

arch

eoe

host

mem

ncpus

vnode

4.9.28.7 Matching Unset Resources

When job resource requests are being matched with available resources, unset resources are treated as follows:

• A numerical resource that is unset on a host is treated as if it were zero

• An unset resource on the server or queue is treated as if it were infinite

• An unset string cannot be matched

• An unset Boolean resource is treated as if it were set to False.

• The resources ompthreads, mpiprocs, and nodes are ignored for unset resource matching.
PBS Professional 2022.1 Administrator’s Guide AG-159

Chapter 4 Scheduling
The following table shows how a resource request will or won't match an unset resource at the host level.

4.9.28.7.i When Dynamic Resource Script Fails

If a server dynamic resource script fails, a scheduler uses the value of resources_available.<resource name>. If this
was never set, it is treated as an unset resource, described above.

If a host-level dynamic resource script fails, a scheduler treats the resource as if its value is zero.

4.9.28.7.ii Backward Compatibility of Unset Resources

To preserve backward compatibility, you can set the server's resource_unset_infinite attribute with a list of host-level
resources that will behave as if they are infinite when they are unset. See “resource_unset_infinite” on page 257 of the
PBS Professional Reference Guide for information on resource_unset_infinite.

4.9.28.8 Resource Scheduling Caveats

• Do not set values for resources such as walltime at the server or a queue, because a scheduler will not allocate more
than the specified value. This means that if you set resources_available.walltime at the server to 10:00:00, and
one job requests 5 hours and one job requests 6 hours, only one job will be allowed to run at a time, regardless of
other idle resources.

• Jobs may be placed on different vnodes from those where they would have run in earlier versions of PBS. This is
because a job's resource request will no longer match the same resources on the server, queues and vnodes.

• Beware of application license race conditions. If two jobs require the same application license, the first job may be
started, but may not get around to using the license before the second job is started and uses the license. The first job
must then wait until the license is available, taking up resources. A scheduler cannot avoid this problem.

4.9.29 Node Grouping

The term "node grouping" has been superseded by the term "placement sets". Vnodes were originally grouped according
to the value of one resource, so for example all vnodes with a value of linux for arch were grouped together, and all
vnodes with a value of arch1 for arch were in a separate group. We use placement sets now because this means group-
ing vnodes according to the value of one or more resources. See section 4.9.32, “Placement Sets”, on page 167.

4.9.29.1 Configuring Old-style Node Grouping

Configuring old-style node grouping means that you configure the simplest possible placement sets. In order to have the
same behavior as in the old node grouping, group on a single resource. If this resource is a string array, it should only
have one value on each vnode. This way, each vnode will be in only one node group.

Table 4-15: Matching Requests to Unset Host-level Resources

Resource Type Unset Resource Matching Request Value

Boolean False False

float 0.0 0.0

long 0 0

size 0 0

string "" Never matches

string array "" Never matches

time 0, 0:0, 0:0.0, 0:0:0 0, 0:0, 0:0.0, 0:0:0
AG-160 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
You enable node grouping by setting the server's node_group_enable attribute to True.

You can configure one set of vnode groups for the entire complex by setting the server's node_group_key attribute to a
resource name.

You can configure node grouping separately for each queue by setting that queue's node_group_key attribute to a
resource name.

4.9.30 Overrides

You can use various overrides to change how one or more jobs run.

4.9.30.1 Run a Job Manually

You can tell PBS to run a job now, and you can optionally specify where to run it. You run a job manually using the
qrun command.

The -H option to the qrun command makes an important difference:

qrun

When preemption is enabled, a scheduler preempts other jobs in order to run this job. Running a job via qrun
gives the job higher preemption priority than any other class of job, except for reservation jobs.

When preemption is not enabled, a scheduler runs the job only if enough resources are available.

qrun -H

PBS runs the job regardless of scheduling policy and available resources.

The qrun command alone overrides the following:

• Limits on resource usage by users, groups, and projects

• Limits on the number of jobs that can be run at a vnode

• Boundaries between primetime and non-primetime, specified in backfill_prime

• Whether the job is in a primetime queue: you can run a job in a primetime queue even when it's not primetime, or
vice versa. Primetime boundaries are not honored.

• Dedicated time: you can run a job in a dedicated time queue, even if it's not in a dedicated time queue, and vice
versa. However, dedicated time boundaries are still honored.

• Top jobs

• The threshold set in the job_sort_formula_threshold scheduler attribute

• The limit on the number of simultaneously running subjobs for an array job set in the max_run_subjobs job
attribute

The qrun command alone does not override the following:

• Server and queue resource usage limits

4.9.30.1.i Using qrun Without -H Option on Shrink-to-fit Jobs

When a shrink-to-fit job is run via qrun, and there is a hard deadline, e.g. reservation or dedicated time, that conflicts
with the shrink-to-fit job's max_walltime but not its min_walltime, the following happens:

• If preemption is enabled and there is a preemptable job before the hard deadline that must be preempted in order to
run the shrink-to-fit job, preemption behavior means that the shrink-to-fit job does not shrink to fit; instead, it con-
flicts with the deadline and does not run.

• If there is no preemptable job before the hard deadline, the shrink-to-fit job shrinks into the available time and runs.
PBS Professional 2022.1 Administrator’s Guide AG-161

Chapter 4 Scheduling
4.9.30.1.ii Using qrun With -H Option on Shrink-to-fit Jobs

When a shrink-to-fit job is run via qrun -H, the shrink-to-fit job runs, regardless of reservations, dedicated time, other
jobs, etc. When run via qrun -H, shrink-to-fit jobs do not shrink. If the shrink-to-fit job has a requested or inherited
value for walltime, that value is used, instead of one set by PBS when the job runs. If no walltime is specified, the job
runs without a walltime.

See “qrun” on page 185 of the PBS Professional Reference Guide, and section 4.9.33, “Using Preemption”, on page 179.

4.9.30.1.iii qrun Caveats

• A job that has just been run via qrun has top priority only during the scheduling cycle where it was qrun. At the
next scheduling cycle, that job is available for preemption just like any other job.

• Be careful when using qrun -H on jobs or vnodes involved in reservations.

4.9.30.2 Hold a Job Manually

You can use the qhold command to place a hold on a job. The effect of placing a hold depends on whether the job is run-
ning and whether you have checkpointing configured:

• If the job is queued, the job will not run.

• If the job is running and checkpoint-abort is configured, the job is checkpointed, requeued, and held.

• If the job is running and checkpoint-abort is not configured, the only change is that the job's Hold_Types attribute is
set to User Hold. If the job is subsequently requeued, it will not run until the hold is released.

You can release the hold using the qrls command.

For information on checkpointing jobs, see section 8.3, “Checkpoint and Restart”, on page 387.

See “qhold” on page 150 of the PBS Professional Reference Guide and “qrls” on page 183 of the PBS Professional Ref-
erence Guide.

4.9.30.3 Suspend a Job Manually

You can use the qsig -s suspend command to suspend a job so that it won't run. If you suspend a job, and then
release it using the qsig -s resume command, the job remains in the suspended state until the required resources are
available.

You can resume the job immediately by doing the following:

1. Resume the job:
qsig -s resume <job ID>

2. Run the job manually:

qrun <job ID>

See “qsig” on page 195 of the PBS Professional Reference Guide.

4.9.30.4 Set Special Resource Value Used in Formula

You can change the value of a resource used in the job sorting formula. For example, to give a particular job a higher pri-
ority by changing the value of a custom resource called "higher":

• Create a custom resource that is invisible to job submitters:
Qmgr: create resource higher type=float, flag=i

• The formula expression includes "higher":
Qmgr: s s job_sort_formula = "higher"
AG-162 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
• Set the default for this resource at the server:

Qmgr: set server resources_default.higher = 1

• These jobs are submitted:

Job 1

Job 2

Job 3

• Change Job 2 so that its value for "higher" is 5:
qalter –l higher = 5 job2

• The scheduler logs the following:
Job;1.host1;Formula Evaluation = 1

Job;2.host1;Formula Evaluation = 5

Job;3.host1;Formula Evaluation = 1

• Jobs are sorted in this order:

Job 2

Job 1

Job 3

4.9.30.5 Change Formula On the Fly

You can change the job sorting formula on the fly, so that the next scheduler iteration uses your new formula. This will
change how job priorities are computed, and can rearrange the order in which jobs are run. See section 4.9.21, “Using a
Formula for Computing Job Execution Priority”, on page 150.

4.9.30.6 Using Dedicated Time

You can set up blocks of dedicated time, where the only jobs eligible to be started or running are the ones in dedicated
time queues. You can use dedicated time for upgrades. See section 4.9.10, “Dedicated Time”, on page 127, and section
2.3.5.2.i, “Dedicated Time Queues”, on page 26.

4.9.30.7 Using cron Jobs

You can use cron jobs to change PBS settings according to the needs of your time slots. See section 4.9.7, “cron Jobs”,
on page 114.

4.9.30.8 Using Hooks

You can use hooks to examine jobs and alter their characteristics. See the PBS Professional Hooks Guide.

4.9.30.9 Preventing Jobs from Being Calendared

You can prevent a scheduler from calendaring a job by setting its topjob_ineligible attribute to True. See section 4.9.17,
“Calendaring Jobs”, on page 137.

4.9.31 Peer Scheduling

Peer scheduling allows separate PBS partitions or complexes to automatically run jobs from each other's queues. This
means that you can dynamically balance the workload across multiple, separate PBS partitions or complexes. These
cooperating PBS partitions or complexes are referred to as "Peers".
PBS Professional 2022.1 Administrator’s Guide AG-163

Chapter 4 Scheduling
4.9.31.1 How Peer Scheduling Works

In peer scheduling, a PBS server pulls jobs from one or more peer servers and runs them locally. When Partition or Com-
plex A pulls a job from Partition or Complex B, Partition or Complex A is the "pulling" complex and Partition or Com-
plex B is the "furnishing" partition or complex. When the pulling scheduler determines that another partition's or
complex's job can immediately run locally, it moves the job to the specified queue on the pulling server and immediately
run the job. The job is run as if it had been submitted to the pulling partition or complex.

You can set up peer scheduling so that A pulls from B and C, and so that B also pulls from A and C.

A job is pulled only when it can run immediately.

The pulling partition or complex must have all of the resources required by the job, including custom resources.

When a job is pulled from one partition or complex to another, the pulling partition or complex applies its policy to the
job. The job's execution priority is determined by the policy of the pulling partition or complex. You can set special pri-
ority for pulled jobs; see section 4.9.31.4.ii, “Setting Priority for Pulled Jobs”, on page 166.

4.9.31.2 Prerequisites for Peer Scheduling

• You must create the pulling and furnishing queues before peer scheduling can be configured. See section 2.3.3,
“Creating Queues”, on page 25 on how to create queues.

• When configuring peer scheduling, it is strongly recommended to use the same version of PBS Professional at all
peer locations.

• Make sure that custom resources are consistent across peer locations. Jobs requesting custom resources at one loca-
tion will not be able to run at another unless the same resources are available.

• If you are using MUNGE authentication, set it up for both PBS servers, put them in the same MUNGE domain, and
use the same key for both servers. See section 11.4, “Authentication for Daemons & Users”, on page 508.

4.9.31.3 Configuring Peer Scheduling

The following sections give details on how to configure peer scheduling. Here is a brief outline:

• Define a flat user namespace on all complexes

• Map pulling queues to furnishing queues

• If necessary, specify port

• Grant manager access to each pulling server

• If possible, make user-to-group mappings be consistent across complexes

• If any of the peering sites is using failover, configure peering to work with failover

4.9.31.3.i Defining a Flat User Namespace

Peer scheduling requires a flat user namespace in all complexes involved. This means that user "joe" on the remote peer
system(s) must be the same as user "joe" on the local system. Your site must have the same mapping of user to UID
across all hosts, and a one-to-one mapping of UIDs to usernames. It means that PBS does not need to check whether
X@hostA is the same as X@hostB; it can just assume that this is true. Set flatuid to True:

Qmgr: set server flatuid = True

For more on flatuid, see section 11.3.12, “Flatuid and Access”, on page 506.

4.9.31.3.ii Mapping Pulling Queues to Furnishing Queues

You configure peer scheduling by mapping a furnishing peer's queue to a pulling peer's queue. You can map each pulling
queue to more than one furnishing queue, or more than one pulling queue to each furnishing queue.
AG-164 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
The pulling and furnishing queues must be execution queues, not route queues. However, the queues can be either ordi-
nary queues used for normal work, or special queues set up just for peer scheduling.

You map pulling queues to furnishing queues by setting the peer_queue scheduler configuration option in
<sched_priv directory>/sched_config. The format is:

peer_queue: "<pulling queue> <furnishing queue>@<furnishing server>.domain"

For example, Complex A's queue "workq" is to pull from two queues: Complex B's queue "workq" and Complex C's
queue "slowq". Complex B's server is ServerB and Complex C's server is ServerC. You would add this to Complex A's
<sched_priv directory>/sched_config:

peer_queue: "workq workq@ServerB.domain.com"

peer_queue: "workq slowq@ServerC.domain.com"

Or if you wish to direct Complex B's jobs to queue Q1 on Complex A, and Complex C's jobs to Q2 on Complex A:

peer_queue: "Q1 workq@ServerB.domain.com"

peer_queue: "Q2 fastq@ServerC.domain.com"

In one partition or complex, you can create up to 50 mappings between queues. This means that you can have up to 50
lines in <sched_priv directory>/sched_config beginning with "peer_queue".

4.9.31.3.iii Specifying Ports

The default port for the server to listen on is 15001, and a scheduler uses any privileged port (1023 and lower). If the fur-
nishing server is not using the default port, you must specify the port when you specify the queue. For example, if Ser-
verB is using port 16001, and you wish to pull jobs from workq at ServerB to workq at ServerA, add this to
<sched_priv directory>/sched_config at ServerA:

peer_queue: "workq workq@ServerB.domain.com:16001"

A scheduler and server communicate via TCP.

4.9.31.3.iv Granting Manager Access to Pulling Servers

Each furnishing server must grant manager access to each pulling server. If you wish jobs to move in both directions,
where Complex A will both pull from and furnish jobs to Complex B, ServerA and ServerB must grant manager access
to each other.

On the furnishing complex:

Qmgr: set server managers += root@pullingServer.domain.com

4.9.31.3.v Making User-to-group Mappings Consistent Across Complexes

If possible, ensure that for each user in a peer complex, that user is in the same group in all participating complexes. So
if user "joe" is in groupX on Complex A, user "joe" should be in groupX on Complex B. This means that a job's egroup
attribute will be the same on both complexes, and any group limit enforcement can be properly applied.

There is a condition when using peer scheduling in which group hard limits may not be applied correctly. This can occur
when a job's effective group, which is its egroup attribute, i.e. the job's owner's group, is different on the furnishing and
pulling systems. When the job is moved over to the pulling complex, it can evade group limit enforcement if the group
under which it will run on the pulling system has not reached its hard limit. The reverse is also true; if the group under
which it will run on the pulling system has already reached its hard limit, the job won't be pulled to run, although it
should.

This situation can also occur if the user explicitly specifies a group via qsub -W group_list.

It is recommended to advise users to not use the qsub options "-u user_list" or "-W group_list=groups" in
conjunction with peer scheduling.
PBS Professional 2022.1 Administrator’s Guide AG-165

Chapter 4 Scheduling
4.9.31.3.vi Configuring Peer Scheduling with Failover

If you are configuring peer scheduling so that Complex A will pull from Complex B where Complex B is configured for
failover, you must configure Complex A to pull from both of Complex B's servers. For these instructions, see section
8.2.6.2, “Configuring Failover to Work With Peer Scheduling”, on page 384.

4.9.31.4 Peer Scheduling Advice

4.9.31.4.i Selective Peer Scheduling

You can choose the kinds of jobs that can be selected for peer scheduling to a different partition or complex. You can do
the following:

• Set resource limits at the furnishing queue via the resources_min and resources_max queue attributes. See section
2.3.6.4, “Using Resources to Route Jobs Between Queues”, on page 28.

• Route jobs into the furnishing queue via a hook. See "Routing Jobs" on page 7 in the PBS Professional Hooks
Guide.

• Route jobs into the furnishing queue via a routing queue. See section 2.3.6, “Routing Queues”, on page 27.

4.9.31.4.ii Setting Priority for Pulled Jobs

You can set a special priority for pulled jobs by creating a queue that is used only as a pulling queue, and setting the pull-
ing queue's priority to the desired level. You can then use the queue's priority when setting job execution priority. See
section 4.3.5.3.iv, “Using Queue Priority when Computing Job Priority”, on page 69.

For example, if you give the pulling queue the lowest priority, the pulling partition or complex will pull a job only when
there are no higher-priority jobs that can run.

You can also have pulled jobs land in a special queue where they inherit a custom resource that is used in the job sorting
formula.

4.9.31.5 How Peer Scheduling Affects Jobs

4.9.31.5.i How Peer Scheduling Affects Inherited Resources

If the job is moved partition or complex to another via peer scheduling, any default resources in the job's resource list
inherited from the furnishing queue or server are removed. This includes any select specification and place directive that
may have been generated by the rules for conversion from the old syntax. If a job's resource is unset (undefined) and
there exists a default value at the new queue or server, that default value is applied to the job's resource list. If either
select or place is missing from the job's new resource list, it will be automatically generated, using any newly inherited
default values.

When the pulling scheduler runs the job the first time, the job is run as if the job still had all of the resources it had at the
furnishing partition or complex. If the job is requeued and restarted at the pulling partition or complex, the job picks up
new default resources from the pulling partition or complex, and is scheduled according to the newly-inherited resources
from the pulling partition or complex.

4.9.31.5.ii How Peer Scheduling Affects Policy Applied to Job

After a job is pulled from one partition or complex to another, the scheduling policy of the pulling partition or complex is
applied to the job.

For example, if you use queue priority in the formula and the job is moved to another server through peer scheduling, the
queue priority used in the formula will be that of the queue to which the job is moved.

When a job is pulled from one partition or complex to another, hooks are applied at the new partition or complex as if the
job had been submitted locally. For example, if the pulling partition or complex has a queuejob hook, that hook runs
when a job is pulled.
AG-166 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.31.5.iii How Peer Scheduling Affects Job Eligible Time

The job's eligible_time is preserved when a job is moved due to peer scheduling.

4.9.31.5.iv Viewing Jobs That Have Been Moved to Another Server

If you are connected to ServerA and a job submitted to ServerA has been moved from ServerA to ServerB through peer
scheduling, in order to display it via qstat, give the job ID as an argument to qstat. If you only give the qstat
command, the job will not appear to exist. For example, the job 123.ServerA is moved to ServerB. In this case, use

qstat 123

or

qstat 123.ServerA

To list all jobs at ServerB, you can use:

qstat @ServerB

4.9.31.5.v Peer Scheduling and Hooks

When a job is pulled from one complex to another, the following happens:

• Hooks are applied at the new complex as if the job had been submitted locally

• Any movejob hooks at the furnishing server are run

4.9.31.6 Peer Scheduling Caveats

• Each partition or complex can peer with at most 50 other partitions or complexes.

• When using peer scheduling, group hard limits may not be applied correctly. This can occur when the job owner's
group is different on the furnishing and pulling systems. For help in avoiding this problem, see section 4.9.31.3.v,
“Making User-to-group Mappings Consistent Across Complexes”, on page 165.

• When the pulling scheduler runs the job the first time, the job is run as if the job still had all of the resources it had at
the furnishing partition or complex. If the job is requeued and restarted at the pulling partition or complex, the job
picks up new default resources from the pulling partition or complex, and is scheduled according to the newly-inher-
ited resources from the pulling partition or complex.

• Peer scheduling is not supported for job arrays.

4.9.32 Placement Sets

Placement sets are the sets of vnodes within which PBS will try to place a job. PBS tries to group vnodes into the most
useful sets, according to how well connected the vnodes are, or the values of resources available at the vnodes. Place-
ment sets are used to improve task placement (optimizing to provide a "good fit") by exposing information on system
configuration and topology. A scheduler tries to put a job in the smallest appropriate placement set.

4.9.32.1 Definitions

Task placement

The process of choosing a set of vnodes to allocate to a job that will satisfy both the job's resource request
(select and place specifications) and the configured scheduling policy.
PBS Professional 2022.1 Administrator’s Guide AG-167

Chapter 4 Scheduling
Placement Set

A set of vnodes. Placement sets are defined by the values of vnode-level string array resources. A placement
set is all of the vnodes that have the same value for a specified defining resource substring. For example, if the
defining resource is a vnode-level string array named "switch", which can have values "S1", "S2", or "S3": the
set of vnodes which have a substring matching "switch=S2" is a placement set.

Placement sets can be specified at the server or queue level.

Placement Set Series

A set of placement sets; a set of sets of vnodes.

A placement set series is all of the placement sets that are defined by specifying one string array resource. Each
placement set in the series is the set of vnodes that share one value for the resource. There is one placement set
for each value of the resource. If the resource takes on N values at the vnodes, then there are N sets in the series.
For example, if the defining resource is a string array named "switch", which can have values "S1", "S2", or
"S3", there are three sets in the series. The first is defined by the value "S1", where all the vnodes in that set
have the value "S1" for the resource switch. The second set is defined by "S2", and the third by "S3".

Each of the resources named in node_group_key specifies a placement series. For example, if the server's
node_group_key attribute contains "router,switch", then the server has two placement set series.

Placement Pool

All of the placement sets that are defined; the server can have a placement pool, and each queue can have its
own placement pool. If a queue has no placement pool, a scheduler uses the server's placement pool.

A placement pool is the set of placement set series that are defined by one or more string array resources named
in node_group_key.

For example, if the server's node_group_key attribute contains "router,switch", and router can take the values
"R1" and "R2" and switch can take the values "S1", "S2", and "S3", then there are five placement sets, in two
placement series, in the server's placement pool.

Static Fit

A job statically fits into a placement set if the job could fit into the placement set if the set were empty. It might
not fit right now with the currently available resources.

Dynamic Fit

A job dynamically fits into a placement set if it will fit with the currently available resources (i.e. the job can fit
right now).

4.9.32.2 Requirements for Placement Sets

• Placement sets are enabled by setting the server's node_group_enable attribute to True

• Server-level placement sets are defined by setting the server's node_group_key attribute to a list of vnode-level
string array resources.

• Queue-level placement sets are defined by setting a queue's node_group_key attribute to a list of vnode-level string
array resources.

• At least one vnode-level string array resource must exist on vnodes and be set to values that can be used to assign the
vnodes to placement sets.
AG-168 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.32.3 Description of Placement Sets

4.9.32.3.i What Defines a Placement Set, Series, or Pool

Placement sets are defined by the values of vnode-level string array resources. You define placement sets by specifying
the names of these resources in the node_group_key attribute for the server and/or queues. Each value of each resource
defines a different placement set. A placement set is all of the vnodes that have the same value for a specified defining
resource. For example, if the defining resource is a vnode-level string array named "switch", which has the values "S1",
"S2", and "S3", the set of vnodes where switch has the value "S2" is a placement set. If some vnodes have more than one
substring, and one of those substrings is the same in each vnode, those vnodes make up a placement set. For example, if
the resource is "router", and vnode V0 has resources_available.router set to "r1i0,r1", and vnode V1 has
resources_available.router set to "r1i1,r1", V0 and V1 are in the placement set defined by resources_available.router
= "r1". If the resource has N distinct values across the vnodes, including the value zero and being unset, there can be N-1
or N placement sets defined by that resource. If the only_explicit_psets scheduler attribute is False, there are N place-
ment sets. If the only_explicit_psets scheduler attribute is True, there are N-1 placement sets; see section 4.9.32.3.v,
“Placement Sets Defined by Unset Resources”, on page 170.

Each placement set can have a different number of vnodes; the number of vnodes is determined only by how many
vnodes share that resource value.

Each placement set series is defined by the values of a single resource across all the vnodes. For example, if there are
three switches, S1, S2 and S3, and there are vnodes with resources_available.switch that take on one or more of these
three values, then there will be three placement sets in the series.

Whenever you define any placement sets, you are defining a placement pool. Placement pools can be defined for the
server and for each queue. You define a server-level placement pool by setting the server's node_group_key to a list of
one or more vnode-level string array resources. You define a queue-level placement pool by similarly setting the queue's
node_group_key.

4.9.32.3.ii Vnode Participation in Placement Sets, Series, and Pools

Each vnode can be in multiple placement sets, placement set series, and placement pools.

A vnode can be in multiple placement sets in the same placement set series. For example, if the resource is called
"router", and a vnode's router resource is set to "R1, R2", then the vnode will be in the placement set defined by router =
R1 and the set defined by router = R2.

A vnode is in a placement series whenever the resource that defines the series is defined on the vnode. For example, if
placement sets are defined by the values of the router and the switch resources, and a vnode has value R1 for router, and
S1 for switch, then the vnode is in both placement series, because it is in the set that shares the R1 value for router, and
the set that shares the S1 value for switch. Each of those sets is one of a different series.

The server has its own placement pool if the server's node_group_key attribute is set to at least one vnode-level string
array resource. Similarly, each queue can have its own placement pool. A vnode can be in any placement pool that spec-
ifies a resource that is defined on the vnode.

4.9.32.3.iii Multihost Placement Sets

Placement sets, series, and pools can span hosts. Placement sets can be made up of vnodes from anywhere, regardless of
whether the vnode is from a multi-vnode host.

To set up a multihost placement set, choose a string array resource for the purpose, and list it in the desired
node_group_key attribute. For example, create a string_array resource called "span":

Qmgr: create resource span type=string_array, flag=h

Add the resource "span" to node_group_key on the server or queue. Use qmgr to give it the same value on all the
desired vnodes. You can write a script that sets the same value on each vnode that you want in your placement set.
PBS Professional 2022.1 Administrator’s Guide AG-169

Chapter 4 Scheduling
4.9.32.3.iv Machines with Multiple Vnodes

Machines with multiple vnodes are represented as a generic set of vnodes. Placement sets are used to allocate resources
on a single machine to improve performance and satisfy scheduling policy and other constraints. Jobs are placed on
vnodes using placement set information.

4.9.32.3.v Placement Sets Defined by Unset Resources

The only_explicit_psets scheduler attribute controls whether unset resources define placement sets.

• If the only_explicit_psets scheduler attribute is False, vnodes where a defining resource is unset are grouped into
their own placement set, for each defining resource. For example, if you have ten vnodes, on which there is a string
resource COLOR, where two have COLOR set to "red", two are set to "blue", two are set to "green" and the rest are
unset, there will be four placement sets defined by the resource COLOR. This is because the fourth placement set
consists of the four vnodes where COLOR is unset. This placement set will also be the largest. Every resource
listed in node_group_key can potentially define such a placement set.

• If the only_explicit_psets scheduler attribute is True, vnodes where a resource is unset are not grouped into place-
ment sets.

4.9.32.3.vi Placement Sets and Node Grouping

Node grouping is the same as one placement set series, where the placement sets are defined by a single resource. Node
grouping has been superseded by placement sets.

In order to have the same behavior as in the old node grouping, group on a single resource. If this resource is a string
array, it should only have one value on each vnode. This way, each vnode will only be in one node group.

4.9.32.4 How Placement Sets Are Used

You use placement sets to group vnodes according to the value of one or more resources. Placement sets allow you to
group vnodes into useful sets.

You can run multi-vnode jobs in one placement set. For example, it makes the most sense to run a multi-vnode job on
vnodes that are all connected to the same high-speed switch.

PBS will attempt to place each job in the smallest possible set that is appropriate for the job.

4.9.32.4.i Order of Placement Pool Selection

A scheduler chooses one placement pool from which to select a placement set.

Queue placement pools override the server's placement pool. If a queue has a placement pool, jobs from that queue are
placed using the queue's placement pool. If a queue has no placement pool (the queue's node_group_key is not
defined), jobs are placed using the server's placement pool, if it exists.

A per-job placement set is defined by the -l place statement in the job's resource request. Since the job can only
request one value for the resource, it can only request one specific placement set. A job's place=group resource
request overrides the sets defined by the queue's or server's node_group_key.

A scheduler chooses the most specific placement pool available, following this order of precedence:

1. A per-job placement set (job's place=group= request)

2. A placement set from the placement pool for the job's queue

3. A placement set from the placement pool in a scheduler's partition
AG-170 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.32.4.ii Order of Placement Set Consideration Within Pool

A scheduler looks in the selected placement pool and chooses the smallest possible placement set that is appropriate for
the job. A scheduler examines the placement sets in the pool and orders them, from smallest to largest, according to the
following rules:

1. Static total ncpus of all vnodes in set

2. Static total mem of all vnodes in set

3. Dynamic free ncpus of all vnodes in set

4. Dynamic free mem of all vnodes in set

If a job can fit statically within any of the placement sets in the placement pool, then a scheduler places a job in the first
placement set in which it fits dynamically. This ordering ensures a scheduler will use the smallest possible placement set
in which the job will dynamically fit. If there are multiple placement sets where the job fits statically, but some are being
used, a scheduler uses the first placement set where the job can run now. If the job fits statically into at least one place-
ment set, but these placement sets are all busy, a scheduler waits until a placement set can fit the job dynamically.

For example, we have the following placement sets, and a job that requests 8 CPUs:

Set1 ncpus = 4

Set2 ncpus = 12; this placement set is full

Set3 ncpus = 16; this placement set is not being used

The scheduler looks at Set1; Set1 is statically too small, and the scheduler moves to the next placement set. Set2 is stati-
cally large enough, but the job does not fit dynamically. The scheduler looks at Set3; Set3 is large enough, and the job
fits dynamically. The scheduler runs the job in Set3.

If the job requests 24 CPUs, the scheduler attempts to run the job in the set consisting of all vnodes that are associated
with a specific queue, if do_not_span_psets is False.

4.9.32.4.iii Determining Whether Job Can Run

Whether the job can run in the selected placement pool is determined by the value of the do_not_span_psets attribute.

• If this attribute is False, and a job cannot statically fit into any placement set in the selected placement pool, a
scheduler ignores defined placement sets and uses all vnodes that satisfy job restrictions as its placement set, and
runs the job without regard to placement sets. For example, if the job's queue has access to a restricted set of vnodes,
the job runs within that set of vnodes.

• If the attribute is True, a scheduler does not run the job.

4.9.32.4.iv Order of Vnode Selection Within Set

A scheduler orders the vnodes within the selected placement set using the following rules:

• If node_sort_key is set, vnodes are sorted by node_sort_key. See section 4.9.49, “Sorting Vnodes on a Key”, on
page 223.

• If node_sort_key is not set, the order in which the vnodes are returned by pbs_statnode(). This is the default
order the vnodes appear in the output of the pbsnodes -a command.

A scheduler places the job on the vnodes according to their ordering above.
PBS Professional 2022.1 Administrator’s Guide AG-171

Chapter 4 Scheduling
4.9.32.5 Summary of Placement Set Requirements

The steps to configure placement sets are given in the next section. The requirements are summarized here for conve-
nience:

• Definitions of the resources of interest

• Vnodes defining a value for each resource to be used for placement sets (e.g., rack)

• If defined via vnode definition, you must HUP the MoMs involved

• The server's or queue's node_group_key attribute must be set to the resources to be used for placement sets. For
example, if we have custom resources named "rack", "socket", "board", and "boardpair", which are to be used for
placement sets:
Qmgr: set server node_group_key = "rack,socket,board,boardpair"

• No signals needed, takes effect immediately

• Placement sets must be enabled at the server by setting the server's node_group_enable attribute to True. For
example:
Qmgr: set server node_group_enable=True

• No signals needed, takes effect immediately

Adding a resource to a scheduler's resources: line is required only if the resource is to be specifically requested by
jobs. It is not required for -lplace=group=<resource name>.

4.9.32.6 How to Configure Placement Sets

The following steps show how to satisfy the requirements for placement sets:

1. If the vnodes that you will use in placement sets are not defined, define them. See section 3.3, “Creating Vnodes”,
on page 42.

2. If the vnode-level string array resources that you will use to define placement sets do not exist, create them. See sec-
tion 5.14.4, “Configuring Host-level Custom Resources”, on page 265.

3. If values for the vnode-level string array resources that you will use to define placement sets are not set at the vnodes
you wish to use, set the values. See section 3.4, “Configuring Vnodes”, on page 45.

4. If you use vnode definition files to set values for vnode-level string array resources, HUP the MoMs involved.

5. To create queue placement pools, set the node_group_key attribute to the name(s) of one or more vnode-level string
array resources. Do this for each queue for which you want a separate pool. For example:

Qmgr: set queue workq node_group_key = <router,switch>

6. To create a server placement pool, set the node_group_key server attribute to the name(s) of one or more
vnode-level string array resources. For example:

Qmgr: set server node_group_key = <router,switch>
AG-172 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
For example, to create a server-level placement pool for the resources host, L2 and L3:

Qmgr: set server node_group_key = "host,L2,L3"

7. Set the server's node_group_enable attribute to True

Qmgr: set server node_group_enable = True

8. Set the do_not_span_psets scheduler attribute to True if you don't want jobs to span placement sets.

Qmgr: set sched do_not_span_psets = True

9. Set the only_explicit_psets attribute to True if you don't want a scheduler to create placement sets from unset
resources.

Qmgr: set sched only_explicit_psets = True

10. For ease of reviewing placement set information, you can add the name of each resource used in each vnode's
pnames attribute:

Qmgr: active node <vnode name>,<vnode name>,...
Qmgr: set node pnames += <resource name>

or

Qmgr: set node pnames = <resource list>

For example:

Qmgr: set node pnames = "board,boardpair,iruquadrant,iruhalf,iru,rack"

We recommend using the parent vnode for any placement set information that is invariant for a given host.

Resources used only for defining placement sets, and not for allocation to jobs, do not need to be listed in the
resources: line in <sched_priv directory>/sched_config. So for example if you create a resource just
for defining placement sets, and jobs will not be requesting this resource, you do not need to list it in the resources:
line.
PBS Professional 2022.1 Administrator’s Guide AG-173

Chapter 4 Scheduling
4.9.32.7 Examples of Creating Placement Sets

4.9.32.7.i Cluster with Four Switches

This cluster is arranged as shown with vnodes 1-4 on Switch1, vnodes 5-10 on Switch2, and vnodes 11-24 on Switch3.
Switch1 and Switch2 are on Switch4.

Figure 4-1:Cluster with Four Switches

To make the placement sets group the vnodes as they are grouped on the switches:

Create a custom resource called switch. The -h flag makes the resource requestable:

Qmgr: create resource switch type=string_array, flag=h

On vnodes[1-4] set:

Qmgr: set node <vnode name> resources_available.switch="switch1,switch4"

On vnodes[5-10] set:

Qmgr: set node <vnode name> resources_available.switch="switch2,switch4"

On vnodes[11-24] set:

Qmgr: set node <vnode name> resources_available.switch="switch3"
AG-174 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
On the server set:

Qmgr: set server node_group_enable=True
Qmgr: set server node_group_key=switch

So you have 4 placement sets:

The placement set "switch1" has 4 vnodes

The placement set "switch2" has 6 vnodes

The placement set "switch3" has 14 vnodes

The placement set "switch4" has 10 vnodes

PBS will try to place a job in the smallest available placement set. Does the job fit into the smallest set (switch1)? If not,
does it fit into the next smallest set (switch2)? This continues until it finds one where the job will fit.

4.9.32.7.ii Example of Configuring Placement Sets on a Multi-vnode Machine

For information on how to configure vnodes via Version 2 configuration files, see section 3.4.3, “Version 2 Vnode Con-
figuration Files”, on page 46.

In this example, we define a new placement set using the new resource "NewRes". We create a file called SetDefs that
contains the changes we want.

1. Create the new resource:
Qmgr: create resource NewRes type=string_array, flag=h

2. Add NewRes to the server's node_group_key

Qmgr: set server node_group_key+="NewRes"

3. Add NewRes to the value of the pnames attribute for the parent vnode. This makes the name of the resource you
used easily available. Add a line like this to SetDefs:

host3: resources_available.pnames =...,NewRes

4. For each vnode, V, that's a member of a new placement set you're defining, add a line of the form:

V: resources_available.NewRes = <value1[,...]>

All the vnodes in the new set should have lines of that form, with the same resource value, in the new configuration
file.

Here the value of the resource is "P" and/or "Q".

We'll put vnodes A, B and C into one placement set, and vnodes B, C and D into another.

A: resources_available.NewRes2 = P

B: resources_available.NewRes2 = P,Q

C: resources_available.NewRes2 = P,Q

D: resources_available.NewRes2 = Q

For each new placement set you define, use a different value for the resource.

5. Add SetDefs and tell MoM to read it, to make a Version 2 vnode configuration file NewConfig:

pbs_mom -s insert NewConfig SetDefs

6. Stop and restart the MoM. For Linux, see “Restarting and Reinitializing MoM” on page 149 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 157 in the PBS Professional
Installation & Upgrade Guide.
PBS Professional 2022.1 Administrator’s Guide AG-175

Chapter 4 Scheduling
4.9.32.7.iii Example of Placement Sets Using Colors

A placement pool is defined by two resources: colorset1 and colorset2, by using
"node_group_key=colorset1,colorset2".

If a vnode has the following values set:

resources_available.colorset1=blue, red

resources_available.colorset2=green

The placement pool contains at least three placement sets. These are:

{resources_available.colorset1=blue}

{resources_available.colorset1=red}

{resources_available.colorset2=green}

This means the vnode is in all three placement sets. The same result would be given by using one resource and setting it
to all three values, e.g. colorset=blue,red,green.

Example: We have five vnodes v1 - v5:

v1 color=red host=mars

v2 color=red host=mars

v3 color=red host=venus

v4 color=blue host=mars

v5 color=blue host=mars

The placement sets are defined by

node_group_key=color

The resulting node groups would be: {v1, v2, v3}, {v4, v5}

4.9.32.7.iv Simple Switch Placement Set Example

Say you have a cluster with two high-performance switches each with half the vnodes connected to it. Now you want to
set up placement sets so that jobs will be scheduled only onto the same switch.

First, create a new resource called "switch". See section 5.14.2, “Defining New Custom Resources”, on page 254.

Next, we need to enable placement sets and specify the resource to use:

Qmgr: set server node_group_enable=True
Qmgr: set server node_group_key=switch

Now, set the value for switch on each vnode:

Qmgr: active node vnode1,vnode2,vnode3
Qmgr: set node resources_available.switch=A
Qmgr: active node vnode4,vnode5,vnode6
Qmgr: set node resources_available.switch=B

Now there are two placement sets:

switch=A: {vnode1, vnode2, vnode3}

switch=B: {vnode4, vnode5, vnode6}

4.9.32.8 Placement Sets and Reservations

When PBS chooses a placement set for a reservation, it makes the same choices as it would for a regular job. It fits the
reservation into the smallest possible placement set. See section 4.9.32.4.ii, “Order of Placement Set Consideration
Within Pool”, on page 171.
AG-176 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
When a reservation is created, it is created within a placement set, if possible. If no placement set will satisfy the reser-
vation, placement sets are ignored. The vnodes allocated to a reservation are used as one single placement set for jobs in
the reservation; they are not subdivided into smaller placement sets. A job within a reservation runs within the single
placement set made up of the vnodes allocated to the reservation.

4.9.32.9 Placement Sets and Load Balancing

If you configure both placement sets and load balancing, the net effect is that vnodes that are over their load limit will be
removed from consideration.

4.9.32.10 Viewing Placement Set Information

You can find information about placement sets in the following places:

• The server's node_group_enable attribute shows whether placement sets are enabled

• The server's node_group_key attribute contains the names of resources used for that queue's placement pool

• Each queue's node_group_key attribute contains the names of resources used for that queue's placement pool

• Each vnode's pnames attribute can contain the names of resources used for placement sets, if properly set

• A scheduler's do_not_span_psets attribute shows whether jobs are allowed to span placement sets

• A scheduler's only_explicit_psets attribute shows placement sets are created using unset resources

• PBS-generated MoM configuration files contain names and values of resources

4.9.32.11 Placement Set Caveats and Advice

• If there is a vnode-level platform-specific resource set on the vnodes on a multi-vnode machine, then
node_group_key should probably include this resource, because this will enable PBS to run jobs in more logical
sets of vnodes.

• If the user specifies a job-specific placement set, for example -lplace=group=switch, but the job cannot stati-
cally fit into any switch placement set, then the job will still run, but not in a switch placement set.

• The pnames vnode attribute is for displaying to the administrator the resources used for placement sets. This
attribute is not used by PBS.

4.9.32.11.i Non-backward-compatible Change in Node Grouping

Given the following example configuration:

vnode1: switch=A

vnode2: switch=A

vnode3: switch=B

vnode4: switch=B

vnode5: switch unset

Qmgr: s s node_group_key=switch

There is no change in the behavior of jobs submitted with qsub -l ncpus=1

version 7.1: The job can run on any node: node1, ..., node5

version 8.0: The job can run on any node: node1, ..., node5

Example of 8.0 and later behavior: jobs submitted with qsub -lnodes=1

version 7.1: The job can only run on nodes: node1, node2, node3, node4. It will never use node5

version 8.0: The job can run on any node: node1, ..., node5
PBS Professional 2022.1 Administrator’s Guide AG-177

Chapter 4 Scheduling
Overall, the change for version 8.0 was to include every vnode in placement sets (when enabled). In particular, if a
resource is used in node_group_key, PBS will treat every vnode as having a value for that resource, hence every vnode
will appear in at least one placement set for every resource. For vnodes where a string resource is "unset", PBS will
behave as if the value is "".

4.9.32.12 Attributes and Parameters Affecting Placement Sets

do_not_span_psets
Scheduler attribute. Specifies whether or not this scheduler requires the job to fit within one of the existing
placement sets. When do_not_span_psets is set to True, a scheduler will require the job to fit within a single
existing placement set. A scheduler checks all placement sets, whether or not they are currently in use. If the job
fits in a currently-used placement set, the job must wait for the placement set to be available. If the job cannot fit
within a single placement set, it will not run.

When this attribute is set to False, a scheduler first attempts to place the job in a single placement set. All exist-
ing placement sets are checked. If the job fits in an occupied placement set, the job waits for the placement set
to be available. If there is no existing placement set, occupied or empty, into which the job could fit, the job
runs regardless of placement sets, running on whichever vnodes can satisfy the job's resource request.

Format: Boolean

Default value: False (This matches behavior of PBS 10.4 and earlier)

Example: To require jobs to fit within one placement set:

Qmgr: set sched do_not_span_psets=True

node_group_enable
Server attribute. Specifies whether placement sets are enabled.

Format: Boolean

Default: False

node_group_key
Server and queues have this attribute. Specifies resources to use for placement set definition. Queue's attribute
overrides server's attribute.

Format: string_array

Default: Unset

only_explicit_psets
Scheduler attribute. Specifies whether placement sets are created using unset resources. If False, for each
defining resource, if there are vnodes where the value of the resource is unset, PBS creates a placement set for
the series defined by that resource. If True, PBS does not create placement sets for resources that are unset.

Format: Boolean

Default: False

4.9.32.13 Errors and Logging

If do_not_span_psets is set to True, and a job requests more resources than are available in one placement set, the fol-
lowing happens:

• The job's comment is set to the following:
"Not Running: can't fit in the largest placement set, and can't span psets"

• The following message is printed to the scheduler's log:
"Can't fit in the largest placement set, and can't span placement sets"
AG-178 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.33 Using Preemption

PBS provides the ability to preempt currently running jobs in order to run higher-priority work. This is called preemption
or preemptive scheduling. PBS has two different approaches to specifying preemption:

• You can define a set of preemption priorities for all jobs. Jobs that have high preemption priority preempt those with
low preemption priority. Preemption priority is mostly independent of execution priority. See section 4.9.33.7,
“Preemption Levels”, on page 183.

• You can specify a set of preemption targets for each job. You can also set defaults for these targets at the server and
queues. Preemption targets are jobs in specific queues or that have requested specific resources. See section
4.9.33.4, “Using Preemption Targets”, on page 181.

Preemption is a primetime option, meaning that you can configure it separately for primetime and non-primetime, or you
can specify it for all of the time.

4.9.33.1 Glossary

Preempt

Stop one or more running jobs in order to start a higher-priority job

Preemption level

Job characteristic that determines preemption priority. Levels can be things like being in an express queue, hav-
ing an owner who is over a soft limit, being a normal job, or having an owner who is over a fairshare allotment

Preemption method

The method by which a job is preempted. This can be checkpointing, suspension, requeueing, or deletion

Preemption priority

How important this job is compared to other jobs, when considering whether to preempt

Preemption Target

A preemption target is a job in a specified queue or a job that has requested a specified resource. The queue
and/or resource is specified in another job's Resource_List.preempt_targets.

4.9.33.2 Preemption Parameters and Attributes

The scheduler parameters that control preemption are defined in <sched_priv directory>/sched_config. A
scheduler also has attributes that control preemption; they can be set via qmgr. Parameters and attributes that control
preemption are listed here:

preemptive_sched
Scheduler parameter defined in <sched_priv directory>/sched_config. Enables job preemption.

Format: String

Default: True all

preempt_order
Scheduler attribute. Defines the order of preemption methods which this scheduler will use on jobs. Can con-
tain any of S, C, R, and D, in any order.

Format: String, as quoted list

Default: "SCR"
PBS Professional 2022.1 Administrator’s Guide AG-179

Chapter 4 Scheduling
preempt_prio
Scheduler attribute. Specifies the ordering of priority of different preemption levels.

Format: String, as quoted list

Default: "express_queue, normal_jobs"

preempt_queue_prio
Scheduler attribute. Specifies the minimum queue priority required for a queue to be classified as an express
queue.

Format: Integer

Default: 150

preempt_sort
Scheduler attribute. Whether jobs most eligible for preemption will be sorted according to their start times.
Allowable values: "min_time_since_start". The first job preempted will be that with most recent start time.

Format: String

Default: min_time_since_start

preempt_targets
Resource that a job can request or inherit from the server or a queue. The preempt_targets resource lists one
or more queues and/or one or more resources. Jobs in those queues, and jobs that request those resources, are
the jobs that can be preempted.

restrict_res_to_release_on_suspend
Server attribute. Comma-separated list of consumable resources to be released when jobs are suspended. If
unset, all consumable resources are released on suspension. See section 5.9.6.2, “Job Suspension and Resource
Usage”, on page 247 and “Server Attributes” on page 281 of the PBS Professional Reference Guide.

Format: string_array

Default: unset

Python type: list

resources_released
Job attribute. Listed by vnode, consumable resources that were released when the job was suspended. Popu-
lated only when restrict_res_to_release_on_suspend server attribute is set. See section 5.9.6.2, “Job Sus-
pension and Resource Usage”, on page 247 and “Job Attributes” on page 327 of the PBS Professional Reference
Guide.

Format: String of the form: (<vnode>:<resource name>=<value>:<resource
name>=<value>:...)+(<vnode>:<resource name>=<value>:...)

Python type: str

resource_released_list
Job attribute. Sum of each consumable resource requested by the job that was released when the job was sus-
pended. Populated only when restrict_res_to_release_on_suspend server attribute is set. See section
5.9.6.2, “Job Suspension and Resource Usage”, on page 247 and “Job Attributes” on page 327 of the PBS Pro-
fessional Reference Guide.

Format: String of the form: resource_released_list.<resource
name>=<value>,resource_released_list.<resource name>=<value>, ...
AG-180 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
sched_preempt_enforce_resumption
Scheduler attribute. Specifies whether this scheduler creates a special execution priority class for preempted
jobs. If so, this scheduler runs these jobs just after any higher-priority jobs. See section 4.9.16, “Calculating
Job Execution Priority”, on page 135.

Format: Boolean

Default: False

Python type: pbs.pbs_resource

4.9.33.3 How Preemption Works

If preemption is enabled, a scheduler uses preemption as part of its normal pattern of examining each job and figuring out
whether or not it can run now. If a job with high preemption priority cannot run immediately, a scheduler looks for jobs
with lower preemption priority. A scheduler finds jobs in the lowest preemption level that have been started the most
recently. A scheduler preempts these jobs and uses their resources for the higher-priority job. A scheduler tracks
resources used by lower-priority jobs, looking for enough resources to run the higher-priority job. If a scheduler cannot
find enough work to preempt in order to run a given job, it will not preempt any work.

A job running in a reservation cannot be preempted.

A job's preemption priority is determined by its preemption level.

4.9.33.4 Using Preemption Targets

You can restrict the set of jobs that can be preempted by an entity, by setting that entity's preempt_targets resource to a
list of jobs and/or queues that can be preempted. This resource is a string array which can contain a list of queues and/or
job resources. You specify job resources as Resource_List.<resource>=<value>.

Syntax:

preempt_targets="Queue=<queue name>[,Queue=<queue name>],Resource_List.<resource
name>=<value>[,Resource_List.<resource name>=<value>]"

or

preempt_targets=None
The preempt_targets resource has the following keywords:

Queue=<queue name>
Jobs in the specified queue are eligible to be preempted. "Queue" is case-insensitive.

None
The job, or the jobs at the queue or server whose preempt_targets resource is set to NONE cannot preempt
other jobs. "None" is case-insensitive.

In order for a job to preempt another job, the job to be preempted must have lower preemption priority than the preempt-
ing job.

4.9.33.4.i Setting Job Preemption Targets

Preemption targets work as a restriction on which jobs can be preempted by a particular job. If a job has requested
preempt_targets, a scheduler searches for lower-priority jobs among only the jobs specified in that job's
preempt_targets. If a job has not requested preempt_targets, the scheduler searches among all jobs. For example, if
a scheduler is trying to run JobA, and JobA requests preempt_targets="queue=Queue1,Resource_List.arch=linux",
JobA is eligible to preempt only those jobs in Queue1 and/or that request arch=linux. In addition, JobA can only pre-
empt jobs with lower preemption priority than JobA.

You can prevent a job from preempting any other job in the complex by setting its preemption_targets to the keyword
"None" (case-insensitive).
PBS Professional 2022.1 Administrator’s Guide AG-181

Chapter 4 Scheduling
You can set preempt_targets for a job during submission:

-l preempt_targets=...

You can set preempt_targets via qalter:

qalter -l preempt_targets=...

4.9.33.4.ii Setting Queue Preemption Targets

You can set the default preemption target for jobs in a queue. For example, you can specify that the jobs in a particular
queue can preempt the jobs in one or more listed queues:

qmgr -c 'set queue <queue name> resources_default.preempt_targets="QUEUE=<queue name>,QUEUE=<queue
name>"'

For example:

qmgr -c 'set queue high_prio_queue resources_default.preempt_targets="QUEUE=queueA,QUEUE=queueB"'

You can prevent the jobs in a queue which don't explicitly request preempt_targets from preempting other jobs by set-
ting the queue's default preempt_targets to "NONE":

qmgr -c "set queue <queue name> resources_default.preempt_targets=NONE"

For example:

qmgr -c "set queue lowest_prio_queue resources_default.preempt_targets=NONE"

4.9.33.4.iii Setting Default Server Preemption Targets

You can set the default preemption target for jobs at a server. For example, you can specify that the jobs at a server can
preempt the jobs in one or more listed queues:

qmgr -c 'set server resources_default.preempt_targets="QUEUE=<queue name>,QUEUE=<queue name>"'

For example:

qmgr -c 'set server resources_default.preempt_targets="QUEUE=queueA,QUEUE=queueB"'

You can prevent the jobs which don't explicitly request preempt_targets from preempting other jobs by setting the
server's default preempt_targets to "NONE":

qmgr -c "set server resources_default.preempt_targets=NONE"

For example:

qmgr -c "set server resources_default.preempt_targets=NONE"

4.9.33.5 Preemption and Job Execution Priority

PBS has an execution class we call Preempted for jobs that have been preempted. A scheduler restarts preempted jobs
as soon as the preemptor finishes and any other higher-priority jobs finish. See section 4.9.16, “Calculating Job Execu-
tion Priority”, on page 135.

4.9.33.6 Triggers for Preemption

If preemption is enabled, preemption is used during the following:

• The normal scheduling cycle

• When you run a job via qrun
AG-182 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.33.7 Preemption Levels

A preemption level is a class of jobs, where all the jobs in the class share a characteristic. PBS provides built-in preemp-
tion levels, and you can combine them or ignore them as you need, except for the normal_jobs class, which is required.
The built-in preemption levels are listed in the table below.

You can specify the relative priority of each preemption level, by listing the levels in the desired order in the
preempt_prio scheduler attribute. Placing a level earlier in the list, meaning to the left, gives it higher priority. For
example, if your list is "express_queue", "normal_jobs", "server_softlimits", you are giving the
highest priority to jobs in express queues, and the lowest priority to jobs that are over their server soft limits. You can list
levels in any order, but be careful not to work at cross-purposes with your execution priority. See section 4.9.16, “Calcu-
lating Job Execution Priority”, on page 135.

The default value for preempt_prio is the following:

preempt_prio: "express_queue, normal_jobs"

If you do not list a preemption level in the preempt_prio scheduler attribute, the jobs in that level are treated like normal
jobs. For example, if you do not list server_softlimits, then jobs that are over their server soft limits are treated like jobs
in the normal_jobs level.

You can create new levels that use combinations of the built-in tests. For example, you can define a level which is
"express_queue + server_softlimits". This level contains jobs that are in express queues and are over their server soft
limits. You would probably want to place this level just to the right of the express_queue level, meaning that these jobs
could be preempted by jobs that are in express queues but are not over their server soft limits.

You can be specific about dividing up jobs: if you want jobs in the express queue to preempt jobs that are also in the
express queue but are over their server soft limits, list each level in order:

preempt_prio: "express_queue, express_queue+server_softlimits, normal_jobs"

However, be careful not to create a runaway effect by placing levels that are over limits before those that are not, for
example, express_queue+server_softlimits to the left of express_queue.

You must list normal_jobs in the preempt_prio scheduler attribute.

4.9.33.7.i The Soft Limits Preemption Level

You can set a limit, called a hard limit, on the number of jobs that can be run or the amount of a resource that can be con-
sumed by a person, a group, or by everyone, and this limit can be applied at the server and at each queue. If you set such
a limit, that is the greatest number of jobs that will be run, or the largest amount of the resource that will be consumed.

Table 4-16: Built-in Preemption Levels

Preemption Level Description

express_queue Jobs in express queues. See section 4.9.33.7.ii, “The Express Queues Preemption Level”, on
page 185

normal_jobs The preemption level into which a job falls if it does not fit into any other specified level.
See section 4.9.33.7.iv, “The Normal Jobs Preemption Level”, on page 185

fairshare When the entity owning a job exceeds its fairshare limit. See section 4.9.33.7.iii, “The Fair-
share Preemption Level”, on page 185

queue_softlimits Jobs which are over their queue soft limits. See section 4.9.33.7.i, “The Soft Limits Preemp-
tion Level”, on page 183

server_softlimits Jobs which are over their server soft limits. See section 4.9.33.7.i, “The Soft Limits Preemp-
tion Level”, on page 183
PBS Professional 2022.1 Administrator’s Guide AG-183

Chapter 4 Scheduling
You can also set a soft limit on the number of jobs that can be run or the amount of a resource that can be consumed. This
soft limit should be lower than the hard limit, and should mark the point where usage changes from being normal to
being "extra, but acceptable". Usage in this "extra, but acceptable" range can be treated by PBS as being lower priority
than the normal usage. PBS can preempt jobs that are over their soft limits. The difference between the soft limit and the
hard limit provides a way for users or groups to use resources as long as no higher-priority work is waiting.

Example 4-22: Using group soft limits

One group of users, group A, has submitted enough jobs that the group is over their soft limit. A second group,
group B, submits a job and are under their soft limit. If preemption is enabled, jobs from group A are preempted
until the job from group B can run.

Example 4-23: Using soft limits on number of running jobs

Given the following:

• You have three users, UserA, UserB, and UserC

• Each has a soft limit of 3 running jobs

• UserA runs 3 jobs

• UserB runs 4 jobs

• UserC submits a job to an express queue

This means:

• User C has an express level job, UserA has jobs at the normal level, and UserB has 1 job over the soft limit, so
UserB's jobs are over their soft limit and most eligible for preemption by UserC's job

Example 4-24: Using soft limits on amount of resource being used

Given the following:

• Queue soft limit for ncpus is 8

• UserA's jobs use 6 CPUs

• UserB's jobs use 10 CPUs

This means:

• UserB is over their soft limit for CPU usage

• UserB's jobs are eligible for preemption

To use soft limits in preemption levels, you must define soft limits. Soft limits are specified by setting server and queue
limit attributes. The attributes that control soft limits are:

max_run_soft
Sets the soft limit on the number of jobs that can be running

max_run_res_soft.<resource name>
Sets the soft limit on the amount of a resource that can be consumed by running jobs

Soft limits are enforced only when they are used as a preemption level.

To use soft limits as preemption levels, add their keywords to the preempt_prio attribute:

• To create a preemption level for those over their soft limits at the server level, add "server_softlimits" to the
preempt_prio attribute.

• To create a preemption level for those over their soft limits at the queue level, add "queue_softlimits" to the
preempt_prio attribute.

• To create a preemption level for those over their soft limits at both the queue and server, add
"server_softlimits+queue_softlimits" to the preempt_prio attribute.
AG-184 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
The jobs of a user or group are over their soft limit only as long as the number of running jobs or the amount of resources
used by running jobs is over the soft limit. If some of these jobs are preempted or finish running, and the soft limit is no
longer exceeded, the jobs of that user or group are no longer over their soft limit, and no longer in that preemption level.
For example, if the soft limit is 3 running jobs, and UserA runs 4 jobs, as soon as one job is preempted and only 3 of
UserA's jobs are running, UserA's jobs are no longer over their soft limit.

For a complete description of the use of these attributes, see section 5.15.1.4, “Hard and Soft Limits”, on page 286.

4.9.33.7.ii The Express Queues Preemption Level

The express_queue preemption level applies to jobs residing in express queues. An express queue is an execution
queue with priority at or above the value set in the preempt_queue_prio scheduler attribute. The default value for this
parameter is 150.

Express queues do not require the by_queue scheduler parameter to be True.

If you will use the express_queue preemption level, you probably want to configure at least one express queue, along
with some method of moving jobs into it. See section 2.3, “Queues”, on page 23.

If you have more than one express queue, and they have different priorities, you are effectively creating separate sub-lev-
els for express queues. Jobs in a higher-priority express queue have greater preemption priority than jobs in lower-prior-
ity express queues.

See “preempt_queue_prio” on page 255 of the PBS Professional Reference Guide.

4.9.33.7.iii The Fairshare Preemption Level

The fairshare preemption level applies to jobs owned by entities who are over their fairshare allotment. For example, if
each of five users has 20 percent of the fairshare tree, and UserA is using 25 percent of the resources being tracked for
fairshare, UserA's jobs become eligible for preemption at the fairshare preemption level.

To use the fairshare preemption level, you must enable fairshare. See section 4.9.19, “Using Fairshare”, on page 138.

4.9.33.7.iv The Normal Jobs Preemption Level

One special class, normal_jobs, is the default class for any job not otherwise specified. If a job does not fall into any of
the specified levels, it is placed in normal_jobs.

Example 4-25: Normal jobs have the highest priority, then jobs whose entities are over their fairshare limit:

preempt_prio: "normal_jobs, fairshare"

Example 4-26: queue_softlimits jobs whose entities are also over their fairshare limit are lower priority than normal
jobs:

preempt_prio: "normal_jobs, queue_softlimit+fairshare"

4.9.33.8 Selecting Preemption Level

PBS places each job in the most exact preemption level, or the highest preemption level that fits the job.

Example 4-27: We have a job that is express and over its server soft limits. The job is placed in the "express_queue"
level:

preempt_prio: "express_queue, normal_jobs, server_softlimits"

Example 4-28: We have a job that is express and over its server soft limits. The job is placed in the
"express_queue+server_softlimits" level:

preempt_prio: "express_queue, express_queue+server_softlimits, normal_jobs, server_softlimits"
PBS Professional 2022.1 Administrator’s Guide AG-185

Chapter 4 Scheduling
4.9.33.9 Sorting Within Preemption Level

If there is more than one job within the preemption level chosen for preemption, PBS chooses jobs within that level
according to their start time. By default, PBS preempts the job which started running most recently. .

For example, if we have two jobs where job A started running at 10:00 a.m. and job B started running at 10:30 a.m:

• The default behavior preempts job B

The allowable value for the preempt_sort attribute is "min_time_since_start".

The default value for the preempt_sort attribute is "min_time_since_start".

4.9.33.10 Preemption Methods

A scheduler can preempt a job in one of the following ways:

• Suspend the job

• Checkpoint the job

• Requeue the job

• Delete the job

A scheduler tries to preempt a job using the methods listed in the order you specify. This means that if you specify that
the order is "checkpoint, suspend, requeue, delete", the scheduler first tries to checkpoint the job, and if it cannot, it tries
to suspend the job, and if it cannot do that, it tries to requeue the job, and if it cannot requeue the job, it tries to delete it.

You can specify the order of these attempts in the preempt_order scheduler attribute.

The preempt_order attribute defines the order of preemption methods which a scheduler uses on jobs. This order can
change depending on the percentage of time remaining on the job. The ordering can be any combination of S, C, R, and
D (for suspend, checkpoint, requeue, and delete).

The contents is an ordering, for example "SCRD" optionally followed by a percentage of time remaining and another
ordering.

The format is a quoted list("").

Example 4-29: PBS should first attempt to use suspension to preempt a job, and if that is unsuccessful, then requeue the
job:

preempt_order: "SR"

Example 4-30: If the job has between 100-81% of requested time remaining, first try to suspend the job, then try check-
point, then requeue. If the job has between 80-51% of requested time remaining, then attempt suspend then check-
point; and between 50% and 0% time remaining just attempt to suspend the job:

preempt_order: "SCR 80 SC 50 S"

The default value for preempt_order is "SCR".

You cannot repeat a method within a percentage specification. Note that in the example above, the S method appears
only once per percentage.

4.9.33.10.i Preemption Via Checkpoint

When a job is preempted via checkpointing, MoM runs the checkpoint_abort script, and PBS kills and requeues the job.
When a scheduler elects to run the job again, it runs the job on the same vnodes as it was originally run on, and the MoM
runs the restart script to restart the job from where it was checkpointed.

To preempt via checkpointing, you must define both of the following:

• The checkpointing action in the MoM's checkpoint_abort $action parameter that is to take place when the job is
preempted

• The restarting action in the MoM's restart $action parameter that is to take place when the job is restarted
AG-186 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
To do this, you must supply checkpointing and restarting scripts or equivalents, and then configure the MoM's
checkpoint_abort and restart $action parameters. Do not use the $action checkpoint MoM parameter; it is used when
the job should keep running.

See section 8.3, “Checkpoint and Restart”, on page 387.

4.9.33.10.ii Preemption Via Suspension

Jobs are normally suspended via the SIGSTOP signal and resumed via the SIGCONT signal. An alternate suspend or
resume signal can be configured in MoM's $suspendsig configuration parameter. See “pbs_mom” on page 71 of the
PBS Professional Reference Guide.

4.9.33.10.iii Suspended Jobs and Resources

Suspended jobs will hold onto some memory and disk space. Suspended jobs may hold application licenses if the appli-
cation releases them only when it exits. See Chapter 5, "Job Suspension and Resource Usage", on page 247 and section
5.9.6.2.iii, “Suspension/resumption Resource Caveats”, on page 248.

4.9.33.10.iv Preemption Via Requeue

When a job is preempted and requeued, the job stops execution and is requeued. A requeued job's eligible time is pre-
served. The amount of time allowed to requeue a job is controlled by the job_requeue_timeout server attribute. See
“Server Attributes” on page 281 of the PBS Professional Reference Guide.

A job that is not eligible to be requeued, meaning a job that was submitted with "-r n", will not be selected to be pre-
empted via requeue.

4.9.33.10.v Preemption via Deletion

When a job is preempted via deletion, the job is deleted. It is not requeued. Deletion is not in the default preemption
order.

4.9.33.11 Enabling Preemption

Preemptive scheduling is enabled by setting a scheduler's attributes and a parameter in that scheduler's configuration file
<sched_priv directory>/sched_config.

To enable preemption, you must do the following:

1. Specify the preemption levels to be used by setting preempt_prio to desired preemption levels (the default is
"express_queue, normal_jobs")

The preempt_prio attribute must contain an entry for normal_jobs.

2. Optional: specify preemption order by setting preempt_order

3. If you will use the fairshare preemption level, configure fairshare. See section 4.9.19, “Using Fairshare”, on page
138.

4. If you will use the server_softlimits and/or queue_softlimits preemption levels, configure server and/or queue soft
limits. See section 4.9.33.7.i, “The Soft Limits Preemption Level”, on page 183.

5. Enable preemption by setting preemptive_sched to True . It is True by default.

6. Choose whether to use preemption during primetime, non-primetime, or all of the time. The default is ALL. If you
want separate behavior for primetime and non-primetime, specify each separately. For example:

preemptive_sched: True prime

preemptive_sched: False non_prime
PBS Professional 2022.1 Administrator’s Guide AG-187

Chapter 4 Scheduling
4.9.33.12 Preemption Example

Example 4-31: To configure a scheduler for the following preemption priority:

a. Express queue jobs at the highest preemption priority

b. followed by jobs that are express but whose user/group is over a soft limit,

c. then normal jobs,

d. and last, jobs belonging to users/groups over their server soft limit (not in express queues)

We turn on preemptive scheduling in the scheduler's configuration file:

preemptive_sched: TRUE ALL

We set scheduler attributes:

• To set the queue priority level for express queues:
qmgr -c 'set sched <scheduler name> preempt_queue_prio=150'

• To set the preemption priority order:
qmgr -c 'set sched <scheduler name> preempt_prio="express_queue,

express_queue+server_softlimits, normal_jobs, server_softlimits"'

We specify when to use each preemption method.

If the first method fails, try the next method.

If a job has between 100-81% time remaining, try to suspend, then checkpoint then requeue.

From 80-51% suspend and then checkpoint, but don't requeue.

If between 50-0% time remaining, then just suspend it.

qmgr -c 'set sched <scheduler name> preempt_order="SCR 80 SC 50 S"'

4.9.33.13 Preemption Caveats and Recommendations

• It is not advisable to use preemption via deletion with a runjob hook. Jobs are preempted before the high-priority
job is run, whether or not that job actually runs. Job deletion happens before a runjob hook would execute. Even if
the runjob hook rejects the high-priority job, the preempted jobs are still deleted.

• When using any of the fairshare, soft limits, or express queue preemption levels, be sure to enable the corresponding
PBS feature. For example, when using preemption with the fairshare preemption level, be sure to turn fairshare on.
Otherwise, you will be using stale fairshare data to preempt jobs.

• It's important to be careful about the order of the preemption levels and the sizes of the limits at queue and server.
For example, if you make users who are over their server soft limits have higher priority than users who are over
their queue soft limits, and you set the soft limit higher at the server than at the queue, you can end up with users
who have more jobs running preempting users who have fewer jobs running.

In this example, a user with more jobs preempts a user with fewer jobs.

• If a subjob is not running because its array job has hit the limit in max_run_subjobs, the subjob is not eligible to
start and PBS does not try to use preemption to start the subjob.

• Beware of setting up situations where a user running more jobs than they should can preempt users who are running
fewer jobs. Given the following:

• preempt_prio attribute contains "server_softlimits, queue_softlimits"

• Server soft limit is 5

• Queue soft limit is 3

• User1 has 6 jobs running

• User2 has 4 jobs running
AG-188 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
This means:

• Both users are over the queue soft limit, and User1 is over the server soft limit

• User1 has higher priority, so User1's jobs can preempt User2's jobs

To avoid this scenario, you could set the preempt_prio attribute to contain "server_softlimits,
queue_softlimits, server_softlimits+queue_softlimits". In this case User1 would have lower
priority, because User1 is over both soft limits.

• Preemption priority is mostly independent of execution priority. You can list preemption levels in any order in
preempt_prio, but be careful not to work at cross-purposes with your execution priority. Be sure that you are not
preempting jobs that have higher execution priority. See section 4.9.16, “Calculating Job Execution Priority”, on
page 135.

• If a high-priority job has been selected to preempt lower-priority jobs, but is rejected by a runjob hook, a scheduler
undoes the preemption of the low-priority jobs. Suspended jobs are resumed, and checkpointed jobs are restarted.

• A job that has requested an AOE will not preempt another job, regardless of whether the job's requested AOE
matches an instantiated AOE. Running jobs are not preempted by jobs requesting AOEs.

• When jobs are preempted via requeueing, the requeue can fail if the job being preempted takes longer than the
allowed timeout. See section 8.6.3, “Setting Job Requeue Timeout”, on page 414.

• When you issue "qrun <job ID>", without the -H option, the selected job has the highest preemption priority, for
that scheduling cycle. However, at the following scheduling cycle, the preemption priority of the selected job
returns to whatever it would be without qrun. If you give the qrun command multiple job IDs, each job is run in
its own scheduling cycle.

• When sched_preempt_enforce_resumption is set to True, all preempted jobs become top jobs, regardless of
their setting for topjob_ineligible.

• PBS will not use suspension or checkpointing to preempt a job that requests a value for eoe.

4.9.34 Using Primetime and Holidays

Often it is useful to run different scheduling policies for specific intervals during the day or work week. PBS provides a
way to specify two types of interval, called primetime and non-primetime.

Between them, primetime and non-primetime cover all time. There is no time slot that is neither primetime nor
non-primetime. This includes dedicated time. Primetime and/or non-primetime overlap dedicated time.

You can use non-primetime for such tasks as running jobs on desktop clusters at night.

4.9.34.1 How Primetime and Holidays Work

By default, primetime is 24/7. A scheduler looks in the <sched_priv directory>/holidays file for definitions of
primetime, non-primetime, and holidays. You can edit this file to define your holidays and primetime.

Many PBS scheduling parameters can be specified separately for primetime, non-primetime, or all of the time. This
means that you can use, for example, fairshare during primetime and no fairshare during non-primetime. These parame-
ters have a time slot default of all, meaning that if enabled, they are in force all of the time.

A scheduler applies the parameters defined for primetime during the primetime time slots, and applies parameters
defined for non-primetime during the non-primetime time slots. Any scheduler parameters defined for all time are run
whether it is primetime or not.

Any holidays listed in the holidays file are treated as non-primetime. To have a holiday treated like a normal workday or
weekend, do not list it in the holidays file.
PBS Professional 2022.1 Administrator’s Guide AG-189

Chapter 4 Scheduling
There are default behaviors for primetime and non-primetime, but you can set up the behavior you want for each type.
The names "primetime" and "non-primetime" are meant to be informative, but they are arbitrary. The default for prime-
time is 24/7, meaning that primetime is all of the time by default. Example holidays are provided, but commented out, in
the holidays file.

You can define primetime and non-primetime queues. Jobs in these queues can run only during the designated time.
Queues that are not defined specifically as primetime or non-primetime queues are called "anytime queues".

4.9.34.2 Configuring Primetime and Non-primetime

In order to use primetime and non-primetime, you must have a holidays file with the current year in it.

You can specify primetime and non-primetime time slots by specifying them in the <sched_priv direc-
tory>/holidays file.

The format of the primetime and non-primetime section of the holidays file is the following:

YEAR YYYY

<day> <prime> <nonprime>

<day> <prime> <nonprime>

In YEAR YYYY, YYYY is the current year.

Day can be weekday, monday, tuesday, wednesday, thursday, friday, saturday, or sunday.

Each day line must have all three fields.

Any line that begins with a "*" or a "#" is a comment.

Weekday names must be lowercase.

The ordering of elements in this file is important. The ordering of <day> lines in the holidays file controls how prime-
time is determined. A later line takes precedence over an earlier line.

For example:

weekday 0630 1730

friday 0715 1600

means the same as

monday 0630 1730

tuesday 0630 1730

wednesday 0630 1730

thursday 0630 1730

friday 0715 1600

However, if a specific day is followed by "weekday",

friday 0700 1600

weekday 0630 1730

the "weekday" line takes precedence, so Friday will have the same primetime as the other weekdays.

Times can be expressed as one of the following:

• HHMM with no colons(:)

• The word "all"

• The word "none"
AG-190 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.34.3 Configuring Holidays

You can specify primetime and non-primetime time slots by specifying them in the <sched_priv direc-
tory>/holidays file.

You must specify the year, otherwise primetime is in force at all times, and PBS will not recognize any holidays. Specify
the year here, where YYYY is the current year:

YEAR YYYY

Holidays are specified in lines of this form:

<day of year> <month day-of-month> <holiday name>

PBS uses the <day of year> field and ignores the <date> string.

Day of year is the julian day of the year between 1 and 365 (e.g. "1").

Month day-of-month is the calendar date, for example "Jan 1".

Holiday name is the name of the holiday, for example "New Year's Day".

4.9.34.4 Example of holidays File

YEAR 2020

* Prime Non-Prime

* Day Start Start

*

 weekday 0600 1730

 saturday none all

 sunday none all

*

* Day of Calendar Company Holiday

* Year Date Holiday

 1 Jan 1 New Year's Day

 20 Jan 20 Martin Luther King Day

 48 Feb 17 Presidents Day

 146 May 25 Memorial Day

 186 Jul 4 Independence Day

 251 Sep 7 Labor Day

 286 Oct 12 Columbus Day

 316 Nov 11 Veterans Day

 331 Nov 26 Thanksgiving

 360 Dec 25 Christmas Day
PBS Professional 2022.1 Administrator’s Guide AG-191

Chapter 4 Scheduling
4.9.34.5 Reference Copy of holidays File

A reference copy of the holidays file contains example holidays that are commented out. It is provided in
PBS_EXEC/etc/pbs_holidays. The file looks like this:

* UNCOMMENT AND CHANGE THIS TO THE CURRENT YEAR

*YEAR 1970

*

* Prime/Nonprime Table

*

* Prime Non-Prime

* Day Start Start

*

* UNCOMMENT AND SET THE REQUIRED PRIME/NON-PRIME START TIMES

* weekday 0600 1730

* saturday none all

* sunday none all

*

* Day of Calendar Company

* Year Date Holiday

*

* UNCOMMENT AND ADD CALENDAR HOLIDAYS TO BE CONSIDERED AS NON-PRIME DAYS

* 1 Jan 1 New Year's Day

* 359 Dec 25 Christmas Day

4.9.34.6 Defining Primetime and Non-primetime Queues

Jobs in a primetime queue can start only during primetime. Jobs in a non-primetime queue can start only during
non-primetime. Jobs in an anytime queue can start at any time.

You define a primetime queue by naming it using the primetime prefix. The prefix is defined in the primetime_prefix
scheduler parameter. The default is "p_". For example, you could name a primetime queue "p_queueA", using the
default.

Similarly, you define a non-primetime queue by prefixing the name. The prefix is defined in the nonprimetime_prefix
scheduler parameter, and defaults to "np_".

4.9.34.7 Controlling Whether Jobs Cross Primetime Boundaries

You can control whether jobs are allowed to start running in one time slot and finish in another, for example when job A
starts during primetime and finishes a few minutes into non-primetime. When a job runs past the boundary, it delays the
start of a job that is constrained to run only in the later time slot. For example, if job B can run only during non-prime-
time, it may have to wait while job A uses up non-primetime before it can start. You can control this behavior for all
queues, or you can exempt anytime queues, controlling only primetime and non-primetime queues. You can also specify
how much time past the boundary a job is allowed to run.

To prevent a scheduler from starting any jobs which would run past a primetime/non-primetime boundary, set the
backfill_prime scheduler parameter to True. You can specify this separately for primetime and non-primetime. If you
specify it for one type of time slot, it prevents those jobs from crossing the next boundary. For example, if you set the
following:

backfill_prime True prime
AG-192 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
jobs in primetime slots are not allowed to cross into non-primetime slots.

If you set the following:

backfill_prime True non_prime

jobs in non-primetime slots are not allowed to cross into primetime slots.

To exempt jobs in anytime queues from the control of backfill_prime, set the prime_exempt_anytime_queues sched-
uler parameter to True. This means that jobs in an anytime queue are not prevented from running across a prime-
time/nonprimetime or non-primetime/primetime boundary.

To allow jobs to spill over a certain amount of time past primetime/non-primetime boundaries, but no more, specify this
amount of time in the prime_spill scheduler parameter. You can specify separate behavior for primetime and non-prime-
time jobs. For example, to allow primetime jobs to spill by 20 minutes, but only allow non-primetime jobs to spill by
1minute:

prime_spill 00:20:00 prime

prime_spill 00:01:00 non_prime

The prime_spill scheduler parameter applies only when backfill_prime is True.

4.9.34.8 Logging

A scheduler logs a message at the beginning of each scheduling cycle indicating whether it is primetime or not, and when
this period of primetime or non-primetime will end. The message is at log level 0x0100. The message is of this form:

"It is primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS"

or

"It is non-primetime and it will end in NN seconds at MM/DD/YYYY HH:MM:SS"

4.9.34.9 Scheduling Parameters Affecting Primetime

backfill_prime
This scheduler will not run jobs which would overlap the boundary between primetime and non-primetime.

Format: Boolean

Default: False all

nonprimetime_prefix
Queue names which start with this prefix will be treated as non-primetime queues. Jobs within these queues will
only run during non-primetime.

Format: String

Default: np_

primetime_prefix
Queue names starting with this prefix are treated as primetime queues. Jobs will only run in these queues during
primetime.

Format: String

Default: p_
PBS Professional 2022.1 Administrator’s Guide AG-193

Chapter 4 Scheduling
prime_exempt_anytime_queues
Determines whether anytime queues are controlled by backfill_prime.

If set to True, jobs in an anytime queue will not be prevented from running across a primetime/non-primetime
or non-primetime/primetime boundary.

If set to False, the jobs in an anytime queue may not cross this boundary, except for the amount specified by
their prime_spill setting.

Format: Boolean

Default: False

prime_spill
Specifies the amount of time a job can spill over from non-primetime into primetime or from primetime into
non-primetime. This option can be separately specified for prime- and non-primetime. This option is only
meaningful if backfill_prime is True.

Format: Duration

Default: 00:00:00

4.9.34.10 Caveats for Primetime and Holidays

• In order to use primetime and non-primetime, you must have a holidays file with the current year in it. If there is
no holidays file with a year in it, primetime is in force all of the time.

• You cannot combine holidays files.

• If you use the formula, it is in force all of the time.

• If there is no YEAR line in the holidays file, primetime is in force at all times. If there is more than one YEAR line,
the last one is used.

• If the information for any day is missing or incorrect, primetime is in force for all of that day.

4.9.35 Provisioning

PBS provides automatic provisioning of an OS or application, on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application.

You can configure vnodes so that PBS will automatically install the OS or application that jobs need in order to run on
those vnodes. For example, you can configure a vnode that is usually running RHEL to run SLES instead whenever the
Physics group runs a job requiring SLES. If a job requires an application that is not usually installed, PBS can install the
application in order for the job to run.

You can use provisioning for booting multi-boot systems into the desired OS, downloading an OS to and rebooting a
diskless system, downloading an OS to and rebooting from disk, instantiating a virtual machine, etc. You can also use
provisioning to run a configuration script or install an application.

For a complete description of how provisioning works and how to configure it, see Chapter 16, "Provisioning", on page
591.

4.9.36 Queue Priority

Queues and queue priority play several different roles in scheduling, so this section contains pointers to other sections.

Each queue can have a different priority. A higher value for priority means the queue has greater priority. By default,
queues are sorted from highest to lowest priority. Jobs in the highest priority queue will be considered for execution
before jobs from the next highest priority queue. If queues don't have different priority, queue order is undefined.
AG-194 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
Each queue's priority is specified in its priority attribute By default, the queue priority attribute is unset. There is no limit
to the priority that you can assign to a queue, however it must fit within integer size. See “Queue Attributes” on page 311
of the PBS Professional Reference Guide.

4.9.36.1 Configuring Queue Priority

You can specify the priority of each queue by setting a value for its priority attribute:

Qmgr: set queue <queue name> priority = <value>

4.9.36.2 Using Queue Priority

You can configure a scheduler so that job execution or preemption priority is partly or entirely determined by the priority
of the queue in which the job resides. Queue priority can be used for the following purposes:

• Queue priority can be used as a term in the job sorting formula. See section 4.9.21, “Using a Formula for Computing
Job Execution Priority”, on page 150

• Queue priority can be used to specify the order in which queues are examined when scheduling jobs. If you want
jobs to be examined queue by queue, in order of queue priority, you must specify a different priority for each queue.
A queue with a higher value is examined before a queue with a lower value. See section 4.3.5.3.i, “Using Queue
Order to Affect Order of Consideration”, on page 68

• You can set up execution priority levels that include jobs in express queues. For information on configuring job pri-
orities in a scheduler, see section 4.9.16, “Calculating Job Execution Priority”, on page 135.

• You can set up preemption levels that include jobs in express queues. For information on preemption, see section
4.9.33, “Using Preemption”, on page 179.

A queue is an express queue if its priority is greater than or equal to the value that defines an express queue. For more
about using express queues, see section 4.9.18, “Express Queues”, on page 138.

4.9.36.3 Queue Priority Caveats

• If you use queue priority in the formula and the job is moved to another server through peer scheduling, the queue
priority used in the formula will be that of the new queue to which the job is moved.

4.9.37 Reservations

PBS provides a way to reserve specific resources for a defined time period. If you want reservations in which to run jobs,
you can make one-time reservations (called advance reservations), or you can make a series of reservations (called
standing reservations), where each one is for the same resources, but for a different time period. Or, if you want to
secure resources for a specific (perhaps troublesome) job, you can create a job-specific reservation for that job at submis-
sion time, while the job is queued, or later while the job is running.

If you want to sequester hosts for maintenance, you can create a maintenance reservation. Maintenance reservations
block out time on specified machines, preventing jobs from being started where you need to perform maintenance tasks.

Advance, standing, and job-specific reservations are "job reservations", to distinguish them from maintenance reserva-
tions.

Reservations are useful for accomplishing the following job-related tasks:

• To get a time slot on a specific host

• To run a job in a specific time slot, meaning at or by a specific time

• To be sure a job will run

• To have a high-priority job run soon

• To make sure that a job doesn't lose access to resources when needs to be re-run
PBS Professional 2022.1 Administrator’s Guide AG-195

Chapter 4 Scheduling
4.9.37.1 Definitions

Advance reservation

A reservation for a set of resources for a specified time. The reservation is available only to the creator of the
reservation and any users or groups specified by the creator.

Degraded reservation

A job-specific or advance reservation for which one or more associated vnodes are unavailable.

A standing reservation for which one or more vnodes associated with the soonest occurrence are unavailable.

Job-specific reservation

A reservation created for a specific job, for the same resources that the job requested.

Job-specific ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Job-specific now reservation

Reservation created for a specific running job. PBS immediately creates a job-specific now reservation on the
same resources as the job is using, and moves the job into the reservation. The reservation is created and starts
running immediately when you use pbs_rsub --job <job ID> on a running job.

Job-specific start reservation

Reservation created for a specific job, for the same resources the job requests. PBS starts the job according to
scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the job into the
reservation. Created when you use qsub -Wcreate_resv_from_job=true to submit a job or when you
qalter a job to set the job's create_resv_from_job attribute to True.

Maintenance reservation

A reservation designed for performing maintenance on the specified hosts for the specified time. Created using
pbs_rsub --hosts <host list>.

Occurrence of a standing reservation

An occurrence of a standing reservation behaves like an advance reservation, with the following exceptions:

• While a job can be submitted to a specific advance reservation, it can only be submitted to the standing res-
ervation as a whole, not to a specific occurrence. You can only specify when the job is eligible to run. See
“qsub” on page 216 of the PBS Professional Reference Guide.

• When an advance reservation ends, it and all of its jobs, running or queued, are deleted, but when an occur-
rence ends, only its running jobs are deleted.

Each occurrence of a standing reservation has reserved resources which satisfy the resource request, but each
occurrence may have its resources drawn from a different source. A query for the resources assigned to a stand-
ing reservation will return the resources assigned to the soonest occurrence, shown in the resv_nodes attribute
reported by pbs_rstat.

Also called an instance of a standing reservation.

Soonest occurrence of a standing reservation

The occurrence which is currently active, or if none is active, then it is the next occurrence.

Standing reservation

An advance reservation which recurs at specified times. For example, the user can reserve 8 CPUs and 10GB
every Wednesday and Thursday from 5pm to 8pm, for the next three months.
AG-196 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.37.2 Job Reservations

4.9.37.2.i Creating Advance and Standing Reservations

Any PBS user can create both advance and standing reservations for jobs using the pbs_rsub command. PBS either
confirms that the reservation can be made, or rejects the request. Once the reservation is confirmed, PBS creates a queue
for the reservation's jobs. Jobs are then submitted to this queue.

When a reservation is confirmed, it means that the reservation will not conflict with currently running jobs, other con-
firmed reservations, or dedicated time, and that the requested resources are available for the reservation. A reservation
request that fails these tests is rejected. All occurrences of a standing reservation must be acceptable in order for the
standing reservation to be confirmed.

The pbs_rsub command returns a reservation ID, which is the reservation name. For an advance reservation, this res-
ervation ID has the format:

R<sequence number>.<server name>

For a standing reservation, this reservation ID refers to the entire series, and has the format:

S<sequence number>.<server name>

The user specifies the resources for a reservation using the same syntax as for a job.

See "Reserving Resources", on page 137 of the PBS Professional User’s Guide, for detailed information on creation and
use of reservations.

The time for which a reservation is requested is in the time zone at the submission host.

4.9.37.2.ii Job-Specific Reservations

A job-specific reservation is for the same resources that the job requested. Job-specific reservations are intended to pre-
serve access to the job's resources in the case where a job may need to be modified and then re-run, so that the job does
not need to wait to be re-scheduled.

Any PBS user can create a job-specific reservation.

A job-specific reservation ID has the format:

R<sequence number>.<server name>

Job-specific reservations cannot be used with job arrays.

4.9.37.2.iii Creating Job-specific Start Reservations

Job submitters can create a job-specific start reservation at submission time. The job is scheduled normally, and when it
starts, PBS creates and starts a reservation on the same resources, and puts the job into the reservation. To create a
job-specific reservation at submission time, set the job's create_resv_from_job attribute to True:

qsub ... -Wcreate_resv_from_job=1

To create a job-specific start reservation from a queued job, use qalter to set the create_resv_from_job attribute to
True.

4.9.37.2.iv Creating Job-specific ASAP Reservations

Job submitters can create a job-specific ASAP from a queued job. PBS creates the reservation for the same resources the
job requests, moves the job into the reservation, and schedules the reservation to start as soon as possible.

To create a job-specific ASAP reservation:

pbs_rsub -Wqmove=<job ID>
PBS Professional 2022.1 Administrator’s Guide AG-197

Chapter 4 Scheduling
Note that job-specific ASAP reservations, once created, do not adjust themselves to a change in resource availability. An
ASAP reservation can cause resources to go idle while waiting for the reservation to start. For example, if a job sched-
uled to finish before an ASAP reservation finishes early, and no jobs can be backfilled into the new open slot, resources
will sit idle until the reservation runs. In addition, if a high-priority job comes in after an ASAP reservation has been cre-
ated for a lower-priority job, the high-priority job must wait until after the reservation finishes.

To get the equivalent of flexible ASAP reservations that don't cause idle resources, use a job sort formula with a custom
priority term, for example "cust_high_pri", and set this term to a high value, for example 10, for the desired job. Then
you can alter the job: qalter -l cust_high_pri=10 -Wcreate_resv_from_job=true. Make sure that
cust_high_pri has a large enough coefficient in the formula to change the job priority.

4.9.37.2.v Creating Job-specific Now Reservations

Job submitters can create a job-specific now from a running job. PBS creates the reservation for the same resources the
job is using, starts the reservation, and moves the job into the reservation.

To create a job-specific now reservation:

pbs_rsub --job <job ID>

4.9.37.2.vi Job Reservations and Placement Sets

When PBS chooses a placement set for a reservation, it makes the same choices as it would for a regular job. It fits the
reservation into the smallest possible placement set. See section 4.9.32.4.ii, “Order of Placement Set Consideration
Within Pool”, on page 171.

When a reservation is created, it is created within a placement set, if possible. If no placement set will satisfy the reser-
vation, placement sets are ignored, if the scheduler's do_not_span_psets attribute is False. If no placement set will
satisfy the reservation, and the scheduler's do_not_span_psets attribute is True, the reservation is not created.

The vnodes allocated to a reservation are used as one single placement set for jobs in the reservation; they are not subdi-
vided into smaller placement sets. A job within a reservation runs within the single placement set made up of the vnodes
allocated to the reservation.

4.9.37.2.vii Requesting Resources for Job Reservations

Reservations request resources using the same mechanism that jobs use. If a resource is unrequestable, users cannot
request it for a reservation. If a resource is invisible, users cannot view it or request it for a reservation.

4.9.37.2.viii Job Reservations and Provisioning

Users can create reservations that request AOEs. Each reservation can have at most one AOE specified for it. Any jobs
that run in that reservation must not request a different AOE. See section 16.4.3, “Provisioning And Reservations”, on
page 595.

The vnodes allocated to a reservation that requests an AOE are put in the resv-exclusive state when the reservation runs.
These vnodes are not shared with other reservations or with jobs outside the reservation.

For information on restrictions applying to reservations used with provisioning, see section 16.7.2.3, “Vnode Reservation
Restrictions”, on page 608.

For how to avoid problems with provisioning and reservations, see section 16.10.1, “Using Provisioning Wisely”, on
page 617.

4.9.37.2.ix Job Reservation Priority

A job running in a reservation cannot be preempted.

A job running in a reservation has the highest execution priority.
AG-198 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.37.2.x Querying Reservations

To query a reservation, use the pbs_rstat command. See "Viewing the Status of a Reservation", on page 146 of the
PBS Professional User’s Guide. To delete a reservation, use the pbs_rdel command, not the qmgr command.

4.9.37.2.xi Controlling Access to Job Reservations

You can specify which projects, users, and groups can and cannot submit jobs to reservations. Use the pbs_rsub
-U/-G command to set the reservation's acl_users and/or acl_groups attributes, and pbs_ralter -U/-G to
change them. See section 11.3.8, “Reservation Access”, on page 501.

4.9.37.2.xii Job Reservation Fault Tolerance

PBS automatically keeps track of the vnodes assigned to reservations, and tries to find replacement vnodes for those that
become unavailable. See section 8.4, “Reservation Fault Tolerance”, on page 401.

4.9.37.2.xiii Logging Standing Reservation Information

The start and end of each occurrence of a standing reservation is logged as if each occurrence were a single advance res-
ervation.

Reservation-related messages are logged at level PBSEVENT_RESV, which is 0x0200 (512).

4.9.37.2.xiv Accounting

Resources requested for a reservation are recorded in the reservation's Resource_List attribute, and reported in the
accounting log B and Y records for the reservation. See section 12.5.3, “Timeline for Reservation Accounting Mes-
sages”, on page 549.

4.9.37.3 Maintenance Reservations

You can create maintenance reservations using pbs_rsub --hosts <host list>. Maintenance reservations are
designed to make the specified hosts available for the specified amount of time, regardless of what else is happening:

• You can create a maintenance reservation that includes or is made up of vnodes that are down or offline.

• Maintenance reservations ignore the value of a vnode's resv_enable attribute.

• PBS immediately confirms any maintenance reservation.

• Maintenance reservations take precedence over other reservations; if you create a maintenance reservation that over-
laps an advance or standing job reservation, the overlapping vnodes become unavailable to the job reservation, and
the job reservation is in conflict with the maintenance reservation. PBS looks for replacement vnodes; see "Reserva-
tion Fault Tolerance" on page 401 in the PBS Professional Administrator’s Guide.

PBS will not start any new jobs on vnodes overlapping or in a maintenance reservation. However, jobs that were already
running on overlapping vnodes continue to run; you can let them run or requeue them.

You cannot specify place or select for a maintenance reservation; these are created by PBS:

• PBS creates the reservation's placement specification so that hosts are assigned exclusively to the reservation. The
placement specification is always the following:

-lplace=exclhost
• PBS sets the reservation's resv_nodes attribute value so that all CPUs on the reserved hosts are assigned to the

maintenance reservation. The select specification is always the following:

-lselect=host=<host1>:ncpus=<number of CPUs at host1>+host=<host2>:ncpus=<number of CPUs at
host2>+...

Maintenance reservations are prefixed with M. A maintenance reservation ID has the format:

M<sequence number>.<server name>

You cannot create a recurring maintenance reservation.
PBS Professional 2022.1 Administrator’s Guide AG-199

Chapter 4 Scheduling
Creating a maintenance reservation does not trigger a scheduling cycle.

You must have manager or operator privilege to create a maintenance reservation.

4.9.37.4 Modifying Reservations

You can use the pbs_ralter command to alter an existing reservation, whether it is an individual job-specific or advance
reservation, or the next or current instance of a standing reservation. Syntax:

pbs_ralter [-D <duration>] [-E <end time>] [-G <auth group list>] [-I <block time>] [-l select=<select spec>] [-m
<mail points>] [-M <mail list>] [-N <reservation name>] [-R <start time>] [-U <auth user list>] <reservation
ID>

To force a change to the start time, end time, or duration of a reservation, you can use the -Wforce option:

pbs_ralter -Wforce [-D <duration>] [-E <end time>] [-R <start time>] <reservation ID>

Note that with the -Wforce option you can force PBS to oversubscribe resources, in which case you (the administrator)
may need to manage them yourself.

You can modify an advance or standing reservation so that if the reservation sits idle, it is automatically deleted after the
amount of time you specify. For a standing reservation, this applies to each occurrence separately. If one occurrence of
a standing reservation is deleted, the next occurrence still starts at its designated time. To have a reservation be deleted
automatically, use pbs_ralter -Wdelete_idle_time=<allowed idle time> and specify the number of
seconds as an integer, or the duration as HH:MM:SS. Note that you cannot change any other reservation attributes when
you change this one.

You cannot change the start time of a reservation in which jobs are running.

When changing the select specification, the behavior depends on whether there are jobs running.

• If jobs are running in the reservation:

• You cannot release chunks where reservation jobs are running

• Vnodes where jobs are running cannot change, but all other vnodes can change

• If no jobs are running, the select specification can be changed completely

When requesting chunks, make sure each chunk request specifies chunks of a single type.

To find unused chunks in a running reservation, you can compare the reservation's resv_nodes attribute to the
exec_vnode attribute of the jobs running in the reservation.

If the reservation has started and and is degraded, you must release all unavailable chunks in order to alter the reservation
select specification.

If the reservation has not started, modifying the select specification may result in moving the reservation to different
vnodes.

After the change is requested, the change is either confirmed or denied. On denial of the change, the reservation is not
deleted and is left as is, and the following message appears in the server's log:

Unable to alter reservation <reservation ID>

When a reservation is confirmed, the following message appears in the server's log:

Reservation alter successful for <reservation ID>

To find out whether or not the change was allowed:

• Use the pbs_rstat command: see whether you altered reservation attribute(s)

• Use the interactive option: check for confirmation after the blocking time has run out

If the reservation has not started and it cannot be confirmed on the same vnodes, PBS searches for another set of vnodes.
See section 8.4, “Reservation Fault Tolerance”, on page 401.

You must be the reservation owner or the PBS Administrator to run this command.
AG-200 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
For details, see “pbs_ralter” on page 85 of the PBS Professional Reference Guide.

4.9.37.4.i Examples of Modifying Reservations

Example 4-32: Grow a reservation:

Existing:

select=100:ncpus=20:mem=512gb

pbs_ralter -l select=150:ncpus=20:mem=512gb

Example 4-33: Grow and shrink a reservation:

Existing:

select=100:ncpus=20+10:ncpus=10:mem=512gb

pbs_ralter -l select=150:ncpus=20+5:ncpus=10:mem=512gb

Example 4-34: Grow a reservation, and get rid of a type of chunk:

Existing:

select=100:ncpus=20+10:ncpus=10:mem=512MB+15:ncpus=40

pbs_ralter -l select=150:ncpus=20+30:ncpus=40

Example 4-35: No running jobs; change select completely:

Existing:

select=100:ncpus=20+10:ncpus=10:mem=512GB

pbs_ralter -l select=150:ncpus=20:mem=1024GB+5:ncpus=15:mem=512GB

Example 4-36: Job is running on 50 vnodes of the first type of chunk; grow and shrink reservation:

Existing:

select=100:ncpus=20+50:ncpus=40

pbs_ralter -l select=50:ncpus=20+100:ncpus=40

Example 4-37: Negative example. With job running on 50 vnodes on the first type of chunk, we try to do an invalid
alteration by trying to remove chunks from running jobs:

Existing:

select =100:ncpus=20+50:ncpus=40

pbs_ralter -l select=25:ncpus=20+100:ncpus=40

ALTER DENIED

4.9.37.5 Attributes Affecting Reservations

We list the server, vnode, and job attributes affecting reservations here. See the full list of reservation attributes in "Res-
ervation Attributes" on page 303 in the PBS Professional Administrator’s Guide. See “Server Attributes” on page 281 of
the PBS Professional Reference Guide and “Vnode Attributes” on page 320 of the PBS Professional Reference Guide.

Table 4-17: Attributes Affecting Reservations

Entity Attribute Effect

Server acl_resv_host_enable Controls whether or not the server uses the acl_resv_hosts access control lists.

Server acl_resv_hosts List of hosts from which reservations may and may not be created at this server.

Server acl_resv_group_enable Controls whether or not the server uses the acl_resv_groups access control
lists.
PBS Professional 2022.1 Administrator’s Guide AG-201

Chapter 4 Scheduling
Server acl_resv_groups List of groups who may and may not create reservations at this server.

Server acl_resv_user_enable Controls whether or not the server uses the acl_resv_users access control lists.

Server acl_resv_users List of users who may and may not create reservations at this server.

Server resv_enable Controls whether or not reservations can be created at this server.

Server reserve_retry_time Length of time to wait between when a reservation becomes degraded and when
PBS tries to reconfirm the reservation, as well as interval between attempts to
reconfirm a degraded reservation. Default: 600 (10 minutes)

Vnode queue deprecated Associates the vnode with an execution queue. If this attribute is set, this vnode
cannot be used for reservations.

Vnode resv_enable Controls whether the vnode can be used for reservations. Default is True, but
set to False for a vnode used for cycle harvesting.

Job create_resv_from_job Controls whether PBS creates a job-specific reservation for this job.

Table 4-17: Attributes Affecting Reservations

Entity Attribute Effect
AG-202 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.37.6 Reservation Advice and Caveats

• Do not attempt to alter a maintenance reservation.

• Do not delete a reservation's queue.

• Do not start a reservation's queue (do not set the reservation's started attribute to True). Jobs will run prematurely.

• Do not try to set attribute values for a reservation queue directly; instead, operate on the reservation.

• Reservations are incompatible with cycle harvesting. Do not allow reservations on machines used for cycle harvest-
ing. The user may begin using the machine, which will suspend any PBS jobs, possibly preventing them from fin-
ishing before the reservation runs out. Set each cycle harvesting vnode's resv_enable attribute to False, to prevent
the vnode from being used for reservations.

• You can write hooks that execute, modifying a reservation's attributes, when a reservation is created. See the PBS
Professional Hooks Guide.

• Allow enough time in reservations. If a job is submitted to a reservation with a duration close to the walltime of the
job, provisioning could cause the job to be terminated before it finishes running, or to be prevented from starting. If
a reservation is designed to take jobs requesting an AOE, leave enough extra time in the reservation for provisioning.

• Hosts or vnodes that have been configured to accept jobs only from a specific queue (vnode-queue restrictions) can-
not be used for advance reservations. Hosts or vnodes that are being used for cycle harvesting should not be used for
reservations.

• Hosts with $max_load and $ideal_load configured should not be used for reservations. Set the resv_enable vnode
attribute on these hosts to False.

• For troubleshooting problems with reservations, see "Reservation Caveats and Errors", on page 150 of the PBS Pro-
fessional User’s Guide.

• Be careful when using qrun -H on jobs or vnodes involved in reservations. Make sure that you don't oversub-
scribe reserved resources.

• In order to create reservations, the submission host must have its timezone set to a value that is understood by the
PBS server. See section 20.9.5, “Unrecognized Timezone Variable”, on page 646.

• Avoid making reservations for resources that are out of the control of PBS. Resources that are managed through a
server_dyn_res script may not be available when jobs need them.

• If you create a maintenance reservation that overlaps an advance or standing job reservation, the maintenance reser-
vation takes precedence, the overlapping vnodes become unavailable to the job reservation, and the job reservation
becomes degraded. PBS looks for replacement vnodes; see section 8.4, “Reservation Fault Tolerance”, on page 401.
Any job reservation overlapping a maintenance reservation goes into the RESV_IN_CONFLICT substate (12).

• Note that job-specific ASAP reservations, once created, do not adjust themselves to a change in resource availability.
An ASAP reservation can cause resources to go idle while waiting for the reservation to start. For example, if a job
scheduled to finish before an ASAP reservation finishes early, and no jobs can be backfilled into the new open slot,
resources will sit idle until the reservation runs.

• To get the equivalent of flexible ASAP reservations that don't cause idle resources, use a job sort formula with a cus-
tom priority term, for example "cust_high_pri", and set this term to a high value, for example 10, for the desired job.
Then you can alter the job: qalter -l cust_high_pri=10 -Wcreate_resv_from_job=true.

• Beware of oversubscribing resources when using the -Wforce option to pbs_ralter.

4.9.38 Round Robin Queue Selection

PBS can select jobs from execution queues by examining the queues in round-robin fashion. The behavior is round-robin
only when you have groups of queues where all queues in each group have the same priority.
PBS Professional 2022.1 Administrator’s Guide AG-203

Chapter 4 Scheduling
The order in which queues are selected is determined by each queue's priority. You can set each queue's priority; see sec-
tion 2.3.5.3, “Prioritizing Execution Queues”, on page 27. If queue priorities are not set, they are undefined. If you do
not prioritize the queues, their order is undefined.

When you have multiple queues with the same priority, a scheduler round-robins through all of the queues with the same
priority as a group. So if you have Q1, Q2, and Q3 at a priority of 100, Q4 and Q5 at a priority of 50, and Q6 at a priority
of 10, a scheduler will round-robin through Q1, Q2, and Q3 until all of those jobs are out of the way, then the scheduler
will round-robin through Q4 and Q5 until there are no more jobs in them, and finally the scheduler will go through Q6.

When using the round-robin method with queues that have unique priorities, a scheduler runs all jobs from the first
queue, then runs all the jobs in the next queue, and so on.

To specify that PBS should use the round-robin method to select jobs, set the value of the round_robin scheduler param-
eter to True.

The round_robin parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.

You can use the round-robin method as a resource allocation tool. For example, if you need to run the same number of
jobs from each group, you can put each group's jobs in a different queue, and then use round-robin to run jobs, one from
each queue.

The round-robin method is also used in PBS for a feature that is not controlled by the round_robin scheduler attribute.
The SMP cluster distribution parameter, smp_cluster_dist, can use a round-robin method to place jobs. See section
4.9.43, “SMP Cluster Distribution”, on page 216.

See “round_robin” on page 257 of the PBS Professional Reference Guide.

4.9.38.1 Round-robin Caveats

• Each scheduling cycle starts with the highest-priority queue. Therefore, when using round-robin, this queue gets
preferential treatment.

• When set to True, the round_robin parameter overrides the by_queue parameter.

• If round robin and strict ordering are True, and backfilling is not being used, and the top job cannot run, whether
because of resources or rejection by MoM, no job runs. However, if round robin is True and strict ordering is False,
and the top job in the current queue cannot run, the next top job is considered instead. For example, we have 3
queues, each with 3 jobs, and with the same priority:

Q1: J1 J2 J3

Q2: J4 J5 J6

Q3: J7 J8 J9

If round_robin and strict_ordering are True, and J1 cannot run, no job runs.

If round_robin is True and strict_ordering is False, and J1 cannot run, job order is J4, J7, J2, J5, J8, J3, etc.

• With round_robin and strict_ordering set to True, a job continually rejected by a runjob hook may prevent other
jobs from being run. A well-written hook would put the job on hold or requeue the job with a start time at some later
time to allow other jobs in the same queue to be run.

4.9.39 Routing Jobs

Before reading this section, please read about the mechanics of configuring and using routing queues, in section 2.3.6,
“Routing Queues”, on page 27.

In this section, we use the term "routing" to mean the general process of moving a job somewhere, whether it is from one
queue to another, from one partition or complex to another, or from a queue to particular vnodes.
AG-204 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
Routing jobs can involve collecting jobs so they don't stray into the wrong queues, moving those jobs to the correct
queues, and filtering which jobs are allowed into queues.

You may need to collect jobs into a routing queue, before moving them to the correct destination queue. If you use a
routing queue, you can force users to submit jobs to the routing queue only, you can grab jobs as they are submitted and
put them in the routing queue, and you can set a routing queue as the default. The mechanisms to collect jobs are
described below, and listed here:

• Setting default queue; see section 4.9.39.1.i, “Default Queue as Mechanism to Collect Jobs”, on page 205

• Grabbing jobs upon submission; see section 4.9.39.1.ii, “Grabbing Jobs Upon Submission”, on page 206

• Disallowing direct submission to execution queues; see section 4.9.39.1.iii, “Disallowing Direct Submission as
Mechanism to Collect Jobs”, on page 206

• Disallowing submission using access controls; see section 4.9.39.3.ii, “Access Controls as Filtering Mechanism”, on
page 207

There is also a one-step process, but depending on the number of jobs being submitted, it may be too slow. You can also
simply examine them upon submission and send them where you want. The method is listed here:

• Examining jobs upon submission and routing them using a hook; see section 4.9.39.1.iv, “Examining Jobs Upon
Submission”, on page 206.

You can use any of several mechanisms for moving jobs. Each is described in subsections below. The mechanisms for
moving jobs are the following:

• Routing queues; see section 4.9.39.2.i, “Routing Queues as Mechanism to Move Jobs”, on page 206

• Hooks; see section 4.9.39.2.ii, “Hooks as Mechanism to Move Jobs”, on page 206

• Peer scheduling; see section 4.9.39.2.iii, “Peer Scheduling as Mechanism to Move Jobs”, on page 206

• The qmove command; see section 4.9.39.2.iv, “The qmove Command as Mechanism to Move Jobs”, on page 207

You can use filtering methods to control which jobs are allowed into destination queues. We describe filtering methods
in subsections below. The filtering mechanisms are the following:

• Resource limits; jobs are filtered by resource request. See section 4.9.39.3.i, “Resource Limits as Filtering Mecha-
nism”, on page 207

• Access control limits; jobs are filtered by owner. See section 4.9.39.3.ii, “Access Controls as Filtering Mechanism”,
on page 207

You can use a combination of moving a job and "tagging" it, that is, including a special custom resource in the job's
resource request, to route the job. If you set the resource using a hook, you can route the job either to a queue or to
vnodes. If you make the job inherit the resource from a queue, you can route it only to vnodes. You can set resource lim-
its for the special custom resource at the receiving queue, allowing in only jobs with the special resource. You can set the
special custom resource at vnodes, so that the job must run there. Mechanisms for tagging jobs are listed here:

• Using a hook to assign a resource; see section 4.9.39.4.i, “Using Hooks to Tag Jobs”, on page 207

• Associating vnodes with queues; see section 4.9.2, “Associating Vnodes with Queues”, on page 106

• Changing the job's resource request using the qalter command; see section 4.9.39.4.ii, “Using the qalter Com-
mand to Tag Jobs”, on page 208

4.9.39.1 Mechanisms for Collecting Jobs

4.9.39.1.i Default Queue as Mechanism to Collect Jobs

To make it easy on your users, have their jobs land in your routing queue by default. You probably don't want frustrated
users trying to submit jobs without specifying a queue, only to have the jobs be rejected if you have set access controls
on, or only allowed routing to, the default queue. The server's default_queue attribute specifies the name of the default
queue. To make things easy, make the default queue be the routing queue:

Qmgr: set server default_queue = <queue name>
PBS Professional 2022.1 Administrator’s Guide AG-205

Chapter 4 Scheduling
4.9.39.1.ii Grabbing Jobs Upon Submission

You can allow users to submit jobs to any queue, and then scoop up the newly-submitted jobs and put them in the desired
queue. To do this, you write a hook. See the PBS Professional Hooks Guide.

4.9.39.1.iii Disallowing Direct Submission as Mechanism to Collect Jobs

If you are using a routing queue, you can disallow job submission to all other queues. This forces users to submit jobs to
the routing queue. You should probably make the routing queue be the default queue in this case, to avoid irritating
users. Whether or not a queue allows direct job submission is controlled by its from_route_only attribute. To disallow
job submission to a queue:

Qmgr: set queue <queue name> from_route_only = True

4.9.39.1.iv Examining Jobs Upon Submission

You can use a job submission hook to examine each job as it is submitted, and then route it to the desired queue. For
example, you can route jobs directly according to resource request, project, owner, etc. See the PBS Professional Hooks
Guide.

4.9.39.2 Mechanisms for Moving Jobs

4.9.39.2.i Routing Queues as Mechanism to Move Jobs

Routing queues are a mechanism supplied by PBS that automatically move jobs from a routing queue to another queue.
You can direct which destination queues accept a job using these filters at each destination queue:

• Resource limits: you can set up execution queues designed for specific kinds of jobs, and then route each kind of job
separately. For example, you can create two execution queues, and one routing queue, and route all jobs requesting
large amounts of memory to one of the execution queues, and the rest of the jobs to the other queue. See section
2.3.6.4, “Using Resources to Route Jobs Between Queues”, on page 28.

• Access control limits: you can set up destination queues that are designed for specific groups of users. Each queue
accepts jobs only from a designated set of users or groups. For example, if you have three departments, Math, Phys-
ics, and Chemistry, the queue belonging to Math accepts only users from the Math department. See section 2.3.6.5,
“Using Access Control to Route Jobs”, on page 32.

When routing a job between complexes, the job's owner must be able to submit a job to the destination complex.

For how to configure and use routing queues, see section 2.3.6, “Routing Queues”, on page 27.

4.9.39.2.ii Hooks as Mechanism to Move Jobs

You can use a submission hook to move jobs into queues such as dedicated time queues, queues with special priority, or
reservation queues. You write the hook so that it identifies the jobs that should go into a particular queue, and then
moves them there. For example, your hook can move all jobs from ProjectA to a specific queue. This is a snippet, where
you would replace <destination queue> with the queue name.

import pbs

e = pbs.event()

e.job.queue = pbs.server().queue("<destination queue>")

For complete information on hooks, see the PBS Professional Hooks Guide.

4.9.39.2.iii Peer Scheduling as Mechanism to Move Jobs

To send jobs from one partition or complex to another, you use peer scheduling. In peer scheduling, the partition or com-
plex that supplies the jobs (the "furnishing" partition or complex) contains at least one special queue (the "furnishing
queue"), whose jobs can be pulled over to another partition or complex, to be run at the other partition or complex. The
partition or complex that pulls jobs contains a special queue (the "pulling queue"), where those pulled jobs land.
AG-206 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
You can use any of the job routing methods, such as routing queues, tagging, or hooks, to control which jobs land in the
furnishing queue.

You can use any of the job filtering methods, such as resource limits or access controls, to control which jobs land in the
furnishing queue.

You can use job submission hooks on the jobs that land in the pulling queue.

See section 4.9.31, “Peer Scheduling”, on page 163.

4.9.39.2.iv The qmove Command as Mechanism to Move Jobs

You can use the qmove command, either manually or via a cron job, to move jobs into the desired queues. See
“qmove” on page 175 of the PBS Professional Reference Guide.

4.9.39.3 Mechanisms for Filtering Jobs

4.9.39.3.i Resource Limits as Filtering Mechanism

You can filter whether each job is accepted at the server or a queue based on the job's resource request. For example, you
can control which jobs are allowed to be submitted to the server, by limiting the amount of memory a job is allowed to
request. You can do the same at execution queues. These limits apply regardless of the routing mechanism being used,
and apply to jobs being submitted directly to the queue. See section 5.13, “Using Resources to Restrict Server or Queue
Access”, on page 251.

4.9.39.3.ii Access Controls as Filtering Mechanism

You can filter jobs whether each job is accepted at the server or a queue based on the job's owner, or the job owner's
group. At each queue and at the server, you can create a different list of the users who can submit jobs and the users who
cannot submit jobs. You can do the same for groups.

For example, you can set up a routing queue and several execution queues, where each execution queue has access con-
trols allowing only certain users and groups. When PBS routes the jobs from the routing queue, it will route them into
the execution queues that accept owners of the jobs. See section 2.3.6.5, “Using Access Control to Route Jobs”, on page
32.

4.9.39.3.iii Hooks as Filtering Mechanism

You can filter which jobs are accepted at the server or queues according to any criterion, using a hook. For example, you
can write a hook that disallows jobs that request certain combinations of resources. See the PBS Professional Hooks
Guide.

4.9.39.4 Mechanisms for Tagging Jobs

4.9.39.4.i Using Hooks to Tag Jobs

You can use a hook to force certain jobs to run on particular hardware, by having the hook set the value of a host-level
custom resource in a job's resource request. The hook sets this resource to match the value at the selected vnodes, so that
the job must run on one or more of those vnodes. You can use the job's project to determine how the job is tagged. Note
that the value at other vnodes should be different, otherwise the job could end up on vnodes you don't want.

• Define a host-level custom resource; see section 5.14.4, “Configuring Host-level Custom Resources”, on page 265.

• Set this resource to a special value on the special vnodes only. See section 5.7.2, “Setting Values for Static
Resources”, on page 238.

• Create a hook that filters jobs by size, project, or other characteristic, and sets the value of the custom resource to the
special value, in the job's resource request. See the PBS Professional Hooks Guide
PBS Professional 2022.1 Administrator’s Guide AG-207

Chapter 4 Scheduling
If you must use a routing queue, and you need to route on host-level resources (resources in the job's select specification),
you can use a hook to tag jobs so that they are routed correctly. The hook reads the job's host-level resource request, and
sets the job's server-level resource request accordingly. This server-level resource is used for routing:

• Create a custom server-level resource that you use exclusively for routing; set it to appropriate values on the destina-
tion queues; see section 5.14.3, “Creating Server-level Custom Resources”, on page 263

• Create a submit hook to extract the host-level resource value and use it to populate the custom resource that you use
exclusively for routing; see the PBS Professional Hooks Guide

4.9.39.4.ii Using the qalter Command to Tag Jobs

You can change a job's resource request using the qalter command. This way you can override normal behavior. See
“qalter” on page 130 of the PBS Professional Reference Guide.

4.9.40 Scheduler Cycle Speedup

4.9.40.1 Top Job Calculation Speedup

When you are using backfilling, you can choose whether and how much you want to speed up the scheduling cycle
(within limits). You can get shorter scheduling cycle duration with coarser granularity in estimating start times for jobs.
When you are using backfilling, a scheduler calculates estimated start times for jobs. You can choose not to make this
trade-off (keeping fine granularity in start time estimation), or you can choose low, medium, or high speedup. See sec-
tion 4.9.3, “Using Backfilling”, on page 108.

4.9.40.1.i Configuring Top Job Calculation Speedup

You configure top job calculation speedup by using qmgr to set the opt_backfill_fuzzy scheduler attribute:

Qmgr: set sched opt_backfill_fuzzy [off | low | medium | high]

where each option has the following effect:

off
This scheduler uses its normal, finest granularity. No speedup.

low
This scheduler uses fairly fine granularity, not as fine as normal. Some speedup.

medium
This scheduler uses medium granularity. Medium speedup.

high
This scheduler uses the coarsest granularity. Greatest speedup.

The options off, low, medium, and high are not case-sensitive. You can use only one option at a time. Since this is an
attribute and not a scheduler parameter, it is not a primetime option.

4.9.40.1.ii What Changing Calculation Speed Affects

Changing this attribute takes effect on the next scheduling cycle. If you change this attribute, top jobs are recalculated in
the next scheduling cycle.

Once an ASAP reservation is made, it is fixed. If you change opt_backfill_fuzzy later, the reservation start time does
not change, even if it becomes degraded. PBS finds new vnodes for degraded reservations, but does not change the start
times.

4.9.40.1.iii Caveats and Restrictions for Top Job Calculation Speedup

This option is effective only when you are using backfilling.
AG-208 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.41 Shared vs. Exclusive Use of Resources by Jobs

When PBS places a job, it can do so on hardware that is either already in use or has no jobs running on it. PBS can make
the choice at the vnode level or at the host level. How this choice is made is controlled by a combination of the value of
each vnode's sharing attribute and the placement requested by a job.

You can set each vnode's sharing attribute so that the vnode or host is always shared, is always exclusive, or so that it
honors the job's placement request. If the vnode attribute is set to force_shared or force_excl, the value of a vnode's
sharing attribute takes precedence over a job's placement request. If the vnode attribute is set to default_, the job
request overrides the vnode attribute.

Each vnode can be allocated exclusively to one job (each job gets its own vnodes), or its resources can be shared among
jobs (PBS puts as many jobs as possible on a vnode). If a vnode is allocated exclusively to a job, all of its resources are
assigned to the job. The state of the vnode becomes job-exclusive. No other job can use the vnode.

Hosts can also be allocated exclusively to one job, or shared among jobs. If a host is to be allocated exclusively to one
job, all of the host must be used: if any vnode from a host has its sharing attribute set to either default_exclhost or
force_exclhost, all vnodes on that host must have the same value for the sharing attribute.

For a complete description of the sharing attribute, and a table showing the interaction between the value of the sharing
attribute and the job's placement request, see “sharing” on page 324 of the PBS Professional Reference Guide.

4.9.41.1 Sharing on a Multi-vnode Machine

On a multi-vnode shared-memory machine, a scheduler will share memory from a chunk even if all the CPUs are used by
other jobs. It will first try to put a chunk entirely on one vnode. If it can, it will run it there. If not, it will break the
chunk up across any vnode it can get resources from, even for small amounts of unused memory.

To keep a job in a single vnode, use -lplace=group=vnode; if you want to restrict it to larger sets of vnodes, identify
those sets using a custom string or string_array resource and use it in -lplace=group=<resource>. If you already have
resources used in node_group_key you can usually use these.

4.9.41.2 Setting the sharing Vnode Attribute

To set the sharing attribute for a vnode, use either:

• An exechost_startup hook; see "Setting and Unsetting Vnode Resources and Attributes" on page 49 in the PBS
Professional Hooks Guide

• A Version 2 configuration file; see section 3.4.4, “Configuring the Vnode Sharing Attribute”, on page 50

4.9.41.3 Viewing Sharing Information

You can use the qmgr or pbsnodes commands to view sharing information. See “qmgr” on page 152 of the PBS Pro-
fessional Reference Guide and “pbsnodes” on page 36 of the PBS Professional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-209

Chapter 4 Scheduling
4.9.41.4 Sharing Caveats

• The term "sharing" is also used to describe the case where MoM manages a resource that is shared among her
vnodes, for example an application license shared by the vnodes of a multi-vnode machine.

• The term "sharing" is also used to mean oversubscribing CPUs, where more than one job is run on one CPU; the jobs
are "sharing" a CPU. See section 8.6.5, “Managing Load Levels on Vnodes”, on page 414

• If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode from a host has its sharing
attribute set to either default_exclhost or force_exclhost, all vnodes on that host must have the same value for the
sharing attribute.

• For vnodes with sharing=default_shared, jobs can share a vnode, so that unused memory on partially-allocated
vnodes is allocated to a job. The exec_vnode attribute will show this allocation.

4.9.42 Using Shrink-to-fit Jobs

4.9.42.1 Shrink-to-fit Jobs

PBS allows you or the job submitter to adjust the running time of a job to fit into an available scheduling slot. The job's
minimum and maximum running time are specified in the min_walltime and max_walltime resources. PBS chooses the
actual walltime. Any job that requests min_walltime is a shrink-to-fit job.

4.9.42.1.i Requirements for a Shrink-to-fit Job

A job must have a value for min_walltime to be a shrink-to-fit job. Shrink-to-fit jobs are not required to request
max_walltime, but it is an error to request max_walltime and not min_walltime.

Jobs that do not have values for min_walltime are not shrink-to-fit jobs, and their walltime can be specified by the user,
inherited through defaults, or set in a hook.

4.9.42.1.ii Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

Shrink-to-fit jobs are treated the same as non-shrink-to-fit jobs unless explicitly stated. For example, job priority is not
affected by being shrink-to-fit. The only difference between a shrink-to-fit and a non-shrink-to-fit job is how the job's
walltime is treated. PBS sets the walltime at the time the job is run; any walltime settings not computed by PBS are
ignored.

4.9.42.2 Where to Use Shrink-to-fit Jobs

If you have jobs that can run for less than the expected time to completion and still make useful progress, you can use
them as shrink-to-fit jobs in order to maximize utilization.

You can use shrink-to-fit jobs for the following:

• Jobs that are internally checkpointed. This includes jobs which are part of a larger effort, where a job does as much
work as it can before it is killed, and the next job in that effort takes up where the previous job left off.

• Jobs using periodic PBS checkpointing

• Jobs whose real running time might be much less than the expected time

• When you have set up dedicated time for system maintenance, and you want to keep machines well-utilized right up
until shutdown, submitters who want to risk having a job killed before it finishes can run speculative shrink-to-fit
jobs. Similarly, speculative jobs can take advantage of the time just before a reservation starts

• Any job where the submitter does not mind running the job as a speculative attempt to finish some work
AG-210 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.42.3 Running Time of a Shrink-to-fit Job

4.9.42.3.i Setting Running Time Range for Shrink-to-fit Jobs

It is only required that the job request min_walltime to be a shrink-to-fit job. If a job requests min_walltime but does not
request max_walltime, you may want to use a hook or defaults to set a reasonable value for max_walltime. If you use
defaults, you may want to route shrink-to-fit jobs to a special queue where they inherit a value for max_walltime if they
haven't got one already. See section 4.9.39, “Routing Jobs”, on page 204.

Requesting max_walltime without requesting min_walltime is an error.

A job can end up with a value for min_walltime and max_walltime when the user specifies them, when it inherits them
from server or queue defaults, or when they are set in a hook.

Job submitters can set the job's running time range by requesting min_walltime and max_walltime, for example:

qsub -l min_walltime=<min walltime>, max_walltime=<max walltime> <job script>

You can set min_walltime or max_walltime using a hook, whether or not the job requests it. You can set up defaults so
that the job inherits these resources if they are not explicitly requested or set in a hook.

4.9.42.3.ii Inheriting Values for min_walltime and max_walltime

The min_walltime and max_walltime resources inherit values differently. A job can inherit a value for max_walltime
from resources_max.walltime; the same is not true for min_walltime. This is because once a job is shrink-to-fit, PBS
can use a walltime limit for max_walltime.

If a job is submitted without a value for min_walltime, the value for min_walltime for the job becomes the first of the fol-
lowing that exists:

• Server's default qsub arguments

• Queue's resources_default.min_walltime

• Server's resources_default.min_walltime

If a shrink-to-fit job is submitted without a value for max_walltime, the value for max_walltime for the job becomes the
first of the following that exists:

• Server's default qsub arguments

• Queue's resources_default.max_walltime

• Server's resources_default.max_walltime

• Queue's resources_max.walltime

• Server's resources_max.walltime

4.9.42.3.iii Setting walltime for Shrink-to-fit Jobs

For a shrink-to-fit job, PBS sets the walltime resource based on the values of min_walltime and max_walltime, regard-
less of whether walltime is specified for the job. You cannot use a hook to set the job's walltime, and any queue or server
defaults for walltime are ignored, except for the case where the job is run via qrun -H; see section 4.9.42.8.ii, “Using
qrun With -H Option”, on page 213.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length is between the job's
min_walltime and max_walltime. If the job can fit somewhere, PBS sets the job's walltime to a duration that fits the time
slot, and runs the job. The chosen value for walltime is visible in the job's Resource_List.walltime attribute. Any exist-
ing walltime value, regardless of where it comes from (user, queue default, hook, previous execution), is reset to the new
calculated running time.

If a shrink-to-fit job is run more than once, PBS recalculates the job's running time to fit an available time slot that is
between min_walltime and max_walltime, and resets the job's walltime, each time the job is run.
PBS Professional 2022.1 Administrator’s Guide AG-211

Chapter 4 Scheduling
4.9.42.4 How PBS Places Shrink-to-fit Jobs

A PBS scheduler treats shrink-to-fit jobs the same way as it treats non-shrink-to-fit jobs when it schedules them to run. A
scheduler looks at each job in order of priority, and tries to run it on available resources. If a shrink-to-fit job can be
shrunk to fit in an available slot, a scheduler runs it in its turn. A scheduler chooses a time slot that is at least as long as
the job's min_walltime value. A shrink-to-fit job may be placed in a time slot that is shorter than its max_walltime value,
even if a longer time slot is available.

For a multi-vnode job, PBS chooses a walltime that works for all of the chunks required by the job, and places job chunks
according to the placement specification.

4.9.42.5 Shrink-to-fit Jobs and Time Boundaries

The time boundaries that constrain job running time are the following:

• Reservations

• Dedicated time

• Primetime

• Start time for a top job

Time boundaries are not affected by shrink-to-fit jobs.

A shrink-to-fit job can shrink to avoid time boundaries, as long as the available time slot before the time boundary is
greater than min_walltime.

If any job is already running, whether or not it is shrink-to-fit, and you introduce a new period of dedicated time that
would impinge on the job's running time, PBS does not kill or otherwise take any action to prevent the job from hitting
the new boundary.

4.9.42.5.i Shrink-to-fit Jobs and Prime Time

If you have enabled prime time by setting backfill_prime to True, shrink-to-fit jobs will honor the boundary between
primetime and non-primetime. If prime_spill is True, shrink-to-fit jobs are scheduled so that they cross the prime-non-
prime boundary by up to prime_spill duration only. If prime_exempt_anytime_queues is set to True, a job submitted
in an anytime queue is not affected by primetime boundaries.

4.9.42.6 Shrink-to-fit Jobs and Resource Limits

4.9.42.6.i Shrink-to-fit Jobs and Gating at Server or Queue

Shrink-to-fit jobs must honor any resource limits at the server or queues. If a walltime limit is specified:

• Both min_walltime and max_walltime must be greater than or equal to resources_min.walltime.

• Both min_walltime and max_walltime must be less than or equal to resources_max.walltime.

If resource limits are not met, a job submission or modification request will fail with the following error:

"Job exceeds queue and/or server resource limits"

4.9.42.6.ii Gating Restrictions

You cannot set resources_min or resources_max for min_walltime or max_walltime. If you try, you will see the fol-
lowing error message, for example for min_walltime:

"Resource limits can not be set for min_walltime"

4.9.42.7 Shrink-to-fit Jobs and Preemption

When preempting other jobs, shrink-to-fit jobs do not shrink. Their walltime is set to their max_walltime.
AG-212 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.42.8 Using qrun on Shrink-to-fit Jobs

If you use qrun on a shrink-to-fit job, its behavior depends on whether you use the -H option to qrun.

4.9.42.8.i Using qrun Without -H Option

When a shrink-to-fit job is run via qrun, it can shrink into available space to run. However, if preemption is enabled and
there is a preemptable job that must be preempted in order to run the shrink-to-fit job, the preemptable job is preempted
and the shrink-to-fit job shrinks and runs.

When a shrink-to-fit job is run via qrun, and there is a hard deadline, e.g. reservation or dedicated time, that conflicts
with the shrink-to-fit job's max_walltime but not its min_walltime, the following happens:

• If preemption is enabled and there is a preemptable job before the hard deadline that must be preempted in order to
run the shrink-to-fit job, preemption behavior means that the shrink-to-fit job does not shrink to fit; instead, it con-
flicts with the deadline and does not run.

• If preemption is enabled and there is no preemptable job before the hard deadline, the shrink-to-fit job shrinks into
the available time and runs.

4.9.42.8.ii Using qrun With -H Option

When a shrink-to-fit job is run via qrun -H, the shrink-to-fit job runs, regardless of reservations, dedicated time, other
jobs, etc. When run via qrun -H, shrink-to-fit jobs do not shrink. If the shrink-to-fit job has a requested or inherited
value for walltime, that value is used, instead of one set by PBS when the job runs. If no walltime is specified, the job
runs without a walltime.

4.9.42.9 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs

4.9.42.9.i Modifying min_walltime and max_walltime

You can change min_walltime and/or max_walltime for a shrink-to-fit job using modifyjob or queuejob hooks, or by
using the qalter command. Any changes take effect after the current scheduling cycle. Changes affect only queued
jobs; running jobs are unaffected unless they are rerun.

4.9.42.9.ii Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs

You can convert a normal non-shrink-to-fit job into a shrink-to-fit job using the following methods:

• Use a hook that does the following:

• Sets max_walltime to the job's walltime

• Sets min_walltime to a useful value

• Use resources_default at the server or a queue. For a queue, you might want to set that queue's from_route_only
attribute to True.

• Route to a queue that has resources_default.min_walltime set.

• Use the qalter command to set values for min_walltime and max_walltime.

Any changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.
PBS Professional 2022.1 Administrator’s Guide AG-213

Chapter 4 Scheduling
4.9.42.9.iii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

To make a shrink-to-fit job into a normal, non-shrink-to-fit job, use either a hook or the qalter command to do the fol-
lowing:

• Set the job's walltime to the value for max_walltime (beware of allowing the job to run into existing reservations
etc.)

• Unset min_walltime

• Unset max_walltime

4.9.42.9.iv Hooks for Running Time Limits

If you want to set a new running time limit for shrink-to-fit jobs, you can use a hook. However, this hook must set the
value of max_walltime, rather than walltime, since hook settings for walltime for a shrink-to-fit job are ignored.

4.9.42.10 Viewing Running Time for a Shrink-to-fit Job

4.9.42.10.i Viewing min_walltime and max_walltime

You can use qstat -f to view the values of the min_walltime and max_walltime. For example:

% qsub -lmin_walltime=01:00:15, max_walltime=03:30:00 job.sh

<job ID>

% qstat -f <job ID>

...

resource_list.min_walltime=01:00:15

resource_list.max_walltime=03:30:00

You can use tracejob to display max_walltime and min_walltime as part of the job's resource list. For example:

12/16/2011 14:28:55 A user=pbsadmin group=Users project=_pbs_project_default

…

Resource_List.max_walltime=10:00:00

Resource_List.min_walltime=00:00:10

4.9.42.10.ii Viewing walltime for a Shrink-to-fit Job

PBS sets a job's walltime only when the job runs. While the job is running, you can see its walltime via qstat -f.
While the job is not running, you cannot see its real walltime; it may have a value set for walltime, but this value is
ignored.

You can see the walltime value for a finished shrink-to-fit job if you are preserving job history. See section 10.15, “Man-
aging Job History”, on page 479.

You can see the walltime value for a finished shrink-to-fit job in the scheduler log.

4.9.42.11 Lifecycle of a Shrink-to-fit Job

4.9.42.11.i Execution of Shrink-to-fit Jobs

Shrink-to-fit jobs are started just like non-shrink-to-fit jobs.

4.9.42.11.ii Termination of Shrink-to-fit Jobs

When a shrink-to-fit job exceeds the walltime PBS has set for it, it is killed by PBS exactly as a non-shrink-to-fit job is
killed when it exceeds its walltime.
AG-214 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.42.12 The min_walltime and max_walltime Resources

max_walltime
Maximum walltime allowed for a shrink-to-fit job. Job's actual walltime is between max_walltime and
min_walltime. PBS sets walltime for a shrink-to-fit job. If this resource is specified, min_walltime must also be
specified. Must be greater than or equal to min_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. If not specified, PBS uses an eternal time slot.
Can be requested only outside of a select statement. Non-consumable. Default: None. Type: duration. Python
type: pbs.duration

min_walltime
Minimum walltime allowed for a shrink-to-fit job. When this resource is specified, job is a shrink-to-fit job. If
this attribute is set, PBS sets the job's walltime. Job's actual walltime is between max_walltime and
min_walltime. Must be less than or equal to max_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. Can be requested only outside of a select state-
ment. Non-consumable. Default: None. Type: duration. Python type: pbs.duration

4.9.42.13 Accounting and Logging for Shrink-to-fit Jobs

4.9.42.13.i Accounting Log Entries for min_walltime and max_walltime

The accounting log will contain values for min_walltime and max_walltime, as part of the job's Resource_List attribute.
This attribute is recorded in the S, E, and R records in the accounting log. For example, if the following job is submitted:

qsub -l min_walltime="00:01:00",max_walltime="05:00:00" -l select=2:ncpus=1 job.sh

This is the resulting accounting record:

…S…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18 resources_assigned.ncpus=2

…R…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18

…E……. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18…….

4.9.42.13.ii Logging

• When a scheduler finds a primetime/dedicated time conflict with a shrink-to-fit job, and the job can be shrunk, the
following message is logged in the scheduler logs, with log level PBSEVENT_DEBUG2:
"Considering shrinking job to duration=<duration>, due to prime/dedicated time conflict"

Sample message from the scheduler log:

"03/26/2012 11:53:55;0040;pbs_sched;Job;98.host3;Considering shrinking job to duration=1:06:05,
due to a prime/dedicated time conflict"

This message doesn't indicate or guarantee that the job will eventually be shrunk and run. This message shows that
the job's maximum running time conflicted with primetime and the job can still be run by shrinking its running time.

• When a scheduler finds a reservation/top job conflict with a shrink-to-fit job, and the job can be shrunk, the follow-
ing message is logged in the scheduler logs, with log level PBSEVENT_DEBUG2:
"Considering shrinking job to duration=<duration>", due to reservation/top job conflict"
PBS Professional 2022.1 Administrator’s Guide AG-215

Chapter 4 Scheduling
Sample log message from the scheduler log:

 "03/26/2012 11:53:55;0040;pbs_sched;Job;98.host3; Considering shrinking job to
duration=1:06:05, due to reservation/top job conflict"

This message doesn't indicate or guarantee that the job will eventually be shrunk and run. This message shows that
the job's maximum running time conflicted with a reservation or top job and the job can still be run by shrinking its
running time.

• When a scheduler runs the shrink-to-fit job, the following message is logged in the scheduler logs with log level
PBSEVENT_DEBUG2:
"Job will run for duration=<duration>"

Sample scheduler log message:

 "03/26/2012 11:53:55;0040;pbs_sched;Job;98.host3;Job will run for duration=1:06:05"

4.9.42.14 Caveats and Restrictions for Shrink-to-fit Jobs

• It is erroneous to specify max_walltime for a job without specifying min_walltime. If a queuejob or modifyjob
hook attempts this, the following error appears in the server logs. If attempted via qsub or qalter, the following
error appears in the server log and is printed as well:
'Can not have "max_walltime" without "min_walltime"'

• It is erroneous to specify a min_walltime that is greater than max_walltime. If a queuejob or modifyjob hook
attempts this, the following error appears in the server logs. If attempted via qsub or qalter, the following error
appears in the server log and is printed as well:
'"min_walltime" can not be greater than "max_walltime"'

• Job arrays cannot be shrink-to-fit. You cannot have a shrink-to-fit job array. It is erroneous to specify a
min_walltime or max_walltime for a job array. If a queuejob or modifyjob hook attempts this, the following error
appears in the server logs. If attempted via qsub or qalter, the following error appears in the server log and is
printed as well:
'"min_walltime" and "max_walltime" are not valid resources for a job array'

• Reservations cannot be shrink-to-fit. You cannot have a shrink-to-fit reservation. It is erroneous to set min_walltime
or max_walltime for a reservation. If attempted via pbs_rsub, the following error is printed:
'"min_walltime" and "max_walltime" are not valid resources for reservation.'

• It is erroneous to set resources_max or resources_min for min_walltime and max_walltime. If attempted, the fol-
lowing error message is displayed, whichever is appropriate:
"Resource limits can not be set for min_walltime"

"Resource limits can not be set for max_walltime"

4.9.43 SMP Cluster Distribution

This tool is deprecated. PBS provides a method for distributing single-chunk jobs to a cluster of single-vnode machines
according to a simple set of rules. The method is called SMP cluster distribution. It takes into account the resources
specified on the resources: line in <sched_priv directory>/sched_config. The SMP cluster distribution
method allows you to choose one of three job distribution systems:

Table 4-18: SMP Cluster Distribution Options

Option Meaning

pack Pack all jobs onto one vnode, until that vnode is full, then move to the next vnode

round_robin Place one job on each vnode in turn, before cycling back to the first vnode
AG-216 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.43.1 How to Use SMP Cluster Distribution

To use SMP cluster distribution, do the following:

• Set the smp_cluster_dist scheduler parameter to the desired value. For example, to enable SMP cluster distribution
using the round robin algorithm during primetime, and the pack algorithm during non-primetime, set the following
in the scheduler's configuration file:
smp_cluster_dist: round_robin prime

smp_cluster_dist: pack non_prime

• Set resources_available.<resource name> to the desired limit on each vnode. You do not need to set any of the
resources that are automatically set by PBS. For a list of these, see section 5.7.1.1, “How Vnode Available Resource
Values are Set”, on page 236.

• Specify the resources to use during scheduling, in <sched_priv directory>/sched_config:
resources: "ncpus, mem, arch, host, ..."

The smp_cluster_dist parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.

4.9.43.2 How To Disable SMP Cluster Distribution

To ensure that SMP cluster distribution does not interfere with your scheduling policy, leave the smp_cluster_dist
parameter set to its default value:

smp_cluster_dist pack all

4.9.43.3 SMP Cluster Distribution Caveats and Advice

• This feature was intended for early implementations of complexes, and probably is not useful for you.

• If you use this feature, you are committed to using it for the entire partition or complex; you cannot designate some
machines where it will be used and others where it will not be used.

• If smp_cluster_dist with either round_robin is used with node_sort_key set to unused or assigned,
smp_cluster_dist is set to pack.

• The avoid_provision provisioning policy is incompatible with the smp_cluster_dist scheduler configuration param-
eter. If a job requests an AOE, the avoid_provision policy overrides the behavior of smp_cluster_dist.

• This feature is applied only to single-chunk jobs that specify an arrangement of pack. Multi-chunk jobs are ignored.

• This feature is useful only for single-vnode machines. On a multi-vnoded machine, this feature distributes jobs
across vnodes, but those jobs can end up all stuck on a single host.

• The choice of smp_cluster_dist with round_robin can be replaced by sorting vnodes according to unused CPUs,
which does a better job:
node_sort_key: "ncpus HIGH unused"

4.9.44 Using Soft Walltime

A scheduler requires walltime to do backfilling. Job submitters want to avoid having their jobs killed if they run over
their walltimes, so they may overestimate job walltimes. You can give a scheduler tighter time slots by giving jobs soft
walltimes. Jobs are not killed if they go over their soft walltimes. If a job has both a walltime and a soft walltime, a
scheduler uses the soft walltime.

When a job exceeds its soft walltime, PBS estimates a new soft walltime, and records the estimate in the job's esti-
mated.soft_walltime attribute. The estimated.soft_walltime job attribute is readable by all, but writable only by PBS.
PBS Professional 2022.1 Administrator’s Guide AG-217

Chapter 4 Scheduling
4.9.44.1 Assigning Soft Walltime to Jobs

You can set a soft walltime for a job by having it request the soft_walltime resource. You can set it in a server hook, or
by using qalter or resources_default.

The soft_walltime resource can be requested for a job only by PBS Managers. The soft_walltime resource cannot be set
at job submission time, except by a queuejob hook, because job submission uses user permissions. Soft walltime cannot
be set in MoM hooks.

You can create a custom resource and allow users to request it, and then set the value of soft_walltime to that resource.
See an example in section 4.9.44.4, “Allowing Job Submitters to Set Soft Walltime”, on page 219.

4.9.44.2 How Soft and Hard Walltimes Are Used

When a job is queued:

• If the job is a top job, its soft_walltime is used in determining where the job fits into the calendar

• If the job is a filler job, its soft_walltime is used in determining whether the job conflicts with top jobs

• If the job is a filler job, its hard walltime is used in determining whether the job conflicts with confirmed reserva-
tions

• If dedicated time is used, soft_walltime is used in determining whether the job will finish before dedicated time
starts

• If backfill_prime is set, soft_walltime is used in determining whether the job will finish before the next prime
boundary + prime_spill

When a job is running:

• If resources_used.walltime <= soft_walltime, the job continues to run

• If resources_used.walltime > soft_walltime, the job has exceeded its soft_walltime. The job is not killed; the
job's soft_walltime is extended:

• Every time the job exceeds its soft_walltime, it is extended by 100% of its original soft_walltime

• If both a soft_walltime and a hard walltime are set, the soft_walltime is never extended past the job's hard
walltime

• If a job exceeds its soft_walltime and crosses over into dedicated_time, PBS does not kill the job

• The value of Resource_List.soft_walltime does not change. A scheduler sets the estimated.soft_walltime
job attribute to the new soft_walltime estimate

• If a job is a preemption candidate, and preempt_order is based on the percentage the job has completed (e.g.,
preempt_order SCR 20 S), the initial soft_walltime request is used to determine the percentage of completion

• If the job runs past its initial soft_walltime request, preempt_order behaves as if the job is 100% complete. It
remains at 100% complete for the remainder of the job regardless of how many times the soft_walltime is
extended. For example, if a job has soft_walltime=1:00:00, at 59m, the job is at 99% complete. At 1:00:00, the
soft_walltime is extended to 2:00:00. At 1:30:00 the job remains at 100% complete since it has reached its
original soft_walltime request

When confirming reservations:

• Only a job's hard walltime is used in determining when jobs end

• A job's soft_walltime is not used when confirming reservations

4.9.44.3 Examples of Using Soft Walltime

Example 4-38: Job J has a soft_walltime=1:00:00 but no hard walltime

J exceeds its soft_walltime. J is extended by its original soft_walltime to 2:00:00.
AG-218 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
If J exceeds its soft_walltime again, J is extended again by its original soft_walltime to 3:00:00

Example 4-39: Job K has a soft_walltime=1:00:00 and a hard walltime=1:30:00

K exceeds its soft_walltime. Because 2:00:00 is past its hard walltime, K is extended to its limit of 1:30:00 instead.

4.9.44.4 Allowing Job Submitters to Set Soft Walltime

Example of hook to allow users to directly set soft_walltime:

import pbs

e = pbs.event()

j = e.job

j.Resource_List["soft_walltime"] = pbs.duration(j.Resource_List["set_soft_walltime"])

Job submitters request the new resource:

% qsub -l set_soft_walltime=1:00:00 -l select=1:ncpus=1

4.9.44.5 Caveats and Restrictions for Soft Walltime

• The soft_walltime resource is not sent to the MoM when the job is started.

• A shrink-to-fit job requesting soft_walltime is rejected, because a job's min_walltime is the minimum amount of
time a job needs to get any real work done. A job's hard walltime can be set to its min_walltime. A job's
soft_walltime has to be shorter than its hard walltime. This means that the soft_walltime would have to be shorter
than the job's minimum amount of time to get any real work done. The two features do not make sense together.

4.9.45 Sorting Jobs on a Key

PBS allows you to sort jobs on a key that you specify. This can be used when setting both execution and preemption pri-
ority. Sorting jobs comes into play after jobs have been divided into classes, because each class may contain more than
one job. You can sort on one or more of several different keys, and for each key, you can sort either from low to high or
from high to low.

You configure sorting jobs on a key by setting values for the job_sort_key scheduler parameter. When preemption is
enabled, jobs are automatically sorted by preemption priority. Table 4-8, “Job Execution Classes,” on page 136 shows
where this step takes place.

You can create an invisible, unrequestable custom resource, and use a hook to set the value of this resource for each job.
The hook modifies the job's resource request to include the new resource, and sets the value to whatever the hook com-
putes. Then you can sort jobs according to the value of this resource.

The job_sort_key parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.

4.9.45.1 job_sort_key Syntax

job_sort_key: "<sort key> HIGH | LOW <primetime option>"
PBS Professional 2022.1 Administrator’s Guide AG-219

Chapter 4 Scheduling
You can use the following keys for sorting jobs:

You can sort on up to 20 keys.

The argument to the job_sort_key parameter is a quoted string. The default for job_sort_key is that it is not in force.

See “job_sort_key” on page 253 of the PBS Professional Reference Guide.

4.9.45.2 Configuring Sorting Jobs on a Key

You can specify more than one sort key, where you want a primary sort key, a secondary sort key, etc.

If you specify more than one entry for job_sort_key, the first entry is the primary sort key, the second entry is the second-
ary sort key, which is used to sort equal-valued entries from the first sort, and so on.

Each entry is specified one to a line.

To sort jobs on a key, set the job_sort_key scheduler parameter:

• Set the desired key

• Specify whether high or low results should come first

• Specify the primetime behavior

A scheduler's configuration file is read on startup and HUP.

4.9.45.3 Examples of Sorting Jobs on Key

Example 4-40: Sort jobs so that those with long walltime come first:

job_sort_key: "walltime HIGH"

Example 4-41: For example, if you want big jobs to run first, where "big" means more CPUs, and if the CPUs are the
same, more memory, sort on the number of CPUs requested, then the amount of memory requested:

job_sort_key: "ncpus HIGH" all

job_sort_key: "mem HIGH" all

Example 4-42: Sort jobs so that those with lower memory come first:

job_sort_key: "mem LOW" prime

Example 4-43: Sort jobs according to the value of an invisible custom resource called JobOrder:

job_sort_key: "JobOrder LOW" all

Table 4-19: Keys for Sorting Jobs

Sort Key
Allowed
Order

Description

<PBS resource> HIGH | LOW Sorts jobs according to how much of the specified resource they request.

fairshare_perc HIGH | LOW Sorts according to fairshare percentage allotted to entity that owns job. This
percentage is defined in the resource_group file.

If user A has more priority than user B, all of user A's jobs are always run first.
Past history is not used.

job_priority HIGH | LOW Sorts jobs by the value of each job's priority attribute.

sort_priority HIGH | LOW Deprecated. Replaced by job_priority option.
AG-220 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.45.4 Caveats and Advice for Sorting Jobs on Key

• Do not use fairshare_perc as the sort key when using fairshare, meaning the fair_share scheduler parameter is
enabled. If you do this, a scheduler will attempt to sort a set of jobs where each job has the same sort key value.
This will not sort the jobs.

• Use the fairshare_perc option only when ordering jobs by entity shares. See section 4.9.14, “Sorting Jobs by Entity
Shares (Was Strict Priority)”, on page 132.

• To run big jobs first, use ncpus as the primary sort key for job_sort_key:
job_sort_key: "ncpus HIGH"

• The job_sort_key parameter is overridden by the job sorting formula and by fairshare. It is invalid to set both
job_sort_formula and job_sort_key at the same time. If they are both set, job_sort_key is ignored and the following
error message is logged:
"Job sorting formula and job_sort_key are incompatible. The job sorting formula will be used."

• A scheduler's configuration file contains an example line for job_sort_key. This line is commented out, but shows
an example of job_sort_key with "cput" as the sorting key.

• The preempt_priority argument to the job_sort_key parameter is deprecated. Jobs are now automatically sorted
by preemption priority when preemption is enabled.

4.9.46 Sorting Jobs by Requested Priority

You can sort jobs according to the priority that was requested for the job. This value is found in the job's Priority
attribute. You can use this value in the following ways:

• The term job_priority represents the value of the job's priority attribute in the job sorting formula. See section
4.9.21, “Using a Formula for Computing Job Execution Priority”, on page 150.

• The job_sort_key scheduler parameter can take the term job_priority as an argument. The term job_priority repre-
sents the value of the job's Priority attribute. See section 4.9.45, “Sorting Jobs on a Key”, on page 219.

You can use a hook to set or change the value of a job's Priority attribute. See the PBS Professional Hooks Guide.

4.9.47 Sorting Queues into Priority Order

PBS always sorts all the execution queues in your partition or complex according to their priority, and uses that ordering
when examining queues individually. Queues are ordered with the highest-priority queue first.

If you want queues to be considered in a specific order, you must assign a different priority to each queue. Give the
queue you want considered first the highest priority, then the next queue the next highest priority, and so on. To set a
queue's priority, use the qmgr command to assign a value to the priority queue attribute.

Qmgr: set queue <queue name> priority = <value>

Sorting queues into priority order is useful for the following:

• Examining queues one at a time. See section 4.9.4, “Examining Jobs Queue by Queue”, on page 112.

• Selecting jobs from queues in a round-robin fashion. See section 4.9.38, “Round Robin Queue Selection”, on page
203.

4.9.47.1 Caveats and Advice when Sorting Queues

• If you do not set queue priorities, queue ordering is undefined.

• The sort_queues parameter is obsolete (version 20).
PBS Professional 2022.1 Administrator’s Guide AG-221

Chapter 4 Scheduling
4.9.48 Using Strict Ordering

By default, when scheduling jobs, PBS orders jobs according to execution priority, then considers each job, highest-pri-
ority first, and runs the next job that can run now. Using strict ordering means that you tell PBS that it must not skip a job
when choosing which job to run. If the top job cannot run, no job runs.

Strict ordering does not change how execution priority is calculated.

4.9.48.1 Configuring Strict Ordering

To configure strict ordering, set the strict_ordering scheduler parameter to True.

The strict_ordering parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time. See “strict_ordering” on page 258 of the PBS Professional Ref-
erence Guide.

4.9.48.2 How Strict Ordering Works

When strict_ordering is True, a scheduler runs jobs in exactly the order of their priority.

Strict ordering does not affect how job priority is calculated, but it does change which execution priority classes a sched-
uler uses; see section 4.9.16, “Calculating Job Execution Priority”, on page 135.

4.9.48.3 Combining Strict Ordering and Backfilling

Strict ordering alone may cause some resources to stand idle while the top job waits for resources to become available. If
you want to prevent this, you can use backfilling with strict ordering. Using backfilling, if the top job cannot run, filler
jobs can be squeezed in around the job that cannot run. See section 4.9.3, “Using Backfilling”, on page 108.

4.9.48.4 Strict Ordering and Calendaring

If you mark a job's topjob_ineligible attribute True, PBS does not put that job in the calendar if it cannot run right now.
See section 4.9.17, “Calendaring Jobs”, on page 137.

4.9.48.5 Strict Ordering Caveats

• It is inadvisable to use strict ordering and backfilling with fairshare. The results may be non-intuitive. Fairshare will
cause relative job priorities to change with each scheduling cycle. It is possible that a job from the same entity or
group as the desired large job will be chosen as the filler job. The usage from these filler jobs will lower the priority
of the top job.

For example, if a user has a large job that is the top job, and that job cannot run, smaller jobs owned by that user will
chew up the user's usage, and prevent the large job from being likely to ever run. Also, if the small jobs are owned
by a user in one area of the fairshare tree, no large jobs owned by anyone else in that section of the fairshare tree are
likely to be able to run.

• Using dynamic resources with strict ordering and backfilling may result in unpredictable scheduling. See section
4.9.3.10, “Backfilling Recommendations and Caveats”, on page 111.

• Using preemption with strict ordering and backfilling may change which job is the top job.

• With both round robin and strict ordering, a job continually rejected by a runjob hook may prevent other jobs from
being run. A well-written hook would put the job on hold or requeue the job at some later time to allow other jobs in
the same queue to be run.
AG-222 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
4.9.49 Sorting Vnodes on a Key

PBS can sort vnodes according to a key that you specify. This can be used when deciding which vnodes to use for jobs.
Sorting vnodes comes into play after a placement set has been selected, or when a job will run on vnodes associated with
a queue, or when placement sets are not used, because in those cases there may be more vnodes available than are
needed. You can sort vnodes on one or more different keys, and for each key, you can sort from high to low, or the
reverse.

You can sort on the last_used_time and Priority vnode attributes, and vnode resources.

The default way to sort vnodes is according to the value of the vnode priority attribute, from higher to lower.

When you sort vnodes according to the assigned or unused amount of a resource, the vnode list is re-sorted after every
job is run. This is because each job may change the usage for that resource.

You configure sorting vnodes on a key by setting values for the node_sort_key scheduler parameter.

The node_sort_key parameter is a primetime option, meaning that you can configure it separately for primetime and
non-primetime, or you can specify it for all of the time.

When vnodes are not sorted on a key, their order is undefined.

4.9.49.1 node_sort_key Syntax

node_sort_key: "sort_priority HIGH | LOW" <prime option>

node_sort_key: "<resource name> HIGH | LOW' <prime option>

node_sort_key: "<resource name> HIGH | LOW total | assigned | unused" <prime option>

where

total

Use the resources_available value

assigned

Use the resources_assigned value

unused

Use the value given by resources_available - resources_assigned

Specifying a resource such as mem or ncpus sorts vnodes by the resource specified. Note that a scheduler rounds all
resources of type size, including mem , up to the nearest kb.

Specifying the sort_priority keyword sorts vnodes on the vnode priority attribute.

The default third argument for a resource is total. If the third argument, total | assigned | unused, is not specified with a
resource, total is used. This provides backwards compatibility with previous releases.

The values used for sorting must be numerical.

4.9.49.2 Configuring Sorting Vnodes on a Key

You can specify up to 20 sort keys, where you want a primary sort key, a secondary sort key, etc.

If you specify more than one entry for node_sort_key, the first entry is the primary sort key, the second entry is the sec-
ondary sort key, which is used to sort equal-valued entries from the first sort, and so on.

Each entry is specified one to a line.
PBS Professional 2022.1 Administrator’s Guide AG-223

Chapter 4 Scheduling
To sort jobs on a key, set the node_sort_key scheduler parameter:

• Set the desired key

• Specify whether high or low results should come first

• For sorting on a resource, optionally specify total, assigned, or unused

• Specify the primetime behavior

A scheduler's configuration file is read on startup and HUP.

The argument to the node_sort_key parameter is a quoted string. The default for node_sort_key is the following:

node_sort_key: "sort_priority HIGH" all

See “node_sort_key” on page 254 of the PBS Professional Reference Guide.

4.9.49.3 Sorting Vnodes According to Load Average

To place jobs on the vnodes with the lowest load:

• Create a custom host-level resource to reflect current load, named for example "aveload":
qmgr -c "create resource aveload type=float,flag=h"

• Write an exechost_periodic hook to set the resource to the value of the load average; see “Log loads on vnodes” on
page 308 in the PBS Professional Installation & Upgrade Guide for an example of an exechost_periodic hook that
reads the load on the host.

• Use the aveload resource as your node_sort_key:
node_sort_key: "aveload LOW" all

4.9.49.4 Examples of Sorting Vnodes

Example 4-44: This sorts vnodes by the highest number of unused CPUs:

node_sort_key: "ncpus HIGH unused" all

Example 4-45: This sorts vnodes by the highest amount of memory assigned to vnodes, but only during primetime:

node_sort_key: "mem HIGH assigned" prime

Example 4-46: This sorts vnodes according to speed. You want to run jobs on the fastest host available. You have 3
machines, where HostA is fast, HostB is medium speed, and HostC is slow.

Set node priorities so that faster machines have higher priority:

Qmgr: set node HostA priority = 200
Qmgr: set node HostB priority = 150
Qmgr: set node HostC priority = 100

Specify that vnodes are sorted according to priority, with highest priority first:

node_sort_key: "sort_priority HIGH" ALL

Example 4-47: The old "nodepack" behavior can be achieved by this:

node_sort_key: "ncpus low unused"

Example 4-48: In this example of the interactions between placement sets and node_sort_key, we have 8 vnodes num-
bered 1-8. The vnode priorities are the same as their numbers. However, in this example, when unsorted, the vnodes
are selected in the order 4, 1, 3, 2, 8, 7, 5, 6. This is to illustrate the change in behavior due to node_sort_key.

We use:

node_sort_key: "sort_priority LOW"

Using node_sort_key, the vnodes are sorted in order, 1 to 8. We have three placement sets:
AG-224 PBS Professional 2022.1 Administrator’s Guide

Scheduling Chapter 4
A: 1, 2, 3, 4 when sorted by node_sort_key; 4, 1, 3, 2 when no node_sort_key is used

B: 5, 6, 7, 8 when sorted by node_sort_key; 8, 7, 5, 6 when no node_sort_key is used

C: 1-8 when sorted, 4, 1, 3, 2, 8, 7, 5, 6 when not sorted.

A 6-vnode job will not fit in either A or B, but will fit in C. Without the use of node_sort_key, it would get vnodes
4, 1, 3, 2, 8, 7. With node_sort_key, it would get vnodes 1 - 6, still in placement set C.

4.9.49.5 Caveats for Sorting Vnodes

• Sorting on a resource and using "unused" or "assigned" cannot be used with smp_cluster_dist when it is set to
anything but "pack". If both are used, smp_cluster_dist will be set to "pack".

• A scheduler rounds all resources of type size, including mem, up to the nearest kb. This can affect how vnodes are
sorted when you are sorting on mem.
PBS Professional 2022.1 Administrator’s Guide AG-225

Chapter 4 Scheduling
AG-226 PBS Professional 2022.1 Administrator’s Guide

5

Using PBS Resources

This chapter covers PBS resources, including providing resources for user jobs, setting up resources such as application
licenses and scratch space, how to make objects inherit resources, and how to use, define, and view resources.

5.1 Chapter Contents

5.1 Chapter Contents . 227
5.2 Introduction to PBS Resources . 228
5.3 Glossary. 228
5.4 Categories of Resources . 230

5.4.1 Built-in vs. Custom Resources . 231
5.4.2 Server vs. Queue vs. Vnode Resources . 231
5.4.3 Consumable vs. Non-consumable Resources. 231
5.4.4 Static vs. Dynamic Resources . 232
5.4.5 Requested vs. Default Resources . 232
5.4.6 Shared vs. Non-shared Vnode Resources. 233
5.4.7 Platform-specific vs. Generally Available Resources . 233
5.4.8 Job-wide vs. Chunk Resources. 233

5.5 Resource Types . 234
5.6 Resource Formats . 234

5.6.1 Resource Names . 235
5.7 Setting Values for Resources . 236

5.7.1 How Resource Values are Set . 236
5.7.2 Setting Values for Static Resources . 238
5.7.3 Setting Values for String Arrays . 238
5.7.4 When Resource Changes Take Effect . 238
5.7.5 Caveats for Setting Resource Values . 239

5.8 Overview of Ways Resources Are Used . 239
5.8.1 How the Scheduler Uses Resources . 240
5.8.2 Advice on Using string and string_array Resources . 240

5.9 Resources Allocated to Jobs and Reservations . 240
5.9.1 Allocating Chunks . 241
5.9.2 Resources Requested by Job. 241
5.9.3 Specifying Job Default Resources . 241
5.9.4 Allocating Default Resources to Jobs. 244
5.9.5 Dynamic Resource Allocation Caveats . 247
5.9.6 Period When Resource is Used by Job. 247

5.10 Using Resources to Track and Control Allocation . 249
5.11 Using Resources for Topology and Job Placement. 250

5.11.1 Restrictions on Using Resources for Job Placement . 250
5.12 Using Resources to Prioritize Jobs . 251
5.13 Using Resources to Restrict Server or Queue Access. 251

5.13.1 Admittance Limits for walltime, min_walltime, and max_walltime . 251
5.13.2 Restrictions on Resources Used for Admittance . 252

5.14 Custom Resources . 252
5.14.1 How to Use Custom Resources . 252
PBS Professional 2022.1 Administrator’s Guide AG-227

Chapter 5 Using PBS Resources
5.14.2 Defining New Custom Resources. 254
5.14.3 Creating Server-level Custom Resources . 263
5.14.4 Configuring Host-level Custom Resources . 265
5.14.5 Using Scratch Space . 269
5.14.6 Supplying Application Licenses. 270
5.14.7 Using GPUs . 279
5.14.8 Using FPGAs . 282
5.14.9 Defining Host-level Resource for Applications . 282
5.14.10 Custom Resource Caveats . 282

5.15 Managing Resource Usage . 283
5.15.1 Managing Resource Usage By Users, Groups, and Projects, at Server & Queues 283
5.15.2 Placing Resource Limits on Jobs . 300
5.15.3 Limiting the Number of Jobs in Queues. 305

5.16 Where Resource Information Is Kept . 305
5.16.1 Files . 305
5.16.2 MoM Configuration Parameters. 306
5.16.3 Attributes . 306

5.17 Viewing Resource Information . 307
5.17.1 Resource Information in Accounting Logs . 308
5.17.2 Resource Information in Daemon Logs . 308
5.17.3 Finding Current Value . 309
5.17.4 Restrictions on Viewing Resources . 309

5.18 Resource Recommendations and Caveats . 309

5.2 Introduction to PBS Resources

PBS resources represent things such as CPUs, memory, application licenses, switches, scratch space, and time. They can
also represent whether or not something is true, for example, whether a machine is dedicated to a particular project. PBS
provides a set of built-in resources, and allows you to define additional custom resources. For some systems, PBS cre-
ates specific custom resources. The scheduler matches requested resources with available resources, according to rules
defined by the administrator. PBS can enforce limits on resource usage by jobs. The administrator can specify which
resources are available at the server, each queue, and each vnode.

5.3 Glossary

Reservation

A reservation for a specific set of resources for a specified start time and duration in the future. See section
4.9.37, “Reservations”, on page 195.

Borrowing vnode

A shared vnode resource is available for use by jobs at more than one vnode, but is managed at just one vnode.
A borrowing vnode is a vnode where a shared vnode resource is available, but not managed.

Built-in resource

A resource that is defined in PBS Professional as shipped. Examples of built-in resources are ncpus, which
tracks the number of CPUs, and mem, which tracks memory. See section 5.4.1, “Built-in vs. Custom
Resources”, on page 231.
AG-228 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process.

Consumable resource

A consumable resource is a resource that is reduced or taken up by being used. Examples of consumable
resources are memory or CPUs. See section 5.4.3, “Consumable vs. Non-consumable Resources”, on page 231.

CPU

Has two meanings, one from a hardware viewpoint, and one from a software viewpoint:

1. A core. The part of a processor that carries out computational tasks. Some systems present virtual cores,
for example in hyperthreading.

2. Resource required to execute a program thread. PBS schedules jobs according, in part, to the number of
threads, giving each thread a core on which to execute. The resource used by PBS to track CPUs is called
"ncpus". The number of CPUs available for use defaults to the number of cores reported by the OS. When
a job requests one CPU, it is requesting one core on which to run.

Custom resource

A resource that is not defined in PBS as shipped. Custom resources are created by the PBS administrator or by
PBS for some systems. See section 5.4.1, “Built-in vs. Custom Resources”, on page 231 and section 5.14,
“Custom Resources”, on page 252.

Dynamic resource

A custom resource that tracks an external quantity. PBS updates the tracking value via a script or an
exechost_periodic hook. See section 5.14.1.2, “Dynamic Custom Resources”, on page 253.

Floating license

A unit of license dynamically allocated (checked out) when a user begins using an application on some host
(when the job starts), and deallocated (checked in) when a user finishes using the application (when the job
ends).

Generic group limit

A limit that applies separately to groups at the server or a queue. This is the limit for groups which have no indi-
vidual limit specified. A limit for generic groups is applied to the usage across the entire group. A separate
limit can be specified at the server and each queue.

Generic user limit

A limit that applies separately to users at the server or a queue. This is the limit for users who have no individ-
ual limit specified. A separate limit for generic users can be specified at the server and at each queue.

Group limit

Refers to configurable limits on resources and jobs. This is a limit applied to the total used by a group, whether
the limit is a generic group limit or an individual group limit.

Indirect resource

A shared vnode resource at vnode(s) where the resource is not defined, but which share the resource.

Individual group limit

Applies separately to groups at the server or a queue. This is the limit for a group which has its own individual
limit specified. An individual group limit overrides the generic group limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire group. A separate limit can be
specified at the server and each queue.
PBS Professional 2022.1 Administrator’s Guide AG-229

Chapter 5 Using PBS Resources
Individual user limit

Applies separately to users at the server or a queue. This is the limit for users who have their own individual
limit specified. A limit for an individual user overrides the generic user limit, but only in the same context, for
example, at a particular queue. A separate limit can be specified at the server and each queue.

Limit

A maximum that can be applied in various situations:

• The maximum number of jobs that can be queued

• The maximum number of jobs that can be running

• The maximum number of jobs that can be queued and running

• The maximum amount of a resource that can be allocated to queued jobs

• The maximum amount of a resource that can be consumed at any time by running jobs

• The maximum amount of a resource that can be allocated to queued and running jobs

Managing vnode

The vnode where a shared vnode resource is defined, and which manages the resource.

Memory-only vnode

Represents a node board that has only memory resources (no CPUs).

Non-consumable resource

A non-consumable resource is a resource that is not reduced or taken up by being used. Examples of non-con-
sumable resources are Boolean resources and walltime. See section 5.4.3, “Consumable vs. Non-consumable
Resources”, on page 231.

Overall limit

Limit on the total usage. In the context of server limits, this is the limit for usage at the PBS complex. In the
context of queue limits, this is the limit for usage at the queue. An overall limit is applied to the total usage at
the specified location. Separate overall limits can be specified at the server and each queue.

Resource

A resource can be something used by a job, such as CPUs, memory, high-speed switches, scratch space,
licenses, or time, or it can be an arbitrary item defined for another purpose. PBS provides built-in resources,
and allows custom-defined resources.

Shared resource

A vnode resource defined and managed at one vnode, but available for use at other vnodes.

User limit

Refers to configurable limits on resources and jobs. A user's limit, whether generic or individual.

5.4 Categories of Resources

A PBS resource has several defining characteristics describing where and how it is used, how it was defined, etc. Each
characteristic puts it in one of a set of categories. A resource inhabits several categories at once; for example, a resource
can be a custom static consumable server resource. We describe the sets of categories below.
AG-230 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.4.1 Built-in vs. Custom Resources

Built-in resources are the resources that are already defined for you in PBS. PBS supplies built-in resources including
number of CPUs, CPU time, and memory. For a list of built-in resources, see “Resources Built Into PBS” on page 265 of
the PBS Professional Reference Guide. Custom resources are those that you define, or that PBS creates for some sys-
tems. For example, if you wanted a resource to represent scratch space, you could define a resource called Scratch, and
specify a script which queries for the amount of available scratch space. See section 5.14, “Custom Resources”, on page
252.

5.4.2 Server vs. Queue vs. Vnode Resources

PBS resources can be available at the server, queues, both the server and queues, or at vnodes. Any of these resources
can be static or dynamic, built-in or custom, and consumable or non-consumable.

5.4.2.1 Server Resources

A server resource, also called a server-level resource, is a resource that is available at the server. A server resource is
available to be consumed or matched at the server if you set the server's resources_available.<resource name>
attribute to the available or matching value. For example, you can define a custom resource called FloatingLicenses
and set the server's resources_available.FloatingLicenses attribute to the number of available floating licenses.

A server resource is a job-wide resource. This means that a job can request this resource for the entire job, but not for
individual chunks.

An example of a job-wide resource is shared scratch space, or any custom resource that is defined at the server and queue
level.

5.4.2.2 Queue Resources

A queue resource, also called a queue-level resource, is available to be consumed or matched by jobs in the queue if you
set the queue's resources_available.<resource name> attribute to the available or matching value.

A queue resource is a job-wide resource. A job can request a queue resource for the entire job, but not for individual
chunks.

An example of a job-wide resource is floating licenses, or any custom resource that is defined at both server and queue
level.

5.4.2.3 Resources Defined at Both Server and Queue

Custom resources can be defined to be available either at vnodes or at both the server and queues. Consumable custom
resources that are defined at the server and queue level have their consumption monitored at the server and queue level.
In our example, if a job requests one FloatingLicenses, then the value of the resources_assigned.FloatingLicenses
attribute is incremented by one at both the server and the queue in which the job resides.

5.4.2.4 Vnode Resources

A vnode resource, also called a vnode-level or host-level resource, is available only at vnodes. A vnode resource is a
chunk-level resource, meaning that it can be requested for a job only inside of a chunk.

5.4.3 Consumable vs. Non-consumable Resources

A consumable resource is one that is reduced by being used. Consumable resources include ncpus, mem and vmem by
default, and any custom resource defined with the -n or -f flags.
PBS Professional 2022.1 Administrator’s Guide AG-231

Chapter 5 Using PBS Resources
A non-consumable resource is not reduced through use, meaning that allocation to one job does not affect allocation to
other jobs. The scheduler matches jobs to non-consumable resources. Examples of non-consumable resources are wall-
time, file, cput, pcput, pmem, pvmem, nice, or Boolean resources.

The following table shows which resource types are consumable:

5.4.4 Static vs. Dynamic Resources

Static resources are managed by PBS and have values that are fixed until you change them or until you change the hard-
ware and MoM reports a new value for memory or number of CPUs.

Dynamic resources are not under the control of PBS, meaning that they can change independently of PBS. Dynamic
resources are reported via a script; PBS runs a query to discover the available amount. Server dynamic resources use a
script that runs at the server host. Host-level dynamic resources are updated via an exechost_periodic hook.

Static and dynamic resources can be available at the server or host level.

The default timeout for a server dynamic resource script is 30 seconds. You can specify a timeout for server dynamic
resources in each scheduler's server_dyn_res_alarm attribute. If the script does not finish before the timeout, the
scheduler uses a value of zero for the dynamic server resource. If you set the timeout to zero, the scheduler does not
place a time limit on the script.

5.4.4.1 Dynamic Resource Caveats

• Dynamic resource values are displayed in qstat, but the value displayed is the last value retrieved, not the current
value. Dynamic resources have no resources_available.<resource name> representation anywhere in PBS.

• Dynamic resources can take longer to discover because PBS runs a script to determine each one.

5.4.5 Requested vs. Default Resources

A job's requested resources are the resources explicitly requested by the job. Default resources are resources that you
specify that each job should have if not requested. For example, you can specify that any job that does not request wall-
time gets 12 hours of walltime. For jobs that do request walltime, the default of 12 hours is not applied.

For information on default resources, see section 5.9.3, “Specifying Job Default Resources”, on page 241 and section
5.9.4, “Allocating Default Resources to Jobs”, on page 244.

Table 5-1: Consumable and Non-consumable Resources

Resource Type Consumable vs. Non-consumable

Boolean Non-consumable

duration Non-consumable

float Consumable

long Consumable

Size Consumable

string Non-consumable

string_array Non-consumable
AG-232 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.4.6 Shared vs. Non-shared Vnode Resources

5.4.6.1 Non-shared Vnode Resources

Most vnode resources are not shared. When a resource is defined at one vnode for use by jobs only at that vnode, the
resource is not shared. For example, when resources_available.ncpus is set to 4 on a single-vnode machine, and no
other vnodes have resources_available.ncpus defined as a pointer to this resource, this resource is not shared.

5.4.6.2 Shared Vnode Resources

When more than one vnode needs access to the same actual resource, that resource can be shared among those vnodes.
The resource is defined at one vnode, and the other vnodes that supply the resource contain a pointer to that vnode. Any
of the vnodes can supply that resource to a job, but only up to the amount where the total being used by jobs is less than
or equal to the total available at the vnode where the resource is defined. For example, if you had a 4-vnode machine
which had 8GB of memory, and wanted any single vnode to be able to supply up to 8GB to jobs, you would make the
memory a shared resource. See section 5.14.4.3, “Shared Host-level Resources”, on page 266.

5.4.7 Platform-specific vs. Generally Available Resources

Most PBS built-in resources are available on, and apply to, all supported platforms. However, PBS provides some
resources specifically designed for a given platform. These platform-specific resources are not applicable to any other
platform, and cannot be used on platforms other than the one(s) for which they are designed.

5.4.8 Job-wide vs. Chunk Resources

5.4.8.1 Job-wide Resources

A job-wide resource applies to the entire job, and is available at the server or queue, but not at the host level. Job-wide
resources are requested outside of a select statement, using this form:

-l <resource name>=<value>

For example, to request one hour of walltime for a job:

-l walltime=1:00:00

Examples of job-wide resources are walltime, scratch space, and licenses.

5.4.8.2 Chunk Resources

A chunk resource applies to the part of the job running on that chunk, and is available at the host level. Chunk resources
are requested inside a select statement. A single chunk is requested using this form:

-l select=<resource name>=<value>:<resource name>=<value>

For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[number of chunks]<chunk specification>

For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb
PBS Professional 2022.1 Administrator’s Guide AG-233

Chapter 5 Using PBS Resources
To request different chunks, concatenate the chunks using the plus sign ("+"):

-l select=[number of chunks]<chunk specification>+[number of chunks]<chunk specification>

For example, to request two kinds of chunks, one with 2 CPUs per chunk, and one with 8 CPUs per chunk, both kinds
with 4GB of memory:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB

5.5 Resource Types

PBS supplies the following types of resources:

Boolean

Duration

Float

Long

Size

String

String Array

5.6 Resource Formats

Custom resources follow the same rules as built-in resources: custom resource names must be PBS NAMEs, allowable
values for float and long resources are the same as for built-in resources, and custom Boolean, time, size, string or string
array resources must have the same format as built-in resources.

Boolean

Name of Boolean resource is a string.

Values:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0

Duration

A period of time, expressed either as

An integer whose units are seconds
or

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[[HH]HH:]MM:]SS[.milliseconds]
Milliseconds are rounded to the nearest second.

Float

Floating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

Long

Long integer. Allowable values: 0-9 [[0-9] ...], and + and -
AG-234 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
<queue name>@<server name>

Size

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

String

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

String Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

5.6.1 Resource Names

Resource names are case-sensitive PBS NAMEs. Resource names can be 64 characters in length.

"PBS NAME" is a generic term, used to describe various PBS entities. For example, attribute names are PBS
NAMEs.

Must start with an alphabetic character, and may contain only the following: alpha-numeric, underscore ("_"), or
dash ("-").

Do not use PBS keywords as PBS NAMEs.

Table 5-2: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes
PBS Professional 2022.1 Administrator’s Guide AG-235

Chapter 5 Using PBS Resources
5.7 Setting Values for Resources

5.7.1 How Resource Values are Set

PBS automatically collects information about some resources such as ncpus and mem and sets their initial values
accordingly. If you explicitly set the value for a resource, that value is carried forth across server restarts.

Since the value for each dynamic resource is set by PBS to the value returned by a script or command, it makes sense set
values for static resources only.

Resources that are not explicitly set can inherit their values from defaults. Jobs can inherit default resources; see section
5.9.4, “Allocating Default Resources to Jobs”, on page 244.

You set values for custom and built-in resources using the same methods. You can set resource values using the follow-
ing methods:

• Using qmgr:

To set the available amount of a non-string_array resource, use the qmgr command, either from the command line
or within qmgr:

qmgr -c "set <object> ressources_available.<resource name> = <value>"

Qmgr: set <object> resources_available.<resource name> = <value>

To set or change the available amount of a string_array resource, use the qmgr command, either from the command
line or within qmgr:

qmgr -c "set <object> resources_available.<resource name> = <value>"

qmgr -c 'set <object> resources_available.<resource name> = "<value,value>"'

qmgr -c 'set <object> resources_available.<resource name> += <value>'

qmgr -c 'set <object> resources_available.<resource name> -= <value>'

Qmgr: set <object> resources_available.<resource name> = <value>

Qmgr: set <object> resources_available.<resource name> = '<value,value>'

Qmgr: set <object> resources_available.<resource name> += <value>

Qmgr: set <object> resources_available.<resource name> -= <value>

To unset the value of an attribute:

qmgr -c "unset <object> resources_available.<resource name>"

Qmgr: unset <object> resources_available.<resource name>

where <object> is one of server, queue, hook, node, or sched.

For example, to set resources_max.walltime at the server to be 24 hours:

Qmgr: set server resources_max.walltime = 24:00:00

See “qmgr” on page 152.

• Using a Version 2 configuration file; see section 3.4.3, “Version 2 Vnode Configuration Files”, on page 46.

• Setting the value in a hook; see "Using Attributes and Resources in Hooks" on page 45 in the PBS Professional
Hooks Guide.

5.7.1.1 How Vnode Available Resource Values are Set

PBS stores values for the resources available at a vnode in that vnode's resources_available.<resource name>
attribute.
AG-236 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.7.1.1.i Vnode Resources Set by PBS

PBS automatically sets the value for certain resources available at each vnode, meaning that PBS sets the value for the
vnode's resources_available.<resource name> attribute. For example, PBS automatically sets the value of
resources_available.ncpus at each vnode. The following table lists the vnode resources that are set automatically by
PBS.

5.7.1.1.ii Setting Vnode Resources Manually

You can set values for available vnode resources:

• You can set values for a vnode's resources_available in a hook. See "Setting and Unsetting Vnode Resources and
Attributes" on page 49 in the PBS Professional Hooks Guide. If you set a vnode resource in a hook, MoM will no
longer update the resource.

• You can set values for a vnode's resources_available attribute in a Version 2 configuration file; see section 3.4.3,
“Version 2 Vnode Configuration Files”, on page 46.

• You can set most values for a vnode's resources_available attribute using qmgr, but not for
resources_available.host; see “Operating on Attributes and Resources” on page 161 of the PBS Professional Ref-
erence Guide.

5.7.1.2 Setting Server and Queue Resource Values

You can set resources, such as default and available resources, for queues and for the server, using qmgr:

Qmgr: set queue <queue name> resources_default<resource name> = <value>
Qmgr: set queue <queue name> resources_available.<resource name> = <value>
Qmgr: set server resources_available.<resource name> = <value>

5.7.1.3 Setting Job Resources

5.7.1.3.i Setting Requested Resource Values

Job resources, stored in the Resource_List job attribute, can be set initially at submission in the job request. You can
augment or change these values. You can set values for a job's Resource_List attribute using hooks. See "Setting Job
Resources in Hooks" on page 50 in the PBS Professional Hooks Guide.

Table 5-3: Resources Set by PBS

Resource Name Initial Value Notes

arch Value reported by OS Settable. If you unset the value, it remains
unset until MoM is restarted.

host Short form of hostname in Mom
vnode attribute

Settable. If you unset the value, it remains
unset until MoM is restarted.

mem Amount reported by OS Settable. If you unset the value, it remains
unset until MoM is restarted.

ncpus Number of CPUs reported by OS Settable. If you unset this value, the MoM
will reset it to the value reported by the OS.

router Name of router, from topology file Applies to vnodes on certain HPE systems
only

vnode Name of the vnode Vnode name must be specified via the
qmgr create node command.
PBS Professional 2022.1 Administrator’s Guide AG-237

Chapter 5 Using PBS Resources
5.7.1.3.ii Setting Used Resource Values

The resources used by a job are set in the job's resources_used attribute

You can set values for a job's resources_used attribute using hooks. These values will appear in the accounting log and
in qstat -f output. See "Setting Job Resources in Hooks" on page 50 in the PBS Professional Hooks Guide.

5.7.1.3.iii Setting Estimated Values

If the PBS_est built-in hook is enabled, PBS automatically sets the value of the estimated.start_time job resource to
the estimated start time for each job. Otherwise, PBS sets the value only for top jobs.

5.7.2 Setting Values for Static Resources

To set the value for a vnode, queue, or server resource, use the qmgr command to set the value of the appropriate
resources_available.<resource name> attribute.

Example 5-1: Set the value of floatlicenses at the server to 10:

Qmgr: set server resources_available.floatlicenses = 10

Example 5-2: Set the value of RunsMyApp to True at the vnode named vnode1:

Qmgr: set node vnode1 resources_available.RunsMyApp = True

5.7.2.1 Restrictions on Setting Values for Static Resources

When setting static vnode resources on multi-vnode machines, follow the rules in section 3.4.5, “Configuring Vnode
Resources”, on page 51.

5.7.3 Setting Values for String Arrays

A string array that is defined on vnodes can be set to a different set of strings on each vnode.

Example of defining and setting a string array:

• Define a new resource:
Qmgr: create resource foo_arr type=string_array, flag=h

• Setting via qmgr:
Qmgr: set node n4 resources_available.foo_arr="f1, f3, f5"

• Vnode n4 has 3 values of foo_arr: f1, f3, and f5. We add f7:
Qmgr: set node n4 resources_available.foo_arr+=f7

• Vnode n4 now has 4 values of foo_arr: f1, f3, f5 and f7.

• We remove f1:
Qmgr: set node n4 resources_available.foo_arr-=f1

• Vnode n4 now has 3 values of foo_arr: f3, f5, and f7.

• Submission:
qsub –l select=1:ncpus=1:foo_arr=f3

5.7.4 When Resource Changes Take Effect

If you change the value of a resource via the qmgr command, the change takes effect immediately.
AG-238 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
If you change the value of a resource in a configuration file, the change takes effect the next time the configuration file is
read.

5.7.5 Caveats for Setting Resource Values

• It is not recommended to set the value for resources_available.ncpus. The exception is when you want to oversub-
scribe CPUs. See section 8.6.5.1.iii, “How To Share CPUs”, on page 415.

• Do not attempt to set values for resources_available.<resource name> for dynamic resources.

• Do not set values for any resources, except those such as shared scratch space or floating licenses, at the server or a
queue, because the scheduler will not allocate more than the specified value. For example, if you set
resources_available.walltime at the server to 10:00:00, and one job requests 5 hours and one job requests 6 hours,
only one job will be allowed to run at a time, regardless of other idle resources.

5.7.5.1 Caveats for Setting Resource Values at Multi-vnode

Machines

• When setting static vnode resources on multi-vnode machines, follow the rules in section 3.4.5, “Configuring Vnode
Resources”, on page 51.

• It is not recommended to change the value of ncpus at vnodes on a multi-vnoded machine.

• On the parent vnode, all values for resources_available.<resource name> should be zero (0), unless the resource
is being shared among other vnodes via indirection.

5.8 Overview of Ways Resources Are Used

Resources are used in several ways in PBS. The following table lists the ways resources are used, and gives links to the
section describing each one:

Table 5-4: How Resources Are Used

Use Description

Allocation to and use by jobs See section 5.9, “Resources Allocated to Jobs and Reservations”, on page 240

Limiting job resource usage See section 5.15.2, “Placing Resource Limits on Jobs”, on page 300

Restricting access to server and queues See section 5.13, “Using Resources to Restrict Server or Queue Access”, on
page 251

Routing jobs See section 2.3.6.4, “Using Resources to Route Jobs Between Queues”, on
page 28

Describing topology and placing jobs See section 5.11, “Using Resources for Topology and Job Placement”, on page
250

Setting job execution priority See section 5.12, “Using Resources to Prioritize Jobs”, on page 251

Reserving resources ahead of time See section 4.9.37, “Reservations”, on page 195.

Tracking and controlling allocation See section 5.10, “Using Resources to Track and Control Allocation”, on page
249

Determining job preemption priority See section 4.9.33, “Using Preemption”, on page 179
PBS Professional 2022.1 Administrator’s Guide AG-239

Chapter 5 Using PBS Resources
5.8.1 How the Scheduler Uses Resources

How the scheduler uses resources is described in section 4.9.28, “Matching Jobs to Resources”, on page 158.

5.8.2 Advice on Using string and string_array Resources

Resource names are case-sensitive.

5.8.2.1 Using string Resources

Format of string resources:

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

Non-consumable.

We do not recommend using non-printing characters.

When using qsub -l <string resource>=<string value>, you must escape string values for both qsub
and the shell. Example:

qsub -lteststring='\"abc def\"'

The final quote should be single, not double.

5.8.2.2 Using string_array Resources

Format of string_array resources:

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

Non-consumable. Resource request will succeed if request matches one of the values. Resource request can contain
only one string.

The value of resources_default.<string array resource> can only be one string.

5.9 Resources Allocated to Jobs and Reservations

Resources allocated to jobs provide the job with amounts of CPUs and memory to be consumed by the job's processes, as
well as qualities such as architecture and host. The resources allocated to a job are those that the job requests and those
that are assigned to it through resource defaults that you define, or by hooks you write.

Jobs use resources at the job-wide and chunk level. Job-wide resources such as walltime or vmem are applied to and
requested by the job as a whole. Chunk-level resources, such as ncpus, are applied and requested in individual chunks.
AG-240 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
Jobs explicitly request resources either at the vnode level in chunks defined in a selection statement, or in job-wide
resource requests. See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide and "Request-
ing Resources", on page 53 of the PBS Professional User’s Guide.

Jobs inherit resource defaults for resources not explicitly requested. See section 5.9.4, “Allocating Default Resources to
Jobs”, on page 244.

Chunk-level resources are made available at the host (vnode) level by defining them via resources_available.<resource
name> at the vnode, and are requested using -l select=<resource name>=<value>.

Job-wide resources are made available by defining them via resources_available.<resource name> at the queue or
server. These resources are requested using -l <resource name> =<value>.

The scheduler matches requested resources with available resources, according to rules defined by the administrator.

When a job is requesting a string array resource, it can request only one of the values set in the string array resource. The
job will only be placed on a vnode where the job's requested string matches one of the values of the string array resource.
For example, if the resource named Colors is set to "red, blue, green" on vnode V1, and "red, blue" on V2:

• A job can request only one of "red", "blue", or "green"

• A job requesting Colors=green will only be placed on V1

5.9.1 Allocating Chunks

Chunks cannot be split across hosts. Chunks can be made up of vchunks. If a chunk is broken up over multiple vnodes,
all participating vnodes must belong to the same execution host. Each vnode supplies a vchunk. These participating
vnodes are supplying the vchunks that make up the chunk. A chunk defines a logical set of resources, for example, those
needed for an MPI task. The resources must come from a single host, but if the requested resources exceed that of any
one vnode, the physical resources can be taken from multiple vnodes on the same host.

5.9.2 Resources Requested by Job

The job's Resource_List attribute lists the following resources requested by the job:

• Job-wide resources explicitly requested by the job, inherited from defaults, or assigned by hooks

• The following built-in chunk-level resources explicitly requested by the job, inherited from defaults, or assigned by
hooks:

mpiprocs

ncpus

mem

vmem

• Custom vnode-level (chunk-level) resources that have the n, q, or f flags set, explicitly requested by the job, inher-
ited from defaults, or assigned by hooks

5.9.3 Specifying Job Default Resources

You can specify which resources are automatically added to job resource requests. When a job does not request a spe-
cific resource, the default value for that resource is automatically added to the job's resource request.

You can also use hooks to add resources to a job's resource request, but we describe that elsewhere in the PBS Profes-
sional Hooks Guide.
PBS Professional 2022.1 Administrator’s Guide AG-241

Chapter 5 Using PBS Resources
The amount of each resource a job is allowed to use is the amount in its resource request. See section 5.15.2, “Placing
Resource Limits on Jobs”, on page 300. Therefore you may wish to add default limits on resource usage. This is done by
adding default resources to the job's resource request. For example, if a job does not request walltime, but you do not
want jobs not specifying walltime to run for more than 12 hours, you can specify a default of 12 hours for walltime. Jobs
that do specify walltime do not inherit this default; they keep their requested amount.

You can use default resources to manage jobs. For example, if you want to keep track of and limit the number of jobs
using something such as a disk arm, you can have each job using the disk arm automatically request one counting
resource. Then you can place a limit on the amount of this resource that can be in use at one time. This technique is
described in section 5.10, “Using Resources to Track and Control Allocation”, on page 249.

Default resources can be defined for the server and for each queue. Default resources defined at the server are applied to
all jobs. Default resources at a queue are applied only to the jobs that are in that queue.

Default resources on the server and queue can be job-wide, which is the same as adding -l <resource
name>=<value> to the job's resource request, or they can be chunk resources, which is the same as adding
:<resource name>=<value> to a chunk.

Job-wide resources are specified via resources_default on the server or queue, and chunk resources are specified via
default_chunk on the server or queue. You can also specify default resources to be added to any qsub arguments. In
addition, you can specify default placement of jobs.

5.9.3.1 Specifying Job-wide Default Resources at Server

To specify a server-level job-wide default resource, use the qmgr command to set the server's resources_default
attribute:

Qmgr: set server resources_default.<resource name>=<value>

For example, to set the default architecture on the server:

Qmgr: set server resources_default.arch=linux

5.9.3.2 Setting Server and Queue Default Job Chunk Resource

Values

If a job doesn't request a specific resource, PBS can assign a default value you specify. PBS stores default values for job
chunk resources in the default_chunk.<resource name> attribute for the server and each queue.

PBS automatically sets the value for default_chunk.ncpus to 1 at the server and queues.

5.9.3.2.i Specifying Chunk Default Resources at Server

To specify a server-level chunk default resource, use the qmgr command to set the server's default_chunk attribute:

Qmgr: set server default_chunk.<resource name>=<value>

For example, if you want all chunks that don't specify ncpus or mem to inherit the values you specify:

Qmgr: set server default_chunk.ncpus=1
Qmgr: set server default_chunk.mem=1gb

5.9.3.2.ii Specifying Chunk Default Resources at Queue

To specify a queue-level chunk default resource, use the qmgr command to set the queue's default _chunk attribute:

Qmgr: set queue <queue name> default_chunk.<resource name>=<value>

For example, if you want all chunks that don't specify ncpus or mem to inherit the values you specify:

Qmgr: set queue small default_chunk.ncpus=1
Qmgr: set queue small default_chunk.mem=512mb
AG-242 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.9.3.3 Specifying Job-wide Default Resources at Queue

To specify a default for a job-wide resource at a queue, use the qmgr command to set the queue's resources_default
attribute:

Qmgr: set queue <queue name> resources_default.<resource name> = <value>

5.9.3.4 Specifying Default qsub Arguments

You can set defaults for any qsub arguments not explicitly requested by each job. You do this at the server by using the
qmgr command to set the server's default_qsub_arguments attribute:

Qmgr: set server default_qsub_arguments=<string containing arguments>

For example, to set the default for the Rerunable job attribute in each job's resource request, and the name of the job:

Qmgr: set server default_qsub_arguments= "-r y -N MyJob"

Or to set a default Boolean in each job's resource request so that jobs don't run on Red unless they explicitly ask to do so:

Qmgr: set server default_qsub_arguments="-l Red=False"

5.9.3.5 Specifying Default Job Placement

You can specify job placement defaults at both the server and queue level. You use the qmgr command to set the
resources_default.place attribute at the server or queue:

Qmgr: set queue <queue name> resources_default.place=<value>

For example, to set the default job placement for a queue:

Qmgr: set queue Q1 resources_default.place=free

When setting default placement involving a colon, enclose the value in double quotes:

Qmgr: set server resources_default.place="<value>"

For example, to set default placement at the server to pack:shared, do the following:

Qmgr: set server resources_default.place= "pack:shared"

See "Specifying Job Placement", on page 66 of the PBS Professional User’s Guide for detailed information about how -l
place is used.

5.9.3.6 Using Gating Values As Defaults

For most resources, if the job does not request the resource, and no server or queue defaults are set, the job inherits the
maximum gating value for the resource. If this is set at the queue, the queue value of resources_max.<resource name>
is used. If this is set only at the server, the job inherits the value set at the server.
PBS Professional 2022.1 Administrator’s Guide AG-243

Chapter 5 Using PBS Resources
5.9.3.7 Default Resource Caveats

• While users cannot request custom resources that are created with the r flag, jobs can inherit these as defaults from
the server or queue resources_default.<resource name> attribute.

• A qsub or pbs_rsub hook does not have resources inherited from the server or queue resources_default or
default_chunk as an input argument.

• Default qsub arguments and server and queue defaults are applied to jobs at a coarse level. Each job is examined to
see whether it requests a select and a place. This means that if you specify a default placement, such as excl, with
-lplace=excl, and the user specifies an arrangement, such as pack, with -lplace=pack, the result is that the
job ends up with -lplace=pack, NOT -lplace=pack:excl. The same is true for select; if you specify a
default of -lselect=2:ncpus=1, and the user specifies -lselect=mem=2GB, the job ends up with -lse-
lect=mem=2GB.

5.9.4 Allocating Default Resources to Jobs

Jobs inherit default resources, job-wide or per-chunk, with the following order of precedence.

See section 5.9.3, “Specifying Job Default Resources”, on page 241 for how to set these defaults.

For each chunk in the job's selection statement, first default qsub arguments are applied, then queue chunk defaults are
applied, then server chunk defaults are applied. If the chunk does not contain a resource defined in the defaults, the
default is added. The chunk defaults are specified in the default_chunk.<resource name> server or queue attribute.

For example, if the queue in which the job is enqueued has the following defaults defined,

default_chunk.ncpus=1

default_chunk.mem=2gb

then a job submitted with this selection statement:

select=2:ncpus=4+1:mem=9gb

will have this specification after the default_chunk elements are applied:

select=2:ncpus=4:mem=2gb+1:ncpus=1:mem=9gb

In the above, mem=2gb and ncpus=1 are inherited from default_chunk.

The job-wide resource request is checked against queue resource defaults, then against server resource defaults, then
against the queue's resources_max.<resource name>, then against the server's resources_max.<resource name>. If
a default or maximum resource is defined which is not specified in the resource request, it is added to the resource
request.

Table 5-5: Order In Which Default Resources Are Assigned to Jobs

Order of assignment Default value Affects Chunks? Job-wide?

1 Default qsub arguments If specified If specified

2 Queue's default_chunk Yes No

3 Server's default_chunk Yes No

4 Queue's resources_default No Yes

5 Server's resources_default No Yes

6 Queue's resources_max No Yes

7 Server's resources_max No Yes
AG-244 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.9.4.1 Default Resource Allocation for min_walltime and

max_walltime

The min_walltime and max_walltime resources inherit values differently. A job can inherit a value for max_walltime
from resources_max.walltime; the same is not true for min_walltime. This is because once a job is shrink-to-fit, PBS
can use a walltime limit for max_walltime. See section 4.9.42.3.ii, “Inheriting Values for min_walltime and
max_walltime”, on page 211.

5.9.4.2 Default Resource Allocation Caveats

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag, whether that resource was requested
by the user or came from default_qsub_arguments. Be aware that creating custom resources with permission
flags and then using these in the default_qsub_arguments server attribute can cause jobs to be rejected. See sec-
tion 5.14.2.4, “Specifying Resource Visibility”, on page 257.

• Default qsub arguments and server and queue defaults are applied to jobs at a coarse level. Each job is examined to
see whether it requests a select and a place. This means that if you specify a default placement, such as excl, with
-lplace=excl, and the user specifies an arrangement, such as pack, with -lplace=pack, the result is that the
job ends up with -lplace=pack, NOT -lplace=pack:excl. The same is true for select; if you specify a
default of -lselect=2:ncpus=1, and the user specifies -lselect=mem=2GB, the job ends up with -lse-
lect=mem=2GB.

5.9.4.3 Moving Jobs Between Queues or Servers Changes Defaults

If the job is moved from the current queue to a new queue or server, any default resources in the job's Resource_List
inherited from the current queue or server are removed. The job then inherits any new default resources. This includes a
select specification and place directive generated by the rules for conversion from the old syntax. If a job's resource is
unset (undefined) and there exists a default value at the new queue or server, that default value is applied to the job's
resource list. If either select or place is missing from the job's new resource list, it will be automatically generated, using
any newly inherited default values.

Jobs may be moved between servers when peer scheduling is in operation. Given the following set of queue and server
default values:

• Server

resources_default.ncpus=1

• Queue QA

resources_default.ncpus=2

default_chunk.mem=2GB

• Queue QB

default_chunk.mem=1GB

no default for ncpus

The following illustrate the equivalent select specification for jobs submitted into queue QA and then moved to (or sub-
mitted directly to) queue QB:

Example 5-3: Submission:

qsub -l ncpus=1 -lmem=4gb

• In QA:
select=1:ncpus=1:mem=4gb
PBS Professional 2022.1 Administrator’s Guide AG-245

Chapter 5 Using PBS Resources
- No defaults need be applied

• In QB:
select=1:ncpus=1:mem=4gb

- No defaults need be applied

Example 5-4: Submission:

qsub -l ncpus=1

• In QA:
select=1:ncpus=1:mem=2gb

- Picks up 2GB from queue default chunk and 1 ncpus from qsub

• In QB:
select=1:ncpus=1:mem=1gb

- Picks up 1GB from queue default_chunk and 1 ncpus from qsub

Example 5-5: Submission:

qsub -lmem=4gb

• In QA:
select=1:ncpus=2:mem=4gb

- Picks up 2 ncpus from queue level job-wide resource default and 4GB mem from qsub

• In QB:
select=1:ncpus=1:mem=4gb

- Picks up 1 ncpus from server level job-wide default and 4GB mem from qsub

Example 5-6: Submission:

qsub -lnodes=4

• In QA:
select=4:ncpus=1:mem=2gb

- Picks up a queue level default memory chunk of 2GB. (This is not 4:ncpus=2 because in prior versions, "nodes=x"
implied 1 CPU per node unless otherwise explicitly stated.)

• In QB:
select=4:ncpus=1:mem=1gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is not
inherited from the server default.)

Example 5-7: Submission:

qsub -l mem=16gb -lnodes=4

• In QA:
select=4:ncpus=1:mem=4gb

(This is not 4:ncpus=2 because in prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly
stated.)

• In QB:
select=4:ncpus=1:mem=4gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is not
inherited from the server default.)
AG-246 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.9.5 Dynamic Resource Allocation Caveats

When a job requests a dynamic resource, PBS checks to see how much of the resource is available, but cannot know how
much will be used by another job while this job executes. This can lead to a resource shortage. For example, there is
20GB of scratch on a disk, no jobs are running, and a job requests 15GB. This job writes to 5GB during the first part of
its execution, then another job requests 10GB. The second job is started by PBS, because there is 15GB available. Now
there is a shortage of scratch space.

You can avoid this problem by configuring a static consumable resource to represent scratch space. Set it to the amount
of available scratch space. See section 5.14.5.3, “Static Server-level Scratch Space”, on page 270 and section 5.14.5.4,
“Static Host-level Scratch Space”, on page 270.

5.9.6 Period When Resource is Used by Job

5.9.6.1 Exiting Job Keeps Resource

A job that is exiting is still consuming resources assigned to it. Those resources are available for other jobs only when
the job is finished.

5.9.6.2 Job Suspension and Resource Usage

5.9.6.2.i Resource Usage on Suspension

When suspended, a job is not executing and is not charged for walltime.

5.9.6.2.ii Releasing Resources on Suspension

You can specify which consumable resources should be released by PBS when a job is suspended, using the
restrict_res_to_release_on_suspend server attribute. In this attribute you list all of the resources that should be
released when a job is suspended. If you leave this attribute unset, PBS releases all of a job's consumable resources when
the job is suspended. This does not include the licenses used by the application, if any. You can modify the list to add
and remove resources using "+=" and "-=" operators.

Server attribute where you specify resources to be released:

restrict_res_to_release_on_suspend
Comma-separated list of consumable resources to be released when jobs are suspended. If unset, all consumable
resources are released on suspension.

Format: Comma-separated list

Python type: list

Default value: unset, meaning all consumable resources are released on suspension

You can see which resources have been released for a given job by looking at these job attributes:

resources_released
Listed by vnode, consumable resources that were released when the job was suspended. Populated only when
restrict_res_to_release_on_suspend server attribute is set. Set by server.

Format: String of the form: (<vnode>:<resource name>=<value>:<resource
name>=<value>:...)+(<vnode>:<resource name>=<value>:...)

Python type: str
PBS Professional 2022.1 Administrator’s Guide AG-247

Chapter 5 Using PBS Resources
resource_released_list
Sum of each consumable resource requested by the job that was released when the job was suspended. Popu-
lated only when restrict_res_to_release_on_suspend server attribute is set. Set by server. You will also see
this amount released at the queue and/or server.

Format: String of the form: resource_released_list.<resource
name>=<value>,resource_released_list.<resource name>=<value>, ...

Python type: pbs.pbs_resource

Jobs are suspended when they are preempted and via qsig -s suspend.

A job is resumed only when sufficient resources are available. When a person resumes a job via qsig -s resume,
the job is not run until resources are available.

5.9.6.2.iii Suspension/resumption Resource Caveats

Dynamic resources can cause problems with suspension and resumption of jobs.

When a job is suspended, its resources are freed, but the scratch space written to by the job is not available.

A job that uses scratch space may not suspend and resume correctly. This is because if the job writes to scratch, and is
then suspended, when PBS queries for available scratch to resume the job, the script may return a value too small for the
job's request. PBS cannot determine whether the job itself is the user of the scratch space; PBS can only determine how
much is still unused. If a single suspended job has left less scratch space available than it requests, that job cannot be
resumed.

The above is true for any dynamic resource, such as application licenses.

When suspended, a job is not executing and is not charged for walltime.

5.9.6.3 Shrink-to-fit Jobs Get walltime When Executed

PBS computes the walltime value for each shrink-to-fit job when the scheduler runs the job, not before. See section
4.9.42.3.iii, “Setting walltime for Shrink-to-fit Jobs”, on page 211.
AG-248 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.10 Using Resources to Track and Control

Allocation

You can use resources to track and control usage of things like hardware and application licenses. For example, you
might want to limit the number of jobs using floating licenses or a particular vnode. There is more than one way to
accomplish this.

Example 5-8: You can set a complex-wide limit on the number of jobs using a type of complex-wide floating application
license. This example uses a single queue for the entire complex. This method requires job submitters to request
one of a floatlicensecount resource in order to be able to use the license. To set a complex-wide limit, take the fol-
lowing steps:

1. Create a custom static integer license resource that will be tracked at the server and queue:

a. Use qmgr to create the resource:

Qmgr: create resource floatlicensecount type=long, flag=q

b. Add the resource to the resources: line in <sched_priv directory>/sched_config:

resources: "[...], floatlicensecount"

2. HUP the scheduler:

kill -HUP <scheduler PID>

3. Set the available resource at the server using qmgr. If you have enough floating licenses for 4 jobs:

Qmgr: set server resources_available.floatlicensecount = 4

4. Inform job submitters that jobs using they must request one job-wide floatlicensecount resource via the following:

qsub -l floatlicensecount=1

The scheduler will schedule up to 4 jobs at a time using the licenses. You do not need to set the resource at any
queue.

Example 5-9: Here, your job submitters don't need to request a counting resource. Jobs are routed based on the size of
the request for memory, and the counting resource is inherited from a default. In this example, we are limiting the
number of jobs from each group that can use a particular vnode that has a lot of memory. This vnode is called Mem-
Node.
PBS Professional 2022.1 Administrator’s Guide AG-249

Chapter 5 Using PBS Resources
Jobs that request 8GB or more of memory are routed into queue BigMem, and inherit a default counting resource
called memcount. All other jobs are routed into queue SmallMem. The routing queue is called RouteQueue.

1. Create a custom static integer memcount resource that will be tracked at the server and queue:

a. Use qmgr to create the resource:

Qmgr: create resource memcount type=long, flag=q

b. Add the resource to the resources: line in <sched_priv directory>/sched_config:

resources: "[...], memcount"

2. HUP the scheduler:

kill -HUP <scheduler PID>

3. Set limits at BigMem and SmallMem so that they accept the correct jobs:

Qmgr: set queue BigMem resources_min.mem = 8gb
Qmgr: set queue SmallMem resources_max.mem = 8gb

4. Set the order of the destinations in the routing queue so that BigMem is tested first, so that jobs requesting exactly
8GB go into BigMem:

Qmgr: set queue RouteQueue route_destinations = "BigMem, SmallMem"

5. Set the available resource at BigMem using qmgr. If you want a maximum of 6 jobs from BigMem to use MemN-
ode:

Qmgr: set queue BigMem resources_available.memcount = 6

6. Set the default value for the counting resource at BigMem, so that jobs inherit the value:

Qmgr: set queue BigMem resources_default.memcount = 1

7. Associate the vnode with large memory with the BigMem queue. See section 4.9.2, “Associating Vnodes with
Queues”, on page 106.

The scheduler will only schedule up to 6 jobs from BigMem at a time on the vnode with large memory.

5.11 Using Resources for Topology and Job

Placement

Using the topology information in the server's node_group_key attribute, PBS examines the values of resources at
vnodes, and uses those values to create placement sets. Jobs are assigned to placement sets according to their resource
requests. Users can specify particular placement sets by requesting the resources that define that particular placement
set. For example, if the switch named A25 connects the desired set of vnodes, a user can request the following:

-l switch=A25

See section 4.9.32, “Placement Sets”, on page 167.

5.11.1 Restrictions on Using Resources for Job Placement

Only vnode-level resources can be used to direct jobs to particular vnodes.
AG-250 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.12 Using Resources to Prioritize Jobs

You can define the formula the scheduler uses to compute job execution priorities. Elements in this formula can be
inherited default custom resources. These resources must be job-wide numeric resources, or consumable host-level
resources. See section 5.9.3, “Specifying Job Default Resources”, on page 241 and section 4.9.21, “Using a Formula for
Computing Job Execution Priority”, on page 150.

You can make jobs inherit numeric resources according to non-numeric qualities, such as the job owner's group or
whether the job requests a Boolean or string resource. You can do this by either of the following methods:

• Use a hook to identify the jobs you want and alter their resource requests to include the custom resources for the for-
mula. See the PBS Professional Hooks Guide

• Use a routing queue and minimum and maximum resource limits to route jobs to queues where they inherit the
default custom resources for the formula. See section 2.3.6.4, “Using Resources to Route Jobs Between Queues”, on
page 28

For details on how job execution priority is calculated, see section 4.9.16, “Calculating Job Execution Priority”, on page
135.

For a complete description of how PBS prioritizes jobs, see section 4.3.5, “Job Prioritization and Preemption”, on page
67.

5.13 Using Resources to Restrict Server or Queue

Access

You can set resource limits at the server and queues so that jobs must conform to the limits in order to be admitted. This
way, you can reject jobs that request more of a resource than the complex or a queue can supply. You can also force jobs
into specific queues where they will inherit the desired values for unrequested or custom resources. You can then use
these resources to manage jobs, for example by using them in the job sorting formula or to route jobs to particular
vnodes.

You set a maximum for each resource at the server using the resources_max.<resource name> server attribute; there is
no resources_min.<resource name> at the server.

You can set a minimum and a maximum for each resource at each queue using the resources_min.<resource name>
and resources_max.<resource name> queue attributes.

Job resource requests are compared to resource limits the same way, whether at the server or a queue. For a complete
description of how jobs are tested against limits, see section 2.3.6.4.i, “How Queue and Server Limits Are Applied,
Except Running Time”, on page 29.

Job resource requests are compared first to queue admittance limits. If there is no queue admittance limit for a particular
resource, the job's resource request is compared to the server's admittance limit.

5.13.1 Admittance Limits for walltime, min_walltime, and

max_walltime

Because min_walltime and max_walltime are themselves limits, they behave differently from other time-based
resources. When a shrink-to-fit job (a job with a value for min_walltime) is compared to server or queue limits, the fol-
lowing must be true in order for the job to be accepted:

• Both min_walltime and max_walltime must be greater than or equal to resources_min.walltime.

• Both min_walltime and max_walltime must be less than or equal to resources_max.walltime.
PBS Professional 2022.1 Administrator’s Guide AG-251

Chapter 5 Using PBS Resources
You cannot set resources_min or resources_max for min_walltime or max_walltime.

5.13.2 Restrictions on Resources Used for Admittance

For a list of resources that are compared to admittance limits, see section 2.3.6.4.iii, “Resources Used for Routing and
Admittance”, on page 29. For information on using strings, string arrays, and Booleans for admittance controls, see sec-
tion 2.3.6.4.iv, “Using String, String Array, and Boolean Values for Routing and Admittance”, on page 30.

5.14 Custom Resources

You can define, that is, create, new resources within PBS. This section describes how to define and use custom resources.

Once new resources are defined, jobs may request these new resources and the scheduler can schedule on the new
resources.

Using this feature, it is possible to schedule resources where the number or amount available is outside of PBS's control.

Custom resources can be made invisible to users or unalterable by users via resource permission flags. See section
5.14.2.4, “Specifying Resource Visibility”, on page 257. A user will not be able to print or list custom resources which
have been made either invisible or unalterable.

PBS provides certain custom resources that are designed to reflect resources or properties found on specific systems. Do
not create custom resources with the names that PBS uses for these resources. See “Resources Built Into PBS” on page
265 of the PBS Professional Reference Guide.

5.14.1 How to Use Custom Resources

Custom static resources can be server-level or host-level. They can also be shared or not. Custom dynamic resources
can be server-level and shared or not.

5.14.1.1 Choosing the Resource Category

Use dynamic resources for quantities that PBS does not control, such as externally-managed application licenses or
scratch space. PBS runs a script or program that queries an external source for the amount of the resource available and
returns the value via stdout. Use static resources for things PBS does control. PBS tracks these resources internally.

Use server-level resources for things that are not tied to specific hosts, that is, they can be available to any of a set of
hosts. An example of this is a floating application license.

5.14.1.1.i Examples of Configuring a Custom Resource

The following table gives examples of configuring each kind of custom resource:

Table 5-6: Examples of Configuring Custom Resources

Use for Resource Link to Example

License: Floating, exter-
nally-managed

See section 5.14.6.3.i, “Example of Floating, Externally-managed License”, on page
271

License: Floating, exter-
nally-managed with features

See section 5.14.6.3.ii, “Example of Floating, Externally-managed License with Fea-
tures”, on page 272

License: Floating, PBS-man-
aged

See section 5.14.6.3.iii, “Example of Floating License Managed by PBS”, on page
273
AG-252 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.1.2 Dynamic Custom Resources

A dynamic resource is one which is not under the control of PBS, meaning it can change independently of PBS. In order
to use a dynamic resource, PBS must run a query to discover the available amount of that resource. Dynamic custom
resources can be defined at the server.

5.14.1.2.i Dynamic Server-level Custom Resources

A dynamic server-level custom resource is used to track a resource that is available at the server. You use a dynamic
server-level resource to track something that is not under the control of PBS, and changes outside of PBS, for example,
floating application licenses. At each scheduler cycle, the scheduler runs a script at the server host to determine the avail-
able amount of that resource. Server-level custom resources are used as job-wide resources.

5.14.1.2.ii Dynamic Host-level Custom Resources

A dynamic host-level custom resource is used to track a resource that is available at the execution host or hosts. You use
a dynamic host-level resource for a resource that is not under the control of PBS, and changes outside of PBS, for exam-
ple, scratch space. You use an exechost_periodic hook to update the value of the resource being tracked. Host-level
dynamic resources are used inside chunks.

5.14.1.3 Static Custom Resources

A static resource is one which is under the control of PBS. Any changes to the value are performed by PBS or by the
administrator. Static custom resources are defined ahead of time, at the server, queues or vnodes.

License: Node-locked, per-host See section 5.14.6.4.iv, “Example of Per-host Node-locked Licensing”, on page 275

License: Node-locked, per-CPU See section 5.14.6.4.vi, “Example of Per-CPU Node-locked Licensing”, on page 277

License: Node-locked, per-use See section 5.14.6.4.v, “Example of Per-use Node-locked Licensing”, on page 276

FPGAs See section 5.14.8, “Using FPGAs”, on page 282

GPUs See section 5.14.7, “Using GPUs”, on page 279

Scratch space: shared See section 5.14.5.1, “Dynamic Server-level (Shared) Scratch Space”, on page 269
and section 5.14.5.3, “Static Server-level Scratch Space”, on page 270

Scratch space: local to a host See section 5.14.5.2, “Dynamic Host-level Scratch Space”, on page 270 and section
5.14.5.4, “Static Host-level Scratch Space”, on page 270

Generic dynamic server-level See section 5.14.3.1.iii, “Example of Configuring Dynamic Server-level Resource”,
on page 264

Generic static server-level See section 5.14.3.2.i, “Example of Configuring Static Server-level Resource”, on
page 265

Generic dynamic host-level See section 5.14.4.1.i, “Example of Configuring Dynamic Host-level Resource”, on
page 265

Generic static host-level See section 5.14.4.2.i, “Example of Configuring Static Host-level Resource”, on
page 266

Generic shared static host-level See section 5.14.4.3.iii, “Configuring Shared Static Resources”, on page 267

Table 5-6: Examples of Configuring Custom Resources

Use for Resource Link to Example
PBS Professional 2022.1 Administrator’s Guide AG-253

Chapter 5 Using PBS Resources
5.14.1.3.i Static Custom Resources

Static custom resource values at vnode, queue and server are set via qmgr, by setting resources_available.<custom
resource name> = <value>. These resources are available at the server, queues, or vnodes.

5.14.1.4 Shared Vnode Resources

A shared vnode resource is managed at one vnode, but available to be used by jobs at others. This allows flexible alloca-
tion of the resource. See section 5.14.4.3, “Shared Host-level Resources”, on page 266 for information on resources
shared across vnodes.

5.14.1.5 Using Custom Resources for Application Licenses

The following table lists application licenses and what kind of custom resource to define for them. See section 5.14.6,
“Supplying Application Licenses”, on page 270 for specific instructions on configuring each type of license and exam-
ples of configuring custom resources for application licenses.

5.14.1.6 Using Custom Resources for Scratch Space

You can configure a custom resource to report how much scratch space is available on machines. Jobs requiring scratch
space can then be scheduled onto machines which have enough. This requires an exechost_periodic hook to keep the
resource updated. See the PBS Professional Hooks (Plugins) Guide.

5.14.2 Defining New Custom Resources

You can define new custom resources as follows:

• To define any custom resource, you can use qmgr.

• To define custom host-level non-consumable resources at vnodes, you can use hooks; see "Adding Custom
Host-level Resources" on page 69 in the PBS Professional Hooks Guide.

Table 5-7: Custom Resources for Application Licenses

Floating or
 Node-locked

Unit Being Licensed
How License is

Managed
Level Resource Type

Floating (site-wide) Token External license manager Server Dynamic

Floating (site-wide) Token PBS Server Static

Node-locked Host PBS Host Static

Node-locked CPU PBS Host Static

Node-locked Instance of Application PBS Host Static
AG-254 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.2.1 Defining and Setting Static and Dynamic Custom Resources

The following table lists the differences in defining and setting static and dynamic custom resources at the server, queue
and host level.

5.14.2.2 Custom Resource Values

The rules for custom resource values are the same as for built-in resource values. See “Resource Formats” on page 359
of the PBS Professional Reference Guide.

If a string resource value contains spaces or shell metacharacters, enclose the string in quotes, or otherwise escape the
space and metacharacters. Be sure to use the correct quotes for your shell and the behavior you want. If the string
resource value contains commas, the string must be enclosed in an additional set of quotes so that the command (e.g.
qsub, qalter) will parse it correctly. If the string resource value contains quotes, plus signs, equal signs, colons or
parentheses, the string resource value must be enclosed in yet another set of additional quotes.

5.14.2.3 Specifying Resource Level and Consumability

When you define a custom resource, you specify whether it is server-level or host-level, and whether it is consumable or
not by setting resource accumulation flags via qmgr. A consumable resource is tracked, or accumulated, in the server,
queue or vnode resources_assigned attribute. The resource accumulation flags determine where the value of
resources_assigned.<resource name> is incremented.

Table 5-8: Defining and Setting New Custom Resources

Resource
Type

Server-level
Queue-l

evel
Host-level

static Set via qmgr Set via
qmgr

Set via qmgr or hook

dynamic Add to server_dyn_res line in
<sched_priv direc-
tory>/sched_config

Cannot be
used.

Use an exechost_periodic hook to update the
resource
PBS Professional 2022.1 Administrator’s Guide AG-255

Chapter 5 Using PBS Resources
5.14.2.3.i Allowable Values for Resource Accumulation Flags

The value of <resource flags>, which is the resource accumulation flag for a resource can be one of the following:

Table 5-9: Resource Accumulation Flags

Flag Meaning

(no flags) Indicates a queue-level or server-level resource that is not consumable.

fh The amount is consumable at the host level for only the first vnode allocated to the job (vnode with first
task.) Must be consumable or time-based. Cannot be used with Boolean or string resources. .

This flag specifies that the resource is accumulated at the first vnode, meaning that the value of
resources_assigned.<resource> is incremented only at the first vnode when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

h Indicates a host-level resource. Used alone, means that the resource is not consumable. Required for any
resource that will be used inside a select statement. This flag selects hardware. This flag indicates that the
resource must be requested inside of a select statement.

Example: for a Boolean resource named "green":

Qmgr: create resource green type=boolean, flag=h

nh The amount is consumable at the host level, for all vnodes assigned to the job. Must be consumable or
time-based. Cannot be used with Boolean or string resources.

This flag specifies that the resource is accumulated at the vnode level, meaning that the value of
resources_assigned.<resource> is incremented at relevant vnodes when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.

q The amount is consumable at the queue and server level. When a job is assigned one unit of a resource
with this flag, the resources_assigned.<resource> attribute at the server and any queue is incre-
mented by one. Must be consumable or time-based.

This flag specifies that the resource is accumulated at the queue and server level, meaning that the value
of resources_assigned.<resource> is incremented at each queue and at the server when a job is allo-
cated this resource. When a reservation starts, allocated resources are added to the server's
resources_assigned attribute.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.
AG-256 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.2.3.ii When to Use Accumulation Flags

The following table shows when to use accumulation flags.

5.14.2.3.iii Example of Resource Accumulation Flags

When defining a static consumable host-level resource, such as a node-locked application license, you would use the "n"
and "h" flags.

When defining a dynamic resource such as a floating license, you would use no flags.

5.14.2.3.iv Resource Accumulation Flag Restrictions and Caveats

Numeric dynamic resources cannot have the q or n flags set. This would cause these resources to be under-used. These
resources are tracked automatically by the scheduler.

5.14.2.4 Specifying Resource Visibility

When you define a custom resource, you can specify whether unprivileged users have permission to view or request the
resource, and whether users can qalter a request for that resource. This is done by setting a resource permission flag
via qmgr.

5.14.2.4.i Allowable Values for Resource Permission Flags

The permission flag for a resource can be one of the following:

Table 5-10: When to Use Accumulation Flags

Resource
Category

Server Queue Host

Static, consumable flag = q flag = q flag = nh or fh

Static, not consumable flag = (none of h, n, q or f) flag = (none of h, n, q or f) flag = h

Dynamic server_dyn_res line in
sched_config,

flag = (none of h, n, q or f)

(cannot be used) Tracked using an
exechost_periodic hook

flag = h

Table 5-11: Resource Permission Flags

Flag Meaning

(no flag) Users can view and request the resource, and qalter a resource request for this resource.

i "Invisible". Users cannot view or request the resource. Users cannot qalter a resource request for this
resource.

r "Read only". Users can view the resource, but cannot request it or qalter a resource request for this
resource.
PBS Professional 2022.1 Administrator’s Guide AG-257

Chapter 5 Using PBS Resources
5.14.2.4.ii Effect of Resource Permission Flags

• PBS Operators and Managers can view and request a resource, and qalter a resource request for that resource,
regardless of the i and r flags.

• Users, operators and managers cannot submit a job which requests a restricted resource. Any job requesting a
restricted resource will be rejected. If a manager needs to run a job which has a restricted resource with a different
value from the default value, the manager must submit the job without requesting the resource, then qalter the
resource value.

• While users cannot request these resources, their jobs can inherit default resources from
resources_default.<resource name> and default_chunk.<resource name>.

If a user tries to request a resource or modify a resource request which has a resource permission flag, they will get
an error message from the command and the request will be rejected. For example, if they try to qalter a job's
resource request, they will see an error message similar to the following:

"qalter: Cannot set attribute, read only or insufficient permission Resource_List.hps 173.mars"

5.14.2.4.iii Resource Permission Flag Restrictions and Caveats

• You can specify only one of the i or r flags per resource. If both are specified, the resource is treated as if only the i
flag were specified, and an error message is logged at the default log level and printed to standard error.

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag whether that resource was requested
by the user or came from default_qsub_arguments.

• The behavior of several command-line interfaces is dependent on resource permission flags. These interfaces are
those which view or request resources or modify resource requests:

pbsnodes

Users cannot view restricted host-level custom resources.

pbs_rstat

Users cannot view restricted reservation resources.

pbs_rsub

Users cannot request restricted custom resources for reservations.

qalter

Users cannot alter a restricted resource.

qmgr

Users cannot print or list a restricted resource.

qselect

Users cannot specify restricted resources via -l Resource_List.

qsub

Users cannot request a restricted resource.

qstat

Users cannot view a restricted resource.
AG-258 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.2.5 Specifying Whether Resource is Cached at MoM

You can make it faster for execution hooks to read custom job resources. Execution hooks cannot read custom job
resources via the event, only via the server. However, you can cache a copy of a custom job resource at the MoMs for
faster local reading by execution hooks, by setting the m flag for the resource. The job resources that can be cached are
found in the following job attributes:

exec_vnode
Resource_List
resources_used

To create a resource with the m flag set, include the flag. For example, to create two host-level consumable resources r1
and r2 of type long that will be cached at MoMs:

qmgr -c "create resource r1,r2 type=long,flag=mnh"

To unset this flag for r1:

qmgr -c "set resource r1 flag=nh"

You can combine this flag with any other resource flag. Job resources created in an exechost_startup hook have the m
flag set automatically.

5.14.2.5.i Caveats for Caching Custom Job Resources

Large numbers of job resources that are cached at MoMs can slow things down. If you don't need execution hooks to be
able to read a custom job resource often, don't cache the resource at the MoMs.

5.14.2.6 Defining Custom Resources via qmgr

You can use qmgr to create and delete custom resources, and to set their type and flags.

You must have PBS Manager privilege to operate on resources via qmgr.

5.14.2.6.i Creating Custom Resources via qmgr

When you define or change a custom resource via qmgr, the changes take place immediately, and you do not have to
restart the server, but you do have to restart scheduler(s).

To create a resource:

qmgr -c 'create resource <resource name>[,<resource name>] [type = <type>], [flag = <flags>]'

For example:

Qmgr: create resource foo type=long,flag=q

To create multiple resources of the same type and flag, separate each resource name with a comma:

qmgr -c "create resource r1,r2 type=long,flag=nh"

You can abbreviate "resource" to "r":

qmgr -c "create r foo type=long,flag=nh"

You cannot create a resource with the same name as an existing resource.

After you have defined your new custom resource, tell the scheduler how to use it. See section 5.14.2.8, “Allowing Jobs
to Use a Resource”, on page 261.

5.14.2.6.ii Examples of Defining Custom Resources and Setting Flags via qmgr

To set the type for a resource:

set resource <resource name> type = <type>
PBS Professional 2022.1 Administrator’s Guide AG-259

Chapter 5 Using PBS Resources
For example:

qmgr -c "set resource foo type=string_array"

To set the flags for a resource:

set resource <resource name> flag=<flag(s)>

For example:

qmgr -c "set resource foo flag=nh"

To set the type and flags for a resource:

set resource <resource name> type=<type>, flag=<flag(s)>

For example:

qmgr -c "set resource foo type=long,flag=nhi"

You can set multiple resources by separating the names with commas. For example:

qmgr -c "set resource r1, r2 type=long"

You cannot set the nh, fh, or q flag for a resource of type string, string_array, or Boolean.

You cannot set both the n and the f flags on one resource.

You cannot have the n or f flags without the h flag.

You cannot set both the i and r flags on one resource.

You cannot unset the type for a resource.

You cannot set the type for a resource that is requested by a current or history job or reservation, or set on a server, queue,
or vnode.

You cannot set the flag(s) to h, nh, fh, or q for a resource that is currently requested by a current or history job or reser-
vation.

You cannot unset the flag(s) for a resource that is currently requested by a current or history job or a reservation, or set on
any server, queue, or vnode.

You cannot alter a built-in resource.

You can unset custom resource flags, but not their type.

5.14.2.6.iii Caveats for Defining Host-level Custom Resources via qmgr

If you plan on using a hook to set a job's resources_used value for a custom host-level resource, or you want to have a
custom resource summed in a job's resources_used attribute and shown in the accounting log, you must create that
resource using a hook.

5.14.2.6.iv Deleting Custom Resources

If you want to be able to delete a custom resource, make sure that the resource is not requested by any current or history
jobs or current reservations. You can let those jobs finish, qalter them, or delete them. Delete and re-create any reser-
vations that request the resource.

Before you delete a custom resource, you must remove all references to that resource, including where it is used in hooks
or the scheduling formula. When you delete a resource that is set on the server, a queue, or a vnode, PBS unsets the
resource for you.

You cannot delete a custom resource that is listed in the restrict_res_to_release_on_suspend server attribute. You
must first remove the resource from the list:

Qmgr: set server restrict_res_to_release_on_suspend -= <resource name>
AG-260 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
You cannot delete a built-in resource.

To remove a custom resource:

1. Remove all references to the resource

• Remove it from the formula

• Remove it from hooks

• Let jobs requesting it finish, requeue and then qalter them while they are queued, or delete them

• Delete and re-create any reservations that request the resource

2. Edit the resources: line in <sched_priv directory>/sched_config to remove the unwanted resource
name:

• If the resource is a server dynamic resource, remove the resource name from the server_dyn_res: line

3. For each MoM whose Version 2 configuration file contains references to the resource, use the pbs_mom -s
insert command to update the Version 2 configuration file. See section 3.4.3, “Version 2 Vnode Configuration
Files”, on page 46.

4. HUP each MoM; for Linux, see “Restarting and Reinitializing MoM” on page 149 in the PBS Professional Installa-
tion & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 157 in the PBS Professional Installation
& Upgrade Guide.

5. Delete the resource using qmgr:

qmgr -c 'delete resource <resource name>'

For example:

qmgr -c "delete resource foo"

5.14.2.7 Defining Custom Resources via Hooks

You can use hooks to add new custom host-level resources, and set their values. See "Adding Custom Host-level
Resources" on page 69 in the PBS Professional Hooks Guide.

You must make the resource usable by the scheduler: see section 5.14.2.8, “Allowing Jobs to Use a Resource”, on page
261.

To delete a custom resource created in a hook, use qmgr. See section 5.14.2.6.iv, “Deleting Custom Resources”, on page
260.

5.14.2.8 Allowing Jobs to Use a Resource

After you define your resource, you need to make it usable by jobs:

1. Put the resource in the "resources:" line in <sched_priv directory>/sched_config. If the resource
is a host-level boolean, you do not need to add it here.

2. If the resource is static, set the value via qmgr.

3. If the resource is a server-level dynamic resource, add it to the the server_dyn_res line in the scheduler's con-
figuration file

4. HUP the scheduler(s)

5.14.2.9 Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.
PBS Professional 2022.1 Administrator’s Guide AG-261

Chapter 5 Using PBS Resources
5.14.2.10 Example of Defining Each Type of Custom Resource

In this example, we add four custom resources: a static host-level resource, a static and a dynamic server-level resource,
and a static queue-level resource.

1. The resource must be defined, with appropriate flags set:
Qmgr: create resource staticserverresource type=long, flag=q
Qmgr: create resource statichostresource type=long, flag=nh
Qmgr: create resource dynamicserverresource type=long
Qmgr: create resource staticqueueresource type=long, flag=q

2. The resource must be added to the scheduler's list of resources:

Add resource to "resources:" line in <sched_priv directory>/sched_config:

resources: "[...], staticserverresource, statichostresource, dynamicserverresource,
staticqueueresource"

Host-level Boolean resources do not need to be added to the "resources:" line.

3. HUP the scheduler:

kill -HUP <scheduler PID>

4. If the resource is static, use qmgr to set it at the host, queue or server level:

Qmgr: set node Host1 resources_available.statichostresource=1
Qmgr: set queue Queue1 resources_available.staticqueueresource=1
Qmgr: set server resources_available.staticserverresource=1

See “qmgr” on page 152 of the PBS Professional Reference Guide.

5. If the resource is dynamic, add it to the "server_dyn_res" line in <sched_priv direc-
tory>/sched_config:

Linux:

server_dyn_res: "dynamicserverresource !path-to-

command"

Windows, no spaces in path:

server_dyn_res: 'dynamicserverresource !path-to-

command'

or:

server_dyn_res: "dynamicserverresource !path-to-

command"

Windows, spaces in path:

server_dyn_res: 'dynamicserverresource !"path-to-

command including spaces"'

c. Make sure that the script meets the requirements in "Requirements for Scripts that Update Dynamic Resources"
AG-262 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.3 Creating Server-level Custom Resources

You can have PBS track the availability of an externally-managed dynamic server-level resource, by running a script or
program specified in the server_dyn_res line of <sched_priv directory>/sched_config. PBS updates
the value for resources_available.<resource name> at each scheduling cycle using the value returned by the script.
This script is run at the host where the scheduler runs, once per scheduling cycle. Dynamic server-level resources are
usually used for site-wide externally-managed floating application licenses.

The scheduler runs the query and waits for it to finish or time out. The default timeout for a server dynamic resource
script is 30 seconds. You can specify a timeout for server dynamic resources in each scheduler's
server_dyn_res_alarm attribute. If the script does not finish before the timeout, the scheduler uses a value of zero for
the dynamic server resource. If you set the timeout to zero, the scheduler does not place a time limit on the script.

The scheduler tracks how much of each numeric dynamic server-level custom resource has been assigned to jobs, and
will not overcommit these resources.

5.14.3.1 Creating Server Dynamic Resource Scripts

You create the script or program that PBS uses to query the external source. The external source can be a license man-
ager or a command, as when you use the df command to find the amount of available disk space.

The format of a dynamic server-level resource query is a shell escape:

server_dyn_res: "<resource name> !<path to command>"

where

<resource name> is the name of the dynamic resource

<path to command> is typically the full path to the script or program that performs the query in order to determine
the status and/or availability of the new resource you have added. This usually means querying a license server.

Place the script on the server host. For example, it could be placed in /usr/local/bin/serverdyn.pl. Make
sure the script meets the requirements in "Requirements for Scripts that Update Dynamic Resources".

5.14.3.1.i Requirements for Scripts that Update Dynamic Resources

The script:

• Owned and executable by PBS_DAEMON_SERVICE_USER

• Has permissions of 0755

• Returns its output via stdout, and the output must be in a single line ending with a newline

• The scheduler has access to the script, and can run it

• If you have set up peer scheduling, make sure that the script is available to any scheduler that needs to run it

The directory containing the script:

• Owned by PBS_DAEMON_SERVICE_USER

• Accessible only by PBS_DAEMON_SERVICE_USER (must not give write permission to group or others)

• Has permissions 0550

5.14.3.1.ii Caveats and Restrictions for Server Dynamic Resources

• Server dynamic resources are available only to the scheduler.

• Server dynamic resource values have no resources_available.<resource name> representation anywhere in PBS.

• A server dynamic resource shows up in the output of qstat only if a job has requested it.
PBS Professional 2022.1 Administrator’s Guide AG-263

Chapter 5 Using PBS Resources
5.14.3.1.iii Example of Configuring Dynamic Server-level Resource

For a site-wide externally-managed floating application license you will need two resources: one to represent the licenses
themselves, and one to mark the vnodes on which the application can be run. The first is a server-level dynamic resource
and the second is a host-level Boolean, set on the vnodes to send jobs requiring that license to those vnodes.

These are the steps for configuring a dynamic server-level resource for a site-wide externally-managed floating license.
If this license could be used on all vnodes, the Boolean resource would not be necessary.

1. Define the resources, for example floatlicense and CanRun:
Qmgr: create resource floatlicense type=long
Qmgr: create resource CanRun type=boolean, flag=h

2. Write a script, for example serverdyn.pl, that returns the available amount of the resource via stdout, and place
it on the server host. For example, it could be placed in /usr/local/bin/serverdyn.pl

3. Make sure that the script and the directory containing meet the requirements in "Requirements for Scripts that
Update Dynamic Resources".

4. Configure the scheduler to use the script by adding the resource and the path to the script in the server_dyn_res
line of <sched_priv directory>/sched_config:

server_dyn_res: "floatlicense !/usr/local/bin/serverdyn.pl"

5. Optional: give the scheduler a time limit for the script by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

6. Add the new dynamic resource to the resources: line in <sched_priv directory>/sched_config:

resources: "ncpus, mem, arch, [...], floatlicense"

7. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

8. Set the Boolean resource on the vnodes where the floating licenses can be run. Here we designate vnode1 and
vnode2 as the vnodes that can run the application:

Qmgr: active node vnode1,vnode2
Qmgr: set node resources_available.CanRun=True

To request this resource, the job's resource request would include:

-l floatlicense=<number of licenses or tokens required>

-l select=1:ncpus=N:CanRun=1

5.14.3.2 Static Server-level Resources

Static server-level resources are used for resources like floating licenses that PBS will manage. PBS keeps track of the
number of available licenses instead of querying an external license manager.
AG-264 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.3.2.i Example of Configuring Static Server-level Resource

These are the steps for configuring a static server-level resource:

1. Define the resource, for example sitelicense:
Qmgr: create resource sitelicense type=long, flag=q

2. Use the qmgr command to set the value of the resource on the server:

Qmgr: set server resources_available.sitelicense=<number of licenses>

3. Add the new resource to the resources: line in <sched_priv directory>/sched_config.

resources: "ncpus, mem, arch, [...], sitelicense"

4. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

5.14.4 Configuring Host-level Custom Resources

Host-level custom resources can be static and consumable, or static and not consumable.

5.14.4.1 Dynamic Host-level Resources

To dynamically track how much scratch space is available on machines, use an exechost_periodic hook to keep the
resource updated. See the PBS Professional Hooks (Plugins) Guide.

5.14.4.1.i Example of Configuring Dynamic Host-level Resource

In this example, we configure a custom resource to track host-level scratch space. The resource is called dynscratch.
These are the steps for configuring a dynamic host-level resource:

1. Define the resource, for example dynscratch:
Qmgr: create resource dynscratch type=size, flag=h

2. Write an exechost_periodic hook that updates the value of the available scratch space on each execution host.

3. You may optionally specify any limits on that resource via qmgr, such as the maximum amount available, or the
maximum that a single user can request.

4. Add the new resource to the resources: line in <sched_priv directory>/sched_config:

resources: "ncpus, mem, arch, [...], dynscratch"

5. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

To request this resource, the resource request would include

-l select=1:ncpus=N:dynscratch=10MB

5.14.4.2 Static Host-level Resources

Use static host-level resources for things that are managed by PBS and available at the host level, such as GPUs.
PBS Professional 2022.1 Administrator’s Guide AG-265

Chapter 5 Using PBS Resources
5.14.4.2.i Example of Configuring Static Host-level Resource

In this example, we configure a consumable host-level resource to track GPUs. These are the steps for configuring a
static host-level resource:

1. Define the resource, for example ngpus:
Qmgr: create resource ngpus type=long, flag=nh

2. Use the qmgr command to set the value of the resource on the host:

Qmgr: set node Host1 ngpus=<number of GPUs>

3. Add the new resource to the resources line in <sched_priv directory>/sched_config.

resources: "ncpus, mem, arch, [...], ngpus"

4. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

5. If the GPU host is a multi-vnode machine, you may want to define which GPUs belong in which vnodes. In this
case, do the following:

a. Create a vnode definition file. See section 3.4.3, “Version 2 Vnode Configuration Files”, on page 46.

b. Restart the MoM. For Linux, see “Restarting and Reinitializing MoM” on page 149 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 157 in the PBS Professional
Installation & Upgrade Guide.

See section 5.14.6.4.iv, “Example of Per-host Node-locked Licensing”, on page 275, section 5.14.6.4.v, “Example of
Per-use Node-locked Licensing”, on page 276, and section 5.14.6.4.vi, “Example of Per-CPU Node-locked Licensing”,
on page 277. These sections give examples of configuring each kind of node-locked license.

5.14.4.3 Shared Host-level Resources

Two or more vnodes can share the use of a resource. The resource is managed at one vnode, but available for use at other
vnodes. The MoM manages the sharing of the resource, allocating only the available amount to jobs. For example, if
you want jobs at two separate vnodes to be able to use the same 4GB of memory, you can make the memory be a shared
resource. This way, if a job at one vnode uses all 4GB, no other jobs can use it, but if one job at one vnode uses 2GB,
other jobs at either vnode can use up to 2GB.

5.14.4.3.i Shared Resource Glossary

Borrowing vnode

The vnode where a shared vnode resource is available, but not managed.

Indirect resource

A shared vnode resource at vnode(s) where the resource is not defined, but which share the resource.

Managing vnode

The vnode where a shared vnode resource is defined, and which manages the resource.

Shared resource

A vnode resource defined at managed at one vnode, but available for use at others.

5.14.4.3.ii Configuring Shared Host-level Resources

The resource to be shared is defined as usual at one vnode. This is the managing vnode for that resource. For example,
to make memory be managed at Vnode1:

Qmgr: set node Vnode1 mem = 4gb
AG-266 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
At vnodes which will use the same resource, the resource is defined to be indirect. For example, to make memory be
shared and borrowed at Vnode2:

Qmgr: set node Vnode2 mem = @Vnode1

5.14.4.3.iii Configuring Shared Static Resources

1. If the resource to be shared is a custom resource, you must define the resource before setting its value:
Qmgr: create resource <resource name> type=<resource type> [flag = <flags>]

2. Set the resource on the managing vnode:

To set a static value via qmgr:

Qmgr: s n managing_vnode resources_available.<resource name> =<value>

To set a static value, in a Version 2 configuration file:

managing_vnode:<resource name>=<value>

3. Next, set the resource on the borrowing vnode:

To set a shared resource on a borrowing vnode via qmgr:

Qmgr: s n borrowing_vnode resources_available.<resource name>=@managing_vnode

To set a shared resource in a Version 2 configuration file:

borrowing_vnode:<resource name>=@managing_vnode

4. HUP the MoMs involved; for Linux, see “Restarting and Reinitializing MoM” on page 149 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 157 in the PBS Professional
Installation & Upgrade Guide.

Example 5-10: To make a static host-level license dyna-license on hostA be managed by the parent vnode at hostA
and indirect at vnodes hostA0 and hostA1:

Qmgr: set node hostA resources_available.dyna-license=4
Qmgr: set node hostA0 resources_available.dyna-license=@hostA
Qmgr: set node hostA1 resources_available.dyna-license=@hostA

5.14.4.3.iv Configuring Shared Dynamic Resources

1. If the resource to be shared is a custom resource, you must define the resource before setting its value:
Qmgr: create resource <resource name> type=<resource type> [flag = <flags>]

2. Set the resource on the managing vnode via an exechost_periodic hook

3. Next, set the resource on the borrowing vnode:

To set a shared resource on a borrowing vnode via qmgr:

Qmgr: s n borrowing_vnode resources_available.<resource name>=@managing_vnode

To set a shared resource in a Version 2 configuration file:

borrowing_vnode:<resource name>=@managing_vnode

4. HUP the MoMs involved; for Linux, see “Restarting and Reinitializing MoM” on page 149 in the PBS Professional
Installation & Upgrade Guide, and for Windows, see “Restarting MoMs” on page 157 in the PBS Professional
Installation & Upgrade Guide.
PBS Professional 2022.1 Administrator’s Guide AG-267

Chapter 5 Using PBS Resources
5.14.4.3.v Restrictions on Shared Host-level Resources

• If your vnodes represent physical units such as blades, sharing resources like ncpus across vnodes may not make
sense.

• If you want to make a resource shared across vnodes, remember that you do not want to schedule jobs on the parent
vnode. To avoid this, the following resources should not be explicitly set on the parent vnode:

ncpus

mem

vmem

5.14.4.3.vi Defining Shared and Non-shared Resources for Multi-vnode Machines

On a multi-vnode machine, you can manage the resources at each vnode. For dynamic host-level resources, the resource
is shared across all the vnodes on the machine, and MoM manages the sharing. For static host-level resources, you can
either define the resource as shared or not. Shared resources are usually set on the parent vnode and then made indirect
at any child vnodes on which you want the resource available. For resources that are not shared, you can set the value at
each vnode.

Example 5-11: To set the resource string_res to round on the parent vnode of host03 and make it indirect at
host03[0] and host03[1]:

Qmgr: set node host03 resources_available.string_res=round
Qmgr: s n host03[0] resources_available.string_res=@host03
Qmgr: s n host03[1] resources_available.string_res=@host03

pbsnodes -va

host03

...

string_res=round

...

host03[0]

...

string_res=@host03

...

host03[1]

...

string_res=@host03

...
AG-268 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
If you had set the resource string_res individually on host03[0] and host03[1]:

Qmgr: s n host03[0] resources_available.string_res=round
Qmgr: s n host03[1] resources_available.string_res=square

pbsnodes -va

host03

...

 <--------string_res not set on parent vnode
...

host03[0]

...

string_res=round

...

host03[1]

...

string_res=square

...

5.14.4.3.vii Shared Resource Restrictions for Multi-vnode Machines

• On the parent vnode, all values for resources_available.<resource name> should be zero (0), unless the resource
is being shared among other vnodes via indirection.

5.14.5 Using Scratch Space

5.14.5.1 Dynamic Server-level (Shared) Scratch Space

If you have scratch space set up so that it's available to all execution hosts, you can use a server-level custom dynamic
resource to track it. The following are the steps for configuring a dynamic server-level resource called globalscratch to
track globally available scratch space:

1. Define the resource:
Qmgr: create resource globalscratch type=long

2. Write a script, for example serverdynscratch.pl, that returns the available amount of the resource via std-
out, and place it on the server host. For example, it could be placed in /usr/local/bin/serverdyns-
cratch.pl

3. Configure the scheduler to use the script by adding the resource and the path to the script in the server_dyn_res
line of <sched_priv directory>/sched_config:

server_dyn_res: "globalscratch !/usr/local/bin/serverdynscratch.pl"

4. Optional: give the scheduler a time limit for the script by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

5. Add the new dynamic resource to the resources: line in <sched_priv directory>/sched_config:

resources: "ncpus, mem, arch, [...], globalscratch"

6. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

To request this resource, the job's resource request would include:

-l globalscratch=<space required>
PBS Professional 2022.1 Administrator’s Guide AG-269

Chapter 5 Using PBS Resources
5.14.5.2 Dynamic Host-level Scratch Space

Say you have jobs that require a large amount of scratch disk space during their execution. To ensure that sufficient space
is available during job startup, create a custom dynamic resource so that jobs can request scratch space. To create this
resource, take the steps outlined in section 5.14.4.1.i, “Example of Configuring Dynamic Host-level Resource”, on page
265.

5.14.5.3 Static Server-level Scratch Space

If you want to prevent jobs from stepping on each others' scratch space, you can define additional vnodes that are used
only to allocate scratch devices, with one vnode per scratch device. Set the sharing attribute on each scratch vnode to
force_excl, so that only one job can request each scratch device. To set the sharing attribute, follow the rules in section
3.4.4, “Configuring the Vnode Sharing Attribute”, on page 50. For example, the scratch devices are /scratch1,
/scratch2, /scratch3, etc. On each scratch device, set resources as follows:

resources_available.ncpus = 0

resources_available.mem = 0

resources_available.scratch = 1

sharing = force_excl

Jobs then request one additional chunk to represent the scratch device, for example:

-l 16:ncpus=1+1:scratch=1

If a job needs to request a specific scratch device, for example /scratch2, that can be done by additionally asking for
the scratch resource:

:scratch=1

5.14.5.4 Static Host-level Scratch Space

If the scratch areas are not mounted on all execution hosts, you can specify which scratch areas are shared among which
subsets of vnodes using indirect resources. See section 5.14.4.3, “Shared Host-level Resources”, on page 266.

5.14.5.5 Caveats for Scratch Space and Jobs

When more than one job uses scratch space, or when a job is suspended, scratch space usage may not be handled cor-
rectly. See section 5.9.5, “Dynamic Resource Allocation Caveats”, on page 247 and section 5.9.6, “Period When
Resource is Used by Job”, on page 247.

5.14.6 Supplying Application Licenses

5.14.6.1 Types of Licenses

Application licenses may be managed by PBS or by an external license manager. Application licenses may be floating or
node-locked, and they may be per-host, where any number of instances can be running on that host, per-CPU, where one
license allows one CPU to be used for that application, or per-run, where one license allows one instance of the applica-
tion to be running. Each kind of license needs a different form of custom resource.

5.14.6.1.i Externally-managed Licenses

Whenever an application license is managed by an external license manager, you must create a custom dynamic resource
for it. This is because PBS has no control over whether these licenses are checked out, and must query the external
license manager for the availability of those licenses. PBS does this by executing the script or program that you specify
in the dynamic resource. This script returns the amount via stdout, in a single line ending with a newline.
AG-270 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.6.1.ii Preventing Oversubscription of Externally-managed Licenses

Some applications delay the actual license checkout until some time after the application begins execution. Licenses
could be oversubscribed when the scheduler queries for available licenses, and gets a result including licenses that essen-
tially belong to a job that is already running but has not yet checked them out. To prevent this, you can create a consum-
able custom static integer resource, assign it the total number of licenses, and make each job that requests licenses
request this resource as well. You can use a hook to accomplish this. Alternatively, if you know the maximum number of
jobs that can run using these licenses, you can create a consumable custom static integer resource to track the number of
jobs using licenses, and make each job request this resource.

If licenses are also checked out by applications outside of the control of PBS, this technique will not work.

5.14.6.1.iii PBS-managed Licenses

When an application license is managed by PBS, you can create a custom static resource for it. You set the total number
of licenses using qmgr, and PBS will internally keep track of the number of licenses available.

Use static host-level resources for node-locked application licenses managed by PBS, where PBS is in full control of the
licenses. These resources are static because PBS tracks them internally, and host-level because they are tracked at the
host.

5.14.6.2 License Units and Features

Different licenses use different license units to track whether an application is allowed to run. Some licenses track the
number of CPUs an application is allowed to run on. Some licenses use tokens, requiring that a certain number of tokens
be available in order to run. Some licenses require a certain number of features to run the application.

When using units, after you have defined the license resource called license_name to the server, be sure to set
resources_available.license_name to the correct number of units.

Before starting you should have answers to the following questions:

• How many units of a feature does the application require?

• How many features are required to execute the application?

• How do I query the license manager to obtain the available licenses of particular features?

With these questions answered you can begin configuring PBS Professional to query the license manager servers for the
availability of application licenses. Think of a license manager feature as a resource. Therefore, you should associate a
resource with each feature.

5.14.6.3 Server-level (Floating) Licenses

5.14.6.3.i Example of Floating, Externally-managed License

Here is an example of setting up floating licenses that are managed by an external license server.

For this example, we have a 6-host complex, with one CPU per host. The hosts are numbered 1 through 6. On this com-
plex we have one licensed application which uses floating licenses from an external license manager. Furthermore we
want to limit use of the application only to specific hosts. The table below shows the application, the number of licenses,
the hosts on which the licenses should be used, and a description of the type of license used by the application.

For the floating licenses, we will use three resources. One is a dynamic server resource for the licenses themselves. One
is a server-level integer to prevent oversubscription. The last is a Boolean resource used to indicate that the floating
license can be used on a given host.

Application Licenses Hosts DESCRIPTION

AppF 4 3-6 Uses licenses from an externally managed pool
PBS Professional 2022.1 Administrator’s Guide AG-271

Chapter 5 Using PBS Resources
Server Configuration

1. Define the new resources. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Host Configuration

2. Set the Boolean resource on the hosts where the floating licenses can be used.

Qmgr: active node host3,host4,host5,host6
Qmgr: set node resources_available.runsAppF = True

Scheduler Configuration

3. Edit the scheduler configuration file:

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource names to the resources: line:

resources: "ncpus, mem, arch, host, [...], AppF, AppFcount, runsAppF"

5. Edit the server_dyn_res: line:

server_dyn_res: "AppF !/local/flex_AppF"

6. Optional: give the scheduler a time limit for the script by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

7. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

You can write a hook that examines the number of AppF licenses requested by each job, and assigns that many
AppFcount to the job, or you can ask your users to request AppFcount.

To request a floating license for AppF and a host on which AppF can run:

qsub -l AppF=1 -l AppFcount=1

-l select=runsAppF=True

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c "print node @default"
command as well.

host1

host2

host3

 resources_available.runsAppF = True

host4

 resources_available.runsAppF = True

host5

 resources_available.runsAppF = True

host6

 resources_available.runsAppF = True

5.14.6.3.ii Example of Floating, Externally-managed License with Features

This is an example of a floating license, managed by an external license manager, where the application requires a certain
number of features to run. Floating licenses are treated as server-level dynamic resources. The license server is queried
by an administrator-created script. This script returns the value via stdout in a single line ending with a newline.
AG-272 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
The license script runs on the server host once per scheduling cycle and queries the number of available licenses/tokens
for each configured application.

When submitting a job, the user's script, in addition to requesting CPUs, memory, etc., also requests licenses.

When the scheduler looks at all the enqueued jobs, it evaluates the license request alongside the request for physical
resources, and if all the resource requirements can be met the job is run. If the job's token requirements cannot be met,
then it remains queued.

PBS doesn't actually check out the licenses; the application being run inside the job's session does that. Note that a small
number of applications request varying amounts of tokens during a job run.

Our example needs four features to run an application, so we need four custom resources.

1. Write four scripts, one to query the license server for each of your four features. Complexity of the script is entirely
site-specific due to the nature of how applications are licensed.

2. Define four non-consumable server-level features. These features are defined with no flags:

Qmgr: create resource feature1 type=long
Qmgr: create resource feature3 type=long
Qmgr: create resource feature6 type=long
Qmgr: create resource feature8 type=long

3. Add the feature resources to the resources: line in <sched_priv directory>/sched_config:

resources: "ncpus, mem, arch, [...], feature1, feature3, feature6, feature8"

4. Add each feature's script path to the server_dyn_res: line in PBS_HOME/server_priv/config:

server_dyn_res: "feature1 !/path/to/script [args]"

server_dyn_res: "feature3 !/path/to/script [args]"

server_dyn_res: "feature6 !/path/to/script [args]"

server_dyn_res: "feature8 !/path/to/script [args]"

5. Optional: give the scheduler a time limit for the scripts by setting its server_dyn_res_alarm attribute:

Qmgr: set sched <scheduler name> server_dyn_res_alarm=<new value>

6. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

5.14.6.3.iii Example of Floating License Managed by PBS

Here is an example of configuring custom resources for a floating license that PBS manages. For this you need a
server-level static resource to keep track of the number of available licenses. If the application can run only on certain
hosts, then you will need a host-level Boolean resource to direct jobs running the application to the correct hosts.

In this example, we have six hosts numbered 1-6, and the application can run on hosts 3, 4, 5 and 6. The resource that
will track the licenses is called AppM. The Boolean resource is called RunsAppM.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Example:

Qmgr: create resource AppM type=long, flag=q
Qmgr: create resource runsAppM type=boolean, flag=h

2. Set a value for AppM at the server. Here, we're allowing 8 copies of the application to run at once:

Qmgr: set server resources_available.AppM=8
PBS Professional 2022.1 Administrator’s Guide AG-273

Chapter 5 Using PBS Resources
Host Configuration

3. Set the value of runsAppM on the hosts. Each qmgr directive is typed on a single line:

Qmgr: active node host3,host4,host5,host6
Qmgr: set node resources_available.runsAppM = True

Scheduler Configuration

4. Edit the scheduler configuration file:

cd $<sched_priv directory>/

[edit] sched_config

5. Append the new resource name to the resources: line. Note that it is not necessary to add a host-level Boolean
resource to this line.

resources: "ncpus, mem, arch, host, [...], AppM, runsAppM"

6. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

To request both the application and a host that can run AppM:

qsub -l AppM=1

-l select=1:runsAppM=1 <jobscript>

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c "print node @default"
command as well. Since unset Boolean resources are the equivalent of False, you do not need to explicitly set them to
False on the other hosts. Unset Boolean resources will not be printed.

host1

host2

host3

 resources_available.runsAppM = True

host4

 resources_available.runsAppM = True

host5

 resources_available.runsAppM = True

host5

 resources_available.runsAppM = True

5.14.6.4 Host-level (Node-locked) Licenses

5.14.6.4.i Per-host Node-locked Licenses

If you are configuring a custom resource for a per-host node-locked license, where the number of jobs using the license
does not matter, use a host-level Boolean resource on the appropriate host. This resource is set to True. When users
request the license, they can use the following requests:

For a two-CPU job on a single vnode:

-l select=1:ncpus=2:license=1

 For a multi-vnode job:

-l select=2:ncpus=2:license=1

-l place=scatter

Users can also use "license=True", but this way they do not have to change their scripts.
AG-274 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.14.6.4.ii Per-CPU Node-locked Licenses

If you are configuring a custom resource for a per-CPU node-locked license, use a host-level consumable resource on the
appropriate vnode. This resource is set to the maximum number of CPUs you want used on that vnode. Then when
users request the license, they will use the following request:

For a two-CPU, two-license job:

-l select=1:ncpus=2:license=2

5.14.6.4.iii Per-use Node-locked License

If you are configuring a custom resource for a per-use node-locked license, use a host-level consumable resource on the
appropriate host. This resource is set to the maximum number of instances of the application allowed on that host. Then
when users request the license, they will use:

For a two-CPU job on a single host:

-l select=1:ncpus=2:license=1

For a multi-vnode job where each chunk needs two CPUs:

-l select=2:ncpus=2:license=1

-l place=scatter

5.14.6.4.iv Example of Per-host Node-locked Licensing

Here is an example of setting up node-locked licenses where one license is required per host, regardless of the number of
jobs on that host.

For this example, we have a 6-host complex, with one CPU per host. The hosts are numbered 1 through 6. On this com-
plex we have a licensed application that uses per-host node-locked licenses. We want to limit use of the application only
to specific hosts. The table below shows the application, the number of licenses for it, the hosts on which the licenses
should be used, and a description of the type of license used by the application.

For the per-host node-locked license, we will use a Boolean host-level resource called resources_available.runsAppA.
This will be set to True on any hosts that should have the license, and will default to False on all others. The resource is
not consumable so that more than one job can request the license at a time.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
create resource <resource name> type=<type>,flag=<flag>

Example:

Qmgr: create resource runsAppA type=boolean, flag=h
Qmgr: create resource AppA type=long, flag=h

Host Configuration

2. Set the value of runsAppA on the hosts. Each qmgr directive is typed on a single line:

Qmgr: active node host1,host2,host3,host4
Qmgr: set node resources_available.runsAppA = True

Application Licenses Hosts DESCRIPTION

AppA 1 1-4 uses a node-locked application license
PBS Professional 2022.1 Administrator’s Guide AG-275

Chapter 5 Using PBS Resources
Scheduler Configuration

3. Edit the scheduler configuration file.

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource name to the "resources:" line. Note that it is not necessary to add the host-level Boolean
resource to this line.

resources: "ncpus, mem, arch, [...], AppA, runsAppA"

5. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

To request a host with a per-host node-locked license for AppA:

qsub -l select=1:runsAppA=1 <jobscript>

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c "print node @default"
command as well. Since unset Boolean resources are the equivalent of False, you do not need to explicitly set them to
False on the other hosts. Unset Boolean resources will not be printed.

host1

 resources_available.runsAppA = True

host2

 resources_available.runsAppA = True

host3

 resources_available.runsAppA = True

host4

 resources_available.runsAppA = True

host5

host6

5.14.6.4.v Example of Per-use Node-locked Licensing

Here is an example of setting up per-use node-locked licenses. Here, while a job is using one of the licenses, it is not
available to any other job.

For this example, we have a 6-host complex, with 4 CPUs per host. The hosts are numbered 1 through 6. On this complex
we have a licensed application that uses per-use node-locked licenses. We want to limit use of the application only to spe-
cific hosts. The licensed hosts can run two instances each of the application. The table below shows the application, the
number of licenses for it, the hosts on which the licenses should be used, and a description of the type of license used by
the application.

For the node-locked license, we will use one static host-level resource called resources_available.AppB. This will be
set to 2 on any hosts that should have the license, and to 0 on all others. The "nh" flag combination means that it is
host-level and it is consumable, so that if a host has 2 licenses, only two jobs can use those licenses on that host at a time.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Application Licenses Hosts DESCRIPTION

AppB 2 1-2 Uses a node-locked application license
AG-276 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
Example:

Qmgr: create resource AppB type=long, flag=nh

Host Configuration

2. Set the value of AppB on the hosts to the maximum number of instances allowed. Each qmgr directive is typed on
a single line:

Qmgr: active node host1,host2
Qmgr: set node resources_available.AppB = 2
Qmgr: active node host3,host4,host5,host6
Qmgr: set node resources_available.AppB = 0

Scheduler Configuration

3. Edit the scheduler configuration file.

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource name to the resources: line:

resources: "ncpus, mem, arch, host, [...], AppB"

5. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

To request a host with a node-locked license for AppB, where you'll run one instance of AppB on two CPUs:

qsub -l select=1:ncpus=2:AppB=1

The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c "print node @default"
command as well.

host1

 resources_available.AppB = 2

host2

 resources_available.AppB = 2

host3

 resources_available.AppB = 0

host4

 resources_available.AppB = 0

host5

 resources_available.AppB = 0

host6

 resources_available.AppB = 0

5.14.6.4.vi Example of Per-CPU Node-locked Licensing

Here is an example of setting up per-CPU node-locked licenses. Each license is for one CPU, so a job that runs this
application and needs two CPUs must request two licenses. While that job is using those two licenses, they are unavail-
able to other jobs.
PBS Professional 2022.1 Administrator’s Guide AG-277

Chapter 5 Using PBS Resources
For this example, we have a 6-host complex, with 4 CPUs per host. The hosts are numbered 1 through 6. On this complex
we have a licensed application that uses per-CPU node-locked licenses. We want to limit use of the application to specific
hosts only. The table below shows the application, the number of licenses for it, the hosts on which the licenses should be
used, and a description of the type of license used by the application.

For the node-locked license, we will use one static host-level resource called resources_available.AppC. We will pro-
vide a license for each CPU on hosts 3 and 4, so this will be set to 4 on any hosts that should have the license, and to 0 on
all others. The "nh" flag combination means that it is host-level and it is consumable, so that if a host has 4 licenses, only
four CPUs can be used for that application at a time.

Server Configuration

1. Define the new resource. Specify the resource names, type, and flag(s):
Qmgr: create resource <resource name> type=<type>,flag=<flags>

Example:

Qmgr: create resource AppC type=long, flag=nh

Host Configuration

2. Set the value of AppC on the hosts. Each qmgr directive is typed on a single line:

Qmgr: active node host3,host4
Qmgr: set node resources_available.AppC = 4
Qmgr: active node host1,host2,host5,host6
Qmgr: set node resources_available.AppC = 0

Scheduler Configuration

3. Edit the scheduler configuration file:

cd $<sched_priv directory>/

[edit] sched_config

4. Append the new resource name to the resources: line:

resources: "ncpus, mem, arch, host, [...], AppC"

5. Restart the scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.

To request a host with a node-locked license for AppC, where you'll run a job using two CPUs:

qsub -l select=1:ncpus=2:AppC=2

Application Licenses Hosts DESCRIPTION

AppC 4 3-4 uses a node-locked application license
AG-278 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
The example below shows what the host configuration would look like. What is shown is actually truncated output from
the pbsnodes -a command. Similar information could be printed via the qmgr -c "print node @default"
command as well.

host1

 resources_available.AppC = 0

host2

 resources_available.AppC = 0

host3

 resources_available.AppC = 4

host4

 resources_available.AppC = 4

host5

 resources_available.AppC = 0

host6

 resources_available.AppC = 0

5.14.7 Using GPUs

You can configure PBS to manage GPU resources. You only need to use one method. You can use any of the following
methods, but we recommend using the cgroups hook:

• Managing GPUs via Cgroups does the configuration for you, takes advantage of topology, and and optionally may
be used to deny access to GPU devices not assigned to a job. You can use this method to restrict each job to the
GPU(s) assigned to it. We recommend using this method; job submission is much easier, among other advantages.

• Basic GPU Scheduling works well if you have single-GPU vnodes. The basic method will meet the needs of most
job submitters; it allows a job to request the number of GPUs it needs, as long as the job requests exclusive use of
each node containing the GPUs.

• Advanced GPU Scheduling allows jobs to request specific GPUs. The advanced method provides some flexibility
for multi-job or multi-GPU vnodes, but does not isolate GPUs. PBS Professional allocates GPUs for jobs, but does
not perform the actual binding. The application or the CUDA library binds the application to one or more GPUs.

You cannot combine this with the cgroups hook unless you set ngpus_ext_managed in the cgroups hook configu-
ration file; see section 5.14.7.2, “Managing GPUs Manually While Using Cgroups Hook”, on page 279 and section
6.5.5.6, “Not Using Cgroups to Manage GPUs”, on page 349.

5.14.7.1 Managing GPUs Via Cgroups Hook

We describe how to manage your GPUs via cgroups in section 6.5.5.1, “Managing GPUs via Cgroups”, on page 345.

5.14.7.2 Managing GPUs Manually While Using Cgroups Hook

For any node or nodes, you can use basic or advanced GPU scheduling while also using the cgroups hook. By default,
the cgroups hook manages GPUs for you: it sets resources_available.ngpus on the node, it won't oversubscribe a
GPU, and it assigns specific GPUs to jobs running on that node or nodes. However, if you want to oversubscribe the
GPUs on a node, you can tell the cgroups hook not to manage the GPUs on that node; see section 6.5.5.6, “Not Using
Cgroups to Manage GPUs”, on page 349. Then you can use basic or advanced GPU scheduling on that node.

5.14.7.3 Basic GPU Scheduling

Basic scheduling consists of prioritizing jobs based on partition or site policies, controlling access to nodes with GPUs,
ensuring that GPUs are not over-subscribed, and tracking use of GPUs in accounting logs.
PBS Professional 2022.1 Administrator’s Guide AG-279

Chapter 5 Using PBS Resources
Configuring PBS to perform basic scheduling of GPUs is relatively simple, and only requires defining and configuring a
single custom resource to represent the number of GPUs on each node.

This method allows jobs to request unspecified GPUs. Jobs should request exclusive use of the node to prevent other
jobs being scheduled on their GPUs.

5.14.7.3.i Configuring PBS for Basic GPU Scheduling

You configure a single custom consumable resource to represent all GPU devices on an execution host. Create a
host-level consumable custom resource to represent GPUs. We recommend that the custom GPU resource is named
ngpus. Set the value for this resource at each vnode to the number of GPUs on the vnode.

The ngpus resource is used exactly the way you use the ncpus resource.

5.14.7.3.ii Example of Configuring PBS for Basic GPU Scheduling

In this example, there are two execution hosts, HostA and HostB, and each execution host has 4 GPU devices.

1. Create the ngpus resource:
Qmgr: create resource ngpus type=long, flag=nh

2. Stop the server and scheduler. On the server's host, type:

systemctl stop pbs

or

/etc/init.d/pbs stop

3. Edit <sched_priv directory>/sched_config to add ngpus to the list of scheduling resources:

resources: "ncpus, mem, arch, host, vnode, ngpus"

4. Start the server and scheduler. On the server's host, type:

systemctl start pbs

or

/etc/init.d/pbs start

5. Add the number of GPU devices available to each execution host in the cluster via qmgr:

Qmgr: set node HostA resources_available.ngpus=4
Qmgr: set node HostB resources_available.ngpus=4

5.14.7.4 Advanced GPU Scheduling

Advanced scheduling allows a job to separately allocate (request and/or identify) each individual GPU on a node.

In this case, both PBS and the applications themselves must support individually allocating the GPUs on a node.
Advanced scheduling requires defining a child vnode for each GPU.

This capability is useful for sharing a single multi-GPU node among multiple jobs, where each job requires exclusive use
of its GPUs.

5.14.7.4.i Configuring PBS for Advanced GPU Scheduling

You configure each GPU device in its own vnode, and each GPU vnode has a resource to contain the device number of
its GPU.

Create and set two custom resources:

• Create a host-level consumable resource to represent the GPUs on a vnode. We recommend that this resource is
called ngpus.
AG-280 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
Set ngpus on each node to the number of GPUs on that node.

• Create a host-level non-consumable resource containing the GPU device number, which serves to tie the individual
GPU to the vnode. We recommend that this resource is called gpu_id.

Set gpu_id for each GPU to the device number of that GPU.

5.14.7.4.ii Example of Configuring PBS for Advanced GPU Scheduling

In this example, there is one execution host, HostA, that has two child vnodes, HostA[0] and HostA[1], as well as the
parent vnode. HostA has 4 CPUs, 2 GPUs, and 16 GB of memory.

1. Create the new custom resources:
Qmgr: create resource ngpus type=long, flag=nh
Qmgr: create resource gpu_id type=string, flag=h

2. Stop the server and scheduler. On the server's host, type:

systemctl stop pbs

or

/etc/init.d/pbs stop

3. Edit <sched_priv directory>/sched_config to add ngpus and gpu_id to the list of scheduling resources:

resources: "ncpus, mem, arch, host, vnode, ngpus, gpu_id"

4. Start the server and scheduler. On the server's host, type:

systemctl start pbs

or

/etc/init.d/pbs start

5. Create a vnode configuration file for each execution host where GPUs are present. See section 3.4.3, “Version 2
Vnode Configuration Files”, on page 46. The script for HostA is named hostA_vnodes, and is shown here:

$configversion 2

hostA: resources_available.ncpus = 0

hostA: resources_available.mem = 0

hostA[0]: resources_available.ncpus = 2

hostA[0] : resources_available.mem = 8gb

hostA[0] : resources_available.ngpus = 1

hostA[0] : resources_available.gpu_id = gpu0

hostA[0] : sharing = default_excl

hostA[1] : resources_available.ncpus = 2

hostA[1] : resources_available.mem = 8gb

hostA[1] : resources_available.ngpus = 1

hostA[1] : resources_available.gpu_id = gpu1

hostA[1]: sharing = default_excl

6. Create a Version 2 configuration file for each host with GPUs. For example:

PBS_EXEC/sbin/pbs_mom -s insert HostA_vnodes HostA_vnodes

7. Signal each MoM to re-read its configuration files:

kill -HUP <pbs_mom PID>
PBS Professional 2022.1 Administrator’s Guide AG-281

Chapter 5 Using PBS Resources
5.14.8 Using FPGAs

You can configure a custom resource that allows PBS to track the usage of FPGAs. The FPGAs are detected outside of
PBS at boot time. There are two basic methods for automatic configuration of the FPGA resource:

• Create a static host-level resource called nfpgas. Create a boot-up script in init.d that detects the presence of the
FPGAs, and sets the value of the nfpgas resource.

• Create a dynamic host-level resource called nfpgas. This resource calls a script to detect the presence of FPGAs

We recommend the static resource, because FPGAs are static.

5.14.9 Defining Host-level Resource for Applications

You may need to tag your vnodes with the software that can run on them. You cannot use the built-in software resource
for this; it is a server-level resource and cannot be set per host. You can define a custom resource named, for example,
"node_software". It should be a string_array, since a host may be able to run more than one application. You can use
qmgr to create your resource:

Qmgr: create resource node_software type=string_array, flag=h

You can use your new custom resource to route jobs: see section 4.9.39, “Routing Jobs”, on page 204.

5.14.10 Custom Resource Caveats

• Because some custom resources are external to PBS, they are not completely under the control of PBS. Therefore it
is possible for PBS to query and find a resource available, schedule a job to run and use that resource, only to have
an outside entity take that resource before the job is able to use it. For example, say you had an external resource of
"scratch space" and your query script simply checked to see how much disk space was free. It would be possible for
a job to be started on a host with the requested space, but for another application to use the free space before the job
did.

• If a resource is not put in the scheduler's resources: line, when jobs request the resource, that request will be
ignored. If the resource is ignored, it cannot be used to accept or reject jobs at submission time. For example, if you
create a string resource String1 on the server, and set it to foo, a job requesting "-l String1=bar" will be
accepted. The only exception is host-level Boolean resources, which are considered when scheduling, whether or
not they are in the scheduler's resources: line.

• Do not create resources with the same names or prefixes that PBS uses when you create custom resources for spe-
cific systems.
AG-282 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15 Managing Resource Usage

You can manage resource usage from different directions:

• You can manage resource usage by users, groups, and projects, and the number of jobs, at the server and queue level.
See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server & Queues”, on page 283.

• You can manage the total amount of each resource that is used by projects, users or groups, at the server or
queue level. For example, you can manage how much memory is being used by jobs in queue QueueA.

• You can manage the number of jobs being run by projects, users or groups, at the server or queue level. For
example, you can limit the number of jobs enqueued in queue QueueA by any one group to 30, and by any sin-
gle user to 5.

• You can specify how much of each resource any job is allowed to use, at the server and queue level. See section
5.15.2, “Placing Resource Limits on Jobs”, on page 300 and section 5.13, “Using Resources to Restrict Server or
Queue Access”, on page 251.

• You can set default limits for usage for each resource, at the server or queue level, so that jobs that do not request a
given resource inherit that default, and are limited to the inherited amount. For example, you can specify that any
job entering queue QueueA not specifying mem is limited to using 4MB of memory. See section 5.9.3, “Specifying
Job Default Resources”, on page 241.

• You can set limits on the number of jobs that can be in the queued state at the server and/or queue level. You can
apply these limits to users, groups, projects, or everyone. This allows users to submit as many jobs as they want,
while allowing the scheduler to consider only the jobs in the execution queues, thereby speeding up the scheduling
cycle. See section 5.15.3, “Limiting the Number of Jobs in Queues”, on page 305.

5.15.1 Managing Resource Usage By Users, Groups, and

Projects, at Server & Queues

You can set separate limits for resource usage by individual users, individual groups, individual projects, generic users,
generic groups, generic projects, and the total used overall, for queued jobs, running jobs, and queued and running jobs.
You can limit the amount of resources used, and the number of queued jobs, the number of running jobs, and the number
of queued and running jobs. These limits can be defined separately for each queue and for the server. You define the lim-
its by setting server and queue limit attributes. For information about projects, see section 10.4, “Grouping Jobs By
Project”, on page 457.

There are two incompatible sets of server and queue limit attributes used in limiting resource usage. The first set
existed in PBS Professional before Version 10.1, and we call them the old limit attributes. The old limit attributes are
discussed in section 5.15.1.15, “Old Limit Attributes: Server and Queue Resource Usage Limit Attributes Existing
Before Version 10.1”, on page 298. The set introduced in Version 10.1 is called simply the limit attributes, and they are
discussed here.

You can use either the limit attributes or the old limit attributes for the server and queues, but not both. See section
5.15.1.13.v, “Do Not Mix Old And New Limits”, on page 297.

The server and queues each have per-job limit attributes which operate independently of the limits discussed in this sec-
tion. The resources_min.<resource name> and resources_max.<resource name> server and queue attributes are
limits on what each individual job may use. See section 5.13, “Using Resources to Restrict Server or Queue Access”, on
page 251 and section 5.15.2, “Placing Resource Limits on Jobs”, on page 300.
PBS Professional 2022.1 Administrator’s Guide AG-283

Chapter 5 Using PBS Resources
5.15.1.1 Examples of Managing Resource Usage at Server and

Queues

You can limit resource usage and job count for specific projects, users and groups:

• UserA can use no more than 6 CPUs, and UserB can use no more than 4 CPUs, at one time anywhere in the PBS
complex.

• The crashtest group can use no more than 16 CPUs at one time anywhere in the PBS complex.

• UserC accidentally submitted 200,000 jobs last week. UserC can now have no more than 25 jobs enqueued at one
time.

• All jobs request the server-level custom resource nodehours, which is used for allocation. UserA cannot use more
than 40 nodehours in the PBS complex. Once UserA reaches the nodehours limit, then all queued jobs owned by
UserA are not eligible for execution.

• You wish to allow UserD to use 12 CPUs but limit all other users to 4 CPUs.

• Jobs belonging to Project A can use no more than 8 CPUs at Queue1.

You can limit the number of jobs a particular project, user or group runs in a particular queue:

• UserE can use no more than 2 CPUs at one time at Queue1, and 6 CPUs at one time at Queue2.

• You wish to limit UserF to 10 running jobs in queue Queue3, but allow all other users unlimited jobs running in the
same queue.

• UserG is a member of Group1. You have a complex-wide limit of 5 running jobs for UserG. You have a limit at
Queue1 of 10 running jobs for Group1. This way, up to 10 of the running jobs in Queue1 can belong to Group1, and
5 of these can belong to UserG.

• UserH is a member of Group1. You have a complex-wide limit of 5 running jobs for UserH. You have a limit at
Queue1 of 10 running jobs for any group in Queue1. This way, no group in Queue1 can run more than 10 jobs total
at one time, and 5 of these can belong to UserH.

• UserJ is a member of Group1. You have a complex-wide limit of 10 running jobs for UserJ. You also have a limit at
Queue1 of 5 running jobs for Group1. This means that there may be up to 5 running jobs owned by users belonging
to Group1 in Queue1, and up to 5 of these can be owned by UserJ. UserJ can also have another 5 running jobs
owned by Group1 in any other queue, or owned by a different group in Queue1.

• No more than 12 jobs belonging to Project A can run at Queue1, and all other projects are limited to 8 jobs at
Queue1.

You can ensure fairness in the use of resources:

• You have multiple departments which have shared the purchase of a large machine. Each department would like to
ensure fairness in the use of the machine, by setting limits on individual users and groups.

• You have multiple departments, each of which purchases its own machines. Each department would like to limit the
use of its machines so that all departmental users have specific limits. In addition, each department would like to
allow non-departmental users to use its machines when they are under-utilized, while giving its own users priority on
its machines. A non-departmental user can run jobs on a departmental machine, as long as no departmental users'
jobs are waiting to run.

5.15.1.2 Glossary

Limit

The maximum amount of a resource that can be consumed at any time by running jobs or allocated to queued
jobs, or the maximum number of jobs that can be running, or the maximum number of jobs that can be queued.
AG-284 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
Overall limit

Limit on the total usage. In the context of server limits, this is the limit for usage at the PBS complex. In the
context of queue limits, this is the limit for usage at the queue. An overall limit is applied to the total usage at
the specified location. Separate overall limits can be specified at the server and each queue.

Generic user limit

Applies separately to users at the server or a queue. The limit for users who have no individual limit specified.
A separate limit for generic users can be specified at the server and at each queue.

Generic group limit

Applies separately to groups at the server or a queue. The limit for groups which have no individual limit speci-
fied. A limit for generic groups is applied to the usage across the entire group. A separate limit can be specified
at the server and each queue.

Generic project limit

Applies separately to projects at the server or a queue. The limit for projects which have no individual limit
specified. A limit for generic projects is applied to the usage across the entire project. A separate limit can be
specified at the server and each queue.

Individual user limit

Applies separately to users at the server or a queue. Limit for users who have their own individual limit speci-
fied. A limit for an individual user overrides the generic user limit, but only in the same context, for example, at
a particular queue. A separate limit can be specified at the server and each queue.

Individual group limit

Applies separately to groups at the server or a queue. Limit for a group which has its own individual limit spec-
ified. An individual group limit overrides the generic group limit, but only in the same context, for example, at
a particular queue. The limit is applied to the usage across the entire group. A separate limit can be specified at
the server and each queue.

Individual project limit

Applies separately to projects at the server or a queue. Limit for a project which has its own individual limit
specified. An individual project limit overrides the generic project limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire project. A separate limit can
be specified at the server and each queue.

User limit

A limit placed on one or more users, whether generic or individual.

Group limit

This is a limit applied to the total used by a group, whether the limit is a generic group limit or an individual
group limit.

Project

In PBS, a project is a way to group jobs independently of users and groups. A project is a tag that identifies a set
of jobs. Each job's project attribute specifies the job's project.

Project limit

This is a limit applied to the total used by a project, whether the limit is a generic project limit or an individual
project limit.

Queued jobs

In a queue, queued jobs are the jobs that are waiting in that queue.
PBS Professional 2022.1 Administrator’s Guide AG-285

Chapter 5 Using PBS Resources
5.15.1.3 Difference Between PBS_ALL and PBS_GENERIC

Note the very important difference between the overall limit and a generic limit. We will describe how this works for
users, but this applies to other entities as well. You set PBS_ALL for an overall limit on the total usage of that resource
by all entities, whereas you set PBS_GENERIC for a limit for any single generic user.

Example 5-12: Difference between overall limit and generic user limit

Given the following:

• The overall server limit for running jobs is 100

• The server limit for generic users is 10

• The individual limit for User1 is 12 jobs

This means:

• Generic users (any single user except User1) can run no more than 10 jobs at this server

• User1 can run 12 jobs at this server

• At this server, no more than 100 jobs can be running at any time

5.15.1.4 Hard and Soft Limits

Hard limits are limits which cannot be exceeded. Soft limits are limits which mark the point where a project, user or
group is using "extra, but acceptable" amounts of a resource. When this happens, the jobs belonging to that project, user
or group are eligible for preemption. See section 4.9.33, “Using Preemption”, on page 179. Soft limits are discussed in
section 4.9.33.7.i, “The Soft Limits Preemption Level”, on page 183.

5.15.1.5 Scope of Limits at Server and Queues

Each of the limits described above can be set separately at the server and at each queue. Each limit's scope is the PBS
object where it is set. The individual and generic project, user and group limits that are set within one scope interact with
each other only within that scope. For example, a limit set at one queue has no effect at another queue.

The scope of limits set at the server encompasses queues, so that the minimum, more restrictive limit of the two is
applied. For precedence within a server or queue, see section 5.15.1.7, “Precedence of Limits at Server and Queues”, on
page 289.
AG-286 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.6 Ways To Limit Resource Usage at Server and Queues

You can create a complete set of limits at the server, and you can create another complete set of limits at each queue. You
can set hard and soft limits. See section 4.9.33.7.i, “The Soft Limits Preemption Level”, on page 183. You can limit
resource usage at the server and the queue level for the following:

• Running jobs

• Number of running jobs

• Number of running jobs (soft limit)

• Amount of each resource allocated for running jobs

• Amount of each resource allocated for running jobs (soft limit)

• Queued jobs (this means jobs that are waiting to run from that queue)

• Number of queued jobs

• Amount of each resource allocated for queued jobs

• Queued and running jobs (this means both jobs that are waiting to run and jobs that are running from that queue)

• Number of queued and running jobs

• Amount of each resource allocated for queued and running jobs

These limits can be applied to the following:

• The total usage at the server

• The total usage at each queue

• Amount used by a single user

• Generic users

• Individual users

• Amount used by a single group

• Generic groups

• Individual groups

• Amount used by a single project

• Generic projects

• Individual projects

5.15.1.6.i Limits at Queues

You can limit the number of jobs that are queued at a queue, and running at a queue, and that are both queued and running
at a queue.

You can limit the resources allocated to jobs that are queued at a queue, and running at a queue, and that are both queued
and running at a queue.

Jobs queued at a queue are counted the same whether they were submitted to that queue via the qsub command or its
equivalent API, moved to that queue via the qmove command or its equivalent API, or routed to that queue from another
queue.

When PBS requeues a job, it does not take limits into account.

Routing queues do not run jobs, so you cannot set a limit for the number of running jobs, or the amount of resources
being used by running jobs, at a routing queue.
PBS Professional 2022.1 Administrator’s Guide AG-287

Chapter 5 Using PBS Resources
5.15.1.6.ii Generic and Individual Limits

You can set a generic limit for groups, so that each group must obey the same limit. You can likewise set a generic limit
for users and projects. Each generic limit can be set separately at the server and at each queue. For example, if you have
two queues, the generic limit for the number of jobs a user can run be 4 at QueueA and 6 at QueueB.

You can set a different individual limit for each user, and you can set individual limits for groups and for projects. Each
user, group, and project can have a different individual limit at the server and at each queue.

You can use a combination of generic and individual project, user or group limits, at the server and at each queue. Within
the scope of the server or a queue, all projects, users or groups except the ones with the individual limits must obey the
generic limit, and the individual limits override the generic limits.

Example 5-13: Generic and individual user limits on running jobs at QueueA and QueueB

At QueueA:

• At QueueA, the generic user limit is 5

• At QueueA, Bob's individual limit is 8

• Tom has no individual limit set at QueueA; the generic limit applies

At QueueB:

• At QueueB, the generic user limit is 2

• At QueueB, Tom's individual limit is 1

• Bob has no individual limit at QueueB; the generic limit applies

This means:

• Bob can run 8 jobs at QueueA

• Bob can run 2 jobs at QueueB

• Tom can run 5 jobs at QueueA

• Tom can run 1 job at QueueB

5.15.1.6.iii Overall Limits

The overall limit places a cap on the total amount of the resource that can be used within the scope in question (server or
queue), regardless of whether project, user, or group limits have been reached. A project, user, or group at the server or
a queue cannot use any more of a resource for which the overall limit has been reached, even if that project, user, or
group limit has not been reached.

Example 5-14: Overall limit at server

Given the following:

• Overall server limit on running jobs is 100

• Bob's user limit is 10 running jobs

• 98 jobs are already running

• Bob is running zero jobs

This means:

• Bob can start only 2 jobs
AG-288 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.7 Precedence of Limits at Server and Queues

5.15.1.7.i Interactions Between Limits Within One Scope

Within the scope of a PBS object (server or queue), there is an order of precedence for limits when more than one applies
to a job. The order of precedence for the limits at a queue is the same as the order at the server. The following table
shows how limits interact within one scope:

An individual user limit overrides a generic user limit.

Example 5-15: Individual user limit overrides generic user limit

Given the following:

• Bob has a limit of 10 running jobs

• The generic limit is 5

This means:

• Bob can run 10 jobs

An individual group limit overrides a generic group limit in the same manner as for users.

If the limits for a user and the user's group are different, the more restrictive limit applies.

Example 5-16: More restrictive user or group limit applies

Given the following:

• Tom's user limit for running jobs is 8

• Tom's group limit is 7

This means:

• Tom can run only 7 jobs in that group

If a user belongs to more than one group, that user can run jobs up to the lesser of his user limit or the sum of the group
limits.

Example 5-17: User can run jobs in more than one group

Table 5-12: Limit Interaction Within One Scope

Individual
User

Generic
User

Individual
Group

Generic
Group

Individual
Project

Generic
Project

Individual User
Individual
user

Individual
user

More restrictive More
restrictive

More restric-
tive

More
restrictive

Generic User
Individual
user

Generic user More restrictive More
restrictive

More restric-
tive

More
restrictive

Individual Group
More restric-
tive

More restric-
tive

Individual
group

Individual
group

More restric-
tive

More
restrictive

Generic Group
More restric-
tive

More restric-
tive

Individual
group

Generic
group

More restric-
tive

More
restrictive

Individual Project
More restric-
tive

More restric-
tive

More restrictive More
restrictive

Individual
project

Individual
project

Generic Project
More restric-
tive

More restric-
tive

More restrictive More
restrictive

Individual
project

Generic
project
PBS Professional 2022.1 Administrator’s Guide AG-289

Chapter 5 Using PBS Resources
Given the following:

• Tom's user limit is 10 running jobs

• GroupA has a limit of 2 and GroupB has a limit of 4

• Tom belongs to GroupA and GroupB

This means:

• Tom can run 6 jobs, 2 in GroupA and 4 in GroupB

An individual project limit overrides a generic project limit, similar to the way user and group limits work.

Project limits are applied independently of user and group limits.

Example 5-18: Project limits are applied without regard to user and group limits

Given the following:

• Project A has a limit of 2 jobs

• Bob has an individual limit of 4 jobs

• Bob's group has a limit of 6 jobs

• Bob is running 2 jobs, both in Project A

This means:

• Bob cannot run any more jobs in Project A

5.15.1.7.ii Interactions Between Queue and Server Limits

If the limits for a queue and the server are different, the more restrictive limit applies.

Example 5-19: More restrictive queue or server limit applies

Given the following:

• Server limit on running jobs for generic users is 10

• Queue limit for running jobs from QueueA for generic users is 15

• Queue limit for running jobs from QueueB for generic users is 5

This means:

• Generic users at QueueA can run 10 jobs

• Generic users at QueueB can run 5 jobs

Example 5-20: More restrictive queue or server limit applies

Given the following:

• Bob's user limit on running jobs, set on the server, is 7

• Bob's user limit on running jobs, set on QueueA, is 6

This means:

• Bob can run 6 jobs from QueueA

5.15.1.8 Resource Usage Limit Attributes for Server and Queues

Each of the following attributes can be set at the server and each queue:

max_run
The maximum number of jobs that can be running.

max_run_soft
The soft limit on the maximum number of jobs that can be running.
AG-290 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
max_run_res.<resource name>
The maximum amount of the specified resource that can be allocated to running jobs.

max_run_res_soft.<resource name>
The soft limit on the amount of the specified resource that can be allocated to running jobs.

max_queued
The maximum number of jobs that can be queued and running. At the server level, this includes all jobs in the
complex. Queueing a job includes the qsub and qmove commands and the equivalent APIs.

max_queued_res.<resource name>
The maximum amount of the specified resource that can be allocated to queued and running jobs. At the server
level, this includes all jobs in the complex. Queueing a job includes the qsub and qmove commands and the
equivalent APIs.

queued_jobs_threshold
The maximum number of jobs that can be queued. At the server level, this includes all jobs in the complex.
Queueing a job includes the qsub and qmove commands and the equivalent APIs.

queued_jobs_threshold_res.<resource name>
The maximum amount of the specified resource that can be allocated to queued jobs. At the server level, this
includes all jobs in the complex. Queueing a job includes the qsub and qmove commands and the equivalent
APIs.

Each attribute above can be used to specify all of the following:

• An overall limit (at the queue or server)

• A limit for generic users

• Individual limits for specific users

• A limit for generic projects

• Individual limits for specific projects

• A limit for generic groups

• Individual limits for specific groups
PBS Professional 2022.1 Administrator’s Guide AG-291

Chapter 5 Using PBS Resources
For example, you can specify the limits for the number of running jobs:

• In the complex:

• The overall server limit (all usage in the entire complex) is 10,000

• The limit for generic users is 5

• The limit for Bob is 10

• The limit for generic groups is 50

• The limit for group GroupA is 75

• The limit for generic projects is 25

• The limit for Project A is 35

• At QueueA:

• The overall queue limit (all usage in QueueA) is 200

• The limit for generic users is 2

• The limit for Bob is 1

• The limit for generic groups is 3

• The limit for group GroupA is 7

• The limit for generic projects is 10

• The limit for Project A is 15

• At QueueB:

• The overall queue limit (all usage in QueueB) is 500

• The limit for generic users is 6

• The limit for Bob is 8

• The limit for generic groups is 15

• The limit for group GroupA is 11

• The limit for generic projects is 20

• The limit for Project A is 30

5.15.1.9 How to Set Limits at Server and Queues

You can set, add, and remove limits by using the qmgr command to set limit attributes.

5.15.1.9.i Syntax

Format for setting a limit attribute:

set server <limit attribute> = "[limit-spec=<limit>], [limit-spec=<limit>],..."

set <queue> <queue name> <limit attribute> = "[limit-spec=<limit>], [limit-spec=<limit>],..."

Format for adding a limit to an attribute:

set server <limit attribute> += "[limit-spec=<limit>], [limit-spec=<limit>],..."

set <queue> <queue name> <limit attribute> += "[limit-spec=<limit>], [limit-spec=<limit>],..."

Format for removing a limit from an attribute; note that the value for <limit> need not be specified when removing a
limit:

set server <limit attribute> -= "[limit-spec], [limit-spec],..."

set <queue> <queue name> <limit attribute> -= "[limit-spec], [limit-spec],..."
AG-292 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
Alternate format for removing a limit from an attribute; note that the value of <limit> used when removing a limit must
match the value of the limit:

set server <limit attribute> -= "[limit-spec=<limit>], [limit-spec=<limit>],..."

set <queue> <queue name> <limit attribute> -= "[limit-spec=<limit>], [limit-spec=<limit>],..."

where limit-spec specifies a user limit, a group limit, or an overall limit:

The limit-spec can contain spaces anywhere except after the colon (":").

If there are comma-separated limit-specs, the entire string must be enclosed in double quotes.

A username, group name, or project name containing spaces must be enclosed in quotes.

If a username, group name, or project name is quoted using double quotes, and the entire string requires quotes, the outer
enclosing quotes must be single quotes. Similarly, if the inner quotes are single quotes, the outer quotes must be double
quotes.

PBS_ALL is a keyword which indicates that this limit applies to the usage total.

PBS_GENERIC is a keyword which indicates that this limit applies to generic users or groups.

When removing a limit, the limit value does not need to be specified.

PBS_ALL and PBS_GENERIC are case-sensitive.

5.15.1.9.ii Examples of Setting Server and Queue Limits

Example 5-21: To set the max_queued limit on QueueA to 5 for total usage, and to limit user bill to 3:

Qmgr: s q QueueA max_queued = "[o:PBS_ALL=5], [u:bill =3]"

Example 5-22: On QueueA, set the maximum number of CPUs and the maximum amount of memory that user bill can
request in his queued jobs:

Qmgr: s q QueueA max_queued_res.ncpus ="[u:bill=5]", max_queued_res.mem =
"[u:bill=100mb]"

Example 5-23: To set a limit for a username with a space in it, and to set a limit for generic groups:

Qmgr: s q QueueA max_queued = '[u:"\PROG\Named User" = 1], [g:PBS_GENERIC=4]'

Example 5-24: To set a generic server limit for projects, and an individual server limit for Project A:

Qmgr: set server max_queued = '[p:PBS_GENERIC=6], [p:ProjectA=8]'

Table 5-13: Specifying Limits

Limit limit-spec

Overall limit o:PBS_ALL

Generic users u:PBS_GENERIC

An individual user u:<username>

Generic groups g:PBS_GENERIC

An individual group g:<group name>

Generic projects p:PBS_GENERIC

An individual project p:<project name>
PBS Professional 2022.1 Administrator’s Guide AG-293

Chapter 5 Using PBS Resources
5.15.1.9.iii Examples of Adding Server and Queue Limits

Example 5-25: To add an overall limit for the maximum number of jobs that can be queued at QueueA to 10:

Qmgr: s q QueueA max_queued += [o:PBS_ALL=10]

Example 5-26: To add an individual user limit, an individual group limit, and a generic group limit on queued jobs at
QueueA:

Qmgr: s q QueueA max_queued += "[u:user1= 5], [g:GroupMath=5],[g:PBS_GENERIC=2]"

Example 5-27: To add a limit at QueueA on the number of CPUs allocated to queued jobs for an individual user, and a
limit at QueueA on the amount of memory allocated to queued jobs for an individual user:

Qmgr: s q QueueA max_queued_res.ncpus += [u:tom=5], max_queued_res.mem += [u:tom=100mb]

Example 5-28: To add an individual server limit for Project B:

Qmgr: set server max_queued += [p:ProjectB=4]

5.15.1.9.iv Examples of Removing Server and Queue Limits

It is not necessary to specify the value of the limit when removing a limit, but you can specify the value of the limit.

Example 5-29: To remove the generic user limit at QueueA for queued jobs, use either of the following:

Qmgr: set queue QueueA max_queued -= [u:PBS_GENERIC]
Qmgr: set queue QueueA max_queued -= [u:PBS_GENERIC=2]

Example 5-30: To remove the limit on queued jobs at QueueA for Named User, use either of the following:

Qmgr: set queue QueueA max_queued -= [u:"\PROG\Named User"]
Qmgr: set queue QueueA max_queued -= [u:"\PROG\Named User"=1]

Example 5-31: To remove the limit at QueueA on the amount of memory allocated to an individual user, use either of the
following:

Qmgr: set queue QueueA max_queued_res.mem -= [u:tom]
Qmgr: set queue QueueA max_queued_res.mem -= [u:tom=100mb]

To remove the limit on the number of CPUs allocated to queued jobs for user bill, use either of the following:

Qmgr: set queue QueueA max_queued_res.ncpus -= [u:bill]
Qmgr: set queue QueueA max_queued_res.ncpus -= [u:bill=5]

Example 5-32: To remove a generic user limit and an individual user limit, use either of the following:

Qmgr: set queue QueueA max_queued - -= "[u:user1], [u:PBS_GENERIC]"
Qmgr: set queue QueueA max_queued -= "[u:user1=2], [u:PBS_GENERIC=4]"

Example 5-33: To remove the individual server limit for Project B, use either of the following:

Qmgr: set server max_queued -=[p:ProjectB]
Qmgr: set server max_queued -=[p:ProjectB=4]

5.15.1.10 Who Can Set Limits at Server and Queues

As with other server and queue attributes, only PBS Managers and Operators can set limit attributes.
AG-294 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.11 Viewing Server and Queue Limit Attributes

5.15.1.11.i Printing Server and Queue Limit Attributes

You can use the qmgr command to print the commands used to set the limit attributes at the server or queue.

Example 5-34: To print all the limit attributes for queue QueueA:

Qmgr: p q QueueA max_queued, max_queued_res

#

Create queues and set their attributes.

#

Create and define queue QueueA

#

create queue QueueA

set queue QueueA max_queued = "[o:PBS_ALL=10]"

set queue QueueA max_queued += "[u:PBS_GENERIC=2]"

set queue QueueA max_queued += "[u:bill=3]"

set queue QueueA max_queued += "[u:tom=15]"

set queue QueueA max_queued += "[u:user1=3]"

set queue QueueA max_queued += '[u:"\PROG\Named User"=1]'

set queue QueueA max_queued += "[g:PBS_GENERIC=2] "

set queue QueueA max_queued += "[g:GroupMath=5]"

set queue QueueA max_queued_res.ncpus = "[u:bill=5]"

set queue QueueA max_queued_res.ncpus += "[u:tom=5]"

set queue QueueA max_queued_res.mem = "[u:bill=100mb]"

set queue QueueA max_queued_res.mem += "[u:tom=100mb]"

5.15.1.11.ii Listing Server and Queue Limit Attributes

You can use the qmgr command to list the limit attributes for the queue or server.

Example 5-35: To list the max_queued and max_queued_res attributes for QueueA:

Qmgr: l q QueueA max_queued, max_queued_res

Queue: QueueA

max_queued = [o:PBS_ALL=10]

max_queued = [g:PBS_GENERIC=2]

max_queued = [g:GroupMath=5]

max_queued = [u:PBS_GENERIC=2]

max_queued = [u:bill=3]

max_queued = [u:tom=15]

max_queued = [u:user1=3]

max_queued = [u:"\PROG\Named User"=1]

max_queued_res.ncpus = [u:bill=5]

max_queued_res.ncpus = [u:tom=5]

max_queued_res.mem = [u:bill=5]

max_queued_res.mem = [u:bill=100mb]

max_queued_res.mem = [u:tom=100mb]
PBS Professional 2022.1 Administrator’s Guide AG-295

Chapter 5 Using PBS Resources
5.15.1.11.iii Using the qstat Command to View Queue Limit Attributes

You can use the qstat command to see the limit attribute settings for the queue or server.

Example 5-36: To see the settings for the max_queued and max_queued_res limit attributes for QueueA using the
qstat command:

qstat -Qf QueueA

Queue: QueueA

 ...

max_queued = [o:PBS_ALL=10]

max_queued = [g:PBS_GENERIC=2]

max_queued = [g:GroupMath=5]

max_queued = [u:PBS_GENERIC=2]

max_queued = [u:bill=3]

max_queued = [u:tom=3]

max_queued = [u:cs=3]

max_queued = [u:"\PROG\Named User"=1]

max_queued_res.ncpus = [u:bill=5]

max_queued_res.ncpus = [u:tom=5]

max_queued_res.mem = [u:bill=5]

max_queued_res.mem =[u:bill=100mb]

max_queued_res.mem =[u:tom=100mb]

5.15.1.12 How Server and Queue Limits Work

Affected jobs are jobs submitted by the user or group, or jobs belonging to a project, whose limit has been reached. The
following table shows what happens when a given limit is reached:

Table 5-14: Actions Performed When Limits Are Reached

Limit Action

Running jobs No more affected jobs are run at this server or queue until the number of affected running jobs drops
below the limit.

Queued jobs The queue does not accept any more affected jobs until the number of affected queued jobs drops below
the limit. Affected jobs submitted directly to the queue are rejected. Affected jobs in a routing queue
whose destination is this queue remain in the routing queue. If a job is requeued, the limit is ignored.

Resources for
running jobs

The queue does not run any more affected jobs until the limit would not be exceeded if the next affected
job were to start.

Resources for
queued jobs

The queue does not accept any more affected jobs until the limit would not be exceeded if the next
affected job were to start. Affected jobs submitted directly to the queue are rejected. Affected jobs in a
routing queue whose destination is this queue remain in the routing queue.
AG-296 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.13 Caveats and Advice for Server and Queue Limits

5.15.1.13.i Avoiding Overflow

On PBS server platforms for which the native size of a long is less than 64 bits, you should refrain from defining a limit
on a resource of type long whose cumulative sum over all queued jobs would exceed the storage capacity of the resource
variable. For example, if each submitted job were to request 100 hours of the cput resource, overflow would occur on a

32-bit platform when 5965 jobs (which is seconds) were queued.

5.15.1.13.ii Ensuring That Limits Are Effective

In order for limits to be effective, each job must specify each limited resource. This can be accomplished using defaults;
see section 5.9.3, “Specifying Job Default Resources”, on page 241. You can also use hooks; see the PBS Professional
Hooks Guide.

5.15.1.13.iii Array Jobs

An array job with N subjobs is considered to consume N times the amount of resources requested when it was submitted.
For example, if there is a server limit of 100 queued jobs, no user would be allowed to submit an array job with more than
100 subjobs.

5.15.1.13.iv Avoiding Job Rejection

Jobs are rejected when users, groups, or projects who have reached their limit submit a job in the following circum-
stances:

• The job is submitted to the execution queue where the limit has been reached

• The job is submitted to the complex, and the server limit has been reached

If you wish to avoid having jobs be rejected, you can set up a routing queue as the default queue. Set the server's
default_queue attribute to the name of the routing queue. See section 2.3.6, “Routing Queues”, on page 27.

5.15.1.13.v Do Not Mix Old And New Limits

The new limit attributes are incompatible with the old limit attributes. See section 5.15.1.15, “Old Limit Attributes:
Server and Queue Resource Usage Limit Attributes Existing Before Version 10.1”, on page 298. You cannot mix the use
of old and new resource usage limit attributes. This means that:

• If any old limit attribute is set, and you try to set a new limit attribute, you will get error 15141.

• If any new limit attribute is set, and you try to set an old limit attribute, you will get error 15141.

You must unset all of one kind in order to set any of the other kind.

5.15.1.13.vi Do Not Limit Running Time

Beware creating limits such as max_run_res.walltime or max_run_res.max_walltime. The results probably will not be
useful. You will be limiting the amount of walltime that can be requested by running jobs for a user, group, or project.
For example, if you set a walltime limit of 10 hours for group A, then group A cannot run one job requesting 5 hours and
another job requesting 6 hours.

5.15.1.14 Errors and Logging for Server and Queue Limits

5.15.1.14.i Error When Setting Limit Attributes

Attempting to set a new limit attribute while an old limit attribute is set:

"use new/old qmgr syntax, not both"

"Attribute name <new> not allowed. Older name <old> already set'

231 1–() 360000⁄
PBS Professional 2022.1 Administrator’s Guide AG-297

Chapter 5 Using PBS Resources
Attempting to set an old limit attribute while a new limit attribute is set:

"use new/old qmgr syntax, not both"

"Attribute name <old> not allowed: Newer name <new> already set''

5.15.1.14.ii Logging Events

Whenever a limit attribute is set or modified, the server logs the event, listing which attribute was modified and who
modified it.

Whenever a limit is reached, and would be exceeded by a job, the scheduler logs the event, listing the limit attribute and
the reason.

5.15.1.14.iii Queued Limit Error Messages

When a limit for queued jobs or resources allocated to queued jobs is reached, the command involved presents a mes-
sage. This command can be qsub, qmove or qalter.

5.15.1.14.iv Run Limit Error Messages

See “Run Limit Error Messages” on page 385 of the PBS Professional Reference Guide for a list of run limit error mes-
sages.

5.15.1.15 Old Limit Attributes: Server and Queue Resource Usage Limit

Attributes Existing Before Version 10.1

The old server and queue limit attributes discussed here existed in PBS Professional before Version 10.1. The old limit
attributes continue to function as they did in PBS Professional 10.0. These attributes are incompatible with the limit
attributes introduced in Version 10.1. See section 5.15.1.13.v, “Do Not Mix Old And New Limits”, on page 297 and sec-
tion 5.15.1.14.i, “Error When Setting Limit Attributes”, on page 297.

The following table shows how the old limit attributes are used:

Table 5-15: Resource Usage Limits Existing Before Version 10.1

Limit
Overall
Limit

Generic Users Generic Groups
Indivi
dual

Users

Indivi
dual

Group

Maximum number of running
jobs

max_running max_user_run max_group_run N/A N/A

Maximum number of running
jobs (soft limit)

N/A max_user_run_soft max_group_run_soft N/A N/A

Maximum amount of specified
resource allocated to running
jobs

N/A max_user_res max_group_res N/A N/A

Maximum amount of specified
resource allocated to running
jobs (soft limit)

N/A max_user_res_soft max_group_res_soft N/A N/A

Maximum number of queued
jobs

max_queuable N/A N/A N/A N/A

Maximum amount of specified
resource allocated to queued
jobs

N/A N/A N/A N/A N/A
AG-298 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.15.1.15.i Precedence of Old Limits

If an old limit is defined at both the server and queue, the more restrictive limit applies.

5.15.1.15.ii Old Server Limits

For details of these limits, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

max_running
The maximum number of jobs allowed to be selected for execution at any given time.

max_group_res,
max_group_res_soft

The maximum amount of the specified resource that all members of the same Linux group may consume simul-
taneously.

max_group_run,
max_group_run_soft

The maximum number of jobs owned by a Linux group that are allowed to be running from this server at one
time.

max_user_res,
max_user_res_soft

The maximum amount of the specified resource that any single user may consume.

max_user_run,
max_user_run_soft

The maximum number of jobs owned by a single user that are allowed to be running at one time.

5.15.1.15.iii Old Queue Limits

For details of these limits, see “Queue Attributes” on page 311 of the PBS Professional Reference Guide.

max_group_res,
max_group_res_soft

The maximum amount of the specified resource that all members of the same Linux group may consume simul-
taneously, in the specified queue.

max_group_run,
max_group_run_soft

The maximum number of jobs owned by a Linux group that are allowed to be running from this queue at one
time

max_queuable
The maximum number of jobs allowed to reside in the queue at any given time. Once this limit is reached, no
new jobs will be accepted into the queue.

max_user_res,
max_user_res_soft

The maximum amount of the specified resource that any single user may consume in submitting to this queue.

max_user_run,
max_user_run_soft

The maximum number of jobs owned by a single user that are allowed to be running at one time from this
queue.
PBS Professional 2022.1 Administrator’s Guide AG-299

Chapter 5 Using PBS Resources
5.15.2 Placing Resource Limits on Jobs

Jobs are assigned limits on the amount of resources they can use. Each limit is set at the amount requested or allocated
by default. These limits apply to how much the job can use on each vnode (per-chunk limit) and to how much the whole
job can use (job-wide limit). Limits are derived from both requested resources and applied default resources. For infor-
mation on default resources, see section 5.9.3, “Specifying Job Default Resources”, on page 241.

Each chunk's per-chunk limits determine how much of any resource can be used in that chunk. Per-chunk resource usage
limits are the amount of per-chunk resources requested, both from explicit requests and from defaults.

The consumable resources requested for chunks in the select specification are summed, and this sum makes a job-wide
limit. Job resource limits from sums of all chunks override those from job-wide defaults and resource requests.

Job resource limits set a limit for per-job resource usage. Various limit checks are applied to jobs. If a job's job resource
limit exceeds queue or server restrictions, it will not be put in the queue or accepted by the server. If, while running, a job
exceeds its limit for a consumable or time-based resource, it will be terminated.

5.15.2.1 How Limits Are Derived

Job resource limits are derived in this order from the following:

1. Explicitly requested job-wide resources (e.g. -l resource=value)

2. The following built-in chunk-level resources in the job's select specification (e.g. -l select =...)

mem

mpiprocs

ncpus

nodect

vmem

3. The server's default_qsub_arguments attribute

4. The queue's resources_default.<resource name>

5. The server's resources_default.<resource name>

6. The queue's resources_max.<resource name>

7. The server's resources_max.<resource name>

The server's default_chunk.<resource name> does not affect job-wide limits.

You can use a hook to set a per-chunk limit, using any hook that operates on jobs, such as a job submission hook, a mod-
ify job hook, etc.

5.15.2.2 Configuring Per-job Limits at Server and Queue

You can set per-job limits on the amount of each resource that any one job can use. You can set these limits at the server
and at each queue. For example, you can specify the following limits:

• Jobs at the server can use no more than 48 hours of CPU time

• Jobs at QueueA can use no more than 12 hours of CPU time

• Jobs at QueueA must request more than 2 hours of CPU time

To set these limits, specify values for the server's resources_max.<resource name> attribute and each queue's
resources_max.<resource name> and resources_min.<resource name> attributes. The server does not have a
resources_min.<resource name> attribute. To set the maximum at the server, the format is:

Qmgr: set server resources_max.<resource name> = value
AG-300 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
To set the maximum and minimum at the queue, the format is:

Qmgr: set queue <queue name> resources_max.<resource name> = value

Qmgr: set queue <queue name> resources_min.<resource name> = value

For example, to set the 48 hour CPU time limit:

Qmgr: set server resources_max.cput = 48:00:00

5.15.2.2.i Running Time Limits at Server and Queues

For non-shrink-to-fit jobs, you can set limits on walltime at the server or queue. To set a walltime limit for
non-shrink-to-fit jobs at the server or a queue, use resources_max.walltime and resources min.walltime.

For shrink-to-fit jobs, running time limits are applied to max_walltime and min_walltime, not walltime. To set a running
time limit for shrink-to-fit jobs, you cannot use resources_max or resources_min for max_walltime or min_walltime.
Instead, use resources_max.walltime and resources_min.walltime. See section 4.9.42.6, “Shrink-to-fit Jobs and
Resource Limits”, on page 212.

5.15.2.3 Configuring Per-job Resource Limit Enforcement at Vnodes

For a job, enforcement of resource limits is per-MoM, not per-vnode. So if a job requests 3 chunks, each of which has
1MB of memory, and all chunks are placed on one host, the limit for that job for memory for that MoM is 3MB. There-
fore one chunk can be using 2 MB and the other two using 0.5MB and the job can continue to run.

Job resource limits can be enforced for single-vnode jobs, or for multi-vnode jobs that are using a PBS-aware MPI. See
the following table for an overview. Memory limits are handled differently depending on the operating system. See "Job
Memory Limit Enforcement on Linux” on page 302. The ncpus limit can be adjusted in several ways. See "Job ncpus
Limit Enforcement” on page 303 for a discussion. The following table summarizes how resource limits are enforced at
vnodes:

5.15.2.4 Job Memory Limit Enforcement

You may wish to prevent jobs from swapping memory. To prevent this, you can set limits on the amount of memory a
job can use. Then the job must request an amount of memory equal to or smaller than the amount of physical memory
available.

Table 5-16: Resource Limit Enforcement at Vnodes

Limit What Determines When Limit Is Enforced
Scope of

Limit
Enforcement

Method

file size automatically per-process setrlimit()

vmem If job requests or inherits vmem job-wide MoM poll

pvmem If job requests or inherits pvmem per-process setrlimit()

pmem If job requests or inherits pmem per-process setrlimit()

pcput If job requests or inherits pcput per-process setrlimit()

cput If job requests or inherits cput job-wide MoM poll

walltime If job requests or inherits walltime job-wide MoM poll

mem if $enforce mem in MoM's config job-wide MoM poll

ncpus if $enforce cpuaverage, $enforce cpuburst, or both, in MoM's
config. See "Job ncpus Limit Enforcement” on page 303.

job-wide MoM poll
PBS Professional 2022.1 Administrator’s Guide AG-301

Chapter 5 Using PBS Resources
PBS measures and enforces memory limits in two ways:

• On each host, by setting OS-level limits, using the limit system calls

• By periodically summing the usage recorded in the /proc entries.

Enforcement of mem is dependent on the following:

• Adding $enforce mem to the MoM's config file

• The job requesting or inheriting a default value for mem

You can configure default qsub parameters in the default_qsub_arguments server attribute, or set memory defaults at
the server or queue. See section 5.9.3, “Specifying Job Default Resources”, on page 241.

5.15.2.4.i Job Memory Limit Enforcement on Linux

By default, memory limits are not enforced. To enforce mem resource usage, put $enforce mem into MoM's config
file, and set defaults for mem so that each job inherits a value if it does not request it.

The mem resource can be enforced at both the job level and the vnode level. The job-wide limit is the smaller of a
job-wide resource request and the sum of that for all chunks. The vnode-level limit is the sum for all chunks on that host.

Job-wide limits are enforced by MoM polling the working set size of all processes in the job's session. Jobs that exceed
their specified amount of physical memory are killed. A job may exceed its limit for the period between two polling
cycles. See section 3.1.2, “Configuring MoM Polling Cycle”, on page 38.

Per-process limits are enforced by the operating system kernel. PBS calls the kernel call setrlimit() to set the limit
for the top process (the shell), and any process started by the shell inherits those limits. PBS does not know whether the
kernel kills a process for exceeding the limit.

If a user submits a job with a job limit, but not per-process limits (qsub -l cput=10:00) then PBS sets the per-pro-
cess limit to the same value. If a user submits a job with both job and per-process limits, then the per-process limit is set
to the lesser of the two values.

Example: a job is submitted with qsub -lcput=10:00

• There are two CPU-intensive processes which use 5:01 each. The job will be killed by PBS for exceeding the cput
limit. 5:01 + 5:01 is greater than 10:00.

• There is one CPU-intensive process which uses 10:01. It is very likely that the kernel will detect it first.

• There is one process that uses 0:02 and another that uses 10:00. PBS may or may not catch it before the kernel does
depending on exactly when the polling takes place.

If a job is submitted with a pmem limit, or without pmem but with a mem limit, PBS uses the setrlimit(2) call to
set the limit. For most operating systems, setrlimit() is called with RLIMIT_RSS which limits the Resident Set
(working set size). This is not a hard limit, but advice to the kernel. This process becomes a prime candidate to have
memory pages reclaimed.

If vmem is specified and no single process exceeds that limit, but the total usage by all the processes in the job does, then
PBS enforces the vmem limit, but not the pvmem limit, and logs a message. PBS uses MoM polling to enforce vmem.

The limit for pmem is enforced if the job specifies, or inherits a default value for, pmem. When pmem is enforced, the
limit is set to the smaller of mem and pmem. Enforcement is done by the kernel, and applies to any single process in the
job.

The limit for pvmem is enforced if the job specifies, or inherits a default value for, pvmem. When pvmem is enforced,
the limit is set to the smaller of vmem and pvmem. Enforcement is done by the kernel, and applies to any single process
in the job.
AG-302 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
The following table shows which OS resource limits can be used by each operating system.

Note that RLIMIT_RSS, RLIMIT_UMEM, and RLIMIT_VMEM are not standardized (i.e. do not appear in the Open
Group Base Specifications Issue 6).

5.15.2.4.ii Memory Enforcement on cpusets

There should be no need to do so: either the vnode containing the memory in question has been allocated exclusively (in
which case no other job will also be allocated this vnode, hence this memory) or the vnode is shareable (in which case
using mem_exclusive would prevent two CPU sets from sharing the memory). Essentially, PBS enforces the equiva-
lent of mem_exclusive by itself.

5.15.2.5 Job ncpus Limit Enforcement

Enforcement of the ncpus limit (number of CPUs used) is available on all platforms. The ncpus limit can be enforced
using average CPU usage, burst CPU usage, or both. By default, enforcement of the ncpus limit is off. See “$enforce
<limit>” on page 245 of the PBS Professional Reference Guide.

5.15.2.5.i Average CPU Usage Enforcement

Each MoM enforces cpuaverage independently, per MoM, not per vnode. To enforce average CPU usage, put
$enforce cpuaverage in MoM's config file. You can set the values of three variables to control how the average
is enforced. These are shown in the following table.

Enforcement of cpuaverage is based on the polled sum of CPU time for all processes in the job. The limit is checked
each poll period. Enforcement begins after the job has had average_trialperiod seconds of walltime. Then, the job is
killed if the following is true:

(cput / walltime) > (ncpus * average_cpufactor + average_percent_over / 100)

Table 5-17: RLIMIT Usage in PBS Professional

OS file mem/pmem vmem/pvmem cput/pcput

Linux RLIMIT_FSIZE RLIMIT_RSS RLIMIT_AS RLIMIT_CPU

Table 5-18: Variables Used in Average CPU Usage

Variable Type Description Default

cpuaverage Boolean If present (=True), MoM enforces ncpus when the average
CPU usage over the job's lifetime usage is greater than the
specified limit.

False

average_trialperiod integer Modifies cpuaverage. Minimum job walltime before enforce-
ment begins. Seconds.

120

average_percent_over integer Modifies cpuaverage. Percentage by which the job may
exceed ncpus limit.

50

average_cpufactor float Modifies cpuaverage. ncpus limit is multiplied by this factor
to produce actual limit.

1.025
PBS Professional 2022.1 Administrator’s Guide AG-303

Chapter 5 Using PBS Resources
5.15.2.5.ii CPU Burst Usage Enforcement

To enforce burst CPU usage, put $enforce cpuburst in MoM's config file. You can set the values of four vari-
ables to control how the burst usage is enforced. These are shown in the following table.

MoM calculates an integer value called cpupercent each polling cycle. This is a moving weighted average of CPU
usage for the cycle, given as the average percentage usage of one CPU. For example, a value of 50 means that during a
certain period, the job used 50 percent of one CPU. A value of 300 means that during the period, the job used an average
of three CPUs.

new_percent = change_in_cpu_time*100 / change_in_walltime

weight = delta_weight[up|down] * walltime/max_poll_period

new_cpupercent = (new_percent * weight) + (old_cpupercent * (1-weight))

delta_weight_up is used if new_percent is higher than the old cpupercent value. delta_weight_down is used if
new_percent is lower than the old cpupercent value. delta_weight_[up|down] controls the speed with which cpuper-
cent changes. If delta_weight_[up|down] is 0.0, the value for cpupercent does not change over time. If it is 1.0, cpu-
percent will take the value of new_percent for the poll period. In this case cpupercent changes quickly.

However, cpupercent is controlled so that it stays at the greater of the average over the entire run or ncpus*100.

max_poll_period is the maximum time between samples, set in MoM's config file by $max_check_poll, with a
default of 120 seconds.

The job is killed if the following is true:

new_cpupercent > ((ncpus * 100 * delta_cpufactor) + delta_percent_over)

The following entries in MoM's config file turn on enforcement of both average and burst with the default values:

$enforce cpuaverage

$enforce cpuburst

$enforce delta_percent_over 50

$enforce delta_cpufactor 1.05

$enforce delta_weightup 0.4

$enforce delta_weightdown 0.1

$enforce average_percent_over 50

$enforce average_cpufactor 1.025

$enforce average_trialperiod 120

Table 5-19: Variables Used in CPU Burst

Variable Type Description Default

cpuburst Boolean If present (=True), MoM enforces ncpus when CPU burst usage
exceeds specified limit.

False

delta_percent_over integer Modifies cpuburst. Percentage over limit to be allowed. 50

delta_cpufactor float Modifies cpuburst. ncpus limit is multiplied by this factor to
produce actual limit.

1.5

delta_weightup float Modifies cpuburst. Weighting factor for smoothing burst usage
when average is increasing.

0.4

delta_weightdown float Modifies cpuburst. Weighting factor for smoothing burst usage
when average is decreasing.

0.1
AG-304 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
The cpuburst and cpuaverage information show up in MoM's log file, whether or not they have been configured in
mom_priv/config. This is so a site can test different parameters for cpuburst/cpuaverage before enabling enforce-
ment. You can see the effect of any change to the parameters on your job mix before "going live".

Note that if the job creates a child process whose usage is not tracked by MoM during its lifetime, CPU usage can appear
to jump dramatically when the child process exits. This is because the CPU time for the child process is assigned to its
parent when the child process exits. MoM may see a big jump in cpupercent, and kill the job.

5.15.2.5.iii Job Memory Limit Restrictions

Enforcement of mem resource usage is available on all Linux platforms, but not Windows.

5.15.2.6 Changing Job Limits

The qalter command is used to change job limits, with these restrictions:

• A non-privileged user may only lower the limits for job resources

• A Manager or Operator may lower or raise requested resource limits, except for per-process limits such as pcput and
pmem, because these are set when the process starts, and enforced by the kernel.

• When you lengthen the walltime of a running job, make sure that the new walltime will not interfere with any exist-
ing reservations etc.

See “qalter” on page 130 of the PBS Professional Reference Guide.

5.15.3 Limiting the Number of Jobs in Queues

If you limit the number of jobs in execution queues, you can speed up the scheduling cycle. You can set an individual
limit on the number of jobs in each queue, or a limit at the server, and you can apply these limits to generic and individual
users, groups, and projects, and to overall usage. You specify this limit by setting the queued_jobs_threshold queue or
server attribute. See section 5.15.1.9, “How to Set Limits at Server and Queues”, on page 292.

If you set a limit on the number of jobs that can be queued in execution queues, we recommend that you have users sub-
mit jobs to a routing queue only, and route jobs to the execution queue as space becomes available. See section 4.9.39,
“Routing Jobs”, on page 204.

5.16 Where Resource Information Is Kept

Definitions and values for PBS resources are kept in the following files, attributes, and parameters. Attributes specifying
resource limits are not listed here. They are listed in section 5.15.1.8, “Resource Usage Limit Attributes for Server and
Queues”, on page 290 and section 5.15.1.15, “Old Limit Attributes: Server and Queue Resource Usage Limit Attributes
Existing Before Version 10.1”, on page 298.

5.16.1 Files

<sched_priv directory>/sched_config

resources: line

In order for scheduler to be able to schedule using a resource, the resource must be listed in the resources:
line. Format:
PBS Professional 2022.1 Administrator’s Guide AG-305

Chapter 5 Using PBS Resources
resources: "<resource name>, [<resource name>, ...]"
Example:

resources: "ncpus, mem, arch, [...], FloatLicense, SharedScratch"

The only exception is host-level Boolean resources, which do not need to appear in the resources: line.

server_dyn_res: line

Each dynamic server resource must be listed in its own server_dyn_res: line. Format:

server_dyn_res: "<resource name> !<path to script/command>"
Example:

server_dyn_res: "SharedScratch !/usr/local/bin/serverdynscratch.pl"

Version 2 Configuration Files

Contain vnode information. See section 3.4.3, “Version 2 Vnode Configuration Files”, on page 46.

5.16.2 MoM Configuration Parameters

$cputmult <factor>
This sets a factor used to adjust CPU time used by each job. This allows adjustment of time charged and limits
enforced where jobs run on a system with different CPU performance. If MoM's system is faster than the refer-
ence system, set factor to a decimal value greater than 1.0. For example:

$cputmult 1.5

If MoM's system is slower, set factor to a value between 1.0 and 0.0. For example:

$cputmult 0.75

$wallmult <factor>
Each job's walltime usage is multiplied by this factor. For example:

$wallmult 1.5

5.16.3 Attributes

Resources are tracked in the following attributes:

Table 5-20: Attributes Where Resources Are Tracked

Resource Being
Tracked

Attribute Name

Server and
Queue

Vnode Job Reservation

Amount of each resource avail-
able for use at the object
(server, queue, vnode)

resources_available
.<resource name>

resources_available.
<resource name>

Amount of each resource allo-
cated to jobs running and exit-
ing at the object (server, queue,
vnode)

resources_assigned
.<resource name>

resources_assigned
.<resource name>

Amount of each resource used
by the job

resources_used
.<resource
name>
AG-306 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.17 Viewing Resource Information

You can see attribute values of resources for the server, queues, and vnodes using the qmgr or pbsnodes commands.
The value in the server, queue, or vnode resources_assigned attribute is the amount explicitly requested by running and
exiting jobs and, at the server and vnodes, started reservations.

You can see job attribute values using the qstat command. The value in the job's Resource_List attribute is the
amount explicitly requested by the job. See "Resources Requested by Job" on page 241 in the PBS Professional Admin-
istrator’s Guide.

Amount of each job-wide
resource that is assigned to any
job that does not explicitly
request the resource

resources_default.<
resource name>

Amount of each host-level
resource that is assigned to
each chunk of any job where
that does not explicitly request
the resource

default_chunk.<reso
urce name>

List of resources requested by
the object (job or reservation)

Resource_List.
<resource
name>

Resource_List
.<resource
name>

List of chunks for the job.
Each chunk shows the name of
the vnode from which it is
taken along with the host-level,
consumable resources allocated
from that vnode.

exec_vnode

List of vnodes and resources
allocated to them to satisfy the
chunks requested for this reser-
vation or occurrence

resv_nodes

Table 5-20: Attributes Where Resources Are Tracked

Resource Being
Tracked

Attribute Name

Server and
Queue

Vnode Job Reservation
PBS Professional 2022.1 Administrator’s Guide AG-307

Chapter 5 Using PBS Resources
The following table summarizes how to find resource information:

Every consumable resource, for example mem, can appear in four PBS attributes. These attributes are used in the fol-
lowing elements of PBS:

5.17.1 Resource Information in Accounting Logs

For a complete description of the resource information in the PBS accounting logs, see Chapter 12, "Accounting", on
page 529.

5.17.2 Resource Information in Daemon Logs

At the end of each job, the server logs the values in the job's resources_used attribute, at event class 0x0010.

Upon startup, MoM logs the number of CPUs reported by the OS, at event class 0x0002.

At the end of each job, the MoM logs cput and mem used by each job, and cput used by each job task, at event class
0x0100.

Table 5-21: How to View Resource Information

Location Item to View Command

server default_chunk, default_qsub_arguments,
resources_available, resources_assigned,
resources_default

qmgr, qstat, pbsnodes

scheduler sched_config file Favorite editor or viewer

queues default_chunk, resources_available, resources_assigned,
resources_default

qmgr, qstat

MoM and vnodes resources_available, sharing, pcpus, resources_assigned qmgr, pbsnodes

mom_config file Favorite editor or viewer

job Resource_List qstat

reservation Resource_List pbs_rstat -f

accounting resources_assigned entry in accounting log Favorite editor or viewer

Table 5-22: Values Associated with Consumable Resources

Attribute Vnode Queue Server Accounting Log Job Scheduler

resources_available Yes Yes Yes Yes

resources_assigned Yes Yes Yes Yes

resources_used Yes Yes Yes

Resource_List Yes Yes
AG-308 PBS Professional 2022.1 Administrator’s Guide

Using PBS Resources Chapter 5
5.17.3 Finding Current Value

You can find the current value of a resource by subtracting the amount being used from the amount that is defined.

Use the qstat -Bf command, and grep for resources_available.<resource name> and resources_used.<resource
name>. To find the current amount not being used, subtract resources_used.<resource name> from
resources_available.<resource name>.

5.17.4 Restrictions on Viewing Resources

• Dynamic resources shown in qstat do not display the current value, they display the most recent retrieval.
Dynamic resources have no resources_available.<resource name> representation anywhere in PBS.

5.18 Resource Recommendations and Caveats

• It is not recommended to set the value for resources_available.ncpus. The exception is when you want to oversub-
scribe CPUs. See section 8.6.5.1.iii, “How To Share CPUs”, on page 415.

• It is not recommended to change the value of ncpus at vnodes on a multi-vnoded machine.

• If you want to limit how many jobs are run, or how much of each resource is used, use the new limits. See section
5.15, “Managing Resource Usage”, on page 283.

• Do not attempt to set values for resources_available.<resource name> for dynamic resources.

• Externally-managed application licenses may not be available when PBS thinks they are. PBS doesn't actually
check out externally-managed licenses; the application being run inside the job's session does that. Between the
time that the scheduler queries for licenses, and the time the application checks them out, another application may
take the licenses. In addition, some applications request varying amounts of tokens during a job run.

• Jobs may be placed on different vnodes from those where they would have run in earlier versions of PBS. This is
because a job's resource request will no longer match the same resources on the server, queues and vnodes.

• While users cannot request custom resources that are created with the r flag, jobs can inherit these as defaults from
the server or queue resources_default.<resource name> attribute.

• A qsub or pbs_rsub hook does not have resources inherited from the server or queue resources_default or
default_chunk as an input argument.

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag, whether that resource was requested
by the user or came from default_qsub_arguments. Be aware that creating custom resources with permission
flags and then using these in the default_qsub_arguments server attribute can cause jobs to be rejected. See sec-
tion 5.14.2.4, “Specifying Resource Visibility”, on page 257.

• Numeric server dynamic resources cannot have the q or n flags set. This would cause these resources to be
underused. These resources are tracked automatically by scheduler.

• The behavior of several command-line interfaces is dependent on resource permission flags. These interfaces are
those which view or request resources or modify resource requests:

pbsnodes

Users cannot view restricted host-level custom resources.

pbs_rstat

Users cannot view restricted reservation resources.

pbs_rsub

Users cannot request restricted custom resources for reservations.
PBS Professional 2022.1 Administrator’s Guide AG-309

Chapter 5 Using PBS Resources
qalter

Users cannot alter a restricted resource.

qmgr

Users cannot print or list a restricted resource.

qselect

Users cannot specify restricted resources via -l Resource_List.

qsub

Users cannot request a restricted resource.

qstat

Users cannot view a restricted resource.

• Do not set values for any resources, except those such as shared scratch space or floating application licenses, at the
server or a queue, because the scheduler will not allocate more than the specified value. For example, if you set
resources_available.walltime at the server to 10:00:00, and one job requests 5 hours and one job requests 6 hours,
only one job will be allowed to run at a time, regardless of other idle resources.

• If a job is submitted without a request for a particular resource, and no defaults for that resource are set at the server
or queue, and either the server or queue has resources_max.<resource name> set, the job inherits that maximum
value. If the queue has resources_max.<resource name> set, the job inherits the queue value, and if not, the job
inherits the server value.

• When setting static vnode resources on multi-vnode machines, follow the rules in section 3.4.5, “Configuring Vnode
Resources”, on page 51.

• Do not create custom resources with the same names or prefixes that PBS uses when you create custom resources for
specific systems.

• Do not set resources_available.place for a vnode.

• On the parent vnode, all values for resources_available.<resource name> should be zero (0), unless the resource
is being shared among child vnodes via indirection.

• Default qsub arguments and server and queue defaults are applied to jobs at a coarse level. Each job is examined to
see whether it requests a select and a place. This means that if you specify a default placement, such as excl, with
-lplace=excl, and the user specifies an arrangement, such as pack, with -lplace=pack, the result is that the
job ends up with -lplace=pack, NOT -lplace=pack:excl. The same is true for select; if you specify a
default of -lselect=2:ncpus=1, and the user specifies -lselect=mem=2GB, the job ends up with -lse-
lect=mem=2GB.
AG-310 PBS Professional 2022.1 Administrator’s Guide

6

Configuring and Using PBS

with Cgroups

6.1 Chapter Contents

6.1 Chapter Contents . AG-311
6.2 Introduction to Cgroups. AG-311
6.3 Why Use Cgroups? . AG-312

6.3.1 What PBS Can Do With Cgroups. AG-313
6.3.2 Examples of Using Cgroups . AG-313

6.4 How PBS Uses Cgroups . AG-313
6.4.1 Vnode Creation via Cgroups Hook . AG-313
6.4.2 Job Life Cycle with Cgroups . AG-314
6.4.3 Cgroup Subsystems . AG-314

6.5 Configuring Cgroups. AG-316
6.5.1 Prerequisites for Cgroups Hook . AG-316
6.5.2 Enabling and Tuning Hook According to Host and/or Vnode Type . AG-317
6.5.3 Cgroups Hook Configuration Parameters. AG-319
6.5.4 Finish Up . AG-344
6.5.5 Managing GPUs or Xeon Phi via Cgroups. AG-344

6.6 Configuring MPI for Cgroups . AG-350
6.6.1 Steps to Integrate MPI with PBS via ssh . AG-351

6.7 Managing Jobs with Cgroups . AG-352
6.7.1 Requesting Memory . AG-352
6.7.2 Limit Enforcement . AG-352
6.7.3 Examples of Requesting Cores and Hyperthreads . AG-352
6.7.4 Spawning Job Processes . AG-352

6.8 Caveats and Errors. AG-353
6.8.1 Interactions Between Suspend/resume and the cpuset Subsystem. AG-353
6.8.2 Caveats for Shrinking a Job on a Host . AG-353
6.8.3 Caveats for Using CUDA. AG-353
6.8.4 Do Not Change ncpus When cpuset Subsystem is Enabled. AG-353
6.8.5 Cgroups Hook Prevents Epilogue from Running . AG-353
6.8.6 Errors . AG-354

6.2 Introduction to Cgroups

The term cgroup (pronounced see-group, short for control groups) refers to a Linux kernel feature that was introduced in
version 2.6.24.
PBS Professional 2022.1 Administrator’s Guide AG-311

Chapter 6 Configuring and Using PBS with Cgroups
A cgroup may be used to manage access to system resources and to account for resource usage. The root cgroup is the
ancestor of all cgroups and provides access to all system resources. When a cgroup is created, it inherits the configuration
of its parent. When a process assigned to a cgroup creates a child process, the child is automatically assigned to its par-
ent's cgroup.

Once created, a cgroup may be configured to restrict access to a subset of its parent's resources. These restrictions may
include such things as memory, NUMA nodes, and devices. These different resource classes are grouped into categories
referred to as cgroup subsystems. When processes are assigned to a cgroup, the kernel enforces all configured restric-
tions.

In Cgroups v1, supported by this cgroups hook, the kernel supports a number of cgroup subsystems. A cgroup subsystem
is a kernel component that modifies the behavior of the processes in a cgroup. Subsystems are sometimes also known as
cgroup resource controllers or cgroup controllers. We describe PBS support for cgroup subsystems in this chapter.

PBS provides a hook that allows you to take advantage of cgroups. When the cgroups hook is enabled, it runs on every
node assigned to the job. When a job is started, the hook creates a set of directories for the configured subsystems based
on the resource requirements of the job and then places the job process within the cgroup.

While the job is running, the kernel, not PBS, enforces resource restrictions, based on the cgroup settings written by the
hook earlier. The cgroups hook can be configured to periodically poll the job's cgroup and update resource usage. When
the job finishes, the hook writes final resource usage to the job's resources_used attribute, and removes the cgroup
directories it created to house the job.

6.3 Why Use Cgroups?

Without cgroups, Linux can define sets of processes as related, but cannot define a set of loosely coupled processes as a
single entity. Without cgroups, PBS uses Linux sessions to track job processes, but less accurately than with cgroups.
Linux sessions impose the following limitations:

• Restrictions on how processes have to be related: sessions must encompass a parent process and nothing else but its
progeny; it is impossible to merge a job session and another session created by for example sshd. However, PBS
can manage more than one session per host.

• Inability to set resource usage restrictions for the entire set of processes belonging to a job; while you can set
per-process limits on memory or CPU time, you cannot limit a session or a group of sessions belonging to a job.

• Inability to make job sessions be inescapable containers: the setsid call or command will make processes leave
the current session and create their own unrelated session; users and applications can use it without restriction.

With cgroups, all of these issues can be avoided:

• Since cgroups offer a well-established and general way of grouping processes together, cgroup controllers can
implement precise resource usage accounting, resource usage limits, and process control for the entire cgroup. The
cgroup also persists until it is explicitly destroyed, allowing some resource usage counters in a cgroup to outlive the
processes that were members of the cgroup.

• Root can add processes to a cgroup regardless of the relationship between the processes, so a daemon can force pro-
cesses spawned by OS services to join an existing cgroup. A process or thread spawned by a process appears at first
in the cgroup of the parent process, and a non-root process cannot use any library call to escape the cgroup unless
another cgroup grants that process permission to change cgroups.
AG-312 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.3.1 What PBS Can Do With Cgroups

• More correctly identify which processes are part of a PBS job, even when libraries mislead PBS by creating pro-
cesses that move into their own sessions that are not registered with PBS

• Make processes spawned through external systemd daemons, including ssh, fully join a job

• Prevent job processes from using more resources than specified; for example disallow bursting above limits set
according to the resources requested by the job when it was submitted

• Keep job processes within defined memory and CPU boundaries, ensuring there is minimal interference between
jobs sharing a host, in order to provide consistent job run times

• More accurately track and account for resource usage, even at the end of the job, when the job processes have exited
and can no longer be investigated

• Enable or disable access to devices

• Ensure jobs leave enough resources for OS processes, to avoid disrupting OS services and turning nodes into "black
hole nodes" that will no longer correctly run jobs

In addition to leveraging the kernel's cgroups support, the cgroups hook can also optionally discover the hardware con-
figuration of a host and create child vnodes that reflect the hardware configuration, for example a number of CPU sockets
with locally attached memory and GPU device.

This allows configuring the server and scheduler for optimal job performance. This functionality is an extension of the
functionality formerly supported by the cpuset MoM (since the cpuset controller is now just one of the cgroup controllers
in the kernel).

6.3.2 Examples of Using Cgroups

• Limit all of a job's processes to 6 CPUs and 6GB of RAM on vnode A

• Ensure that if two MPI jobs share a host, they do not pin processes to the same CPUs

• Limit access to GPU devices to only those assigned to the job by the cgroups hook

• Partition a host into a number of socket-aligned vnodes for optimal placement of jobs

• Pair processor, memory, and coprocessors like Xeon Phi (deprecated) and GPUs for optimal job placement

6.4 How PBS Uses Cgroups

6.4.1 Vnode Creation via Cgroups Hook

The hook creates a child vnode for each NUMA node on a host when all of the following conditions are true:

• The hook is enabled on the host

• At least one subsystem is enabled on the host

• The vnode_per_numa_node parameter is set to true

• The hook finds a NUMA node on the host

For example, if the host named "myhost" has one NUMA node, you end up with two vnodes to represent the host: the
parent vnode, named "myhost", and a vnode to represent the NUMA node, named "myhost[0]".
PBS Professional 2022.1 Administrator’s Guide AG-313

Chapter 6 Configuring and Using PBS with Cgroups
6.4.1.1 Caveats for Vnode Creation

• Make sure that you run the cgroups hook only after you have created the parent vnode.

• If the cgroups hook creates vnodes for a host, do not use any other method to create child vnodes for that host. For
example, do not create special vnodes for GPUs.

6.4.2 Job Life Cycle with Cgroups

6.4.2.1 Running Single-host Jobs with Cgroups

When PBS runs a single-host job, the following happens:

1. On the host assigned to the job, PBS creates a cgroup for each enabled subsystem. PBS assigns resources (CPUs,
memory, and optionally co-processors such as GPUs or Xeon Phis (deprecated)) to the job on the host. It sets the
required limits on resource usage in the cgroups created.

2. PBS places the top job process in each created cgroup. Cgroup semantics then automatically ensure that the progeny
of the top job process are also confined to the correct cgroups.

3. The cgroup periodic hook collects resource usage information about the cgroups and hands it over to MoM; MoM
uses these values when it reports job resource usage to the server to set the resources_used attribute.

4. When the job has finished, the cgroups hook reports CPU and memory usage to MoM and cleans up the cgroups.

6.4.2.2 Running Multi-host Jobs with Cgroups

When PBS runs a multi-host job, the following happens:

1. PBS creates a cgroup on each host assigned to the job. PBS assigns resources to the job and sets the required cgroup
limits.

2. PBS places the top job process in the cgroup on the first node (the primary execution host). Any child processes that
the job spawns on the primary execution host remain in the cgroup, even if they use calls to change Linux session.

3. The job creates processes on the remote hosts. If PBS integration of multihost applications has been done correctly,
those processes will either:

• Be created as children of MoM through a call to the TM API tm_spawn call (possibly indirectly through the
use of pbs_tmrsh)

• Be spawned by an external service and then registered as part of the job through a call to tm_attach (possibly
indirectly through the use of pbs_attach)

In both cases, the cgroups hook migrates the processes into the correct cgroups; the kernel then ensures their prog-
eny remain in the cgroups.

4. On each host, the cgroup periodic hook collects usage information about the cgroups and hands it over to MoM; the
primary execution host MoM periodically queries the resource usage on sister nodes, sums the contributions of all
the nodes, and reports it to the server, which publishes it in the resources_used attribute.

5. When the job has finished, on each host, the cgroups hook reports final CPU and memory usage to the local MoM
and cleans up the job cgroups. The primary execution host MoM collects resource usage information from all nodes,
sums it across nodes, and sends it to the server, which makes a final update to the resources_used attribute.

6.4.3 Cgroup Subsystems

The cgroups hook can manage the subsystems listed in "Subsystems Managed by the Cgroups Hook” on page 315.
AG-314 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
For other subsystems, listed in "Subsystems Used by Other Software” on page 315, the hook can only create and destroy
per-job cgroups and move job processes into those cgroups; apart from that, it does not manage any values in those
cgroups. Some of these subsystems are used by other software.

6.4.3.1 Cgroup Subsystems Managed by the Cgroups Hook

The cgroups hook can manage the following subsystems:

6.4.3.2 Cgroup Subsystems Not Managed by Cgroups Hook

When subsystems not managed by the cgroups hook are enabled, the cgroups hook only creates per-job cgroup directo-
ries, ensures job processes are moved into them, and deletes the per-job cgroup when the job ends. Managing any param-
eters is left to other hooks or software.

If you run another hook, for example the container hook, that expects per-job cgroups to have been created by the
cgroups hook for a set of subsystems, make sure you enable these subsystems on the host.

The cgroups hook can create and destroy cgroups for, and move processes into, the following subsystems:

Table 6-1: Subsystems Managed by the Cgroups Hook

Subsystem Functionality Used by Cgroups Hook

cpu Set quota for CPU usage and/or set CPU usage shares for each job, to allow the Linux CFS
scheduler to implement fair sharing

See section 6.5.3.7, “cpu Subsystem”, on page 329.

cpuacct Monitor CPU resource usage

See section 6.5.3.5, “cpuacct Subsystem”, on page 326.

cpuset Allocate and restrict jobs to specific CPU and optionally NUMA memory domains

See section 6.5.3.6, “cpuset Subsystem”, on page 326.

devices Restrict job access to only specific character and block devices

See section 6.5.3.8, “devices Subsystem”, on page 331.

memory Set kernel-enforced per-job limits for memory usage; monitor memory usage

See section 6.5.3.9, “memory Subsystem”, on page 333.

memsw Set kernel-enforced per-job limits for swap usage; monitor swap usage

See section 6.5.3.10, “memsw Subsystem”, on page 337.

hugetlb Set kernel-enforced per-job limits for huge pages usage; monitor huge pages usage

See section 6.5.3.11, “hugetlb Subsystem”, on page 340.

Table 6-2: Subsystems Used by Other Software

Subsystem Functionality Used by Other Software

freezer Can be used to suspend entire job

blkio Can track and limit usage and bandwidth to specific disk block devices

pids Can be used to track and limit number of processes in a job
PBS Professional 2022.1 Administrator’s Guide AG-315

Chapter 6 Configuring and Using PBS with Cgroups
6.5 Configuring Cgroups

You manage the behavior of the cgroups hook across your complex by setting parameters in the cgroups hook configura-
tion file.

6.5.1 Prerequisites for Cgroups Hook

6.5.1.1 Ensure that Cgroups v1 are Available

Many Linux distributions have cgroups v1 available by default; for others you may need to install and enable cgroups.
We provide some tips here for making sure that cgroups are available on your system:

• Verify that you have cgroups configured on your system:
cat /proc/mounts | grep cgroup

You should see cpuset, cpuacct, memory, etc. enabled.

Each subsystem that will be enabled on the host by the configuration file should be listed (except memsw; see
below).

If you do not have cgroups available, install them.

You may need to set your kernel flags so that they enable cgroup support.

• A cgroup subsystem may be disabled at boot time. To check for this, look for "cgroup_disable" entries in
/proc/cmdline and take appropriate actions to remove it from the kernel command line parameters.

• The memsw subsystem is not a separate controller but an option of the memory controller that is present or absent
depending on the kernel options at boot time.

If you plan to enable the memsw subsystem, to verify whether swap accounting and limits are available:

cat /proc/mounts | grep cgroup | grep memory | awk 'BEGIN {FS=" "} {print $2}' | head -n 1 | xargs
--replace=dir ls dir/memory.memsw.usage_in_bytes

If this lists a file, then memory plus swap accounting is turned on. If instead, ls reports it cannot access the file, then
kernel support for it is disabled; in some kernels it is disabled by default.

If memsw support is disabled, either add "swapaccount=1" to the kernel command line parameters to enable it and
reboot the node, or ensure that the memsw section of the configuration file is disabled for the host.

• Make sure that cgroups will survive a reboot. Test whether cgroups survive by rebooting the host, then look to see
whether cgroups are available. If they are not available, refer to the documentation for your Linux distribution.

6.5.1.2 Ensure that PBS Is Already Installed and Started

Make sure that PBS is installed and started.

net_cls Can be used to tag network packets sent by the job with a job-specific class identifier that can be
used in e.g. firewall configuration

net_prio Can be used to dynamically set the priority of network traffic generated by each job

perf_events Allow the perf tool to monitor a PBS Professional job as a group

Table 6-2: Subsystems Used by Other Software

Subsystem Functionality Used by Other Software
AG-316 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.2 Enabling and Tuning Hook According to Host and/or

Vnode Type

You can use just one configuration file across a complex containing hosts with different configurations. You can enable
the hook for a specific subset of the hosts in your complex. You can also tune the hook by enabling each subsystem inde-
pendently according to host. For example if you have some hosts with swap, and some without, and some hosts with
GPUs and some without, you can enable the memsw subsystem only for the hosts that have swap, and enable the
devices subsystem only for the hosts that have GPUs.

You can similarly tune the hook for any parameter that takes true and false. So for example you can tune the soft_limit
parameter in the memory subsystem so that soft_limit evaluates to true for certain hosts.

6.5.2.1 Vnode Types for Cgroups Hook

You can label each host to reflect its characteristics, then use the label when specifying which hosts are included in a sub-
set.

The labeling mechanism is a single string in a file. If PBS_MOM_HOME is defined, the string is in a file named
PBS_MOM_HOME/mom_priv/vntype on MoM's host, and if not, it is in in a file on MoM's host in
PBS_HOME/mom_priv/vntype.

We refer to this string as a "vnode type", and the hook stores the value of the string in the variable "vntype". You can
define any vnode type you need. Write your vntypes using only alphanumerical characters and the delimiters ".", "-" and
"_".

6.5.2.1.i Vnode Type File and vntype Resource

The resources_available.vntype vnode resource and the vntype file contents are related but different tools. Do not try
to set the vntype file contents by changing resources_available.vntype for the vnode (this will not work). If you want
the value of resources_available.vntype for the vnode to reflect the contents of the vntype file on the execution host,
you can propagate the file string to the resource by setting the propagate_vntype_to_server parameter in the hook's
configuration file to True.

6.5.2.2 Tuning Where Hook, Subsystems, and Parameters are

Enabled

For each of the true/false parameters, and for the swappiness parameter, you can specify whether a host or vnode type
is in, or not in, the list for which the parameter evaluates to true. A list is one or more comma-separated host or vnode
names, specified using one of these:

"vntype in:"

"vntype not in:"

"host in:"

"host not in:"

Whitespace around the entries is ignored. You can use hostnames or vntypes, or Python fnmatch sequences, which
allows "*" or "?" wildcards. Do not use commas inside an entry.

Example 6-1: If you have four vntypes "compute_swap", "compute_noswap", "gpu_swap", "gpu_noswap", you can set
the swappiness parameter for the memory subsystem using

"swappiness" : "vntype in: *_swap"

and set the vnode_per_numa_node parameter in the main section using:

 "vnode_per_numa_node" : "vntype in: gpu_*"
PBS Professional 2022.1 Administrator’s Guide AG-317

Chapter 6 Configuring and Using PBS with Cgroups
6.5.2.2.i Enabling the Hook and Subsystems

For the hook and each subsystem, the enabled parameter can be modified using the exclude_vntypes, exclude_hosts,
include_hosts, and run_only_on_hosts parameters. In the following hierarchy, each parameter modifies the previous
parameters. Always specify these parameters in this order in the configuration file:

1. enabled

2. exclude_hosts

3. exclude_vntypes

4. include_hosts

5. run_only_on_hosts

6.5.2.2.ii exclude_vntypes

Modifies the enabled parameter. JSON list of patterns for vntypes to exclude from enabled group. For example, to
include all hosts except those without cgroups (marked with "no_cgroup" in their vntype):

"enabled" : true,

"exclude_vntypes": ["*no_cgroup*"]

This is equivalent to:

"enabled" : "vntype not in: *no_cgroup*"

6.5.2.2.iii exclude_hosts

Modifies the enabled parameter. List of hosts to exclude from membership group. For example, to enable all hosts with
GPUs (marked with "gpu" in their vntype), except for the hosts marked for testing:

"enabled" : "vntype in: gpu"

"exclude_hosts" : ["gpu_test*"]

6.5.2.2.iv include_hosts

Modifies and overrides the enabled, exclude_vntypes, and exclude_hosts parameters. List of hosts to include in
membership group, despite having been among those excluded. For example, to include two "thin" hosts in the cpuset
subsystem list, despite the fact that they did not qualify to be enabled in the "fat" group:

"cpuset" : {

"enabled" : "vntype in: fat"

"include_hosts" : ["test_cpuset_thin01", "test_cpuset_thin02"]

This is equivalent to:

"cpuset" : {

"enabled" : "vntype not in: thin"

"include_hosts" : ["test_cpuset_thin01", "test_cpuset_thin02"]

6.5.2.2.v run_only_on_hosts

Modifies the enabled, exclude_vntypes, exclude_hosts, and include_hosts parameters. Provides additional restric-
tion on hosts otherwise qualified for inclusion in membership list. Any host included must pass all membership tests.
For example, to include only hosts that are both "willing" and among the list of "able01", "able02", and "able03":

"enabled" : "vntype in: willing"

"run_only_on_hosts" : ["able01", "able02", "able03"]
AG-318 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.2.2.vi Hook and Subsystem Enablement Tuning Parameters

The following parameters let you tune whether the hook and each subsystem is enabled on any host and/or vntype. You
can set each parameter in this table for the entire hook and for each subsystem individually. Here we show the defaults in
the configuration file, and in the code, as they apply to whether the hook itself is enabled. We do not list the defaults for
each subsystem; they may be different.

6.5.3 Cgroups Hook Configuration Parameters

The cgroups hook configuration file contains parameters that the hook uses as guides for its behavior, and parameters
that the hook uses when it sets values in the cgroups directories. For any parameter that is unset in the configuration file,
the cgroups hook uses defaults built into the hook. This file must conform to JSON syntax.

The cgroups hook configuration file is named pbs_cgroups.json before it is imported as the hook configuration file.
After the file is imported as the hook configuration file, PBS names it pbs_cgroups.CF.

Table 6-3: Cgroups Hook Global and Subsystem Membership Configuration
Parameters

Parameter
Name

Default Value:
Configuration

File

Default
Value:
Hook

Description

enabled true True When true, the cgroups hook is enabled on the host.

Can be modified using the exclude_vntypes, exclude_hosts,
include_hosts, and run_only_on_hosts parameters.

See section 6.5.2, “Enabling and Tuning Hook According to
Host and/or Vnode Type”, on page 317.

exclude_hosts [] [] Modifies the enabled parameter.

If not empty, specifies a list of hosts where the hook should be
disabled.

See section 6.5.2.2.iii, “exclude_hosts”, on page 318

exclude_vntypes ["no_cgroups"] [] Modifies the enabled parameter.

Specifies a list of vnode types for which the cgroups hook
should be disabled.

See section 6.5.2.2.ii, “exclude_vntypes”, on page 318

include_hosts Modifies the enabled and exclude_hosts parameters.

If not empty, specifies a list of hosts where the hook should be
enabled despite earlier exclusion.

See section 6.5.2.2.iv, “include_hosts”, on page 318

run_only_on_hosts [] [] Overrides the enabled, exclude_hosts, exclude_vntypes,
and include_hosts parameters.

If not empty, specifies a list of hosts limiting the hosts for
which the cgroups hook should be enabled to the matching
hosts.

See section 6.5.2.2.v, “run_only_on_hosts”, on page 318
PBS Professional 2022.1 Administrator’s Guide AG-319

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.1 Global Parameters for Cgroups Hook

Here are the cgroups hook configuration parameters, except for the membership tuning parameters described above.
Please note that some parameters may be different from those shown here:

Table 6-4: Cgroups Hook Configuration File Global Parameters

Parameter Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled true True When true, the cgroups hook is enabled on the host.

Can be modified using the exclude_vntypes,
exclude_hosts, include_hosts, and run_only_on_hosts
parameters. See section 6.5.2, “Enabling and Tuning Hook
According to Host and/or Vnode Type”, on page 317.

cgroup_lock_file "/var/spool/pb
s/mom_priv/c
groups.lock"

This file ensures that only one hook event can manipulate
the cgroups at any one time. The filesystem on which this
file resides must support file locking.

cgroup_prefix "pbs_jobs" "pbs_jobs" The parent directory under each cgroup subsystem where
job cgroups are created. If the memory subsystem is
located at /sys/fs/cgroup/memory, the memory cgroup for
job 1.foo is found in the /sys/fs/cgroup/mem-
ory/pbs_jobs.service/<job ID>/1.foo directory.

kill_timeout 10 10 Maximum number of seconds the cgroups hook spends
attempting to kill job processes before destroying cgroups

server_timeout 15 15 Maximum number of seconds the cgroups hook spends
attempting to fetch node comments from the server

nvidia-smi "/usr/bin/nvidi
a-smi"

The location of the nvidia-smi command on nodes sup-
porting NVIDIA GPU devices.

See section 6.5.5, “Managing GPUs or Xeon Phi via
Cgroups”, on page 344.

online_offlined_nodes true false When enabled, if the periodic hook manages to confirm
there are no orphan groups, it will online vnodes again if it
can confirm they were earlier offlined by the cgroups hook.

See section 6.5.3.4, “Automatic Onlining of Fixed Vnodes”,
on page 325.

periodic_resc_update true false When set to true, the hook periodically posts updates of the
job's resource usage on this host to MoM. When set to
false, the usage is sent to MoM only when the job ends

use_hyperthreads false false When set to true, all CPU threads are made available to
jobs. When false, only the first hyperthread of each core is
made visible to jobs.

See section 6.5.3.3, “Configuring Hyperthreading Support”,
on page 323.
AG-320 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
ncpus_are_cores false "false" When true, resources_available.ncpus of a vnode is the
number of cores, and the hook assigns all threads of each
core to a job.

When false, resources_available.ncpus is the number of
CPU threads available to jobs, and the hook assigns individ-
ual CPU threads to jobs.

See section 6.5.3.3, “Configuring Hyperthreading Support”,
on page 323.

vnode_per_numa_node false "false" When set to true, each NUMA node is represented by a sep-
arate vnode, and the host is managed by a resourceless par-
ent vnode.

When set to false, the entire host is represented by a single
vnode.

See section 6.5.3.2, “Setting vnode_per_numa_node”, on
page 323.

propagate_vntype_to_s
erver

"true" When set to true, the contents of the vntype file on the local
host are propagated to the resources_available.vntype
vnode resource.

When set to false, the vntype file contents are not propa-
gated to the vnode resources_available.vntype resource.

See section 6.5.2.1.i, “Vnode Type File and vntype
Resource”, on page 317.

Table 6-4: Cgroups Hook Configuration File Global Parameters

Parameter Name

Default
Value:
Config

File

Default
Value:
Hook

Description
PBS Professional 2022.1 Administrator’s Guide AG-321

Chapter 6 Configuring and Using PBS with Cgroups
We show a sample file in section 6.5.3.12, “Sample Cgroups Hook Configuration File”, on page 342. You can also export
and look at the installed PBS cgroups hook configuration file:

qmgr -c "export hook pbs_cgroups application/x-config default" >pbs_cgroups.json

You can edit this file and change its parameters, then read it back in:

qmgr -c "import hook pbs_cgroups application/x-config default pbs_cgroups.json"

Note that if your configuration file is incomplete or not present, hook behavior may differ from what is expected.

manage_rlimit_as true "true" When set to true, the cgroups hook resets the RLIMIT_AS
process limit for task processes to the value of pvmem
requested for the job, or to unlimited if pvmem is not
requested.

Requires a kernel that supports the prlimit system call.

When set to false, limits set by MoM are not changed.

Set this to true when you enable the memsw subsystem.
Otherwise you can set it to false. When it is false, MoM
sets RLIMIT_AS to Resource_List.pvmem if specified,
otherwise Resource_List.vmem.

ngpus_ext_managed false "false" Allows you to manage resources_available.ngpus using
something other than the cgroups hook.

When set to true:

• The discover_gpus parameter is disabled

• The hook never sets resources_available.ngpus on
the vnodes of the host

• The hook does not attempt to assign individual GPUs
to jobs; the hook will allow a job on a node regardless
of the ngpus resources requested by the job

See section 6.5.5.6, “Not Using Cgroups to Manage GPUs”,
on page 349.

discover_gpus true "true" Enables or disables call to nvidia-smi. When set to
true, nvidia-smi is called. When set to false, speeds the
process of device discovery when the devices subsystem is
enabled on a GPU-less host.

Disabled when ngpus_ext_managed parameter set to
true.

Table 6-4: Cgroups Hook Configuration File Global Parameters

Parameter Name

Default
Value:
Config

File

Default
Value:
Hook

Description
AG-322 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.3.2 Setting vnode_per_numa_node

When this is false, all resources of the host are presented to the server as a single vnode (the parent vnode). In a large
complex, minimizing the number of vnodes makes it faster for the scheduler to select nodes for jobs, and if large parallel
jobs span a set of small hosts used exclusively by one job at a time, there is little advantage in making subdivisions of the
host visible to the server and scheduler.

However, on clusters where execution hosts run more than one job at a time, you can take advantage of hosts made up of
a number of separate NUMA nodes. (A NUMA node is a set of CPUs with uniform access speed and latency to a set of
local memory and PCIe resources. Usually a NUMA node maps to a socket in a multi-socket computer, but some proces-
sors integrate more than one NUMA node on a single socket. On both AMD and Intel processors, the number of NUMA
nodes per socket also depends on BIOS configuration, which allows tuning the size of a NUMA node to the workload.
The cgroups hook does not decide how many NUMA nodes there are; it relies on the Linux kernel's view of the NUMA
nodes on a host.)

When this parameter is true, the scheduler is able to improve application performance in these ways:

• Run small jobs only on single-NUMA-node vnodes

• Give parallel applications smaller than a host exclusive use of their NUMA nodes

• Run jobs that request GPUs on vnodes where the CPUs are on the socket directly connected to the GPU's PCIe bus

When vnode_per_numa_node is true, the host is presented to the server as a parent vnode that has no resources, plus
a number of child vnodes that are aligned to NUMA nodes and hold specific CPU, memory, and coprocessor resources
such as GPUs or Intel Xeon Phi (deprecated) processors.

The scheduler can still spread a single chunk across several vnodes on the same host. To ensure that a job is placed on
only one NUMA node, use -lplace=group=vnode. You can also group using custom resources that identify larger sets of
well-connected vnodes.

The main drawback to enabling vnode_per_numa_node is the increase in the number of vnodes in a cluster, which
may slow down the scheduler, and make the output of pbsnodes larger and more difficult to interpret. A second drawback
is that certain classes of jobs will no longer fit in one vnode, making it more complex to ensure they are still placed in a
well-connected set of vnodes.

6.5.3.3 Configuring Hyperthreading Support

Hyperthreading can increase the throughput for some applications; it can also allow the operating system to retain access
to some idle CPU threads even when PBS jobs use every core. If you disable hyperthreading in the BIOS, the kernel
must share the only visible thread in each core with PBS jobs. On the other hand,

• Hyperthreading makes it more complicated to run applications that get no performance benefits from it, especially
on clusters where some nodes are hyperthread-enabled and others are not

• On a host that runs more than one job, for parallel applications, hyperthreading that is not tightly managed can have
severe negative impacts on performance if the threads of a single core are running processes from unrelated applica-
tions

This is why the cgroups hook supports three different models of hyperthreading support:

"No hyperthreads" behavior

use_hyperthreads disabled

In this model PBS makes only the first thread of each core visible to PBS jobs, so if your workload cannot leverage
hyperthreading well, you don't need to disable hyperthreading in the BIOS. The other CPU threads are still usable
by the operating system, which means throughput is better than if hyperthreading support is disabled in the BIOS.

The value of resources_available.ncpus reflects the number of cores associated with a vnode, minus the cores
whose threads have been marked as reserved by using exclude_cpus in the cpuset section of the configuration file.

This model is different from "Assign whole cores to jobs" behavior only when the cpuset subsystem is enabled.
PBS Professional 2022.1 Administrator’s Guide AG-323

Chapter 6 Configuring and Using PBS with Cgroups
"Default behavior"

use_hyperthreads enabled and ncpus_are_cores disabled

This mode mimics the behavior you would get without the cgroups hook, as well as the behavior of the former
cpuset MoM.

The value of resources_available.ncpus reflects the number of CPU threads available on a vnode. For applica-
tions to request all threads of N cores, they must request 2*N ncpus on 2-way hyperthreaded hosts, or N ncpus on
hosts where hyperthreading is disabled. The cgroups hook tries to allocate those threads from the minimum number
of cores.

The main use case of this mode is a workload consisting of many single-threaded jobs for which running one job per
thread rather than one job per core improves throughput. For example, on a host with a total of 24 2-way hyper-
threaded cores, you can run 48 unrelated jobs instead of 24. The 48 jobs will run slower than if you ran only 24, but
the total throughput might still be greater than if you had run 24 jobs.

"Assign whole cores to jobs" behavior

use_hyperthreads enabled and ncpus_are_cores enabled

In this model, hyperthreads are exposed to applications within a job, but one CPU of ncpus maps to all the threads
of a single core. The cgroups hook assigns each CPU core exclusively to one job, but within a job the processes see
all CPU threads of the assigned cores and can either choose to ignore hyperthreading or leverage it.

This is the easiest model to use when you do not need to map more than one job on a single core to increase through-
put.

The value of resources_available.ncpus reflects the number of cores associated with a vnode, minus the cores
whose threads have been marked as reserved by using exclude_cpus in the cpuset section of the configuration file.

This model is often preferred.

This model is different from "No hyperthreads" behavior only when the cpuset subsystem is enabled.

6.5.3.3.i Mixing Hyperthreading Models in a Complex

If you have a mixed workload or complex where you want to run some high-throughput single-threaded jobs, and some
that take advantage of hyperthreading:

• You can tune your hook configuration file in order to partition your complex, where:

• Some hosts are configured with ncpus_are_cores disabled, to run high-throughput single-threaded workloads

• Other hosts are configured with ncpus_are_cores enabled

• You can allow jobs to request hyperthreaded hosts based on whether or not ncpus_are_cores is enabled
AG-324 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
You can include hyperthreading information in each host's vnode type string in its vntype file, so that the cgroups hook
parameters use_hyperthreads and ncpus_are_cores evaluate correctly to true or false for each host. You can set a
resource on each host to indicate how hyperthreads are handled on that host, so that jobs can request the hyperthreading
they want. You can also use this resource to associate hosts with queues, so that job submitters can specify a queue
instead of requesting a resource. The string in the vntype file is probably going to be used for multiple characteristics
such as GPUs, swap, etc., so you probably don't want to propagate it to resources_available.vntype.

Example 6-2: You use the custom resource ht to indicate whether and what kind of hyperthreads are available, and you
use "ht" or "nohyper" in the vntype file to indicate whether hyperthreads exist. You can associate queues with hosts
according to host configuration. If you have some hosts with hyperthreading and some without, some hosts with all
threads of a core assigned to one job and some hosts without, and some hosts with GPUs and some without, you
might end up with the following:

In our example, none of the job submitters care about whether their jobs run on hosts with GPUs; the GPU machines
are here just to illustrate how you might use the vntype file string for more than one aspect of a host.

Jobs that want hyperthreads and want all of the threads for each core can request "ht=ht_by_core" in the select state-
ment, or they can request or be routed to the queue named " ht_core_q".

Single-threaded jobs that are I/O bound and don't mind sharing a core can request "ht=ht_by_thread", or they can
request or be routed to the queue named "ht_thread_q".

Single-threaded jobs that want non-hyperthreaded cores can request "ht=core", or they can request or be routed to
the queue named "core_q".

6.5.3.4 Automatic Onlining of Fixed Vnodes

When cleaning up a job, if the cgroups hook fails to kill all processes within a cgroup, it cannot destroy the job's cgroups.
If that happens, it offlines the vnodes on the host to prevent the scheduler from sending new jobs to the vnodes; since
resources_assigned is no longer accurate for the vnodes, the cgroups hook might reject the jobs. The cgroups hook
then periodically attempts to clean up these orphaned cgroups.

When the online_offlined_nodes parameter is enabled, the hook automatically onlines the vnodes once no more
orphaned cgroups exist, if the node comment confirms that the cgroups hook offlined the vnodes. When this parameter is
disabled, it leaves the node offline; you can manually online vnodes again later after confirming the host is healthy.

Table 6-5: Example of Mixing Hyperthreading Models

Host use_hyperthreads ncpus_are_cores vntype file resources_available.ht queue name

hosta true true gpu_ht ht_by_core ht_core_q

hostb true true compute_ht ht_by_core ht_core_q

hoste true false gpu_ht ht_by_thread ht_thread_q

hostf true false compute_ht ht_by_thread ht_thread_q

hostc false true gpu_nohyper core core_q

hostd false true compute_nohyper core core_q

hostg false false gpu_nohyper core core_q

hosth false false compute_nohyper core core_q
PBS Professional 2022.1 Administrator’s Guide AG-325

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.5 cpuacct Subsystem

The cpuacct subsystem enables per-job CPU time accounting, through per-cgroup usage counters provided by the ker-
nel. Advantages:

• The kernel maintains per-cgroup usage counters, so MoM doesn't have to sum the usage of each job process

• MPI libraries or applications that use setsid to detach processes from existing sessions do not cause inaccurate
resource usage accounting, since the processes are still seen as part of the job

• A session spawning a child session that registers itself to PBS (not necessary with cgroups) does not cause some
CPU time to be counted twice incorrectly at the end of the job

• Usage accounting does not rely on MoM polling, and usage accumulated after the last poll cycle is still counted.
(When the cpuacct subsystem is not used, CPU time for tm_attached processes is counted only until the last
MoM poll cycle)

• Short MoM polling cycles are not required for accurate accounting at the end of the job

By default this subsystem is enabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 6.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parameters”,
on page 319.

6.5.3.6 cpuset Subsystem

The cpuset subsystem restricts jobs to specific CPUs and optionally memory sockets allocated to them by the hook.

 Advantages:

• Libraries know which set of CPUs are available for process pinning, so when a vnode is shared between multiple
jobs, libraries don't try to pin more than one job to the same CPUs. For example, if you have two 4-CPU jobs and an
8-CPU vnode, they won't both try to pin themselves on CPUs 0, 1, 2, and 3.

• Strict job isolation is enforced; it is impossible for a job to steal CPU resources from another job on the same host,
since the Linux scheduler will only run processes on the designated CPUs. If a job requests N CPUs and then creates
N*2 processes, the job's processes will compete with each other for CPU resources, instead of disturbing other jobs.

• Since job processes are restricted to specific CPUs and not left to wander over the entire host, the default "first touch
node local" memory allocation policy can minimize memory latency; for jobs that do not span NUMA nodes, pin-
ning processes to CPUs to avoid non-local memory accesses is no longer even necessary.

Disadvantages: if you want to overcommit CPU resources, for example by setting resources_available.ncpus to 128
on a host that has 64 CPU threads, you cannot use the cpuset subsystem.

Note that there can be a problem when using the cpuset subsystem and preemption via suspend and resume. See section
6.8.1, “Interactions Between Suspend/resume and the cpuset Subsystem”, on page 353.

By default this subsystem is enabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 6.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parameters”,
on page 319.

6.5.3.6.i Using Memory Fences for Job Memory Requests

You can set memory fences around jobs by setting the mem_fences parameter to true. When true, the cgroups hook
sets the cpuset.mems to only the NUMA nodes assigned to the job, preventing jobs from using memory from other
NUMA nodes. When false, cpuset.mems encompasses all NUMA nodes present on the host. This parameter is false
by default.

Using job memory fences maximizes application performance, and mimics the behavior of the former cpuset MoM most
closely.

Problems can arise when mem_fences is set to true but some jobs can still straddle nodes and grab memory on a node
where a fenced job runs. In this case the straddling job can cause the fenced job not to have enough memory available,
and the fenced job can die.
AG-326 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
Recommendations when using memory fences for job requests:

• Do not enable mem_fences when vnode_per_numa_node is disabled, unless all jobs request less memory per
ncpus requested than the average available per ncpus. When vnode_per_numa_node is disabled, the scheduler
will not track to which sockets memory is assigned for existing jobs, and cgroup memory limits also do not allow
discerning to what vnodes memory was assigned for existing jobs. If fences are enabled, that can lead to jobs getting
killed when jobs fenced on one NUMA node require more than is available there.

• Precisely match job chunk specifications to vnodes, and/or run only a combination of jobs that use
-lplace=group=vnode for small jobs and -lplace=excl for larger jobs. Do not allow the scheduler to split chunks
across several vnodes. If a job requests -lncpus=1:mem=2GB and the ncpus are allocated on vnode node[0] but the
memory is partially allocated on vnode node[1], memory fences are not going to enforce node local memory alloca-
tions. Memory fences can cause jobs to fail if some jobs straddle vnodes and share vnodes with jobs entirely con-
fined to one vnode. For example, if job B is allocated 1GB of memory on node node[0] and 63GB of memory on
node[1], the kernel may let the job allocate 64GB on node[0] instead, causing memory allocations for jobs confined
to node[0] to fail through no fault of their own.

• When erecting memory fences and using huge pages, install utilities to ensure the correct amount of huge pages are
present on NUMA nodes allocated to jobs; if the huge pages still available are on the wrong nodes, jobs may fail.

Without memory fences, processes in a cpuset still have a strong preference to allocate memory on the NUMA node of
the first process to access the memory, unless memory on that NUMA node is depleted, when the kernel will satisfy
requests using memory on other NUMA nodes.

Disabling memory fences is the safest option to ensure that jobs do not fail because they cannot request enough memory.
This can happen when another job, possibly one using more than one vnode, grabs the memory first.

The drawback of not having memory fences is that when unanticipated off-node allocations do happen, a job will not fail
but will silently use remote memory and run slower; you may prefer these jobs to fail, so that you can address the root
cause rather than just run jobs too slowly, especially for large parallel jobs that should never cause such off-node alloca-
tions.

If you wish to rely on first touch local node memory placement to work most of the time and would rather see jobs still
run rather than fail when remote memory allocations become inevitable, disable memory fences.

Recommendations when not using memory fences for job requests:

• If you disable memory fences, you must appropriately set kernel tunables governing how the OS uses memory for
caching files; see section 6.5.3.6.iii, “Memory Spreading for OS File Caching”, on page 328.

• When using large memory pages (see section 6.5.3.11, “hugetlb Subsystem”, on page 340) you must ensure that
enough large pages are always available on the NUMA nodes where they are needed to ensure best performance.

6.5.3.6.ii Using Memory Fences for OS File Caching

Pages allocated by the kernel to cache files accessed by processes have their own fences, controlled by the
mem_hardwall parameter. In theory, placing these on remote NUMA nodes has less deleterious effects, both because
memory latency to these pages is less important, and also because a job on foreign NUMA nodes can in theory reuse
these pages fairly easily, since the kernel can discard the cached contents of the file to mark the memory free again (but
possibly only after writing out dirty cache to disk, which may take a while).

By default mem_hardwall is set to false, which allows the operating system the freedom to use memory on all nodes to
cache files for any process. If you want to isolate jobs to get more repeatable performance, you can enable the
mem_hardwall parameter, so that a cgroup can cache files using pages on only the NUMA nodes assigned to it.
PBS Professional 2022.1 Administrator’s Guide AG-327

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.6.iii Memory Spreading for OS File Caching

By default memory_spread_page is disabled for a cpuset, which means that file cache allocated for a process in the
cgroup will preferentially be allocated on the NUMA node where the process that causes the file to be cached is currently
running. This minimizes I/O latency to the buffer cache, but may create hotspots on certain NUMA nodes where file
cache is concentrated, reducing the free memory immediately available for application memory allocations. If the kernel
cannot reuse the file cache rapidly enough, the concentration of file cache may cause memory to be allocated off-node,
which can slow application performance.

You can enable the memory_spread_page parameter to reduce file cache hotspots by spreading file cache allocation
across the NUMA nodes that can be used by the cgroup. This may cause a slight increase in latency for accessing cached
files.

To control whether pages are spread only on the NUMA nodes assigned to the job, or on the entire host, use the
mem_hardwall parameter. Set this to true to spread pages only on the NUMA nodes assigned to the job.

6.5.3.6.iv Allowing Zero CPU Jobs

Some job submitters may want to run "weightless" jobs that consume few CPU resources; these jobs are assigned zero
CPUs. The cpuset subsystem allows these jobs to run in the parent cpuset that has access to all CPUs and memories.
However, these processes break down the barriers that otherwise ensure jobs are isolated from other jobs, so you may
want to disable support for these by setting the allow_zero_cpus parameter in the cpuset subsystem to false.

If you want to allow zero-CPU jobs while ensuring that they don't take up too much of your resources, enable the cpu
subsystem.

6.5.3.6.v Excluding CPUs

You can exclude CPUs so that they are not used by jobs by listing them in the exclude_cpus parameter. If the cpuset
subsystem is enabled, the CPUs you specify in exclude_cpus are not assigned to jobs. Note, however, that if the
cpuset subsystem is disabled, CPUs are still excluded from jobs, but only by reducing the count of CPUs available; you
cannot control which CPUs are excluded.
AG-328 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.3.6.vi cpuset Subsystem Configuration Parameters

6.5.3.7 cpu Subsystem

The cpu subsystem is an alternative way to control which processes get access to CPU resources. It cannot isolate jobs

Table 6-6: cpuset Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled true false When set to true, the hook creates a cpuset for each job, taking into
account the number of ncpus and mem resources assigned by the sched-
uler to this host's vnodes.

When set to false, the kernel is free to schedule processes and allocate
memory based on the system configured policies.

See section 6.5.2, “Enabling and Tuning Hook According to Host and/or
Vnode Type”, on page 317.

exclude_cpus [] [] Specifies CPU thread IDs not to be assigned to jobs

Format: JSON list

Default: Empty list, no CPU thread IDs excluded

See section 6.5.3.6.v, “Excluding CPUs”, on page 328

mem_fences false false When true, the cgroups hook sets the cpuset.mems to only the NUMA
nodes assigned to the job, preventing other NUMA nodes from satisfying
memory requests from the job.

When false, cpuset.mems encompasses all NUMA nodes present on
the host.

See section 6.5.3.6.i, “Using Memory Fences for Job Memory Requests”,
on page 326

mem_hardwall false false Specifies whether kernel allocations for file caching should be restricted
to the memory nodes in the cpuset. By default, all NUMA nodes can be
used for caching files accessed by job processes. When set to true, the
buffer cache for this job will be constrained to the NUMA nodes listed in
cpuset.mems for the job.

See section 6.5.3.6.ii, “Using Memory Fences for OS File Caching”, on
page 327

memory_spread_
page

false false Specifies whether file system buffers should be spread evenly across the
memory nodes allocated to the cpuset. By default, no attempt is made to
spread memory pages for these buffers evenly, and buffers are placed on
the same node on which the process that created them is running.

See section 6.5.3.6.iii, “Memory Spreading for OS File Caching”, on
page 328

allow_zero_cpus true Specifies whether zero CPU jobs should be allowed to run or refused
when the cpuset subsystem is enabled.

See section 6.5.3.6.iv, “Allowing Zero CPU Jobs”, on page 328
PBS Professional 2022.1 Administrator’s Guide AG-329

Chapter 6 Configuring and Using PBS with Cgroups
with the precision of the cpuset subsystem, but you can use it in some specific circumstances:

• When you use the cpuset subsystem while allowing zero CPU jobs, but want to ensure that the Linux scheduler
favors the jobs requesting one or more CPUs.

• When one of the features you use in PBS does not interoperate well with cpusets, for example when using sus-
pend/resume when both the high-priority workload and the low-priority workload might have jobs that share vnodes.
See section 6.8.1, “Interactions Between Suspend/resume and the cpuset Subsystem”, on page 353.

• When you want to overcommit CPU resources (impossible if the CPUs are assigned to jobs via the cpuset sub-
system) but still want jobs to get access to CPU resources according to the ncpus requested.

The cpu subsystem implements two different mechanisms:

• Linux scheduler fair sharing, where different shares are assigned to cgroups, according to requested ncpus. If there
are CPU resource conflicts, the Linux scheduler favors cgroups that have used less than their allotted share

• Hard quotas that can be enforced if too much CPU usage is detected.

By default this subsystem is disabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 6.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parameters”,
on page 319.

6.5.3.7.i cpu Subsystem Caveats

• The cpu subsystem controls are often imprecise when hyperthreading is enabled, since the Linux kernel CFS sched-
uler sees each CPU thread as 100% of a CPU, regardless of how slow or fast it runs (which depends on usage of the
other threads of the core). When ncpus_are_cores is enabled, quotas are multiplied by the number of threads per
core, which can be misleading.

• There is no strict isolation between jobs; the Linux scheduler enforces a quota only on the set of processes, not indi-
vidual processes. Linux fair sharing is not as efficient as cpusets in isolating jobs from rogue jobs. The cpu sub-
system will slow down the rogue job, but since throttling may be uneven, a rogue process may still interfere with
other jobs; if the hapless victims belong to a parallel application, that whole application may be affected, including
its processes on CPUs where there is no conflict, since these will be forced to wait for the application process that
was slowed down.
AG-330 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.3.7.ii cpu Subsystem Configuration Parameters

6.5.3.8 devices Subsystem

The devices subsystem is used to grant or restrict access to devices on the system, restricting the job to use specific
devices, including GPU and Intel Xeon Phi ("MIC") devices (deprecated) assigned to the job. If MICs and/or GPUs are
available in the complex and the devices subsystem is enabled, the PBS cgroups hook creates the nmics and/or ngpus
resources if they are not already present.

Table 6-7: cpu Subsystem Configuration Parameters

Parameter Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled false When set to true, the hook creates a cpu subsystem directory
for each job, and assigns a number of shares and optionally a
quota based on ncpus.

When set to false, no per-job cgroup is created for this sub-
system.

See section 6.5.2, “Enabling and Tuning Hook According to
Host and/or Vnode Type”, on page 317.

cfs_period_us 100000 Time in microseconds between periodic checks by the Linux
scheduler to compute usage and check quotas. Lowering this
makes computation more precise and throttles rogues faster, but
uses more OS scheduler overhead, with less CPU resources left
for jobs.

cfs_quota_fudge_factor 1.03 Sets quota slightly above theoretically valid value.

Setting a CPU usage quota to 100% of a CPU still throttles
applications, due to rounding errors.

The default is appropriate for the default cfs_period_us, but
should be raised if cfs_period_us is lowered.

enforce_per_period_quotas false Specifies whether hard quotas are set.

When false, only shares are set, and a job can use more CPU
resources than it requested provided other jobs leave CPU
resources idle.

When true, hard CPU usage quotas are set

zero_cpus_shares_fraction 0.002 Specifies fraction of shares allotted for a CPU to a "zero-CPU"
job.

The default, 0.002, is the minimum allowed by the kernel, and
ensures that such a job gets CPU resources only if they are left
idle by other jobs.

zero_cpus_quota_fraction 0.2 Specifies fraction of a CPU allotted to a "zero-CPU" job before
it is throttled by its hard quota.

Default fraction: one-fifth of a CPU
PBS Professional 2022.1 Administrator’s Guide AG-331

Chapter 6 Configuring and Using PBS with Cgroups
Since detecting the GPU and/or MIC resources assigned to existing jobs relies on the devices cgroups for these jobs,
enable this subsystem if you want the cgroups hook to manage GPU and/or MIC assignments.

For examples of how to use this subsystem, see section 6.5.5, “Managing GPUs or Xeon Phi via Cgroups”, on page 344.

By default this subsystem is disabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 6.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parameters”,
on page 319.

You may want to discover and manage devices on hosts that do not have GPUs. You can speed that process, avoiding a
call to nvidia-smi, by having the discover_gpus parameter evaluate to false for GPU-less hosts in the main section.

Devices such as GPUs are discovered only when the devices subsystem is enabled.

See section 6.5.5.6.i, “Caveats and Restrictions for Managing GPUs Externally to Cgroups Hook”, on page 350.

6.5.3.8.i Allowing Access to Devices

The allow parameter specifies how access to devices will be controlled. The list consists of entries in one of the follow-
ing formats:

• A single string entry, used verbatim. For example:

• "b *:* rwm" allows full access (read, write, and mknod) to all block devices

• "c *:* rwm" allows full access to all character devices

• A list containing two strings. For example:

• ["mic/scif","rwm"] looks for the major and minor number of the mic/scif device and allows full access.

• If ls /dev/mic reported

"crw-rw-rw- 1 root root 244, 1 Mar 30 14:50 scif"

then the line added to the allow file looks like

"c 244:1rwm"

• A list containing three strings. For example:

• ["nvidiactl","rwm", "*"] looks for the major number of the nvidiactl device and allows full access to all devices
with that major number.

• If ls /dev/nvidiactl reported

"crw-rw-rw- 1 root root 284, 1 Mar 30 14:50 nvidiactl"

then the line added to the allow file looks like

"c 284:* rwm"
AG-332 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.3.8.ii devices Subsystem Configuration Parameters

6.5.3.9 memory Subsystem

The memory subsystem allows you to monitor and limit the amount of physical memory used by all of the processes of
a job on a host.

By default this subsystem is enabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 6.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parameters”,
on page 319.

Advantages to enabling the memory subsystem:

• With cgroups, jobs and operating systems are protected from any attempt by a job to use too much memory. Without
cgroups, enforcing memory limits relies on monitoring and after-the-fact interventions to kill processes; MoM may
not be able to act in time to protect the health of the host from being compromised through excessive memory usage.

• Accurate monitoring and records of memory usage. Without cgroups, memory usage such as
resources_used.mem, which is supposed to capture peak usage, relies instead on periodic polling, which can miss
the high-water mark.

• The accuracy of memory usage monitoring is unaffected by processes that leave the Linux sessions registered as part
of the job; without cgroups, this behavior breaks memory usage accounting when using some precompiled MPI
libraries.

• Because memory usage reporting does not depend on polling, MoM can be configured to poll less often, which
reduces the load on the PBS datastore.

• Jobs are prevented from rampantly filling host memory with kernel-allocated file cache. Instead, because ker-
nel-allocated file cache for job file access is considered job memory, when the job hits its memory limit, job memory
requests are fulfilled by reclaiming file cache allocated by the job earlier, or even by temporarily moving some of the
job to swap until this can be done. If necessary, job processes will hang until memory can be allocated without
crossing the memory usage limit.

• Recommended: you can reserve enough memory for the operating system and the file cache required for OS services
to run well. If you do this, jobs are prevented from starving operating system services of memory resources.

Table 6-8: devices Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled false false When set to true, the hook configures the devices subsystem based on
the number of nmics and ngpus requested by the job. Refer to the
allow parameter for additional information. When set to false, no
cgroup is created for the devices subsystem.

allow [

"b *:* rwm",
"c *:* rwm"

]

[] Specifies how access to devices will be controlled. The list consists of
entries in one of the following formats:

• A single string entry, used verbatim. Example: "b *:* rwm"

• A list containing two strings. Example: ["mic/scif","rwm"]

• A list containing three strings. Example: ["nvidiactl","rwm", "*"]

See section 6.5.3.8.i, “Allowing Access to Devices”, on page 332
PBS Professional 2022.1 Administrator’s Guide AG-333

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.9.i Reserving Memory

If you want to reserve memory so that it is not assigned to jobs, you can set a percent of physical memory using
reserve_percent, and add a fixed amount to that using reserve_amount. The reserve_amount parameter sets a spe-
cific amount of available physical memory that is not to be assigned to jobs.

Reserving memory decreases the amount of resources_available.mem that MoM advertises to the server as being
available for each vnode, as well as the amount of memory the cgroups hook is willing to assign to jobs.

For most HPC compute nodes with a minimum of 32GB, we recommend at least 2GB of memory for the operating sys-
tem. Since there is no minimum amount of memory specified for a MoM host, the defaults are conservative.

6.5.3.9.ii Effect of Cgroups Hook on the mem Resource

The cgroups hook changes how much memory must be requested for job I/O and accounted in resources_used.mem.

Without the cgroups hook, file content cached in memory need not be included in a job's memory request, and is not
accounted for in resources_used.mem. With the cgroups hook, reported memory usage reported includes memory for
cached files accessed by the job.

Jobs requesting memory can use that amount both for physical memory and for caching. For example, when using the
cgroups hook, a job that requests 20GB and uses 16GB but reads a 50GB file can hold only 4GB of the file in cache at a
time. So if a job requires 32GB of application memory but also requires 5GB of private file cache to perform adequately,
then it needs to request 37GB.

Memory is accounted accurately with cgroups. For jobs with multiple processes all accessing the same memory, without
the cgroups hook the amount of memory reported as used is multiplied by the number of processes, but with the cgroups
hook, the memory is only counted once. However, memory usage includes file cache placed into memory by job I/O, but
not file cache merely accessed by the job but placed into memory earlier by unrelated processes.

It may be necessary to use other tools to determine application usage not involving file cache instead of
resources_used.mem.

Applications using direct I/O to filesystems, meaning they bypass the buffer cache, are unaffected; these jobs do not see
a change in resources_used.mem with and without cgroups.

6.5.3.9.iii Assigning a Default Amount of Memory to Jobs

The default parameter is the amount of memory assigned to the job if it doesn't request any memory. Because the sched-
uler does not know about this allocation, do not make this overly large, otherwise the cgroups hook may reject jobs
because there isn't enough available memory. Instead, set large defaults for job memory resource requests
(Resource_List.mem, default_chunk.mem, etc.) via a queuejob hook or defaults at the server or queue.

This value is not communicated to the server or scheduler; setting this value has no effect on the job's resource request.

6.5.3.9.iv Managing Use of Swap by Jobs

If your execution nodes have no swap or if you do not want your jobs to be able to swap to disk, set the swappiness
parameter to 0 or false. In this case you should disable the memsw subsystem.

When this is zero or false, if a job cannot have its memory requests satisfied by claiming free physical memory or
reclaiming memory from the page cache, then the Out of Memory killer will step in and kill job processes instead of
allowing swap usage.

If you want your jobs to swap only when it is necessary to avoid job failure, and not to proactively move infre-
quently-used job pages to swap, set the swappiness parameter to 1 or true.

You can use the membership tuning tools described in section 6.5.2, “Enabling and Tuning Hook According to Host
and/or Vnode Type”, on page 317 to specify swappiness for hosts or vnodes.
AG-334 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
Not recommended for HPC workloads: if you set this parameter to larger values such as 60, the kernel will move infre-
quently-accessed user pages in order to free memory for file caching. We recommend using larger values only if you
have at least as much swap as there is physical memory not assigned to jobs in the memsw subsystem. You can either
not enable the memsw subsystem, or enable it but ensure there is enough swap and set reserve_amount in the memsw
section to at least the physical memory of the host.

If swappiness is set to 1, make sure you enable the memsw subsystem unless you have an enormous amount of swap.
Unless you explicitly set resources_available.swap on a node, the scheduler is unaware of the swap on that node if
memsw is disabled. If swappiness is set to 1 and the memsw subsystem is disabled, jobs will swap but without any
controls; you can run out of swap, performance can suffer, the OOM killer may kill the wrong process, and you can end
up with black hole nodes.

6.5.3.9.v Setting Memory Soft Limits

You can limit whether PBS imposes hard memory limits on job processes.

If you set the soft_limit parameter to false, PBS uses hard memory limits which prevent the processes from ever exceed-
ing their requested memory usage. If a job accesses more memory than it has requested, some of the job's memory is
moved to swap or the job is killed.

If you set this parameter to true, PBS uses soft memory limits; the memory requested by the job is set as a hint to the ker-
nel as to what usage is expected, but no hard limit is enforced; when the kernel experiences memory shortage it uses the
limits to select the cgroups from which memory is moved to swap.

6.5.3.9.vi Setting Aside Memory for Kernel Drivers

Some kernel drivers (notably, GPFS or Lustre filesystem) may lower the memory available on the host or NUMA nodes
by a small number of MB, typically 32MB or 64MB, after MoM has started.

This may reduce the amount of memory actually available at a vnode to less than the amount the scheduler thinks is
available, and if jobs requiring the full amount are scheduled on that vnode, the hook will reject those jobs.

To compensate, you can hide some memory from the server. You set vnode_hidden_mb to for example "32" or "64".

The amount listed in the vnode_hidden_mb parameter lowers the memory advertised to the server when the
exechost_startup hook is run, but not the memory that the cgroups hook itself is willing to assign to jobs.

6.5.3.9.vii Using Configuration File Defaults for Memory

If you set the enforce_default parameter to true, jobs that don't explicitly request memory are bound by the defaults in
the cgroups hook configuration file. If you set this to false, these jobs have access to all memory available to cgroups.
By default, this parameter is set to true.

6.5.3.9.viii Allowing Whole-host Jobs to Use Available Memory

If you set the exclhost_ignore_default parameter to true, jobs that request the whole host via -lplace=exclhost and
do not explicitly request memory are treated as if enforce_default is false, and not bound by the defaults in the cgroup
hook configuration file, so they have access to all of the memory available to cgroups. If enforce_default is false,
exclhost_ignore_default has no meaning. By default, this exclhost_ignore_default is set to false.
PBS Professional 2022.1 Administrator’s Guide AG-335

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.9.ix memory Subsystem Configuration Parameters

Table 6-9: memory Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled true false Boolean. When True, enables the memory subsystem.

See section 6.5.2, “Enabling and Tuning Hook According to Host
and/or Vnode Type”, on page 317.

default "256MB" "0MB" Amount of memory assigned to the job if it doesn't request any mem-
ory. Recommendation: keep this small. See section 6.5.3.9.iii,
“Assigning a Default Amount of Memory to Jobs”, on page 334.

swappiness 1 Sets the memory.swappiness value for the cgroup.

When set to false or 0, jobs are not allowed to use swap.

When set to true or 1, kernel is allowed to only swap if absolutely
required.

When set to larger values, kernel is allowed to proactively swap. Not
recommended for HPC workloads.

See section 6.5.3.9.iv, “Managing Use of Swap by Jobs”, on page 334.

reserve_amount "1GB" "0MB" A specific amount of available physical memory that is not to be
assigned to jobs.

The actual amount of memory reserved is reserve_amount plus the
amount specified by reserve_percent.

See section 6.5.3.9.i, “Reserving Memory”, on page 334.

reserve_percent "0" "0" The percentage of available physical memory that is not to be assigned
to jobs.

The actual amount of memory reserved is reserve_amount plus the
amount specified by reserve_percent.

See section 6.5.3.9.i, “Reserving Memory”, on page 334.

soft_limit false false When set to false, PBS uses hard memory limits which prevent the pro-
cesses from ever exceeding their requested memory usage.

When set to true, PBS uses soft memory limits; the memory requested
by the job is set as a hint to the kernel as to what usage is expected, but
no hard limit is enforced.

See section 6.5.3.9.v, “Setting Memory Soft Limits”, on page 335.
AG-336 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.3.10 memsw Subsystem

The memsw subsystem is part of the memory subsystem. The memsw subsystem lets you specify how you want swap
handled within the memory subsystem. The memsw subsystem allows you to monitor and limit swap used by all of the
job processes on a host. If a job exceeds the limit, processes associated with that job are killed.

By default this subsystem is disabled. If you want to enable it, check the prerequisites in section 6.5.1.1, “Ensure that
Cgroups v1 are Available”, on page 316.

You can tune the parameters that modify whether this subsystem is enabled; the parameters, but not their defaults, are
listed in section 6.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parameters”, on page 319.

6.5.3.10.i Effect of memsw Subsystem on the vmem Resource

Enabling the memsw subsystem changes the meaning of vmem to be memory + swap usage instead of the address space
of the job processes. Enabling the memsw subsystem also changes how much vmem must be requested and how vmem
is accounted in resources_used.vmem. The value of resources_available.vmem at a host or vnode reflects the disk
swap that can be assigned to jobs. If there is more than one vnode per NUMA node, swap resources are split equally over
the number of NUMA nodes reported.

If this subsystem is enabled, requesting the vmem resource sets a limit for the job's memory plus swap usage. For exam-
ple, a job requesting -lselect=1:ncpus=16:mem=8GB:vmem=64GB is allowed to use 8GB in physical memory plus
56GB of memory resident in swap.

The value of resources_used.vmem reflects the job's memory plus swap usage across all nodes.

The way physical memory is accounted changes with the cgroups hook; see section 6.5.3.9.ii, “Effect of Cgroups Hook
on the mem Resource”, on page 334.

vnode_hidden_mb "1" "1" Amount of memory per vnode to hide from the server but keep avail-
able to the hook, to compensate for memory reduction by kernel driv-
ers.

See section 6.5.3.9.vi, “Setting Aside Memory for Kernel Drivers”, on
page 335.

enforce_default true "true" If you set the enforce_default parameter to true, jobs that don't explic-
itly request memory are bound by the defaults in the cgroups hook con-
figuration file. If you set this to false, these jobs have access to all
memory available to cgroups. By default, this parameter is set to true.

exclhost_ignore_d
efault

false "false" If you set the exclhost_ignore_default parameter to true, jobs that
request the whole host via -lplace=exclhost and do not explicitly
request memory are treated as if enforce_default is false, and not
bound by the defaults in the cgroup hook configuration file, so they
have access to all of the memory available to cgroups. By default, this
parameter is set to false.

Table 6-9: memory Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description
PBS Professional 2022.1 Administrator’s Guide AG-337

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.10.ii Reserving Swap

If you want to reserve swap so that it is not assigned to jobs, you can set a percent of swap using reserve_percent, and
add a fixed amount to that using reserve_amount. The reserve_amount parameter sets a specific amount of swap that
is not to be assigned to jobs.

Reserving swap decreases the amount of resources_available.vmem that MoM advertises to the server as being avail-
able for each vnode, as well as the amount of vmem the cgroups hook is willing to assign to jobs.

6.5.3.10.iii Computing Requested Swap

When the manage_cgswap parameter is true, the cgroups hook can compute the amount of swap a job requests. The
hook computes the available swap for each vnode where it runs, and sets this value for the vnode in
resources_available.cgswap. The value of resources_available.cgswap is resources_available.vmem -
resources_available.mem.

The hook creates the cgswap resource.

To enable cgswap management:

1. Enable the cgroup hook

2. In the memsw section of the hook configuration file, set manage_cgswap to true or to a value that evaluates to
true on the relevant hosts (e.g. by setting it to "vntype in: ignore_default_mem")

3. On the relevant hosts, HUP or restart the MoM (so that the hook computes resources_available.cgswap):

killall -HUP pbs_mom

4. Set the flags for cgswap to "nhm", to make the server manage resources_available.cgswap:

qmgr -c "set resource cgswap flag = 'nhm'"

5. Add "cgswap" to the "resources:" line in $PBS_HOME/sched_priv/sched_config

6. HUP the scheduler. On the host where the server runs:

killall -HUP pbs_sched

7. Enable the cgroup hook's queuejob and modifyjob events:

qmgr -c "set hook pbs_cgroups event +=queuejob"

qmgr -c "set hook pbs_cgroups event +=modifyjob"

8. Examine hook order. If there are other queuejob or modifyjob hooks that set or modify mem or vmem, you might
want the cgroups hook queuejob and modifyjob events to run after them.

6.5.3.10.iv Using Configuration File Defaults for Swap

If you set the enforce_default parameter to true, jobs that don't explicitly request swap are bound by the defaults in the
cgroups hook configuration file. If you set this to false, these jobs have access to all swap available to cgroups. By
default, this parameter is set to true.

6.5.3.10.v Allowing Whole-host Jobs to Use Available Swap

If you set the exclhost_ignore_default parameter to true, jobs that request the whole host via -lplace=exclhost and
do not explicitly request swap are treated as if enforce_default is false, and not bound by the defaults in the cgroup hook
configuration file, so they have access to all of the swap available to cgroups. If enforce_default is false,
exclhost_ignore_default has no meaning. By default, this parameter is set to false.
AG-338 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.5.3.10.vi memsw Subsystem Configuration Parameters

6.5.3.10.vii Scheduling on the vmem Resource

To allow the scheduler to take resources_available.vmem and resources_assigned.vmem on nodes and vmem
requested by jobs into account when deciding where and when to schedule jobs, list "vmem" on the "resources:" line in
$PBS_HOME/sched_priv/sched_config.

Table 6-10: memsw Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

enabled false Boolean.

When true, enables the memsw subsystem.

When false, the subsystem is disabled, and jobs reaching their memory
limit are allowed to use swap in an unrestrained fashion (unless mem-
ory.swappiness was set to 0) until resources are depleted.

See section 6.5.2, “Enabling and Tuning Hook According to Host
and/or Vnode Type”, on page 317.

default "0B" "0" Specifies the amount of swap assigned to the job if it doesn't request
any vmem or cgswap resource.

This value is not communicated to the server or scheduler; setting this
value has no effect on the job's resource request.

reserve_amount "64MB" "0MB" An amount of available swap that is not to be assigned to jobs.

The amount reserved is the amount determined by reserve_percent
plus reserve_amount.

See section 6.5.3.10.ii, “Reserving Swap”, on page 338.

reserve_percent "0" "0" Percentage of available swap that is not to be assigned to jobs.

The amount reserved is the amount determined by reserve_percent
plus reserve_amount.

See section 6.5.3.10.ii, “Reserving Swap”, on page 338.

manage_cgswap false "false" Boolean. When set to true, the memsw computes how much swap is
available and advertises it to the scheduler via
resources_available.cgswap.

enforce_default true "true" If you set the enforce_default parameter to true, jobs that don't
explicitly request swap are bound by the defaults in the cgroups hook
configuration file. If you set this to false, these jobs have access to all
swap available to cgroups. By default, this parameter is set to true.

exclhost_ignore_
default

false "false" If you set the exclhost_ignore_default parameter to true, jobs that
request the whole host via -lplace=exclhost and do not explicitly
request swap are treated as if enforce_default is false, and not bound
by the defaults in the cgroup hook configuration file, so they have
access to all of the swap available to cgroups. By default, this parame-
ter is set to false.
PBS Professional 2022.1 Administrator’s Guide AG-339

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.10.viii Caveat for Swap Limits

When enabling the memsw subsystem in the cgroup hook, manage_rlimit_as should be set to true. This way
RLIMIT_AS is unlimited unless the job requests pvmem, in which case RLIMIT_AS is set to the value of pvmem.

Without the manage_rlimit_as parameter set to true, memory limits are imposed as described in section 5.15.2.4.i, “Job
Memory Limit Enforcement on Linux”, on page 302. This address space limit is usually too low.

6.5.3.10.ix Caveat for Jobs that Use Swap

If jobs will use swap, we recommend enabling the memsw subsystem and setting manage_cgswap to true.

If you set manage_cgswap to true, but disable the queuejob event, make sure that the jobs correctly request mem,
vmem, and cgswap.

If manage_cgswap is false, jobs can be submitted requesting only mem and possibly vmem, but you run the risk of
running out of swap unless you use the second or third recommendation below.

The cgroups hook prevents a job from using more physical memory than it has requested, which means that a swap short-
age cannot always be made up with physical memory.

If the memory and memsw subsystems are enabled, a job can fall into a trap where the scheduler thinks there is enough
swap at a host or vnode, but there is not. The reason is that there is no separate resource for swap;
resources_available.vmem is the sum of physical memory plus swap.

For example, suppose a node has 64GB of physical memory and 2GB of swap. With no memory reservations in the
cgroups hook configuration file, resources_available.mem is approximately 64GB and resources_available.vmem
is approximately 66GB.

If you submit a job with -lselect=1:mem=2GB:vmem=10GB, the scheduler sees enough available vmem and enough
available mem on the node. But when the job runs, if it does indeed use 10GB of memory, it will fail. The memory
cgroup will limit the job memory resident in physical memory to 2GB, but there is only 2GB of swap, so even though
there is enough memory plus swap, the job will not be able to use 8GB of swap to make up the remainder of the 10GB.

The hook will try to catch one common case: if the explicitly requested vmem is larger than the requested mem, then
nodes without any swap will refuse to run the job; the cgroups hook will reject the request to run the job. Administrators
and job submitters must ensure that such jobs do not land on nodes without swap, for example by using resources to tag
nodes accordingly and setting the proper requests based on those tags.

To avoid the problem of running out of swap when enabling both memory and memsw:

• Set manage_cgswap to true, so that the cgroups hook can manage swap as a separate resource. See section
6.5.3.10.iii, “Computing Requested Swap”, on page 338.

• Set reserve_amount in the memsw section to a value that is equal to resources_available.mem for the host; this
makes any job specification safe, but requires that swap resources are larger than the physical memory on the host.

• Do not use jobs that leave a lot of physical memory on the host unrequested if Resource_List.vmem >
Resource_List.mem: only use jobs like that when the physical memory cannot fit the job, to use swap as extra
memory. This will drastically reduce the amount of swap you need to reserve as not visible to jobs in the configura-
tion file.

6.5.3.11 hugetlb Subsystem

The hugetlb subsystem lets you manage the amount of huge page memory used in a cgroup.

While this subsystem imposes limits on the huge pages that can be used by a job, it does not create huge pages on the dif-
ferent NUMA nodes. That must be done separately, so that the cgroups hook exechost_startup portion can report huge
pages available on the different nodes.

You can control how many huge pages you want on a set of nodes dynamically:

numactl -m <node list> echo X >/proc/sys/vm/nr_hugepages_mempolicy.
AG-340 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
You can see the number of huge pages currently available here:

/sys/devices/system/node/node[0-9]*/hugepages/

The free_hugepages and surplus_hugepages pseudofiles are read-only.

Writing to nr_hugepages tells the system to adjust the number of persistent huge pages on the NUMA node, but if exist-
ing memory that is free is too fragmented, it may have to repurpose buffer cache pages for it (which may take time if the
pages are dirty and need to be pushed to the filesystem) or even move existing used memory to swap.

By default this subsystem is disabled. You can tune the parameters that modify whether this subsystem is enabled; the
parameters, but not their defaults, are listed in section 6.5.2.2.vi, “Hook and Subsystem Enablement Tuning Parameters”,
on page 319.

6.5.3.11.i Reserving Huge Page Memory

If you want to reserve huge page memory (hpmem) so that it is not assigned to jobs, you can set a percent of huge page
memory using reserve_percent, and add a fixed amount to that using reserve_amount. The reserve_amount
parameter sets a specific amount of huge page memory that is not to be assigned to jobs.

Reserving huge page memory decreases the amount that MoM advertises to the server as being available for each node,
as well as the amount that the cgroups hook is willing to assign to jobs.

6.5.3.11.ii Caveat for hugetlb Subsystem

When a job spans more than one vnode, it may split its allocation of huge page memory across NUMA nodes differently
from how PBS assigned the memory. This can lead to other jobs on those NUMA nodes not having enough huge page
memory.

You can:

• Use utilities to check whether huge pages are available on the correct NUMA nodes just before you launch applica-
tions

• Use a memory-fences-safe workload

• Disable memory fences to allow huge pages to be allocated off-node

6.5.3.11.iii Using Configuration File Defaults for Huge Pages

If you set the enforce_default parameter to true, jobs that don't explicitly request huge pages are bound by the defaults
in the cgroups hook configuration file. If you set this to false, these jobs have access to all huge pages available to
cgroups. By default, this parameter is set to true.

6.5.3.11.iv Allowing Whole-host Jobs to Use Available Huge Pages

If you set the exclhost_ignore_default parameter to true, jobs that request the whole host via -lplace=exclhost and
do not explicitly request huge pages are treated as if enforce_default is false, and not bound by the defaults in the
cgroup hook configuration file, so they have access to all of the huge pages available to cgroups. If enforce_default is
false, exclhost_ignore_default has no meaning. By default, this parameter is set to false.
PBS Professional 2022.1 Administrator’s Guide AG-341

Chapter 6 Configuring and Using PBS with Cgroups
6.5.3.11.v hugetlb Subsystem Configuration Parameters

6.5.3.12 Sample Cgroups Hook Configuration File

Here we show a sample cgroups hook configuration file similar to the default configuration file:

{

"enabled" : "vntype not in: no_cgroups",

"cgroup_prefix" : "pbs_jobs",

"periodic_resc_update" : true,

"vnode_per_numa_node": : false,

"online_offlined_nodes" : true,

"use_hyperthreads" : true,

Table 6-11: hugetlb Subsystem Configuration Parameters

Parameter
Name

Default
Value:
Config

File

Default
Value:
Hook

Description

default 0MB The amount of huge page memory assigned to the cgroup when the job
does not request hpmem.

enabled false When set to true, the hook registers a limit that restricts the amount of
hugepage memory processes may access.

When set to false, no limit is registered.

See section 6.5.2, “Enabling and Tuning Hook According to Host and/or
Vnode Type”, on page 317.

reserve_amount 0MB An amount of available huge page memory (hpmem) that is not to be
assigned to jobs.

The amount reserved is the amount determined by reserve_percent plus
reserve_amount.

See section 6.5.3.11.i, “Reserving Huge Page Memory”, on page 341.

reserve_percent 0 The percentage of available huge page memory (hpmem) that is not to be
assigned to jobs.

The amount reserved is the amount determined by reserve_percent plus
reserve_amount.

See section 6.5.3.11.i, “Reserving Huge Page Memory”, on page 341

enforce_default true "true" If you set the enforce_default parameter to true, jobs that don't explicitly
request huge pages are bound by the defaults in the cgroups hook configu-
ration file. If you set this to false, these jobs have access to all huge pages
available to cgroups. By default, this parameter is set to true.

exclhost_ignore_
default

false "false" If you set the exclhost_ignore_default parameter to true, jobs that
request the whole host via -lplace=exclhost and do not explicitly request
huge pages are treated as if enforce_default is false, and not bound by the
defaults in the cgroup hook configuration file, so they have access to all of
the huge pages available to cgroups. By default, this parameter is set to
false.
AG-342 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
"ncpus_are_cores" : true,

"manage_rlimit_as" : true,

"ngpus_ext_managed" : false,

"discover_gpus" : true

"cgroup":{

"cpuacct":{

"enabled" : true

},

"cpuset":{

"enabled" : true,

"exclude_cpus" : [0,8],

"mem_fences" : false,

"mem_hardwall" : false,

"memory_spread_page" : true

},

"devices":{

"enabled" : false,

"allow":[

"b*:*rwm",

"c*:*rwm"

]

}

"memory":{

"enabled" : true,

"soft_limit" : false,

"default" : "256MB",

"reserve_percent" : "0",

"reserve_amount" : "1GB",

"soft_limit" : "false",

"vnode_hidden_mb" : "1",

"enforce_default" : "true",

"exclhost_ignore_default" : "false"

},

"memsw":{

"enabled" : false,

"default" : "256MB",

"reserve_percent" : "0",

"reserve_amount" : "1GB",

"manage_cgswap" : "false",

"enforce_default" : "true",

"exclhost_ignore_default" : "false"

},

"hugetlb":{

"enabled" : false,

"default" : "0MB",

"reserve_percent" : "0",
PBS Professional 2022.1 Administrator’s Guide AG-343

Chapter 6 Configuring and Using PBS with Cgroups
"reserve_amount" : "0MB",

"enforce_default" : "true",

"exclhost_ignore_default" : "false"

}

}

}

6.5.4 Finish Up

6.5.4.1 Enable cgroups hook

The cgroups hook and its default configuration file are already imported. You must enable the cgroups hook as root:

1. Log in as root

2. Enable the cgroups hook on the server host:

Qmgr: set hook pbs_cgroups enabled = true

6.5.4.2 HUP or Restart MoM

HUP or restart each MoM:

kill -HUP <MoM PID>

or

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

6.5.4.3 Enable Use of Resources by the Scheduler

Modify the resources: line in <sched_priv directory>/sched_config:

• The nmics and ngpus resources are automatically created, but you have to add them to the resources: line in
<sched_priv directory>/sched_config.

• If you have configured huge page memory, and it is enabled in the cgroups hook, PBS creates the hpmem resource,
but you need to add it to the resources: line in <sched_priv directory>/sched_config.

• If you have configured the memsw subsystem, add "vmem" to the resources: line in <sched_priv direc-
tory>/sched_config.

Set resource flags:

• If the cgroups hook creates the nmics and ngpus resources, you may need to set their flags.You also need to set the
flags for the vmem and hpmem resources. Set the flags for the nmics, ngpus, vmem, and hpmem resources to
"nh":
Qmgr: set resource nmics,ngpus,vmem,hpmem flag=nh

6.5.5 Managing GPUs or Xeon Phi via Cgroups

As of 2022.1.0, support for Xeon Phi is deprecated.
AG-344 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
Integration with Linux cgroups allows PBS to automatically detect and configure GPUs and Xeon Phi processors. How-
ever, you may want to avoid having the cgroups hook manage GPUs on particular nodes, especially if you want to over-
subscribe those GPUs. See section 6.5.5.6, “Not Using Cgroups to Manage GPUs”, on page 349.

Since some of the details of managing GPUs and Xeon Phi are different, in the following sections we will proceed by
describing the case with GPUs.

6.5.5.1 Managing GPUs via Cgroups

PBS can restrict jobs to specific allocated GPUs. If you set vnode_per_numa_node to true in the cgroups hook con-
figuration file, PBS takes advantage of topology and associates GPUs with the closest memory and CPUs in the system.

If GPUs are available in the complex and the devices subsystem is enabled, the PBS cgroups hook creates the ngpus
resource if it is not already present, and discovers and sets values for it.

6.5.5.2 Using NVIDIA Multi-Instance GPUs (MIGs)

The NVIDIA Multi-Instance GPU (MIG) feature partitions the GPU into multiple separate GPU instances. PBS recog-
nizes each GPU instance and treats it as a normal GPU. To use the MIG feature, follow the steps in the NVIDIA docu-
mentation at https://docs.nvidia.com/datacenter/tesla/mig-user-guide/:

• Enable the MIG feature

• Enable the nv_cap_enable_devfs NVIDIA kernel module parameter

• Create GPU Instances (GIs)

• Create Compute Instances (CIs)

6.5.5.3 Configuration Steps

Here we summarize the configuration steps that allow the cgroups hook to manage your GPUs:

• Modify the resources: line in <sched_priv directory>/sched_config.
PBS Professional 2022.1 Administrator’s Guide AG-345

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

Chapter 6 Configuring and Using PBS with Cgroups
The ngpus resource is automatically created, but you have to add it to the resources: line in <sched_priv direc-
tory>/sched_config.

• Set the flags for the ngpus resource to "nh":
Qmgr: set resource ngpus flag=nh

• Export the installed PBS cgroups hook configuration file:
qmgr -c "export hook pbs_cgroups application/x-config default" >pbs_cgroups.json

• Edit this file and change its parameters:

• If nvidia-smi is someplace other than /usr/bin/nvidia-smi, add the nvidia-smi global parameter with the
absolute path to nvidia-smi. Be sure to add the comma to the end of the line. For example:

"nvidia-smi" : "/usr/bin/nvidia/nvidia-smi",

• Add the "nvidiactl" value to the allow parameter of the devices subsystem section. Be sure to add the comma
to the end of the previous line:

"c : rwm",

["nvidiactl", "rwm", "*"]

• Make sure that the vnode_per_numa_node global parameter is set to true

• Enable the devices subsystem (it is disabled by default); see section 6.5.3.8, “devices Subsystem”, on page 331

"enabled" : true,

• Enable the cpuset subsystem (it is enabled by default); see section 6.5.3.6, “cpuset Subsystem”, on page 326

"enabled" : true,

• Read the configuration file back in:
qmgr -c "import hook pbs_cgroups application/x-config default pbs_cgroups.json"

• Enable the cgroups hook:
qmgr -c "set hook pbs_cgroups enabled=True"

• HUP or restart each MoM:
kill -HUP <MoM PID>

or

<path to PBS start/stop script>/pbs restart

or

systemctl restart pbs

If device isolation is not enabled for GPUs, the hook assigns devices to jobs, and sets the CUDA_VISIBLE_DEVICES
environment variable for processes created as children of MoM according to the devices assigned to the job on the host
on which the process runs.

6.5.5.4 Isolating NVIDIA GPUs

For NVIDIA GPU isolation to work, you need to restrict access to only those devices assigned to the job. In the "allow"
subsection of the devices section of the configuration file, do not use the broad "c *:* rwm".

Make sure that the "allow" section excludes read and write access for the 195 major number ("c 195:* m"), which is what
all NVIDIA devices use. Preserve mknod ("m") access, since other software such as the container hook may need "m"
access.

You also need to include ["nvidia-uvm", "rwm"], since it is part of how the driver determines isolation, and possibly
other global NVIDIA devices used by NVIDIA tools. You may also have to add other devices, such as those required for
MPI library access to Infiniband devices.

The cgroups hook assigns the correct NVIDIA GPUs when a job requests ngpus.
AG-346 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
Here is an example of the devices section of the cgroups hook configuration file, configured to allow NVIDIA GPU iso-
lation:

"devices":{

"enabled" : true,

"allow" :

[

"b *:* m",

"b 7:* rwm",

"c *:* m",

"c 136:* rwm",

"c 195:* m",

["infiniband/rdma_cm", "rwm"],

["fuse", "rwm"],

["net/tun", "rwm"],

["tty", "rwm"],

["ptmx", "rwm"],

["console", "rwm"],

["null", "rwm"],

["zero", "rwm"],

["full", "rwm"],

["random", "rwm"],

["urandom", "rwm"],

["cpu/0/cpuid", "rwm", "*"],

["nvidia-modeset", "rwm"],

["nvidia-uvm", "rwm"],

["nvidia-uvm-tools", "rwm"],

["nvidiactl", "rwm"]

]

},

Here we detail the block devices with major number 7. On this host, block device 7 are the loop devices:

root@myhost:~# ls -l loop*

brw-rw----. 1 root disk 7, 0 May 18 08:22 loop0

brw-r-----. 1 root disk 7, 1 May 18 07:43 loop1

brw-r-----. 1 root disk 7, 10 May 18 07:43 loop10

brw-r-----. 1 root disk 7, 100 May 18 07:43 loop100

brw-r-----. 1 root disk 7, 101 May 18 07:43 loop101

brw-r-----. 1 root disk 7, 102 May 18 07:43 loop102

brw-r-----. 1 root disk 7, 103 May 18 07:43 loop103

brw-r-----. 1 root disk 7, 104 May 18 07:43 loop104

brw-r-----. 1 root disk 7, 105 May 18 07:43 loop105

brw-r-----. 1 root disk 7, 106 May 18 07:43 loop106

brw-r-----. 1 root disk 7, 107 May 18 07:43 loop107
PBS Professional 2022.1 Administrator’s Guide AG-347

Chapter 6 Configuring and Using PBS with Cgroups
Here we detail the 136 device:

root@myhost:~# ls -l /dev/pts

crw------- 1 altair tty 136, 0 Jul 22 20:38 0

c--------- 1 root root 5, 2 Jul 22 19:18 ptmx

Here we detail the 195 devices:

root@myhost:~# ls -l /dev/nvidia*

crw-rw-rw- 1 root root 195, 0 Jul 22 19:18 /dev/nvidia0

crw-rw-rw- 1 root root 195, 1 Jul 22 19:18 /dev/nvidia1

crw-rw-rw- 1 root root 195, 2 Jul 22 19:18 /dev/nvidia2

crw-rw-rw- 1 root root 195, 3 Jul 22 19:18 /dev/nvidia3

crw-rw-rw- 1 root root 195, 255 Jul 22 19:18 /dev/nvidiactl

crw-rw-rw- 1 root root 195, 254 Jul 22 19:35 /dev/nvidia-modeset

crw-rw-rw- 1 root root 238, 0 Jul 22 19:35 /dev/nvidia-uvm

crw-rw-rw- 1 root root 238, 1 Jul 22 19:35 /dev/nvidia-uvm-tools

6.5.5.5 Environment Variables for CUDA and Xeon Phi

As of 2022.1.0, support for Xeon Phi is deprecated. When you use Xeon Phi co-processors, PBS sets the
OFFLOAD_DEVICES environment variable during job initialization, for each process that is a child of MoM.

When you use CUDA devices, PBS sets the CUDA_VISIBLE_DEVICES environment variable for each process that is
a child of MoM.

6.5.5.5.i Using CUDA_VISIBLE_DEVICES with Multihost Jobs

On each host, the correct value for CUDA_VISIBLE_DEVICES references unique identifiers for the GPUs on that host,
which means that the value of CUDA_VISIBLE_DEVICES is different on each host of a multihost job. As a result, you
cannot just propagate the value of CUDA_VISIBLE_DEVICES visible in the job script to all processes of a multihost
job; you need to get the correct value for each host.

PBS sets the correct value for the CUDA_VISIBLE_DEVICES environment variable for the job script on the primary
execution host of the job.

For job processes on remote hosts, the CUDA_VISIBLE_DEVICES environment variable is also correctly set if the pro-
cesses are spawned as children of MoM through the Task Management API (the TM API). To spawn processes through
the TM API, you can use pbs_tmrsh, or an MPI library that was compiled with TM API support, or an MPI library that
was configured to use pbs_tmrsh as the remote process launcher; see Chapter 13, "Using MPI with PBS", on page
559.

For other jobs that use an MPI library that does not spawn processes through the TM API (for example HPE MPI, for
which remote processes are spawned by array services) or that use other mechanisms such as ssh, processes on sister
hosts are not children of MoM, and MoM is unable to set the CUDA_VISIBLE_DEVICES environment variable
directly for these processes. Processes can use pbs_attach to join the job, but pbs_attach cannot set environment
variables for existing processes.

For these non-MoM-child processes on sister hosts it is necessary to fetch the correct value for the
CUDA_VISIBLE_DEVICES environment variable from a file PBS wrote for the job. The location of that file depends
on PBS_HOME (or PBS_MOM_HOME if it is set) and the job ID. In the rest of this section we describe how to find the
value for CUDA_VISIBLE_DEVICES using PBS_HOME. See examples $PBS_HOME is different and
PBS_MOM_HOME is not defined and $PBS_HOME is different and PBS_MOM_HOME is defined.

If PBS_HOME/PBS_MOM_HOME is the same on all hosts for the job, the file that contains the
CUDA_VISIBLE_DEVICES is in the same location on each host, and you can pass the location of the file to processes
on sister hosts via an environment variable. The PBS_NODEFILE environment variable is set to the path to the file con-
taining the GPU identifiers for CUDA_VISIBLE_DEVICES; see the example $PBS_HOME is the same everywhere.
AG-348 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
If PBS_HOME may be different on the different hosts:

• Pass the job ID to the sister host(s):

• Transmit the job ID from the primary execution host to the sister(s):

On the primary execution host, make sure that /etc/ssh/ssh_config contains "SendEnv PBS_JOBID".

On the sister host(s):

• Make sure that /etc/ssh/sshd_config contains "AcceptEnv PBS_JOBID".

• Restart sshd if necessary.

• On the sister host, look up PBS_HOME in /etc/pbs.conf (in a shell process, you can source /etc/pbs.conf
directly).

Once you know PBS_HOME and PBS_JOBID, you know the name of the file that contains the
CUDA_VISIBLE_DEVICES assignment. The file is located at $PBS_HOME/aux/$PBS_JOBID.env .

Example 6-3: $PBS_HOME is different and PBS_MOM_HOME is not defined

Look in or source /etc/pbs.conf. $PBS_HOME/aux/$PBS_JOBID.env is the file to read.

If $PBS_HOME is /var/spool/node2, and $PBS_JOBID is 332.tc72:

echo $PBS_HOME/aux/$PBS_JOBID.env

/var/spool/node2/aux/332.tc72.env

cat $PBS_HOME/aux/$PBS_JOBID.env

CUDA_VISIBLE_DEVICES=GPU-232cc436-c5b4-6bd9-c5bc-6820334123d7

CUDA_DEVICE_ORDER=PCI_BUS_ID

Example 6-4: $PBS_HOME is different and PBS_MOM_HOME is defined

$PBS_MOM_HOME/aux/$PBS_JOBID.env is the file to read.

If $PBS_MOM_HOME is /var/spool/node2, and $PBS_JOBID is 332.tc72:

echo $PBS_MOM_HOME/aux/$PBS_JOBID.env

/var/spool/node2/aux/332.tc72.env

cat $PBS_MOM_HOME/aux/$PBS_JOBID.env

CUDA_VISIBLE_DEVICES=GPU-232cc436-c5b4-6bd9-c5bc-6820334123d7

CUDA_DEVICE_ORDER=PCI_BUS_ID

Example 6-5: $PBS_HOME is the same everywhere

$PBS_NODEFILE.env is the file to read.

If $PBS_HOME is /var/spool/node2, and $PBS_JOBID is 332.tc72:

echo $PBS_NODEFILE.env

/var/spool/node2/aux/332.tc72.env

cat $PBS_NODEFILE.env

CUDA_VISIBLE_DEVICES=GPU-232cc436-c5b4-6bd9-c5bc-6820334123d7

CUDA_DEVICE_ORDER=PCI_BUS_ID

6.5.5.6 Not Using Cgroups to Manage GPUs

You may want to oversubscribe the GPUs on some nodes, which means that the cgroups hook does not manage the
ngpus resource on some nodes but does manage it on others. For example, you may have test nodes each with a single
GPU that is to be shared by more than one job, mainly for testing. You would like to set resources_available.ngpus to
a fixed number larger than one, via either Version 2 configuration files or qmgr, to manage how much to oversubscribe
those GPU resources.
PBS Professional 2022.1 Administrator’s Guide AG-349

Chapter 6 Configuring and Using PBS with Cgroups
To prevent the cgroups hook from setting the value for resources_available.ngpus on a host or assigning GPUs to jobs
on that host, set the ngpus_ext_managed parameter in the main section of the cgroups hook configuration file to true;
this indicates that resources_available.ngpus is managed externally to the hook and that the hook should not assign
GPUs to jobs when jobs request the ngpus resource on that host.

The default value for the ngpus_ext_managed parameter is false. When you set the value to true:

• The discover_gpus parameter is disabled, since the hook does not need to discover GPUs if it will not manage
GPU assignment

• The hook never sets resources_available.ngpus on the vnodes of the host, allowing you to use Version 2 configu-
ration files or qmgr to set it to any value

• The hook does not attempt to assign individual GPUs to jobs; the hook will allow a job on a node regardless of the
ngpus resources requested by the job, leaving it to the external manager of resources_available.ngpus and the
scheduler and server (which manages resources_assigned.ngpus) to manage the resources_available.ngpus
vnode resource.

6.5.5.6.i Caveats and Restrictions for Managing GPUs Externally to Cgroups
Hook

If you are using something other than the cgroups hook to manage GPUs, and have enabled the devices subsection and
configured it to implement device isolation, do not forget that GPUs will not be added automatically by the cgroups hook
to the devices the job is allowed to use. To prevent problems, you can do any of the following:

• Disable the devices controller on the nodes where ngpus_ext_managed is enabled

• Do not use device isolation

• Add all GPU devices to the list of allowed devices if using device isolation

• Use another hook to add the required devices

6.6 Configuring MPI for Cgroups

In order to capture job processes and put their PIDs in cgroups, PBS needs the MPI to tell it about those processes. An
MPI that is integrated with PBS does this. You need to make sure that your MPI is integrated with PBS. If you are
already using an MPI that is integrated with PBS, you do not need to perform this step. OpenMPI, MVAPICH2, and
MPICH behave well if they have been compiled with support for the TM API and linked with the PBS libraries. Intel
MPI also behaves well if it has been integrated with PBS.

However, if your MPI uses ssh and is not integrated with PBS, you can use pbs_attach to capture processes started
with ssh. In section 13.1, “Integration with MPI”, on page 559, we describe integrating MPIs with PBS. If your MPI is
not integrated with PBS, cgroups cannot help you manage spawned processes.

If your MPI is not integrated with PBS, you might notice that jobs are running significantly slower, or jobs are crashing
with errors such as "Unable to set CPU", or "Unable to join process"; the MPI may be trying to pin all processes to CPU
0 or crashing.

Wrapping ssh is sufficient for all precompiled MPIs to work.
AG-350 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.6.1 Steps to Integrate MPI with PBS via ssh

The following is a helpful example of integrating MPI with PBS via ssh:

• On each host in the PBS complex, edit /etc/ssh/ssh_config:

• Add the following as the last SendEnv line, after the other SendEnv lines:

SendEnv PBS_JOBID

• On each execution host in the PBS complex, edit /etc/ssh/sshd_config:

• Add the following as the last AcceptEnv line, after the other AcceptEnv lines:

AcceptEnv PBS_JOBID

• On each host in the PBS complex, restart sshd:
/etc/init.d/sshd restart

• On each host in the PBS complex, edit /etc/ssh/sshrc to include the following lines:
#!/bin/sh

if read proto cookie and [-n "$DISPLAY"]; then

 if [`echo $DISPLAY | cut -c1-10` = 'localhost:']; then

 # X11UseLocalhost=yes

 echo add unix:`echo $DISPLAY |

 cut -c11-` $proto $cookie

 else

 # X11UseLocalhost=no

 echo add $DISPLAY $proto $cookie

 fi | xauth -q -

fi

string=$*

Make sure the following points to your $PBS_EXEC/bin

pbs_bin="/opt/pbs/bin"

attach_cmd="pbs_attach"

#echo "PBS_JOBID: $PBS_JOBID"

#echo "$*"

if [-n "$PBS_JOBID"]; then

 # Check to see whether the command is already calling pbs_attach

 if ["${string/$attach_cmd}" = "$string"] ; then

 echo "Attaching $PPID to $PBS_JOBID"

 $pbs_bin/$attach_cmd -j $PBS_JOBID -p $PPID 2> /dev/null

 exit 0

 fi

fi

• Test to ensure that it works as expected and PBS can capture PIDs:

a. Make sure cgroups are enabled

b. Submit an interactive PBS job

c. ssh into a host belonging to the job and verify that the job process PID was added to the tasks file for the
desired subsystem, e.g. cpuacct/pbspro/<job ID>/tasks
PBS Professional 2022.1 Administrator’s Guide AG-351

Chapter 6 Configuring and Using PBS with Cgroups
6.7 Managing Jobs with Cgroups

6.7.1 Requesting Memory

The default amount of memory assigned by cgroups to jobs that do not request it is 256MB. If this value does not work
for your site, either change the default value if you need to only slightly more, or assign a default value using a queuejob
hook or a server default. See section 6.5.3.9.iii, “Assigning a Default Amount of Memory to Jobs”, on page 334.

6.7.2 Limit Enforcement

When a job is killed due to hitting a cgroup limit, you will see something like the following in the job's stdout:

mpirun noticed that process rank 0 with PID 115249 on node node0042 exited on signal 9 (Killed).

The hook will also attempt to find OOM killer messages in the kernel dmesg buffer. If it finds them it prints more spe-
cific errors in the MoM log, and in the job's stderr, if the cgroup limit violation occurs on the first node.

The messages will contain either "Cgroup memory limit exceeded" or "Cgroup memsw limit exceeded" and will attempt
to print the corresponding kernel dmesg buffer messages (if found), which usually identify the process that was killed.

6.7.3 Examples of Requesting Cores and Hyperthreads

Assume we have 2-way hyperthreaded processors.

When hyperthreading is enabled on a system and ncpus_are_cores is disabled, each core is associated with two
threads. In this case, if a job submitter wants all threads of a hyperthreaded core, they should request ncpus in multiples
of 2.

When hyperthreading is not enabled, or if it is and ncpus_are_cores is enabled, a job submitter should request just the
number of cores

For example, a job submitter requests the following on a cluster with 2-way hyperthreaded CPUs on all nodes:

-lselect=1:ncpus=2

Result:

• If hyperthreading is not enabled, this nets two cores. If the cpuset subsystem is enabled, only the first thread of
each core is visible in the job cpuset.

• If hyperthreading is enabled and ncpus_are_cores is enabled, this also nets two cores, with a total of four threads
visible in the job's cpuset.

• If hyperthreading is enabled and ncpus_are_cores is disabled, this nets two threads, with an attempt to assign the
two threads from a single core; this may not succeed if other jobs on the vnode have requested odd numbers of
ncpus.

6.7.4 Spawning Job Processes

When a job process is spawned using tm_spawn, the execjob_launch cgroups hook runs. The execjob_launch hook
can set environment variables correctly and set per-process limits for the processes.

When a job process is spawned outside of PBS and pbs_attach is used to make the process join the job, the
execjob_attach cgroups hook runs, but it is unable to set the environment for the job or set per-process limits for the
process.
AG-352 PBS Professional 2022.1 Administrator’s Guide

Configuring and Using PBS with Cgroups Chapter 6
6.8 Caveats and Errors

6.8.1 Interactions Between Suspend/resume and the cpuset

Subsystem

The cgroups hook is in general compatible with suspend/resume. But when using preemption via suspend and resume,
unless vnodes are allocated exclusively to jobs in the class of preempting jobs, the class of preempted jobs, or both, since
the scheduler is unaware of the CPU assignments made by MoM, it is possible for the scheduler to resume a low-priority
job even though the job's cpuset still overlaps with that of a running high priority job.

To avoid this, use any of these methods:

• Disable the cpuset subsystem, and use only the cpu controller to limit excessive CPU resource usage by jobs. The
lack of CPU isolation may still cause the jobs to interfere on some workloads.

Also, not using the cpuset subsystem may require you to disable process pinning in your applications to share a
vnode between more than one job, to allow the Linux CFS scheduler to move processes to CPU threads that are free.

• Ensure that each job in either the preempting workload or the preempted workload has exclusive access to all vnodes
it uses.

• Use one of the recent hook events triggered on job resumption to either reject resumption of a job when a conflict is
detected, or to migrate the cpusets to CPUs no longer assigned to active jobs. If migrating the cpuset, take a lock on
the cgroups lock file.

6.8.2 Caveats for Shrinking a Job on a Host

If the cpuset subsystem is enabled, ensure that if the cgroups hook helps to shrink a job, no processes are running on the
host.

6.8.3 Caveats for Using CUDA

To use CUDA version earlier than 7.0, you must allow access to all devices. Otherwise, the NVIDIA commands will
fail. With CUDA 7.0 or greater, you do not need to allow access to all devices.

6.8.4 Do Not Change ncpus When cpuset Subsystem is

Enabled

Do not change the value of the ncpus resource from that reported by MoM if the cpuset subsystem is enabled. Other-
wise the cgroups hook will attempt to use CPUs that don't exist, and jobs will fail.

6.8.5 Cgroups Hook Prevents Epilogue from Running

If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead. See section 10.5.2, “Using Hooks for Prologue and Epilogue”, on page 462.
PBS Professional 2022.1 Administrator’s Guide AG-353

Chapter 6 Configuring and Using PBS with Cgroups
6.8.6 Errors

When a job is trying to access a Xeon Phi (deprecated) device on a vnode, but the device is not accessible by the job
cgroup, you will see the following error in the job error output:

Error getting SCIF driver version
AG-354 PBS Professional 2022.1 Administrator’s Guide

7

Configuring PBS for

Containers

7.1 Introduction

PBS supplies a built-in hook that runs jobs and applications inside containers. The hook launches separate container(s)
for each job, and runs the job with the same submission or job script commands and environment as it would have out-
side the container(s). The same job environment variables are exported inside the container(s), and file staging and job
output and error files are handled the same way as outside a container.

Users can run multi-vnode, multi-host, and interactive jobs in containers, and PBS tracks resource usage for these jobs.
The PBS container(s) use cgroups to constrain the resources that the job can use, track resource usage, and pin and isolate
resources. The PBS container(s) use the cgroups hook to assign GPUs correctly; see Chapter 6, "Configuring and Using
PBS with Cgroups", on page 311.

When the job finishes, PBS removes the container(s).

Jobs are matched to hosts running container daemons via a custom string array resource, which indicates which container
engines are available on each host. You create this resource, and tell the container hook which engines are available on
each host by setting the container_resource_name parameter in the hook's configuration file to the name of the custom
string array resource. The default for the container_resource_name parameter is "container_engine", so we recom-
mend using that name when you create the resource.

Job submitters can specify the job container image by requesting it or setting the CONTAINER_IMAGE environment
variable to the name of the container in which the job should run. A container request in the container_image resource
overrides the CONTAINER_IMAGE environment variable. The PBS container hook looks for a container request and
monitors job submissions for this environment variable, launches the appropriate container, and starts the job in the con-
tainer.

You can configure a list of allowed registries, and set a default registry.

PBS can perform a registry login in order to pull from registries that require a login.

You can whitelist specific additional arguments to the container engine by listing them in the container_args_allowed
container hook parameter. Job submitters can then specify any of these whitelisted arguments in the
PBS_CONTAINER_ARGS environment variable.

You can configure the container hook so that it automatically adds job owners to additional groups inside Docker con-
tainers. The hook finds the groups on the execution host where the job owner is already a member, and adds the job
owner to these groups inside the container. To do this, set the enable_group_add_arg container hook parameter to
True. This feature applies only to Docker; Singularity users are automatically added to all groups inside containers.
Note that for security, we recommend that you never whitelist the --group-add container argument in the
container_args_allowed hook configuration parameter.

You can set permissions on files mounted inside containers, for example setting files in a container to be read-only.
PBS Professional 2022.1 Administrator’s Guide AG-355

Chapter 7 Configuring PBS for Containers
7.1.1 Container Engines Used by PBS

A PBS server can create Docker and Singularity containers. Each job can specify which container engine to use, but can
use only one container engine. You specify the default container engine by setting the
container_resource_default_value parameter in the container hook's configuration file to either "docker" or "singular-
ity". In addition, a user can always run a single-node job in a single Singularity container by prepending their scripts,
executables, or commands with the Singularity binary.

7.1.1.1 Using nvidia-docker

PBS can invoke nvidia-docker if the nvidia-docker-cmd line in the hook's configuration file points to the location
of the nvidia-docker command, and the job requests ngpus inside its select statement.

7.1.1.2 Caching Singularity Images

When an image is downloaded from the container hub, it is saved on the execution host in the cache path. You can set the
cache path in the container_cache_path hook configuration parameter. The default value for this parameter is empty,
in which case it is treated as if it is <user home>/.singularity/cache.

PBS sets the value of the SINGULARITY_CACHEDIR Singularity environment variable to the value of
container_cache_path. See the Singularity documentation for more information on this environment variable.

7.1.2 Container Ports

For single-vnode jobs in Docker containers, job submitters can request ports for applications. The container hook maps
requested ports to available ports on the host and returns the mapping. You can define which port ranges are available for
containers. The job submitter requests ports by listing comma-separated port numbers in the container_ports job
resource. Lists of port numbers must be enclosed in single quotes. The hook sets the job's
resources_used.container_ports value to comma-separated <container port>:<host port> pairs. For example, a job
can request -l container_ports="'2324,8989'", and the hook sets the job's resources_used.container_ports to
2324:8080,8989:32771.

7.1.3 Managing How Files and Directories are Mounted in

Containers

7.1.3.1 Setting Permissions on Mounted Files

You can set permissions on the files and directories mounted in both Docker and Singularity containers using the
mount_paths container hook configuration parameter. The default value for the mount_paths parameter is
["/etc/passwd", "/etc/group"].

You can set multiple mounting paths in the mount_paths parameter. Syntax:

"mount_paths": [<first path spec>, <second path spec>, ... <nth path spec>]

where <path spec> can be any of:

• A single filename, indicating that source and target have the same name

• ["<source name>", "<target name>"], indicating no restriction

• ["<source name>", "<target name>", "<restriction>"], specifying restriction on file inside container
AG-356 PBS Professional 2022.1 Administrator’s Guide

Configuring PBS for Containers Chapter 7
When you put more than one element in a path spec, for example both a source and a target, enclose the path spec in
square brackets.

Example 7-1: Setting /etc/passwd to read-only for a Singularity container:

In the hook configuration file:

"mount_paths": [["/etc/passwd","/etc/passwd","ro"]]

PBS mounts /etc/passwd in the container with the destination /etc/passwd, and sets the permissions to ro
(read-only) on the file inside container.

Example 7-2: Docker: setting multiple mount paths, with restriction

In the hook configuration file, we have two path specifications:

"mount_paths": [["/etc/passwd","/etc/passwd","readonly", "bind-propagation=rslave"],
"/etc/group"]

The first path spec is ["/etc/passwd","/etc/passwd","readonly"], and PBS passes the following to Docker:

docker --mount type=bind,source=/etc/passwd,target=/etc/passwd,readonly,bind-propaga-
tion=rslave

The second path spec is ["/etc/group"], and PBS passes the following to Docker:

docker --mount type=bind,source=/etc/group,target=/etc/group

7.1.3.2 Allowing or Disallowing Job Work Directory Inside Container

It may be possible to submit a job from a place that is not sensitive on the submission host, but is sensitive on the com-
pute hosts. You can allow or disallow mounting the job's work directory inside Docker or Singularity containers by set-
ting the value of the mount_jobdir hook configuration parameter. Setting this to True enables mounting the job's work
directory in containers. The default value of this parameter is True.

7.1.4 How PBS Uses Container Registries

You can configure a list of allowed (whitelisted) registries by listing them in the allowed_registries hook configuration
parameter. PBS checks each job's registry specification against the whitelist. PBS uses only whitelisted registries. If the
specified registry is not whitelisted, PBS rejects the job. If the job submitter does not specify a registry, PBS uses the
default registry. You specify the default registry by making it the first entry in the allowed_registries parameter. Set the
default registry according to the default container engine you are using (docker or singularity). For Singularity, set the
default based on the value of container_image_source (docker:// or library://).

You can whitelist all registries by including PBS_ALL in the list.

The default value for allowed_registries is ["docker.io", "SylabsCloud", "PBS_ALL"].

7.1.5 Registry Credential File

PBS can pull images using job owner registry login credentials; this allows job owners to use images from registries
where a login is required. If a registry allows you to pull without logging in, PBS allows this.

PBS stores login credentials in a JSON file, in a directory you specify. Make sure that the hook, which runs as root, can
read the file.

Example 7-3: PBS uses the job owner's credentials to pull a container image:

qsub -v CONTAINER_IMAGE= myregistry.local/MyImage

PBS checks whether "myregistry.local" is included in the allowed_registries parameter.
PBS Professional 2022.1 Administrator’s Guide AG-357

Chapter 7 Configuring PBS for Containers
If "myregistry.local" is included, PBS logs in using the credentials that are listed in <job owner>/.con-
tainer/tokens.json for myregistry.local.

If "myregistry.local" is not included, the job is rejected.

7.1.5.1 Registry Credential Filename

The credential filename has this format:

<job owner>/.container/tokens.json

7.1.5.2 Registry Credential File Format

The file contents have this format:

{

 "registry1 <URL>/<endpoint>": {

 "user_id" : "<user ID>" , "passwd" : "<generated OAUTH token/password>"

 },

 "registry2 <URL>/<endpoint>": {

 "user_id" : "<user ID>" , "passwd" : "<generated OAUTH token/password>"

 }

}

7.1.5.3 Registry Credential File Default Values

registry: default registry (first element in the allowed_registries parameter)

user_id: job owner; if this is empty, PBS tries instead with the job owner ID

passwd: no password

7.1.5.4 Registry Credential File Location

The registry credential file base path is the path to where registry credential files are stored, up to but not including <job
owner>/.container/tokens.json. The default base path to registry credential files is /home. You can configure the
base path to where registry credential files are stored, by setting the value of the cred_base_path parameter in the hook
configuration file.

Example 7-4: You set cred_base_path to "/container/creds/", and your job owner is User1. The full path to the JSON
file is:

/container/creds/User1/.container/tokens.json

7.1.5.5 Docker Examples

Example 7-5: Job submission with image specification:

qsub -v CONTAINER_IMAGE=pbsprohub.local/pbsuser/test-image

PBS looks for "pbsprohub.local" in the allowed_registries hook configuration parameter. If the registry is
whitelisted, PBS looks for login credentials for the pbsprohub.local registry in the <job owner>/.con-
tainer/tokens.json file. PBS logs into the registry and pulls the requested container image.
AG-358 PBS Professional 2022.1 Administrator’s Guide

Configuring PBS for Containers Chapter 7
If the login credentials for the pbsprohub.local registry are not listed in <job owner>/.container/tokens.json and
the registry does not require a login, PBS skips logging in and pulls the requested container image.

If "pbsprohub.local" is not listed in the allowed_registries configuration parameter, PBS rejects the job.

Example 7-6: Job submission without image specification:

qsub -v CONTAINER_IMAGE=pbsprohub.local/centos:7

PBS looks for "pbsprohub.local" in the allowed_registries hook configuration parameter. If the registry is
whitelisted, PBS looks for login credentials for the pbsprohub.local registry in the <job owner>/.con-
tainer/tokens.json file. PBS logs into the registry and pulls the requested container image.

If "pbsprohub.local" is not listed in allowed_registries, PBS uses the default registry. This can lead to possible fail-
ure at runtime.

Example 7-7: Job submission without registry specification:

qsub -v CONTAINER_IMAGE=pbsuser/test-image

Since no registry is specified, PBS uses the default registry. PBS uses the login credentials if they are listed in <job
owner>/.container/tokens.json, and pulls <default registry>/pbsuser/test-image.

7.1.5.6 Singularity Examples

Example 7-8: Job submission without registry specification:

qsub -v CONTAINER_IMAGE=pbsuser/test-image

In the hook configuration file:

container_image_source = "docker://"

Since no registry is specified in the job request, PBS uses the default registry.

PBS uses the container image found at docker://<default registry>/pbsuser/test-image, and PBS uses login
credentials if they are listed in <job owner>/.container/tokens.json.

Example 7-9: Job submission without defined endpoint:

qsub -v CONTAINER_IMAGE=pbspro/default/test-image

In the hook configuration file:

container_image_source = "library://"

If "pbspro" is not a defined endpoint, and is not listed in allowed_registries, PBS uses the default registry. Singu-
larity remote endpoints enable secure container sharing. See the Singularity documentation about remote endpoints.

If "pbspro" is a defined endpoint, PBS checks the allowed_registries list, then uses the credentials in <job
owner>/.container/tokens.json. PBS uses the "pbspro" endpoint, authenticating via the credentials in <job
owner>/.container/tokens.json, by calling the command "singularity remote login".

Example 7-10: Path to image is "shub":

In the hook configuration file:

container_image_source = "shub://"

Because the Singularity hub is a public repository, PBS does not perform any authorization.
PBS Professional 2022.1 Administrator’s Guide AG-359

Chapter 7 Configuring PBS for Containers
7.2 The PBS Container Hook

PBS has a built-in container hook named "PBS_hpc_container" which does several useful things:

• The PBS_hpc_container hook can create Docker and Singularity containers, and it can invoke
nvidia-docker if it is configured and the job requests ngpus inside the select statement.

• The hook runs for the following events, with these actions:

• At a queuejob event, the hook adds the name and desired value of the string array resource listing container
engines to the job's select statement, if the job does not already specify it. This allows the scheduler to match
the job to a host running the selected container daemon.

• At a queuejob event, the hook checks the allowed_registries parameter. If there are whitelisted registries, it
then looks for registry login credentials for the job owner.

• At an execjob_launch event, the hook launches the job inside the selected container

• The hook starts a container instance from the requested image, and sets up the job's environment. The image is spec-
ified via -lcontainer_image=<container image> or in the job's CONTAINER_IMAGE environment variable.
The hook uses the requested container engine, or if the job does not request a container engine, the hook uses the
default set in the container_resource_default_value parameter in the hook's configuration file.

• The name of the container is the job ID.

• If the job is interactive, the hook runs the job in the container in interactive mode.

• If the job has multiple chunks that are scheduled to run on a single host:

With Docker, the hook runs all of the job's child processes in one container on that host.

With Singularity, the hook runs each child process in its own container.

• If the job runs on multiple hosts, the hook ensures that containers created on sister MoMs are network linked to
the container running on the primary execution host.

• The hook updates the resources used by the job, and removes the job's container.

• The hook cleans up any orphaned containers left behind by previous jobs on the host.

• The hook can automatically add the job owner to groups in the container; these are the groups on the execution host
to which the job owner already belongs.

7.3 Prerequisites

The required container daemon(s) must be running on all hosts where users will run jobs in containers.
AG-360 PBS Professional 2022.1 Administrator’s Guide

Configuring PBS for Containers Chapter 7
7.4 Configuring PBS for Containers

7.4.1 Create Container Resources

1. For the container image name, create a custom string resource named "container_image":
Qmgr: create resource container_image type=string,flag=m

2. For the container port number, create a custom string array resource named "container_ports":

Qmgr: create resource container_ports type=string_array,flag=m

3. Create the custom string array resource that will list the container engines available on each host. We recommend
naming it "container_engine":

qmgr -c "create resource container_engine type=string_array,flag=mh"

4. Set the value of the container_engine resource on each host to the list of available container engines:

qmgr -c "s n node1 resources_available.container_engine=<list of container engines>"

For example, if you have Docker on node1, and you have both Docker and Singularity on node2:

qmgr -c "s n node1 resources_available.container_engine=docker"

qmgr -c "s n node2 resources_available.container_engine=docker"

qmgr -c "s n node2 resources_available.container_engine += singularity"

5. Add the container_engine resource to the resources: line in PBS_HOME/<sched_priv directory>/sched_config.

6. HUP the scheduler:

kill -HUP <scheduler PID>

7.4.2 Configure PBS Container Hook

The container hook's configuration file allows parameters that are specific to each container engine.
PBS Professional 2022.1 Administrator’s Guide AG-361

Chapter 7 Configuring PBS for Containers
7.4.2.1 Default Configuration File

{

 "container_resource_name": "container_engine",

 "container_resource_default_value": "docker",

 "mount_paths": ["/etc/passwd", "/etc/group"],

 "mount_jobdir": true,

 "cred_base_path": "",

 "allowed_registries": ["docker.io", "SylabsCloud", "PBS_ALL"],

 "docker":{

 "container_cmd": "/usr/bin/docker",

 "remove_env_keys": [],

 "port_ranges": [],

 "container_args_allowed": [],

 "enable_group_add_arg": false

 },

 "singularity":{

 "container_cmd": "/usr/local/bin/singularity",

 "container_image_source": "",

 "container_cache_path": "",

 "container_args_allowed": []

 }

}

The following table shows the parameters:

Table 7-1: PBS Container Hook Configuration File Parameters

Parameter Name Default Value Description

allowed_registries [] Whitelist of registries PBS is allowed to pull from. Put default
registry first; PBS uses this when it cannot find the specified
registry. Set this to PBS_ALL to allow all registries.

container_args_allo
wed

[] Whitelist of arguments that job submitters are allowed to pass to
container engine via the PBS_CONTAINER_ARGS environ-
ment variable.

Do not whitelist --env, --entrypoint, --group-add

container_cache_pa
th

[] For Singularity. Path to cache directory on execution host where
singularity images are cached.

container_cmd /usr/bin/docker Path to container command. Can be "/usr/bin/docker" or
"/usr/local/bin/singularity"
AG-362 PBS Professional 2022.1 Administrator’s Guide

Configuring PBS for Containers Chapter 7
container_image_so
urce

[] Singularity only. Can be path to existing container image, or
URI of container hub. Optional; job submitters can specify path
to image.

Example: For an image with the path
/home/user1/singularity_images/centos_latest.sif, set
container_image_source to
["/home/user1/singularity_images/"]

Example Singularity hub: ["shub://"]

Example Docker hub where Singularity can fetch an image and
convert it to SIF: ["docker://"]

container_resource_
default_value

docker Default container engine

container_resource_
name

container_engine Name of resource that lists available container engines on each
host.

cred_base_path [] Base path to user login credential file, where credential file is
<user ID>/.container/tokens.json. Default is empty, in
which case PBS uses /home.

enable_group_add_
arg

false The hook automatically adds the job owner to groups in the con-
tainer; these are the groups on the execution host to which the
job owner already belongs.

Applies to Docker only; Singularity automatically adds job own-
ers to all groups.

mount_jobdir true Boolean for enabling or disabling mounting the job's working
directory inside the container

mount_paths ["/etc/passwd",
"/etc/group"]

Additional paths to mount into container at creation time, with
additional options for security. For example ["/opt/mpich"], or
[["/etc/passwd","/etc/passwd","ro"]]

nvidia_docker_cmd None Path to nvidia-docker command

port_ranges [] Docker only. Comma-separated ranges of ports, for example
["2001-9999","3500-4500","7600-9500"]

remove_env_keys [] Docker only. List of environment variables not to export to job
container

Table 7-1: PBS Container Hook Configuration File Parameters

Parameter Name Default Value Description
PBS Professional 2022.1 Administrator’s Guide AG-363

Chapter 7 Configuring PBS for Containers
To configure your PBS container hook, export the configuration file, edit it, and re-import it.

1. Export the PBS container hook's configuration file:
#qmgr -c "export pbshook PBS_hpc_container application/x-config default" > container_config.json

2. Set global parameters in the PBS container hook configuration file to match your site. The configuration file must
conform to JSON syntax.

• Set the allowed_registries parameter to the list of allowed registries. See section 7.1.4, “How PBS Uses Con-
tainer Registries”, on page 357

• Set the container_cmd parameter to the path of the container command

• Set the container_resource_name parameter to the name of the resource that lists available container engines,
if you used a name other than "container_engine"

• Set the container_resource_default_value parameter to the default container engine, if you want it to be dif-
ferent from "docker"

• Optionally create the credential file(s) <job owner>/.container/tokens.json (job submitters may want to do
this step)

• Optionally set the cred_base_path parameter to the credential file path; see section 7.1.5.4, “Registry Creden-
tial File Location”, on page 358

• If using Singularity, optionally set the container_cache_path parameter to the path where Singularity images
will be stored. See section 7.1.1.2, “Caching Singularity Images”, on page 356

• Optionally set the container_image_source parameter

• Optionally set mount_paths; see section 7.1.3.1, “Setting Permissions on Mounted Files”, on page 356

• Optionally disallow mounting the job's work directory in containers; see section 7.1.3.2, “Allowing or Disal-
lowing Job Work Directory Inside Container”, on page 357

• If using nvidia-docker, set nvidia_docker_cmd

• If using Docker, set port_ranges to ranges of allowed ports on hosts

• Optionally set remove_env_keys

• Optionally set container_args_allowed to a whitelist of arguments that job submitters can pass to the con-
tainer engine via the PBS_CONTAINER_ARGS environment variable.

• Do not include "--entrypoint"; entry points are not supported

• Do not include "--env"; this is not supported

• Do not include "--group-add"; this poses security risks

• Optionally set enable_group_add_arg to True so that the hook automatically adds the job owner to groups in
the container; these are the groups on the execution host to which the job owner already belongs.

3. For local users and local groups, include /etc/passwd and /etc/group in mount paths so the image has the host
operating system users and groups defined.

4. To configure PBS to use nvidia-docker, make sure it is available in the path specified in the
nvidia-docker-cmd line in the hook configuration file.
AG-364 PBS Professional 2022.1 Administrator’s Guide

Configuring PBS for Containers Chapter 7
We show a sample configuration file here:

{

 "container_resource_name": "container_engine",

 "container_resource_default_value": "docker",

 "mount_paths": ["/etc/passwd", "/etc/group"],

 "mount_jobdir": true,

 "cred_base_path": "",

 "allowed_registries": ["docker.io", "SylabsCloud", "PBS_ALL"],

 "docker":{

 "container_cmd": "/usr/bin/docker",

 "remove_env_keys": [],

 "port_ranges": [],

 "container_args_allowed": [],

 "enable_group_add_arg": false

 },

 "singularity":{

 "container_cmd": "/usr/local/bin/singularity",

 "container_image_source": "",

 "container_cache_path": "",

 "container_args_allowed": []

 }

}

5. Re-import the PBS container hook's configuration file:

#qmgr -c "import pbshook PBS_hpc_container application/x-config default container_config.json"

6. Enable the PBS container hook:

#qmgr -c "set pbshook PBS_hpc_container enabled=True"

7.4.3 Install and Start Container Engines

Install and start Docker and/or Singularity on all hosts where you want to use them. Make sure that users are not part of
any Docker groups. Consult documentation for your OS, Docker, and Singularity.

7.4.4 Configure Security Enhancement for Docker

We see a security shortcoming in Docker in the case where multiple users are on the same host, where users can see into
each others' containers. We have implemented a security enhancement for this. We allow the job to run inside the con-
tainer, but we don't add job submitters to the Docker group, and we don't allow job submitters to connect to the Docker
container.

Our security enhancement for Docker integration allows jobs to run inside the container, but prevents job submitters
from connecting to the Docker container. We use pbs_container to accomplish this.

Make PBS_EXEC/sbin/pbs_container a part of the Docker group. Set its SGID permissions:

chgrp docker PBS_EXEC/sbin/pbs_container

chmod 2755 PBS_EXEC/sbin/pbs_container
PBS Professional 2022.1 Administrator’s Guide AG-365

Chapter 7 Configuring PBS for Containers
7.5 Caveats and Restrictions

• To run a shell in a container using anything besides the user's default, the job submitter must specify the shell using
the -S option to qsub.

• Job submitters cannot use old-style resource requests such as -lncpus with containers.

• Any entry point in a container is disabled. If job submitters want to run an entry point command, they must include
the complete command with its arguments on the command line.

• Make sure that when you are configuring the container hook, if you whitelist any container arguments in the
container_args_allowed hook configuration parameter, do not whitelist "--group-add". This would allow job sub-
mitters to add themselves to any groups inside the container. Instead, set the enable_group_add_arg hook param-
eter to True so the hook automatically adds the job owner to groups in the container; these are the groups on the
execution host to which the job owner already belongs.

7.6 Errors and Logging

Container creation errors are logged in the MoM log files. You can use tracejob to display these errors.
AG-366 PBS Professional 2022.1 Administrator’s Guide

8

Making Your Site More Robust

This chapter describes how to configure PBS to make your site more robust.

8.1 Robustness

PBS provides the following mechanisms that support site robustness and flexibility:

Failover

The PBS complex can run a backup server. If the primary server fails, the secondary takes over without an
interruption in service.

Checkpoint and Restart

Allows jobs to be checkpointed and restarted. Uses OS-provided or third-party checkpoint/restart facility.

Reservation Fault Tolerance

PBS attempts to ensure that reservations run by finding usable vnodes when reservation vnodes become
unavailable.

Vnode Fault Tolerance for Job Start and Run

PBS lets you allocate extra vnodes at job startup or for the life of the job, to compensate for vnode failure and
allow the job to successfully start or run on the required number of vnodes.

Preventing Communication and Timing Problems

PBS allows setting parameters to prevent problems in communication, timing, and load on vnodes.

Preventing File System Problems

PBS gives you tools to prevent file system problems.

OOM Killer Protection

PBS is installed so that daemons are protected from an OOM killer.

8.2 Failover

8.2.1 Glossary

Primary Server

The PBS Professional server daemon which is running during normal operation.

Secondary Server

The PBS Professional server daemon which takes over when the primary server fails.

Primary Scheduler

The PBS Professional scheduler daemon which is running during normal operation.

Secondary Scheduler

The PBS Professional scheduler daemon which takes over when the primary scheduler is not available.
PBS Professional 2022.1 Administrator’s Guide AG-367

Chapter 8 Making Your Site More Robust
Active

A server daemon is active when it is managing user requests and communicating with the scheduler and MoMs.

Idle

A server daemon is idle when it is running, but only accepting handshake messages, not performing workload
management.

8.2.2 How Failover Works

During normal operation, the primary server is active and the secondary server is idle. If the primary server fails for any
reason, the secondary server becomes active and takes over server functions for the complex. No work is lost during the
transition between servers. PBS functions the same during failover as it does during normal operation. The PBS data
service is considered to be part of the PBS server; if it fails, this triggers failover.

8.2.2.1 Primary and Secondary Schedulers

Each server is paired with and uses its own scheduler. If the secondary server becomes active, it starts its own scheduler.

8.2.2.2 Primary and Secondary Data Services

Each server is paired with and uses its own data service. If the secondary server becomes active, it starts its own data ser-
vice.

8.2.2.3 Normal Post-configuration Behavior

After you have configured PBS for failover, and started both servers, the secondary server periodically attempts to con-
nect to the primary server until it succeeds and registers itself with the primary server. The secondary server must be reg-
istered in order to take over upon failure of the primary server.
AG-368 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.2.2.4 Behavior During Failover

Figure 8-1:Behavior During Failover
PBS Professional 2022.1 Administrator’s Guide AG-369

Chapter 8 Making Your Site More Robust
When both server daemons are running, the primary server sends periodic handshake messages to the secondary. The
primary server also periodically updates the timestamp of the PBS_HOME/server_priv/svrlive file. If the sec-
ondary server stops receiving handshake messages from the primary server, the following happens:

• The secondary server waits for a specified delay period before taking over. This delay is specified using the
pbs_server -F option. The default period is 30 seconds.

• The secondary server reads the timestamp of the PBS_HOME/server_priv/svrlive file and stores it in
memory

• The secondary waits for the specified delay, then checks the time stamp again, and compares it to the timestamp
it stored in memory

• If the timestamp has changed, the secondary server remains idle

• If the timestamp has not changed, the secondary attempts to open a new TCP connection to the primary

• If the secondary server cannot open a TCP connection to the primary, the secondary becomes active

• The secondary server logs a message saying that failover has occurred.

• An email is sent to and from the account defined in the server's mail_from attribute, saying that failover has
occurred.

• The secondary server starts the secondary scheduler on the secondary server host.

• The secondary server starts the secondary data service on the secondary server host.

• The secondary server notifies all of the MoMs that it is the active server.

• The secondary server begins responding to network connections and accepting requests from client commands such
as qstat and qsub.

8.2.2.5 Delay During Failover Transition

The default delay between when the primary becomes unavailable and the secondary takes over is about 5 minutes. You
can change this using pbs_server -F <seconds>. If you use pbs_server -F -1, the secondary makes only
one attempt to contact the primary, then takes over. We include these instructions in the configuration steps.

8.2.2.6 Behavior When Primary Resumes Control

When the primary server starts back up, it takes control from the secondary server, becoming the active server. The sec-
ondary server becomes idle and resumes listening for the regular handshake messages from the primary server.

The primary server may have been stopped for any of several reasons. The restart method will vary accordingly. If the
host was stopped, the PBS server is restarted automatically when the host is started. If the host is still up but the server
was stopped, restart the server. See “Starting Servers With Failover” on page 146 in the PBS Professional Installation &
Upgrade Guide.

The primary server uses only its own scheduler and data service. When the primary server resumes control, it starts a
scheduler and data service, and stops the secondary scheduler and data service. No data is lost in the transition.

When the primary has taken control, the secondary logs a message saying so:

received takeover message from primary, going inactive

8.2.2.7 Server Name and Job IDs During Failover

The server name and job IDs do not change when the secondary server is active. For example, the primary server is on a
host named PrimaryHost.example.com, and the secondary server is on a host named SecondaryHost.example.com.
When the primary server is active, the server name is PrimaryHost, jobs are given job IDs of the form NNNN.Primary-
Host, and the value of the server_host server attribute is PrimaryHost.example.com. When the secondary server is
active, the server name is still PrimaryHost, jobs are still given job IDs of the form NNNN.PrimaryHost, but the value
of server_host is SecondaryHost.example.com.
AG-370 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
The table below summarizes the server name, value of server_host and the IDs given to jobs, when either the primary or
secondary server is active.

8.2.2.8 Information Used by Primary and Secondary Servers

The primary and secondary servers share a single source for attribute information, so anything set via the qmgr com-
mand need only be set once. PBS_HOME is in a shared location. License information is shared and needs to be set at
only one server.

Each server, execution and client host uses its own pbs.conf file, so these must be set for each host in the complex.

8.2.2.9 Impact on Users

Users may not notice when a failover occurs. When a user uses a PBS command such as qstat, the command tries to
connect to the primary server first. If that fails, the command tries the secondary server. There may be up to a
two-minute delay in server commands while failover is taking place.

If the secondary server responds to the command, the command creates a local file so that this process is not repeated for
every PBS command.

The file is named:

/tmp/.pbsrc.UID

where UID is the user ID.

When this file exists, commands try the secondary server first, eliminating the delay in attempting to connect to the down
server. If a command cannot connect to the secondary server, and can connect to the primary server, the command
removes the file.

The file is removed when the primary server takes over.

8.2.2.10 Determining Which Server Is Active

The server attribute server_host contains the name of the host on which the active server is running. Use the qstat
-Bf command to see the value of server_host.

8.2.2.11 Delay Between Primary Failure and Secondary Becoming

Active

The default delay time from detection of possible primary server failure until the secondary server takes over is 30 sec-
onds. A secondary server on a very reliable network can use a shorter delay. A secondary server on an unreliable net-
work may need to use a longer delay. The delay is specified via the -F option to the pbs_server command.

Table 8-1: Server Name, Job ID and Value of server_host Depending on Which Server
is Active

Active Server

Primary Secondary

Hostname PrimaryHost.example.com SecondaryHost.example.com

Server Name PrimaryHost PrimaryHost

Value of server_host PrimaryHost.example.com SecondaryHost.example.com

Job Name NNNN.PrimaryHost NNNN.PrimaryHost
PBS Professional 2022.1 Administrator’s Guide AG-371

Chapter 8 Making Your Site More Robust
8.2.2.12 Communication

If PBS is configured for failover, each server host runs a pbs_comm. Note that communication traffic is handled inde-
pendently of failover behavior. During normal operation, the comm on the primary server host handles communication
traffic, but if that comm becomes unavailable, the comm on the secondary automatically takes over the communication
traffic. You do not need to perform any configuration to get this behavior; the communication daemons are automatically
configured for you. See “Failover and Communication Daemons” on page 52 in the PBS Professional Installation &
Upgrade Guide.

8.2.2.12.i Communication with MoMs

• If a MoM will see different server addresses, add a $clienthost entry to MoM's configuration file for each possible
server address.

• The secondary server is automatically added to the list of hosts allowed to connect to MoMs, in the $clienthost
MoM configuration parameter.

8.2.3 Windows Locations

PBS is installed on Windows systems in \Program Files (x86)\PBS\.

8.2.4 Prerequisites for Failover

8.2.4.1 Checklist of Prerequisites for Failover

The following table contains a checklist of the prerequisites for failover. Each entry has a link to more detailed informa-
tion about the entry.

Table 8-2: Prerequisites for Failover

Prerequisite Explanation

Identical server hosts See section 8.2.4.2, “Server Host Requirements”, on
page 373

MoMs on server hosts don't share a mom_priv directory See section 8.2.4.3, “Requirements for MoMs on Server
Hosts”, on page 373

All hosts must be able to communicate over the network See section 8.2.4.4, “Ensuring Communication Between
Hosts”, on page 374

All hosts must be able resolve hostnames of other hosts in
complex

See section 8.2.4.5, “Hostname Resolution”, on page
374

Filesystem must be shared, on a separate host from either
server host, and provide features required for failover; no
root squash on shared filesystem

See section 8.2.4.6, “Shared Filesystem”, on page 374

On systems using systemd, monitoring and automatic
restart of PBS daemons must be disabled.

See section 8.2.4.7, “Prevent Automatic Daemon Restart
by systemd”, on page 376

Administrator must have access to filesystem from both
server hosts

See section 8.2.4.8, “Permission Requirements”, on page
376

Same version of PBS for all components See section 8.2.4.9, “Same PBS Versions Everywhere”,
on page 376
AG-372 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.2.4.2 Server Host Requirements

The primary and secondary servers must run on two separate host machines. Both host machines must have the same
architecture. They must be binary compatible, including word length, byte order, and padding within structures. There
must be exactly one primary and one secondary server.

On an HPE 8600, use two different service nodes to run the primary and secondary servers.

8.2.4.3 Requirements for MoMs on Server Hosts

You can run a MoM on both the primary and secondary server hosts, but this is not recommended.

If a MoM is to run on both server hosts, the two MoMs must not share the same PBS_HOME/mom_priv directory. In
addition, it is strongly recommended that the following be true:

• The mom_priv directory structure be replicated on a local, non-shared, filesystem. On Windows, MoM already has
a local directory on each server host. On Linux, you must create these.

Replicate the mom_priv and mom_logs directory structures on the primary server host if they don't exist there
already. You must put these in the same location. Do the following on the primary server host:

scp -r <existing PBS_HOME/mom_priv> <local PBS_HOME/mom_priv>

scp -r <existing PBS_HOME/mom_logs> <local PBS_HOME/mom_logs>

Replicate the mom_priv and mom_logs directory structures on the secondary server host if they don't exist there
already. You must put these in the same location. Do the following on the secondary server host:

scp -r <existing PBS_HOME/mom_priv> <local PBS_HOME/mom_priv>

scp -r <existing PBS_HOME/mom_logs> <local PBS_HOME/mom_logs>

• Each MoM use its own, local, mom_priv directory structure

The PBS_MOM_HOME entry in pbs.conf specifies the location that contains the mom_priv and mom_logs
directories. If PBS_MOM_HOME is specified in pbs.conf, pbs_mom uses that location instead of PBS_HOME.

Primary server's scheduler must be able to run when primary
server runs

See section 8.2.4.10, “Requirement for Scheduler”, on
page 376

Data service user account must be the same on both primary
and secondary server hosts

See section 8.2.4.11, “Same Data Service Account on
Both Server Hosts”, on page 376

Data service host must be default See section 8.2.4.12, “Data Service Host Configuration
Requirement”, on page 376

usernames must be consistent across primary & secondary
servers hosts

See section 8.2.4.13, “Consistent Usernames”, on page
377

The mail_from server attribute specifies an email address
that is monitored. Not required, but recommended.

See section 8.2.4.14, “Monitor Server Mail”, on page
377

Table 8-2: Prerequisites for Failover

Prerequisite Explanation
PBS Professional 2022.1 Administrator’s Guide AG-373

Chapter 8 Making Your Site More Robust
To prevent the MoMs from automatically using the same directory, do one of the following:

• Recommended: Specify the separate, local PBS_MOM_HOME entry in each server host's pbs.conf file
(each pbs_mom will use the location for mom_priv specified in its PBS_MOM_HOME). Give the location of
the local PBS_HOME/mom_priv that you replicated on each host. You can perform this step now, or later,
when editing pbs.conf on each server host, in section 8.2.5.3, “Host Configuration for Failover on Linux”, on
page 380, or section 8.2.5.4, “Host Configuration for Failover on Windows”, on page 384.

• Use the -d option when starting at least one pbs_mom to specify that they use the local, non-default locations
for mom_priv

8.2.4.4 Ensuring Communication Between Hosts

Both the primary and secondary server hosts must be able to communicate over the network with each other and all exe-
cution hosts.

Beware of dependencies on remote file systems: The $PBS_CONF_FILE environment variable must point to
pbs.conf. PBS depends on the paths in pbs.conf being available when its start/stop script is executed. PBS will
hang if a remote file access hangs, and normal privileges don't necessarily carry over for access to remote file systems.
For example, a FAT filesystem mounted via NFS won't support permissions.

8.2.4.5 Hostname Resolution

Hostname resolution must work between each host in the PBS complex. Make sure that all hosts in the complex (the
primary and secondary server hosts, the file server host, and all execution and client hosts) are set up so that they can
resolve the names of all other hosts in the complex. If you are not sure whether hostname resolution is working, run
the pbs_hostn command at each host, testing the hostnames of the other hosts. The pbs_hostn command will
return the canonical hostname of the specified host.

8.2.4.6 Shared Filesystem

The filesystem you use for the machines managed by PBS should be highly reliable. We recommend, in this order, the
following filesystems:

• HA DAS

• DAS, such as xfs or gfs

• HA NFS

• NFS
AG-374 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
PBS_HOME is the top directory used by the PBS server. The primary and secondary servers share the same PBS_HOME
directory. The PBS_HOME directory must conform to the following:

• The PBS_HOME directory must be available under the same name to both the primary and secondary server hosts.

• The PBS_HOME directory must be on a file system which meets the following requirements:

• It should reside on a different machine from either of the server hosts.

• It must be shared by the primary and secondary server hosts.

• It must be reliable. The file system must be always available to both the primary and secondary servers. A fail-
ure of the file system will stop PBS from working.

• The file system protocol must provide file locking support.

• The file locking daemons must be running.

• For Linux, the filesystem must support POSIX (Open Group) file semantics.

• It must support concurrent read and write access from two hosts.

• It must support multiple export/mounting.

• No root squash on the shared filesystem.

If your filesystem does not conform to the specifications above, follow the steps in the next sections.

8.2.4.6.i Using NFS Filesystems

When using NFS for PBS_EXEC, NFS must be configured to allow root access and to allow setuid-root programs
to execute from it.

If possible, mount NFS file systems synchronously (without caching) to avoid reliability problems.

NFS filesystems should be hard mounted.

8.2.4.6.ii Setting Up the Shared Filesystem

You can use NFS or another filesystem protocol to set up the shared filesystem on which PBS_HOME resides. Examples
are Lustre, IBM GPFS, and Red Hat GFS. Make sure your protocol supports:

• Multiple export/mounting

• Simultaneous read/write from two hosts

• File locking support

To set up your file system:

1. Choose a machine for the file server host. This machine must not be either of the server hosts.

2. Make sure the file system is mounted by both the primary and secondary server hosts. For NFS, make sure the file
system is hard mounted by both hosts.

3. Make sure the file system can provide file locking. For NFS, the lock daemon, lockd, must be running.

4. Make sure that PBS_HOME is available under the same name to both the primary and secondary server hosts.
PBS Professional 2022.1 Administrator’s Guide AG-375

Chapter 8 Making Your Site More Robust
8.2.4.7 Prevent Automatic Daemon Restart by systemd

On systems running recent versions of systemd, make sure that you disable monitoring and automatic daemon restart
by systemd. Otherwise, when the secondary takes over and kills the primary, systemd can detect the daemon's dis-
appearance from the primary and restart it there, at the worst possible moment (while the secondary is recovering nodes,
queues, and jobs from the datastore and is thus unresponsive to the primary). This can lead to split brain situations in
which the datastore is corrupted, when the primary times out waiting for the secondary and starts even though the sec-
ondary is in the process of spinning up. To prevent the problem, use one of the following methods to restart the server:

• Prevent the secondary from starting when you restart the primary:

a. Stop the secondary server

b. Issue systemctl restart pbs

c. After the primary is responsive (qstat -Bf returns output), restart the secondary server

• Use failover:

a. Stop but do not restart the primary, and let failover happen

b. After the secondary has taken over (qstat -Bf returns output) you can leave the server running there, or take
back the services on the primary by starting it again; note that this causes an extra interruption of services

Never start the primary unless you are sure that the secondary is either not running or responds to commands (i.e. qstat
-Bf returns).

8.2.4.8 Permission Requirements

The PBS_HOME directory must meet the security requirements of PBS. Each parent directory above PBS_HOME must be
owned by root and writable by root only.

The PBS_HOME directory must be readable and writable from both server hosts by the PBS Administrator.

8.2.4.9 Same PBS Versions Everywhere

Both server hosts, all the execution hosts, and all the client hosts must run the same version of PBS Professional.

8.2.4.10 Requirement for Scheduler

The primary scheduler must be able to run whenever the primary server is running, and the secondary scheduler must be
able to run when the secondary server is running. If a server becomes active but cannot use its own scheduler, PBS will
not be able to schedule jobs.

8.2.4.11 Same Data Service Account on Both Server Hosts

The PBS Data service management account must be the same on both server hosts. The UID of the PBS data service
management account must be identical on both the primary and secondary server hosts. We recommend that the PBS
data service management account is called pbsdata.

If you change either data service management account, both must be changed at the same time and both servers must be
restarted. The name of the Data service account must be the same as the data service management account.

8.2.4.12 Data Service Host Configuration Requirement

The DATA_SERVICE_HOST parameter must not be set in pbs.conf. If this parameter is set, failover cannot take
place.
AG-376 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.2.4.13 Consistent Usernames

Usernames must be consistent across the primary and secondary server hosts. If usernames are not consistent, jobs are
killed.

8.2.4.14 Monitor Server Mail

Use the qmgr command to set the mail_from server attribute to an address that is monitored regularly:

Qmgr: s server mail_from=<address>

See section 2.2.2, “Configuring Server Mail Address”, on page 22.

8.2.5 Configuring Failover

Figure 8-2:Failover Configuration
PBS Professional 2022.1 Administrator’s Guide AG-377

Chapter 8 Making Your Site More Robust
8.2.5.1 Overview of Configuring Failover

If PBS is not already installed, install it according to the PBS Professional Installation & Upgrade Guide.

Please make sure that you have satisfied all of the prerequisites under section 8.2.4, “Prerequisites for Failover”, on page
372.

Make a copy of your PBS configuration. Follow the instructions in “Back Everything Up to Transfer Location” on page
97 in the PBS Professional Installation & Upgrade Guide.

The following table contains a guide to the steps in configuring PBS for failover. The table contains a link to the descrip-
tion of each step.

8.2.5.2 Configuring the pbs.conf File for Failover

The $PBS_CONF_FILE environment variable contains the path to the pbs.conf file. Each host in the complex must
have a properly configured /etc/pbs.conf file. This file specifies the hostnames of the primary and secondary serv-
ers, the location of PBS_HOME and PBS_MOM_HOME, and whether to start a server, a scheduler, or a MoM on this host.

Table 8-3: Overview of Configuring Failover

Step Linux Windows

Configure /etc/pbs.conf
on each host in the complex

See section 8.2.5.2, “Configuring the
pbs.conf File for Failover”, on page 378

Configure the primary server See section 8.2.5.3.i, “Configuring
Failover For the Primary Server on
Linux”, on page 380

Configure the secondary server See section 8.2.5.3.ii, “Configuring
Failover For the Secondary Server on
Linux”, on page 382

Recommended: configure STO-
NITH script

See section 8.2.5.3.iii, “Configuring STO-
NITH Script for Use by Secondary
Server”, on page 382

Configure execution and client
hosts

See section 8.2.5.3.iv, “Configuring
Failover For Execution and Client Hosts
on Linux”, on page 383

See section 8.2.5.4.i, “Configuring
Failover for Execution and Client Hosts
on Windows”, on page 384

Configure failover with peer
scheduling

See section 8.2.6.2, “Configuring
Failover to Work With Peer Scheduling”,
on page 384

Configure failover with routing
queues

See section 8.2.6.1, “Configuring
Failover to Work with Routing Queues”,
on page 384

Configure failover with access
control

See section 8.2.6.3, “Configuring
Failover to Work With Access Controls”,
on page 385
AG-378 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
The name used for the server in the PBS_SERVER variable in the pbs.conf file must not be longer than 255 charac-
ters. If the short name for the server resolves to the correct host, you can use this in pbs.conf as the value of
PBS_SERVER. However, if the fully-qualified domain name is required in order to resolve to the correct host, then the
this must be the value of the PBS_SERVER variable.

8.2.5.2.i Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

Table 8-4: Parameters in pbs.conf for Failover

Parameters Value Meaning

PBS_EXEC Path Location of PBS bin and sbin directories

PBS_HOME Path Location of PBS working directories in shared filesystem; use spe-
cific path on that host

PBS_MOM_HOME Path Location of mom_priv on each host; overrides PBS_HOME for
mom_priv

PBS_PRIMARY FQDN of hostname Hostname of primary server host.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_PRIMARY matches the hostname of the
server host.

PBS_SECONDARY FQDN of hostname Hostname of secondary server host.

If you set PBS_LEAF_NAME on the secondary server host, make
sure that PBS_SECONDARY matches PBS_LEAF_NAME on the
corresponding host. If you do not set PBS_LEAF_NAME on the
server host, make sure that PBS_SECONDARY matches the host-
name of the server host.

PBS_SERVER Hostname Name of primary server host. Cannot be longer than 255 characters.
If the short name of the server host resolves to the correct IP address,
you can use the short name for the value of the PBS_SERVER entry
in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

PBS_START_COMM 0 or 1 Specifies whether a comm is to run on this host

PBS_START_MOM 0 or 1 Specifies whether a MoM is to run on this host

PBS_START_SCHED 0 or 1 Specifies whether scheduler is to run on this host

PBS_START_SERVER 0 or 1 Specifies whether server is to run on this host
PBS Professional 2022.1 Administrator’s Guide AG-379

Chapter 8 Making Your Site More Robust
8.2.5.3 Host Configuration for Failover on Linux

• Make sure that you have satisfied all of the prerequisites under section 8.2.4, “Prerequisites for Failover”, on page
372.

• PBS should already be installed in the default location on the primary and secondary server hosts and on the execu-
tion hosts. The client commands should already be installed on the client hosts.

• Make root a Manager on both server hosts:
qmgr -c "set server managers =root@<primary server host>"

qmgr -c "set server managers +=root@<secondary server host>"

• If the primary server and scheduler are running, shut them down. See “qterm” on page 236 of the PBS Professional
Reference Guide.

8.2.5.3.i Configuring Failover For the Primary Server on Linux

1. Make sure that you have satisfied all of the prerequisites under section 8.2.4, “Prerequisites for Failover”, on page
372.

2. Stop PBS on both the primary and secondary server hosts:

On the primary server host:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

On the secondary server host:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

3. On the primary server host, edit the /etc/pbs.conf file so that it DOES NOT include failover settings. It should
look like this:

PBS_SERVER=<short name for primary host>

PBS_HOME=<shared location of PBS_HOME>

PBS_START_SCHED=1

We recommend not running a MoM on any server host. The following setting in pbs.conf will prevent a MoM
from running:

PBS_START_MOM=0

If you will run a MoM on the server hosts, specify this:

PBS_START_MOM=1

If you will run a MoM on both server hosts, specify PBS_MOM_HOME on this host. The location you specify is the
directory that you replicated in section 8.2.4.3, “Requirements for MoMs on Server Hosts”, on page 373:

PBS_MOM_HOME=<location of local, replicated mom_priv>

4. On the primary server host, start the primary PBS server and scheduler daemons:

systemctl start pbs
AG-380 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
or

<path to init.d>/init.d/pbs start

5. Stop the PBS server on the primary server host:

systemctl stop pbs

or

<path to init.d>/init.d/pbs stop

6. On the primary server host, edit the /etc/pbs.conf file to include the failover settings for PBS_PRIMARY and
PBS_SECONDARY. It should look like this:

PBS_PRIMARY=<primary_host>

PBS_SECONDARY=<secondary_host>

PBS_SERVER=<short name for primary host>

PBS_HOME=<shared location of PBS_HOME>

The primary scheduler will start automatically:

PBS_START_SCHED=1

We recommend not running a MoM on any server host. The following setting in pbs.conf will prevent a MoM
from running:

PBS_START_MOM=0

If you will run a MoM on the server hosts, specify this:

PBS_START_MOM=1

If you will run a MoM on both server hosts, specify PBS_MOM_HOME on this host. The location you specify is the
directory that you replicated in section 8.2.4.3, “Requirements for MoMs on Server Hosts”, on page 373:

PBS_MOM_HOME=<location of local, replicated mom_priv>

If you set PBS_LEAF_NAME on the primary server host, make sure that PBS_PRIMARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_PRIMARY matches the hostname of the server host.

If you set PBS_LEAF_NAME on the secondary server host, make sure that PBS_SECONDARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_SECONDARY matches the hostname of the server host.

7. Run a comm on the primary server host. Set the following in pbs.conf on the primary server host:

PBS_START_COMM = 1

8. On the primary server host, start the primary PBS server, scheduler, and comm daemons:

systemctl start pbs

or

<path to init.d>/init.d/pbs start
PBS Professional 2022.1 Administrator’s Guide AG-381

Chapter 8 Making Your Site More Robust
8.2.5.3.ii Configuring Failover For the Secondary Server on Linux

1. Make sure that you have satisfied all of the prerequisites under section 8.2.4, “Prerequisites for Failover”, on page
372.

2. On the secondary server host, edit the /etc/pbs.conf file to include the following settings:

PBS_PRIMARY=<primary_host>

PBS_SECONDARY=<secondary_host>

PBS_SERVER=<short name for primary host>

PBS_HOME=<shared location of PBS_HOME>

The secondary server will start its own scheduler if it needs to; a scheduler should not automatically start on the sec-
ondary server host. Include the following so that a scheduler does not automatically start on this host:

PBS_START_SCHED=0

We recommend not running a MoM on any server host. The following setting in pbs.conf will prevent a MoM
from running:

PBS_START_MOM=0

If you will run a MoM on the server hosts, specify this:

PBS_START_MOM=1

If you will run a MoM on both server hosts, specify PBS_MOM_HOME on this host. The location you specify is the
directory that you replicated in section 8.2.4.3, “Requirements for MoMs on Server Hosts”, on page 373:

PBS_MOM_HOME=<location of local, replicated mom_priv>

If you set PBS_LEAF_NAME on the primary server host, make sure that PBS_PRIMARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_PRIMARY matches the hostname of the server host.

If you set PBS_LEAF_NAME on the secondary server host, make sure that PBS_SECONDARY matches
PBS_LEAF_NAME on the corresponding host. If you do not set PBS_LEAF_NAME on the server host, make
sure that PBS_SECONDARY matches the hostname of the server host.

3. On the secondary server host, to change the delay time between failure of the primary server and activation of the
secondary server from its default of 30 seconds, use the -F <delay> option on the secondary server's command line
in the PBS start script on the secondary server host. Edit the init.d/pbs script so that the server is invoked with
the -F <delay> option:

pbs_server -F <delay>

See “pbs_server” on page 107 of the PBS Professional Reference Guide.

4. Run a comm on the secondary server host. Set the following in pbs.conf on the secondary server host:

PBS_START_COMM = 1

5. On the secondary server host, start the secondary PBS server and comm daemons:

systemctl start pbs

or

<path to init.d>/init.d/pbs start

8.2.5.3.iii Configuring STONITH Script for Use by Secondary Server

We strongly recommend that before the secondary server becomes active, it prevents a race condition between the pri-
mary and secondary data services by calling a script which shuts down the primary server host. This script is called
STONITH, for "shoot the other node in the head". If the script returns failure, the secondary server waits for 10 seconds,
then calls the script again. The secondary server does not become active until the script returns success.
AG-382 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
Requirements for STONITH:

• You must write the STONITH script, and put it in $PBS_HOME/server_priv/stonith.

• Permissions for the script should be 0755.

• The STONITH script takes one argument, which is the hostname of the primary server. This hostname is the same as
what is listed for PBS_PRIMARY in pbs.conf.

• The STONITH script returns zero for success, and non-zero for failure.

Note that you must supply the command used to power down the primary server host.

Example 8-1: Sample STONITH Script

#!/bin/bash

This script powers down the primary server host.

This script runs only on the secondary server host.

PBS_PRIMARY=$1

SECONDARY=`hostname`

POWERDOWN_CMD="<command to power down the primary server host>"

echo "INFO: Secondary starting Stonith script. Secondary server host is ${SECONDARY}."

echo "INFO: This Stonith script will power down the primary server host."

echo "INFO: Primary server host is ${PBS_PRIMARY}."

Power down the primary server host

You can also include a timeout, and check the value of the result.

Example: timeout_result=$({ timeout 10 ${POWERDOWN_CMD} ${PBS_PRIMARY} ; } 2>&1)

${POWERDOWN_CMD} ${PBS_PRIMARY}

if [$? -eq 0] ; then

 echo "INFO: Stonith script succeeded in powering down primary server host ${PBS_PRIMARY}."

 exit 0

else

 echo "ERROR: Stonith script failed to power down primary server host ${PBS_PRIMARY}."

 exit 1

fi

8.2.5.3.iv Configuring Failover For Execution and Client Hosts on Linux

1. Make sure that you have satisfied all of the prerequisites under section 8.2.4, “Prerequisites for Failover”, on page
372.

2. On each execution or client host, configure the /etc/pbs.conf file to include the following parameters:

PBS_PRIMARY=<primary_host>

PBS_SECONDARY=<secondary_host>

PBS_SERVER=<short name for primary host>

PBS_HOME=<location of PBS_HOME>

The pbs.conf files on execution hosts are already configured to start the MoM daemon only. Similarly, the
pbs.conf files on client hosts are already configured to start no daemons.

3. On each execution host, restart the MoM:

systemctl start pbs
PBS Professional 2022.1 Administrator’s Guide AG-383

Chapter 8 Making Your Site More Robust
or

<path to init.d>/init.d/pbs start

8.2.5.4 Host Configuration for Failover on Windows

8.2.5.4.i Configuring Failover for Execution and Client Hosts on Windows

1. Make sure that you have satisfied all of the prerequisites under section 8.2.4, “Prerequisites for Failover”, on page
372.

2. On each execution or client host, specify the location of PBS_HOME for the primary server:

pbs-config-add "PBS_HOME=\\<shared filesystem host>\pbs_home"

3. On each execution or client host, specify the primary and secondary server names in the pbs.conf file by running
the following commands:

pbs-config-add "PBS_SERVER=<short name of primary server host>"

pbs-config-add "PBS_PRIMARY=<FQDN of primary server host>"

pbs-config-add "PBS_SECONDARY=<FQDN of secondary server host>"

4. If this is an execution host, restart the MoM:

net start pbs_mom

8.2.6 Configuring Failover with Other PBS Features

8.2.6.1 Configuring Failover to Work with Routing Queues

You must configure failover to work with routing queues which have destinations in another complex. No additional
configuration is required for routing queues which have destinations in the same complex.

For a routing queue in one complex which points to a queue Q1 in another PBS complex that is set up for failover, it is a
good idea to specify both Q1@primary.example.com and Q1@secondary.example.com as destinations.

For example, if a routing queue has a destination queue at another complex's primary server:

Qmgr: set queue r66 route_destinations=workq@primary.example.com

you need to add the same queue at the other complex's secondary server:

Qmgr: set queue r66 route_destinations+=workq@secondary.example.com

See section 2.3.6, “Routing Queues”, on page 27.

8.2.6.2 Configuring Failover to Work With Peer Scheduling

For peer queueing where the furnishing complex is set up for failover:

• You must list the furnishing queue at both primary and secondary servers. If the furnishing queue is Q1, the
peer_queue line in the pulling complex's sched_config file must list Q1@primary.example.com and
Q1@secondary.example.com

For peer queueing where the pulling complex is set up for failover:

• You must add <manager>@primary.example.com and <manager>@secondary.example.com to the list of
managers at the furnishing server.

See section 4.9.31, “Peer Scheduling”, on page 163.
AG-384 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.2.6.3 Configuring Failover to Work With Access Controls

If you are using access control on the server (the acl_host_enable server attribute is set to True and the acl_hosts server
attribute is specified), add the secondary server to the host list in acl_hosts:

Qmgr: s server acl_hosts+=<secondary server host>

See section 11.3.4, “ACLs”, on page 493.

8.2.7 Using PBS with Failover Configured

8.2.7.1 Stopping Servers

To stop both servers when the primary server is active, and the secondary server is running and idle, do the following:

qterm -f

To stop the primary server and leave the secondary server idle:

qterm -i

To stop the secondary server only:

qterm -F

8.2.7.2 Starting Servers

After configuring the servers, you can start them in any order.

If you want to start the primary server when the secondary server is the active server, you do not need to stop the second-
ary. When the primary server starts, it informs the secondary that the secondary can become idle.

However, if there is a network outage while the primary starts and the secondary cannot contact it, the secondary will
assume the primary is still down, and remain active, resulting in two active servers. In this case, stop the secondary
server, and restart it when the network is working:

qterm -F

pbs_server

To restart the secondary server while it is the active server:

pbs_server -F -1

The secondary server makes one attempt to contact the primary server, and becomes active immediately if it cannot.

See “pbs_server” on page 107 of the PBS Professional Reference Guide and “qterm” on page 236 of the PBS Profes-
sional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-385

Chapter 8 Making Your Site More Robust
8.2.8 Recommendations and Caveats

• Do not start or stop the data service using anything except the pbs_dataservice command. Start or stop the
data service using only the pbs_dataservice command.

• If you do not wish for the secondary server to take over, use the -i option to the qterm command when stopping the
primary server.

• When the primary server is active, and the secondary server is running and idle, the pbs start/stop script stops
the active server, but leaves the idle server running. This means that the idle server becomes the active server.

• PBS_HOME should not be on either server host

• Neither PBS server should be the NFS fileserver

• Each scheduler and data service must be able to run when its server is started, otherwise no jobs will be scheduled;
each server can use only its own scheduler and data service.

• Just because servers are redundant, that doesn't mean that your complex is. Look for single points of failure.

• If the "take over" delay time specified with the pbs_server -F option is too long, there may be a period, up to
that amount of time, when clients cannot connect to either server.

• If the "take over" delay time specified with the pbs_server -F option is too short and there are transient net-
work failures, then the secondary server may attempt to take over while the primary server is still active.

• While the primary server is active and the secondary server is inactive, the secondary server will not respond to any
network connection attempts. Therefore, you cannot status the secondary server to determine whether it is running.

• If the secondary server is running, and the primary server cannot contact the secondary server when the primary
server is restarted, the primary assumes the secondary is not running and takes over. This can result in two servers
running at once.

8.2.9 Troubleshooting Failover

8.2.9.1 PBS Does Not Start

• If you see the following error:
"Failover is configured. Temporarily disable failover before running pbs_ds_password"

This means that PBS was started for the first time with failover configured. PBS cannot be started for the first time
with failover configured. Remove definitions for PBS_PRIMARY and PBS_SECONDARY from pbs.conf on
the primary server host, start PBS, stop PBS, replace the definitions, and start PBS again.

8.2.9.2 Primary and Secondary Servers Both Running

If both servers are running, this may be because the primary server was stopped and then restarted, and while the primary
was stopped, the secondary began to take over. While the secondary server was coming up, it was not able to receive the
message from the primary server indicating that it should go idle, or it couldn't register with the primary.

To avoid this problem, use the -i option to the qterm command, which tells the secondary server to remain idle.

8.2.9.3 Primary or Secondary Server Fails to Start

It does not matter in which order the primary and secondary servers are started.

If the primary or secondary server fails to start with the error:

another server running
AG-386 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
then check for the following conditions:

1. There may be lock files left in PBS_HOME/server_priv that need to be removed.

The primary and secondary servers use different lock files:

• primary: server.lock

• secondary: server.lock.secondary

2. On Linux, the RPC lockd daemon may not be running. You can manually start this daemon by running as root:

<path to daemon>/rpc.lockd

Check that all daemons required by your NFS are running.

8.2.9.4 Primary Server Periodically Restarting

If the primary server keeps restarting, an unknown secondary server may be contacting it. This can happen when
PBS_PRIMARY and PBS_SECONDARY are missing from pbs.conf, but a secondary server has been started.

8.2.9.5 Cannot Connect to Host

If you see an error message about not being able to connect to server, check the permissions of pbs_iff on the secondary
server. The setuid bit may be wrong (permissions should be -rsxr-xr-x), or it may be on a shared filesystem that disallows
setuid programs from running.

8.3 Checkpoint and Restart

PBS Professional allows you to configure MoM to checkpoint jobs using your scripts and checkpoint tools. In addition,
users may manage their own checkpointing from within their application.

8.3.1 Glossary

Application Checkpoint

The application performs its own checkpointing when it receives the appropriate signal etc.

Checkpoint and Abort, checkpoint_abort

The checkpoint script or tool writes a restart file, then PBS kills and requeues the job. The job uses the restart
file when it resumes execution.

Restart

A job that was stopped after being checkpointed while previously executing is executed again, starting from the
point where it was checkpointed.

Restart File

The job-specific file that is written by the checkpoint script or tool. This file contains any information needed to
restart the job from where it was when it was checkpointed.

Restart Script

The script that MoM runs to restart a job. This script is common to all jobs, and so must use the information in
a job's restart file to restart the job.

Snapshot Checkpoint

The checkpoint script or tool writes a restart file, and the job continues to execute. The job resumes based on
this restart file if the system experiences a problem during the job's subsequent execution.
PBS Professional 2022.1 Administrator’s Guide AG-387

Chapter 8 Making Your Site More Robust
8.3.2 How Checkpointing Works

When a job is checkpointed, MoM executes a checkpoint script. The checkpoint script saves all of the information nec-
essary to checkpoint the job. If the checkpoint is for a snapshot, the job continues to run. If the job is checkpointed and
aborted, PBS kills and requeues the job after checkpointing it.

When a job is restarted, MoM executes a restart script. The restart script uses the saved information to restore the job.
The restart script also reads the $PBS_NODEFILE. The manner of restarting the job depends on how it was check-
pointed:

• If the job was checkpointed during shutdown, the job becomes eligible to run when PBS is restarted, and will start
from where it was checkpointed.

• If the job was checkpointed by the scheduler because it was preempted, the scheduler briefly applies a hold, but
releases the hold immediately after checkpointing the job, and runs the restart script when the job is scheduled to
run.

• If the job was checkpointed and held via the qhold command, the hold must be released via the qrls command
for the job to be eligible to run. Then when the scheduler next runs the job, the restart script is executed, and the job
runs from where it was checkpointed.

You can configure PBS to requeue jobs that were snapshot checkpointed while they ran, if the epilogue exits with a spe-
cial value. These jobs are then restarted from the restart file. However, if you are running the cgroups hook, any epi-
logue script will not run. The cgroups hook has an execjob_epilogue event which takes precedence over an epilogue
script, so if you are running the cgroups hook, make your epilogue script into an execjob_epilogue hook instead.

You can provide checkpointing for jobs using any combination of scripts that you write and third-party checkpointing
tools such as Meiosys Checkpoint and BLCR (Berkeley Lab Checkpoint/Restart). You can configure PBS to trigger the
scripts or tools, so that the scripts and/or tools create a job's restart file.

You can configure one behavior for snapshots, and another behavior for checkpoint and abort.

Some applications provide their own checkpointing, which is triggered, for example, when the application receives a sig-
nal or detects a change in a file.

8.3.2.1 Types of Checkpointing

8.3.2.1.i Checkpoint and Abort

Checkpoint and abort is used when a job is checkpointed before being killed. When the job is checkpointed, the follow-
ing takes place:

• MoM runs the checkpoint_abort script; the checkpoint script or tool writes a restart file specific to that job

• The checkpoint_abort script terminates the job

• PBS requeues the job

• If the job was held via the qhold command, PBS applies a hold to the job (puts it in the Held state)

The job resumes execution based on the information in the restart file.

Checkpoint and abort is applied when:

• The qhold command is used on a job

• The server is shut down via qterm -t immediate or qterm -t delay

• The scheduler preempts a job using the checkpoint method
AG-388 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.3.2.1.ii Snapshot Checkpoint

Snapshot checkpointing is used for checkpointing a job at regular intervals. The job continues to run. When the job is
checkpointed, the following takes place:

• MoM runs the snapshot checkpoint script; the checkpoint script or tool writes a restart file specific to that job

• The job continues to execute

The job resumes execution based on this restart file if the system crashes or if the epilogue returns -2. See section
8.3.7.3, “Requeueing via Epilogue”, on page 398.

The interval can be specified by the user via qsub -c <checkpoint spec>. You can specify a default interval, in
the checkpoint_min queue attribute, or in the Checkpoint job attribute. See “qsub” on page 216 of the PBS Professional
Reference Guide and “Job Attributes” on page 327 of the PBS Professional Reference Guide.

8.3.2.1.iii Application Checkpoint

Application checkpointing is when an application checkpoints itself. PBS can be used to trigger application checkpoint-
ing, but does not manage the checkpoint files or process. Application checkpointing can be triggered when the applica-
tion receives a signal or detects a change in a file.

8.3.2.2 Events That Trigger Checkpointing

The following table lists the events that can trigger checkpointing, and the kind of checkpointing that is used.

8.3.2.3 Effect of Checkpointing on Jobs

When a job is checkpointed and aborted (requeued), its accumulated queue waiting time depends on how that time is cal-
culated:

• If you are using eligible time, the accumulated waiting time is preserved

• If you are not using eligible time, the accumulated waiting time is lost

The job exit code for being checkpointed and aborted is -12, named JOB_EXEC_CHKP.

Table 8-5: Events Triggering Checkpointing

Event
Type of

Checkpointing
Used

Description

The qhold command is used on a job checkpoint_abort See section 8.3.7.6, “Holding a Job”, on page
399

Server shut down via qterm -t immediate
or qterm -t delay

checkpoint_abort See section 8.3.7.2, “Checkpointing During
Shutdown”, on page 398

Scheduler preempts a job using the checkpoint
method

checkpoint_abort See section 8.3.7.5, “Preemption Using Check-
point”, on page 399

Periodic checkpointing of a job, as specified by
qsub -c <checkpoint spec>, or the
queue's checkpoint_min attribute

Snapshot See section 8.3.7.1, “Periodic Job Checkpoint-
ing”, on page 398

Periodic checkpoint of an application, where
checkpoint script triggers application checkpoint

Snapshot and appli-
cation checkpoint

See section 8.3.7.7, “Periodic Application
Checkpoint”, on page 400

User sends application checkpoint signal, or user
creates checkpoint trigger file

Application check-
point

See section 8.3.7.8, “Manual Application
Checkpoint”, on page 400
PBS Professional 2022.1 Administrator’s Guide AG-389

Chapter 8 Making Your Site More Robust
When a job is restarted, it runs on the same machine as it did when it was checkpointed.

8.3.2.4 Effect of Checkpointing on Job Resources

When a job is checkpointed and aborted, all of its resources are freed.

A snapshot checkpoint does not affect a job's resources.

8.3.2.5 Restarting a Job

When a job is restarted, MoM runs the restart script specified in the $action restart MoM parameter. This script looks in
the checkpoint directory (see section 8.3.6.5, “Specifying Checkpoint Path”, on page 397) for the restart file for that job.
It uses the information in that file to restart the job.

For a job that was checkpointed and aborted because it was held, the job has had a hold placed on it so that it will not be
eligible for execution until the hold is released. In order for a checkpointed and held job to be eligible for execution, the
hold must be removed using the qrls command. The job's owner can remove a User hold, but other holds must be
removed by a Manager or Operator. See “qrls” on page 183 of the PBS Professional Reference Guide.

If the job was preempted via checkpointing, the scheduler releases the hold on the job immediately after checkpointing
the job. This will show up in the scheduler's log file, but the job will not appear to be held because the hold duration is
very short.

A job that was checkpointed and requeued during shutdown is not held. This job is eligible for execution as soon as the
necessary daemons are back up. See section 8.3.7.4, “Checkpointed Jobs and Server Restart”, on page 399.

A job that was snapshot checkpointed and later requeued because the epilogue returned a special exit status is requeued
in the Q state, and is eligible to be restarted when the scheduler selects it for execution.

When a checkpointed and aborted job is restarted, MoM resumes tracking the job. She tracks either the original PID of
the job, or the PID of the restart script, depending on the setting of the $restart_transmogrify MoM parameter. See sec-
tion 8.3.4.3, “Setting $restart_transmogrify MoM Parameter”, on page 393.

8.3.3 Prerequisites for Checkpointing Jobs

The following are the prerequisites for checkpointing jobs:

• The MoM must be configured for checkpointing

• Specified checkpoint directories must correspond to available directories (see section 8.3.6.5, “Specifying
Checkpoint Path”, on page 397)

• Checkpoint and restart MoM configuration parameters must be specified (see section 8.3.4.2, “Specifying
Checkpoint and Restart Parameters”, on page 391)

• A checkpointing script or tool must be available for each type of checkpointing to be used
AG-390 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.3.3.1 Restrictions on Checkpointing

• Checkpointing is not supported for job arrays.

• PBS does not directly support OS-level checkpointing.

• You can configure only one snapshot script, so if more than one kind of snapshot checkpointing is required, the
script must distinguish which kind of snapshot to perform.

• You can configure only one checkpoint_abort script, so if more than one kind of checkpoint_abort is required, the
script must also distinguish which kind of checkpoint_abort to perform.

• You can configure only one restart script. The restart script is run once for each of the job's tasks, so if some restarts
are for application checkpointing, the script must handle those restarts correctly (application restarts may require
only one iteration.)

• A restarted job must run on the same machine where it was running when it was checkpointed.

• Checkpointing cannot be used for interactive jobs. See section 8.3.8.2, “Sockets and Checkpointing”, on page 400.

8.3.4 Configuring Checkpointing

8.3.4.1 Overview of Configuring Checkpointing

You configure checkpointing by editing the MoM configuration file, PBS_HOME/mom_priv/config. You edit MoM
configuration parameters to do the following:

• Specify script paths

• Specify path to checkpoint_abort script, if needed

• Specify path to snapshot script, if needed

• Specify path to restart script

• Set $restart_transmogrify MoM parameter to fit your restart script

• Make the checkpoint path match that specified in the restart script

8.3.4.1.i Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

8.3.4.2 Specifying Checkpoint and Restart Parameters

To configure checkpointing, you specify a path to a script that MoM executes when checkpointing is called for. You can
specify a separate path/script for each of checkpoint_abort, snapshot, and restart using the following MoM configuration
parameters:

$action checkpoint timeout !path/script script-args
Specifies snapshot behavior.

$action checkpoint_abort timeout !path/script script-args
Specifies checkpoint_abort behavior.

$action restart timeout !path/script script-args
Specifies restart behavior.

where

$action
Specifies that MoM perform the indicated action.
PBS Professional 2022.1 Administrator’s Guide AG-391

Chapter 8 Making Your Site More Robust
checkpoint
MoM executes the script specified in path/script once for each of the job's tasks when a snapshot is called for.

checkpoint_abort
MoM executes the script specified in path/script once for each of the job's tasks when a checkpoint_abort is
called for.

restart
MoM executes the script specified in path/script once for each of the job's tasks when a restart is called for.

timeout
The number of seconds allowed for the script or tool to execute. The value of the $restart_transmogrify MoM
parameter determines whether this limit is applied. Values for $restart_transmogrify, and resulting behavior:

False
If the script/tool does not finish running during this time, it is killed and handled as if it had returned failure.

True
No timeout limit is applied.

path/script
The path to the script, including the name of the script. The path can be absolute or relative. If the path is rela-
tive, it is relative to PBS_HOME/mom_priv.

Examples of absolute paths and script names:

/usr/bin/checkpoint/snapshot

/usr/bin/checkpoint/checkpt-abort

/usr/bin/checkpoint/restart

script-args
These are the arguments to the script, if any.

PBS automatically expands some arguments to checkpoint and restart scripts. The following table lists the argu-
ments that are expanded by PBS:

8.3.4.2.i Examples of Checkpoint and Restart Parameters

The following are examples of snapshot, checkpoint_abort, and restart MoM parameters:

$action checkpoint 60 !/usr/bin/checkpoint/snapshot %jobid %sid %taskid %path

$action checkpoint_abort 60 !/usr/bin/checkpoint/checkpt-abort %jobid %sid %taskid %path

$action restart 30 !/usr/bin/checkpoint/restart %jobid %sid %taskid %path

Table 8-6: Checkpoint Script Arguments Expanded by PBS

Argument Description

%globid Global ID (no longer used)

%jobid Job ID

%sid Session ID

%taskid Task ID

%path File or directory name to contain restart files
AG-392 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.3.4.3 Setting $restart_transmogrify MoM Parameter

The $restart_transmogrify MoM parameter controls how MoM runs the restart script, and whether she expects to
resume tracking the job's original PID or a new PID. When she runs a restart script, MoM forks a child process, which
exec()s the start script. If $restart_transmogrify is True, the start script becomes the top task of the job. If
$restart_transmogrify is False, the start script does not become the top task of the job.

If your restart script preserves the job's original PID, set $restart_transmogrify to False. This way, the script does not
become the top task of the job, and MoM continues to track the job's original PID.

If your restart script results in a new PID for the job, set $restart_transmogrify to True. This way, the restart script
becomes the top task of the job, and MoM tracks the PID of the new top process, which is the script.

8.3.5 Parameters and Attributes Affecting Checkpointing

8.3.5.1 MoM Configuration Parameters Affecting Checkpointing

$action checkpoint <timeout> !<script-path> <args>
Checkpoints the job, allowing the job to continue running.

$action checkpoint_abort <timeout> !<script-path> <args>
Checkpoints, kills, and requeues the job.

$action restart <timeout> !<script-path> <args>
Restarts checkpointed job.

The <timeout> is the time allowed for checkpoint or restart script to run.

$checkpoint_path <path>
MoM passes this parameter to the checkpoint and restart scripts. This path can be absolute or relative to
PBS_HOME/mom_priv. Overrides default. Overridden by path specified in the pbs_mom -C option and by
PBS_CHECKPOINT_PATH environment variable.

$restart_background <True|False>
Specifies whether MoM runs the restart script in the background (MoM doesn't wait) or foreground (MoM
waits). When set to True, MoM runs the restart script in the background.

Automatically set by MoM; Controlled by value of $restart_transmogrify. When $restart_transmogrify is
True, $restart_background is set to False. When $restart_transmogrify is False, $restart_background is set
to True.

Format: Boolean

Default: False

$restart_transmogrify <True|False>
Specifies which PID MoM tracks for a job that has been checkpointed and restarted.

When this parameter is set to True, MoM tracks the PID of the restart script. When this parameter is set to
False, MoM tracks the PID of the original job.

The value of $restart_transmogrify controls the value of $restart_background.

Format: Boolean

Default: False
PBS Professional 2022.1 Administrator’s Guide AG-393

Chapter 8 Making Your Site More Robust
8.3.5.2 Options to pbs_mom Affecting Checkpointing

-C checkpoint_directory
Specifies the path to the directory where MoM creates job-specific subdirectories used to hold each job's restart
files. MoM passes this path to checkpoint and restart scripts. Overrides other checkpoint path specification
methods. Any directory specified with the -C option must be owned, readable, writable, and executable by root
only (rwx,---,---, or 0700), to protect the security of the restart files. See the -d option to pbs_mom.

Format: String

Default: PBS_HOME/checkpoint

8.3.5.3 Job Attribute Affecting Checkpointing

Checkpoint
Determines when the job will be checkpointed. Can take on one of the following values:

c
Checkpoint at intervals, measured in CPU time, set on the job's execution queue. If there is no interval set
on the queue, the job is not checkpointed.

c=<minutes of CPU time>
Checkpoint at intervals of the specified number of minutes of job CPU time. This value must be greater
than zero. If the interval specified is less than that set on the job's execution queue, the queue's interval is
used.

Format: Integer

w
Checkpoint at intervals, measured in walltime, set on the job's execution queue. If there is no interval set at
the queue, the job is not checkpointed.

w=<minutes of walltime>
Checkpoint at intervals of the specified number of minutes of job walltime. This value must be greater than
zero. If the interval specified is less that that set on the execution queue in which the job resides, the queue's
interval is used.

Format: Integer

n
No checkpointing.

s
Checkpoint only when the server is shut down.

u
Unset. Defaults to behavior when interval argument is set to s.

Default: u.

Format: String

8.3.5.4 Queue Attribute Affecting Checkpointing

checkpoint_min
Specifies the minimum number of minutes of CPU time or walltime allowed between checkpoints of a job. If a
user specifies a time less than this value, this value is used instead. The value given in checkpoint_min is used
for both CPU minutes and walltime minutes. See the Checkpoint job attribute.

Format: Integer

Default: None

Python attribute value type: pbs.duration
AG-394 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.3.5.5 Environment Variable Affecting Checkpointing

PBS_CHECKPOINT_PATH
MoM passes this path to the checkpoint and restart scripts. Overridden by -C option to pbs_mom; overrides
$checkpoint_path MoM parameter and default. See section 8.3.6.5, “Specifying Checkpoint Path”, on page
397.

PBS_NODEFILE
PBS uses the $PBS_NODEFILE to restart the job. Make sure it is available.

8.3.5.6 The Epilogue

PBS will requeue a job which was snapshot checkpointed, if the epilogue returns the value 2. See section 8.3.7.3,
“Requeueing via Epilogue”, on page 398.

If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead.

8.3.6 Checkpoint and Restart Scripts

The restart script is run by the same MoM that ran the checkpoint script. The checkpoint and restart scripts are run for
each task of the job. When MoM executes a checkpoint or restart script, she forks a child process, which exec()s the
script. The restart script looks for the restart file in the job-specific subdirectory created by MoM, under the specified
path. See section 8.3.6.5, “Specifying Checkpoint Path”, on page 397.

8.3.6.1 Environment Variables for Scripts

PBS sets the following variables in the checkpoint and restart scripts' environments before running the scripts:

Table 8-7: Checkpoint/Restart Script Environment Variables

Environment Variable Value of Variable

GID Job owner's group ID

HOME Job owner's PBS home directory

LOGNAME Job owner's login name

PBS_JOBCOOKIE 128-bit random number used as token to authenticate job processes

PBS_JOBID The job's ID

PBS_JOBNAME The job's name

PBS_MOMPORT Port number on which MoM listens for resource manager requests

PBS_NODEFILE Path and filename of this job's node file

PBS_NODENUM Index into the node file; index of this vnode; starts at 0

PBS_QUEUE Name of the job's execution queue

PBS_SID Session ID of task for which script is being called

PBS_TASKNUM Index into task table for this job; index of task for which script is being called

SHELL Job owner's login shell
PBS Professional 2022.1 Administrator’s Guide AG-395

Chapter 8 Making Your Site More Robust
8.3.6.2 The Checkpoint Script

The checkpoint script writes a restart file that is specific to the job being checkpointed. The checkpoint script must save
all of the information needed to restart the job. This is the information that will be used by the restart script to restart the
job. PBS runs the script for each running job task, on each vnode where a task is running.

8.3.6.2.i Requirements for Checkpoint Script

• The first line of the script must specify the shell to be used, for example:
#!/bin/sh

• The script should return the following error codes:

• Zero for success

• Non-zero for failure

• The script should block until the checkpoint process is finished.

• The restart file and its directory should be owned by root, and writable by root only, with permission 0755.

• Under Linux, the checkpoint script should be owned by root, and writable by root only, with permission 0755.

• Under Windows, the checkpoint script must have at least Full Control permission for the local Administrators group.

• The checkpoint script must write the restart file(s) in the location expected by the restart script. You don't have to
use the %path parameter passed by MoM.

• If the script is for checkpoint-abort, the script must ensure that all processes are killed, whether directly or indirectly,
for example by touching a file. All job processes must exit.

8.3.6.3 The Restart Script

The restart script does only one of the following:

• Reinstates the job's original PID, so that MoM tracks the original PID

• Becomes the new top process of the job, so that MoM tracks the PID of the script

If $restart_transmogrify is set to True, the restart script becomes the new top task for the job, and MoM begins tracking
its process ID, where she was tracking the job's original process ID. If $restart_transmogrify is set to False, MoM con-
tinues to track the original job PID.

The restart script can use pbs_attach() to attach job processes to the original job PID, or to the script's PID. See
“pbs_attach” on page 56 of the PBS Professional Reference Guide.

8.3.6.3.i Caveats for Restart Script

The pbs_attach() command is not supported under Windows.

8.3.6.3.ii Requirements for Restart Script

The restart script must handle everything required to restart the job from the information saved by the checkpoint script.

UID Job owner's execution ID

USER Job owner's username

USERPROFILE (Windows only) Job owner's Windows home directory

USERNAME (Windows only) Job owner's Windows username

Table 8-7: Checkpoint/Restart Script Environment Variables

Environment Variable Value of Variable
AG-396 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
The restart script must block until the restart process is finished.

Under Linux, the restart script should be owned by root, and writable by root only, with permission 0755.

Under Windows, the restart script must have at least Full Control permission for the local Administrators group.

8.3.6.3.iii Return Values for Restart Script

The restart script must inform PBS of success or failure. It must return one of the following:

• Zero for success

• Non-zero for failure

8.3.6.4 Scripts for Application Checkpointing

If a user's application can be checkpointed periodically according to walltime or CPU time, you can use the PBS snap-
shot checkpoint facility to trigger snapshot checkpointing by the application.

If a user's application can be checkpointed, you can use the PBS checkpoint_abort facility before shutting down PBS to
avoid losing intermediate results.

Some applications produce a restart file when they are sent a specific signal, or when a specific file is affected. A check-
point script for this purpose sends the application the correct signal, or makes the correct change to the file.

Some applications only need the checkpoint and restart scripts to be run once each. In this case, the checkpoint and
restart scripts should handle this requirement.

8.3.6.5 Specifying Checkpoint Path

When a job is checkpointed, information about the job is saved into a file. The location for this file can be any directory
accessible to MoM.

The path to the checkpoint directory is composed of two parts. The first part is common to all jobs; this part can speci-
fied. The second part is a job-specific subdirectory, created by MoM for each job, under the common directory. The
job's restart file is written in this job-specific subdirectory.

The default common directory, PBS_HOME/checkpoint, is provided for convenience.

You can specify the filename and the path for the common directory using any of the following methods. If the first is
specified, PBS uses it. If not, and the second is specified, PBS uses the second, and so on.

• The -C path option to the pbs_mom command

• The PBS_CHECKPOINT_PATH environment variable

• The $checkpoint_path MoM configuration option in PBS_HOME/mom_priv/config

• The default value of PBS_HOME/checkpoint

The job-specific subdirectory is named with the following format:

<job ID>.CK

For example, if you specify /usr/bin/checkpoint for the common directory, and the job's ID is 1234.host1, the
job's restart file is written under /usr/bin/checkpoint/1234.host1.CK.

The restart file and its directory should be owned by root, and writable by root only.

8.3.6.5.i Checkpoint Path Caveats

If the checkpoint file is in PBS_HOME/checkpoint/<job ID>.CK/, and MoM thinks that a checkpoint failed (the
checkpoint script returned non-zero), she will remove the checkpoint file. If the checkpoint script puts the checkpoint
file in another location, MoM does not remove the checkpoint file.
PBS Professional 2022.1 Administrator’s Guide AG-397

Chapter 8 Making Your Site More Robust
8.3.7 Using Checkpointing

8.3.7.1 Periodic Job Checkpointing

If a job's Checkpoint attribute is set to c, c=<minutes>, w, or w=<minutes>, the job is periodically checkpointed. The
checkpoint interval is specified either in the job's Checkpoint attribute or in the queue's checkpoint_min attribute. See
“Job Attributes” on page 327 of the PBS Professional Reference Guide. The job's Checkpoint attribute is set using the -c
<interval> option to the qsub command. See “qsub” on page 216 of the PBS Professional Reference Guide.

When this attribute is set, at every <interval> the job is checkpointed and a restart file is written, but the job keeps run-
ning.

8.3.7.2 Checkpointing During Shutdown

The effect on jobs of shutting down PBS depends on the method used to shut PBS down. When a job is checkpointed
during shutdown, MoM runs the checkpoint_abort script, and PBS kills and requeues the job. PBS does not hold the job,
so the job is eligible to be run again as soon as the server starts up.

If you use the qterm command, there are three different suboptions to the -t option to control whether jobs are check-
pointed, requeued, or allowed to continue running.

If you use the PBS start/stop script, the script affects only the host where the script is run. Any jobs running completely
or partly on that host are killed and requeued, but not checkpointed. Any jobs not running on that host are left running.

The effect of each shutdown method is described here:

Any running subjobs of a job array keep running when the server is shut down.

8.3.7.3 Requeueing via Epilogue

You can configure MoM to requeue a failed job that was snapshot checkpointed during its execution. For example, if a
job terminates, but had a hardware failure during execution, PBS can requeue the job, and MoM will run the start script,
which can restart the job from its restart file.

When the job is requeued via the epilogue mechanism, it is in the Q state.

Table 8-8: Effect of Shutdown on Jobs

Shutdown Method Effect on Checkpointable Jobs
Effect on Non-checkpointable

Jobs

qterm -t quick Continue to run Continue to run

qterm -t delay Checkpointed, killed, requeued, held Requeued if rerunnable; continue to run if
not rerunnable

qterm -t immediate Checkpointed, killed, requeued, held Requeued if rerunnable; deleted if not rerun-
nable

systemctl stop pbs

or

init.d/pbs stop

Any jobs running completely or partly on
host where stop script is run are killed and
requeued

Jobs not running on host where stop script is
run are left running

Any jobs running completely or partly on
host where stop script is run are killed and
requeued

Jobs not running on host where stop script is
run are left running
AG-398 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead.

8.3.7.3.i Requirements for Requeueing via Epilogue

The following requirements must be met in order for a job to be requeued via the epilogue mechanism:

• The epilogue must return a value of 2

• The job must have been checkpointed under the control of PBS

• The MoM must be configured with a restart script in the $action restart MoM configuration parameter

• The MoM must be configured to snapshot checkpoint jobs in the $action checkpoint MoM configuration parameter

• The jobs must request checkpointing via their Checkpoint attribute. See section 8.3.7.1, “Periodic Job Checkpoint-
ing”, on page 398

• The epilogue script in PBS_HOME/mom_priv/epilogue must return the following:

• Zero (0) for successful termination (requeue is not required)

• Two (2) for failure (requeue is required)

8.3.7.4 Checkpointed Jobs and Server Restart

When the server is restarted using the pbs_server -t warm command, systemd, or the init.d/pbs start
script, jobs that were checkpointed and aborted upon shutdown are waiting in their queues, and are eligible to be run
according to the scheduler's algorithm.

When the server is restarted using the pbs_server -t hot command, jobs that were checkpointed and aborted upon
shutdown are immediately rerun, before the scheduler selects which jobs to run.

8.3.7.5 Preemption Using Checkpoint

When a job is preempted via checkpointing, MoM runs the checkpoint_abort script, and PBS kills and requeues the job.
When the scheduler elects to run the job again, the scheduler runs the restart script to restart the job from where it was
checkpointed. For a description of using preemption, see section 4.9.33, “Using Preemption”, on page 179.

8.3.7.6 Holding a Job

When anyone uses the qhold command to hold a checkpointable job, MoM runs the checkpoint_abort script, which
kills all job processes, and PBS requeues, and holds the job.

A job with a hold on it must have the hold released via the qrls command in order to be eligible to run.

The following is the sequence of events when a job is held:

• MoM runs the checkpoint_abort script

• The job's execution is halted

• The resources assigned to the job are released

• The job is placed in the Held state in the execution queue

• The job's Hold_Types attribute is set appropriately
PBS Professional 2022.1 Administrator’s Guide AG-399

Chapter 8 Making Your Site More Robust
A held job is waiting in its queue. The following is the sequence of events when a held job is restarted:

• The hold is released by means of the qrls command; the job is now in the Queued state

• The job continues to wait in its queue until the scheduler schedules it for execution

• The scheduler selects the job for execution

• The job is sent to its original MoM for execution

• The MoM runs the restart script

8.3.7.6.i Restrictions on Holding a Job

A job in the process of provisioning cannot be held.

The qhold command can be used on jobs and job arrays, but not on subjobs or ranges of subjobs.

If the job cannot be checkpointed and aborted, qhold simply sets the job's Hold_Types attribute. The job continues to
execute.

The checkpoint-abort script must terminate all job processes, or the qhold command will appear to hang.

8.3.7.7 Periodic Application Checkpoint

The snapshot checkpoint script can trigger checkpoint by a job's application, if the application is written to support
checkpointing itself. Note that an application may be designed to be checkpointed at specific stages in its execution,
rather than at specific points in time. If an application can be usefully checkpointed at specific points in time, then snap-
shot checkpointing may be useful. See section 8.3.7.1, “Periodic Job Checkpointing”, on page 398.

8.3.7.8 Manual Application Checkpoint

When an application is checkpointed manually, the user triggers checkpointing by the application by sending the applica-
tion a specific signal, or by creating a file.

8.3.8 Advice and Caveats

8.3.8.1 PBS_NODEFILE Required

Make sure that the $PBS_NODEFILE is available during restart.

8.3.8.2 Sockets and Checkpointing

Multi-vnode jobs may cause network sockets to be opened between submission and execution hosts, and open sockets
may cause a checkpointing script or tool to fail. The following use sockets:

• An interactive job, i.e. a job submitted using qsub -I, opens unprivileged sockets. qsub binds a socket to a port,
then waits to accept a connection from MoM on that socket. Data from standard in is written to the socket and data
from the socket is written to standard out.

• The pbs_demux process collects stdio streams from all tasks

• The pbsdsh program spawns tasks. The -o option to this command prevents it from waiting for spawned tasks to
finish, so that no socket is left open to the MoM to receive task manager events. When the -o option is used, the
shell must use some other method to wait for the tasks to finish. See “pbsdsh” on page 30 of the PBS Professional
Reference Guide.
AG-400 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.3.9 Accounting

If a job is checkpointed and requeued, the exit status passed to the epilogue and recorded in the accounting record is the
following:

-12, meaning that the job was checkpointed and aborted

A checkpoint ("C") record is written in the accounting log when the job is checkpointed and requeued, as when the
qhold command is used, or the job is checkpointed and aborted.

8.4 Reservation Fault Tolerance

If the vnodes associated with an advance reservation, the soonest occurrence of a standing reservation, or a job-specific
reservation become unavailable, PBS marks the reservation as degraded (state 10). If the vnodes are instead taken over
by a maintenance reservation, PBS marks the reservation as in conflict (state 12).

PBS attempts to reconfirm degraded or in-conflict reservations by finding replacements for vnodes that have become
unavailable.

When a reservation is degraded, PBS may still be able to use the unavailable original vnodes, if they become available in
time. When a reservation is in conflict, the vnodes that were taken over by the maintenance reservation are removed
from the reservation; they are no longer in the reservation's resv_nodes attribute, and PBS looks for other vnodes.

States of available vnodes:

free

busy

job-exclusive

job-sharing

job-busy

States of unavailable vnodes:

down

maintenance

offline

provisioning

stale

state-unknown, down

unresolvable

wait-provisioning

8.4.1 States for Degraded and In-conflict Reservations

A degraded reservation's state becomes RESV_DEGRADED, abbreviated DG, and its substate becomes
RESV_DEGRADED.

If vnodes associated with an occurrence later than the soonest occurrence of a standing reservation become unavailable,
the reservation stays in state RESV_CONFIRMED, but its substate becomes RESV_DEGRADED.

During the time that a degraded advance or job-specific reservation, or the soonest occurrence of a degraded standing
reservation is running, its state is RESV_RUNNING, and its substate is RESV_DEGRADED.
PBS Professional 2022.1 Administrator’s Guide AG-401

Chapter 8 Making Your Site More Robust
An in-conflict reservation's state becomes RESV_IN_CONFLICT, abbreviated IC, and its substate becomes
RESV_IN_CONFLICT.

For a table of degraded and in-conflict reservation states and substates, see “Degraded Reservation Substates” on page
368 of the PBS Professional Reference Guide. For a table of numeric values for reservation states and substates, see
“Reservation States” on page 367 of the PBS Professional Reference Guide.

8.4.2 Finding Replacement Vnodes for Degraded and

In-conflict Reservations

PBS attempts to reconfirm reservations by finding replacements for vnodes that have become unavailable. If a reserva-
tion is not running, PBS will use any available vnodes. If it is running, any vnode without a running job on it may
change.

PBS attempts to reconfirm a reservation only during periods when this makes sense:

• If a reservation is not actively running, PBS waits the time specified in reserve_retry_time, then starts periodically
trying to reconfirm the reservation, including making an attempt to reconfirm the reservation just before the start
time of each occurrence.

• If an in-conflict reservation is actively running, PBS does not attempt to reconfirm it.

• If a degraded reservation is actively running, and the reservation is not in conflict, and the reservation has no running
jobs on the unavailable vnodes, PBS periodically attempts to reconfirm it every reserve_retry_time seconds.

• If an actively running reservation is degraded because a vnode becomes unavailable, and the reservation has running
jobs:

• If the unavailable vnode has any jobs running on it, PBS waits until those jobs are finished to periodically
attempt to reconfirm the reservation.

• If the unavailable vnode has no jobs running on it, PBS does not wait until the jobs are finished to periodically
attempt to reconfirm the reservation. PBS periodically attempts to reconfirm it every reserve_retry_time sec-
onds.

A degraded or in-conflict reservation has a read-only reservation attribute called reserve_retry, whose value is the next
time at which the reservation is due to be reconfirmed.

8.4.2.1 Attributes Affecting Reservation Reconfirmation

reserve_retry_time
Server attribute. The time period between attempts to reconfirm the reservation.

Settable by Manager; readable by all

Format: Integer (seconds)

Values: Must be greater than zero

Default: 600 (10 minutes)

Python attribute value type: int
AG-402 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.4.3 Allocating New Vnodes

Once new vnodes are allocated for a reservation:

• The reservation has been confirmed

• If the reservation is not running, the state and substate of the reservation are RESV_CONFIRMED

• If the reservation is running, the state of the reservation is RESV_RUNNING and the substate is
RESV_CONFIRMED

• The reservation's resv_nodes attribute lists the new vnodes

8.4.4 Restarting the Server

When the server is restarted, reservations are assumed confirmed until associated vnodes are recognized as unavailable.
If any reservations become degraded or in conflict after a server restart, PBS sets the time when the reservation becomes
degraded to the time of the restart. If a vnode is set offline before the restart, it is considered unavailable after the restart,
so all its associated reservations become degraded.

8.5 Vnode Fault Tolerance for Job Start and Run

PBS lets you allocate extra vnodes to a job so that the job can successfully start and run even if some vnodes fail. You
can allocate the extra vnodes only for startup, or for the life of the job. Later, for jobs where the extra vnodes are needed
only for reliable startup, you can trim the allocated vnodes back to just what the job will use to run, releasing the
unneeded vnodes for other jobs.

You allocate extra vnodes in a queuejob hook using the pbs.select.increment_chunks() method, and you release
vnodes in an execjob_launch or execjob_prologue hook using the pbs.event().job.release_nodes() method.

We provide an example hook in $PBS_EXEC/unsupported/ReliableJobStartup.py.

8.5.1 Overview of Padding and Trimming Vnode Requests

Here is an overview of the steps for improving job startup and run reliability. We describe each of them in detail in the
next subsections, and we give an example at the end of this section.

• Use a queuejob hook to do the following:

• Save the job's initial vnode request

• Set the job's tolerate_node_failures attribute to the desired value

• Pad the job's vnode request

• Configure primary MoMs to wait for sister MoMs to acknowledge joining job

• Configure primary MoMs to wait for hooks to complete

• Use an execjob_launch or execjob_prologue hook to trim the vnodes not used by the job from the job's vnode
request
PBS Professional 2022.1 Administrator’s Guide AG-403

Chapter 8 Making Your Site More Robust
8.5.2 Saving Job Initial Vnode Request

To save the job's initial resource request so that you know how much to trim later, use a queuejob hook to save it into a
built-in resource such as the site resource (currently, it cannot be a custom resource). Here is a code snippet:

import pbs

e=pbs.event()

j = e.job

e.job.Resource_List["site"] = str(e.job.Resource_List["select"])

8.5.3 Configuring Primary MoMs to Wait for Sister MoMs

When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the primary MoM
can wait to start the job for up to a configured number of seconds if the sister MoMs do not immediately acknowledge
joining the job. This gives the sister MoMs more time to join the job. You configure the number of seconds for the pri-
mary MoM to wait for sister MoMs via the sister_join_job_alarm configuration parameter in MoM's config file:

$sister_join_job_alarm <number of seconds to wait>

The default value for this parameter is the sum of the values of the alarm attributes of any enabled execjob_begin
hooks. If there are no enabled execjob_begin hooks, the default value is 30 seconds. For example, if there are two
enabled execjob_begin hooks, one with alarm = 30 and one with alarm = 20, the default value of MoM's
sister_join_job_alarm is 50 seconds.

After all the sister MoMs have joined the job, or MoM has waited for the value of the sister_join_job_alarm parameter,
she starts the job.

8.5.4 Configuring MoMs to Wait for Hooks

When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the primary MoM
can wait to start the job (running the job script or executable) for up to a configured number of seconds. During this time,
execjob_prologue hooks can finish and the primary MoM can check for communication problems with sister MoMs.
You configure the number of seconds for the primary MoM to wait for hooks via the job_launch_delay configuration
parameter in MoM's config file:

$job_launch_delay <number of seconds to wait>

The default value for this parameter is the sum of the values of the alarm attributes of any enabled execjob_prologue
hooks. If there are no enabled execjob_prologue hooks, the default value is 30 seconds. For example, if there are two
enabled execjob_prologue hooks, one with alarm = 30 and one with alarm = 60, the default value of MoM's
job_launch_delay is 90 seconds.

After all the execjob_prologue hooks have finished, or MoM has waited for the value of the job_launch_delay param-
eter, she starts the job.

8.5.4.1 Caveats for Configuring MoMs to Wait for Hooks

This configuration option is not supported under Windows.

8.5.5 Padding Vnode Request

To add extra vnodes to a job's vnode request, specify for the job whether you want more vnodes for startup, for the life of
the job, or not at all, and specify how you want to pad the job's vnode request.
AG-404 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.5.5.1 Specifying Whether and When to Pad Vnode Request

To specify whether and when the job gets extra vnodes, set the job's tolerate_node_failures attribute to one of none,
job_start, or all.

8.5.5.1.i Setting the tolerate_node_failures Job Attribute

You or the job submitter can set the job's tolerate_node_failures attribute via qsub, qalter, or in a Python hook, for
example a queuejob hook. If set via qalter while the job is already running, the attribute is consulted the next time
the job is rerun.

You can set a value for tolerate_node_failures for all jobs via the server's default_qsub_arguments attribute.

Examples of setting this attribute:

• Via qsub:
qsub -W tolerate_node_failures="all" <job script>

• Via qalter:
qalter -W tolerate_node_failures="job_start" <job ID>

• Via a hook. The following code snippet shows how to set this attribute:
cat qjob.py

import pbs

e=pbs.event()

e.job.tolerate_node_failures = "all"

8.5.5.2 Specifying How Chunks Are Padded

To specify how you want each chunk padded, use the pbs.select.increment_chunks(<increment specification>)
method. This method increments the job's chunks according to the rules you give in the increment specification. See
"Method to Increment select Object Chunks" on page 173 in the PBS Professional Hooks Guide.

Table 8-9: Behavior for tolerate_node_failures

Value of tolerate_node_failures Behavior

none or unset No extra vnodes are allocated to the job. Default behavior.

job_start Extra vnodes are allocated only long enough to start the job successfully.

Tolerate vnode failures that occur only during job start, just before execut-
ing the job's top level shell or executable or any execjob_launch hooks.

Failures tolerated are those such as an assigned sister MoM failing to join
the job and communication errors between MoMs.

all Extra vnodes are allocated for the life of the job.

Tolerate all node failures resulting from communication problems, such as
polling problems, between the primary MoM and the sister MoMs
assigned to the job

Tolerate failures due to rejections from execjob_begin or
execjob_prologue hooks run at sister MoMs.
PBS Professional 2022.1 Administrator’s Guide AG-405

Chapter 8 Making Your Site More Robust
8.5.5.2.i Example of Padding Chunks

The following code snippet illustrates padding a job's vnode request by one extra vnode per chunk:

import pbs

e=pbs.event()

j = e.job

new_select = e.job.Resource_List["select"].increment_chunks(1)

e.job.Resource_List["select"] = new_select

8.5.5.3 Caveats for Padding Vnode Requests

The tolerate_node_failures job attribute is not supported on Cray systems. It is ignored on Cray systems.

8.5.6 Trimming Vnode Request

When you trim a job's vnode request, you can trim the larger padded amount back to the job's initial vnode request. To
trim a job's vnode request, use the pbs.event().job.release_nodes(keep_select) method. This method automatically
selects vnodes that satisfy the new request and are healthy, keeps them in the job's vnode request, and releases all others.
The method automatically trims out any vnodes in the pbs.event().vnode_list_fail[] list.

You can call pbs.event().job.release_nodes(keep_select = <desired vnodes>) in an execjob_launch or
execjob_prologue hook. Note that despite the method being named "release_nodes", it keeps the specified vnodes and
releases all other vnodes. You can specify the job's original vnode request as the vnodes to keep.

The pbs.event().job.release_nodes() method returns a PBS job object which has the updated values for the job's
exec_vnode and Resource_List attributes.

See "Job Object Method to Release Vnodes" on page 141 in the PBS Professional Hooks Guide.

8.5.6.1 Example of Trimming Job Vnode Request

Here we use an execjob_prologue hook to trim a job's vnode request:

pj = e.job.release_nodes(keep_select="ncpus=2:mem=2gb+ncpus=2:mem=2gb+ncpus=1:mem=1gb")

if pj != None:

 pbs.logmsg(pbs.LOG_DEBUG, "pj.exec_vnode=%s" % (pj.exec_vnode,))

else: # returned None job object, so we can put a hold on the job and requeue it,
rejecting the hook event

 e.job.Hold_Types = pbs.hold_types("s")

 e.job.rerun()

 e.reject("unsuccessful at LAUNCH")

8.5.6.2 Offlining Vnodes that Have Gone Bad During Start or Run

See "Using List of Failed Vnodes to Offline Vnodes that Have Gone Bad During Start or Run" on page 72 in the PBS
Professional Hooks Guide.

8.5.7 Checking Vnodes and Marking Them as Failed

For each execjob_prologue and execjob_launch event, PBS records the list of vnodes, with their assigned resources,
that are marked as bad by MoM. PBS records this list in the pbs.event().vnode_list_fail[] object. See "The Failed
Vnode List Event Member" on page 125 in the PBS Professional Hooks Guide.
AG-406 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
Any sister vnodes that are able to join the job are considered healthy.

The successful outcome of a join job request may be the result of a check made by a remote execjob_begin hook. After
successfully joining the job, the vnode may further check its status via a remote execjob_prologue hook. A rejection by
the remote execjob_prologue hook causes the primary MoM to treat the sister vnode as a problem vnode, and the sister
vnode is marked as unhealthy.

If there's an execjob_prologue hook in place, the primary MoM tracks vnode hosts that have acknowledged their exe-
cution of the execjob_prologue hook. Then after some job_launch_delay amount of time for job startup, the primary
MoM starts reporting as failed vnodes those which have not given their positive acknowledgement during
execjob_prologue hook execution.

If after some time, a vnode's host comes back with an acknowledgement of successful execjob_prologue hook execu-
tion, the primary MoM adds that host back to the healthy list.

You may want to offline any bad vnodes; see "Offlining Bad Vnodes" on page 72 in the PBS Professional Hooks Guide.

8.5.8 Example of Reliable Job Startup and Run

In order to have a job start reliably, we need these:

• A queuejob hook that does the following:

• Makes the job tolerate vnode failures by setting the tolerate_node_failures job attribute to job_start

• Adds extra chunks to the job's select specification using the pbs.event().job.select.increment_chunks()
method

• Saves the job's original vnode request into a built-in string resource (for example, "site")

• An execjob_launch hook that calls pbs.event().job.release_nodes() to trim the job's vnode request back to the
original.

8.5.8.1 Example Queuejob Hook for Setup and Padding

We will use a queuejob hook called qjob.py in our example. In the queuejob hook:

• Make the job tolerant of failures:
import pbs

e=pbs.event()

j = e.job

j.tolerate_node_failures = job_start

• Save the job's initial vnode request in the built-in resource named site:
e.job.Resource_List["site"] = str(e.job.Resource_List["select"])

• Add extra chunks to the vnode request:
new_select = e.job.Resource_List["select"].increment_chunks(1)

e.job.Resource_List["select"] = new_select

Instantiate the queuejob hook:

qmgr -c "c h qjob event=queuejob"

qmgr -c "i h qjob application/x-python default qjob.py"
PBS Professional 2022.1 Administrator’s Guide AG-407

Chapter 8 Making Your Site More Robust
8.5.8.2 Example Hook for Trimming

We will use an execjob_launch hook named launch.py to trim the job's padded vnode request back to the original
vnode request. This hook runs before the job executes.

import pbs

e=pbs.event()

if 'PBS_NODEFILE' not in e.env:

e.accept()

j = e.job

pj = j.release_nodes(keep_select=e.job.Resource_List["site"])

if pj is None: # not successful pruning the vnodes

j.rerun() # rerun (requeue) the job

e.reject("something went wrong pruning the job back to its original select request")

Instantiate the execjob_launch hook:

qmgr -c "c h launch event=execjob_launch"

qmgr -c "i h launch application/x-python default launch.py"

8.5.8.3 Example Job

Here is our example job:

% cat jobr.scr

#PBS -l select="ncpus=3:mem=1gb+ncpus=2:mem=2gb+ncpus=1:mem=3gb"

#PBS -l place=scatter:excl

echo $PBS_NODEFILE

cat $PBS_NODEFILE

echo END

echo "HOSTNAME tests"

echo "pbsdsh -n 0 hostname"

pbsdsh -n 0 hostname

echo "pbsdsh -n 1 hostname"

pbsdsh -n 1 hostname

echo "pbsdsh -n 2 hostname"

pbsdsh -n 2 hostname

echo "PBS_NODEFILE tests"

for host in `cat $PBS_NODEFILE`

do

echo "HOST=$host"

echo "pbs_tmrsh $host hostname"

pbs_tmrsh $host hostname

echo "ssh $host pbs_attach -j $PBS_JOBID hostname"

ssh $host pbs_attach -j $PBS_JOBID hostname

done
AG-408 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.5.8.4 Example of Job Vnode Assignment Padding and Trimming

When our job first starts, it is assigned 5 vnodes, because its select specification was modified by adding 2 vnodes:

% qstat -f 20

Job Id: 20.mars.example.com

...

exec_host = mars/0*3+jupiter/0*2+saturn/0*2+mercury/0+neptune/0

exec_vnode =
(mars:ncpus=3:mem=1048576kb)+(jupiter:ncpus=2:mem=2097152kb)+(saturn:ncpus=2:mem=2097152kb)+
(mercury:ncpus=1:mem=3145728kb)+(neptune:ncpus=1:mem=3145728kb)

Resource_List.mem = 11gb

Resource_List.ncpus = 9

Resource_List.nodect = 5

Resource_List.place = scatter:excl

Resource_List.select = ncpus=3:mem=1gb+2:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb

Resource_List.site = 1:ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+1:ncpus1:mem=3gb

tolerate_node_failures = job_start

Now jupiter and neptune go down, and just before the job runs its program, the execjob_launch hook executes and
prunes the job's vnode assignment back to the original select request. Now the job has this vnode assignment:

% qstat -f 20

Job Id: 20.mars.example.com

...

exec_host = mars/0*3+saturn/0*2+mercury/0*2

exec_vnode =
(mars:ncpus=3:mem=1048576kb)+(saturn:ncpus=2:mem=2097152kb)+(mercury:ncpus=1:mem=3145728kb)

Resource_List.mem = 6gb

Resource_List.ncpus = 6

Resource_List.nodect = 3

Resource_List.place = scatter:excl

Resource_List.select = 1:ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+1:ncpus1:mem=3gb

Resource_List.site = 1:ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+1:ncpus1:mem=3gb
PBS Professional 2022.1 Administrator’s Guide AG-409

Chapter 8 Making Your Site More Robust
A snapshot of the job's output shows the pruned list of vnodes:

/var/spool/PBS/aux/20.mars.example.com <-- updated contents of $PBS_NODEFILE
mars.example.com

saturn.example.com

mercury.example.com

END

HOSTNAME tests

pbsdsh -n 0 hostname

mars.example.com

pbsdsh -n 1 hostname

saturn.example.com

pbsdsh -n 2 hostname

mercury.example.com

PBS_NODEFILE tests

HOST=mars.example.com

pbs_tmrsh mars.example.com hostname

mars.example.com

ssh mars.example.com pbs_attach -j 20.mars.example.com hostname

mars.example.com

HOST=saturn.example.com

pbs_tmrsh saturn.example.com hostname

saturn.example.com

ssh saturn.example.com pbs_attach -j 20.mars.example.com hostname

saturn.example.com

HOST=mercury.example.com

pbs_tmrsh mercury.example.com hostname

mercury.example.com

ssh mercury.example.com pbs_attach -j 20.mars.example.com hostname

mercury.example.com

8.6 Preventing Communication and Timing

Problems

8.6.1 Introduction

PBS communicates with remote execution hosts in order to track their availability and manage the jobs running on them.
PBS is dependent upon your network for this communication. If there are network outages, or if the execution node
becomes too busy for MoM to be able to respond to the server's queries, PBS will not be able to function properly. You
can configure PBS to be better able to withstand these types of communication issues.
AG-410 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
The following attributes and parameters control how PBS handles communication timing:

Table 8-10: Attributes and Parameters For Communication and Timing

Attribute or
Parameter

Description Cross Reference

Server Attributes

job_requeue_timeout Controls how long the process of requeueing a job is
allowed to take

See section 8.6.3, “Setting Job
Requeue Timeout”, on page 414

node_fail_requeue Controls how long the server waits before requeueing
or deleting a job when it loses contact with the MoM
on the job's primary execution host

See section 8.6.2, “Node Fail Requeue:
Jobs on Failed Vnodes”, on page 412

rpp_max_pkt_check Maximum number of TPP messages processed by the
main server thread per iteration.

Default: 64

See “Communication” on page 45 in
the PBS Professional Installation &
Upgrade Guide

rpp_retry Server attribute.

In a fault-tolerant setup (multiple pbs_comms),
when the first pbs_comm fails partway through a
message, this is number of times TPP tries to use any
other remaining pbs_comms to send the message.

Integer

Valid values: Greater than or equal to zero

Default: 10

Python type: int

See “Communication” on page 45 in
the PBS Professional Installation &
Upgrade Guide

rpp_highwater Server attribute.

This is the maximum number of messages per stream
(meaning the maximum number of messages
between each pair of endpoints).

Integer

Valid values: Greater than or equal to one

Default: 1024

Python type: int

See “Communication” on page 45 in
the PBS Professional Installation &
Upgrade Guide

MoM Configuration Parameters

$max_load Vnode is considered to be busy if it is above this
load.

See section 8.6.5, “Managing Load
Levels on Vnodes”, on page 414

$ideal_load Vnode is considered to be not busy if it is below this
load.

See section 8.6.5, “Managing Load
Levels on Vnodes”, on page 414

$prologalarm Maximum number of seconds the prologue and epi-
logue may run before timing out

See section 8.6.6, “Prologue & Epi-
logue Running Time”, on page 416

Queue Attributes

route_retry_time Interval between retries at routing a job See section 8.6.7, “Time Between
Routing Retries”, on page 417
PBS Professional 2022.1 Administrator’s Guide AG-411

Chapter 8 Making Your Site More Robust
See “Robust Communication with TPP” on page 52 in the PBS Professional Installation & Upgrade Guide.

8.6.2 Node Fail Requeue: Jobs on Failed Vnodes

The node_fail_requeue server attribute controls how long the server waits before requeueing or deleting a job when it
loses contact with the MoM on the job's primary execution host.

8.6.2.1 How Node Fail Requeue Works

You can specify how long the server waits after it loses contact with the primary execution host before deleting or
requeueing her jobs. This behavior is controlled by the server's node_fail_requeue attribute.

This attribute's value is the delay between the time the server determines that the primary execution host MoM cannot be
contacted and the time it requeues the job, and does not include the time it takes to determine that the host is out of con-
tact.

If this attribute is set to a value other than zero, and the server loses contact with an execution host, all jobs for which this
is the primary execution host are requeued or deleted at the same time.

If node_fail_requeue is unset, and the host where primary execution is running fails, the server assumes that the job is
still running until one of the following happens:

• The primary execution host MoM comes back up and tells the server to requeue the job

• The job is manually rerun

8.6.2.2 Effect Of Requeueing On Jobs

When a job is thus requeued, it retains its original place in its execution queue with its former priority. The job is usually
the next job to be considered during scheduling, unless the relative priorities of the jobs in the queue have changed. This
can happen when the job sorting formula assigns higher priority to another job, another higher-priority job is submitted
after the requeued job started, this job's owner has gone over their fairshare limit, etc.

Any resources that were being used by a job are freed when the job is requeued.

8.6.2.3 The node_fail_requeue Server Attribute

Format: Integer

8.6.2.3.i Allowable Values

The node_fail_requeue attribute can take these values:

Greater than zero
The server waits for the specified number of seconds after losing contact with a primary execution host MoM,
then attempts to contact the primary execution host MoM, and if it cannot, requeues any jobs that can be rerun
and deletes any jobs that cannot be rerun.

Zero
Jobs are not requeued; they are left in the Running state until the execution host MoM is recovered, whether or
not the server has contact with their primary execution host MoM.

Less than zero
The attribute is treated as if it were set to 1, and jobs are deleted or requeued after the server has been out of con-
tact with the primary execution host MoM for 1 second.

Unset
Behaves as if set to the default value of 310.
AG-412 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.6.2.3.ii Default Value

The default value for this attribute is 310, meaning that when the server loses contact with an execution host, it waits for
310 seconds after losing contact with the primary execution host MoM before requeueing or deleting jobs.

8.6.2.4 Where node_fail_requeue Applies

The server's node_fail_requeue attribute applies only in the case where the server loses contact with the primary execu-
tion host MoM.

When the primary execution host MoM loses contact with a sister MoM, the job is immediately deleted or requeued.

8.6.2.5 Jobs Eligible to be Requeued

Jobs are eligible to be requeued if they meet either of the following criteria:

• The job's Rerunable attribute is set to y

• The job did not begin execution, for example:

• a multi-host job did not start on one or more vnodes

• provisioning failed for the job

Jobs are ineligible to be requeued if their Rerunable attribute is set to n and they have started execution.

See “Job Attributes” on page 327 of the PBS Professional Reference Guide and “Server Attributes” on page 281 of the
PBS Professional Reference Guide.

8.6.2.6 Using node_fail_requeue

The number of seconds selected should be long enough to exceed any transient non-vnode failures, but short enough to
requeue the job in a timely fashion. Transient non-vnode failures can prevent MoM from reporting back to the server
before the server marks the vnode down. These include:

• Network outages

• Vnode is too busy to respond, perhaps due to heavy swapping

Using this feature requires that you take the following into account:

• If the host where the primary execution host MoM is running fails, and node_fail_requeue is unset, the server
assumes that the job is still running until one of the following happens:

• The primary execution host MoM comes back up and tells the server to requeue the job

• The job is manually rerun

If your site has hosts that fail and are not monitored, failed jobs may go unnoticed for a long time.

• If your network has temporary failures, and node_fail_requeue is set to a duration shorter than the outage, jobs will
be unnecessarily requeued. This can be especially annoying when the job has been running for days.
PBS Professional 2022.1 Administrator’s Guide AG-413

Chapter 8 Making Your Site More Robust
8.6.2.7 Advice and Caveats

• If your site experiences frequent network failures or your execution hosts are often too busy to respond to the server,
it is recommended that you either set node_fail_requeue to a value greater than the time MoM is unavailable, or set
it to zero. This way jobs won't be requeued just because the network had a temporary outage or the vnode was too
busy. Choose a value greater than both the longest likely network outage time and the time MoM is unavailable. For
example, one site has set the value to 10 minutes, and another has set it to 15 minutes (900 seconds) to avoid prob-
lems due to swapping.

• The value shown in the server log for the time between losing communication and requeueing a job is sometimes
one or two seconds less than the specified value.

• If the server is restarted when node_fail_requeue is set to a given value, node_fail_requeue retains that value. If
the server is started when node_fail_requeue is unset, node_fail_requeue reverts to its default value.

8.6.3 Setting Job Requeue Timeout

When jobs are preempted via requeueing, the requeue can fail if the job being preempted takes longer than the allowed
timeout. The time for requeueing includes post-processing such as staging files out, deleting files, and changing the job's
state from R to Q. See section 4.9.33, “Using Preemption”, on page 179. The time allowed for a job to be requeued is
controlled by the job_requeue_timeout server attribute.

You can use qmgr to set the job_requeue_timeout server attribute to a value that works for the jobs at your site. This
attribute is of type Duration, with a minimum allowed value of 1 second and a maximum allowed value of 3 hours. The
default timeout is 45 seconds. See “Server Attributes” on page 281 of the PBS Professional Reference Guide.

8.6.4 Setting MoM Reconnection Timeout

When the primary execution host MoM detects that a sister mom has lost connectivity (e.g. MoM went down or the net-
work is having problems) it waits for a specified amount of time for the sister to reconnect before it gives up and kills the
job. You can configure the time the primary execution host MoM waits by setting MoM's $max_poll_downtime param-
eter in PBS_HOME/mom_priv/config. The default value is five minutes.

8.6.5 Managing Load Levels on Vnodes

An overloaded execution host may end up too busy for MoM to respond to the server's queries, and causing the server to
mark the MoM as down.

PBS can track the state of each execution host, running new jobs on the host according to whether the host is marked
busy or not.

This behavior is somewhat different from load balancing, described in section 4.9.27, “Using Load Balancing”, on page
158. In load balancing, the scheduler estimates how much load a job would produce, and will not place a job where
doing so would put the load above the limit. When managing load levels on vnodes as described here, the scheduler uses
the state of the vnode to determine whether to place a job on that vnode.

The state of the vnode is set by MoM, according to its load. You can set two load levels using the $max_load and
$ideal_load MoM configuration parameters. When the load goes above $max_load, the vnode is marked as busy.
When the load drops below $ideal_load, the vnode is marked free.
AG-414 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
PBS does not run new jobs on vnodes under the following conditions:

• Vnodes that are marked busy

• Vnodes whose resources, such as ncpus, are already fully allocated

• Vnodes where the load is above $max_load, when load balancing is turned on. See section 4.9.27, “Using Load
Balancing”, on page 158.

• Vnodes where running the job would cause the load to go above $max_load, when load balancing is turned on. See
section 4.9.27, “Using Load Balancing”, on page 158.

The load used by MoM is the following:

• On Linux, it is the raw one-minute averaged "loadave" returned by the operating system

• On Windows, it is based on the processor queue length

The $max_load and $ideal_load MoM configuration parameters are also used for cycle harvesting (see section 4.9.9.6,
“Cycle Harvesting Based on Load Average”, on page 123) and load balancing (see section 4.9.27, “Using Load Balanc-
ing”, on page 158.)

MoM checks the load average on her host every 10 seconds.

When a vnode's state changes, for example from free to busy, MoM informs the server.

8.6.5.1 Techniques for Managing Load

Whether or not you set $max_load, PBS will not run jobs requesting a total of more than the available number of CPUs,
which is set in resources_available.ncpus. So for example if resources_available.ncpus is set to 4, and a job running on
the vnode has requested 2 CPUs, PBS will not run jobs requesting a total of more than 2 CPUs.

8.6.5.1.i Types of Workload

How you manage load depends on your workload. Some jobs do not lend themselves to sharing CPUs, but some jobs
can share CPUs without being hindered. Most MPI jobs would be hindered if some processes had to wait because others
were slowed by sharing a CPU. If you need a job to have reproducible timing, it cannot share a CPU. Certain sin-
gle-vnode jobs that alternate between CPU usage and I/O can share a CPU without being slowed significantly, thereby
increasing throughput.

8.6.5.1.ii How Not To Share CPUs

For vnodes primarily running jobs that would be slowed or invalidated by sharing a CPU, have PBS assign jobs accord-
ing to the number of available CPUs, so that there is no sharing of CPUs. Set resources_available.ncpus to the number
of available CPUs. Do not set $max_load or $ideal_load.

8.6.5.1.iii How To Share CPUs

For vnodes running only jobs that can share CPUs, you can have PBS manage jobs according to the load on the vnodes,
not the number of CPUs. This is called oversubscribing the CPUs. Set resources_available.ncpus to a value greater
than the actual number of CPUs, such as two or three times the actual number. Set $max_load to a reasonable value so
that PBS will run new jobs until $max_load is reached. Set $ideal_load to the minimum load that you want on the
vnode.

8.6.5.1.iv Suspending Jobs on Overloaded Vnodes

You can specify that MoM should suspend jobs when the load goes above $max_load, by adding the suspend argument
to the $max_load parameter. See section , “$max_load <load> [suspend]”, on page 416. In this case, MoM suspends all
jobs on the vnode until the load drops below $ideal_load, then resumes them. This option is useful only when the source
of the load includes work other than PBS jobs. This option is not recommended when the load is due solely to PBS jobs,
because it can lead to the vnode cycling back and forth between being overloaded, being marked busy, suspending all
jobs, being marked free, then starting all jobs, being overloaded, and so on.
PBS Professional 2022.1 Administrator’s Guide AG-415

Chapter 8 Making Your Site More Robust
8.6.5.2 Caveats and Recommendations

• It is recommended that the value for $ideal_load be lower than the value for $max_load. The value for $ideal_load
should be low enough that new jobs are not run before existing jobs are done using the vnode's spare load.

• If you set only one of $max_load and $ideal_load, for example you set $max_load, but not $ideal_load, PBS sets
the other to the same value.

• Do not allow reservations on hosts where $max_load and $ideal_load are configured. Set the resv_enable vnode
attribute on these hosts to False.

• If you are using cycle harvesting via load balancing, be careful with the settings for $ideal_load and $max_load.
You want to make sure that when the workstation owner is using the machine, the load on the machine triggers MoM
to report being busy, and that PBS does not start any new jobs while the user is working. See section 4.9.9.6, “Cycle
Harvesting Based on Load Average”, on page 123.

8.6.5.2.i Allowing Non-job Processes on Execution Host

If you wish to run non-PBS processes on a host, you can prevent PBS from using more than you want on that host. Set
the $ideal_load and $max_load MoM configuration parameters to values that are low enough to allow other processes
to use some of the host.

8.6.5.3 Load Configuration Parameters

$ideal_load <load>
MoM parameter. Defines the load below which the vnode is not considered to be busy. Used with the
$max_load parameter.

Example:

$ideal_load 1.8

Format: Float

No default

$max_load <load> [suspend]
MoM parameter. Defines the load above which the vnode is considered to be busy. Used with the $ideal_load
parameter.

If the optional suspend argument is specified, PBS suspends jobs running on the vnode when the load average
exceeds $max_load, regardless of the source of the load (PBS and/or logged-in users).

Example:

$max_load 3.5

Format: Float

Default: number of CPUs

8.6.6 Prologue & Epilogue Running Time

Each time the scheduler runs a job, it waits for the prologue to finish before it runs another job. In order to prevent a
hung prologue from halting job execution, prologues and epilogues are only allowed to run for a specified amount of
time before PBS kills them. The running time is specified in the $prologalarm MoM configuration parameter. The
default value for this parameter is 30 seconds.
AG-416 PBS Professional 2022.1 Administrator’s Guide

Making Your Site More Robust Chapter 8
8.6.6.1 Prologue Timeout Configuration Parameter

$prologalarm <timeout>
Defines the maximum number of seconds the prologue and epilogue may run before timing out.

Example:

$prologalarm 30

Format: Integer

Default: 30

8.6.7 Time Between Routing Retries

If the network is flaky, PBS may not be able to route a job from a routing queue to the destination queue. If all destina-
tion queues for a routing queue are at capacity, a job in a routing queue remains where it is. The time between routing
retries is controlled by the route_retry_time queue attribute.

If the network experiences long outages, you may wish to set the time between retries to a sufficiently long time that PBS
is not wasting cycles attempting to route jobs.

If jobs in a routing queue are not being routed because the destination queues are full, and most jobs are long-running
jobs, you may wish to set the time between retries so that attempts are infrequent. It is recommended that the time
between retries be no longer than the longest time acceptable to have an open slot in an execution queue.

8.6.7.1 Routing Retry Attribute

route_retry_time
Time delay between routing retries. Typically used when the network between servers is down. Used only with
routing queues.

Format: Integer seconds

Default: 30 seconds

Python type: pbs.duration

8.7 Preventing File System Problems

8.7.1 Avoid Filling Location of Temp Files for PBS

Components

When the location used by PBS components to store temporary files becomes full, various failures may result, including
jobs not initializing properly. To help avoid this, you can set the root directory for these files to a location less likely to
fill up. See section 9.9, “Temporary File Location for PBS Components”, on page 450.

In addition, we recommend periodic cleaning of this location.

8.7.2 Avoid Filling Filesystem with Log Files

You must avoid having log files fill up the available space. You may have to rotate and archive log files frequently to
ensure that adequate space remains available. See “Adequate Space for Logfiles” on page 8 in the PBS Professional
Installation & Upgrade Guide.
PBS Professional 2022.1 Administrator’s Guide AG-417

Chapter 8 Making Your Site More Robust
8.8 OOM Killer Protection

PBS automatically protects against OOM killers. If the system hosting a PBS daemon or data service runs low on mem-
ory, the system may use an out-of-memory killer (OOM killer) to terminate processes. The PBS daemons and data ser-
vice are protected from being terminated by an OOM killer.
AG-418 PBS Professional 2022.1 Administrator’s Guide

9

Administration

Contents

9.1 Specifying Scheduler Username . AG-420
9.1.1 Steps for Changing Scheduler Username . AG-421

9.2 The PBS Configuration File . AG-421
9.2.1 Location of Configuration File . AG-421
9.2.2 Format of Configuration File . AG-422
9.2.3 Example of Configuration File . AG-422
9.2.4 Contents of Configuration File . AG-422
9.2.5 Configuration File Caveats and Recommendations . AG-426

9.3 Environment Variables . AG-427
9.3.1 Environment Variables For Daemons, Commands, and Jobs . AG-427
9.3.2 Job-specific Environment Variables. AG-427

9.4 Event Logging . AG-428
9.4.1 PBS Events . AG-428
9.4.2 Event Logfiles. AG-428
9.4.3 Log Levels . AG-429
9.4.4 Event Logfile Format and Contents . AG-431
9.4.5 Logging Job Usage . AG-433
9.4.6 Managing Log Files . AG-433
9.4.7 Extracting Logged Information . AG-434
9.4.8 Using the Linux syslog Facility . AG-434

9.5 Managing Machines . AG-435
9.5.1 Offlining Hosts and Vnodes . AG-435
9.5.2 Performing Maintenance on Powered-up Vnodes . AG-436
9.5.3 Changing Hostnames or IP Addresses . AG-437
9.5.4 Discovering Last Reboot Time of Server . AG-438
9.5.5 Changing Network Configuration . AG-438
9.5.6 Replacing or Reimaging Nodes . AG-438
9.5.7 Restricting User Access to Execution Hosts . AG-438

9.6 Managing the Data Service . AG-439
9.6.1 PBS Monitors Data Service . AG-439
9.6.2 Data Service Accounts . AG-439
9.6.3 Data Service Account Password. AG-439
9.6.4 Starting and Stopping the Data Service . AG-440
9.6.5 Changing Data Service Port . AG-441
9.6.6 File Ownership . AG-441

9.7 Setting File Transfer Mechanism . AG-441
9.7.1 Letting MoM Know Whether Transfer is Local or Remote. AG-441
9.7.2 Specifying Local File Transfer Mechanism . AG-442
9.7.3 Specifying Remote File Transfer Mechanism . AG-443
9.7.4 Options Passed to File Transfer Commands. AG-444
9.7.5 Using Custom File Transfer Mechanism . AG-444
9.7.6 When Multiple Attempts Are Required . AG-446
9.7.7 Allowing Direct Write of Standard Output and Error to /dev/null. AG-446
9.7.8 Troubleshooting File Transfer . AG-446
PBS Professional 2022.1 Administrator’s Guide AG-419

Chapter 9 Administration
9.7.9 Advice on Improving File Transfer Performance. AG-447
9.7.10 General Advice on File Transfer . AG-448

9.8 Some Performance Tips . AG-449
9.8.1 Improving Scheduling Performance. AG-449
9.8.2 Improving Communication Performance . AG-449
9.8.3 Improving Hook Speed. AG-450

9.9 Temporary File Location for PBS Components . AG-450
9.9.1 Default Location for Temporary Files . AG-450
9.9.2 Configuring Temporary File Location for PBS Components . AG-450
9.9.3 Requirements . AG-450
9.9.4 Advice and Recommendations for Temporary File Location . AG-451

9.10 Administration Caveats . AG-451
9.10.1 General Caveats . AG-451
9.10.2 Windows Caveats . AG-451

9.11 Support for Globus . AG-451
9.12 Support for Hyperthreading . AG-452

9.12.1 Linux Machines with HTT . AG-452
9.12.2 Windows Machines with HTT . AG-452
9.12.3 Using Number of Physical CPUs . AG-452
9.12.4 Hyperthreading Caveats . AG-452

9.13 How To.... AG-452
9.13.1 How to Drain Jobs . AG-452
9.13.2 How to Find Out Which Daemons Should Be Running. AG-452

9.1 Specifying Scheduler Username

By default, the PBS daemons run as root. However, you can specify that the scheduler should run as some other user.
You can do this either by setting PBS_DAEMON_SERVICE_USER in the environment when doing an rpm install, or
by specifying the username in the PBS_DAEMON_SERVICE_USER parameter in /etc/pbs.conf.

Certain directory and file permissions need to be compatible with the scheduler username:

• Server dynamic resource scripts (server_dyn_res) need to be owned, readable, and writable by
PBS_DAEMON_SERVICE_USER

• When a scheduler starts, it verifies that sched_priv and sched_logs are owned and can be read and executed by
PBS_DAEMON_SERVICE_USER. If the file or directory permissions are wrong, it logs an error and exits

• The pbsfs command sets fairshare usage, and writes a file that needs to be readable by
PBS_DAEMON_SERVICE_USER

• The habitat script creates sched_priv and sched_log, both which need to be owned, readable, and writable by
PBS_DAEMON_SERVICE_USER

If you set the scheduler username before starting PBS, the scheduler(s) and the pbsfs command automatically run as
PBS_DAEMON_SERVICE_USER, even if they are started as root.

If you change the scheduler username after starting PBS, you must restart the server and scheduler(s), and make sure that
PBS daemons and commands can read and write necessary files and directories.

You can use the pbs_probe command to check and fix the permissions for the sched_priv and sched_logs directo-
ries.
AG-420 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.1.1 Steps for Changing Scheduler Username

1. Stop server and scheduler(s):
systemctl stop pbs

or

/etc/init.d/pbs stop

2. Change PBS_DAEMON_SERVICE_USER parameter in /etc/pbs.conf:

PBS_DAEMON_SERVICE_USER=<scheduler username>

3. Change ownership and permissions on any server_dyn_res scripts:

chown ...

chmod ...

4. Run the pbs_probe command to fix any permissions problems. On each host:

pbs_probe -f

5. Restart the server and scheduler(s):

systemctl start pbs

or

/etc/init.d/pbs start

6. If other PBS complexes are peering with this complex, make sure that PBS_DAEMON_SERVICE_USER is a
manager on the servers for those complexes

9.2 The PBS Configuration File

During the installation of PBS Professional, the installation script creates a configuration file named pbs.conf. This
configuration file controls which daemons are to run on the local system, the directory tree location, and various runtime
configuration options. Each host in a complex should have its own pbs.conf file.

9.2.1 Location of Configuration File

The configuration file is located in one of the following:

Linux:

/etc/pbs.conf

Windows:

[PBS Destination Folder]\pbs.conf

where [PBS Destination Folder] is the path specified when PBS is installed on the Windows platform, for exam-
ple:

C:\Program Files\PBS\pbs.conf

or

C:\Program Files (x86)\PBS\pbs.conf

You can set the value of PBS_CONF_FILE in your environment in order to specify an alternate location for pbs.conf.
PBS Professional 2022.1 Administrator’s Guide AG-421

Chapter 9 Administration
9.2.2 Format of Configuration File

Each line in the /etc/pbs.conf file gives a value for one parameter, or is a comment, or is blank. The order of the ele-
ments is not important.

9.2.2.1 Specifying Parameters

When you specify a parameter value, do not include any spaces in the line. Format for specifying a parameter value:

<parameter>=<value>

For example, to specify a value for PBS_START_MOM on the local host:

PBS_START_MOM=1

9.2.2.2 Comment Lines in Configuration File

You can comment out lines you are not using. Precede a comment with the hashmark ("#"). For example:

#This is a comment line

9.2.3 Example of Configuration File

The following is an example of a pbs.conf file for a host which is to run the server, the scheduler, and a MoM. The
server runs on the host named Host1.ExampleDomain.

PBS_EXEC=/opt/pbs/M.N.P.S

PBS_HOME=/var/spool/PBS

PBS_START_SERVER=1

PBS_START_MOM=1

PBS_START_SCHED=1

PBS_SERVER=Host1.ExampleDomain

9.2.4 Contents of Configuration File

The /etc/pbs.conf file contains configuration parameters for PBS. The following table describes the parameters you
can use in the pbs.conf configuration file:

Table 9-1: Parameters in pbs.conf

Parameter Description

PBS_AUTH_METHOD Specifies default authentication method and library to be used by PBS.
Used only at authenticating client. Case-insensitive.

Default value: resvport

To use MUNGE, set to munge

PBS_BATCH_SERVICE_PORT Port on which server listens. Default: 15001

PBS_BATCH_SERVICE_PORT_DIS DIS port on which server listens.

PBS_COMM_LOG_EVENTS Communication daemon log mask. Default: 511

PBS_COMM_ROUTERS Tells a pbs_comm the location of the other pbs_comms.

PBS_COMM_THREADS Number of threads for communication daemon.
AG-422 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
PBS_CORE_LIMIT Limit on corefile size for PBS daemons. Can be set to an integer num-
ber of bytes or to the string "unlimited". If unset, core file size limit is
inherited from the shell environment.

PBS_CP Specifies command for MoM to use for local copy

PBS_DAEMON_SERVICE_USER Username under which scheduler(s) run. Default: root

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data service. Default:
15007

PBS_ENCRYPT_METHOD Specifies method and library for encrypting and decrypting data in cli-
ent-server communication. Used only at authentication client side.
Case-insensitive.

To use TLS encryption in client-server communication, set this parame-
ter to tls.

No default; if this is not set, PBS does not encrypt or decrypt data.

PBS_ENVIRONMENT Location of pbs_environment file.

PBS_EXEC Location of PBS bin and sbin directories.

PBS_HOME Location of PBS working directories.

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the dae-
mon.

By default, the name of the endpoint's host is the hostname of the
machine. You can set the name where an endpoint runs. This is useful
when you have multiple networks configured, and you want PBS to use
a particular network.

The server only queries for the canonicalized address of the MoM host,
unless you let it know via the Mom attribute; if you have set
PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure
you set the Mom attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not
affect how pbs_comm works.

PBS_LEAF_ROUTERS Location of endpoint's pbs_comm daemon(s).

PBS_LOCALLOG=<value> Enables logging to local PBS log files. Valid values:

0: no local logging

1: local logging enabled

Only available when using syslog.

PBS_LOG_HIGHRES_TIMESTAMP Controls whether daemons on this host log timestamps in microseconds.

Default timestamp log format is HH:MM:SS. With microsecond log-
ging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when using syslog.

Overridden by environment variable of the same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

Table 9-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2022.1 Administrator’s Guide AG-423

Chapter 9 Administration
PBS_MAIL_HOST_NAME Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation's Mail_Users attribute.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (":"). For how this is used in email address, see section
2.2.3, “Specifying Mail Delivery Domain”, on page 22.

PBS_MANAGER_SERVICE_PORT Port on which MoM listens. Default: 15003

PBS_MOM_HOME Location of MoM working directories.

PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child
vnodes. If this is not set, MoM defaults to using the non-canonicalized
hostname returned by gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP
address> in pbs.conf on the execution host.

Dots are not allowed in this parameter unless they are part of an IP
address.

PBS_MOM_SERVICE_PORT Port on which MoM listens. Default: 15002

PBS_OUTPUT_HOST_NAME Host to which all job standard output and standard error are delivered.
If specified in pbs.conf on a job submission host, the value of
PBS_OUTPUT_HOST_NAME is used in the host portion of the job's
Output_Path and Error_Path attributes. If the job submitter does not
specify paths for standard output and standard error, the current working
directory for the qsub command is used, and the value of
PBS_OUTPUT_HOST_NAME is appended after an at sign ("@"). If
the job submitter specifies only a file path for standard output and stan-
dard error, the value of PBS_OUTPUT_HOST_NAME is appended
after an at sign ("@"). If the job submitter specifies paths for standard
output and standard error that include host names, the specified paths
are used.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (":"). See "Delivering Output and Error Files" on page
60 in the PBS Professional Administrator’s Guide.

PBS_PRIMARY Hostname of primary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the correspond-
ing host. If you do not set PBS_LEAF_NAME on the server host,
make sure that PBS_PRIMARY matches the hostname of the server
host.

PBS_RCP Location of rcp command if rcp is used.

PBS_REMOTE_VIEWER Specifies remote viewer client.

If not specified, PBS uses native Remote Desktop client for remote
viewer.

Set on submission host(s).

Supported on Windows only.

Table 9-1: Parameters in pbs.conf

Parameter Description
AG-424 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
PBS_SCHED_THREADS Maximum number of scheduler threads. Scheduler automatically caps
number of threads at the number of cores (or hyperthreads if applicable),
regardless of value of this variable.

Overridden by pbs_sched -t option and
PBS_SCHED_THREADS environment variable.

Default: 1

PBS_SCP Location of scp command if scp is used; setting this parameter causes
PBS to first try scp rather than rcp for file transport.

PBS_SECONDARY Hostname of secondary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the secondary server host, make sure
that PBS_SECONDARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_SECONDARY matches the hostname of the
server host.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 charac-
ters. If the short name of the server host resolves to the correct IP
address, you can use the short name for the value of the PBS_SERVER
entry in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME The FQDN of the server host. Used by clients to contact server. Over-
ridden by PBS_PRIMARY and PBS_SECONDARY failover parame-
ters. Overrides PBS_SERVER parameter. Optional. If specified, must
be a fully qualified domain name. Cannot contain a colon (":"). See
"Contacting the Server" on page 60 in the PBS Professional Administra-
tor’s Guide.

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Deprecated. Set this to 1 if default scheduler is to run on this host.
Overridden by scheduler's scheduling attribute.

PBS_START_SERVER Set this to 1 if server is to run on this host.

PBS_SUPPORTED_AUTH_METHODS Specifies supported authentication methods for client-server communi-
cation. Used by authenticating server (PBS server, scheduler, MoM, or
comm); ignored at client. Case-insensitive.

If this parameter is set, PBS accepts only the methods listed.

Format: comma-separated list of authentication methods.

Default value: resvport

Example: munge,GSS

Table 9-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2022.1 Administrator’s Guide AG-425

Chapter 9 Administration
For information on how to use the pbs.conf file when configuring PBS for failover, see section 8.2.5.2, “Configuring the
pbs.conf File for Failover”, on page 378.

9.2.5 Configuration File Caveats and Recommendations

• Each parameter in pbs.conf can also be expressed as an environment variable.

• Environment variables override pbs.conf parameter settings.

• When you change a setting in a pbs.conf file, you must restart the daemon that reads the file.

• If you specify a location for PBS_HOME in the shell environment, make sure that this agrees with that specified in
pbs.conf.

• Do not change a hostname without updating the corresponding Version 2 configuration file.

• Use a name for the server in the PBS_SERVER variable in the pbs.conf file that is not longer than 255 charac-
ters. If the short name for the server resolves to the correct host, you can use this in pbs.conf as the value of
PBS_SERVER. However, if the fully-qualified domain name is required in order to resolve to the correct host, then
this must be the value of the PBS_SERVER variable.

• If you set PBS_LEAF_NAME on a primary or secondary server host, make sure that PBS_PRIMARY and
PBS_SECONDARY match PBS_LEAF_NAME on the corresponding host. If you do not set
PBS_LEAF_NAME on a server host, make sure that PBS_PRIMARY and PBS_SECONDARY match the host-
names of the server hosts.

• The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom attribute;
if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom attribute at
vnode creation.

• Do not include shell-style comments in the configuration file.

• When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad
application does not automatically add a newline at the end of a file; you must explicitly add the newline.

PBS_SYSLOG=<value> Controls use of syslog facility under which the entries are logged.

Valid values:

0: no syslogging

1: logged via LOG_DAEMON facility

2: logged via LOG_LOCAL0 facility

3: logged via LOG_LOCAL1 facility

...

9: logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=<value> Filters syslog messages by severity. Valid values:

0: only LOG_EMERG messages are logged

1: messages up to LOG_ALERT are logged

...

7: messages up to LOG_DEBUG are logged

PBS_TMPDIR Location of temporary files/directories used by PBS components.

Table 9-1: Parameters in pbs.conf

Parameter Description
AG-426 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.3 Environment Variables

PBS sets environment variables for different purposes: some variables are used by the daemons, commands, and jobs,
and some environment variables are set individually for each job. Each parameter in pbs.conf can also be expressed as
an environment variable. Environment variables override pbs.conf parameters.

9.3.1 Environment Variables For Daemons, Commands, and

Jobs

The PBS installer creates an environment file called pbs_environment. This file is used by the daemons, com-
mands, and jobs:

• Each PBS daemon initializes its environment using this environment file

• Several commands use environment variables to determine things like the name of the default server. The environ-
ment file is useful for setting environment variables for mpirun, etc.

• Jobs inherit the contents of this environment file before they acquire settings from .profile and .login files.
Job scripts can use the environment variables set in the job's environment.

You can edit the environment file.

9.3.1.1 Contents of Environment File

When this file is created, it contains the following:

TZ=<local timezone, e.g. US/Pacific>

PATH=/bin:/usr/bin

For a list of PBS environment variables, see “PBS Environment Variables” on page 397 of the PBS Professional Refer-
ence Guide.

To support X forwarding, edit MoM's PATH variable to include the directory containing the xauth utility.

9.3.1.2 Location of Environment File

The PBS environment file is located here:

PBS_HOME/pbs_environment

9.3.1.3 Environment File Requirements

You must restart each daemon after making any changes to the environment file.

9.3.1.4 Editing Configuration Files Under Windows

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

9.3.2 Job-specific Environment Variables

For each job, the qsub command creates environment variables beginning with PBS_O_, and puts them in the job's
environment. They are not written to pbs_environment. The server sets some of these environment variables if the
qsub command does not set them.
PBS Professional 2022.1 Administrator’s Guide AG-427

Chapter 9 Administration
For each job, the MoM on the primary execution host creates a file of the hosts to be used by the job. The node file is put
in the job's environment, but the host list is not written to pbs_environment. The location of the node file is specified
in the PBS_NODEFILE environment variable, which is set for the job only. See "The Job Node File", on page 79 of the
PBS Professional User’s Guide.

Some environment variables are set by commands. The PBS mpiexec script sets PBS_CPUSET_DEDICATED.

For a list of environment variables used and set by the qsub command, see “Environment Variables” on page 233 of the
PBS Professional Reference Guide.

9.4 Event Logging

PBS provides event logging for the server, the scheduler, the communication daemon, and each MoM. You can use log-
files to monitor activity in the PBS complex.

9.4.1 PBS Events

The amount and type of output in the PBS event logfiles depends on the specified log filters for each component. Each
PBS daemon can be directed to record only messages pertaining to certain levels of importance, called log levels. The
specified log levels are logically "or-ed" to produce a mask representing the events to be logged by the daemon. The
hexadecimal value for each log level is shown in Table 9-2, “PBS Events and Log Levels,” on page 429. When events
appear in the log file, they are tagged with their hexadecimal value, without a preceding "0x".

9.4.2 Event Logfiles

Each PBS daemon writes a separate event logfile. Each multisched writes its own logfile. By default, each daemon
writes a file that has the current date as its name in the PBS_HOME/<component>_logs directory. The location of
the logfile can be overridden with the -L option to each daemon's command. For example, to override the server's logfile
location:

pbs_server -L <new path>

Whenever a new log file is opened, the daemon logs PBS_LEAF_NAME, PBS_MOM_NODE_NAME, and the host-
name. The daemon also logs all network interfaces, listing each interface and all of the hostnames associated with that
interface. In addition, it logs the PBS version and the build information.

Each daemon closes the day's log file and opens a new log file on the first message written after midnight. If no messages
are written, the old log file stays open. Each daemon closes and reopens the same logfile when the daemon receives a
SIGHUP.

Each daemon writes its version and build information to its event logfile each time it is started or restarted, and also when
the logfile is automatically rotated out. The version and build information appear in individual records. These records
contain the following substrings:

pbs_version = <PBSPro_stringX.stringY.stringZ.5-digit seq>

build = <status line from config.status, etc>

Example:

pbs_version = PBSPro_9.2.0.63106

build = '--set-cflags=-g -O0' --enable-security=KCRYPT ...

If the daemon cannot write to its log file, it writes the error message to the console. Some errors that appear before the
daemon has backgrounded itself may appear on standard error.

The maximum number of characters in the message portion of a log entry is 4096.
AG-428 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.4.3 Log Levels

PBS allows specification of the types of events that are logged for each daemon. Each type of log event has a different
log level. All daemons use the same log level for the same type of event.

The following table lists the log level for each type of event.

9.4.3.1 Specifying Log Levels

Each daemon uses an integer representation of a bit string to specify its log levels. The bit string can be decimal (or
hexadecimal, for the MoM). Each daemon's log levels are specified in a a bit string that includes the events to be logged.
You can specify each multisched's log levels individually.

For example, if you want the server to log all events except those at event classes 512, 1024, and 2048 (hex 0x0200,
0x0400, and 0x0800), you would use a log level of 511. This is 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1. If you want
to log events at event classes 1, 2, and 16, you would set the log level to 19.

The following table shows the log event parameter for each daemon:

Table 9-2: PBS Events and Log Levels

Name Decimal Hex Event Description

PBSEVENT_ERROR 1 0x0001 Internal PBS errors

PBSEVENT_SYSTEM 2 0x0002 System (OS) errors, such as malloc failure

PBSEVENT_ADMIN 4 0x0004 Administrator-controlled events, such as changing queue
attributes

PBSEVENT_JOB 8 0x0008 Job related events, e.g. submitted, ran, deleted

PBSEVENT_JOB_USAGE 16 0x0010 Job resource usage

PBSEVENT_SECURITY 32 0x0020 Security related events

PBSEVENT_SCHED 64 0x0040 When the scheduler was called and why

PBSEVENT_DEBUG 128 0x0080 Common debug messages

PBSEVENT_DEBUG2 256 0x0100 Debug event class 2

PBSEVENT_RESV 512 0x0200 Reservation-related messages

PBSEVENT_DEBUG3 1024 0x0400 Debug event class 3. Debug messages rarer than event class 2.

PBSEVENT_DEBUG4 2048 0x0800 Debug event class 4. Limit-related messages.

Table 9-3: Daemon Log Event Specification Parameters

PBS
Parameter/
Attribute

Reference
How to Make Parameter

Take Effect

Server log_events
attribute

“Server Attributes” on page 281 of the PBS Profes-
sional Reference Guide

Takes effect immediately with
qmgr
PBS Professional 2022.1 Administrator’s Guide AG-429

Chapter 9 Administration
When reading the PBS event logfiles, you may see messages of the form "Type 19 request received from PBS_Server...".
These "type codes" correspond to different PBS batch requests. See “Request Codes” on page 393 of the PBS Profes-
sional Reference Guide.

9.4.3.1.i Specifying Server Log Events

You can specify the server's log events by setting the server's log_events attribute. The attribute is an integer represen-
tation of a bit string, where the integer includes all events to be logged. To set the value, use the qmgr command:

Qmgr: set server log_events = <value>

The new value takes effect immediately.

For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or 0x0001), set the value to
1025 (1024 +1, or 0x0401). To include all events, set the value to 4095 or -1. The default value for this attribute is 511.
It can be set by Operators and Managers only. See “Server Attributes” on page 281 of the PBS Professional Reference
Guide.

You can set the server's log level when you start the server using pbs_server -e <log level>. Note that you
can specify a hexadecimal value this way, but not via the server's log_events attribute. When you use the -e <log
level> option to pbs_server, that sets the server's log_events attribute to the corresponding integer value.

9.4.3.1.ii Specifying MoM Log Events

Each MoM's log events are specified in the $logevent parameter in that MoM's configuration file
PBS_HOME/mom_priv/config. The parameter is an integer representation of a bit string, where the integer includes
all events to be logged. For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or
0x0001), set the value to 1025 (1024 +1, or 0x0401). To set the value, add the $logevent line in
PBS_HOME/mom_priv/config, then HUP the MoM. To include all events, set the value to 4095 (0xffffffff). The
default value used by MoM is 975 (0x03cf). This parameter can be set by root only. See “Contents of MoM Configura-
tion File” on page 244 of the PBS Professional Reference Guide.

9.4.3.1.iii Specifying Scheduler Log Events

You can specify log events for the scheduler and for each multisched by setting each scheduler's log_events attribute.
The attribute is an integer representation of a bit string, where the integer includes all events to be logged. To set the
value, use the qmgr command:

Qmgr: set sched <scheduler name> log_events = <value>

The new value takes effect immediately.

MoM $logevent
parameter

“Contents of MoM Configuration File” on page
244 of the PBS Professional Reference Guide

Requires SIGHUP to MoM

Scheduler log_events
attribute

“Configuration Parameters” on page 252 of the
PBS Professional Reference Guide

Takes effect immediately with
qmgr

communi-
cation

PBS_COMM_
LOG_EVENT
S parameter in
pbs.conf

“Daemon Log Mask” on page 46 in the PBS Pro-
fessional Installation & Upgrade Guide

Restart the communication dae-
mon

Table 9-3: Daemon Log Event Specification Parameters

PBS
Parameter/
Attribute

Reference
How to Make Parameter

Take Effect
AG-430 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or 0x0001), set the value to
1025 (1024 +1, or 0x0401). To include all events, set the value to 4095 or -1. The default value for this attribute is 767.
It can be set by Operators and Managers only. See “Scheduler Attributes” on page 298 of the PBS Professional Refer-
ence Guide.

9.4.3.1.iv Specifying Communication Daemon Log Events

The communication daemon's log events are specified in the PBS_COMM_LOG_EVENTS parameter in
/etc/pbs.conf. This parameter is an integer representation of a bit string, where the integer includes all events to be
logged. HUP the daemon after you set the parameter.

For example, to log only debug event class 3 (1024, or 0x0400) and internal PBS errors (1, or 0x0001), set the value to
1025 (1024 +1, or 0x0401). To include all events, set the value to 2047 (or -1). The default value for this attribute is 511
(0x1ff). See “Logging and Errors with TPP” on page 54 in the PBS Professional Installation & Upgrade Guide and
"Contents of Configuration File” on page 422.

9.4.4 Event Logfile Format and Contents

9.4.4.1 Event Logfile Format

Each component event logfile is a text file with each entry terminated by a new line. The format of an entry is:

<logfile date and time>;<event code>;<server name>;<object type>;<object name>;<message>

• The logfile date and time field is a date and time stamp in the format:

mm/dd/yyyy hh:mm:ss[.xxxxxx]
PBS Professional 2022.1 Administrator’s Guide AG-431

Chapter 9 Administration
If microsecond logging is enabled, microseconds are logged using the .xxxxxx portion. Microseconds may be pre-
ceded by zeroes. Microsecond logging is controlled per host via the PBS_LOG_HIGHRES_TIMESTAMP configu-
ration parameter or environment variable.

• The event code is a bitmask for the type of event which triggered the event logging. It corresponds to the bit position,
0 to n, of each log event in the event mask of the PBS component writing the event record. See section 9.4.1, “PBS
Events”, on page 428 for a description of the event mask.

• The server name is the name of the server which logged the message. This is recorded in case a site wishes to merge
and sort the various logs in a single file.

• The object type is the type of object which the message is about. All messages are associated with an object type.
The following lists each possible object type:

• The object name is the name of the specific object.

• The message field is the text of the log message.

9.4.4.2 Scheduler Commands

These commands tell a scheduler why a scheduling cycle is being started. These commands appear in the server's log-
file. Each has a decimal value, shown below. The following table shows commands from the server to a scheduler.

Table 9-4: List of Event Logfile Object Types

Object Type Usage

Svr for server

Que for queue

Job for job

Req for request

Fil for file

Act for accounting string

Node for vnode or host

Resv for reservation

Sched for scheduler

Table 9-5: Commands from Server to Scheduler

Value Event Description

1 New job enqueued

2 Job terminated

3 Scheduler time interval reached

4 Cycle again after scheduling one job

5 Scheduling command from operator or manager

7 Configure

8 Quit (qterm -s)
AG-432 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.4.5 Logging Job Usage

PBS can log per-vnode cputime usage. The primary execution host MoM logs cputime in the format "hh:mm:ss" for
each vnode of a multi-vnode job. The log level of these messages is 0x0100.

Under Linux, to append job usage to standard output for an interactive job, use a shell script for the epilogue which con-
tains the following:

#!/bin/sh

tracejob -sl $1 | grep 'cput'

This behavior is not available under Windows.

9.4.6 Managing Log Files

9.4.6.1 Disk Space for Log Files

It is important not to run out of disk space for logging. You should periodically check the available disk space, and check
the size of the log files PBS is writing, so that you know how fast you are using up disk space. Make sure that you
always have more than enough disk space available for log files.

9.4.6.2 Dividing Up Log Files

You may wish to divide a day's logging up into more than one file. You may want to create a logfile that contains only
the entries of interest. You can specify a file for a daemon's event log. See section 9.4.6.3, “Specifying Log File Path”,
on page 434. The next sections describe how to break up your log files.

9.4.6.2.i Dividing Log Files on Linux

On Linux systems, all daemons close and reopen the same named log file when they are sent a SIGHUP. The process
identifier (PID) of each daemon is available in its lock file in its home directory. You can move the current log file to a
new name and send SIGHUP to restart the file using the following commands:

cd $PBS_HOME/<daemon>_logs

mv <current log file> <archived log file>

kill -HUP 'cat ../<daemon>_priv/<daemon>.lock'

9 Ruleset changed

10 Schedule first

11 A reservation's start time has been reached

12 Schedule a job (qrun command has been given)

13 Stopped queue is started

14 Job moved into local queue (queue at this server)

15 eligible_time_enable is turned on

16 PBS attempting to reconfirm degraded reservation

Table 9-5: Commands from Server to Scheduler

Value Event Description
PBS Professional 2022.1 Administrator’s Guide AG-433

Chapter 9 Administration
9.4.6.2.ii Dividing Log Files on Windows

On Windows systems, you can rotate the event log files by stopping the service for which you want to rotate the logfile,
moving the file, and then restarting that service. For example:

cd "%PBS_HOME%\mom_logs"

net stop pbs_mom

move <current log file> <archived log file>
net start pbs_mom

9.4.6.3 Specifying Log File Path

You may wish to specify an event logfile path that is different from the default path. Each daemon has an option to spec-
ify a different path for the daemon's event logfile. This option is the -L logfile option, and it is the same for all daemons.
For example, to start the scheduler so that it logs events in /scratch/my_sched_log:

pbs_sched -L /scratch/my_sched_log

See the pbs_server(8B), pbs_sched(8B), and pbs_mom(8B) manual pages.

9.4.7 Extracting Logged Information

You can use the tracejob command to extract information from log files, such as why a job is not running or when a
job was queued. The tracejob command can read both event logs and accounting logs. See the tracejob(8B)
manual page.

9.4.8 Using the Linux syslog Facility

Each PBS component logs various event classes of information about events in its own log file. While having the advan-
tage of a concise location for the information from each component, the disadvantage is that in a complex, the logged
information is scattered across each execution host. The Linux syslog facility can be useful.
AG-434 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
If your site uses the syslog subsystem, PBS may be configured to make full use of it. The following entries in
pbs.conf control the use of syslog by the PBS components:

9.4.8.1 Caveats

• PBS_SYSLOGSEVR is used in addition to PBS's log_events mask which controls the class of events (job, vnode,
...) that are logged.

• If you use syslog, you cannot have daemons log events at microsecond resolution.

9.5 Managing Machines

9.5.1 Offlining Hosts and Vnodes

For using hooks to offline vnodes, see "Offlining Bad Vnodes" on page 72 in the PBS Professional Hooks Guide.

To offline an entire host, use the pbsnodes command. Use the name of the parent vnode, which is usually the name of
the host:

pbsnodes -o <name of parent vnode>

All vnodes on this host are offlined.

To offline a single vnode, use the qmgr command, with the name of the vnode:

qmgr -c "set node foo[3] state=offline"

Table 9-6: Entries in pbs.conf for Using Syslog

Entry Description

PBS_LOCALLOG=x Enables logging to local PBS log files. Only possible when logging via syslog feature is
enabled.

0 = no local logging

1 = local logging enabled

PBS_SYSLOG=x Controls the use of syslog and syslog facility under which the entries are logged. If x is:

0 - no syslogging

1 - logged via LOG_DAEMON facility

2 - logged via LOG_LOCAL0 facility

3 - logged via LOG_LOCAL1 facility

 ...

9 - logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=y Controls the severity level of messages that are logged; see /usr/include/sys/sys-
log.h. If y is:

0 - only LOG_EMERG messages are logged

1 - messages up to LOG_ALERT are logged

 ...

7 - messages up to LOG_DEBUG are logged
PBS Professional 2022.1 Administrator’s Guide AG-435

Chapter 9 Administration
9.5.1.1 Caveats of Offlining

If you set a vnode with no running jobs offline, the server will not attempt to communicate with the vnode. Therefore,
the server will not notice that the vnode is up until you clear the offline state. For example, a vnode that is both down
and offline will not be marked up by the server until you clear the offline state.

9.5.2 Performing Maintenance on Powered-up Vnodes

9.5.2.1 Reserving Vnodes for Maintenance

You can create maintenance reservations using pbs_rsub --hosts <host list>. Maintenance reservations are
designed to make the specified hosts available for the specified amount of time, regardless of what else is happening:

• You can create a maintenance reservation that includes or is made up of vnodes that are down or offline.

• Maintenance reservations ignore the value of a vnode's resv_enable attribute.

• PBS immediately confirms any maintenance reservation.

• Maintenance reservations take precedence over other reservations; if you create a maintenance reservation that over-
laps an advance or standing job reservation, the overlapping vnodes become unavailable to the job reservation, and
the job reservation is in conflict with the maintenance reservation. PBS looks for replacement vnodes; see "Reserva-
tion Fault Tolerance" on page 401 in the PBS Professional Administrator’s Guide.

PBS will not start any new jobs on vnodes overlapping or in a maintenance reservation. However, jobs that were already
running on overlapping vnodes continue to run; you can let them run or requeue them.

You cannot specify place or select for a maintenance reservation; these are created by PBS:

• PBS creates the reservation's placement specification so that hosts are assigned exclusively to the reservation. The
placement specification is always the following:

-lplace=exclhost
• PBS sets the reservation's resv_nodes attribute value so that all CPUs on the reserved hosts are assigned to the

maintenance reservation. The select specification is always the following:

-lselect=host=<host1>:ncpus=<number of CPUs at host1>+host=<host2>:ncpus=<number of CPUs at
host2>+...

Maintenance reservations are prefixed with M. A maintenance reservation ID has the format:

M<sequence number>.<server name>

You cannot create a recurring maintenance reservation.

Creating a maintenance reservation does not trigger a scheduling cycle.

You must have manager or operator privilege to create a maintenance reservation.

9.5.2.2 Putting Vnodes into Maintenance State

You may want to perform maintenance on a vnode while it is powered up, but you don't want job processes running on it.
You can suspend a job on a vnode and put the vnode into a maintenance state, where the scheduler will not start any
new jobs on the vnode, using qsig -s admin-suspend <job ID>. You must suspend each job on the vnode; if
you suspend only one, the rest will keep running. When you admin-suspend a job, all of the job's vnodes are put into
the maintenance state, the job goes into the S state, and the job's processes are suspended.

Once the maintenance is finished, you can resume the admin-suspended jobs using qsig -s admin-resume
<job ID>. The admin-resume signal directly resumes the job, without waiting for the scheduler. Once all of the
vnode's jobs are admin-resumed, the vnode leaves the maintenance state.
AG-436 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
You can see the list of jobs that were running on a vnode then admin-suspended in the maintenance_jobs vnode
attribute. This attribute is a list of job IDs, and is readable only by managers.

9.5.2.2.i Resource Release on Suspension

When you admin-suspend a job, resources are released according to how you have configured the
restrict_res_to_release_on_suspend server attribute; see section 5.9.6.2, “Job Suspension and Resource Usage”, on
page 247. However, no new jobs will run while the job is suspended.

9.5.2.2.ii Caveats for admin-suspend and admin-resume

• We recommend that before you admin-suspend any job, you disable scheduling and wait for the current scheduling
cycle to finish. The scheduler queries vnode state only at the beginning of the scheduling cycle. If a vnode goes into
the maintenance state after the start of the cycle, the scheduler could still schedule jobs onto that vnode.

• The suspend and resume signals are not interchangeable with the admin-suspend and admin-resume signals.
For example, if a job is suspended via normal the suspend signal (qsig -s suspend <job ID>), it cannot be
resumed with the admin-resume signal.

Similarly, if a job is suspended with the admin-suspend signal, it cannot be resumed with the resume signal.
Either request will be rejected with the following message:

"Job can not be resumed with the requested resume signal"

• If there are multiple jobs on a vnode, we recommend using either suspend and admin-suspend, but not both. If
you have a suspended job on a vnode that was in the maintenance state but is no longer, the scheduler could run
jobs on the resources owned by the suspended job.

• If you want to perform maintenance on a vnode that has no jobs running on it, we recommend putting the vnode into
the offline state before performing the maintenance.

• Any reservations on vnodes in the maintenance state are marked degraded. PBS searches for alternate vnodes for
those reservations.

• Any vnode which had only admin-suspended subjobs will stay in the maintenance state after a server restart.

9.5.3 Changing Hostnames or IP Addresses

• Do not change a hostname without updating the corresponding Version 2 configuration file.

• Do not change the IP address or hostname of a machine in the complex while PBS is running. Stop PBS (server,
scheduler, and MoMs), change the IP address, and restart PBS.

To change a hostname or IP address:

1. Make sure no jobs are running

2. Stop all PBS daemons

3. Make a backup of PBS_HOME

4. Change the hostname or IP address

5. If you are using the IP address as a vnode name, update PBS_MOM_NODE_NAME in pbs.conf on the execution
host to the new IP address.

6. Restart all PBS daemons

7. If a host has a corresponding Version 2 configuration file, make sure that it is consistent with the new hostname

8. If you are running nscd, restart nscd on all hosts
PBS Professional 2022.1 Administrator’s Guide AG-437

Chapter 9 Administration
9.5.4 Discovering Last Reboot Time of Server

Under Linux, you can find the timestamp of the most recent time PBS started up in /var/tmp/pbs_boot_check.

The permission of this file is set to 0644; only the PBS init script should modify this file. Do not modify this file. If you
do so, you violate the configuration requirements of PBS.

This file is not available under Windows.

9.5.5 Changing Network Configuration

If you change any network configuration, restart the PBS daemons.

9.5.6 Replacing or Reimaging Nodes

When PBS_HOME is removed on a node by reimaging, etc., make sure that the server knows that there are no legitimate
jobs on the node. Send each job qsig -s SIGNULL after the node is up again, which causes the server to contact the
MoM and discover that any jobs are gone as far as MoM is concerned. The server then requeues and reruns any of
MoM's gone jobs. Otherwise zombie jobs will ensure that no new jobs are scheduled to the node even after it's been
reimaged.

MoM depends on its PBS_HOME to know which jobs are gone. When a node goes down on PBS complexes with either
diskless nodes or nodes with integrated disk drives, sometimes the cluster manager will reimage the node before the com-
plex reintegrates the node. In that case, PBS_HOME is gone, so MoM no longer knows about any jobs she was managing.
The server will never get any updates or obits for those jobs, so they'll stay in state R.

If the reimaging process is longer than node_fail_requeue, the server will requeue the jobs, but your complex may use
node_fail_requeue set to 0 for very good reasons, for example if there are Cray or HPE NUMA machines in the com-
plex.

9.5.7 Restricting User Access to Execution Hosts

PBS provides a facility to prevent users who are not running PBS jobs from using machines controlled by PBS. You can
turn this feature on by using the $restrict_user MoM directive. This directive can be fine-tuned by using the
$restrict_user_exceptions and $restrict_user_maxsysid MoM directives. This feature can be set up host by host.

• A user requesting exclusive access to a set of hosts (via place=excl) can be guaranteed that no other user will be
able to use the hosts assigned to his job, and PBS will not assign any unallocated resources on the vnode to another
job.

• A user requesting non-exclusive access to a set of hosts can be guaranteed that no non-PBS users are allowed access
to the hosts.

• A privileged user can be allowed access to the complex such that they can log into a host without having a job active.

• An abusive user can be denied access to the complex hosts.

The administrator can find out when users try to access hosts without going through PBS. The administrator can ensure
that application performance is consistent on a complex controlled by PBS. PBS will also be able to clean up any job
processes remaining after a job finishes running.
AG-438 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
For a vnode with access restriction turned on:

• Any user not running a job who logs in or otherwise starts a process on that vnode will have his processes termi-
nated.

• A user who has logged into a vnode where he owns a job will have his login terminated when the job is finished.

• When MoM detects that a user that is not exempt from access restriction is using the system, that user's processes are
killed and a log message is output:
01/16/2006 22:50:16;0002;pbs_mom;Svr;restrict_user;

killed uid 1001 pid 13397(bash) with log event class PBSE_SYSTEM.

You can set up a list of users who are exempted from the restriction via the $restrict_user_exceptions directive. This
list can contain up to 10 usernames.

Example 9-1: Turn access restriction on for a given node:

$restrict_user True

Example 9-2: Limit the users affected to those with a user ID greater than 500:

$restrict_user_maxsysid 500

Example 9-3: Exempt specific users from the restriction:

$restrict_user_exceptions userA, userB, userC

Note that a user who has a job running on a particular host will be able to log into that host.

9.5.7.1 Windows Restriction

The user access restriction feature is not supported on Windows.

9.6 Managing the Data Service

9.6.1 PBS Monitors Data Service

PBS monitors its connection to the data service. If the connection is broken (for example, because the data service is
down), PBS tries to reestablish the connection. If necessary, PBS restarts the data service.

If failover is configured, and PBS cannot reestablish a connection, PBS quits.

If failover is not configured, PBS attempts to reestablish the connection until it succeeds.

When the server is stopped, it stops the data service.

9.6.2 Data Service Accounts

On Linux, PBS uses a PBS data service management account and an internal data service account. They are described
here: “Create PBS Data Service Management Account” on page 23 in the PBS Professional Installation & Upgrade
Guide.

9.6.3 Data Service Account Password

The default password for the internal data service account is a random password that is generated at installation, and
which is known only to the PBS server.
PBS Professional 2022.1 Administrator’s Guide AG-439

Chapter 9 Administration
9.6.3.1 Setting Data Service Account Name and Password

Changing the password is necessary only if you want to manually log into the database to check data or change some-
thing. Otherwise it is not necessary.

Use the pbs_ds_password command to change the password of the data service internal user account (not the PBS
data service management account).

You can change the user account and/or password for the data service account using the pbs_ds_password com-
mand. Use this command if you need to change the user account or update the password for the data service account.
You must be root or administrator to run the pbs_ds_password command. See “pbs_ds_password” on page 62 of the
PBS Professional Reference Guide.

To change the data service account name:

pbs_ds_password -C <new user account>

To change the data service account password:

pbs_ds_password

9.6.3.2 Caveats

• When you specify a new name for the data service account, there must already be a data service management
account with that name

• The account name cannot be changed while the data service is running.

• Do not delete PBS_HOME/server_priv/db_password. Doing so will prevent the pbs_ds_password com-
mand from being able to function.

• Do not change the data service password using any method other than the pbs_ds_password command.

• If you change the data service account after installing PBS, and then you want to upgrade PBS, you must change it
back in order to perform the upgrade. After the upgrade, you can change it again. This is covered in the upgrading
instructions.

• If you type in a password, make sure it does not contain restricted characters. The pbs_ds_password command
generates passwords containing the following characters:

0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+

When creating a password manually, do not use \ (backslash) or ‘ (backquote). This can prevent certain commands
such as pbs_server, pbs_ds_password, and printjob from functioning properly, as they rely on connect-
ing to the database. The format is also described in "PBS Password” on page 357.

9.6.4 Starting and Stopping the Data Service

PBS automatically starts and stops the data service. However, you can start, stop, or check the status of the PBS data ser-
vice using the pbs_dataservice command. See “pbs_dataservice” on page 61 of the PBS Professional Reference
Guide.

To start the data service:

pbs_dataservice start

To stop the data service:

pbs_dataservice stop

To get the status of the data service:

pbs_dataservice status
AG-440 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.6.4.1 Caveats for Starting and Stopping Data Service

• Do not start or stop the data service using anything except the pbs_dataservice command. Start or stop the
data service using only the pbs_dataservice command.

• The data service cannot be stopped while the PBS server is running.

9.6.5 Changing Data Service Port

You can change the port that the data service listens on by changing the setting of the PBS_DATA_SERVICE_PORT
entry in pbs.conf.

9.6.5.1 Caveats

• The PBS daemons must not be running when the port is changed.

• The data service must not be running when the port is changed.

9.6.6 File Ownership

The files under PBS_HOME/datastore are owned by the data service user account.

9.7 Setting File Transfer Mechanism

MoM does the work of transferring files, using the mechanisms you specify. MoM transfers files when she stages them
in or out for a job, and when she delivers output and error files.

MoM always tries to determine whether the source and destination for a file transfer are both local. If MoM knows that
she is performing a local file transfer, she uses her local copy mechanism. Otherwise, she uses her remote copy mecha-
nism. You can specify MoM's copy mechanisms for local copying, and for copying to or from remote hosts.

PBS does not impose limitations on the size of files being transferred. Any limitations are caused by the commands
themselves.

9.7.1 Letting MoM Know Whether Transfer is Local or

Remote

To tell MoM which directories can be treated as local, specify the mappings between local and mounted directories in
MoM's $usecp configuration parameter.

9.7.1.1 Configuring the $usecp MoM Parameter

The $usecp configuration parameter tells MoM where to look for files in a shared file system, so that she can use the
local copy mechanism for these files. This is useful when you have common mount points across execution hosts.

Format:

$usecp <hostname>:<source directory> <destination directory>

You can use a wildcard ("*") as the first element only, to replace hostname.
PBS Professional 2022.1 Administrator’s Guide AG-441

Chapter 9 Administration
MoM uses her local copy mechanism to transfer files when staging or delivering output, under the following circum-
stances:

• The destination is a network mounted file system

• The source and destination are both on the local host

• The source directory can be replaced with the destination directory on hostname

You can map multiple directories. Use one line per mapping.

You must HUP MoM after making this change.

9.7.1.1.i Linux and $usecp

Format:

$usecp <hostname>:<source directory> <destination directory>

Use trailing slashes on both the source and destination directories.

Example 9-4: Configuring $usecp on Linux:

$usecp *:/home/ /home/

$usecp *.example.com:/home/ /home/

$usecp *:/home/user/ /home/user/

$usecp *:/data/ /data/

$usecp HostA:/users/work/myproj/ /sharedwork/proj_results/

9.7.1.1.ii Windows and $usecp

Format:

$usecp <host name>:<drive name>:<directory> <drive name>:<directory>

When a network location is mapped to a local drive, you can cover all host names and case-sensitivity using entries sim-
ilar to these:

$usecp *:Q: Q:

$usecp *:q: q:

Using this mapping, when MoM sees files with this format:

<hostname>:Q:<file path>

or

<hostname>:q:<file path>

she passes them to the copy command with this format:

Q:<file path>

or

q:<file path>

Example 9-5: Mapping locations with different directory names:

$usecp HostB:C:/xxxxx C:/yyyyy

9.7.2 Specifying Local File Transfer Mechanism

You can specify the local copy command in the PBS_CP parameter in pbs.conf.

On Linux the local copy mechanism defaults to /bin/cp, and on Windows it defaults to xcopy.
AG-442 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.7.2.0.i How MoM Calls Local Copy Command

MoM calls the command this way on Linux:

$PBS_CP -rp <path to source> <path to destination>

You cannot specify options inside the PBS_CP entry.

9.7.3 Specifying Remote File Transfer Mechanism

MoM can use either scp or rcp for remote copying. In /etc/pbs.conf, you specify which scp in the PBS_SCP
parameter, and you specify which rcp in the PBS_RCP parameter. You can specify both PBS_SCP and PBS_RCP.

9.7.3.1 How MoM Chooses Remote File Copy Mechanism

• If a command is specified in PBS_SCP, MoM uses the command specified in PBS_SCP.

• If a command is specified in PBS_RCP, and PBS_SCP is not defined, MoM uses the command specified in
PBS_RCP.

• If no pbs.conf parameters are defined, MoM uses pbs_rcp.

9.7.3.2 Configuring MoM to use scp or PBS_SCP Parameter

The PBS_SCP pbs.conf parameter is the absolute path to a command or script used for remote transfer.

At installation PBS looks for scp in the system PATH, and if it finds scp in the system PATH, PBS sets PBS_SCP in
pbs.conf to that scp.

If PBS_SCP is not set in pbs.conf on Linux, or you want MoM to use scp for remote copying on Windows, follow the
steps below.

1. Make sure that scp and ssh are installed on each host involved in file transfer

2. MoM calls her scp mechanism with the -B option, which requires passwordless authentication. If you use plain
scp without a wrapper script, make sure that passwordless authentication is set up on all machines involved in file
transfer. See section 9.7.10.1, “Enabling Passwordless Authentication”, on page 448

3. To use scp on Windows, set up passwordless authentication on all machines involved in file transfer. See section
9.7.10.1, “Enabling Passwordless Authentication”, on page 448

4. Set PBS_SCP to the absolute path to scp or your wrapper script

5. If MoM is already running, restart MoM

9.7.3.2.i How MoM Calls scp Command

MoM calls the command this way on Linux:

$PBS_SCP -Brvp <path to source> <username>@<destination>.<host>:<path to destination>

You cannot specify options inside the PBS_SCP entry.

9.7.3.3 Configuring MoM to use rcp, pbs_rcp or PBS_RCP Entry

The PBS_RCP pbs.conf parameter is the absolute path to a command or script used for remote transfer.

PBS ships with a version of rcp called pbs_rcp. On Windows, PBS uses this version by default. The pbs_rcp com-
mand should be as fast as other implementations of rcp.
PBS Professional 2022.1 Administrator’s Guide AG-443

Chapter 9 Administration
If you want MoM to use a different rcp, or a wrapper script for rcp:

1. Make sure that rcp and rsh are installed on each host involved in file transfer

2. Set PBS_RCP in /etc/pbs.conf, to the absolute path to the desired rcp or wrapper script

3. If PBS_SCP is defined in /etc/pbs.conf, comment it out

4. If MoM is already running, restart MoM

9.7.3.3.i How MoM Calls rcp Command

MoM calls the command this way on Linux:

$PBS_RCP -rp <path to source> <username>@<destination>.<host>:<path to destination>

You cannot specify options inside the PBS_RCP entry.

9.7.4 Options Passed to File Transfer Commands

9.7.4.1 Options Passed on Linux

MoM automatically uses these options on Linux:

9.7.4.2 Options Passed on Windows

MoM automatically uses these options on Windows:

9.7.5 Using Custom File Transfer Mechanism

You can also tell MoM to use any script or command for file transfer, such as rsync, gsiftp, etc.

Table 9-7: File Transfer Mechanism Options on Linux

Distance Mechanism Options

Remote PBS_RCP parameter, rcp, or pbs_rcp -rp

Remote PBS_SCP parameter -Brvp

Local PBS_CP parameter, or /bin/cp -rp

Table 9-8: File Transfer Mechanism Options on Windows

Distance Mechanism Options

Remote PBS_RCP parameter, rcp, or pbs_rcp -E -r

Remote PBS_SCP parameter -Brv

Local PBS_CP parameter, or xcopy /e/i/q/y
AG-444 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.7.5.1 Using Custom Local File Transfer Mechanism

If you want MoM to use different flags to cp, or a different command, or your own script, for local file transfer:

1. If needed, write a script that does what you need

2. Specify the path to the command or script in PBS_CP in pbs.conf

3. If the MoM is already running, restart the MoM

When MoM calls PBS_CP, she calls it with the -rp (Linux) or -e/i/q/y (Windows) flags. This means that when you
are writing a script, the arguments being passed to the script are:

$1 -rp or -e/i/q/y

$2 path to source

$3 path to destination

You choose which arguments the script passes to the command inside the script. If you are using a different command,
make sure that you pass the correct flags to it.

9.7.5.2 Using Custom Remote File Transfer Mechanism

If you want MoM to use different flags to rcp or scp, or a different command, or your own script, for remote file trans-
fer:

1. If needed, write a script that does what you need

2. Specify the path to the command or script in PBS_SCP in pbs.conf

3. If the MoM is already running, restart the MoM.

When MoM calls PBS_SCP, she calls it with the -Brvp (Linux) or -Brv (Windows) flags. This means that when you
are writing a script, the arguments being passed to the script are:

$1-Brvp or -Brv

$2path to source

$3path to destination

You choose which arguments the script passes to the command inside the script. If you are using a different command,
make sure that you pass the correct flags to it.

Example 9-6: Pass desired options to scp by writing a wrapper script for scp that contains the desired options, and
pointing PBS_SCP to the wrapper script. In this case, we don't use the default -Brvp, which is passed to the script
as $1. The script does not pass $1 to scp; instead, it specifies -Br. We do pass in the source and destination as $2
and $3.

In pbs.conf:

PBS_SCP=/usr/bin/scp_pbs

In /usr/bin/scp_pbs:

#!/bin/sh

/usr/bin/scp -Br $2 $3

Example 9-7: Use rsync by writing a wrapper script that passes all arguments except for the first (-Brvp) to rsync,
and pointing PBS_SCP to the wrapper script. In this case, the script passes all but the first argument to rsync as
$*. We get rid of the first argument using the shift command.

In pbs.conf:

PBS_SCP=/usr/bin/rsync_pbs
PBS Professional 2022.1 Administrator’s Guide AG-445

Chapter 9 Administration
In /usr/bin/rsync_pbs:

#!/bin/sh

shift

/usr/bin/rsync -avz -e ssh $*

Remember that for remote copying, MoM tries the PBS_SCP entry in pbs.conf first. If you configure both
PBS_RCP and PBS_SCP with scripts or commands, put the script or command that you want MoM to try first in
PBS_SCP.

9.7.6 When Multiple Attempts Are Required

If necessary, MoM tries to transfer a file multiple times, with an increasing delay between each attempt:

• If MoM is using her local copy mechanism, she tries it up to four times

• If MoM is using the entry in PBS_SCP:

• She first tries this, and if it fails, she tries rcp, pbs_rcp, or the entry in PBS_RCP if it is configured

• She repeats this sequence four times

• If MoM is using rcp, pbs_rcp, or the entry in PBS_RCP, she tries it up to four times

9.7.7 Allowing Direct Write of Standard Output and Error to

/dev/null

Standard output and standard error are normally written to a location such as /var/spool, then copied to their final loca-
tion. To avoid creating these files at all, and to avoid copying them, you need two things:

In MoM's version 1 configuration file, add this:

$usecp $<MoM hostname>:/dev/null /dev/null

Job submitters can use direct write to send them to /dev/null:

qsub -koed -o /dev/null -e /dev/null

9.7.8 Troubleshooting File Transfer

9.7.8.1 Problems with rcp

When using rcp, the copy of output or staged files can fail for the following reasons:

• The user lacks authorization to access the specified system

• Under Linux, if the user's .cshrc prints any characters to standard output, e.g. contains an echo command, the copy
will fail

You may encounter a strange hang in stageout, with jobs stuck in the E state for a long time. This can happen because
rcp may be trying to connect to a port that's already in use. If your standard copy mechanism is scp, and you don't
want to let PBS fall back on pbs_rcp, do one of the following:

• You can move pbs_rcp

• If you specify PBS_SCP, set PBS_RCP to /bin/false in pbs.conf

• If you are using CM/PAS and specify PBS_SCP in /etc/conf, put the PBS_SCP line after the PBS_RCP line
AG-446 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.7.8.2 Problems with Directory Access

Local and remote delivery of output may fail for the following additional reasons:

• A directory in the specified destination path does not exist

• A directory in the specified destination path is not searchable by the user

• The target directory is not writable by the user

9.7.9 Advice on Improving File Transfer Performance

9.7.9.1 Avoiding Server Host Overload

Avoid staging files from the server host, unless you can isolate the daemons from the effects of CPU and memory usage
by scp/ssh, by using a mechanism such as cpusets. Consider the impact from a large job array that causes many files to
be staged from the server host. Instead, use a shared filesystem. See section 9.7.9.2, “Avoiding Remote Transfers in
Large Complexes”, on page 447.

9.7.9.2 Avoiding Remote Transfers in Large Complexes

If you are running a very large HPC complex, consider using MoM's $usecp directive to avoid rcp and scp transfers.
Instead, have your users place input files on a shared filesystem before submitting jobs, write their output to the shared
filesystem, and keep as much as possible out of stdout and stderr.

9.7.9.3 Improving Performance for ssh

If network bandwidth is a limiting factor, you can use compression to improve performance. However, if CPU usage
and/or memory are limiting factors, do not use compression, because compression also requires CPU and memory.

You can use compression ciphers that minimize the CPU and memory load required, for example arcfour or blow-
fish-cbc:

ciphers arcfour,blowfish-cbc

9.7.9.4 Improving Performance when Staging Similar Files

If you are staging in many similar files, for example, for job arrays, you can use rsync in a wrapper script. Follow the
instructions in section 9.7.5.1, “Using Custom Local File Transfer Mechanism”, on page 445.

9.7.9.5 Avoiding Limits on ssh Connections

To prevent scp requests being denied when using ssh, you can set higher limits on incoming ssh connections. By
default ssh is configured to treat more than 10 incoming connections (plus 10 in the authentication phase) as a
denial-of-service attack, even on machines that could service many more requests.

Set higher limits in /etc/ssh/sshd_config for servers that are meant to service a lot of incoming openSSH ses-
sions, but only on machines that have enough CPU and memory to service all of the requests.

See the MaxSessions and MaxStartups parameters in the man page for sshd_config. You can make these at least as
large as the number of hosts in the cluster plus 10, assuming that any MoM only has one scp session open at any one
time.
PBS Professional 2022.1 Administrator’s Guide AG-447

Chapter 9 Administration
9.7.9.6 Alternatives to Changing ssh Limits

To avoid having to change limits on incoming ssh connections, you can do the following:

• Use a mounted directory and employ $usecp MoM parameters. See section 9.7.9.2, “Avoiding Remote Transfers in
Large Complexes”, on page 447.

• Use compression to service more requests with the same amount of hardware resources. See section 9.7.9.3,
“Improving Performance for ssh”, on page 447.

9.7.9.7 Getting Around Bandwidth Limits

If you have bandwidth limits, you can use a command such as gsiftp, which allows you to specify the bandwidth you
want to use for file transfer. Follow the instructions in section 9.7.5, “Using Custom File Transfer Mechanism”, on page
444.

9.7.10 General Advice on File Transfer

9.7.10.1 Enabling Passwordless Authentication

You must enable passwordless authentication so that job files can be staged in and out. You must also choose and set a
file transfer mechanism such as rcp or scp for remote file copying. Before you set up the remote file copy mechanism,
enable passwordless authentication for it.

Enable passwordless authentication for each machine in the complex, and for any machine from which or to which files
will be transferred.

You can use any authentication method you want, such as a shosts.equiv file, an authorized keys file, or .rhosts
authentication. You can choose a cipher and use encryption; balance the CPU time required by encryption with the CPU
time required by MoMs and job tasks.

PBS requires that rsh/rcp and/or ssh/scp works between each pair of hosts where files will be transferred. Test
whether you have succeeded by logging in as root, and using your chosen file transfer mechanism to copy a file between
machines.

9.7.10.2 Using scp for Security

Unless your complex is a closed system, we recommend using scp instead of rcp, because scp is more secure.

9.7.10.3 Avoiding Asynchronous Writes to NFS

Asynchronous writes to an NFS server can cause reliability problems. If using an NFS file system, mount the NFS file
system synchronously (without caching.)

9.7.10.4 Returning Output

If your site has disabled the use of remote operation functions ("r" commands) and output cannot be returned for jobs
running on compute nodes, enable the use of the cp command by adding $usecp to the
$PBS_HOME/mom_priv/config file on each login node. See section 9.7.1, “Letting MoM Know Whether Transfer
is Local or Remote”, on page 441.
AG-448 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
9.7.10.5 Editing the pbs.conf File Under Windows

You can edit the pbs.conf file by calling the PBS program named "pbs-config-add". For example, on Windows
systems:

\Program Files (x86)\PBS\exec\bin\pbs-config-add "PBS_SCP=\winnt\scp.exe"

Do not edit pbs.conf directly; this could reset the permission on the file, which could prevent other users from running
PBS.

9.7.10.6 The pbs_rcp Command

9.7.10.6.i Exit Values for pbs_rcp

The pbs_rcp command exits with a non-zero exit status for any error. This tells MoM whether or not the file was deliv-
ered.

9.7.10.7 Caveats

• Output is not delivered if the path specified by PBS_SCP or PBS_RCP in pbs.conf is incorrect.

• When a job is rerun, its stdout and stderr files are sent to the server and stored in PBS_HOME/spool. When
the job is sent out for execution again, its stdout and stderr are sent with it. The copy mechanism used for these
file transfers is internal to PBS; you cannot alter it or manage it in any way.

9.8 Some Performance Tips

9.8.1 Improving Scheduling Performance

• The scheduler can run asynchronously, so it doesn't wait for each job to be accepted by MoM, which means it also
doesn't wait for an execjob_begin hook to finish. For short jobs, this can give you better scheduling performance.
The scheduler runs asynchronously by default when the complex is using TPP mode, and can run asynchronously
only when the complex is using TPP mode. To run the scheduler asynchronously, set the throughput_mode sched-
uler attribute to True. For details on TPP mode, see “Communication” on page 45 in the PBS Professional Installa-
tion & Upgrade Guide; for job throughput, see section 4.5.8.1, “Improving Throughput of Jobs”, on page 100.

• If you limit the number of jobs queued in execution queues, you can speed up the scheduling cycle. See section
4.5.8.2, “Limiting Number of Jobs Queued in Execution Queues”, on page 100.

• Avoid using dynamic resources where possible; see section 5.4.4, “Static vs. Dynamic Resources”, on page 232

• We give advice on minimizing the impact hooks can have on scheduling in "Scheduling Impact of Hooks" on page
78 in the PBS Professional Hooks Guide.

9.8.2 Improving Communication Performance

• We give recommendations for improving communication daemon performance in “Recommendations for Maximiz-
ing Communication Performance” on page 51 in the PBS Professional Installation & Upgrade Guide.

• You can use placement sets to keep job processes topologically close to one another; see section 4.9.32, “Placement
Sets”, on page 167.

• See our recommendations on file transfer performance improvement in section 9.7.9, “Advice on Improving File
Transfer Performance”, on page 447.
PBS Professional 2022.1 Administrator’s Guide AG-449

Chapter 9 Administration
9.8.3 Improving Hook Speed

• See our hook performance recommendations in "Performance Considerations" on page 79 in the PBS Professional
Hooks Guide.

9.9 Temporary File Location for PBS Components

You can configure where all PBS components put their temporary files and directories on each system. You may want to
avoid using the usual temporary file locations of /tmp and /var/tmp, because users tend to fill these up.

9.9.1 Default Location for Temporary Files

By default, on Linux platforms, PBS components put their temporary files and directories in /var/tmp. PBS uses this
location because it is persistent across restarts or crashes, allowing diagnosis of a problem, whereas the contents of /tmp
may be lost.

On Windows, the default location is C:\WINNT\TEMP if it is present, or C:\WINDOWS\TEMP.

9.9.2 Configuring Temporary File Location for PBS

Components

You configure the location of temporary files and directories for PBS components by setting the value of the
PBS_TMPDIR configuration parameter in the /etc/pbs.conf file on each system. Set this parameter to the direc-
tory to be used for storing temporary files and directories by all PBS components on that system.

After you set the location of temporary files and directories, restart all PBS components:

<path to init.d>/init.d/pbs restart

The location for temporary files and directories for PBS components is determined by the following settings, in order of
decreasing precedence:

1. $tmpdir in mom_priv/config (affects pbs_mom only, not other components)

2. PBS_TMPDIR (for Linux) or TMP (for Windows) environment variable

3. PBS_TMPDIR in PBS configuration file

4. If none of the preceding settings are present, PBS uses default values:

• /var/tmp (for Linux)

• C:\WINNT\TEMP or C:\WINDOWS\TEMP (for Windows)

9.9.3 Requirements

• The specified directory must exist.
AG-450 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
 If the configured temporary file location does not exist, PBS prints the following error message:

<command>: No such file or directory (2) in chk_file_sec, Security violation "<directory>"
resolves to "<directory>"

<command>: Unable to configure temporary directory.

• The directory must be globally readable and writable.

• On Linux systems, the directory must have the sticky bit set in the file permissions.

• The directory must not present a security risk:

• All parent directories of the configured temporary directory must be owned by a UID less than 11 and a GID
less than 10.

• If the assigned owner has write permission, the UID must be 10 or less.

• If the assigned group has write permission, the GID must be 9 or less.

• Each parent directory must not be writable by "other".

If a PBS component detects a security risk for a file or directory, it prints the following messages and exits:

<command>: Not owner (1) in chk_file_sec, Security violation "<directory>" resolves to
"<directory>"

<command>: Unable to configure temporary directory.

9.9.4 Advice and Recommendations for Temporary File

Location

• Make sure that the location you choose for temporary files is cleaned periodically.

• In the past, some PBS components defaulted to /tmp for storing temporary files. All components now default to
/var/tmp, which is most likely a persistent storage location. You should take this into account and adjust the
cleaning of /var/tmp accordingly.

• If a PBS component prints a security error message and exits, fix the security problem and restart the component.

9.10 Administration Caveats

9.10.1 General Caveats

Do not manually delete files in PBS private directories.

9.10.2 Windows Caveats

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.

9.11 Support for Globus

Globus can still send jobs to PBS, but PBS no longer supports sending jobs to Globus.
PBS Professional 2022.1 Administrator’s Guide AG-451

Chapter 9 Administration
9.12 Support for Hyperthreading

On Linux machines that have Hyper-Threading Technology, PBS can end up reporting and using the number of logical
processors, instead of the number of physical CPUs, as the value for resources_available.ncpus.

PBS does not control how CPUs are allocated to processes within a job. That is handled by the OS kernel.

9.12.1 Linux Machines with HTT

On Linux, PBS uses the number of CPUs shown in /proc/cpuinfo. If the CPUs are hyper-threaded and
hyper-threading is enabled, the number of virtual and physical CPUs is different.

9.12.2 Windows Machines with HTT

On Windows, PBS calls the CPUCount Windows function, which reports whether hyper-threading is enabled. If
hyper-threading is enabled, MoM uses the number of physical CPUs. If hyper-threading is not enabled, MoM uses the
number of CPUs reported by the OS. MoM logs whether or not hyper-threading is enabled.

9.12.3 Using Number of Physical CPUs

If you do not wish to use hyper-threading, you can configure PBS to use the number of physical CPUs. Do this by setting
resources_available.ncpus to the number of physical cpus:

Qmgr: set node <vnode name> resources_available.ncpus=<number of physical CPUs>

9.12.4 Hyperthreading Caveats

On a cpusetted system, NEVER change the value for resources_available.ncpus, resources_available.vmem, or
resources_available.mem.

9.13 How To...

9.13.1 How to Drain Jobs

You can drain jobs from the entire complex by setting up dedicated time. Do not allow jobs in the dedicated time queue.
See section 4.9.10, “Dedicated Time”, on page 127.

You can drain jobs from a specific set of vnodes by creating a reservation that blocks out those vnodes for the desired
amount of time. See section 4.9.37, “Reservations”, on page 195.

9.13.2 How to Find Out Which Daemons Should Be Running

On the host in question, look in /etc/pbs.conf, or the location pointed to in the PBS_CONF_FILE environment vari-
able. Check the settings that specify whether each daemon should run. 1 means the daemon should run.

PBS_START_MOM

PBS_START_COMM

PBS_START_SERVER

PBS_START_SCHED
AG-452 PBS Professional 2022.1 Administrator’s Guide

Administration Chapter 9
PBS Professional 2022.1 Administrator’s Guide AG-453

Chapter 9 Administration
AG-454 PBS Professional 2022.1 Administrator’s Guide

10

Managing Jobs

10.1 Routing Jobs

You can route jobs to various places and by various criteria. You can reject submission of jobs that request too much of a
given resource. You can force jobs into the correct queues. You can have all jobs submitted to a routing queue, then
route them to the correct execution queues. You can use peer scheduling to have jobs executed at other PBS complexes.
You can use hooks to move jobs. For information on routing jobs, see section 4.9.39, “Routing Jobs”, on page 204.

10.2 Limiting Number of Jobs Considered in

Scheduling Cycle

If you limit the number of jobs in execution queues, you can speed up the scheduling cycle. You can set an individual
limit on the number of jobs in each queue, or a limit at the server, and you can apply these limits to generic and individual
users, groups, and projects, and to overall usage. You specify this limit by setting the queued_jobs_threshold queue or
server attribute. See section 5.15.1.9, “How to Set Limits at Server and Queues”, on page 292.

If you set a limit on the number of jobs that can be queued in execution queues, we recommend that you have users sub-
mit jobs to a routing queue only, and route jobs to the execution queue as space becomes available. See section 4.9.39,
“Routing Jobs”, on page 204.

10.3 Allocating Resources to Jobs

You can make sure that jobs request or inherit any resources required to manage those jobs. If a job does not request a
resource, you can make sure that the resource is allocated to the job anyway.

In order for limits to be effective, each job must request each limited resource. For a complete description of how limits
work, see section 5.15, “Managing Resource Usage”, on page 283.

You can create custom resources specifically to allocate them to jobs. These resources can be visible, alterable, and
requestable by users, or invisible, unalterable, and unrequestable, or visible but unalterable and unrequestable. For
instructions on creating invisible or unrequestable resources, see section 5.14.2.4, “Specifying Resource Visibility”, on
page 257.

You can alter a job's resource request using the following methods:

• You can set defaults for resources at the server or at each queue. This way, you can have jobs inherit specific values
for the resources by routing them to special queues, where they inherit the defaults. For how jobs inherit resources,
see section 5.9.4, “Allocating Default Resources to Jobs”, on page 244. For how to specify default resources, see
section 5.9.3, “Specifying Job Default Resources”, on page 241.
PBS Professional 2022.1 Administrator’s Guide AG-455

Chapter 10 Managing Jobs
For how resource defaults change when a job is moved, see section 5.9.4.3, “Moving Jobs Between Queues or Serv-
ers Changes Defaults”, on page 245.

• You can use a hook to assign a specific resource value to a job, if a job requests the wrong value for a resource. For
how to use a hook to assign a resource to a job, see the PBS Professional Hooks Guide. For examples of using hooks
to assign resources to jobs, see PBS Professional Plugins (Hooks) Guide.

• You can use the qalter command to change a job's resource request. For how to use the qalter command, see
“qalter” on page 130 of the PBS Professional Reference Guide.

• You can set default arguments the qsub command via the default_qsub_arguments server attribute. For how to
use default arguments to qsub, see “Server Attributes” on page 281 of the PBS Professional Reference Guide.

10.3.1 Viewing Resources Allocated to a Job

10.3.1.1 The exec_vnode Attribute

The exec_vnode attribute displayed via qstat shows the resources allocated from each vnode for the job.

The exec_vnode line looks like:

exec_vnode = (<vnode name>:ncpus=W:mem=X)+(<vnode name>:ncpus=Y:mem=Z)

For example, a job requesting

-l select=2:ncpus=1:mem=1gb+1:ncpus=4:mem=2gb

gets an exec_vnode of

exec_vnode = (VNA:ncpus=1:mem=1gb)+(VNB:ncpus=1:mem=1gb) +(VNC:ncpus=4:mem=2gb)

Note that the vnodes and resources required to satisfy a chunk are grouped by parentheses. In the example above, if two
vnodes on a single host were required to satisfy the last chunk, the exec_vnode might be:

exec_vnode = (VNA:ncpus=1:mem=1gb)+(VNB:ncpus=1:mem=1gb)
+(VNC1:ncpus=2:mem=1gb+VNC2:ncpus=2:mem=1gb)

Note also that if a vnode is allocated to a job because the job requests an arrangement of exclhost, only the vnode name
appears in the chunk. For example, if a job requesting

-l select 2:ncpus=4 -l place = exclhost

is placed on a host with 4 vnodes, each with 4 CPUs, the exec_vnode attribute looks like this:

exec_vnode = (VN0:ncpus=4)+(VN1:ncpus=4)+(VN2)+(VN3)

10.3.1.2 The schedselect Attribute

The resources allocated from a vnode are only those specified in the job's schedselect attribute. This job attribute is cre-
ated internally by starting with the select specification and applying any server and queue default_chunk resource
defaults that are missing from the select statement. The schedselect job attribute contains only vnode-level resources.
The exec_vnode job attribute shows which resources are allocated from which vnodes. See “Job Attributes” on page
327 of the PBS Professional Reference Guide.

10.3.1.3 Resources for Requeued Jobs

When a job is requeued due to an error in the prologue or initialization, the job's exec_host and exec_vnode attributes
are cleared. The only exception is when the job is checkpointed and must be rerun on the exact same system. In this
case, the exec_host and exec_vnode attributes are preserved.
AG-456 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.4 Grouping Jobs By Project

10.4.1 PBS Projects

In PBS, a project is a way to organize jobs independently of users and groups. A project is a tag that identifies a set of
jobs. Each job's project attribute specifies the job's project. Each job can be a member of up to one project.

Projects are not tied to users or groups. One user or group may run jobs in more than one project. For example, user Bob
runs JobA in ProjectA and JobB in ProjectB. User Bill runs JobC in ProjectA. User Tom runs JobD in ProjectB. Bob
and Tom are in Group1, and Bill is in Group2.

10.4.2 Assigning Projects to Jobs

A job's project can be set in the following ways:

• At submission, using the qsub -P option; see “qsub” on page 216 of the PBS Professional Reference Guide

• After submission, via the qalter -P option; see “qalter” on page 130 of the PBS Professional Reference Guide

• Via a hook; see the PBS Professional Hooks Guide

10.4.3 Managing Resource Use by Project

PBS can apply limits to the amount of resources used by jobs in projects, or the number of queued and running jobs
belonging to projects. See section 5.15.1, “Managing Resource Usage By Users, Groups, and Projects, at Server &
Queues”, on page 283.

10.4.4 Managing Jobs by Project

You can arrange for the jobs belonging to a project to run on designated hardware; see section 4.4.4, “Allocating
Resources by User, Project or Group”, on page 82. You can also run jobs belonging to a project in designated time slots;
see section 4.4.6, “Scheduling Jobs into Time Slots”, on page 86. For more information on routing by project, see section
4.9.39, “Routing Jobs”, on page 204.

10.4.5 Viewing Project Information

Each job's project, if any, is specified in its project attribute. To see the value of this attribute, use the qstat -f option.
See “qstat” on page 200 of the PBS Professional Reference Guide.

10.4.6 Selecting Jobs by Project

You can select jobs according to their project using the qselect -P option. See “qsig” on page 195 of the PBS Pro-
fessional Reference Guide.

10.4.7 Default Project Value

The default value for a job's project attribute is "_pbs_project_default". Any job submitted without a specified value
for the project attribute is given the default value. If you explicitly set the value to "_pbs_project_default", the server
prints a warning message saying that the value has been set to the default. If you unset the value of the attribute in a
hook, the value becomes the default value. Using qalter -P "" sets the value to the default.
PBS Professional 2022.1 Administrator’s Guide AG-457

Chapter 10 Managing Jobs
10.4.8 Error Messages

When a job would exceed a limit by running, the job's comment field is set to an error message. See “Run Limit Error
Messages” on page 385 of the PBS Professional Reference Guide.

10.5 Job Prologue and Epilogue

As of 2020.1, the prologue and epilogue are deprecated.

You can run a site-supplied script or program before and/or after each job runs. This allows initialization or cleanup of
resources, such as temporary directories or scratch files. The script or program that runs before the job is the prologue;
the one that runs after the job is the epilogue.

The primary purpose of the prologue is to provide a site with some means of performing checks prior to starting a job.
The epilogue can be used to requeue a checkpointed job. See section 8.3.7.3, “Requeueing via Epilogue”, on page 398.

If you have any execjob_prologue hooks, they supersede the prologue, and run when the prologue would run, and if
you have any execjob_epilogue hooks, they supersede the epilogue, and run when the epilogue would run.

If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue event
which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue script into
an execjob_epilogue hook instead.

You can run a shell script as your prologue or epilogue, or you can use an execjob_prologue and/or execjob_epilogue
hook to do the work. If you already have a shell script prologue and/or epilogue, you can run each via an appropriate
execjob_prologue or execjob_epilogue hook. We show how to do this in section 10.5.2, “Using Hooks for Prologue
and Epilogue”, on page 462.

10.5.1 Using Shell Scripts for Prologue and Epilogue

Only one prologue and one epilogue may be used per PBS server. The same prologue and/or epilogue runs for every job
in the complex.

Each script may be either a shell script or an executable object file.

10.5.1.1 When Shell Prologue and Epilogue Run

The prologue runs before the job is executed. The epilogue runs after the job terminates, including normal termination,
job deletion while running, error exit, or even if pbs_mom detects an error and cannot completely start the job. If the job
is deleted while it is queued, then neither the prologue nor the epilogue is run. If the job is discarded while running, for
example when the server loses contact with the MoM, the epilogue does not run.

If a prologue or epilogue script is not present, MoM continues in a normal manner.

10.5.1.2 Where Shell Prologue and Epilogue Run

When multiple vnodes are allocated to a job, these scripts are run only by the MoM on the primary execution host.

The prologue runs with its current working directory set to PBS_HOME/mom_priv, regardless of the setting of the
sandbox job attribute.

The epilogue runs with its current working directory set to the job's staging and execution directory. This is also where
the job shell script is run.
AG-458 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.5.1.3 Shell Prologue and Epilogue Location

Both the prologue and the epilogue must reside in the PBS_HOME/mom_priv directory.

10.5.1.4 Shell Prologue and Epilogue Requirements

 In order to be run, the script must adhere to the following rules:

• The script must be in the PBS_HOME/mom_priv directory

• The prologue must have the exact name "prologue" under Linux, or "prologue.bat" under Windows

• The epilogue must have the exact name "epilogue" under Linux, or "epilogue.bat" under Windows

• The script must be written to exit with one of the zero or positive exit values listed in section 10.5.1.12, “Shell Pro-
logue and Epilogue Exit Codes”, on page 461. The negative values are set by MoM

• Under Linux, the script must be owned by root, be readable and executable by root, and cannot be writable by any-
one but root

• Under Windows, the script's permissions must give "Full Access" to the local Administrators group on the local
computer

10.5.1.5 Shell Prologue and Epilogue Environment Variables

The prologue and epilogue run with the following set in their environment:

• The contents of the pbs_environment file

• The PBS_JOBDIR environment variable

TMPDIR is not set in the prologue environment or the epilogue environment.

10.5.1.6 Shell Prologue and Epilogue Permissions

Both the prologue and epilogue are run under root on Linux, or under an Admin-type account on Windows, and neither is
included in the job session.

10.5.1.7 Shell Prologue and Epilogue Arguments

The prologue is called with the following arguments:

Table 10-1: Arguments to Prologue

Argument Description

argv[1] Job ID

argv[2] Username under which the job executes

argv[3] Group name under which the job executes
PBS Professional 2022.1 Administrator’s Guide AG-459

Chapter 10 Managing Jobs
The epilogue is called with the following arguments:

10.5.1.8 Shell Epilogue Argument Caveats

Under Windows and with some Linux shells, accessing argv[10] in the epilogue requires a shift in positional parameters.
To do this, the script must do the following:

1. Call the arguments with indices 0 through 9

2. Perform a shift /8

3. Access the last argument using %9%

For example:

cat epilogue

> #!/bin/bash

>

> echo "argv[0] = $0" > /tmp/epiargs

> echo "argv[1] = $1" >> /tmp/epiargs

> echo "argv[2] = $2" >> /tmp/epiargs

> echo "argv[3] = $3" >> /tmp/epiargs

> echo "argv[4] = $4" >> /tmp/epiargs

> echo "argv[5] = $5" >> /tmp/epiargs

> echo "argv[6] = $6" >> /tmp/epiargs

> echo "argv[7] = $7" >> /tmp/epiargs

> echo "argv[8] = $8" >> /tmp/epiargs

> echo "argv[9] = $9" >> /tmp/epiargs

> shift

> echo "argv[10] = $9" >> /tmp/epiargs

10.5.1.9 Standard Input to Shell Prologue and Epilogue

Both scripts have standard input connected to a system-dependent file. The default for this file is /dev/null.

Table 10-2: Arguments to Epilogue

Argument Description

argv[1] Job ID

argv[2] Username under which the job executes

argv[3] Group name under which the job executes

argv[4] Job name

argv[5] Session ID

argv[6] Requested built-in resources (job's Resource_List)

argv[7] List of resources used (job's resources_used) gathered from the primary execution host only

argv[8] Name of the queue in which the job resides

argv[9] Account string, if one exists

argv[10] Exit status of the job
AG-460 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.5.1.10 Standard Output and Error for Shell Prologue and Epilogue

The standard output and standard error of the scripts are connected to the files which contain the standard output and
error of the job. There is one exception: if a job is an interactive PBS job, the standard output and error of the epilogue is
pointed to /dev/null because the pseudo-terminal connection used was released by the system when the job termi-
nated.

10.5.1.11 Shell Prologue and Epilogue Timeout

When the scheduler runs a job, it waits until the prologue has ended. To prevent an error condition within the prologue or
epilogue from delaying PBS, MoM places an alarm around the script's/program's execution. The default value is 30 sec-
onds. If the alarm timeout is reached before the script has terminated, MoM will kill the script. The alarm value can be
changed via the $prologalarm MoM configuration parameter. See section 8.6.6, “Prologue & Epilogue Running Time”,
on page 416.

10.5.1.12 Shell Prologue and Epilogue Exit Codes

Normally, the prologue and epilogue programs should exit with a zero exit status. The prologue and epilogue should be
written to exit with one of the zero or positive values listed here. When there is a problem with the script, MoM sets the
exit value to one of the negative values. Exit status values and their impact on the job are listed in the following table:

MoM records in her log any case of a non-zero prologue or epilogue exit code, at event class 0x0001.

Table 10-3: Prologue and Epilogue Exit Codes

Exit
Code

Meaning Prologue Epilogue

-4 The script timed out (took too long). The job will be requeued. Ignored

-3 The wait(2) call waiting for the script to
exit returned with an error.

The job will be requeued Ignored

-2 The input file to be passed to the script could
not be opened.

The job will be requeued. Ignored

-1 The script has a permission error, is not owned
by root, and/or is writable by others than root.

The job will be requeued. Ignored

0 The script was successful. The job will run. Ignored

1 The script returned an exit value of 1. The job will be aborted. Ignored

>1 The script returned a value greater than one. The job will be requeued. Ignored

2 The script returned a value of 2. The job will be requeued. If the job was checkpointed under
the control of PBS, the job is
requeued.
PBS Professional 2022.1 Administrator’s Guide AG-461

Chapter 10 Managing Jobs
10.5.1.13 Shell Prologue and Epilogue Limitations and Caveats

• Consider having your epilogue write a lock file so that it can detect whether it is being run more than once for a job.

• You must exercise great caution in setting up the prologue to prevent jobs from being flushed from the system.

• Interactive-batch jobs cannot be requeued if the epilogue exits with a non-zero status. When this happens, these jobs
are aborted.

• The prologue and epilogue cannot be used to modify the job environment or to change limits on the job.

• If any execjob_prologue hooks exist, they are run, and the prologue is not run.

• If any execjob_epilogue hooks exist, they are run, and the epilogue is not run.

• If you are running the cgroups hook, any epilogue script will not run. The cgroups hook has an execjob_epilogue
event which takes precedence over an epilogue script, so if you are running the cgroups hook, make your epilogue
script into an execjob_epilogue hook instead.

10.5.2 Using Hooks for Prologue and Epilogue

You can run execjob_prologue and execjob_epilogue hooks to do whatever setup and cleanup you need before and
after jobs run. Note that these hooks supersede the shell prologue and epilogue and prevent them from running. See
"execjob_prologue: Event Just Before Execution of Top-level Job Process" on page 104 in the PBS Professional Hooks
Guide, and "execjob_epilogue: Event Just After Killing Job Tasks" on page 111 in the PBS Professional Hooks Guide.

However, you can run your shell prologue and epilogue using execjob_prologue and execjob_epilogue hooks, and we
provide an example hook called run_pelog_shell.py. The hook is included in $PBS_EXEC/unsupported. as
run_pelog_shell.py, along with its configuration file, run_pelog_shell.ini. You can see the contents at
"execjob_prologue and execjob_epilogue Hook Examples" on page 290 in the PBS Professional Hooks Guide.

You can use this hook when the execjob_prologue and execjob_epilogue events are used in other hooks, such as the
cgroups hook, and you still want to run the classic prologue and epilogue scripts we describe in section section 10.5.1,
“Using Shell Scripts for Prologue and Epilogue”, on page 458. Additionally, the hook introduces parallel prologue and
epilogue shell scripts.

On the primary execution host (the first host listed in PBS_NODEFILE), the standard naming convention of 'prologue'
and 'epilogue' apply. Parallel prologues and epilogues use the naming conventions 'pprologue' and 'pepilogue', respec-
tively, but run only on the secondary execution hosts. On Windows, parallel prologues and epilogues expect a '.bat' exten-
sion, which results in 'pprologue.bat' and 'pepilogue.bat'. This hook does the normal checks PBS does to start a prologue,
such as permissions, etc., for UNIX. This hook also allows you to use a parallel prologue/epilogue (pprologue/pepi-
logue).

Parallel prologues will not run until a task associated with the job (i.e. via pbs_attach, pbs_tmrsh) begins on the
secondary execution hosts. Parallel epilogues run only if the prologue ran successfully on the primary execution host.
Only the primary execution host will have a value for resources_used in epilogue argument $7.

We assume the same requirements as listed for prologues/epilogues for running all types of prologue and epilogue shell
scripts in section 10.5.1.4, “Shell Prologue and Epilogue Requirements”, on page 459.

By default, parallel prologue/epilogue is set to False. To enable parallel behavior, edit the configuration file and set
ENABLE_PARALLEL to True.

The hook kills the prologue/epilogue 5 seconds before the hook_alarm timeout. At this point the job is requeued/deleted
depending on the value of DEFAULT_ACTION. The hook_alarm time defaults to 30 seconds, giving the prologue/epi-
logue approximately 25 seconds to complete.

10.5.2.1 Installing Prologue and Epilogue Hooks

You could create a single hook that runs on both the execjob_prologue and the execjob_epilogue events, but to ensure
execution order we separate them into the individual events by creating two separate hooks that use the same hook script.
AG-462 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
Edit run_pelog_shell.ini to make configuration changes, then create and import the hook as we show here.

As root, run the following:

qmgr << EOF

create hook run_prologue_shell

set hook run_prologue_shell event = execjob_prologue

set hook run_prologue_shell enabled = true

set hook run_prologue_shell order = 1

set hook run_prologue_shell alarm = 35

import hook run_prologue_shell application/x-python default run_pelog_shell.py

import hook run_prologue_shell application/x-config default run_pelog_shell.ini

create hook run_epilogue_shell

set hook run_epilogue_shell event = execjob_epilogue

set hook run_epilogue_shell enabled = true

set hook run_epilogue_shell order = 999

set hook run_prologue_shell alarm = 35

import hook run_epilogue_shell application/x-python default run_pelog_shell.py

import hook run_epilogue_shell application/x-config default run_pelog_shell.ini

EOF

Any further configuration changes to run_pelog_shell.ini require re-importing the file to both hooks:

qmgr << EOF

import hook run_prologue_shell application/x-config default run_pelog_shell.ini

import hook run_epilogue_shell application/x-config default run_pelog_shell.ini

EOF

RERUN=14

DELETE=6

DEBUG=False

We show the defaults for the following constants in run_pelog_shell.ini. We show the contents of the file in
"execjob_prologue and execjob_epilogue Hook Examples" on page 290 in the PBS Professional Hooks Guide. You can
set them to match site preferences:

ENABLE_PARALLEL=False

VERBOSE_USER_OUTPUT=False

DEFAULT_ACTION=RERUN

TORQUE_COMPAT=False

10.6 Linux Shell Invocation

When PBS starts a job, it invokes the user's login shell, unless the user submitted the job with the -S option. PBS passes
the job script, which is a shell script, to the login process.

PBS passes the name of the job script to the shell program. This is equivalent to typing the script name as a command to
an interactive shell. Since this is the only line passed to the script, standard input will be empty to any commands. This
approach offers both advantages and disadvantages:
PBS Professional 2022.1 Administrator’s Guide AG-463

Chapter 10 Managing Jobs
10.6.1 Advantages

• Any command which reads from standard input without redirection will get an EOF.

• The shell syntax can vary from script to script. It does not have to match the syntax for the user's login shell. The
first line of the script, even before any #PBS directives, should be

#!/shell

where shell is the full path to the shell of choice, /bin/sh, /bin/csh, ...

The login shell will interpret the #! line and invoke that shell to process the script.

10.6.2 Disadvantages

• An extra shell process is run to process the job script.

• If the script does start with a #! line, the wrong shell may be used to interpret the script and thus produce errors.

• If a non-standard shell is used via the -S option, it will not receive the script, but its name, on its standard input.

10.7 When Job Attributes are Set

The attributes of a job are set at various points in the life of the job. For a description of each job attribute, see “Job
Attributes” on page 327 of the PBS Professional Reference Guide.

10.7.1 Job Attributes Set By qsub Command

Before the job is passed to the server, the qsub command sets these job attributes, in this order:

1. Attributes specified as options on the command line

2. Attributes specified in #PBS directives within the job script

3. Job attributes specified in the default_qsub_arguments server attribute

4. If the following job attributes have not already been set, they are set as follows:

• Job_Name: set to the file name of the job script, or to "STDIN" if the script is entered via standard input

• Checkpoint: set to "u" for unspecified.

• Hold_Types: set to "n"

• Join_Path: set to "n"

• Keep_Files: set to "n"

• Mail_Points: set to "a" for abort

• Priority: set to 0 (zero)

• Rerunnable: set to True

• run_count: can be set by job submitter

• Variable_List: the qsub command sets the following variables and appends them to the existing value of
Variable_List: PBS_O_HOME, PBS_O_LANG, PBS_O_LOGNAME, PBS_O_PATH, PBS_O_MAIL,
PBS_O_SHELL, PBS_O_WORKDIR, PBS_O_TZ, and PBS_O_SYSTEM

• Submit_arguments: set to any submission arguments on the command line
AG-464 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.7.2 Job Attributes Set at Server

When the job is passed from the qsub command to the server, the raw job information is available to any job submission
hooks, which can alter the information. Once the job is at the server, the server sets the following attributes:

• Job_Owner: set to <username>@<submission host name>

• Variable_List: the following are added to the job's Variable_List attribute: PBS_O_QUEUE, PBS_O_HOST

• Output_Path: if not yet specified, the Output_Path attribute is set

• Error_Path: if not yet specified, the Error_Path attribute is set

• Rerunable: if the job is interactive, the Rerunable attribute is set to False

• run_count: incremented each time job is run

• project: if unset, the project attribute is set to "_pbs_project_default".

• Read-only attributes: the server sets the job's read-only attributes; see “Job Attributes” on page 327 of the PBS Pro-
fessional Reference Guide

• Resource_List: adjusted to include inherited resources specified in the queue and server Resources_Default
attributes, if those resources are not yet in the list

• Comment set when job is sent for execution or rejected; see section 10.7.3.1, “Comment Set When Running Job”, on
page 465

10.7.3 Attributes Changed by Operations on Jobs

10.7.3.1 Comment Set When Running Job

Before the server sends the job to an execution host, the server sets the job's comment to "Job was sent for execution at
<time> on <execvnode>".

After the server gets a confirmation from the MoM, the server updates the job's comment to "Job run at <time> on
<execvnode>".

If the MoM rejects the job, the server changes the job comment to "Not Running: PBS Error: Execution server rejected
request".

10.7.3.2 Attributes Changed When Moving Job

If you move a job to a different queue or server, any default resources from the current queue or server are removed, and
new defaults are inherited. See section 5.9.4.3, “Moving Jobs Between Queues or Servers Changes Defaults”, on page
245. For information on the qmove command, see “qmove” on page 175 of the PBS Professional Reference Guide.

10.7.3.3 Attributes Changed When Altering Job

When the qalter command is used to alter a job, the changes to the job are changes to the equivalent job attributes.
See “qalter” on page 130 of the PBS Professional Reference Guide.

10.7.3.4 Attributes Changed When Requeueing or Rerunning a Job

When a job is requeued or rerun, its exec_vnode and/or exec_host attributes may be changed. The job may end up run-
ning on different vnodes. See “qrerun” on page 181 of the PBS Professional Reference Guide.

Each time a job is run, its run_count attribute is incremented by the server.
PBS Professional 2022.1 Administrator’s Guide AG-465

Chapter 10 Managing Jobs
10.7.3.5 Attributes Changed by Holding or Releasing a Job

When a job is held using the qhold command, or released using the qrls command:

• The Hold_Types attribute reflects the change

• The job_state attribute may be changed

See “Job Attributes” on page 327 of the PBS Professional Reference Guide and “qhold” on page 150 of the PBS Profes-
sional Reference Guide.

10.7.3.6 Attributes Changed by Suspending or Resuming a Job

When a job is suspended or resumed using the qsig command, the job's job_state attribute reflects the change in state.
See “qsig” on page 195 of the PBS Professional Reference Guide.

10.8 Job Termination

A job can be terminated for the following reasons:

• You or the submitter can use qdel to kill the job

• The job can be preempted and requeued

• The job can go over a limit and be killed

• The job is submitted to a routing queue, and can never be routed (accepted by a destination queue)

• The server is restarted and the job cannot be recovered

• The job specifies a dependency that fails or is terminated

• The job is killed by a signal

10.8.1 Normal Job Termination

When there is no $action terminate script and a running job is terminated, via the qdel <job ID> command, because
of a server shutdown, or because the job has exceeded a limit, PBS waits for a configurable amount of time between
sending a SIGTERM and a SIGKILL signal to the job. The amount of time is specified in the kill_delay queue attribute.
The default value for this attribute is 10 seconds. PBS takes the following steps.

For a single-vnode job:

1. PBS sends the job a SIGTERM

2. PBS waits for the amount of time specified in the kill_delay queue attribute

3. PBS sends the job a SIGKILL

For a multi-vnode job:

1. The primary execution host MoM sends a SIGTERM to all processes on the primary execution host

2. If any of the processes of the top task of the job are still running, PBS waits a minimum of kill_delay seconds

3. The primary execution host MoM sends a SIGKILL to all remaining job processes on the primary execution host

4. The subordinate MoMs send a SIGKILL to all their processes belonging to this job
AG-466 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.8.2 Using the qdel Command to Terminate a Job

You can delete a job using the qdel command. See “qdel” on page 143 of the PBS Professional Reference Guide.

qdel <job ID>

If there is an $action terminate script, it is used to terminate the job.

If there is no $action terminate script, the SIGTERM-delay-SIGKILL sequence described in section 10.8.1,
“Normal Job Termination”, on page 466 is used to terminate the job.

This command does not terminate provisioning jobs.

qdel -Wforce <job ID>

If MoM is reachable, MoM sends the job a SIGKILL signal, and files are staged out. If MoM is unreachable, the
server discards the job. The job may or may not continue to run on the execution host(s).

This command terminates provisioning jobs.

10.8.3 Killing Job Processes

If you need to kill job processes, you can use the printjob command to find the job's session ID, and then kill those
processes. See “printjob” on page 128 of the PBS Professional Reference Guide.

10.8.4 Hooks and Job Termination

If you qdel a job, any execjob_preterm hooks run on all the hosts allocated to a job. On the primary execution host, the
hook executes when the job receives a signal from the server for the job to terminate. On a sister host, this hook executes
when the sister receives a request from the primary execution host MoM to terminate the job, just before the sister signals
the task on this host to terminate.

The execjob_preterm hook does not run for any other job termination. For example, it does not run on a qrerun or
when a job goes over its limit.

See "execjob_preterm: Event Just Before Killing Job Tasks" on page 110 in the PBS Professional Hooks Guide.

10.8.5 Configuring Site-specific Job Termination

The default behavior of PBS is for MoM to terminate a job under the following circumstances:

• The job's usage of a resource exceeds the limit requested

• The job is deleted by the server on shutdown

• The job is deleted via the qdel command

MoM normally uses SIGTERM, waits for the amount of time specified in the queue's kill_delay attribute, then issues a
SIGKILL. See section 10.8, “Job Termination”, on page 466.

You may want PBS to run your own job termination script in place of the normal action. The termination script is run in
place of a SIGTERM. The termination script runs only on the primary execution host. After the top job process is termi-
nated, a KILL signal is sent to any other job processes running on other hosts.

You can define the desired termination behavior by specifying the script you want to run in the $action terminate param-
eter in the Version 1 configuration file. The $action terminate parameter takes this form:

$action terminate <timeout> ! <path to script> [args]

Where
PBS Professional 2022.1 Administrator’s Guide AG-467

Chapter 10 Managing Jobs
<timeout> is the time, in seconds, allowed for the script to complete. A value of zero (0) indicates infinite time is
allowed for the script to run.

<path to script> is the path to the script. If it is a relative path, it is evaluated relative to the PBS_HOME/mom_priv
directory.

<args> are optional arguments to the script. Values for <args> may be any string not starting with a percent sign ("%").

Arguments with a percent sign, making up any of the following keywords, are replaced by MoM with the corresponding
value:

10.8.5.1 Requirements for Termination Script

The script should exit with a value of zero when the job is terminated successfully. If the script exits successfully (with
a zero exit status and before the time-out period), PBS does not send any signals or attempt to terminate the job. It is the
responsibility of the termination script in this situation to ensure that the job has been terminated.

The script should exit with a non-zero value if the job was not successfully terminated. If the script exits with a non-zero
exit status, the job is sent SIGKILL by PBS.

If the script does not complete in the time-out period, it is aborted and the job is sent SIGKILL.

10.8.5.2 Examples of Configuring Termination

Linux:

Example 10-1: To use a 60-second timeout, run PBS_HOME/mom_priv/endjob.sh, and pass the job's session ID,
user ID, and PBS jobs ID to the script:

$action terminate 60 !endjob.sh %sid %uid %jobid

Example 10-2: To use an infinite timeout, run the system kill command with the signal 13, and pass the job's session
ID:

$action terminate 0 !/bin/kill -13 %sid

Windows:

Example 10-3: To use a 60-second timeout, run endjob.bat, and pass the job's session ID, user ID, and PBS jobs ID
to the script:

$action terminate 60 !endjob.bat %sid %uid %jobid

Example 10-4: To use an infinite timeout, run the pbskill command, and pass the job's session ID:

$action terminate 0 !"C:/Program Files/PBS Pro/exec/bin/pbskill" %sid

Table 10-4: $action terminate Keywords

Keyword Value Used by MoM

%jobid Job ID

%sid Session ID of task (job)

%uid Execution UID of job

%gid Execution GID of job

%login Login name associated with UID

%owner Job owner in form name@host

%auxid Auxiliary ID (system-dependent)
AG-468 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.8.5.3 Caveats and Restrictions on Termination

Under Windows, <path to script> must have a ".bat" suffix since it will be executed under the Windows command
prompt cmd.exe. If the <path to script> specifies a full path, be sure to include the drive letter so that PBS can locate
the file. For example, C:\winnt\temp\terminate.bat. The script must be writable by no one but an Administra-
tor-type account.

10.8.6 Killing Jobs with a Signal

You or the job owner can kill a job by sending a kill signal to a job via qsig.

If a job is terminated via a signal while it is in the process of being sent to the execution host, the following happens:

• PBS writes a server log message:
Job;<job ID>;Terminated on signal <signal number>

• The job is requeued

• If qrun is used to run the job, qrun does not set the job's comment

10.9 Job Exit Status Codes

The exit status of a job may fall in one of three ranges, listed in the following table:

The exit status of jobs is recorded in the PBS server logs and the accounting logs.

Table 10-5: Job Exit Status Ranges

Exit Status
Range

Reason Description

X < 0 The job could not be executed See Table 10-6, “Job Exit Codes,” on page 470

0 <=X < 128 Exit value of shell or top pro-
cess

This is the exit value of the top process in the job, typically the
shell. This may be the exit value of the last command executed in
the shell or the .logout script if the user has such a script (csh).

The exit status of an interactive job is always recorded as 0 (zero),
regardless of the actual exit status.

X >=128 Job was killed with a signal This means the job was killed with a signal. The signal is given by
X modulo 128 (or 256). For example an exit value of 137 means the
job's top process was killed with signal 9 (137 % 128 = 9).

The exit status values greater than 128 (or 256) indicate which sig-
nal killed the job. Depending on the system, values greater than 128
(or on some systems 256; see wait(2) or waitpid(2) for more
information), are the value of the signal that killed the job.

To interpret (or "decode") the signal contained in the exit status
value, subtract the base value from the exit status. For example, if a
job had an exit status of 143, that indicates the job was killed via a
SIGTERM (e.g. 143 - 128 = 15, signal 15 is SIGTERM). See the
kill(1) manual page for a mapping of signal numbers to signal
name on your operating system.
PBS Professional 2022.1 Administrator’s Guide AG-469

Chapter 10 Managing Jobs
Negative exit status indicates that the job could not be executed. Negative exit values are listed in the table below:

10.9.1 Job Exit Status Between 0 and 128 (or 256)

This is the exit value of the top process in the job, typically the shell. This may be the exit value of the last command
executed in the shell or the .logout script if the user has such a script (csh).

10.9.2 Job Exit Status >= 128 (or 256)

This means the job was killed with a signal. The signal is given by X modulo 128 (or 256). For example an exit value of
137 means the job's top process was killed with signal 9 (137 % 128 = 9).

Table 10-6: Job Exit Codes

Exit
Code

Name Description

 0 JOB_EXEC_OK Job execution was successful

-1 JOB_EXEC_FAIL1 Job execution failed, before files, no retry

-2 JOB_EXEC_FAIL2 Job execution failed, after files, no retry

-3 JOB_EXEC_RETRY Job execution failed, do retry

-4 JOB_EXEC_INITABT Job aborted on MoM initialization

-5 JOB_EXEC_INITRST Job aborted on MoM initialization, checkpoint, no migrate

-6 JOB_EXEC_INITRMG Job aborted on MoM initialization, checkpoint, ok migrate

-7 JOB_EXEC_BADRESRT Job restart failed

-10 JOB_EXEC_FAILUID Invalid UID/GID for job

-11 JOB_EXEC_RERUN Job was rerun

-12 JOB_EXEC_CHKP Job was checkpointed and killed

-13 JOB_EXEC_FAIL_PASSWORD Job failed due to a bad password

-14 JOB_EXEC_RERUN_

ON_SIS_FAIL

Job was requeued (if rerunnable) or deleted (if not) due to a
communication failure between the primary execution host
MoM and a Sister

-15 JOB_EXEC_QUERST Requeue job for restart from checkpoint

-16 JOB_EXEC_FAILHOOK_RERUN Job execution failed due to hook rejection; requeue for later
retry

-17 JOB_EXEC_FAILHOOK_DELETE Job execution failed due to hook rejection; delete the job at end

-18 JOB_EXEC_HOOK_RERUN A hook requested for job to be requeued

-19 JOB_EXEC_HOOK_DELETE A hook requested for job to be deleted

-20 JOB_EXEC_RERUN_MS_FAIL Job requeued because server couldn't contact the primary execu-
tion host MoM
AG-470 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
The exit status values greater than 128 (or 256) indicate which signal killed the job. Depending on the system, values
greater than 128 (or on some systems 256; see wait(2) or waitpid(2) for more information), are the value of the
signal that killed the job.

To interpret (or "decode") the signal contained in the exit status value, subtract the base value from the exit status. For
example, if a job had an exit status of 143, that indicates the job was killed via a SIGTERM (e.g. 143 - 128 = 15, signal
15 is SIGTERM). See the kill(1) manual page for a mapping of signal numbers to signal name on your operating sys-
tem.

10.9.3 Logging Job Exit Status

The exit status of jobs is recorded in the PBS server logs and the accounting logs.

10.9.4 Exit Status of Interactive Jobs

The exit status of an interactive job is always recorded as 0 (zero), regardless of the actual exit status.

10.10 Rerunning or Requeueing a Job

You can re-run a job using the qrerun command. To re-run a job means to kill it, and requeue it in the execution queue
from which it was run. See “qrerun” on page 181 of the PBS Professional Reference Guide.

10.10.1 Requeueing a Job on a Dead Node

Before you requeue a job on a node you know to be dead, use qmgr to mark the node as Down. When the node is
marked Down, qrerun the job.

10.10.2 Output from a Re-run Job

When you re-run a job, the job's existing standard output and error files are copied back to the server host and stored in
PBS_HOME/spool. They are then sent with the job to MoM when the job is again run. The output of a job that is
re-run is appended to the output from prior runs of the same job.

10.10.3 Requeueing Caveats

• When requeueing a job fails, for example because the queue does not exist, the job is deleted.

• If a job's run_count attribute is already at the limit (20), and you requeue the job, the job will be held the next time
the scheduler tries to run it.

10.10.4 Caveats for Jobs Started by PBS

PBS attempts to run a job a certain number of times before placing a hold on the job. You cannot prevent a job from
being held after this number of attempts. You must explicitly release the hold.
PBS Professional 2022.1 Administrator’s Guide AG-471

Chapter 10 Managing Jobs
10.11 Job IDs

10.11.1 Format of Job IDs

Job Identifier
<sequence number>[.<server name>][@<server>]

Job Array Identifier
Job array identifiers are a sequence number followed by square brackets:

<sequence number>[][.<server name>][@<server>]
Example:

1234[]
Note that some shells require that you enclose a job array ID in double quotes.

10.11.2 Range of IDs

The largest allowed value for a job ID or job array ID is set in the max_job_sequence_id server attribute. Minimum
allowed is 9999999. Maximum allowed is 999999999999. After this has been reached, job IDs start again at zero.

10.11.3 Job IDs and Moving Jobs

If a job is qmoved from one server to another, the job's ID does not change.

10.11.4 Job IDs and Requeueing and Checkpoint/Restart

If a job is requeued without being checkpointed, or checkpointed and requeued, it keeps its original job ID.

10.12 Where to Find Job Information

Information about jobs is found in PBS_HOME/server_priv/jobs and PBS_HOME/mom_priv/jobs.

10.12.1 Deleted Jobs

If PBS tries to requeue a job and cannot, for example when the queue doesn't exist, the job is deleted.

10.12.2 Failed Jobs

Once a job has experienced a certain number of failures, PBS holds the job.

10.12.3 Job Information When Server is Down

When the PBS server is down, you can use the pbs_dataservice command to start the PBS data service by hand,
and then run the printjob command at the server host. See “pbs_dataservice” on page 61 of the PBS Professional
Reference Guide and “printjob” on page 128 of the PBS Professional Reference Guide.
AG-472 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.12.4 Job Information on Execution Host

You can use the printjob command to look at job information on the execution host. See “printjob” on page 128 of
the PBS Professional Reference Guide.

10.13 Job Directories

PBS jobs use two kinds of directories:

• The job's job's staging and execution directory, into which input files are staged, and from which output files are
staged. It is also the current working directory for the job script, for tasks started via the pbs_tm() API, and for
the epilogue.

• The job's temporary directory, where the job can create scratch files if necessary. The root of this directory is speci-
fied in the $tmpdir MoM configuration parameter. PBS creates the temporary directory, then sets the TMPDIR job
environment variable to the path of the temporary directory. The job can then use this environment variable.

10.13.1 Staging and Execution Directories for Job

A job's staging and execution directory is the directory to which input files are staged, and from which output files are
staged. It is also the current working directory for the job script, for tasks started via the pbs_tm() API, and for the
epilogue.

For multi-host jobs, PBS stages files to and from the primary execution host only. The job submitter specifies files and
directories to be staged via the job's stagein and stageout attributes, which have this format:

execution_path@storage_host:storage_path

The execution_path is the path to the staging and execution directory. On stagein, storage_path is the path where the
input files normally reside, and on stageout, storage_path is the path where output files will end up.

Make sure that each execution host can provide an area for staging and execution directories for jobs.

10.13.1.1 Using Job-specific Staging and Execution Directories

Each PBS user may submit several jobs at once, and each job may need to have data files staged in or out. To prevent
collisions, PBS can create a job-specific staging and execution directory for each job.

If all users on a host have home directories, PBS can create the staging and execution directories for each job in the job
submitters' home directories. If users do not have home directories, you can designate a directory for the task by setting
the $jobdir_root MoM parameter to that location.

Whether or not PBS creates job-specific staging and execution directories for a job is controlled by the job's sandbox
attribute:

• If the job's sandbox attribute is set to PRIVATE, PBS creates a staging and execution directory for each job, in the
location specified by the $jobdir_root MoM parameter. If the $jobdir_root parameter is unset, PBS creates job-spe-
cific staging and execution directories in the job submitter's home directory.

• If the job's sandbox attribute is set to HOME or is unset, PBS does not create job-specific staging and execution
directories. Instead PBS uses the job submitter's home directory.

Using the server's default_qsub_arguments attribute, you can specify the default for the sandbox attribute for all jobs.
By default, the sandbox attribute is not set.

The submitter can set the sandbox attribute via qsub, for example:

qsub -Wsandbox=PRIVATE
PBS Professional 2022.1 Administrator’s Guide AG-473

Chapter 10 Managing Jobs
The -Wsandbox option to qsub overrides default_qsub_arguments. The job's sandbox attribute cannot be altered
while the job is executing.

10.13.1.2 Using Shared Directories for Staging and Execution

Using a shared directory for job staging and execution is a little more complicated when nodes are released early from a
job. Normally each MoM on a sister node that is being released cleans up its own files upon release. However, if the
directory is shared, you need to prevent those sister MoM(s) from prematurely cleaning up job files before the job has
finished. This is an issue whether or not the directory is the user home directory. You take care of this by specifying
whether the directory is shared via the $jobdir_root MoM parameter:

• When staging and execution directories are to be created in a shared (e.g. NFS) directory specified in $jobdir_root,
set the shared directive after the directory name:

$jobdir_root <directory name> shared
• If job submitter home directories are shared, tell MoM:

$jobdir_root PBS_USER_HOME shared

10.13.1.3 Examples of Setting Location for Creation of Staging and

Execution Directories

To tell PBS to create job staging and execution directories created under /r/shared, so that each job gets
/r/shared/<job-specific directory>, put the following line in MoM's configuration file:

$jobdir_root /r/shared

To tell PBS to use /scratch when it is a shared directory:

$jobdir_root /r/shared shared

To tell PBS to use shared submitter home directories:

$jobdir_root PBS_USER_HOME shared

To tell PBS to use non-shared submitter home directories, leave the $jobdir_root parameter blank.

10.13.1.4 Options, Attributes and Environment Variables Affecting

Staging

PBS sets the environment variable PBS_JOBDIR to the pathname of the staging and execution directory on the primary
execution host. PBS_JOBDIR is added to the job script process, any job tasks created by the pbs_tm() API, the pro-
logue and epilogue, and the MoM $action scripts.

The job's jobdir attribute is read-only, and is also set to the pathname of the staging and execution directory on the pri-
mary execution host. You can view the jobdir attribute via the -f option to qstat.
AG-474 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
The following table lists the options, attributes, etc., affecting staging:

Table 10-7: Options, Attributes, Environment Variables, etc., Affecting Staging

Option, Attribute,
Environment Variable,

etc.
Effect

MoM's $jobdir_root parameter Directory under which PBS creates job-specific staging and execution directories.
Defaults to user's home directory if unset. If $jobdir_root is unset, the user's home
directory must exist. If $jobdir_root is set but does not exist when MoM starts,
MoM will abort. If $jobdir_root is set but does not exist when MoM tries to run a
job, MoM will kill the job. Permissions on the directory specified in this option
must be 1777.

When you set $jobdir_root to a shared (e.g. NFS) directory, tell MoM it is shared
by setting the shared directive after the directory name:

$jobdir_root <directory name> shared
If the user home directories are shared, tell MoM they are shared:

$jobdir_root PBS_USER_HOME shared
Otherwise sister MoMs can prematurely delete files and directories when nodes are
released. This is because when sister nodes are released, those sister MoMs would
normally clean up their own files upon release, but this could cause problems in a
shared directory. So if $jobdir_root or submitter home directories are shared, you
need to tell the sister MoMs not to do the cleanup, and let the primary execution
host MoM clean up when the job is finished.

Example of using a shared non-submitter-home directory:

$jobdir_root /r/shared shared

Example of using shared submitter home directories:

$jobdir_root PBS_USER_HOME shared

Example of a non-shared directory:

$jobdir_root /scratch/foo

MoM's $usecp parameter Tells MoM where to look for files in a shared file system; also tells MoM that she
can use the local copy agent for these files.

Job's sandbox attribute Determines whether PBS creates staging and execution directories for this job. If
value is PRIVATE, PBS creates directories under the location specified in the
MoM $jobdir_root configuration option or in the submitter's home directory. If
value is HOME or is unset, PBS uses the user's home directory for staging and
execution. User-settable per-job via qsub -W or through a PBS directive.

Job's stagein attribute Sets list of files or directories to be staged in. User-settable per job via qsub -W.
Format:

execution_path@storage_host:storage_path

The execution_path is the path to the staging and execution directory. On stagein,
storage_path is the path where the input files normally reside.
PBS Professional 2022.1 Administrator’s Guide AG-475

Chapter 10 Managing Jobs
10.13.1.5 Getting Information About the Job Staging and Execution

Directory

You can check the value of the job's jobdir attribute via qstat or the equivalent API while a job is executing. The value
of jobdir is not retained if a job is rerun; it is undefined whether jobdir is visible or not when the job is not executing.

Job's stageout attribute Sets list of files or directories to be staged out. User-settable per job via qsub -W.
Format:

execution_path@storage_host:storage_path

The execution_path is the path to the staging and execution directory. On stageout,
storage_path is the path where output files will end up.

Job's jobdir attribute Set to pathname of staging and execution directory on primary execution host.
Read-only; viewable via

qstat -f.

Job's Keep_Files attribute Determines whether output and/or error files remain on execution host. User-setta-
ble per job via qsub -k or through a PBS directive. If the Keep_Files attribute
is set to o and/or e (output and/or error files remain in the staging and execution
directory) and the job's sandbox attribute is set to PRIVATE, standard out and/or
error files are removed when the staging and execution directory is removed at job
end along with its contents. If direct write for files is specified via the -d suboption
to the -k argument, files are not removed. See "Keeping Output and Error Files on
Execution Host", on page 46 of the PBS Professional User’s Guide.

Remove_Files attribute Specifies whether standard output and/or standard error files are automatically
removed (deleted) upon job completion.

Job's PBS_JOBDIR environment
variable

Set to pathname of staging and execution directory on primary execution host.
Added to environments of job script process, pbs_tm job tasks, prologue and epi-
logue, and MoM $action scripts.

Job's TMPDIR environment vari-
able

Location of job-specific scratch directory.

PBS_RCP string in pbs.conf Location of rcp command

PBS_SCP string in pbs.conf Location of scp command; setting this parameter causes PBS to first try scp
rather than rcp for file transport.

Server's
default_qsub_arguments
attribute

Can contain a default for job's sandbox (and other) attributes.

Table 10-7: Options, Attributes, Environment Variables, etc., Affecting Staging

Option, Attribute,
Environment Variable,

etc.
Effect
AG-476 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.13.1.6 Staging and Execution Directory Caveats

• If the user home directory is NFS mounted, and you want to use sandbox=PRIVATE, then root must be allowed
write privilege on the NFS filesystem on which the users' home directories reside.

• You should not depend on any particular naming scheme for the new directories that PBS creates for staging and
execution. The pathname to each directory on each node may be different, since each depends on the corresponding
MoM's $jobdir_root or user home directory.

• The directory specified in MoM's $jobdir_root parameter must have permissions set to 1777.

• Beware shared staging directories:

When you set $jobdir_root to a shared (e.g. NFS) directory, tell MoM it is shared by setting the shared directive
after the directory name:

$jobdir_root <directory name> shared

If the user home directory is shared, tell MoM it is shared:

$jobdir_root PBS_USER_HOME shared

Otherwise sister MoMs can prematurely delete files and directories when nodes are released. This is because when
sister nodes are released, those sister MoMs would normally clean up their own files upon release, but this could
cause problems in a shared directory. So if $jobdir_root or submitter home directories are shared, you need to tell
the sister MoMs not to do the cleanup, and let the primary execution host MoM clean up when the job is finished.

10.14 The Job Lifecycle

10.14.1 Sequence of Events for Start of Job

This is the order in which events take place on an execution host at the start of a job:

1. Application licenses are checked out

2. Any job-specific staging and execution directories are created:

• PBS_JOBDIR and job's jobdir attribute are set to pathname of staging and execution directory

• Files are staged in

PBS evaluates execution_path and storage_path relative to the staging and execution directory given
in PBS_JOBDIR. PBS stages files to the primary execution host only. Staging is done as the job owner.

PBS uses local file transfer mechanisms where possible. For remote file transfers, PBS uses the mechanism you
specify. See section 9.7, “Setting File Transfer Mechanism”, on page 441.

3. Temporary scratch directories (TMPDIRs) are created

For each host allocated to the job, PBS creates a job-specific temporary scratch directory for this job. The root of
TMPDIR is set by MoM to the value of MoM's $tmpdir configuration parameter. PBS sets TMPDIR to the path-
name of the job-specific temporary scratch directory. This directory is for the use of the job, not PBS. This directory
and its contents are removed when the job is finished.

The recommended TMPDIR configuration is to have a separate, local directory on each host. If the temporary
scratch directory cannot be created, the job is killed.

4. The job's cpusets are created

5. The prologue is executed
PBS Professional 2022.1 Administrator’s Guide AG-477

Chapter 10 Managing Jobs
The MoM's prologue is run on the primary host as root, with the current working directory set to
PBS_HOME/mom_priv and with PBS_JOBDIR set in its environment.

6. The job script is executed

PBS runs the job script on the primary host as the user. PBS also runs any tasks created by the job via the
pbs_tm() API as the user. The job script and tasks are executed with their current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in their environment. The job
attribute jobdir is set to the pathname of the staging and execution directory on the primary host.

10.14.2 Sequence of Events for End of Job

This is the order in which events generally take place at the end of a job:

7. The job script finishes

8. The epilogue is run

PBS runs MoM's epilogue script on the primary host as root. The epilogue is executed with its current working
directory set to the job's staging and execution directory, and with PBS_JOBDIR set in its environment.

9. The obit is sent to the server

10. Any specified file staging out takes place, including stdout and stderr

When PBS stages files out, it evaluates execution_path and storage_path relative to PBS_JOBDIR. Files
that cannot be staged out are saved in PBS_HOME/undelivered. PBS stages files out from the primary execution
host only. Staging is done as the job owner.

PBS uses local file transfer mechanisms where possible. For remote file transfers, PBS uses the mechanism you
specify. See section 9.7, “Setting File Transfer Mechanism”, on page 441.

When the job is done, PBS writes the final job accounting record and purges job information from the server's data-
base.

• If PBS created job-specific staging and execution directories for the job, it cleans up at the end of the job. If no
errors are encountered during stageout and all stageouts are successful, the staging and execution directory and
all of its contents are removed, on all execution hosts.

• Files to be staged out are deleted all together, only after successful stageout of all files. If any errors are encoun-
tered during stageout, no files are deleted on the primary execution host, and the execution directory is not
removed.

• If PBS created job-specific staging and execution directories on secondary execution hosts, those directories
and their contents are removed at the end of the job, regardless of stageout errors. If these directories are shared,
only the MoM on the primary execution host does the cleanup. If the directories are not shared, those directo-
ries are cleaned up by the sister MoMs.

• If PBS did not create job-specific staging and execution directories, files that are successfully staged out are
deleted immediately, without regard to files that were not successfully staged out.

11. Files staged in or out are removed
AG-478 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
The job's stdout and stderr files are created directly in the job's staging and execution directory on the primary
execution host. See "Managing Output and Error Files", on page 42 of the PBS Professional User’s Guide.

• If PBS creates job-specific staging and execution directories and the submitter uses qsub -k without the -d
sub-option (direct write to final destination), the stdout and stderr files are not automatically copied out of
the staging and execution directory at job end; they are deleted when the directory is automatically removed.

• If PBS does not create job-specific staging and execution directories and the submitter uses qsub -k, standard
out and/or standard error files are retained in the submitter's home directory on the primary execution host
instead of being returned to the submission host, and are not deleted after job end.

12. PBS removes all temporary scratch directories (TMPDIRs), along with their contents.

13. Any job-specific staging and execution directories are removed

14. Job files are deleted

15. Application licenses are returned to pool

16. The job's cpusets are destroyed

10.15 Managing Job History

10.15.1 Introduction

PBS Professional can provide job history information, including what the submission parameters were, whether the job
started execution, whether execution succeeded, whether staging out of results succeeded, and which resources were
used.

PBS can keep job history for jobs which have finished execution, were deleted, or were moved to another server.

You can configure whether PBS preserves job history, and for how long, by setting values for the job_history_enable
and job_history_duration server attributes.

10.15.2 Definitions

Moved jobs

Jobs which were moved to another server

Finished jobs

Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution

History jobs

Jobs which will no longer execute at this server:

• Moved jobs

• Finished jobs
PBS Professional 2022.1 Administrator’s Guide AG-479

Chapter 10 Managing Jobs
10.15.3 Job History Information Preserved by PBS

PBS can keep all job attribute information, including the following kinds of job history information:

• Submission parameters

• Whether the job started execution

• Whether execution succeeded

• Whether staging out of results succeeded

• Which resources were used

PBS keeps job history for the following jobs:

• Jobs that are running at another server

• Jobs that have finished execution

• Jobs that were deleted

• Jobs that were moved to another server

10.15.4 Period When PBS Preserves Job History

PBS preserves history for the specified history duration beginning from the time a job finishes or is deleted.

After the duration has expired, PBS deletes the job history information and it is no longer available.

10.15.5 Configuring Job History Management

To configure job history, you enable it and you set the job history duration. You configure PBS to manage job history
using the following server attributes:

job_history_enable
Enables or disables job history management. Setting this attribute to True enables job history management.

Format: Boolean.

Default: False

job_history_duration
Specifies the length of time that PBS will keep each job's history.

Format: duration: [[hours:]minutes:]seconds[.milliseconds]

Default: Two weeks (336:00:00)

10.15.5.1 Enabling Job History

To enable job history management, set the server's job_history_enable attribute to True:

Qmgr: set server job_history_enable=True

10.15.5.2 Setting Job History Duration

To set the length of time that job history is preserved, set the server's job_history_duration attribute to the desired dura-
tion:

Qmgr: set server job_history_duration=<duration>

If the job history duration is set to zero, no history is preserved.

If job history is enabled and job history duration is unset, job history information is kept for the default 2 weeks.
AG-480 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.15.6 Changing Job History Settings

10.15.6.1 Disabling Job History

If job history is being preserved, and you unset the job_history_enable server attribute, PBS deletes all job history infor-
mation. This information is no longer available.

10.15.6.2 Enabling Job History

If job history is not being preserved, and you set the job_history_enable server attribute, PBS begins preserving job his-
tory information for any jobs that are queued or running.

10.15.6.3 Modifying Job History Duration

Every job's history duration is set to the current value of the job_history_duration server attribute.

Example 10-5: Reducing job history duration:

The value of job_history_duration was "00:10:00" when a job finished execution. After 2 minutes, you change the
duration to "00:06:00". This job's history is kept for a total of 6 minutes.

Example 10-6: Increasing job history duration:

The value of job_history_duration was "00:10:00" when a job finished execution. After 8 minutes you change the
duration to "00:30:00". This job's history is kept for a total of 30 minutes.

Example 10-7: Increasing job history duration:

The value of job_history_duration was "00:10:00" when a job finished execution. After 11 minutes you change the
duration to "00:30:00". This job's history is kept for a total of 10 minutes. The job's history is deleted after it is kept
for 10 minutes.

10.15.7 Backward Compatibility

To have PBS behave as it did before the job history management feature was introduced, disable job history manage-
ment. Do one of the following:

• Set the server's job_history_enable attribute to False:
Qmgr: set server job_history_enable=False

• Unset the server's job_history_enable attribute:
Qmgr: unset server job_history_enable

• Set the value of the server's job_history_duration attribute to zero, by doing one of the following:
Qmgr: set server job_history_duration=0
Qmgr: set server job_history_duration=00:00
Qmgr: set server job_history_duration=00:00:00

10.15.8 Logging Moved Jobs

Jobs can be moved to another server for one of the following reasons:

• Moved for peer scheduling

• Moved via the qmove command

• Job was submitted to a routing queue, then routed to a destination queue at another server
PBS Professional 2022.1 Administrator’s Guide AG-481

Chapter 10 Managing Jobs
When a job is moved, the server logs the event in the server log and the accounting log. The server log messages are
logged at log level 0x0008.

Format for the server log file:

7/08/2008 16:17:38;0008;Server@serverhost1;Job; 97.serverhost1.domain.com;Job moved to
destination: workq@serverhost2

Format for the accounting log entry:

7/08/2008 16:17:38;M;97.serverhost1.domain.com;destination=workq@serverhost2

Record type: M (moved job)

10.15.9 Deleting Moved Jobs and Job Histories

You can use the qdel -x option to delete job histories. This option also deletes any specified jobs that are queued, run-
ning, held, suspended, finished, or moved. When you use this, you are deleting the job and its history in one step. If you
use the qdel command without the -x option, you delete the job, but not the job history, and you cannot delete a moved
or finished job. See “qdel” on page 143 of the PBS Professional Reference Guide.

10.15.10 Job History Caveats

• Enabling job history requires additional memory for the server. When the server is keeping job history, it needs
8kb-12kb of memory per job, instead of the 5kb it needs without job history. Make sure you have enough memory:
multiply the number of jobs being tracked by this much memory. For example, if you are starting 100 jobs per day,
and tracking history for two weeks, you're tracking 1400 jobs at a time. On average, this will require 14.3M of
memory.

• If the server is shut down abruptly, there is no loss of job information. However, the server will require longer to
start up when keeping job history, because it must read in more information.

10.16 Environment Variables

The settings in $PBS_HOME/pbs_environment are available to user job scripts. You must HUP the MoM if you
change the file. This file is useful for setting environment variables for mpirun etc. For a list of environment variables
used by PBS, see “PBS Environment Variables” on page 397 of the PBS Professional Reference Guide.

10.17 Adjusting Job Running Time

10.17.1 Shrink-to-fit Jobs

PBS allows you or the job submitter to adjust the running time of a job to fit into an available scheduling slot. The job's
minimum and maximum running time are specified in the min_walltime and max_walltime resources. PBS chooses the
actual walltime. Any job that requests min_walltime is a shrink-to-fit job.

For a complete description of using shrink-to-fit jobs, see section 4.9.42, “Using Shrink-to-fit Jobs”, on page 210.
AG-482 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.18 Managing Number of Run Attempts

PBS has a built-in limit of 21 for the number of times the server can try to run a job or subjob. When the job or subjob
goes over this limit, it gets a System hold. The number of tries is recorded in the job or subjob's run_count attribute.
The run_count attribute starts at zero, and the job or subjob is held when run_count goes above 20. When a subjob's
run_count attribute goes above 20, it and its parent job array get a System hold. You can use qrls on the parent array
to release the parent array and indirectly release the subjobs. See “qrls” on page 183 of the PBS Professional Reference
Guide.

Job submitters can set a non-negative value for run_count on job submission, and can use qalter to raise the value of
run_count. A PBS Manager or Operator can use qalter to raise or lower the value of run_count.

10.19 Managing Amount of Memory for Job Scripts

By default, starting with version 13.1, PBS limits the size of any single job script to 100MB. You can set a different limit
using the jobscript_max_size server attribute. The format for this attribute is size, and the units default to bytes. You
can specify the units. For example:

Qmgr: set server jobscript_max_size = 10mb

Job script size affects server memory footprint. If a job submitter wants to use a really big script, they can put it in shared
storage and call it from a short script, or they can run a small job script that stages in the big script, then calls it.

10.20 Allowing Interactive Jobs on Windows

1. Make sure that file and printer sharing is enabled. This is off by default.

2. Make sure that the ephemeral port range in your firewall is open on both the submission and execution hosts. Check
your OS documentation for the correct range.

3. Make sure that IPC$ share is enabled. You should be able to run the following command from the submission host:

 net use \\<execution_host>\IPC$

The output should look like this:

> net use \\myhost\IPC$

c:\Users\pbsuser>net use \\myhost\IPC$

Local name

Remote name \\myhost\IPC$

Resource type IPC

Status Disconnected

Opens 0

Connections 1

The command completed successfully.

10.20.1 Configuring PBS for Remote Viewer on Windows

Job submitters can run interactive GUI jobs so that the GUI is connected to the primary execution host for the job. The
job submitter runs a GUI application over a remote viewer. On Windows, PBS supports any remote viewer, such as
Remote Desktop or X.
PBS Professional 2022.1 Administrator’s Guide AG-483

Chapter 10 Managing Jobs
You can specify the remote viewer that PBS will use by setting a pbs.conf parameter on each submission host. See sec-
tion 10.20.2, “Specifying Remote Viewer at Submission Hosts”, on page 484.

On an execution host that will launch a GUI application for an interactive job, MoM must run in a LocalSystem account.
See section 10.20.3, “Configuring MoM to Run in LocalSystem Account on Windows”, on page 484.

A password is usually required when a Remote Desktop client tries to connect to an execution host. However you can
configure Single Sign-on for Remote Desktop using the current login at the client host. See section 10.20.4, “Configur-
ing Single Sign-on for Remote Desktop on Windows”, on page 485.

10.20.2 Specifying Remote Viewer at Submission Hosts

You can specify which remote viewer PBS should use when a job submitter runs a GUI job remotely. On each submis-
sion host, set the PBS_REMOTE_VIEWER parameter in pbs.conf to point to the remote viewer you want, or to a
script that launches the desired remote viewer. If this parameter is unset, PBS uses the native Windows Remote Desktop
client as the remote viewer. The line in pbs.conf should have this form:

PBS_REMOTE_VIEWER = <remote viewer client>

Example 10-8: Using the remote desktop client as the remote viewer:

PBS_REMOTE_VIEWER=mstsc /v

Example 10-9: Using the VNC viewer client as the remote viewer:

PBS_REMOTE_VIEWER=vncviewer.exe

Example 10-10: Launching a remote viewer via a script:

PBS_REMOTE_VIEWER=launch_remote_viewer.bat

10.20.3 Configuring MoM to Run in LocalSystem Account on

Windows

On an execution host that will launch a GUI application for an interactive job, MoM must run in a LocalSystem account.
To run MoM in a LocalSystem account, take the following steps:

1. Log in as administrator

2. Open services.msc

3. Right-click on the pbs_mom service and open "properties"

4. In the "Log on" tab, select "Local System Account"

5. Check "Allow service to interact with desktop"

6. Click OK
AG-484 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.20.4 Configuring Single Sign-on for Remote Desktop on

Windows

10.20.4.1 Configuring Submission Hosts for Single Sign-on

You can configure single sign-on using domain or local group policy. Follow these steps:

1. Log on to your local machine as an administrator

2. Start the Group Policy Editor:

gpedit.msc

3. Navigate to "Computer Configuration\Administrative Templates\System\Credentials Delegation"

4. Double-click the "Allow Delegating Default Credentials" policy

5. Enable the policy

6. Click on the "Show" button to get to the list of servers

7. Add "TERMSRV/<server name>" to the server list.

8. You can add any number of server names to the list. A server name can be a hostname or an IP address. You can use
one wildcard (*) per name. To store credentials for everything, use just a wildcard.

9. Confirm your changes by clicking on the "OK" button until you get back to the main Group Policy Object Editor
dialog.

10. Repeat steps 3 through 7 for the following policies:

a. "Allow Delegating Default Credentials with NTLM-only Server Authentication"

b. "Allow Delegating Saved Credentials with NTLM-only Server Authentication"

c. "Allow Delegating Saved Credentials"

11. In the Group Policy editor, navigate to Computer Configuration -> Administrative Templates -> Windows
Components -> Remote Desktop Services -> Remote Desktop Connection Client

12. For the entry labeled "Do not allow passwords to be saved", change to Disabled

13. Force the policy to be refreshed immediately on the local machine. Run the following at a command prompt:

gpupdate /force

10.20.4.2 Configuring Execution Hosts for Single Sign-on

The PBS execution host is the Remote Desktop server.

If the execution host is a Windows server, for example Windows Server 2008 R2, follow these steps:

1. Start Server Manager

2. Expand Roles->Remote Desktop Services and select RD Session Host Configuration

3. In the right pane in Connections, right-click RDP-TCP Connection Name and choose Properties

4. On the Log on Settings tab make sure "Always prompt for password" is unchecked

5. On the General tab choose the Security layer: Negotiate or SSL (TLS 1.0)

6. Click OK
PBS Professional 2022.1 Administrator’s Guide AG-485

Chapter 10 Managing Jobs
If the execution host is not a Windows server, follow these steps:

1. Open the Group Policy Editor:
gpedit.msc

2. Navigate to Computer Configuration->Administrative Templates->Windows Components->Remote Desk-
top Services->Remote Desktop Session Host->Security

3. Set "Always prompt for password upon connection" to "Disabled"

10.21 Releasing Unneeded Vnodes from Jobs

If you want to prevent unnecessary resource usage, you can release unneeded hosts or vnodes from jobs. You can use the
pbs_release_nodes command or the release_nodes_on_stageout job attribute:

• You can use the pbs_release_nodes command at the command line, or submitters can use it or in their job
scripts to release vnodes when the command is issued. You can use this command to release specific vnodes that are
not on the primary execution host, or all vnodes that are not on the primary execution host. You can also use it to
release all hosts or vnodes except for what you specify, which can be either a count of hosts to keep, or a select spec-
ification describing the vnodes to keep. You cannot use the command to release vnodes on the primary execution
host. See “pbs_release_nodes” on page 92 of the PBS Professional Reference Guide.

• You can set the job's release_nodes_on_stageout attribute to True so that PBS releases all of the job's vnodes
that are not on the primary execution host when stageout begins. You must set the job's stageout attribute as well.
See “Job Attributes” on page 327 of the PBS Professional Reference Guide.

• You can use the default_qsub_arguments server attribute to specify that all jobs are submitted with
release_nodes_on_stageout set by default.

For details, see "Releasing Unneeded Vnodes from Your Job", on page 129 of the PBS Professional User’s Guide.

10.21.1 Caveats and Restrictions for Releasing Vnodes

• The job must specify a stageout parameter in order to release vnodes on stageout. If the job does not specify stage-
out, release_nodes_on_stageout has no effect.

• You can release only vnodes that are not on the primary execution host. You cannot release vnodes on the primary
execution host.

• The job must be running (in the R state).

• If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed
by a MoM, resources on those vnodes are released.

• If a vnode on a multi-vnode host is assigned exclusively to a job, and the vnode is released, the job will show that the
vnode is released, but the vnode will still show as assigned to the job in pbsnodes -av until the other vnodes on
that host have been released. If a vnode on a multi-vnode machine is not assigned exclusively to a job, and the
vnode is released, it shows as released whether or not the other vnodes on that host are released.

• If you specify release of a vnode on which a job process is running, that process is terminated when the vnode is
released.

10.22 Tolerating Vnode Faults

PBS lets you allocate extra vnodes to a job so that the job can successfully start and run even if some vnodes fail. See
section 8.5, “Vnode Fault Tolerance for Job Start and Run”, on page 403.
AG-486 PBS Professional 2022.1 Administrator’s Guide

Managing Jobs Chapter 10
10.23 Managing Job Array Behavior

You can set a limit on the number of simultaneously running subjobs from any one array job by setting the job's
max_run_subjobs attribute, either via qalter -Wmax_run_subjobs=<new value> <job ID>, or in a
queuejob or modifyjob hook.

You can set a limit on the size of job arrays, either at the server, via the server max_array_size attribute, or at each
queue, via the server max_array_size attribute.

Note that the qrun command overrides the limit on the number of simultaneously running subjobs for an array job set in
the max_run_subjobs job attribute.

10.24 Recommendations

We recommend that as much as possible, you avoid huge numbers of jobs and subjobs. We recommend consolidating
jobs where possible.
PBS Professional 2022.1 Administrator’s Guide AG-487

Chapter 10 Managing Jobs
AG-488 PBS Professional 2022.1 Administrator’s Guide

11

Security

This chapter describes the security features of PBS. These instructions are for the PBS administrator and Manager.

11.1 Configurable Features

This section gives an overview of the configurable security mechanisms provided by PBS, and gives links to information
on how to configure each mechanism.

The following table lists configurable PBS security mechanisms and their configuration procedures.

11.2 User Roles and Required Privilege

11.2.1 Root Privilege

Root privilege is required to perform some operations in PBS involving writing to the server's private, protected data.
Root privilege is required in order to do the following:

• Create hooks

• Alter MoM and scheduler configuration files

• Set scheduler priority formula

• Run certain commands, including the following:

• pbs_probe

• pbs_mom

• pbs_sched

• pbs_server

• pbsfs

• Use the tracejob command to view accounting log information

Table 11-1: Security Mechanisms and their Configuration Procedures

Security Mechanism Configuration Procedure

Authentication with daemons and users "Authentication for Daemons & Users” on page 508

Encrypting communication "Encrypting PBS Communication” on page 517

Access control for server, queues, reservations "Using Access Control Lists” on page 492

Event logging for server, scheduler, MoMs "Event Logging” on page 428

File copy mechanism "Setting File Transfer Mechanism” on page 441

Levels of privilege (user roles) "User Roles and Required Privilege” on page 489

Restricting access to execution hosts via $restrict_user "Restricting Execution Host Access” on page 521
PBS Professional 2022.1 Administrator’s Guide AG-489

Chapter 11 Security
There are some operations that root privilege alone does not allow. These operations require Manager privilege but not
root privilege. Manager privilege, but not root privilege, is required in order to do the following:

• Set attributes

• Create or delete vnodes using the qmgr command

11.2.2 User Roles

PBS allows certain privileges based on what role a person has, and whether that person has root privilege. PBS recog-
nizes only three roles, and all those using PBS must be assigned one of these roles. These roles are Manager, Operator,
and user. Roles are assigned by PBS Managers only. No roles can be added, and roles cannot be modified; the function
of roles is hardcoded in the server.

In addition to these roles, PBS requires a PBS Administrator to perform some downloading, installation, upgrading, con-
figuration, and management functions. PBS does not recognize PBS Administrator as a PBS role; this term is used in
PBS documentation to mean the person who performs these tasks.

PBS roles and PBS Administrators are described in the following sections:

11.2.2.1 User

11.2.2.1.i Definition of User

Users are those who submit jobs to PBS.

Users have the lowest level of privilege. Users are referred to in the PBS documentation as "users". By default, users
may operate only on their own jobs. They can do the following:

• Submit jobs

• Alter, delete, and hold their own jobs

• Status their own jobs, and those of others if permission has been given via the query_other_jobs server attribute.
The query_other_jobs server attribute controls whether unprivileged users are allowed to select or query the status
of jobs owned by other users.

• List and print some but not all server, queue, vnode, scheduler, and reservation attributes

11.2.2.1.ii Defining List of Users

PBS allows you to define a list of users allowed or denied access to the PBS server, however this is done using the PBS
access control list mechanism. Access control is described in section 11.3, “Using Access Control Lists”, on page 492.

11.2.2.2 Operator

11.2.2.2.i Definition of Operator

A PBS Operator is a person who has an account that has been granted Operator privilege.

Operators have more privilege than users, and less privilege than Managers.

Operators can manage the non-security-related attributes of PBS such as setting and unsetting non-security attributes of
vnodes, queues, and the server. Operators can also set queue ACLs.
AG-490 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
Operators can do the following:

• All operations that users can perform

• Set non-security-related server, queue, and vnode attributes (Operators are not permitted to set server ACLs)

• Alter some job attributes

• Set or alter most resources on the server, queues, and vnodes

• Rerun, requeue, delete, and hold all jobs

• Run any command to act on a job

11.2.2.2.ii Defining List of Operators

To define the list of Operators at a PBS complex, set the server's operators attribute to a list of usernames, where each
username should be an Operator. See “Server Attributes” on page 281 of the PBS Professional Reference Guide.

It is important to grant Operator privilege to appropriate persons only, since Operators can control how user jobs run.

11.2.2.3 Manager

11.2.2.3.i Definition of Manager

A Manager is a person who has an account that has been granted PBS Manager privilege.

Managers have more privilege than Operators. Managers can manage the security aspects of PBS such as server ACLs
and assignment of User Roles.

Managers can do the following:

• All operations that Operators can perform

• Create or delete queues or vnodes

• Set all server, queue, and vnode attributes, including server ACLs

11.2.2.3.ii Defining List of Managers

To define the list of Managers at a PBS complex, set the server's managers attribute to a list of usernames, where each
username should be a Manager. See “Server Attributes” on page 281 of the PBS Professional Reference Guide.

If the server's managers attribute is not set or is unset, root on the server host is given Manager privilege.

It is important to grant Manager privilege to appropriate persons only, since Managers control much of PBS.

11.2.2.4 PBS Administrator

11.2.2.4.i Definition of PBS Administrator

Linux: person with Manager privilege and root access.

Windows: person with Manager privilege who is a member of the local Administrators group.

A person who administers PBS, performing functions such as downloading, installing, upgrading, configuring, or man-
aging PBS. PBS Administrators perform all the functions requiring root privilege, as described in section 11.2.1, “Root
Privilege”, on page 489.

PBS Administrator is distinguished from "site administrator", although often these are the same person.
PBS Professional 2022.1 Administrator’s Guide AG-491

Chapter 11 Security
11.3 Using Access Control Lists

11.3.1 Access Definitions

In this section we describe the meaning of access for each entity and object where the access of the entity to the object
has an access control mechanism.

11.3.1.1 Access to a PBS Object

Below are the definitions of what access to each of the following PBS objects means:

Access to the server

Being able to run PBS commands to submit jobs and perform operations on them such as altering, selecting, and
querying status. It also means being able to get the status of the server and queues.

Access to a queue

Being able to submit jobs to the queue, move jobs into the queue, being able to perform operations on jobs in the
queue, and being able to get the status of the queue.

Access to a reservation

Being able to place jobs in the reservation, whether by submitting jobs to the reservation or moving jobs into the
reservation. It also means being able to delete the reservation, and being able to operate on the jobs in the reser-
vation.

11.3.1.2 Access by a PBS Entity

Access can be granted at the server, queues, and reservations for each of the following entities:

User access

The specified user is allowed access.

Group access

A user in the specified group is allowed access

Host access

A user is allowed access from the specified host

11.3.2 Requirement for Access

In order to have access to a PBS object such as the server or a queue, a user must pass all enabled access control tests: the
user must be allowed access, the user's group must be allowed access, and the host where the user is working must be
allowed access.

In some cases, Manager or Operator privilege overrides access controls. For some kinds of access, there are no controls.
See section 11.3.10, “Operations Controlled by ACLs”, on page 504.

11.3.3 Managing Access via Lists

PBS uses access control lists (ACLs) to manage access to the server, queues, and reservations. There is a separate set of
ACLs for the server, each queue, and each reservation. The server enforces the access control policy for User Roles sup-
ported by PBS. The policy is hardcoded within the server. ACLs can specify which entities are allowed access and which
entities are denied access.
AG-492 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
Each server and queue ACL can be individually enabled or disabled by a Manager. If an ACL is enabled, access is
allowed or denied based on the contents of the ACL. If the ACL is disabled, access is allowed to all. The contents of each
server or queue ACL can be set or altered by a Manager.

Reservation ACLs are enabled only by the reservation creator or the PBS Administrator. The server's resv_enable
attribute controls whether reservations can be created. When this attribute is set to False, reservations cannot be created.

No default ACLs are shipped.

11.3.4 ACLs

An ACL, or Access Control List, is a list of zero or more entities (users, groups, or hosts from which users or groups may
be attempting to gain access) allowed or denied access to parts of PBS such as the server, queues, or reservations. A
server ACL applies to access to the server, and therefore all of PBS. A queue's ACL applies only to that particular queue.
A reservation's ACL applies only to that particular reservation. The server, each queue, and each reservation has its own
set of ACLs.

11.3.4.1 Format of ACLs

Entity access is controlled according to the list of entities allowed or denied access as specified in the object's
acl_<entity> attribute. The object's access control attribute contains a list of entity names, where each entity name is
marked with a plus sign ("+") if the entity is allowed access, and with a minus sign ("-") if the entity is denied access. For
example, to allow User1@host1.example.com, and deny User2@host1.example.com:

+User1@host1.example.com, -User2@host1.example.com

11.3.4.2 Default ACL Behavior

If an entity name is included without either a plus or a minus sign, it is treated as if it has a plus sign, and allowed access.

If an entity name is not in the list, the default behavior is to deny access to the entity. Therefore, if the list is empty but
enabled because the object's acl_<entity>_enable attribute is set to True (see section 11.3.5, “Enabling Access Control”,
on page 495), all entities are denied access.

11.3.4.3 Modifying ACL Behavior

You can specify how an ACL treats an unmatched entity by including special flags in the ACL itself. These are the plus
and minus signs.

To allow access for all unmatched entities (the reverse of the default behavior), put a plus sign ("+") anywhere by itself in
the list. For example:

+User1@host1.example.com, +, -User2@host1.example.com

To deny access for all unmatched entities (the default behavior), put a minus sign ("-") anywhere by itself in the list. For
example:

+User1@host1.example.com, -, -User2@host1.example.com

If there are entries for both a plus and a minus sign, the last entry in the list (closest to the rightmost side of the list) will
control the behavior of the ACL.
PBS Professional 2022.1 Administrator’s Guide AG-493

Chapter 11 Security
11.3.4.4 Contents of User ACLs

User ACLs contain a username and hostname combination.The subject's username and hostname combination is com-
pared to the entries in the user ACL. Usernames take this form:

User1@host.domain.com

User1@host.subdomain.domain.com

Usernames can be wildcarded. See section 11.3.4.7, “Wildcards In ACLs”, on page 494.

11.3.4.5 Contents of Group ACLs

Group ACLs contain names based on the user's groups, as defined by the operating system where the server is executing.
All of the user's groups are included. The subject's group names on the server are compared to the entries in the Group
ACL. Group names cannot be wildcarded.

11.3.4.6 Contents of Host ACLs

Host ACLs contain fully-qualified hostnames. The subject's host name is compared to the entries in the host ACL. To
find the fully-qualified name of a host, use the pbs_hostn command. See “pbs_hostn” on page 64 of the PBS Profes-
sional Reference Guide.

Hostnames can be wildcarded. See the following section.

11.3.4.7 Wildcards In ACLs

Usernames and hostnames can be wildcarded. The hostname portion of the username is wildcarded exactly the same
way a hostname is wildcarded. The non-hostname portion of a username cannot be wildcarded.

The only character that can be used to wildcard entity names is the asterisk ("*"). Wildcarding must follow these rules:

• The asterisk must be to the right of the at sign ("@")

• There can be at most one asterisk per entity name

• The asterisk must be the leftmost label after the at sign

The following table shows how hostnames are wildcarded:

Table 11-2: How Hostnames Are Wildcarded

Wildcard Use Meaning

*.test.example.com Any host in the test subdomain in example.com

*.example.com Any host in example.com

*.com Any host in .com

* Any host
AG-494 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
The following examples show how wildcarding works in host ACLs:

Example 11-1: To limit host access to host myhost.test.example.com only:

myhost.test.example.com

Example 11-2: To limit host access to any host in the test.example.com subdomain:

*.test.example.com

Example 11-3: To limit host access to any host in example.com:

*.example.com

Example 11-4: To allow host access for all hosts:

*

The following examples show how wildcarding works in user ACLs:

Example 11-5: To limit user access to UserA requesting from host myhost.test.example.com only:

UserA@myhost.test.example.com

Example 11-6: To limit user access to UserA on any host in the test.example.com subdomain:

UserA@*.test.example.com

Example 11-7: To limit user access to UserA on any host in example.com:

UserA@*.example.com

Example 11-8: To limit user access to UserA from anywhere:

UserA@*

or

UserA

Listing a username without specifying the host or domain is the equivalent of listing the username followed by "@*".
This means that

User1

is the same as

User1@*

11.3.4.8 Restrictions on ACL Contents

All access control lists are traversed from left to right, and the first match found is used. It is important to make sure that
entries appear in the correct order.

To single out a few, specify those few first, to the left of the other entries.

Example 11-9: To allow all users in your domain except User1 access, the list should look like this:

-User1@example.com, +*@example.com

Example 11-10: To deny access to all users in your domain except User1, the list should look like this:

+User1@example.com, -*@example.com

11.3.5 Enabling Access Control

Each server and queue ACL is controlled by a Boolean switch whose default value is False, meaning that access control
is turned off. When access control is turned off, all entities have access to the server and to each queue. When access
control is turned on, access is allowed only to those entities specifically granted access.
PBS Professional 2022.1 Administrator’s Guide AG-495

Chapter 11 Security
To use access control, first set the contents of the ACL, then enable it by setting its switch to True.

Reservation ACLs are enabled when the reservation creator sets their contents. Reservation ACLs do not have switches.
Reservations use queues, which are regular queues whose ACL values have been copied from the reservation. These
queues are not intended to be operated on directly. See section 11.3.8, “Reservation Access”, on page 501.

11.3.5.1 Table of ACLs and Switches

The following table lists the ACLs and their switches, with defaults, for the server, queues, and reservations.

11.3.6 Creating and Modifying ACLs

Server and queue ACLs follow the same rules for creation and modification. Reservation queue ACLs behave the same
way regular queue ACLs do. Reservation ACLs can only be created and modified by the reservation creator and the
administrator. See section 11.3.8, “Reservation Access”, on page 501.

Table 11-3: ACLs and Their Switches

User
(Default Value)

Group
(Default Value)

Host
(Default Value)

Server Switch acl_user_enable

(False)

None acl_host_enable

(False)

List acl_users

(all users allowed)

None acl_hosts

(all hosts allowed)

Queue Switch acl_user_enable

(False)

acl_group_enable

(False)

acl_host_enable

(False)

List acl_users

(all users allowed)

acl_groups

(all groups allowed)

acl_hosts

(all hosts allowed)

Reservation Switch None None None

List Authorized_Users

(creator only)

Authorized_Groups

(creator's group only)

Authorized_Hosts

(all hosts allowed)

Reservation
queue

Switch acl_user_enable

(True)

acl_group_enable

(False)

acl_host_enable

(False)

List acl_users

(creator only)

acl_groups

(all groups allowed)

acl_hosts

(all hosts allowed)
AG-496 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
11.3.6.1 Rules for Creating and Modifying Server and Queue ACLs

• Server and queue ACLs are created and modified using the qmgr command.

• An ACL is a list of entries. When you operate on the list, the first match found, searching from left to right, is used.
If there is more than one match for the entity you wish to control, ensure that the first match gives the behavior you
want.

• When you create or add to an ACL, you can use the + or - operators to specify whether or not an entity is allowed
access. Omitting the operator is equivalent to adding a + operator.

• When you re-create an existing ACL, this is equivalent to unsetting the old ACL and creating a new one.

• When you add to an ACL, the new entry is appended to the end of the ACL, on the right-hand side.

• When you remove an entity from an ACL, you cannot use + or - operators to specify which entity to remove, even if
there are multiple entries for an entity and each entry has a different operator preceding it, for example "-bob,
+bob".

• When you remove an entity, only the first match found is removed.

11.3.6.2 Examples of Creating and Modifying Server and Queue ACLs

The following examples show the server's user ACL being set. Queue ACLs work the same way as server ACLs, and the
equivalent qmgr command can be used for queues. So, where we use the following for the server:

Qmgr: set server acl_users ...

the same effect can be achieved at the queue using this:

Qmgr: set queue <queue name> acl_users ...

If the queue name is Q1, the qmgr command looks like this:

Qmgr: set queue Q1 acl_users ...

Example 11-11: To create a server or queue ACL:

Qmgr: set <object> <ACL> = <entity list>

Example:

Qmgr: set server acl_users ="-User1@*.example.com,+User2@*.example.com"

ACL looks like this:

-User1@*.example.com, +User2@*.example.com

Example 11-12: To add to a server or queue ACL:

Qmgr: set <object> <ACL> += <entity list>

Example:

Qmgr: set server acl_users += -User3@*.example.com

ACL looks like this:

-User1@*.example.com, +User2@*.example.com, -User3@example.com

Example 11-13: To remove an entry from an ACL:

Qmgr: set <object> <ACL> -= <entity>

Example:

Qmgr: set server acl_users -= User2@*.example.com
PBS Professional 2022.1 Administrator’s Guide AG-497

Chapter 11 Security
ACL looks like this:

-User1@*.example.com, -User3@*.example.com

Example 11-14: To remove two entries for the same entity from an ACL:

Qmgr: set <object> <ACL> -= <entity1, entity1>

Example: If ACL contains +A, +B, -C, -A, +D, +A

Qmgr: set server acl_users -= "A, A"

ACL looks like this:

+B, -C, +D, +A

Example 11-15: To remove multiple entities from an ACL:

Qmgr: set <object> <ACL> -= <entity list>

Example: If ACL contains +B, -C, +D, +A

Qmgr: set server acl_users -= "B, D"

ACL looks like this:

-C, +A

11.3.6.3 Who Can Create, Modify, Enable, or Disable ACLs

The following table summarizes who can create, modify, enable, or disable ACLs and their associated switches:

Table 11-4: Who Can Create, Modify, Enable, Disable ACLs

ACLs and Switches Manager Operator User

Server ACLs and Switches Create Yes No No

Modify Yes No No

Enable Yes No No

Disable Yes No No

Queue ACLs and Switches Create Yes Yes No

Modify Yes Yes No

Enable Yes Yes No

Disable Yes Yes No

Reservation ACLs Create Only if reservation
creator

Only if reservation
creator

When creating reservation

Modify Yes, if administra-
tor

No Yes

Enable Creator and admin-
istrator

No When creating reservation

Disable No No No
AG-498 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
11.3.6.4 Who Can Operate on Server ACLs

PBS Managers only can create or modify server ACLs and the Boolean switches that enable them.

11.3.6.5 Who Can Operate on Queue ACLs

PBS Managers and Operators, but not users, can create and modify queue ACLs and their Boolean switches.

11.3.6.6 Who Can Operate on Reservation ACLs

When creating a reservation, the reservation creator cannot disable the user ACL, but can choose to enable or disable the
group and host ACLs implicitly via the command line, and can specify the contents of all three ACLs. Reservation ACLs
can be modified via pbs_ralter or disabled.

11.3.6.7 Who Can Operate on Reservation Queue ACLs

Unprivileged users cannot directly create, modify, enable, or disable reservation queue ACLs or the associated switches.
The reservation creator can indirectly create and enable the reservation queue's ACLs during reservation creation. If a
user wants to modify a reservation queue's ACLs, they can do so indirectly by deleting the reservation and creating a new
one with the desired ACLs.

PBS Managers and Operators can modify, enable, or disable a reservation queue's ACLs.

A reservation queue's user ACL is always enabled unless explicitly disabled after creation by a Manager or Operator.

11.3.7 Server and Queue ACLs

Access control for an entity such as a user, group, or host is enabled by setting the attribute enabling that entity's ACL to
True. When this attribute is True, entity access is controlled according to the list of entities allowed or denied access as
specified in the ACL for that entity. The default value for each ACL's switch attribute is False, meaning that entity
access is not controlled.

11.3.7.1 Server ACLs

The server has a host ACL and a user ACL.

Reservation Queue ACLs
and Switches

Create Yes Yes Indirectly when creating reserva-
tion

Modify Yes Yes No

Enable Yes Yes Indirectly when creating reserva-
tion

Disable Yes Yes Group and host ACLs can be indi-
rectly disabled by user during res-
ervation creation.

User ACL cannot be disabled by
user.

Table 11-4: Who Can Create, Modify, Enable, Disable ACLs

ACLs and Switches Manager Operator User
PBS Professional 2022.1 Administrator’s Guide AG-499

Chapter 11 Security
Server access is controlled by these attributes:

• User access: acl_user_enable and acl_users

• Host access: acl_host_enable and acl_hosts

11.3.7.2 Queue ACLs

Each queue has three ACLs: a host ACL, a user ACL, and a group ACL.

Queue access is controlled by these attributes:

• User access: acl_user_enable and acl_users

• Group access (queue only): acl_group_enable and acl_groups

• Host access: acl_host_enable and acl_hosts

11.3.7.3 Access to Server for MoMs

You can specify whether all MoMs should have the same privilege when contacting the server as hosts listed in the
acl_hosts server attribute using the acl_host_moms_enable server attribute. If you set this to True, all MoMs are
allowed privileged access to the server, and you don't need to explicitly add their hosts to the ACL. See “Server
Attributes” on page 281 of the PBS Professional Reference Guide.

11.3.7.4 Examples of Setting Server and Queue Access

To restrict access to the server or queue, first set the contents of the ACL, then enable the ACL by setting its switch to
True.

Example 11-16: To allow server access for all users in your domain except User1, and to allow server access for User2 in
another domain:

Set the server's acl_users attribute:

Qmgr: set server acl_users = "-User1@example.com, +*@example.com,
+User2@otherdomain.com"

Enable user access control by setting the server's acl_user_enable attribute to True:

Qmgr: set server acl_user_enable = True

Example 11-17: To require that users of a queue be in Group1 only:

Set the queue's acl_groups attribute:

Qmgr: set queue Queue1 acl_groups = +Group1

Enable group access control by setting the queue's acl_group_enable attribute to True:

Qmgr: set queue Queue1 acl_group_enable = True

Example 11-18: To allow access to Queue1 from Host1 only:

Set the queue's acl_hosts attribute:

Qmgr: set q Queue1 acl_hosts = +Host1@example.com

Enable host access control by setting the queue's acl_host_enable attribute to True:

Qmgr: set q Queue1 acl_host_enable = True
AG-500 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
11.3.8 Reservation Access

Advance, job-specific, and standing reservations are intended to be created by job submitters, although managers and
operators can create them as well. Maintenance reservations can be created only by managers and operators. The admin-
istrator controls whether reservations can be created via the server's resv_enable attribute. When this attribute is set to
True, reservations can be created.

Reservation ACLs allow or deny access based on group names, usernames, and hostnames. Each reservation has its own
access control attributes that can be used to specify which users and groups have access to the reservation, and the hosts
from which these users and groups are allowed access. The creator of the reservation sets the lists of users, groups and
hosts that have access to the reservation (the reservation ACLs). This is done while creating the reservation, using
options to the pbs_rsub command.

When you create a reservation ACL, it is automatically enabled; you do not have to explicitly enable it. The reservation's
list of authorized users is always enabled during reservation creation. The reservation's lists of authorized groups and
authorized hosts are only enabled if explicitly set by the reservation creator. PBS checks for membership in authorized
lists only when that ACL is enabled. So for example, if you create a reservation and do not specify a list of authorized
groups, no groups are added to the reservation's ACL, but you can submit jobs to the reservation because PBS does not
check for group membership.

While you will see that each reservation has its own queue, do not attempt to manipulate reservation queue attributes
directly. You operate on the reservation attributes, and PBS manages the queue's attributes, making them mirror those of
the reservation. Set or modify reservation attributes using pbs_rsub and pbs_ralter.

11.3.8.1 Meaning of Reservation Access

Access to a reservation via the reservation's ACLs is required for the following actions:

• Submitting a job into the reservation

• Moving a job into the reservation

A job owner can perform the following actions on their own jobs, regardless of ACLs:

• Delete their job

• Hold their job

• Move their job out of the reservation

For example, if an Operator qmoves User1's job into a reservation to which User1 is denied access, User1 can still per-
form operations on the job such as deleting or holding the job, and User1 can qmove the job out of the reservation.

11.3.8.2 Reservation Access Attributes

Reservation access is controlled by the following reservation attributes:

• User access: Authorized_Users

• Default: the reservation creator only is allowed access

• This ACL is always enabled

• Group access: Authorized_Groups

• Default: no groups are allowed access

• This ACL is enabled only when you specify a list of groups

• Host access: Authorized_Hosts

• Default: all hosts are allowed access

• This ACL is enabled only when you specify a list of hosts
PBS Professional 2022.1 Administrator’s Guide AG-501

Chapter 11 Security
11.3.8.3 Setting and Changing Reservation Access

The reservation creator uses options to the pbs_rsub command to set reservation access attributes:

-U <authorized user list>
Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation's
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator's username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]
Default: Job owner only

-G <authorized group list>
Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation's
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: No groups are authorized to submit jobs

-H <authorized host list>
Comma-separated list of hosts from which jobs can and cannot be submitted to this reservation. This list
becomes the acl_hosts list for the reservation's queue. More specific entries should be listed before more gen-
eral, because the list is read left-to-right, and the first match determines access. If the reservation creator speci-
fies this list, the creator's host is not automatically added to the list.

See the Authorized_Hosts reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Format: [+|-]<hostname>[,[+|-]<hostname> ...]

Default: All hosts are authorized to submit jobs

Use the pbs_ralter command to modify existing advance, job-specific, or standing reservations:
AG-502 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
-U <authorized user list>
Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation's
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator's username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]

-G <authorized group list>
Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation's
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: no default

11.3.8.3.i Examples of Setting and Changing Reservation Access

Example 11-19: To disallow access for User1 and allow access for all other users at your domain:

Set reservation's Authorized_Users attribute using the -U option to pbs_rsub:

pbs_rsub ... -U "-User1@example.com, +*@example.com"

Example 11-20: To allow access for Group1 and Group2 only:

Set reservation's Authorized_Groups attribute using the -G option to pbs_rsub:

pbs_rsub ... -G "+Group1, +Group2"

Note that any users in Group1 and Group2 to whom you wish to grant access must be explicitly granted access in the
Authorized_Users list.

Example 11-21: To allow access from Host1 and Host2 only:

Set reservation's Authorized_Hosts attribute using the -H option to pbs_rsub:

pbs_rsub ... -H "+Host1.example.com, +Host2.example.com, -*.example.com"

Example 11-22: To allow User2 and User3 access to the the reservation:

Use pbs_ralter -U to add User2 and User3 to the the reservation's Authorized_Users attribute:

pbs_ralter ... -U "+User2@example.com,+User3@example.com"

Example 11-23: To disallow Group3 access to the the reservation:
PBS Professional 2022.1 Administrator’s Guide AG-503

Chapter 11 Security
Use pbs_ralter -G to remove Group3 from the the reservation's Authorized_Groups attribute:

pbs_ralter ... -G "-Group3@example.com"

11.3.8.4 Reservation Queues

While you will see that each reservation has its own queue, do not attempt to manipulate reservation queue attributes
directly. You operate on the reservation attributes, and PBS manages the queue's attributes, making them mirror those of
the reservation. Set or modify reservation attributes using pbs_rsub and pbs_ralter.

You can move jobs into or out of reservation queues.

11.3.8.4.i Reservation Queue ACLs

If the group or host reservation ACL is specified by the reservation creator, the associated Boolean switch for the reserva-
tion queue ACL is set to True.

Authorized_Users is always set to the creator and copied to the queue's acl_users attribute, and acl_user_enable is
always set to True.

If Authorized_Groups is specified by the creator, it is copied to the queue's acl_groups attribute and acl_group_enable
is set to True. If the reservation creator does not specify a value for Authorized_Groups, nothing is copied to the
queue's acl_groups, and acl_group_enable remains at its default value of False.

If Authorized_Hosts is specified by the creator, it is copied to the queue's acl_hosts attribute and acl_host_enable is
set to True. If the reservation creator does not specify a value for Authorized_Hosts, nothing is copied to the queue's
acl_hosts, and acl_host_enable remains at its default value of False.

The following table shows the relationships between reservation ACLs and reservation queue ACLs:

11.3.9 Scope of Access Control

Queue-level ACLs provide different security functionality from that provided by server-level ACLs. Access to PBS
commands is controlled by server-level ACLs. For example, access to the qstat and qselect operations are con-
trolled only at the server level. For unprivileged users, access to a specific queue is controlled through that queue's
ACLs.

The users allowed access to a queue or reservation are a subset of the users allowed access to the server. Therefore, if
you wish to allow a user access to a queue, that user must also be allowed access to the server. The hosts from which a
user may run commands at a queue are a subset of the hosts from which a user may run commands at the server. See
“Server Attributes” on page 281 of the PBS Professional Reference Guide, “Queue Attributes” on page 311 of the PBS
Professional Reference Guide, and “Reservation Attributes” on page 303 of the PBS Professional Reference Guide.

11.3.10 Operations Controlled by ACLs

ACLs control some operations in PBS, but not others. Manager and Operator privileges override some ACL restrictions.

Table 11-5: Relationship Between Reservation ACLs and Reservation Queue ACLs

Entity Reservation ACL Reservation Queue ACL Reservation Queue ACL Switch

Users Authorized_Users acl_users acl_user_enable

Groups Authorized_Groups acl_groups acl_group_enable

Hosts Authorized_Hosts acl_hosts acl_host_enable
AG-504 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
11.3.10.1 Server Operations Controlled by ACLs

11.3.10.1.i Server Host ACL

If it is enabled, the server host ACL is checked for and controls all server operations, and is honored regardless of privi-
lege. Any request coming from a disallowed host is denied.

11.3.10.1.ii Server User ACL

If it is enabled, the server's user ACL is checked for and controls all server operations, but is overridden by Manager or
Operator privilege. This means that the server's user ACL applies only to users, not to Managers or Operators. Even if
explicitly denied access in the server's user ACL, a PBS Manager or Operator is allowed access to the server. Note that
queue access is controlled separately by queue ACLs; even if Managers or Operators are explicitly denied access in the
server's user ACL, if a queue's ACLs are not enabled, Managers and Operators have access to the queue. The same is true
for reservations.

11.3.10.2 Queue Operations Controlled by ACLs

If enabled, queue ACLs are applied only when an entity is attempting to enqueue a job. Enqueueing a job can happen in
any of three ways:

• Moving a job into the queue

• Submitting a job to the queue

• Routing a job into the queue

Queue ACLs are not applied for non-enqueueing operations, for example:

• Moving a job out of the queue

• Holding a job

• Deleting a job

• Signaling a job

• Getting job status

11.3.10.2.i Queue Host ACL

If a queue's host ACL is enabled, it is checked when an entity attempts to enqueue a job. The host ACL is always hon-
ored, regardless of privilege.

11.3.10.2.ii Queue User and Group ACLs

If a queue's user or group ACL is enabled, it is applied when an entity attempts to enqueue a job. Manager and Operator
privileges override queue user and group ACLs when an entity attempts to move a job into a queue. This means that a
PBS Manager or Operator who is explicitly denied access by the user or group ACL for queue Q1 can still use the qmove
command to move a job into Q1, as long as other ACLs allow the operation (the server's user and host ACLs must both
allow this).

A queue user or group ACL is applied in the following way:

Table 11-6: How Queue User and Group ACLs Are Applied

Operation Applied to Users Applied to Managers/Operators

Moving a job into the queue Yes No

Submitting a job to the queue Yes Yes

Having a job routed into the queue Yes Yes
PBS Professional 2022.1 Administrator’s Guide AG-505

Chapter 11 Security
11.3.10.3 Reservation Operations Controlled by ACLs

Access to a reservation's queue is controlled through its queue's ACLs. A reservation's queue behaves exactly the same
way as a regular queue.

11.3.10.4 Table of Operations Controlled by ACLs and Overrides

The following table lists which operations are and are not controlled by server and queue ACLs, and which controls are
overridden.

11.3.11 Avoiding Problems

11.3.11.1 Using Group Lists

When a user specifies a group list, each and every group in which that user might execute a job must have a group name
and an entry in the groups database, for example, /etc/group.

11.3.12 Flatuid and Access

The server's flatuid attribute affects both when users can operate on jobs and whether users without accounts on the
server host can submit jobs.

11.3.12.1 How flatuid Controls When Users Can Operate On Jobs

This section describes how the server's flatuid attribute affects the circumstances under which users can operate on jobs.

Table 11-7: Operations Controlled by ACLs, and ACL Overrides

Operation

Server ACLs Queue ACLs

Host User Host User Group

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

A
p

p
li
e
d

M
a
n

a
g

e
r

O
v
e
rr

id
e

O
p

e
ra

to
r

O
v
e
rr

id
e

Move job into queue Y N N Y Y Y Y N N Y Y Y Y Y Y
Move job out of queue Y N N Y Y Y N - - N - - N - -
Submit job to queue Y N N Y Y Y Y N N Y N N Y N N
Have job routed into queue Y N N Y Y Y Y N N Y N N Y N N
Delete job Y N N Y Y Y N - - N - - N - -
Hold job Y N N Y Y Y N - - N - - N - -
Release job Y N N Y Y Y N - - N - - N - -
Signal job Y N N Y Y Y N - - N - - N - -
Status job Y N N Y Y Y N - - N - - N - -
Status server Y N N Y Y Y N - - N - - N - -
Status queue Y N N Y Y Y N - - N - - N - -
AG-506 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
This attribute specifies whether, for each user, the username at the submission host must be the same as the one at the
server host. The username at the server host must always be the same as the username at the execution host. When fla-
tuid is set to True, the server assumes that UserA@host1 is the same as UserA@host2. Therefore, if flatuid is True,
UserA@host2 can operate on UserA@host1's job.

The value of flatuid also affects whether .rhosts and hosts.equiv are checked. If flatuid is True, .rhosts and
hosts.equiv are not queried, and for any users at host2, only UserA is treated as UserA@host1. If flatuid is False,
.rhosts and hosts.equiv are queried.

That is, when flatuid is True, even if UserB@host2 is in UserA@host1's .rhosts, UserB@host2 cannot operate on
UserA's job(s). If flatuid is False, and UserB@host2 is in UserA@host1's .rhosts, UserB@host2 is allowed to operate
on UserA's job(s).

Example:

UserA@host1 has a job

UserB@host2 is in UserA@host1's .rhosts

a. flatuid = True: UserB@host2 cannot operate on UserA's job

b. flatuid = False: UserB@host2 can operate on UserA's job

The following table shows how access is affected by both the value of the server's flatuid attribute and whether
UserB@host2 is in UserA@host1's .rhosts:

11.3.12.2 How flatuid Affects Users Without Server Accounts

This section describes how the server's flatuid attribute affects users who have no account on the server host.

11.3.12.2.i Linux and flatuid

• If flatuid is set to False, users who have no account at the server host cannot submit jobs to PBS.

• If flatuid is set to True, these users can submit jobs. However, the job will only run if it is sent to execution hosts
where the user does have an account. If the job is sent to execution hosts where the user does not have an account,
the job will not run, and the MoM will log an error message.

11.3.12.2.ii Windows and flatuid

Regardless of the value of flatuid , users who have no account at the server host cannot submit jobs to PBS. Users must
have an account at the server, and it must have the same password.

Table 11-8: Effect of flatuid Value on Access

flatuid = True flatuid = False

UserB@host2 in UserA@host1’s .rhosts Yes No Yes No

Is UserA@host1 treated as UserA@host2? Yes Yes No No

Is .rhosts queried? No No Yes Yes

Can UserB operate on UserA's jobs? No No Yes No
PBS Professional 2022.1 Administrator’s Guide AG-507

Chapter 11 Security
11.4 Authentication for Daemons & Users

PBS uses a client-server model for authentication. The following table shows the authentication method used for each
communication pair:

Communication between MoM and comm or PBS server and comm is initiated by MoM or PBS server, not comm.

By default, PBS on Linux uses reserved ports for authentication of daemons and users. On Windows, PBS uses pwd.
You can use other methods such as MUNGE. We use MUNGE for mixed-mode operation (mixed Linux and Windows
complexes).

For server-to-scheduler communication, PBS always uses reserved ports for authentication; this is not configurable.

Authentication is independent of encryption. For encryption, see section 11.5, “Encrypting PBS Communication”, on
page 517.

11.4.1 Specifying Allowed Authentication Methods

PBS can use more than one authentication method at the same time. You specify which authentication methods are to be
allowed by listing them in the PBS_SUPPORTED_AUTH_METHODS parameter in pbs.conf on all PBS hosts. If
you leave this field blank, it defaults to "resvport" (reserved ports). If you specify any value, for example "munge", that
is the only allowed method. So if you want both reserved ports and MUNGE, use "munge,resvport" (without quotes).
This value is used only by the authenticating server, and is ignored by the client.

11.4.1.1 Supported Authentication Methods

You can use any of the following authentication methods/libraries:

MUNGE

resvport (reserved port)

pwd (password, used on Windows)

If you do not configure a method, PBS uses resvport.

11.4.2 Specifying Authentication Method Used by

Authentication Client

To specify the default method to be used by an authentication client at a given host, set the PBS_AUTH_METHOD
parameter in pbs.conf on that host to the desired library/method, for example, "munge". This parameter is case-insensi-
tive. The PBS_AUTH_METHOD parameter in pbs.conf is used only by the authentication client.

Table 11-9: Authentication Method Selection

Sender Recipient Authentication Method Specified At...

PBS server Comm Server (in this case, PBS server)

MoM Comm Client (in this case, MoM)

Comm A Comm B Client (in this case, comm A)

PBS commands, e.g. qsub, qstat PBS server Client (in this case, the command)
AG-508 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
Make sure that the authentication method you choose for the authentication client is listed in the
PBS_SUPPORTED_AUTH_METHODS parameter in pbs.conf on the server host. This parameter is case-insensi-
tive.

11.4.3 Authentication via Reserved Ports

When using reserved ports, PBS commands and daemons can call the pbs_iff command to authenticate a user or dae-
mon. The pbs_iff command runs as a privileged user, binds to a reserved port, and sends a request from the client to
the server.

11.4.4 Authentication via MUNGE

You can use the MUNGE authentication daemon to create and validate credentials within a PBS complex, so that com-
munication for PBS commands and daemons is validated via MUNGE. Using MUNGE, the hosts in the PBS complex
form a security realm and share a cryptographic key. PBS Professional uses the MUNGE authentication service to
authenticate the UID and GID of PBS processes, and to create and validate credentials.

The client machines in the complex can create and validate credentials without using root privilege, reserved ports, or
methods requiring a specific platform. All PBS daemons are authenticated via MUNGE when they try to connect to
pbs_comm. MUNGE uses the key in /etc/munge/munge.key.

11.4.4.1 Steps to Integrate MUNGE with PBS

1. Download and install a supported version of MUNGE on all machines in the PBS complex This includes server,
execution, comm, submission hosts, and cloud nodes (install MUNGE on the instance that you will use to burst
cloud nodes; see the individual cloud provider instructions). You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

2. On the PBS server host, generate the munge.key file using the create-munge-key command.

3. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

4. Copy /etc/munge/munge.key on the PBS server host to /etc/munge/munge.key on all hosts in the complex

5. Start MUNGE:

systemctl start munge

6. On the server host, edit the PBS configuration file (/etc/pbs.conf) and add these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"

7. On client and execution hosts, edit the PBS configuration file (/etc/pbs.conf) and add this line:

PBS_AUTH_METHOD=MUNGE

8. Restart the PBS daemons:

systemctl restart pbs
PBS Professional 2022.1 Administrator’s Guide AG-509

https://github.com/dun/munge/wiki/Installation-Guide

Chapter 11 Security
11.4.5 Configuring SSSD

11.4.5.1 Configuring SSSD on RHEL 7 and CentOS 7

We show an example of configuring SSSD on RHEL 7 and CentOS 7, using the following steps:

1. Install the required packages:

a. Install required packages for sssd:

yum install realmd oddjob oddjob-mkhomedir sssd adcli openldap-clients policycoreutils-python
samba-common samba-common-tools krb5-workstation

b. Check whether libpam is already installed on the system. If not, install libpam.

c. The pam library name may be libpam.so.<version>. If so, you may need to create a soft link:

ln -s /usr/lib64/libpam.so.0.83.1 /usr/lib64/libpam.so

2. Find out whether we are in a domain:

realm list

3. Discover the Active Directory domain for your Windows hosts:

realm discover <domain controller hostname>.<domain to join>.com

<domain to join>.com

type: kerberos

realm-name: <domain to join>.COM

domain-name: <domain to join>.com

configured: no

server-software: active-directory

client-software: sssd

required-package: oddjob

required-package: oddjob-mkhomedir

required-package: sssd

required-package: adcli

required-package: samba-common-tools

4. Add the Linux host to Active Directory:

realm join --user=Administrator@<domain to join>.com <domain controller hostname>.<domain to
join>.com

5. If no errors are encountered, users should be able to see the domain information:

realm list

type: kerberos

realm-name: <domain to join>.COM

domain-name: <domain to join>.com

configured: kerberos-member

server-software: active-directory

client-software: sssd

required-package: oddjob

required-package: oddjob-mkhomedir

required-package: sssd

required-package: adcli
AG-510 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
required-package: samba-common-tools

login-formats: %U@<domain to join>.com

login-policy: allow-realm-logins

6. Verify that the Kerberos configuration file /etc/krb5.conf and sssd configuration file /etc/sssd/sssd.conf
have the correct domain name specified where required.

7. Set the appropriate permissions for sssd.conf:

chown root:root /etc/sssd/sssd.conf

chmod 0600 /etc/sssd/sssd.conf

restorecon /etc/sssd/sssd.conf

authconfig --enablesssd --enablesssdauth --enablemkhomedir --update

systemctl start sssd

8. In the file /etc/sssd/sssd.conf, set use_fully_qualified_names to False:

use_fully_qualified_names = False

9. Restart the sssd service:

systemctl restart sssd

11.4.5.2 Configuring SSSD on RHEL8

Example 11-24: Configuring SSSD on RHEL8:

1. Follow the steps in section 11.4.5.1, “Configuring SSSD on RHEL 7 and CentOS 7”, on page 510

2. Make sure that the following lines are in the /etc/pam.d/passwd file; add them if necessary:

auth include system-auth

account include system-auth

3. Add the following line to /etc/sssd/sssd.conf:

access_provider = permit

11.4.5.3 Configuring SSSD on Ubuntu 16

Example 11-25: Configuring SSSD on Ubuntu 16:

1. Follow the steps in section 11.4.5.1, “Configuring SSSD on RHEL 7 and CentOS 7”, on page 510

2. Make sure that the following lines are in the /etc/pam.d/passwd file; add them if necessary:

auth include common-auth

account include common-auth

3. Add the following line to /etc/sssd/sssd.conf:

access_provider = permit
PBS Professional 2022.1 Administrator’s Guide AG-511

Chapter 11 Security
11.4.5.4 Configuring SSSD on Ubuntu 18

Configuring SSSD on Ubuntu 16:

1. Update and install:
sudo apt -y update

sudo apt-get install -y packagekit

sudo apt install sssd-ad sssd-tools realmd adcli

2. In /etc/hosts, add an entry for the host where AD is configured

3. Discover and join the domain:

sudo realm -v discover ad1.example.com

sudo realm join --user <administrator>@<domain to join>.COM <domain controller hostname>.<domain
to join>.com

4. List the newly joined domain:

realm list

sudo pam-auth-update --enable mkhomedir

5. In the /etc/sssd/sssd.conf file, set the following:

use_fully_qualified_names = False

6. Restart sssd:

service sssd restart

7. Check whether sssd works:

id <username>

su - <username>

For more information, see https://ubuntu.com/server/docs/service-sssd.
AG-512 PBS Professional 2022.1 Administrator’s Guide

https://ubuntu.com/server/docs/service-sssd

Security Chapter 11
11.4.5.5 Configuring SSSD on SUSE 15

Example 11-26: Configuring SSSD on SUSE 15 in order to connect to a Windows server host:

We use these settings for our example:

• Windows Domain = WINAUTHTEST.COM

• Windows Server Name = advmsetup

• Windows Server IP Address = 10.79.102.6

• AD Administrator user = loginuser

• Test User on AD = servacc

1. Install required packages and their dependencies:
zypper ref

zypper in krb5-client samba-client sssd sssd-ad

2. Edit /etc/krb5.conf so that it contains the following:

includedir /etc/krb5.conf.d

[libdefaults]

"dns_canonicalize_hostname" and "rdns" are better set to false for improved security.

If set to true, the canonicalization mechanism performed by Kerberos client may

allow service impersonification, the consequence is similar to conducting TLS certificate

verification without checking host name.

If left unspecified, the two parameters will have default value true, which is less secure.

dns_canonicalize_hostname = false

rdns = false

default_realm = WINAUTHTEST.COM

dns_lookup_realm = false

[realms]

WINAUTHTEST.COM = {

kdc = advmsetup.winauthtest.com

master_kdc = advmsetup.winauthtest.com

admin_server = advmsetup.winauthtest.com

}

[logging]

kdc = FILE:/var/log/krb5/krb5kdc.log

admin_server = FILE:/var/log/krb5/kadmind.log

default = SYSLOG:NOTICE:DAEMON

[domain_realm]

.winauthtest.com = WINAUTHTEST.COM

winauthtest.com = WINAUTHTEST.COM

3. Edit /etc/samba/smb.conf. Add the following lines to the global section:

[global]

workgroup = WINAUTHTEST

passdb backend = tdbsam
PBS Professional 2022.1 Administrator’s Guide AG-513

Chapter 11 Security
printing = cups

printcap name = cups

printcap cache time = 750

cups options = raw

map to guest = Bad User

logon path = \\%L\profiles\.msprofile

logon home = \\%L\%U\.9xprofile

logon drive = P:

usershare allow guests = Yes

realm = WINAUTHTEST.COM

security = ADS

template shell = /bin/bash

winbind refresh tickets = yes

winbind use default domain = yes

kerberos method = secrets and keytab

client signing = yes

client use spnego = yes

4. Edit /etc/hosts. Add the Windows server IP address and hostname:

10.79.102.6 advmsetup.winauthtest.com advmsetup winauthtest.com

10.79.102.22 sles15server2 sles15server2.winauthtest.com

5. Add the SLES 15 server to the AD domain:

a. Run the kinit command as administrator:

pbsadmin@sles15server:~> kinit loginuser

Password for loginuser@WINAUTHTEST.COM:

Warning: Your password will expire in 3 days on Sunday 14 June 2022 02:16:13 PM UTC

b. Join the AD domain:

pbsadmin@sles15server:~> sudo net ads join -U loginuser -S advmsetup.winauthtest.com

Enter loginuser's password:

Using short domain name -- WINAUTHTEST

Joined 'SLES15SERVER' to dns domain 'winauthtest.com'

No DNS domain configured for sles15server. Unable to perform DNS Update.

DNS update failed: NT_STATUS_INVALID_PARAMETER

(Ignore the warning you get here for DNS.)

6. Verify that the user is authenticated to the SLES server using ldapsearch. This gives the AD attributes:

pbsadmin@sles15server:~> /usr/bin/ldapsearch -H ldap://advmsetup.winauthtest.com/ -Y GSSAPI -N -b
"dc=winauthtest,dc=com" "(&(objectClass=user)(sAMAccountName=servacc))"

SASL/GSSAPI authentication started

SASL username: loginuser@WINAUTHTEST.COM

SASL SSF: 56

SASL data security layer installed.

extended LDIF

#

LDAPv3

base <dc=winauthtest,dc=com> with scope subtree
AG-514 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
filter: (&(objectClass=user)(sAMAccountName=servacc))

requesting: ALL

#

servacc, Users, winauthtest.com

dn: CN=servacc,CN=Users,DC=winauthtest,DC=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: servacc

givenName: servacc

distinguishedName: CN=servacc,CN=Users,DC=winauthtest,DC=com

instanceType: 4

whenCreated: 20200403032934.0Z

whenChanged: 20200608034248.0Z

displayName: servacc

uSNCreated: 69750

uSNChanged: 335995

name: servacc

objectGUID:: micBdtED4UKRiEl4r2bFCg==

userAccountControl: 66048

badPwdCount: 0

codePage: 0

countryCode: 0

badPasswordTime: 132361895928844770

lastLogoff: 0

lastLogon: 132363412329813043

pwdLastSet: 132325361902386414

primaryGroupID: 513

objectSid:: AQUAAAAAAAUVAAAAcGLL19eyqDlLBPfLvhsAAA==

accountExpires: 9223372036854775807

logonCount: 6695

sAMAccountName: servacc

sAMAccountType: 805306368

userPrincipalName: servacc@winauthtest.com

objectCategory: CN=Person,CN=Schema,CN=Configuration,DC=winauthtest,DC=com

dSCorePropagationData: 20200403033300.0Z

dSCorePropagationData: 16010101000001.0Z

lastLogonTimestamp: 132360613688616817

search reference

ref: ldap://ForestDnsZones.winauthtest.com/DC=ForestDnsZones,DC=winauthtest,DC

=com

search reference
PBS Professional 2022.1 Administrator’s Guide AG-515

Chapter 11 Security
ref: ldap://DomainDnsZones.winauthtest.com/DC=DomainDnsZones,DC=winauthtest,DC

=com

search reference

ref: ldap://winauthtest.com/CN=Configuration,DC=winauthtest,DC=com

search result

search: 4

result: 0 Success

numResponses: 5

numEntries: 1

numReferences: 3

7. Edit /etc/sssd/sssd.conf. You add the domain in the domain section. Add the following lines in the sssd, nss,
and domain sections:

[sssd]

config_file_version = 2

services = nss, pam

SSSD will not start if you do not configure any domains.

Add new domain configurations as [domain/<NAME>] sections, and

then add the list of domains (in the order you want them to be

queried) to the "domains" attribute below and uncomment it.

; domains = LDAP

domains = winauthtest.com

[nss]

filter_users = root

filter_groups = root

[pam]

[domain/winauthtest.com]

debug_level = 6

id_provider = ad

auth_provider = ad

ad_domain = winauthtest.com

ad_server = advmsetup.winauthtest.com

ad_hostname = advmsetup.winauthtest.com

ldap_id_mapping = True

override_homedir = /home/%u

ldap_schema = ad

default_shell = /bin/bash

use_fully_qualified_names = False

8. Edit /etc/nsswitch.conf. NSS is used for name resolution. Since we are adding another service to resolve names,
that service needs to be added to /etc/nsswitch.conf. Add 'sss' to the passwd and group fields:
AG-516 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
sles15server:/home/pbsadmin # vi /etc/nsswitch.conf

passwd: compat sss

group: compat sss

shadow: compat

9. Edit /etc/nscd.conf.

Prevent ncsd from caching so that it doesn't interfere with the sssd password and group caching. If both nscd
and sss are caching passwords and groups, the daemons could conflict and AD users would not be resolved. Find
the enable-cache option for the password and group and set it to 'no':

enable-cache passwd no

enable-cache group no

10. Restart the nscd service:

sudo systemctl restart nscd

11. Start the sssd service:

sudo systemctl start sssd

You can verify whether sssd is started:

ps -eaf | grep sssd]

12. Enable authentication through SSSD to AD. Add the sss pam module:

pam-config --add --sss

pam-config --add --mkhomedir

13. Test user resolution and authentication.

a. Run the id command to check username resolution:

id servacc

b. Switch user to see whether the home directory is created:

su - servacc

For more information on configuring sssd, see https://www.suse.com/support/kb/doc/?id=000019039.

11.5 Encrypting PBS Communication

PBS can encrypt communication sent via commands and between daemons, providing end-to-end encryption. To
encrypt your PBS communication, provide the encryption mechanism, and set the PBS_ENCRYPT_METHOD param-
eter in pbs.conf on all PBS hosts to the method that clients will use. For end-to-end encryption, set it on all PBS hosts.

You may want to use encryption especially for cloud hosts.

TLS encryption is required on Windows.

11.5.1 Supported Encryption Methods

PBS supports TLS for encryption.
PBS Professional 2022.1 Administrator’s Guide AG-517

https://www.suse.com/support/kb/doc/?id=000019039

Chapter 11 Security
11.5.2 Using Transport Layer Security (TLS) for Client-Server

Communication

You can use transport layer security (TLS) encryption for a PBS complex that has both Windows and Linux execution
hosts, or when you want an extra layer of security. TLS encryption will provide greater security for your client-server
connections when one PBS daemon sends a request to another daemon.

Encryption is independent of authentication. For authentication information, see section 11.4, “Authentication for Dae-
mons & Users”, on page 508.

11.5.2.1 Overview of Configuring PBS for TLS Encryption

We walk you through the steps to configure PBS for TLS encryption, and we provide example steps here. To summarize:

1. Get or create a CA certificate (the public certificate)

2. Get or create a self-signed TLS certificate

3. Copy the TLS certificate into the appropriate location

4. Generate a private key

5. Edit pbs.conf and set TLS as your encryption method

6. Restart PBS

For additional information, see https://www.openssl.org/docs/man1.1.1/man1/openssl-ca-html.

11.5.2.2 Example of Configuring PBS for TLS Encryption

The following steps show an example of configuring PBS for TLS encryption.

1. Log in as root or administrator.

Perform all of the following steps as root on Linux or Administrator on Windows.

2. Create a configuration file for a certificate using X509v3 extensions.
AG-518 PBS Professional 2022.1 Administrator’s Guide

https://www.openssl.org/docs/man1.1.1/man1/openssl-ca.html

Security Chapter 11
For this step, make sure you choose options and configuration parameters that meet your requirements. See the
OpenSSL documentation for help. In our example, the file is named "my.conf" and the current working directory is
/root/certs. Contents of my.conf:

[cacert]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints = critical, CA:TRUE

keyUsage = critical, digitalSignature, cRLSign, keyCertSign, keyEncipherment

extendedKeyUsage = clientAuth, serverAuth, emailProtection

nsCertType = server, client, email

nsComment = "CA Certificate Generated By OpenSSL for PBSPro"

[usrcert]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

basicConstraints = critical, CA:FALSE

keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment

extendedKeyUsage = clientAuth, serverAuth, emailProtection

nsCertType = server, client, email

nsComment = "User Certificate Generated By OpenSSL for PBSPro"

3. Generate your root certificate authority:

openssl genrsa -out rootca.key.pem 4096

openssl req -new -key rootca.key.pem -out rootca.csr.pem -subj "/O=PBSPro/OU=PBSPro/CN=RootCA/"

openssl x509 -req -signkey ./rootca.key.pem -extfile ./my.conf -extensions cacert -days 12775
-in rootca.csr.pem -out rootca.cert.pem

4. Generate your intermediate certificate authority:

openssl genrsa -out intca.key.pem 4096

openssl req -new -key intca.key.pem -out intca.csr.pem -subj "/O=PBSPro/OU=PBSPro/CN=IntCA/"

openssl x509 -req -CAkey ./rootca.key.pem -CA ./rootca.cert.pem -CAcreateserial -CAserial
./serials.txt -extfile ./my.conf -extensions cacert -days 9125 -in intca.csr.pem -out
intca.cert.pem

5. Generate your CA certificate:

cat rootca.cert.pem intca.cert.pem > ca.cert.pem

6. Generate certificates for PBS server and communication daemons:

openssl genrsa -out pbspro.key.pem 2048

openssl req -new -key pbspro.key.pem -out pbspro.csr.pem -subj
"/O=PBSPro/OU=PBSPro/CN=PBSProServices/"

openssl x509 -req -CAkey ./intca.key.pem -CA ./intca.cert.pem -CAcreateserial -CAserial
./serials.txt -extfile ./my.conf -extensions usrcert -days 1825 -in pbspro.csr.pem -out
pbspro.cert.pem

openssl verify -CAfile ca.cert.pem pbspro.cert.pem

7. Edit PBS configuration files:
PBS Professional 2022.1 Administrator’s Guide AG-519

Chapter 11 Security
On each PBS host (server, scheduler, MoM, comm, client), edit pbs.conf, and set the
PBS_ENCRYPT_METHOD parameter to "tls" (don't include the quotes). The PBS_ENCRYPT_METHOD
parameter is case-insensitive.

8. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

9. Create certificate directory:

The PBS server and comms use a certificate key pair stored in a certificate directory.

On each host running a PBS server or comm, create PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

10. Copy files into certificate directory:

a. Copy your pbspro.cert.pem file to ${PBS_HOME}/certs/cert.pem:

cp /root/certs/pbspro.cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your pbspro.key.pem file to ${PBS_HOME}/certs/key.pem:

cp /root/certs/pbspro.key.pem ${PBS_HOME}/certs/key.pem

11. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

12. Install CA certificate file:

On each host running a PBS server or comm, install the file in /etc/pbs_ca.pem (Linux), or <PBS installation
directory>/pbs_ca.pem (Windows). For example, if PBS is installed on Windows in C:\Program Files
(x86)\PBS, you'd put the file there.

Copy your /root/certs/ca.cert.pem file to /etc/pbs_ca.pem:

cp /root/certs/ca.cert.pem /etc/pbs_ca.pem

13. Set permissions and ownership for CA certificate file:

a. Make sure the permissions for the file are 0644:

chmod -R 0644 /etc/pbs_ca.pem

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: /etc/pbs_ca.pem

14. Restart PBS daemons:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom
AG-520 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
11.6 Restricting Execution Host Access

You can configure each PBS execution host so that the only users who have access to the machine are those who are run-
ning jobs on the machine. You can specify this by adding the $restrict_user parameter to the MoM configuration file
PBS_HOME/mom_priv/config. This parameter is a Boolean, which if set to True, prevents any user not running a
job from running any process on the machine for more than 10 seconds. The interval between when PBS applies restric-
tions depends upon MoM's other activities, but can be no more than 10 seconds.

You can specify which users are exempt from this restriction by adding the $restrict_user_exceptions parameter to the
same file. See the description of the parameter in the next section.

You can allow system processes to run by specifying the maximum numeric user ID allowed access to the machine when
not running a job. You do this by adding the $restrict_user_maxsysid parameter to the MoM configuration file. PBS
automatically tries to allow system processes to run: if $restrict_user is enabled and $restrict_user_maxsysid is unset,
PBS looks in /etc/login.defs for SYSTEM_UID_MAX for the value to use. If there is no maximum ID set
there, it looks for SYSTEM_MIN_UID, and uses that value minus 1. Otherwise PBS uses the default value of 999. See
section 9.5.7, “Restricting User Access to Execution Hosts”, on page 438 and “$restrict_user {True | False}” on page 249
of the PBS Professional Reference Guide.

Access to pbs_mom is controlled through a list of hosts specified in the $clienthost parameter in the pbs_mom's con-
figuration file. By default, only "localhost", the name returned by gethostname(2), and the host named by
PBS_SERVER from /etc/pbs.conf are allowed. See “MoM Parameters” on page 243 of the PBS Professional Ref-
erence Guide for more information on the configuration file.

11.6.1 MoM Access Configuration Parameters

These are the configuration parameters in PBS_HOME/mom_priv/config that can be set to restrict and specify access
to each execution host. Each execution host has its own configuration file.

$clienthost
List of hosts which are allowed to connect to MoM as long as they are using a privileged port. For example, this
allows the hosts "fred" and "wilma" to connect to MoM:

$clienthost fred

$clienthost wilma

The following hostnames are added to $clienthost automatically: the server, the localhost, and if configured, the
secondary server. The server sends each MoM a list of the hosts in the nodes file, and these are added internally
to $clienthost. None of these hostnames need to be listed in the configuration file.

Two hostnames are always allowed to connect to pbs_mom, "localhost" and the name returned to MoM by
the system call gethostname(). These hostnames do not need to be added to the MoM configuration file.

The hosts listed as "clienthosts" make up a "sisterhood" of machines. Any one of the sisterhood will accept con-
nections from within the sisterhood. The sisterhood must all use the same port number.

$restrict_user <value>
Controls whether users not submitting jobs have access to this machine. When True, only those users running
jobs are allowed access.

Format: Boolean

Default: off

$restrict_user_exceptions <user_list>
List of users who are exempt from access restrictions applied by $restrict_user. Maximum number of names
in list is 10.

Format: Comma-separated list of usernames; space allowed after comma
PBS Professional 2022.1 Administrator’s Guide AG-521

Chapter 11 Security
$restrict_user_maxsysid <value>
Allows system processes to run when $restrict_user is enabled. Any user with a numeric user ID less than or
equal to value is exempt from restrictions applied by $restrict_user.

Format: Integer

Default: 999

11.6.2 Examples of Restricting Access

To restrict user access to those running jobs, add:

$restrict_user True

To specify the users who are allowed access whether or not they are running jobs, add:

$restrict_user_exceptions <user list>

For example:

$restrict_user_exceptions User1, User2

To allow system processes to run, specify the maximum numeric user ID by adding:

$restrict_user_maxsysid <user ID>

For example:

$restrict_user_maxsysid 999

11.7 Changing the PBS Service Account Password

Normally, the password for the PBS service account on Windows should not be changed. But if it is necessary to change
it, perhaps due to a security breach, then do so using the following steps:

1. Change the PBS service account's password on one machine in a command prompt from an admin-type of account
by typing:

Domain environments:

net user <name of PBS service account> * /domain

Non-domain environment:

net user <name of PBS service account> *

2. Provide the Service Control Manager (SCM) with the new password given above. Do this either using the
GUI-based Services application which is one of the Administrative Tools, or by unregistering and re-registering the
PBS services with the password. See “pbs_account” on page 54 of the PBS Professional Reference Guide.

To unregister:

pbs_account --unreg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"

To re-register:

pbs_account --reg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"

When re-registering, you can give an additional -p password argument to the pbs_account command, to specify
the password on the command line.
AG-522 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
11.8 Paths and Environment Variables

A significant effort has been made to ensure the various PBS components themselves cannot be a target of opportunity in
an attack on the system. The two major parts of this effort are the security of files used by PBS and the security of the
environment. Any file used by PBS, especially files that specify configuration or other programs to be run, must be
secure. The files must be owned by root and in general cannot be writable by anyone other than root.

A corrupted environment is another source of attack on a system. To prevent this type of attack, each component resets its
environment when it starts. If it does not already exist, the environment file is created during the install process. As
built by the install process, it will contain a very basic path and, if found in root's environment, the following variables:

• TZ

• LANG

• LC_ALL

• LC_COLLATE

• LC_CTYPE

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

The environment file may be edited to include the other variables required on your system.

The entries in the PBS_ENVIRONMENT file can take two possible forms:

variable_name=value

variable_name

In the latter case, the value for the variable is obtained before the environment is reset.

11.8.1 Path Caveats

Note that PATH must be included. This value of PATH will be passed on to batch jobs. To maintain security, it is impor-
tant that PATH be restricted to known, safe directories. Do NOT include "." in PATH. Another variable which can be dan-
gerous and should not be set is IFS.

11.9 File and Directory Permissions

Each parent directory above PBS_HOME must be owned by root and writable by root only. All files and directories used
by PBS should be writable by root only. Permissions should allow read access for all files and directories except those
that are private to the daemons. The following should not be writable by any but root:

PBS_HOME/mom_priv

<sched_priv directory>

PBS_HOME/server_priv

The PBS_HOME directory must be readable and writable from server hosts by root (Administrator) on Linux.

On Windows, PBS_HOME must have Full Control permissions for the local "Administrators" group on the local host.
PBS Professional 2022.1 Administrator’s Guide AG-523

Chapter 11 Security
PBS checks permissions for certain files and directories. The following error message is printed for certain files and
directories (e.g. /etc/pbs.conf, /var/spool/PBS/mom_priv/config, etc.) if their permissions present a secu-
rity risk:

<command>: Not owner (1) in chk_file_sec, Security violation "<directory>" resolves to
"<directory>"

<command>: Unable to configure temporary directory.

11.10 Root-owned Jobs

The server will reject any job which would execute under the UID of zero unless the owner of the job, typically root, is
listed in the server attribute acl_roots.

In order to submit a job from a root account on the local host, be sure to set acl_roots. For instance, if user foo has root
privilege, you need to set:

Qmgr: set server acl_roots += foo

in order to submit jobs and not get a "bad UID for job execution" message.

Windows Administrators are not considered to have root access, so a Windows Administrator can run a job without being
listed in acl_roots.

11.10.1 Caveats for Root-owned Jobs

Allowing root jobs means that they can run on a configured host under the same account which could also be a privileged
account on that host.

11.11 Passwords

PBS has different password requirements dictated by the Linux and Windows operating systems. Jobs submitted on
Linux systems do not require passwords. Jobs on Windows MoM systems require passwords.

See the PBS Professional 2022.1 release notes for a list of supported architectures.

11.11.1 Windows User Passwords

Windows execution host systems require a password for PBS to run a process as the user, so users on these systems must
supply a password. Users cache their passwords via the pbs_login command. Job submitters run the pbs_login com-
mand once per submission host, initially and for each password change.
AG-524 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
11.11.2 Changing the PBS Service Account Password

Normally, the PBS service account password should not be changed. But if it is necessary to change it perhaps due to a
security breach, then do so using the following steps:

1. Change the PBS service account's password on a machine in a command prompt from an admin-type of account by
typing:
net user <name of PBS service account> * /domain

2. Provide the Service Control Manager (SCM) with the new password specified above. This can be done via the
GUI-based Services application found as one of the Administrative Tools, or by unregistering and re-registering the
PBS MoM with the new password.

pbs_account --unreg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"

pbs_account --reg "\Program Files (x86)\PBS\exec\sbin\pbs_mom.exe"

The register form (last line above) can take an additional argument -p password so that you can specify the pass-
word on the command line directly.

3. Run the pbs_login command:

pbs_login -m <PBS service account password>

4. Restart MoM:

net stop pbs_mom

net start pbs_mom

11.11.2.1 Caveats for Changing Service Account Password

Using pbs_account --unreg and pbs_account--reg stops and restarts MoM, which can kill jobs.

11.12 Windows Firewall

Under Windows, the Windows Firewall may have been turned on by default. If so, it will block incoming network con-
nections to all services including PBS. Therefore after installing PBS Professional, to allow pbs_mom to accept incom-
ing connections:

Access Settings->Control Panel->Security Center->Windows Firewall, and verify that the Windows Firewall has
been set to "ON" to block incoming network connections.

From this panel, you can either turn Windows Firewall "off", or click on the Exceptions tab and add the following to the
list:

[INSTALL PATH]\exec\sbin\pbs_mom.exe

11.13 Logging Security Events

Each PBS daemon logs security-related events, at event class 32 (0x0020) or at event class 128 (0x0080). For informa-
tion about daemon logfiles, see section 9.4, “Event Logging”, on page 428.
PBS Professional 2022.1 Administrator’s Guide AG-525

Chapter 11 Security
11.13.1 Events Logged at Event Class 32 (0x0020)

The following security-related events are logged at decimal event class 32 (0x0020):

• When an execution host has access restrictions in place via the $restrict_user configuration parameter, and MoM
detects that a user who is not exempt from access restriction is running a process on the execution host, MoM kills
that user's processes and writes a log message:
01/16/2006 22:50:16;0002;pbs_mom;Svr;restrict_user;

killed uid 1001 pid 13397(bash) with log event class PBSE_SYSTEM.

See section 11.6, “Restricting Execution Host Access”, on page 521.

• If for some reason the access permissions on the PBS file tree are changed from their default settings, a daemon may
detect this as a security violation, refuse to execute, and write an error message in the corresponding log file. The
following are examples of each daemon's log entry:
Server@<host>: Permission denied (13) in chk_file_sec, Security violation

"/var/spool/pbs/server_priv/jobs/" resolves to "/var/spool/pbs"

pbs_mom: Permission denied (13) in chk_file_sec, Security violation
"/var/spool/pbs/mom_priv/jobs/" resolves to "/var/spool/pbs"

pbs_sched: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/sched_priv"
resolves to "/var/spool/pbs"

A Manager can run pbs_probe (on Linux) or pbs_mkdirs (on Windows) to check and optionally correct any direc-
tory permission or ownership problems.

• When a user without a password entry (an account) on the server attempts to submit a job, the server logs this event.
The following is an example log entry:
8/21/2009 15:28:30;0080;Server@capella;Req;req_reject;Reject reply code=15023, aux=0, type=1,

from User1@host1.example.com

• If a daemon detects that a file or directory in the PBS hierarchy is a symbolic link pointing to a non-secure location,
this is written to the daemon's log. The resulting log message is the same as for a permission violation:
Server@<host>: Permission denied (13) in chk_file_sec, Security violation

"/var/spool/pbs/server_priv/jobs/" resolves to "/var/spool/pbs"

pbs_mom: Permission denied (13) in chk_file_sec, Security violation
"/var/spool/pbs/mom_priv/jobs/" resolves to "/var/spool/pbs"

pbs_sched: Permission denied (13) in chk_file_sec, Security violation "/var/spool/pbs/sched_priv"
resolves to "/var/spool/pbs"

• If an $action script is to be executed for a job belonging to a user who does not have an account on an execution
host, the execution host's MoM logs this event. The following is an example log entry:
08/21/2009 16:06:49;0028;pbs_mom;Job;2.host1;No Password Entry for User User1

• When a job triggers an action script for which the environment cannot be set up, perhaps due to a system error, the
MoM attempting to run the action script logs the event. The log message contains the following:
:<job ID>:failed to setup dependent environment!

• When the scheduler attempts to run a job on an execution host where the job's owner does not have an account, the
MoM on the execution host logs this event. The following is an example log entry:
08/21/2009 15:51:14;0028;pbs_mom;Job;1.host1;No Password Entry for User User1

• When the scheduler attempts to run a job on an execution host where the job's owner does not have a home directory,
and when the job would use that home directory, the execution host's MoM logs this event. The log message con-
tains the following:
Access from host not allowed, or unknown host: <numeric IP address>
AG-526 PBS Professional 2022.1 Administrator’s Guide

Security Chapter 11
See “pbs_mom” on page 71 of the PBS Professional Reference Guide.

• If an attempt is made to connect to a host in the PBS complex from an unknown host, the PBS daemon logs the
information at both levels 32 and 128 (0x0020 and 0080).

11.13.1.1 Events Logged at Event Class 128 (0x0080)

The following security-related event is logged at event class 128 (0x0080):

• If an attempt is made to connect to a host in the PBS complex from an unknown host, the PBS daemon logs the
information at both levels 32 and 128 (0x0020 and 0080).

• If a user or Operator tries to set an attribute that can be set by Managers only, or attempts to create or delete vnodes:

The qmgr command returns this error message:

qmgr obj=<object> svr=default: Unauthorized Request

qmgr: Error (15007) returned from server

The server logs the following message:

Req;req_reject;Reject reply code=15007, aux=0, type=9, from <username>

• When a user is denied access to the server because of the contents of the acl_users server attribute, the server logs
the following:
Req;req_reject;Reject reply code=15007, aux=0, type=21, from username@host.domain.com

11.13.1.2 Events Logged at Event Class 1

• When an attempt is made to contact MoM from a non-privileged port for a request requiring a privileged port, MoM
logs the following:
pbs_mom;Svr;pbs_mom;Unknown error: 0 (0) in rm_request, bad attempt to connect message refused

from port 61558 addr 127.0.0.1

11.13.1.3 Events Not Logged

The following events are not logged:

• When an attempt is made to connect to a host in the PBS complex from a disallowed host

• When an ACL check denies an entity access to a PBS object

• A user tries to query other users' jobs when the server's query_other_jobs attribute is set to False

• When an Operator or Manager overrides the server's user ACL

11.14 Securing Containers

• Use the security enhancement named "pbs_container"; see section 7.4.4, “Configure Security Enhancement for
Docker”, on page 365.

• Make sure that when you are configuring the container hook, if you whitelist any container arguments in the
container_args_allowed hook configuration parameter, do not whitelist "--group-add". This would allow job sub-
mitters to add themselves to any groups inside the container. Instead, set the enable_group_add_arg hook param-
eter to True so the hook automatically adds the job owner to groups in the container; these are the groups on the
execution host to which the job owner already belongs. See section 7.4.2, “Configure PBS Container Hook”, on
page 361.
PBS Professional 2022.1 Administrator’s Guide AG-527

Chapter 11 Security
AG-528 PBS Professional 2022.1 Administrator’s Guide

12

Accounting

12.1 The Accounting Log File

The PBS server automatically maintains an accounting log file on the server host only.

12.1.1 Name and Location of Accounting Log File

Accounting log files are written on the server host only.

The accounting log filename defaults to PBS_HOME/server_priv/accounting/ccyymmdd where ccyymmdd is
the date.

You can place the accounting log files elsewhere by specifying the -A option on the pbs_server command line.

The argument to the -A option is the absolute path to the file to be written. If you specify a null string, the accounting log
is not opened and no accounting records are recorded. For example, the following produces no accounting log:

pbs_server -A ""

12.1.2 Managing the Accounting Log File

If you use the default filename including the date, the server closes the file and opens a new file every day on the first
write to the file after midnight.

If you use either the default file or a file named with the -A option, the server closes the accounting log upon daemon/ser-
vice shutdown .and reopens it upon daemon/service startup.

The server closes and reopens the account log file when it receives a SIGHUP signal. This allows you to rename the old
log and start recording again on an empty file. For example, if the current date is February 9, 2015 the server will be writ-
ing in the file 20150209. The following actions cause the current accounting file to be renamed feb9 and the server to
close the file and start writing a new 20150209.

cd $PBS_HOME/server_priv/accounting

mv 20150209 feb9

kill -HUP <server PID>

12.1.3 Permissions for Accounting Log

The PBS_HOME/server_priv/accounting directory is owned by root, and has the following permissions:

drwxr-xr-x
PBS Professional 2022.1 Administrator’s Guide AG-529

Chapter 12 Accounting
12.2 Viewing Accounting Information

To see accounting information, you can do any of the following:

• Use the tracejob command to print out all accounting information for a job

• Use the pbs-report command to generate reports of accounting statistics from accounting files

• Use the PBS Works front-end tool called PBS Analytics

• Look at the accounting files using your favorite editor or viewer

12.2.1 Using the tracejob Command

You can use the tracejob command to extract the accounting log messages for a specific job and print the messages in
chronological order. The tracejob command looks at all log files, so if you want to see accounting information only,
use the -l, -m, and -s options to filter out scheduler, MoM, and server log messages. You can use tracejob to see
information about a job that is running or has finished. For accounting information, use the tracejob command at the
server host.

tracejob <job ID>

See “tracejob” on page 238 of the PBS Professional Reference Guide for details about using the tracejob command.

12.2.1.1 Permissions for the tracejob Command

Root privilege is required when using tracejob to see accounting information.

12.3 Format of Accounting Log Messages

The PBS accounting log is a text file with each entry terminated by a newline. There is no limit to the size of an entry.

12.3.1 Log Entry Format

The format of a message is:

<logfile date and time>;<record type>;<ID string>;<message text>

where

logfile date and time

Date and time stamp in the format:
AG-530 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
mm/dd/yyyy hh:mm:ss

record type

A single character indicating the type of record

ID string

The job or reservation identifier

message text

Message text format is blank-separated keyword=value fields.

Message text is ASCII text.

Content depends on the record type.

There is no dependable ordering of the content of each message.

There is no limit to the size of an entry.

12.3.2 Space Characters in String Entries

String entries in the accounting log may contain spaces. Under Linux, you must enclose any strings containing spaces
with quotes.

Example 12-1: If the value of the Account_Name attribute is "Power Users", the accounting entry should look like
this, either because you added the quotes or PBS did:

user=pbstest group=None account="Power Users"

12.3.2.1 Replacing Space Characters in String Entries

You can specify a replacement for the space character in any accounting string via the -s option to the pbs_server
command by doing the following:

1. Bring up the Services dialog box

2. Select PBS_SERVER

3. Stop the server

4. In the start parameters, use the -s option to specify the replacement

5. Start the server

Example 12-2: To replace space characters with "%20", bring up the server with "-s %20".

In this example, PBS replaces space characters in string entries with "%20":

user=pbstest group=None account=Power%20Users

If the first character of the replacement string argument to the -s option appears in the data string itself, PBS replaces that
character with its hex representation prefixed by %.

Example 12-3: Given a percent sign in one of our string entries:

account=Po%wer Users

Since % appears in the data string and our replacement string is "%20", PBS replaces % with its hex representation
(%25):

account="Po%25wer%20Users"
PBS Professional 2022.1 Administrator’s Guide AG-531

Chapter 12 Accounting
12.4 Types of Accounting Log Records

Accounting records for job arrays and subjobs are the same as for jobs, except that subjobs do not have Q (job entered
queue) records. PBS writes different types of accounting records for different events. We list the record types, and
describe the triggering event and the contents for each record type.

A

Job was aborted by the server. The message text contains the explanation for why the job was aborted.

a

Job was altered via qalter or a server hook. The message text is a list of <job attrribute>=<new value> pairs, sepa-
rated by spaces. This record shows only changes to a job attribute made via qalter or a server hook. This record does
not show changes made by the server, a scheduler, or when MoM changes resources_used.

B

Reservation record, written at the beginning of a reservation period, for all types of reservations. This record is written
when the start time of a confirmed reservation is reached. Possible information includes the following:

C

Job was checkpointed and requeued. Not written for a snapshot checkpoint, where the job continues to run.

When a job is checkpointed and requeued, PBS writes a C record in the accounting log. The C record contains the job's
exit status. If a job is checkpointed and requeued, the exit status recorded in the accounting record is -12.

The C record is written for the following:

• Using the qhold command

• Checkpointing and aborting a job

Table 12-1: B Record: Reservation Information

Entry Explanation

Authorized_Groups= <groups> Groups who are and are not authorized to submit jobs to the reservation.

Authorized_Hosts= <hosts> Hosts from which jobs may and may not be submitted to the reservation.

Authorized_Users = <users> Users who are and are not authorized to submit jobs to the reservation.

ctime= <creation time> Timestamp; time at which the reservation was created, in seconds since the
epoch.

duration = <reservation duration> The duration specified or computed for the reservation, in seconds.

end= <end of period> Time at which the reservation period is to end, in seconds since the epoch.

name= <reservation name> Reservation name, if reservation creator supplied a name string for the reserva-
tion.

nodes= <vnodes> Contents of resv_nodes reservation attribute

owner= <reservation owner> Name of party who submitted the reservation request.

queue= <queue name> Name of the reservation queue.

Resource_List= <requested
resources>

List of resources requested by the reservation. Resources are listed individually
, for example: Resource_List.ncpus = 16 Resource_List.mem =
1048676kb

start= <start of period> Time at which the reservation period is to start, in seconds since the epoch.
AG-532 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
c

After vnode release, the c record shows job information for the upcoming phase. See also the u record, which shows the
phase that just finished, and the e record, which shows the final phase. The c record's message text field contains the fol-
lowing:

Table 12-2: c Record: Upcoming Phase, After Vnode Release

Entry Explanation

ctime=<creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime=<time when job became
eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the "Q" state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host=<list of hosts and
resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

exec_vnode=<vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

project= <project name> Job's project name at the start of the job.

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job resides.

resources_used.<resource
name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

Resource_List.<resource
name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb

run_count=<count> The number of times the job has been executed.

session=<job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<username> The username under which the job will execute.
PBS Professional 2022.1 Administrator’s Guide AG-533

Chapter 12 Accounting
D

Job or subjob was deleted by request. If a running job is discarded by PBS, PBS writes a D record, but not an E record.
The message text contains requestor=<username>@<hostname> to identify who deleted the job. The D record is written
for the following actions:

E

Job or subjob ended (terminated execution). If a running job is discarded by PBS, PBS writes a D record, but not an E
record. The end-of-job accounting record is not written until all of the job's resources are freed. The E record is written
for the following actions:

• When a job array finishes (all subjobs are in the X state). For example, [1] and [2] finish, but we delete [3] while it's
running, so the job array [] gets an E record.

• When MoM sends an obit to the server

The E record can include the following:

Table 12-3: D Record Triggers

Action Result

qdel a non-running job Write record immediately

qdel -W force a job Kill job, then write record after job is deleted

qdel -W force a provisioning job Kill job, then write record after job is deleted

qdel a running job Kill job, then write record when MoM gets back to us

qrerun a job Kill job, then write record after job is requeued

qdel a subjob Kill subjob, then write record after subjob is deleted

PBS discards a running job, for example due to
hardware failure, and node_fail_requeue is
triggered

Write record and requeue job

Table 12-4: E Record: Job End

Entry Explanation

account= <account name> Written if job has a value for its Account_Name attribute

accounting_id= <JID value> CSA JID, job container ID; value of job's accounting_id attribute

alt_id= <alternate job ID> Optional alternate job identifier.

array_indices=<array indices> Array indices job array was submitted with, if this is a job array. Not reported for
subjobs.

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

eligible_time= <eligible time> Amount of time job has waited while blocked on resources, in seconds.

end= <job end time> Time in seconds since epoch when this accounting record was written. Includes
time to stage out files, delete files, and free job resources. The time for these
actions is not included in the walltime recorded for the job.

etime= <time when job became
eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the "Q" state. Reset when a job
moves queues, or is held then released. Not affected by qaltering.
AG-534 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
exec_host= <list of hosts and
resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

exec_vnode= <vnodes> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

Exit_status= <exit status> The exit status of the job or subjob. See "Job Exit Status Codes" on page 469 in
the PBS Professional Administrator’s Guide and "Job Array Exit Status", on page
160 of the PBS Professional User’s Guide.

The exit status of an interactive job is always recorded as 0 (zero), regardless of
the actual exit status.

group= <group name> Group name under which the job executed. This is the job's egroup attribute.

jobname= <job name> Name of the job

jobobit= <obit time> Timestamp; time when server receives job or subjob obit from MoM on primary
execution host, in seconds since epoch

pcap_accelerator Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel
setting.

pcap_node Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting.

pgov Cray ALPS reservation setting for CPU throttling corresponding to p-governor.

project= <project name> Job's project name when this record is written

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue= <queue name> Name of the queue from which the job executed

resources_used.<resource
name>= <resource value>

Resources used by the job as reported by MoM. Typically includes ncpus, mem,
vmem, cput, walltime, cpupercent. walltime does not include suspended time.
Some resources get special reporting; see section 12.6.2.2, “Reporting Resources
Used by Job”, on page 554.

Resource_List.<resource
name>= <resource value>

List of resources requested by the job. Resources are listed individually, for
example: Resource_List.ncpus =16 Resource_List.mem
=1048676kb

resvID=<reservation ID> ID of reservation job is in, if any

resvname=<reservation name> Name of reservation job is in, if any

run_count=<count> The number of times the job has been executed.

session=<session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<username> The username under which the job executed. This is the job's euser attribute.

Table 12-4: E Record: Job End

Entry Explanation
PBS Professional 2022.1 Administrator’s Guide AG-535

Chapter 12 Accounting
e

For a job whose vnodes were released, the e record shows information for the final phase of the job, after vnodes were
released. See also the c record, which shows info for an upcoming phase, and the u record, which shows info for the
just-finished phase. The e record's message text field contains the following:

K

Reservation deleted at request of scheduler or server. The message text field contains requestor=Server@<hostname>
or requestor=Scheduler@<hostname> to identify who deleted the resource reservation.

Table 12-5: e Record: Final Phase After Vnode Release

Entry Explanation

ctime=<creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime=<time when job became
eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the "Q" state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host=<list of hosts and
resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

exec_vnode=<vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

project= <project name> Job's project name at the start of the job.

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job resides.

resources_used.<resource
name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

Resource_List.<resource
name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb

run_count=<count> The number of times the job has been executed.

session=<job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<username> The username under which the job will execute.
AG-536 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
k

Reservation terminated by owner issuing a pbs_rdel command. Written for all types of reservations. The message text
field contains requestor=<username>@<hostname> to identify who deleted the reservation.

L

Information about node or socket licenses. Written when the server periodically reports license information from the
license server. This line in the log has the following fields:

<Log date>; <record type>; <keyword>; <specification for license>; <hour>; <day>; <month>; <max>

The following table describes each field:

M

Job move record. When a job or job array is moved to another server, PBS writes an M record containing the date, time,
record type, job ID, and destination.

Example of an accounting log entry:

7/08/2008 16:17:38; M; 97.serverhost1.domain.com; destination=workq@serverhost2

When a job array has been moved from one server to another, the subjob accounting records are split between the two
servers.

Jobs can be moved to another server for one of the following reasons:

• Moved for peer scheduling

• Moved via the qmove command

• Job was submitted to a routing queue, then routed to a destination queue at another server

P

Provisioning starts for job or reservation.

Table 12-6: Licensing Information in Accounting Log

Field Description

Log date Date of event

record type Indicates license info

keyword license

specification for license Indicates that this is license info

hour Number of licenses used in the last hour

day Number of licenses used in the last day

month Number of licenses used in the last month

max Maximum number of licenses ever used. Not dependent on server
restarts.
PBS Professional 2022.1 Administrator’s Guide AG-537

Chapter 12 Accounting
Format: <Date and time>;<record type>;<job or reservation ID>; <message text>, where message text contains:

• Username

• Group name

• Job or reservation name

• Queue

• List of vnodes that were provisioned, with the AOE that was provisioned

• Provision event (START)

• Start time in seconds since epoch

Example:

"01/15/2009 12:34:15;P;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=START start_time=1231928746"

p

Provisioning ends for job or reservation. Provisioning can end due to either a successful finish or failure to provision.
Format: <Date and time>;<record type>;<job or reservation ID>; <message text>, where message text contains:

• Username

• Group name

• Job or reservation name

• Queue

• List of vnodes that were provisioned, with the AOE that was provisioned

• Provision event (END)

• Provision status (SUCCESS or FAILURE)

• End time in seconds since epoch

Example printed when job stops provisioning:

"01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=SUCCESS
end_time=1231928812"

Example printed when provisioning for job failed:

"01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=FAILURE
end_time=1231928812"

Q

Job entered a queue. Not written for subjobs. PBS writes a new Q record each time the job is routed or moved to a new
queue or to the same queue.

The Q record can include the following:

Table 12-7: Q Record: Job Queued

Entry Explanation

account= <account name> Written if job has a value for its Account_Name attribute

accounting_id= <JID value> CSA JID, job container ID; value of job's accounting_id attribute

array_indices=<array indices> Array indices job array was submitted with, if this is a job array. Not reported for
subjobs.
AG-538 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
R

This job information written when:

• A job is rerun via qrerun or node_fail_requeue action

• MoM is restarted without the -p or -r options

Not written when job fails to start because the prologue rejects the job.

Possible information includes:

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

depend=<dependencies> The job's dependencies, if any

etime= <time when job became
eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the "Q" state. Reset when a job
moves queues, or is held then released. Not affected by qaltering.

group= <group name> Group name under which the job executed. This is the job's egroup attribute.

jobname= <job name> Name of the job

pcap_accelerator Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel
setting.

pcap_node Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting.

pgov Cray ALPS reservation setting for CPU throttling corresponding to p-governor.

project= <project name> Job's project name when this record is written

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue= <queue name> Name of the queue from which the job executed

Resource_List.<resource
name>= <resource value>

List of resources requested by the job. Resources are listed individually, for
example: Resource_List.ncpus =16 Resource_List.mem
=1048676kb

resvID=<reservation ID> ID of reservation job is in, if any

resvname=<reservation name> Name of reservation job is in, if any

user=<username> The username under which the job executed. This is the job's euser attribute.

Table 12-8: R Record: Job Rerun

Entry Explanation

account= <account name> Written if job has an "account name" string

accounting_id= <JID value> CSA JID, job container ID

alt_id= <alternate job ID> Optional alternate job identifier.

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

eligible_time= <eligible time> Amount of time job has waited while blocked on resources, starting at creation time,
in seconds.

Table 12-7: Q Record: Job Queued

Entry Explanation
PBS Professional 2022.1 Administrator’s Guide AG-539

Chapter 12 Accounting
r

Job has been resumed. Format:

<logfile date and time>;<record type>;<job ID string>;

end= <time> Time in seconds since epoch when this accounting record was written. Includes
time to delete files and free resources.

etime= <time job became eli-
gible to run>

Timestamp; time in seconds since epoch when job most recently became eligible to
run, i.e. was enqueued in an execution queue and was in the "Q" state. Reset when a
job moves queues, or when a job is held then released. Not affected by qaltering.

exec_host= <list of hosts and
resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> * <CPUs>]
where index is task slot number starting at 0, on that host, and CPUs is the number of
CPUs assigned to the job, 1 if omitted.

exec_vnode= <vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

Exit_status= <exit status> The exit status of the previous start of the job. See "Job Exit Status Codes" on page
469 in the PBS Professional Administrator’s Guide.

The exit status of an interactive job is always recorded as 0 (zero), regardless of the
actual exit status.

group=<group name> The group name under which the job executed.

jobname=<job name> The name of the job.

jobobit= <obit time> Timestamp; time when server receives job or subjob obit from MoM on primary exe-
cution host, in seconds since epoch

project=<project name> The job's project name.

qtime=<time job was
queued>

Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job is queued.

Resource_List.<resource
name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple: Resource_List.ncpus =16 Resource_List.mem =1048676kb

resources_used.<resource
name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

run_count=<count> The number of times the job has been executed.

session=<session ID> Session ID of job.

start=<start time> Time when job execution started most recently, in seconds since epoch.

user=<username> The username under which the job executed.

Table 12-8: R Record: Job Rerun

Entry Explanation
AG-540 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
S

Job execution started. The message text field contains the following:

Table 12-9: S Record: Job Start

Entry Explanation

accounting_id= <accounting
string>

An identifier that is associated with system-generated accounting data. In the case
where accounting is CSA, accounting string is a job container identifier or JID cre-
ated for the PBS job.

array_indices=<array indices> Array indices job array was submitted with, if this is a job array. Not reported for
subjobs.

ctime= <creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime= <time when job
became eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the "Q" state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host= <list of hosts and
resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

pcap_accelerator Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel
setting.

pcap_node Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting.

pgov Cray ALPS reservation setting for CPU throttling corresponding to p-governor.

project= <project name> Job's project name at the start of the job.

qtime= <time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue= <queue name> The name of the queue in which the job resides.

resources_assigned.<resource
name>= <resource value>

Not a job attribute; simply a label for reporting job resource assignment. One
resource per entry.

Includes all allocated consumable resources. Consumable resources include
ncpus, mem and vmem by default, and any custom resource defined with the -n
or -f flags. A resource is not listed if the job does not request it directly or inherit it
by default from queue or server settings.

Actual amount of each resource assigned to the job by PBS. For example, if a job
requests one CPU on a multi-vnode machine that has four CPUs per blade/vnode
and that vnode is allocated exclusively to the job, even though the job requested
one CPU, it is assigned all 4 CPUs.

Resource_List.<resource
name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb

resvID=<reservation ID> ID of reservation job is in, if any
PBS Professional 2022.1 Administrator’s Guide AG-541

Chapter 12 Accounting
s

A job's vnode request was trimmed via release_nodes() in an execjob_prologue or execjob_launch hook. The job's
tolerate_node_failures attribute must be set to all or job_start. The s record shows the new trimmed vnode request.
Format: <date> <time>;s;<job ID>;user=<job owner> group=<group> project=<project> jobname=<job name>
queue=<queue name> ctime=<ctime> qtime=<qtime> etime=<etime> start=<start time> exec_host=<exec_host>
exec_vnode=<exec_vnode> Resource_List.<resource>=<value>
Resource_List.<resource>=<value>...Resource_List.<resource>=<value>

T

Job was restarted from a checkpoint file.

U

Unconfirmed advance, standing, job-specific ASAP, or maintenance reservation requested.

• For an advance, job-specific ASAP, or maintenance reservation, the message text field has this format:

U:<reservation ID> requestor=<username>@<hostname>
• For a standing reservation, the message text field has this format:

U:<reservation ID>;requestor=<username>@<hostname> recurrence_rule=<recurrence rule> timezone=<time-
zone>

Example: "U;S56.exampleserver;requestor=pbsuser@exampleserver recurrence_rule=FREQ=HOURLY;COUNT=2
timezone=Asia/Kolkata".

u

After vnode release, the u record shows job information for the phase that just finished. See also the c record, which
shows the upcoming phase, and the e record, which shows the final phase. The u record's message text field contains the
following:

resvname=<reservation name> Name of reservation job is in, if any

session= <job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user= <username> The username under which the job will execute.

Table 12-10: u Record: Phase Just Finished, After Vnode Release

Entry Explanation

ctime=<creation time> Timestamp; time at which the job was created, in seconds since the epoch.

etime=<time when job became
eligible to run>

Timestamp; time in seconds since epoch when job became eligible to run, i.e. was
enqueued in an execution queue and was in the "Q" state. Reset when a job moves
queues, or is held then released. Not affected by qaltering.

exec_host=<list of hosts and
resources>

List of job hosts with host-level, consumable resources allocated from each host.
Format: exec_host=<host A>/<index>*<CPUs> [+<host B>/<index> *
<CPUs>] where index is task slot number starting at 0, on that host, and CPUs is
the number of CPUs assigned to the job, 1 if omitted.

Table 12-9: S Record: Job Start

Entry Explanation
AG-542 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
Y

Reservation confirmed or reconfirmed. Written for all types of reservations.

• Advance, job-specific, or maintenance reservations:

When an advance, job-specific, or maintenance reservation is confirmed for the first time, the Y record has this for-
mat:

Y; <reservation ID> requestor=<requestor>@<server> start=<requested start time> end=<requested end
time> vnodes=(<allotted vnodes>)

Example: "Y; R123.server requestor=Scheduler@svr start=1497264531 end=1497264651 nodes=(node1:ncpus=3)"

The Y record is written when an advance, job-specific, or maintenance reservation alter request is confirmed. The Y
record has the same format as for the first time the reservation is confirmed, but the requested field(s) are updated
with new value(s):

Y; <reservation ID> requestor=<requestor>@<server> start=<(new/original) start time> end=<(new/origi-
nal) end time> nodes=(<allotted vnodes>)

Example: "Y; R123.server requestor=root@hostname start=1497264471 end=1497264651 nodes=(node1:ncpus=3)"

• Standing reservations:

When a standing reservation is confirmed for the first time, the Y record has this format:

exec_vnode=<vnode_list> List of job vnodes with vnode-level, consumable resources from each vnode. For-
mat: (<vnode A>:<resource name>=<resource amount>:...)+(<vnode
B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Parentheses may be missing if the exec_vnode string was entered without them
while executing qrun -H.

group= <group name> Group name under which the job will execute.

jobname= <job name> Name of the job.

project= <project name> Job's project name at the start of the job.

qtime=<time> Timestamp; the time that the job entered the current queue, in seconds since epoch.

queue=<queue name> The name of the queue in which the job resides.

resources_used.<resource
name> = <resource value>

List of resources used by the job. Written only when the server can contact the pri-
mary execution host MoM, as in when the job is qrerun, and only in the case
where the job did start running.

Resource_List.<resource
name>= <resource value>

List of resources requested by the job. Resources are listed individually, for exam-
ple:

Resource_List.ncpus =16

Resource_List.mem =1048676kb

run_count=<count> The number of times the job has been executed.

session=<job session ID> Session number of job.

start=<start time> Time when job execution started, in seconds since epoch.

user=<username> The username under which the job will execute.

Table 12-10: u Record: Phase Just Finished, After Vnode Release

Entry Explanation
PBS Professional 2022.1 Administrator’s Guide AG-543

Chapter 12 Accounting
Y; <reservation ID> requestor=<requestor>@<server> start=<requested start time> end=<requested end
time> nodes=(<allotted vnodes>) count=<count>

The nodes field is specific to the first occurrence.

Example: "Y; R123.server requestor=Scheduler@svr start=1497264531 end=1497264651 nodes=(node1:ncpus=3)
count=3"

The Y record is written when a standing reservation alter request is confirmed (the reservation is reconfirmed). The
Y record has the same format as as for the first time a standing reservation is confirmed, but the requested field(s)
are updated with the new value(s), and the index of the next occurrence is appended. The nodes field is specific to
the occurrence altered:

Y; <reservation ID> requestor=<requestor>@<server> start=<(new/original) start time> end=<(new/origi-
nal) end time> nodes=(<allotted vnodes>) count=<count> index=<index of the altered occurrence>

Example: "Y; R123.server requestor=root@hostname start=1497264471 end=1497264651 nodes=(node1:ncpus=3)
count=3 index=1"

The allotted vnodes is the value of the resv_nodes reservation attribute.

The count is the value of the reserve_count reservation attribute.

z

Job has been suspended. The message string contains the following:

• Values for the job's resources_used attribute

• Values for the job's resources_released attribute. This attribute is populated only when the server's
restrict_res_to_release_on_suspend attribute is set; see section 5.9.6.2, “Job Suspension and Resource Usage”,
on page 247.

12.4.1 Accounting Records for Job Arrays

Accounting records for job arrays and subjobs are the same as for jobs, except that subjobs do not have Q (job entered
queue) records.

When a job array has been moved from one server to another, the subjob accounting records are split between the two
servers.

When a job array goes from Queued to Begin state, we write one S for the whole job array.

The E record is written when a job array finishes. For example, [1] and [2] finish, but we delete [3] while it's running, so
the job array gets an E record.

A job array is finished when all subjobs are in the X state.
AG-544 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
12.5 Timeline for Accounting Messages

12.5.1 Timeline for Job Accounting Messages

The following is a timeline that shows when job and job array attributes and resources are recorded, and when they are
written:

Table 12-11: Timeline for Job Accounting Messages

Job/Job Array Lifecycle Accounting Record

Job is queued Q

Job is moved M

Application licenses are checked out

Any required job-specific staging and execution directories are created

PBS_JOBDIR and job's jobdir attribute are set to pathname of staging and execution
directory

If necessary, MoM creates job execution directory

MoM creates temporary directory

Files are staged in

Just after job is sent to MoM S

T

primary execution host MoM tells sister MoMs they will run job task(s)

MoM sets TMPDIR, JOBDIR, and other environment variables in job's environment

MoM performs hardware-dependent setup: The job's cpusets are created, ALPS reserva-
tions are created

The job script starts

MoM runs user program

Job starts an MPI process on sister vnode

Job is suspended z

Job is resumed r

The job script finishes

The obit is sent to the server E, e

Any specified file staging out takes place, including stdout and stderr

Files staged in or out are deleted

Any job-specific staging and execution directories are removed

The job's cpusets are destroyed

Job files are deleted E

Application licenses are returned to pool
PBS Professional 2022.1 Administrator’s Guide AG-545

Chapter 12 Accounting
12.5.2 Where Job Attributes are Recorded

Some accounting entries for job attributes have different names from their attributes. The following table shows the
record(s) in which each job attribute is recorded and the entry name:

Job is aborted by server A

Job is checkpointed and held C

Job is deleted D

Periodic license information L

Job is rerun via qrerun or node_fail_requeue R

Job is restarted from a checkpoint file T

qdel a subjob D

qrerun a job D

qdel a provisioning job with force D

qdel any job with force D

qdel a running job: kill job, then write record when MoM gets back to us D

qdel a non-running job: write record now D

Job array finishes E

Job or subjob obit is received by server E, R

After a job is discarded after nodes go down on multi-vnode job E

Job vnodes are released c, u

Table 12-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name

accounting_id E, Q, R, S accounting_id

Account_Name E, Q, R account

accrue_type

alt_id E, R alt_id

argument_list

array

array_id

array_index

array_indices_remaining

array_indices_submitted E, Q, S array_indices

Table 12-11: Timeline for Job Accounting Messages

Job/Job Array Lifecycle Accounting Record
AG-546 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
array_state_count

block

Checkpoint

comment

create_resv_from_job

ctime c, E, e, Q, R, S, u ctime

depend Q depend

egroup c, E, e, Q, R, S, u group

eligible_time E, R eligible_time

Error_Path

estimated

etime c, E, e, Q, R, S, u etime

euser c, E, e, Q, R, S, u user

executable

Execution_Time

exec_host c, E, e, R, S, u exec_host

exec_vnode c, E, e, R, u exec_vnode

Exit_status E, R Exit_status

forward_x11_cookie

forward_x11_port

group_list

hashname

Hold_Types

interactive

jobdir

Job_Name c, E, e, Q, R, S, u jobname

jobobit E, R jobobit

Job_Owner

job_state

Join_Path

Keep_Files

Mail_Points

Mail_Users

Table 12-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name
PBS Professional 2022.1 Administrator’s Guide AG-547

Chapter 12 Accounting
mtime

no_stdio_sockets

obittime

Output_Path

pcap_accelerator E, Q, S

pcap_node E, Q, S

pgov E, Q, S

Priority

project c, E, e, Q, R, S, u project

pstate

qtime c, E, e, Q, R, S, u qtime

queue c, E, e, Q, R, S, u queue

queue_rank

queue_type

release_nodes_on_stageout

Remove_Files

Rerunable

resources_released z resources_released

resources_used c, E, e, R, u, z resources_used

Resource_List c, E, e, Q, R, S, u Resource_List

resource_released_list

run_count c, E, e, R, u run_count

run_version

sandbox

schedselect

sched_hint

server

session_id c, E, e, R, S, u session

Shell_Path_List

stagein

stageout

Stageout_status

stime c, E, e, R, S, u start

Table 12-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name
AG-548 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
12.5.3 Timeline for Reservation Accounting Messages

The following table shows the timeline for when reservation accounting messages are recorded:

12.5.4 Where Reservation Attributes and Info are Recorded

Some accounting entries for reservation attributes have names that are different from their attributes. The following table
shows the record(s) in which each reservation attribute is recorded and the entry name:

Submit_arguments

substate

sw_index

tolerate_node_failures

topjob_ineligible

umask

User_List

Variable_List

Table 12-13: Timeline for Reservation Accounting Messages

Reservation Lifecycle Accounting Record

Unconfirmed reservation is created U

Reservation is confirmed Y

Reservation period begins B, Y

Provisioning for reservation begins P

Provisioning for reservation ends p

Reservation period ends F, Y

Reservation is altered Y

Reservation is deleted by scheduler or server K

Reservation is deleted by user via pbs_rdel k

Table 12-14: Reservation Attributes/Info in Accounting Records

Reservation Attribute/Info Record Accounting Entry Name

Account_Name

Authorized_Groups B Authorized_Groups

Authorized_Hosts B Authorized_Hosts

Table 12-12: Job Attributes in Accounting Records

Job Attribute Record Accounting Entry Name
PBS Professional 2022.1 Administrator’s Guide AG-549

Chapter 12 Accounting
Authorized_Users B Authorized_Users

ctime B ctime

delete_idle_time

group_list

hashname

interactive

Mail_Points

Mail_Users

mtime

Priority

queue B queue

reservation requestor K, k, U, Y requestor

reserve_count Y

reserve_duration B duration

reserve_end B, Y end

reserve_ID Q resvID

reserve_index

reserve_job

Reserve_Name B,

Q

name

resvname

Reserve_Owner B owner

reserve_retry

reserve_rrule U (standing reservations) recurrence_rule

reserve_start B, Y start

reserve_state

reserve_substate

reserve_type

Resource_List B Resource_List

resv_nodes B, Y nodes

server

timezone U (standing reservation) timezone

User_List

Variable_List

Table 12-14: Reservation Attributes/Info in Accounting Records

Reservation Attribute/Info Record Accounting Entry Name
AG-550 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
12.5.4.1 Jobs in Reservations

• The job's queue is recorded in its c, E, e, Q, R, S, and u records.

• The job's reservation name and reservation ID are written in its E, Q, and S records.

12.5.5 How MoM Polling Affects Accounting

MoM periodically polls for usage by the jobs running on her host, collects the results, and reports this to the server. When
a job exits, she polls again to get the final tally of usage for that job.

Example 12-4: MoM polls the running jobs at times T1, T2, T4, T8, T16, T24, and so on.

The output shown by a qstat during the window of time between T8 and T16 shows the resource usage up to T8.

If the qstat is done at T17, the output shows usage up through T16. If the job ends at T20, the accounting log (and
the final log message, and the email to the user if "qsub -me" was used in job submission) contains usage through
T20.

The final report does not include the epilogue. The time required for the epilogue is treated as system overhead.

If a job ends between MoM poll cycles, resources_used.<resource name> numbers will be slightly lower than they
are in reality. For long-running jobs, the error percentage will be minor.

See section 3.1.2, “Configuring MoM Polling Cycle”, on page 38 for details about MoM's polling cycle.

12.6 Resource Accounting

Job resources are recorded in the Q (job queued; Resource_List only), S (job start), R (job rerun), E (job end), c
(upcoming phase when job vnodes are released), u (just-finished phase when job vnodes are released), s (vnodes
trimmed), e (usage during post-release phase), and z (job suspension) records.

Reservation resources are recorded in the B (reservation start) record.

12.6.1 Accounting Log Resource Entry Formats

When reporting resources in the accounting B, c, E, e, R, S, or u records, there is one entry per resource. Each resource
is reported on a separate line.

Values for requested resources are written in the same units as those in the resource requests. Values for
resources_used and resources_assigned are written in kb. A suffix is always written unless the quantity is measured
in bytes.
PBS Professional 2022.1 Administrator’s Guide AG-551

Chapter 12 Accounting
12.6.2 Job Resource Accounting

The following table shows which job and reservation resources are recorded in the accounting log, and lists the records
where they are recorded:

Table 12-15: Job Resources in Accounting Log

Resources Record Description

Resource_List c

E

e

Q

R

S

u

List of resources requested by the job. Resources are listed individually,
for example:

Resource_List.ncpus =16
Resource_List.mem =1048676kb

resources_assigned S Not a job attribute; simply a label for reporting job resource assignment.
One resource per entry.

Includes all allocated consumable resources. Consumable resources
include ncpus, mem and vmem by default, and any custom resource
defined with the -n or -f flags. A resource is not listed if the job does not
request it directly or inherit it by default from queue or server settings.

Actual amount of each resource assigned to the job by PBS. For example,
if a job requests one CPU on a multi-vnode machine that has four CPUs
per blade/vnode and that vnode is allocated exclusively to the job, even
though the job requested one CPU, it is assigned all 4 CPUs.

resources_released z Listed by vnode, consumable resources that were released when the job
was suspended.

Populated only when restrict_res_to_release_on_suspend server
attribute is set. Set by server.
AG-552 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
12.6.2.0.i Accounting Log Entries for min_walltime and max_walltime

The Resource_List job attribute contains values for min_walltime and max_walltime. For example, if the following
job is submitted:

qsub -l min_walltime="00:01:00",max_walltime="05:00:00" -l select=2:ncpus=1 job.sh

This is the resulting accounting record:

…S…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18 resources_assigned.ncpus=2

…R…….. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18

…E……. Resource_List.max_walltime=05:00:00 Resource_List.min_walltime=00:01:00
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=pack
Resource_List.select=2:ncpus=1 Resource_List.walltime=00:06:18…….

12.6.2.1 Reporting Resources Assigned to Job

The value reported in the resources_assigned accounting entry is the amount assigned to a job or that a job prevents
other jobs from using, which is different from the amount the job requested or used. For example, if a job requests one
CPU on a multi-vnode machine that has four CPUs per blade/vnode and that vnode is allocated exclusively to the job,
even though the job requested one CPU, it is assigned all 4 CPUs. In this example, resources_assigned reports 4
CPUs, and resources_used reports 1 CPU.

The resources_assigned accounting entry is reported in the S record.

resources_used c

E

e

R (when qrerun)

u

z

Resources used by the job as reported by MoM. Typically includes
ncpus, mem, vmem, cput, walltime, cpupercent. walltime does not
include suspended time.

exec_host c

E

e

R

S

u

List of job hosts with host-level, consumable resources allocated from
each host. Format: exec_host=<host A>/<index>*<CPUs> [+<host
B>/<index> * <CPUs>] where index is task slot number starting at 0, on
that host, and CPUs is the number of CPUs assigned to the job, 1 if omit-
ted.

exec_vnode c

E

e

R

u

List of job vnodes with vnode-level, consumable resources from each
vnode. Format: (<vnode A>:<resource name>=<resource
amount>:...)+(<vnode B>:<resource name>=<resource amount>:...)

resource amount is the amount of that resource allocated from that vnode.

Table 12-15: Job Resources in Accounting Log

Resources Record Description
PBS Professional 2022.1 Administrator’s Guide AG-553

Chapter 12 Accounting
12.6.2.2 Reporting Resources Used by Job

Consumable job resources actually used by the job are recorded in the job's resources_used attribute. Values for
resources_used are reported in the c, E, e, u, and z records, and the R record if the job is rerun, but not when the server
loses contact with the primary execution host MoM.

You can use hooks to set values for a job's resources_used attribute for custom resources. These custom resources will
appear in the accounting log, along with custom resources that are created or set in hooks. Other custom resources will
not appear in the accounting log. See "Setting Job Resources in Hooks" on page 50 in the PBS Professional Hooks
Guide.

PBS reports resources_used values for string resources that are created or set in a hook as JSON strings in the E
record.

• If MoM returns a JSON object (a Python dictionary), PBS reports it in the E record in single quotes:
resources_used.<resource_name> = '{ <MoM JSON item value>, <MoM JSON item value>, <MoM JSON item

value>, ..}

Example: MoM returns { "a":1, "b":2, "c":1,"d": 4} for resources_used.foo_str. We get:

resources_used.foo_str='{"a": 1, "b": 2, "c":1,"d": 4}'

• If MoM returns a value that is not a JSON object, it is reported verbatim in the E record.

Example: MoM returns "hello" for resources_used.foo_str. We get:

resources_used.foo_str="hello"

12.6.2.3 Freeing Resources

The resources allocated to a job from vnodes are not released until all of those resources have been freed by all MoMs
running the job. The end of job accounting record is not written until all of the resources have been freed. The end entry
in the job E record includes the time to stage out files, delete files, and free the resources. This does not change the
recorded walltime for the job.

12.6.2.4 Releasing Vnodes

When a job's vnodes are released via pbs_release_nodes, PBS writes the c and u records, and at the end of the job,
PBS writes the e record.

If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed by
a MoM, resources on those vnodes are released.
AG-554 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
12.6.3 Reservation Resource Accounting

The following table shows which reservation resources are recorded in the accounting log, and lists the records where
they are recorded:

12.6.4 Changing Resource Values Reported in Accounting

Logs

You can use an execution hook to set a value for resources_used, and this value is then recorded in the accounting log.
Bear in mind that by the time an execjob_end hook runs, it's too late to change the accounting log; it's already written.

12.7 Options, Attributes, and Parameters Affecting

Accounting

12.7.1 Options to pbs_server Command

-A <accounting file>
Specifies an absolute path name for the file to use as the accounting file. If not specified, the file is named for
the current date in the PBS_HOME/server_priv/accounting directory.

Format: String

12.7.2 Options to qsub Command

-A <accounting string>
Accounting string associated with the job. Used for labeling accounting data and/or fairshare. Sets job's
Account_Name attribute to <accounting string>.

Format: String

-W release_nodes_on_stageout=<value>
When set to True, all of the job's vnodes are released when stageout begins.

When the cgroups hook is enabled and this is used with some but not all vnodes from one MoM, resources on
those vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job's stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

Table 12-16: Reservation Resources in Accounting Log

Resources Record Description

exec_host B List of vnodes allocated to the reservation

Resource_List B List of resources requested by the reservation. Resources are listed individually as,
for example:

Resource_List.ncpus = 16

Resource_List.mem = 1048676kb

resv_nodes B Contents of resv_nodes reservation attribute
PBS Professional 2022.1 Administrator’s Guide AG-555

Chapter 12 Accounting
12.7.3 Options to qalter Command

-A <new accounting string>
Replaces the accounting string associated with the job. Used for labeling accounting data and/or fairshare. Sets
job's Account_Name attribute to <new accounting string>. This attribute cannot be altered once the job has
begun execution.

Format: String

-W release_nodes_on_stageout=<value>
When set to True, all of the job's vnodes are released when stageout begins.

When cgroups is enabled and this is used with some but not all vnodes from one MoM, resources on those
vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job's stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

12.7.4 Job Attributes

Account_Name
PBS jobs have an attribute called Account_Name. You can use it however you want; PBS does not interpret it.

PBS does not use this accounting string by default. However, you can tell PBS to use the job's accounting string
as the owner of the job for fairshare purposes. See section 4.9.19, “Using Fairshare”, on page 138. PBS accepts
the string passed by the shell as is.

Any character is allowed if the string is enclosed in single or double quotes. When you specify this string on the
command line to a PBS utility or in a directive in a PBS job script, escape any embedded white space by enclos-
ing the string in quotes.

You can set the initial value of a job's Account_Name attribute via the -A <account string> option to
qsub. You can change the value of a job's Account_Name attribute via the -A <new account string>
option to qalter.

Can be read and set by user, Operator, Manager.

Format: String that can contain any character

Default value: none.

Python attribute value type: str

accounting_id
Accounting ID for tracking accounting data not produced by PBS. May be used for a CSA job ID or job con-
tainer ID.

Can be read by User, Operator, Manager.

No default value.

Format: String

Python attribute value type: str
AG-556 PBS Professional 2022.1 Administrator’s Guide

Accounting Chapter 12
alt_id
For a few systems, the session ID is insufficient to track which processes belong to the job. Where a different
identifier is required, it is recorded in this attribute. If set, it is recorded in the end-of-job accounting record.
May contain white spaces.

On Windows, holds PBS home directory.

Can be read by User, Operator, Manager.

No default value.

Format: String

Python attribute value type: str

release_nodes_on_stageout
When set to True, all of the job's vnodes are released when stageout begins.

When the cgroups hook is enabled and this is used with some but not all vnodes from one MoM, resources on
those vnodes that are part of a cgroup are not released until the entire cgroup is released.

12.7.5 MoM Parameters

$logevent <mask>
Sets the mask that determines which event types are logged by pbs_mom. To include all debug events, use
0xffffffff. See “Log Levels” on page 429 of the PBS Professional Reference Guide.

12.8 Accounting Caveats and Advice

If you use the cgroups hook to manage subsystems and create child vnodes, you get accurate accounting. If not, accuracy
depends on whether or not your MPI is integrated with PBS.

12.8.1 Integrate MPIs for Accurate Accounting

PBS Professional is integrated with several implementations of MPI. When PBS is integrated with an MPI, PBS can
track resource usage, control jobs, clean up job processes, and perform accounting for all of the tasks run under the MPI.

When PBS is not integrated with an MPI, PBS can track resource usage, clean up processes, and perform accounting only
for processes running on the primary host. This means that accounting and tracking of CPU time and memory aren't
accurate, and job processes on sister hosts cannot be signaled.

Follow the steps in section 13.1, “Integration with MPI”, on page 559.

12.8.2 MPI Integration under Windows

Under Windows, some MPIs such as MPICH are not integrated with PBS. With non-integrated MPIs, PBS is limited to
tracking resources, signaling jobs, and performing accounting only for job processes on the primary vnode.

12.8.3 Using Hooks for Accounting

12.8.3.1 Use Hooks to Record Job Information

For each job, you can use execjob_prologue, execjob_epilogue, or exechost_periodic hooks to set
resources_used values for custom resources, which are then recorded in the job's E record.
PBS Professional 2022.1 Administrator’s Guide AG-557

Chapter 12 Accounting
12.8.3.2 Use Hooks to Manage Job Accounting String

You can use a hook to assign the correct value for each job's Account_Name attribute. This can be useful both for your
accounting records and if you use the job's Account_Name attribute as the job's owner for fairshare. See the PBS Pro-
fessional Hooks Guide and section 4.9.19, “Using Fairshare”, on page 138.
AG-558 PBS Professional 2022.1 Administrator’s Guide

13

Using MPI with PBS

13.1 Integration with MPI

PBS Professional is integrated with several implementations of MPI. When PBS is integrated with an MPI, PBS can
track resource usage, control jobs, clean up job processes, perform accounting for all of the tasks run under the MPI, and
create TMPDIR on each of the job's hosts.

When PBS is not integrated with an MPI, PBS can track resource usage, clean up processes, and perform accounting only
for processes running on the primary host. This means that accounting and tracking of CPU time and memory aren't
accurate, and job processes on sister hosts cannot be signaled.

13.2 Prerequisites

Before you integrate an MPI with PBS, the MPI must be working by itself. For example, you must make sure that all
required environment variables are set correctly for the MPI to function.

13.3 Types of Integration

PBS provides support for integration for many MPIs. You can integrate MPIs with PBS using the following methods:

• Intel MPI 4.0.3 on Linux uses pbs_tmrsh when it sees certain environment variables set. No other steps are
required. See section 13.5, “Integrating Intel MPI 4.0.3 On Linux Using Environment Variables”, on page 561.

• Wrapping the MPI with a PBS-supplied script which uses the TM (task manager) interface to manage job processes.
PBS supplies a master script to wrap any of several MPIs. See section 13.10, “Integration by Wrapping”, on page
563

• PBS supplies wrapper scripts for some MPIs, for wrapping those MPIs by hand. See section 13.13, “Integration By
Hand”, on page 568

• For non-integrated MPIs, job scripts can integrate the MPIs on the fly using the pbs_tmrsh command. Note that a
PBS job script that uses mpirun with pbs_tmrsh cannot be used outside of PBS. See section 13.9, “Integration
on the Fly using the pbs_tmrsh Command”, on page 562 and "Integrating an MPI on the Fly", on page 85 of the PBS
Professional User’s Guide.

• Some MPIs can be compiled to use the TM interface. See section 13.8, “Integration Using the TM Interface”, on
page 562

• Some MPIs require users to call pbs_attach See section 13.13.5, “Integrating HPE MPI”, on page 571.

• Altair support can help integrate your MPI with PBS so that the MPI always calls pbs_attach when it calls ssh.
If you would like to use this method, contact Altair support at www.pbsworks.com.
PBS Professional 2022.1 Administrator’s Guide AG-559

http://www.pbsworks.com

Chapter 13 Using MPI with PBS
To integrate an MPI with PBS, you use just one of the methods above. The method you choose depends on the MPI. The
following table lists the supported MPIs, how to integrate them, and gives links to the steps involved and any special
notes about that MPI:

Table 13-1: List of Supported MPIs

MPI Name Versions Method Integration Steps
MPI-specific

Notes

HP MPI 1.08.03

2.0.0

Use pbs_mpihp "Steps to Integrate HP MPI or
Platform MPI"

"Integrating HP MPI
and Platform MPI"

Intel MPI 4.0.3 on Linux Set environment vari-
ables

"Integrating Intel MPI 4.0.3 On
Linux Using Environment Vari-
ables"

None

Intel MPI 4.0.3 on Windows Use wrapper script "Integrating Intel MPI 4.0.3 on
Windows Using Wrapper Script"

None

Intel MPI 2.0.022

3

4

Use pbsrun_wrap

(wrapper is depre-
cated)

"Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

MPICH-P4 1.2.5

1.2.6

1.2.7

Support for all is
deprecated.

Use pbs_mpirun "Steps to Integrate MPICH-P4" "Integrating
MPICH-P4"

MPICH-GM
(MPICH
1.2.6.14b)

Support for wrap-
per is deprecated.

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

MPICH-MX Support for wrap-
per is deprecated.

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

MPICH2 1.0.3

1.0.5

1.0.7

on Linux

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

MPICH2 1.4.1p1 on Windows Use wrapper script "Integrating MPICH2 1.4.1p1 on
Windows Using Wrapper Script"

None

MVAPICH 1.2

Support for wrap-
per is deprecated.

Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"

 MVAPICH2 1.8 Use pbsrun_wrap "Wrapping an MPI Using the
pbsrun_wrap Script"

"Integration by
Wrapping"
AG-560 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
13.4 Transparency to the User

Many MPIs can be integrated with PBS in a way that is transparent to the job submitter. This means that a job submitter
can use the same MPI command line inside and outside of PBS. All of the MPIs listed above can be made to be transpar-
ent.

13.5 Integrating Intel MPI 4.0.3 On Linux Using

Environment Variables

You can allow Intel MPI 4.0.3 to automatically detect when it runs inside a PBS job and use pbs_tmrsh to integrate
with PBS. When it has detected that it is running in a PBS job, it uses the hosts allocated to the job.

On hosts running Intel MPI 4.0.3 that have PBS_EXEC/bin in the default PATH, set the following environment variables
in PBS_HOME/pbs_environment:

I_MPI_HYDRA_BOOTSTRAP=rsh

I_MPI_HYDRA_BOOTSTRAP_EXEC=pbs_tmrsh

On hosts running Intel MPI 4.0.3 that do not have PBS_EXEC/bin in their default PATH, use the full path to
pbs_tmrsh. For example:

I_MPI_HYDRA_BOOTSTRAP_EXEC=/opt/pbs/bin/pbs_tmrsh

The default process manager for Intel MPI 4.0.3 is Hydra.

13.5.1 Restrictions for Intel MPI 4.0.3

The unwrapped version of Intel MPI 4.0.3 mpirun on Linux does not support MPD.

Open MPI 1.4.x Compile with TM "Integration Using the TM Inter-
face"

"Integrating Open
MPI"

Platform MPI 8.0 Use pbs_mpihp "Steps to Integrate HP MPI or
Platform MPI"

"Integrating HP MPI
and Platform MPI"

HPE MPI Any Optional: Use
mpiexec, or users
put pbs_attach in
mpirun command
line

"Steps to Integrate HPE MPI" "Integrating HPE
MPI"

Table 13-1: List of Supported MPIs

MPI Name Versions Method Integration Steps
MPI-specific

Notes
PBS Professional 2022.1 Administrator’s Guide AG-561

Chapter 13 Using MPI with PBS
13.6 Integrating Intel MPI 4.0.3 on Windows Using

Wrapper Script

This version of PBS provides a wrapper script for Intel MPI 4.0.3 on Windows. The wrapper script is named
pbs_intelmpi_mpirun.bat, and it is located in $PBS_EXEC\bin. This script uses pbs_attach to attach MPI tasks to a
PBS job. You do not need to take any steps to integrate Intel MPI on Windows; job submitters must call the wrapper
script inside their job scripts.

13.7 Integrating MPICH2 1.4.1p1 on Windows Using

Wrapper Script

This version of PBS provides a wrapper script for MPICH2 1.4.1p1 on Windows. The wrapper script is named
pbs_mpich2_mpirun.bat, and it is located in $PBS_EXEC\bin. This script uses pbs_attach to attach MPI tasks to a
PBS job. You do not need to take any steps to integrate Intel MPI on Windows; job submitters must call the wrapper
script inside their job scripts.

13.8 Integration Using the TM Interface

PBS provides an API to the PBS task manager, or TM, interface. You can configure an MPI to use the PBS TM interface
directly.

When a job process is started on a sister host using the TM interface, the sister host's MoM starts the process and the pri-
mary host's MoM has access to job process information.

An MPI that we know can be compiled with the TM interface is Open MPI.

13.9 Integration on the Fly using the pbs_tmrsh
Command

If using a non-integrated MPI, job submitters can integrate an MPI on the fly by using the pbs_tmrsh command. This
command emulates rsh, but uses the TM interface to talk directly to pbs_mom on sister hosts. The pbs_tmrsh com-
mand informs the primary and sister MoMs about job processes on sister hosts. PBS can track resource usage for all job
processes.

Job submitters use this command by setting the appropriate environment variable to pbs_tmrsh. For example, to inte-
grate MPICH, set P4_RSHCOMMAND to pbs_tmrsh. For details, see "Integrating an MPI on the Fly", on page 85 of
the PBS Professional User’s Guide.
AG-562 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
The following figure illustrates how a the pbs_tmrsh command can be used to integrate an MPI on the fly:

Figure 13-1: PBS knows about processes on vnodes 2 and 3, because pbs_tmrsh talks directly to
pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3

13.9.1 Caveats for the pbs_tmrsh Command

• This command cannot be used outside of a PBS job; if used outside a PBS job, this command will fail.

• The pbs_tmrsh command does not perform exactly like rsh. For example, you cannot pipe output from
pbs_tmrsh; this will fail.

13.10 Integration by Wrapping

Wrapping an MPI means replacing its mpirun or mpiexec with a script which calls the original executable and, indi-
rectly, pbs_attach. Job processes are started by rsh or ssh, but the pbs_attach command informs the primary
and sister MoMs about the processes, so that PBS has control of the job processes. See “pbs_attach” on page 56 of the
PBS Professional Reference Guide.

PBS provides a master script called pbsrun_wrap that you use to wrap many MPIs. PBS supplies special wrapper
scripts so that you can wrap other MPIs by hand.
PBS Professional 2022.1 Administrator’s Guide AG-563

Chapter 13 Using MPI with PBS
The following figure shows how a wrapped mpirun call works:

Figure 13-2:The job script calls the link that has the name of the original mpirun

13.10.1 Wrap the Correct Instance

When you wrap an MPI, make sure that you are wrapping the first instance of the name found in the user's search path.
This is the one returned by the 'which' command on Linux.

For example, on our example system my_mpi is installed as follows:

rwxrwxrwx 1 root system 31 Apr 18 19:21 /usr/bin/my_mpi -> /usr/my_mpi_dir/bin/my_mpi

And 'which' returns the following:

bash-2.05b# which my_mpi

/usr/bin/my_mpi

Here, you must wrap the link, not the binary.

Figure 13-3: The job script calls the link that has the name of the original mpirun
AG-564 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
13.11 Wrapping an MPI Using the pbsrun_wrap

Script

The master script is the pbsrun_wrap command, which takes two arguments: the mpirun to be wrapped, and a
PBS-supplied wrapper. The pbsrun_wrap command neatly wraps the original mpirun so that everything is transpar-
ent for the job submitter. See “pbsrun_wrap” on page 52 of the PBS Professional Reference Guide, and “pbsrun” on
page 41 of the PBS Professional Reference Guide.

The pbsrun_wrap command does the following:

• Renames the original, named mpirun.<flavor>, to mpirun.<flavor>.actual

• Instantiates the wrapper as pbsrun.<flavor>

• Creates a link named mpirun.<flavor> that calls pbsrun.<flavor>

• Creates a link so that pbsrun.<flavor> calls mpirun.<flavor>.actual

13.11.1 Passing Arguments

Any mpirun version/flavor that can be wrapped has an initialization script ending in ".init", found in
$PBS_EXEC/lib/MPI:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.init

When executed inside a PBS job, the pbsrun.<flavor> script calls a version-specific initialization script which sets
variables to control how the pbsrun.<flavor> script uses options passed to it. For example, pbsrun.<flavor>
calls $PBS_EXEC/lib/MPI/pbsrun.<flavor>.init to manage the arguments passed to it. You can modify the
.init scripts to specify which arguments should be retained, ignored, or transformed.

When the mpirun wrapper script is run inside a PBS job, then it translates any mpirun call of the form:

mpirun [options] <executable> [args]

into

mpirun [options] pbs_attach [special_option_to_pbs_attach] <executable> [args]

where [special options] refers to any option needed by pbs_attach to do its job (e.g. -j $PBS_JOBID).

See “Options” on page 42 of the PBS Professional Reference Guide for a description of how to customize the initializa-
tion scripts.

13.11.2 Restricting MPI Use to PBS Jobs

You can specify that a wrapped MPI can be used only inside of PBS, by using the -s option to the pbsrun_wrap com-
mand. This sets the strict_pbs option in the initialization script (e.g. pbsrun.ch_gm.init, etc...) to 1 from the
default of 0. This means that the mpirun being wrapped by pbsrun will be executed only when it is called inside a
PBS environment. Otherwise, the user gets the following error:

Not running under PBS

exiting since strict_pbs is enabled; execute only in PBS

By default, when the wrapper script is executed outside of PBS, a warning is issued about "not running under PBS", but
it proceeds as if the actual program had been called in standalone fashion.
PBS Professional 2022.1 Administrator’s Guide AG-565

Chapter 13 Using MPI with PBS
13.11.3 Format of pbsrun_wrap Command

The pbsrun_wrap command has this format:

pbsrun_wrap [-s] <path_to_actual_mpirun> pbsrun.<keyword>

Make sure that you wrap the correct instance of the mpirun. If a user's job script would call a link, wrap the link. See
section 13.10.1, “Wrap the Correct Instance”, on page 564.

13.11.4 Actions During Wrapping

The pbsrun_wrap script instantiates the pbsrun wrapper script as pbsrun.<mpirun version/flavor> in
the same directory where pbsrun is located, and sets up the link to the actual mpirun call via the symbolic link:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.link

For example, running:

pbsrun_wrap /opt/mpich-gm/bin/mpirun.ch_gm pbsrun.ch_gm

causes the following actions:

• Save original mpirun.ch_gm script:
mv /opt/mpich-gm/bin/mpirun.ch_gm /opt/mpich-gm/bin/mpirun.ch_gm.actual

• Instantiate pbsrun wrapper script as pbsrun.ch_gm:
cp $PBS_EXEC/bin/pbsrun $PBS_EXEC/bin/pbsrun.ch_gm

• Link mpirun.ch_gm to actually call pbsrun.ch_gm:
ln -s $PBS_EXEC/bin/pbsrun.ch_gm /opt/mpich-gm/bin/mpirun.ch_gm

• Create a link so that pbsrun.ch_gm calls mpirun.ch_gm.actual:
ln -s /opt/mpich-gm/bin/mpirun.ch_gm.actual $PBS_EXEC/lib/MPI/pbsrun.ch_gm.link

13.11.5 Requirements

The mpirun being wrapped must be installed and working on all the vnodes in the PBS cluster.

13.11.6 Caveats and Restrictions

• For MPIs that are wrapped using pbsrun_wrap, the maximum number of ranks that can be launched in a job is the
number of entries in the $PBS_NODEFILE.

• MVAPICH2 must use the "mpd" process manager if it is to be integrated with PBS. During the configuration step
when you build MVAPICH2, set the "process manager" setting to mpd, as follows:
--with-pm=mpd

Other process managers such as "hydra" and "gforker" may not work correctly with PBS.

• If you wrap a version of Intel MPI mpirun less than 4.0.3, Hydra is not supported.

• Wrapping Intel MPI is deprecated.
AG-566 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
13.11.7 Links to Wrapper Script Information

The following table lists the links to the description of each wrapper script used by pbsrun_wrap:

13.11.8 Wrapping Multiple MPIs with the Same Name

You may want more than one MPI environment with the same name, for example a 32-bit and a 64-bit version of
MPICH2.

1. Create two new MPICH2 initialization scripts by copying that for MPICH2:
cd $PBS_EXEC/lib/MPI

cp pbsrun.mpich2.init.in pbsrun.mpich2_32.init.in

cp pbsrun.mpich2.init.in pbsrun.mpich2_64.init.in

2. Then wrap them:

pbsrun_wrap <path to 32-bit MPICH2>/bin/mpirun pbsrun.mpich2_32

pbsrun_wrap <path to 64-bit MPICH2>/bin/mpirun pbsrun.mpich2_64

Calls to <path to 32-bit MPICH2>/bin/mpirun will invoke /usr/pbs/bin/pbsrun.mpich2_32. The
64-bit version is invoked with calls to <path to 64-bit MPICH2>/bin/mpirun.

13.11.9 See Also

See “pbsrun” on page 41 of the PBS Professional Reference Guide for a description of the pbsrun script. See
“pbsrun_wrap” on page 52 of the PBS Professional Reference Guide for a description of the master wrapping script.

Table 13-2: Links to Wrapper Descriptions

MPI Wrapper Link to Description

MPICH2 See “MPICH2 mpirun: pbsrun.mpich2” on page 47 of the PBS Professional Reference
Guide.

MPICH-GM with MPD

Wrapper is deprecated.

“MPICH-GM mpirun (mpirun.mpd) with MPD: pbsrun.gm_mpd” on page 45 of the
PBS Professional Reference Guide.

MPICH-GM with rsh/ssh

Wrapper is deprecated.

“MPICH-GM mpirun (mpirun.ch_gm) with rsh/ssh: pbsrun.ch_gm” on page 44 of the
PBS Professional Reference Guide.

MPICH-MX with MPD

Wrapper is deprecated.

“MPICH-MX mpirun (mpirun.mpd) with MPD: pbsrun.mx_mpd” on page 46 of the
PBS Professional Reference Guide.

MPICH-MX with rsh/ssh

Wrapper is deprecated.

“MPICH-MX mpirun (mpirun.ch_mx) with rsh/ssh: pbsrun.ch_mx” on page 45 of the
PBS Professional Reference Guide

MVAPICH

Wrapper is deprecated.

“MVAPICH1 mpirun: pbsrun.mvapich1” on page 49 of the PBS Professional Refer-
ence Guide.

MVAPICH2 “MVAPICH2 mpiexec: pbsrun.mvapich2” on page 50 of the PBS Professional Refer-
ence Guide.

Intel MPI “Intel MPI mpirun: pbsrun.intelmpi” on page 48 of the PBS Professional Reference
Guide.
PBS Professional 2022.1 Administrator’s Guide AG-567

Chapter 13 Using MPI with PBS
13.12 Unwrapping MPIs Using the pbsrun_unwrap

Script

You can also use the matching pbsrun_unwrap command to unwrap the MPIs you wrapped using pbsrun_wrap.

For example, you can unwrap the two MPICH2 MPIs from 13.11.8 above:

pbsrun_unwrap pbsrun.mpich2_32

pbsrun_unwrap pbsrun.mpich2_64

See “pbsrun_unwrap” on page 51 of the PBS Professional Reference Guide.

13.13 Integration By Hand

For MPIs that must be wrapped by hand, PBS supplies wrapper scripts which call the original and use pbs_attach to
give MoM control of jobs.

Wrapping an MPI by hand yields the same result as wrapping using pbsrun_wrap, but you must perform the steps by
hand.

Wrapping by hand involves the following steps (which are the same steps taken by pbsrun_wrap):

• You rename the original MPI command

• You create a link whose name is the same as the original MPI command; this link calls the wrapper script

• You edit the wrapper script to call the original MPI command

• You make sure that the link to the wrapper script(s) is available to each user's PATH.

The following table lists MPIs, their wrapper scripts, and a link to instructions:

13.13.1 Integrating HP MPI and Platform MPI

PBS supplies a wrapper script for HP MPI and Platform MPI called pbs_mpihp. The pbs_mpihp script allows PBS
to clean up job processes, track and limit job resource usage, and perform accounting for all job processes.

You can make pbs_mpihp transparent to users; see the instructions that follow.

13.13.2 Steps to Integrate HP MPI or Platform MPI

Make sure that you wrap the correct instance of the MPI. If a user's job script would call a link, wrap the link. See sec-
tion 13.10.1, “Wrap the Correct Instance”, on page 564.

Table 13-3: Scripts for Wrapping MPIs by Hand

MPI Name Script Name Link to Instructions

HP MPI pbs_mpihp section 13.13.1, “Integrating HP MPI and Platform MPI”, on page 568

MPICH

Wrapper is depre-
cated.

pbs_mpirun section 13.13.4, “Integrating MPICH-P4”, on page 570

Platform MPI pbs_mpihp section 13.13.1, “Integrating HP MPI and Platform MPI”, on page 568

HPE MPI mpiexec section 13.13.5, “Integrating HPE MPI”, on page 571
AG-568 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
The pbs_mpirun command looks for a link with the name PBS_EXEC/etc/pbs_mpihp that points to the HP
mpirun. The pbs_mpihp command follows this link to HP's mpirun. Therefore, the wrapping instructions are dif-
ferent from the usual. See “pbs_mpihp” on page 76 of the PBS Professional Reference Guide for more information on
pbs_mpihp.

1. Rename HP's mpirun:
cd <MPI installation location>/bin

mv mpirun mpirun.hp

2. Link the user-callable mpirun to pbs_mpihp:

cd <MPI installation location>/bin

ln -s $PBS_EXEC/bin/pbs_mpihp mpirun

3. Create a link to mpirun.hp from PBS_EXEC/etc/pbs_mpihp. pbs_mpihp will call the real HP mpirun:

cd $PBS_EXEC/etc

ln -s <MPI installation location>/bin/mpirun.hp pbs_mpihp

13.13.2.1 Setting Up rsh and ssh Commands

When wrapping HP MPI with pbs_mpihp, note that rsh is the default used to start the mpids. If you wish to use ssh
or something else, be sure to set the following or its equivalent in $PBS_HOME/pbs_environment:

PBS_RSHCOMMAND=ssh

13.13.2.2 Restrictions and Caveats for HP MPI and Platform MPI

• The pbs_mpihp script can be used only on HP-UX and Linux.

• The HP mpirun or mpiexec must be in the job submitter's PATH.

• The version of the HP mpirun or mpiexec must be HPMPI or Platform.

• Under the wrapped HP MPI, the job's working directory is changed to the user's home directory.

13.13.3 Integrating Open MPI

All Open MPI versions allow you to compile the MPI with the PBS TM interface. We recommend compiling all Open
MPI versions with the TM module.

All versions of Open MPI can be transparent to the job submitter.

13.13.3.1 Compiling Open MPI with the TM Module

If the TM interface library is in the standard location, PBS_EXEC/lib/, Open MPI will find it and use it. You need to
explicitly configure with TM only if it's in a non-standard location.

To integrate Open MPI with PBS, configure Open MPI with the --with-tm command-line option to the configure
script. For example:

./configure --prefix=/opt/openmpi/1.4.4 --with-tm=${PBS_EXEC}

make

make install

After you compile Open MPI on one host, make it available on every execution host that will use it, by means of shared
file systems or local copies.

For the Open MPI website information on compiling with the TM option, see:
PBS Professional 2022.1 Administrator’s Guide AG-569

Chapter 13 Using MPI with PBS
http://www.open-mpi.org/faq/?category=building#build-rte-tm

13.13.3.2 Verifying Use of TM Interface

To see whether your Open MPI installation has been configured to use the TM interface:

% ompi_info | grep tm

MCA ras: tm (MCA v2.0, API v2.0, Component v1.3)

MCA plm: tm (MCA v2.0, API v2.0, Component v1.3)

13.13.3.3 See Also

See http://www.open-mpi.org/faq/?category=building#build-rte-tm for information about building
Open MPI with the TM option.

13.13.4 Integrating MPICH-P4

Wrapper is deprecated. PBS supplies a wrapper script called pbs_mpirun for integrating MPICH-P4 with PBS by
hand. The pbs_mpirun script allows PBS to clean up job processes, track and limit job resource usage, and perform
accounting for all job processes.

You can make pbs_mpirun transparent to job submitters. See the following steps.

13.13.4.1 Restrictions

• The pbs_mpirun command can be used only with MPICH using P4 on Linux.

• Usernames must be identical across hosts.

13.13.4.2 Options for pbs_mpirun

The usage for pbs_mpirun is the same as mpirun except for the listed options. All other options are passed directly
to mpirun:

-machinefile
The value for this option is generated by pbs_mpirun. The value used for the -machinefile option is a
temporary file created from the PBS_NODEFILE in the format expected by mpirun.

If the -machinefile option is specified on the command line, a warning is output saying "Warning,
-machinefile value replaced by PBS".

-np
The default value for the -np option is the number of entries in PBS_NODEFILE.
AG-570 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
13.13.4.3 Steps to Integrate MPICH-P4

To make pbs_mpirun transparent to the user, replace standard mpirun with pbs_mpirun. Make sure that you
wrap the correct instance of the MPI. If a user's job script would call a link, wrap the link. See section 13.10.1, “Wrap
the Correct Instance”, on page 564.

• Install MPICH-P4 into <path to mpirun>

• Rename mpirun to mpirun.std:
mv <path to mpirun>/mpirun <path to mpirun>/mpirun.std

• Create link called mpirun in <path to mpirun> that points to pbs_mpirun
ln -s <path to pbs_mpirun>/pbs_mpirun mpirun

• Edit pbs_mpirun to change the call to mpirun so that it calls mpirun.std

At this point, using mpirun actually invokes pbs_mpirun.

13.13.4.4 Setting Up Environment Variables and Paths

• For pbs_mpirun to function correctly for users who require the use of ssh instead of rsh, you can do one of the
following:

• Set PBS_RSHCOMMAND in the login environment

• Set P4_RSHCOMMAND externally to the login environment, then have job submitters pass the value to PBS
via qsub(1)'s -v or -V arguments:

qsub -vP4_RSHCOMMAND=ssh ...

or

qsub -V ...

• Set P4_RSHCOMMAND in the pbs_environment file in PBS_HOME and then advise users to not set
P4_RSHCOMMAND in the login environment

• Make sure that PATH on remote machines contains PBS_EXEC/bin. Remote machines must all have
pbs_attach in the PATH.

• The PBS_RSHCOMMAND environment variable should not be set by the user.

• When using SuSE Linux, use "ssh -n" in place of "ssh".

13.13.5 Integrating HPE MPI

PBS supplies its own mpiexec on machines running supported versions of HPE MPI, in order to provide a standard
interface for use by job submitters. This mpiexec calls the standard HPE mpirun. If users call this mpiexec, PBS
will manage, track, and cleanly terminate multi-host MPI jobs.

If job submitters call HPE MPI directly, they must use pbs_attach in their job scripts in order to give PBS the same
control over jobs; see the HPE documentation.

MPI jobs can be launched across multiple machines. PBS users can run an MPI job within a specific partition.

When job submitters use mpiexec in their job scripts, HPE MPI is transparent. Jobs run normally whether the
PBS-supplied mpiexec is called inside or outside of PBS.

13.13.5.1 Supported Platforms

The PBS-supplied mpiexec runs on machines running supported versions of HPE MPI.
PBS Professional 2022.1 Administrator’s Guide AG-571

Chapter 13 Using MPI with PBS
13.13.5.2 Steps to Integrate HPE MPI

Make sure that the PBS-supplied mpiexec is in each user's PATH.

13.13.5.3 Invoking HPE MPI

PBS uses the MPI-2 industry standard mpiexec interface to launch MPI jobs within PBS. If executed on a non-HPE
system, PBS's mpiexec will assume it was invoked by mistake. In this case it will use the value of PATH (outside of
PBS) or PBS_O_PATH (inside PBS) to search for the correct mpiexec and if one is found, exec it.

13.13.5.4 Using HPE MPI Over InfiniBand

To use InfiniBand, set the MPI_USE_IB environment variable to 1.

13.13.5.5 Using CSA with HPE MPI

PBS support for CSA on HPE systems is no longer available. The CSA functionality for HPE systems has been
removed from PBS.

13.13.5.6 Prerequisites

• In order to run single-host or multi-host jobs, the HPE Array Services must be correctly configured. An Array Ser-
vices daemon (arrayd) must run on each host that will run MPI processes. For a single-host environment,
arrayd only needs to be installed and activated. However, for a multi-host environment where applications will
run across hosts, the hosts must be properly configured to be an array.

• HPE systems communicating via HPE's Array Services must all use the same version of the sgi-mpt and
sgi-arraysvcs packages. HPE systems communicating via HPE's Array Services must have been configured to
interoperate with each other using the default array. See HPE's array_services(5) man page.

• "rpm -qi sgi-arraysvcs" should report the same value for Version on all systems.

• "rpm -qi sgi-mpt" should report the same value for Version on all systems.

• "chkconfig array" must return "on" for all systems

• /usr/lib/array/arrayd.conf must contain an array definition that includes all systems.

• /usr/lib/array/arrayd.auth must be configured to allow remote access:

The "AUTHENTICATION NOREMOTE" directive must be commented out or removed

Either "AUTHENTICATION NONE" should be enabled or keys should be added to enable the SIMPLE authentica-
tion method.

• If any changes have been made to the arrayd configuration files (arrayd.auth or arrayd.conf), the array
service must be restarted.

• rsh(1) must work between the systems.

• PBS uses HPE's mpirun(1) command to launch MPI jobs. HPE's mpirun must be in the standard location.

• The location of pbs_attach(8B) on each vnode of a multi-vnode MPI job must be the same as it is on the pri-
mary execution host vnode.
AG-572 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
13.13.5.7 Environment Variables

• If the PBS_MPI_DEBUG environment variable's value has a nonzero length, PBS will write debugging information
to standard output.

• The PBS_ENVIRONMENT environment variable is used to determine whether mpiexec is being called from
within a PBS job.

• If it was invoked by mistake, the PBS mpiexec uses the value of PBS_O_PATH to search for the correct
mpiexec.

• To use InfiniBand, set the MPI_USE_IB environment variable to 1.

13.14 How Processes are Started Using MPI and PBS

13.14.1 Starting Processes under Non-integrated MPIs

The following figure illustrates how processes are started on sister vnodes when using a non-integrated MPI:

Figure 13-4:PBS does not know about the processes on vnodes 2 and 3, because those processes were
generated outside of the scope of PBS.
PBS Professional 2022.1 Administrator’s Guide AG-573

Chapter 13 Using MPI with PBS
13.14.2 Starting Processes under Wrapped MPIs

The following figure illustrates how processes are started on sister vnodes when using a wrapped MPI:

Figure 13-5: PBS knows about processes on vnodes 2 and 3, because pbs_attach tells those MoMs
which processes belong to which jobs
AG-574 PBS Professional 2022.1 Administrator’s Guide

Using MPI with PBS Chapter 13
13.14.3 Starting Processes Under MPIs Employing the TM

Interface

The following figure illustrates how processes are started on sister vnodes when using an MPI that employs the TM inter-
face:

13.15 Limit Enforcement with MPI

PBS can enforce the following for a job using MPI:

• Per-process limits via setrlimit(2) on sister vnodes

• The setrlimit process limit can be enforced only when using an MPI that employs the TM interface
directly, which is Open MPI only

• Limits set via MoM parameters, e.g. cpuburst and cpuaverage, on sister vnodes

• PBS can enforce these limits using any integrated MPI

• Job-wide limits such as cput, mem

• PBS can enforce job-wide limits using any integrated MPI

Once a process is started, process limits cannot be changed.

Figure 13-6: PBS knows about processes on vnodes 2 and 3, because the TM interface talks directly to
pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3
PBS Professional 2022.1 Administrator’s Guide AG-575

Chapter 13 Using MPI with PBS
13.16 Restrictions and Caveats for MPI Integration

• Be sure to wrap the correct instance of the MPI. See section 13.10.1, “Wrap the Correct Instance”, on page 564

• Some applications write scratch files to a temporary location in tmpdir. The location of tmpdir is host-depen-
dent. If you are using an MPI that is not integrated with the PBS TM interface, and your application needs scratch
space, the location of tmpdir for the job should be consistent across execution hosts. You can specify the root for
tmpdir in the MoM's $tmpdir configuration parameter. PBS sets the job's TMPDIR environment variable to the
temporary directory it creates for the job.
AG-576 PBS Professional 2022.1 Administrator’s Guide

14

Configuring PBS for SELinux

14.1 Overview of PBS Support for MLS-compliant

SELinux

With this version of PBS Professional, we offer a separate package named
PBSPro_2022.1.0-RHEL7_x86_64_selinux.tar.gz that supports SELinux enforcement mode used with one or
more MLS policies on RHEL 7. In this chapter, we describe how to use SELinux PBS only.

14.2 Terminology

In this section, we use the following terms:

DCID

Director of Central Intelligence

MLS

Multi-level Security

PL4

Protection Level 4

14.3 How Support for SELinux Works

14.3.1 Security Context

SELinux PBS collects the security context at the time a request is made, records it in the server, and associates it with a
user's job when the job is passed to the MoM. MoMs then use the information to create user processes with the correct
context.

14.3.2 Authorization

Job submitters can alter, delete, and hold only those jobs with a security context which matches that of the requester.

PBS managers and operators are expected to have sufficient SELinux privilege to operate on all users' jobs.

14.3.3 Authentication

When authenticating a user, this version of PBS captures the user's SELinux security context, collecting the SELinux
user identity, role, type, and MLS levels.

The only supported authentication method when using PBS with SELinux is the default of resvport.
PBS Professional 2022.1 Administrator’s Guide AG-577

Chapter 14 Configuring PBS for SELinux
14.3.4 Instantiation

When a MoM creates a user process, she creates it with the security context of the user who submitted the job. For each
job, PBS records the security context of the job submitter in the security_context job attribute.

14.4 Enforcement of Permissions

PBS does not make the permission decisions required by MLS or DCID PL4. These decisions are made by the SELinux
mechanisms delivered with the OS.

14.4.1 Policy Files

Altair supplies policy files describing the permissions for PBS. These files are in SELinux format.

The SELinux policy framework includes the permissions PBS needs to impersonate users. The policy framework is
encapsulated in a set of policy files for this product.

SELinux policy files for PBS are located in $PBS_EXEC/selinux/. These policy files are the following:

pbs.fc

pbs.if

pbs.te

pbs_dontaudit.te

PBS policy files must be inspected and vetted by site security personnel before installation. See section 14.8.3, “Installa-
tion Steps”, on page 580.

14.4.2 Location of pbs_mom.pamd File

The pbs_mom.pamd file is shipped in $PBS_EXEC/selinux.

For polyinstantiation to work properly, copy $PBS_EXEC/selinux/pbs_mom.pamd to the /etc/pam.d/ directory.

14.5 Special Attributes and Directories

$PBS_EXEC/selinux

Directory that contains SELinux policy files and miscellaneous data.

security_context
Job attribute. Contains security context of job submitter. Set by PBS to the security context of the job submitter
at the time of job submission. Visible to all. If not present when a request is submitted, an error occurs, a server
message is logged, and the request is rejected.

Format: String in SELinux format

Default: Unset
AG-578 PBS Professional 2022.1 Administrator’s Guide

Configuring PBS for SELinux Chapter 14
14.6 Prerequisites

Because PBS managers and operators may need access to information requiring elevated privilege such as job names or
security contexts, PBS requires that PBS managers and operators have sufficient SELinux privilege to operate on all
users' jobs.

You can enable SELinux only on RHEL 7 hosts.

14.7 Caveats and Restrictions

• You cannot upgrade from a non-SELinux compliant PBS version to this version; you must do a fresh install.

• This version of PBS cannot interoperate with non-SELinux compliant clients (qsub, qstat, etc.).

• This version of PBS cannot interoperate with non-SELinux compliant complexes; you cannot do peer scheduling,
route jobs, etc.

• You cannot mix compliant and non-compliant daemons

• In order to use SELinux with containers, you will probably need to adjust your site policy.

• The X forwarding that is enabled by PBS does not work with this version of PBS. You may be able to set up X for-
warding via normal methods, without the help of PBS. Omit the "-X" qsub argument, and forward the DISPLAY
information into the job itself.

• If a user runs qstat on a non-server host, all jobs are reported regardless of the value of query_other_jobs. To
protect against this, set the server's acl_hosts attribute to exclude all non-server hosts:

set server acl_hosts="-<non-server host>,-<non-server host>"

For example:

set server acl_hosts ="-submithost1,-submithost2,-submithost3"

Set the server's acl_host_enable attribute to True to enable restricting host access:

set server acl_host_enable=true

• An SELinux-enabled PBS complex cannot interoperate with non-SELinux-enabled PBS complexes.

14.8 Installing PBS For Use With SELinux

14.8.1 Pre-installation Requirements

• An SELinux run-time environment must be present.

• The SELinux run-time environment must be able to compile and install new policies.

• The site must configure polyinstantiation as needed.

• You must install, start, and stop PBS using an account that is not subject to polyinstantiation.

• If PBS will run on more than one host, you must ensure that the MLS label is passed through and trusted among the
PBS peer services. Add the following line to each PBS node's /etc/netlabels.rules:
map add default address:<site-specific address/mask> protocol:cipsov4,32
PBS Professional 2022.1 Administrator’s Guide AG-579

Chapter 14 Configuring PBS for SELinux
14.8.2 Installing in Non-default Location

The policy files, for example pbs.fc, contain full paths that assume default locations for PBS_HOME, PBS_EXEC,
and PBS_CONF_FILE. If you will install PBS in a non-default location, make sure that you set these correctly. We
recommend that you review these anyway.

14.8.3 Installation Steps

1. Make sure you are using an account that is not subject to polyinstantiation.

2. Make sure you have sufficient privilege to install a policy.

3. Extract the policy files:

rpm2cpio pbs-<version>.x86_64.rpm | cpio -id './opt/pbs/selinux/pbs*.[fit][cfe]'

4. Site security personnel inspect the policy files and PBS package.

5. Install the PBS policy module. We provide the following instruction for convenience:

make -f /usr/share/selinux/devel/Makefile and /usr/sbin/semodule -i pbs-mine.pp
pbs_dontaudit.pp

6. Install the PBS package, but do not start PBS:

rpm -i pbspro-server-<version>.el7.x86_64.rpm

7. Put the PBS PAM module in place. Polyinstantiation is controlled by the PAM session module. You need a PBS
PAM module in order to allow pbs_mom to polyinstantiate user jobs.

8. Copy pbs_mom.pamd from $PBS_EXEC/selinux/ on the PBS server installation host to /etc/pam.d/pbs_mom on all
execution hosts.

9. Make sure that /etc/pam.d/pbs_mom is readable by all.

14.8.4 Starting SELinux PBS

Use the following instructions to start PBS. Do not use the standard instructions for starting PBS. Use the exact instruc-
tions below:

systemctl start pbs.service

14.8.5 Post-installation Steps

14.8.5.1 Configure Job Privacy

Once PBS has been started, set the query_other_jobs server attribute to False.

14.8.5.2 Set Privacy for PBS Logs

Protect the PBS service logs from being read or written by anyone except root. The logs are found here:

$PBS_HOME/mom_logs

$PBS_HOME/sched_logs

$PBS_HOME/server_logs

$PBS_HOME/comm_logs
AG-580 PBS Professional 2022.1 Administrator’s Guide

Configuring PBS for SELinux Chapter 14
Change permissions on the logs:

chmod 700 $PBS_HOME/mom_logs $PBS_HOME/sched_logs $PBS_HOME/server_logs $PBS_HOME/comm_logs

14.8.6 Configuring Ports Used by PBS

If client commands such as qstat, qsub, etc., frequently fail with error code 15007, the likely problem is that the port
in the 512-1023 range that PBS is trying to use to communicate has other SELinux policy rules set up which prohibit use
by PBS.

For example, in this illustration PBS tried to use port 548, which is listed like this in semanage:

dhcpd_port_t tcp 547, 548, 647, 847, 7911

dhcpd_port_t udp 67, 547, 548, 647, 847

In our illustration, the audit log shows something like this:

type=AVC msg=audit(1437660325.774:5672072): avc: denied { name_bind } for pid=40996
comm="pbs_iff" src=548 scontext=staff_u:sysadm_r:sysadm_t:s1
tcontext=system_u:object_r:dhcpd_port_t:s0 tclass=tcp_socket

When this happens, you need to let PBS know which ports in the 512 to 1023 range may be used by PBS. Specify at least
128 ports for use by PBS. Use the semanage command to appropriately label the ports that are usable by PBS:

semanage port -a -t pbsd_iff_port_t -p tcp <port range>

See semanage-port(8).

14.9 Configuring PBS for SELinux

14.9.1 Configure File Staging Utilities

PBS needs to use file staging utilities that can preserve security labels when staging files in and out. Files to be used for
a job must have the user's context. Copying files without preserving the context results in a file that cannot be used by
the job. When copying a local file, MoM automatically preserves the context. You must configure MoM to preserve
context when copying remote files. You can use the following option for authenticated file transfer between Linux sys-
tems. The -xattrs option preserves context:

rsync -e ssh -xattrs

The following is another option for preserving context:

cp --preserve=context

MoM performs remote staging using the file transfer methods that you specify, or the default if none is specified. You
specify the method you want by putting the path in the PBS_SCP and PBS_RCP variables in pbs.conf. First MoM
tries the path in PBS_SCP, then the path in PBS_RCP, so put the same path in both. The following is a summary of
how to tell MoM to use rsync:

• Write a script that passes the desired options and arguments to rsync

• Edit pbs.conf, and specify the path to the script in PBS_RCP and PBS_SCP

• If the MoM is running, HUP the MoM
PBS Professional 2022.1 Administrator’s Guide AG-581

Chapter 14 Configuring PBS for SELinux
14.9.1.1 Steps to Configure Utility

1. Write a wrapper script named rsync_pbs that passes all arguments except for the first (-Brvp or -rp) to rsync.

MoM uses the -Brvp flags when calling PBS_SCP, and the -rp flags when calling PBS_RCP. The arguments that
were being passed, and that you can borrow, are the following:

$1 -Brvp or -rp

$2 path to source

$3 path to destination

For example, our script passes all but the first argument to rsync as $*. We get rid of the first argument using the
shift command.

In pbs.conf:

PBS_SCP=/usr/bin/rsync_pbs

In /usr/bin/rsync_pbs:

#!/bin/sh

shift

/usr/bin/rsync -e ssh -xattrs $*

2. Configure both PBS_RCP and PBS_SCP with the path to rsync_pbs.

3. If the MoM is already running, HUP the MoM.

14.10 Managing an SELinux System

14.10.1 Checking Security Context

PBS writes the security context for a job in its security_context attribute. For example, if you need to compare the
security context of jobs and users:

Find job security context:

bash-4.2$ qstat -f | grep security

security_context = user_u:user_r:user_t:s3:c1,c2

Find user security context:

bash-4.2$ id -Z

user_u:user_r:user_t:s3:c1,c2
AG-582 PBS Professional 2022.1 Administrator’s Guide

15

Managing Power Usage

15.1 Monitoring and Controlling Job Power Usage

15.1.1 Power Provisioning: Monitoring and Controlling Job

Power Usage

PBS Professional can control and monitor job power usage. PBS can assign a power profile for each job at submission
time to control the job's power draw, and jobs can request power profiles.

PBS collects energy consumption information and records it in each job's resources_used.energy value. PBS pro-
vides information about job energy usage in the output of the qstat command, and records energy usage in the account-
ing logs.

For each job or power profile change, PBS provisions each vnode with the required power profile. The eoe resource
represents one or more power profiles on each vnode. Each vnode's current_eoe attribute shows its current power pro-
file.

Jobs can request a power profile, by requesting a value for the eoe resource, or PBS can set each job's eoe request.
When a job requests a power profile, it is sent to vnodes that have this profile available, and when the job runs, the
vnodes where the job runs are set to the power profile requested by the job.

The default power setting for a node is no power capping. If a job runs on a node, the node uses the requested power pro-
file, but when the job finishes, the node goes back to the default setting.

15.1.1.1 Monitoring Power Use by Jobs

To see the power used by a job, you can use qstat to examine the job's resources_used.energy.

15.1.2 Platforms Supporting Power Provisioning

Power provisioning is supported on HPE 8600 machines with HPE Performance Cluster Manager (HPCM).

15.1.3 Power Provisioning on HPE

15.1.3.1 Overview of Power Provisioning on HPE

On HPE, PBS uses the power API for HPE Performance Cluster Manager (HPCM). PBS handles querying for available
power profiles and setting the eoe resource to the available power profiles. You enable power provisioning at the server
and vnodes.

15.1.3.2 Setting Power Profiles on HPE

On each vnode, PBS queries the HPE Performance Cluster Manager (HPCM) for available power profiles, and sets the
vnode's resources_available.eoe to the power profiles available on that vnode.
PBS Professional 2022.1 Administrator’s Guide AG-583

Chapter 15 Managing Power Usage
15.1.3.3 Enabling Power Provisioning on HPE

To enable power provisioning:

1. On each vnode where you want power provisioning enabled, set the power_provisioning vnode attribute to True:
Qmgr: set node <node name> power_provisioning=true

2. Enable the PBS_power hook:

Qmgr: set pbshook PBS_power enabled=true

3. HUP each MoM. If the vnode does not report resources_available.eoe, HUP the MoM again.

15.1.3.4 Setting Job Power Resource Requests

Each job can request or be assigned one of the power profiles you have defined.

You write a queuejob hook that sets each job's power attributes to the correct values for the requested profile. The hook
maps each profile to a value for each of the power attributes. For example, if a compute node supports the following set-
tings:

pstate range = 100-300

pgov range = 50-150

pcap_node range = 250-500

pcap_accelerator range = 500-1000

and you want to have profiles named "low", "med", and "high", the following table shows sample power profile settings:

Table 15-1: Sample Power Profile Settings

Power Profile pstate pgov pcap_node pcap_accelerator

low 100 50 250 500

med 200 100 350 700

high 300 150 500 1000
AG-584 PBS Professional 2022.1 Administrator’s Guide

Managing Power Usage Chapter 15
15.1.3.4.i Writing Power Profile Hook for Cray

Create a queuejob hook that sets each job's attributes to reflect its requested profile. Set each job's desired power profile
by setting any of the following job attributes in the hook:

• Set the pcap_node job attribute to the value corresponding to the Cray capmc set_power_cap --node
setting

• Set the pstate job attribute to the corresponding Cray ALPS p-state setting. Note that pcap_node takes prece-
dence, and some settings for pcap_node can result in pstate being ignored.

• Set the pcap_accelerator job attribute to the value corresponding to the Cray capmc set_power_cap
--accel setting

• Set the pgov job attribute for CPU throttling to the corresponding setting for p-governor

Example 15-1: We will use three profiles called "low", "med", and "high", and we will set pcap_node and pstate for
each job requesting a profile:

import pbs

e = pbs.event()

j = e.job

profile = j.Resource_List['eoe']

if profile is None:

 res = j.Resource_List['select']

 if res is not None:

 for s in str(res).split('+')[0].split(':'):

 if s[:4] == 'eoe=':

 profile = s.partition('=')[2]

 break

pbs.logmsg(pbs.LOG_DEBUG, "got profile '%s'" % str(profile))

if profile == "low":

 j.Resource_List["pstate"] = "1900000"

 j.Resource_List["pcap_node"] = 100

 pbs.logmsg(pbs.LOG_DEBUG, "set low")

elif profile == "med":

 j.Resource_List["pstate"] = "220000"

 j.Resource_List["pcap_node"] = 200

 pbs.logmsg(pbs.LOG_DEBUG, "set med")

elif profile == "high":

 j.Resource_List["pstate"] = "240000"

 pbs.logmsg(pbs.LOG_DEBUG, "set high")

else:

 pbs.logmsg(pbs.LOG_DEBUG, "unhandled profile '%s'" % str(profile))

e.accept()
PBS Professional 2022.1 Administrator’s Guide AG-585

Chapter 15 Managing Power Usage
15.1.3.5 Enabling Power Provisioning on Cray

Enable power provisioning:

1. On each vnode where you want power provisioning enabled, set the power_provisioning vnode attribute to True:
Qmgr: set node <node name> power_provisioning=true

2. Enable the PBS_power hook:

Qmgr: set pbshook PBS_power enabled=true

15.1.3.6 Caveats for Power Provisioning on Cray

Note that pcap_node takes precedence, and some settings for pcap_node can result in pstate being ignored.

15.1.4 Terminology for Power Provisioning

Activate a power profile

To set a power profile on a node, for example, to set a node's power profile to match the specifications for "low".

Deactivate a power profile

To reset the power profile of the node to its default setting, which is no power capping.

15.1.5 Caveats and Restrictions for Using Power Profiles

• Make sure that your power provisioning queuejob hook takes into account your desired order of precedence for an
explicit request for pcap_node and/or pstate versus a request for a profile. You may want users to be able to over-
ride power profile settings for pcap_node and/or pstate, or you may want profiles to override explicit requests.

• You cannot use power profiles on any hosts where the PBS server and/or scheduler are running.

• You cannot suspend jobs on vnodes that are using power profiles, meaning that you cannot use preemption via sus-
pension on vnodes that are using power profiles.

• If you disable the PBS_power hook while a job is running, the vnodes where the job runs do not have their profile
deactivated when the job finishes, and the job's resources_used.energy value is not set at the end of the job.

• A prologue script will not run when the PBS_power hook is enabled. Any prologue script must be converted to an
execjob_prologue hook.

• If a job does not request a value for eoe, there is no activation of a power profile on a node, but the job's
resources_used.energy is still calculated.

• If a job requests values for both aoe and eoe, PBS addresses the aoe request first.

• There is no PBS interface to RUR that can be used by administrators or job submitters.

• If pbs.conf is not in /etc on a host, add PBS_CONF_FILE to the PBS_HOME/pbs_environment file for that host,
and set it to the path to pbs.conf on the host. For example, if /var/pbs.conf is the location of the pbs.conf file,
add the following line to PBS_HOME/pbs_environment:
PBS_CONF_FILE=/var/pbs.conf

• PBS does not automatically set resources_available.eoe on machines that host the PBS server/scheduler.

• PBS can provide precise power consumption accounting only where jobs are allocated exclusively. Vnodes must
have the sharing attribute set so that jobs get exclusive use of the vnode, or jobs must request exclusive use of
vnodes.
AG-586 PBS Professional 2022.1 Administrator’s Guide

Managing Power Usage Chapter 15
15.2 Power Management Attributes, Resources, Etc.

energy

Resource. Consumable. PBS records the job's energy usage in the job's resources_used.energy.

Format: float

Units: kWh

eoe

Resource. Stands for "Energy Operational Environment". Non-consumable. When set on a vnode in
resources_available.eoe, contains the list of available power profiles. When set for a job in
Resource_List.eoe, can contain at most one power profile. (A job can request only one power profile.) Auto-
matically added to resources: line in sched_config.

Default value for resources_available.eoe: unset

Format: string_array

current_eoe

Vnode attribute. Shows the current value of eoe on the vnode.

Visible to all. Settable by manager. We do not recommend setting this attribute manually.

Format: string

Default: unset

last_state_change_time

Vnode attribute. Records the most recent time that this node changed state.

Set by PBS. Readable by Manger and Operator.

Format: integer seconds since epoch

Default: no default

last_used_time

Vnode attribute. Records the most recent time that this node finished being used for a job or reservation.

Set at creation or reboot time. Updated when node is released early from a running job. Reset when node is
ramped up.

Set by PBS. Readable by Manger and Operator.

Format: integer seconds since epoch

Default: no default

max_concurrent_nodes

Hook configuration parameter. Specifies the maximum number of nodes that can be powered up or down at one
time. Enabled when the the PBS_power hook is enabled. Used by the PBS_power hook.

set by Manager and Operator. Readable by all.

Format: positive integer

Default: 5
PBS Professional 2022.1 Administrator’s Guide AG-587

Chapter 15 Managing Power Usage
min_node_down_delay

Hook configuration parameter. Specifies the minimum time a node is powered down before it can be powered
back up. Enabled when the the PBS_power hook is enabled.

set by Manager and Operator. Readable by all.

Format: integer seconds

Default: 1800 seconds

node_idle_limit

Hook configuration parameter. Specifies the minimum idle time for a node to be considered for powering
down. Enabled when the the PBS_power hook is enabled.

set by Manager and Operator. Readable by all.

Format: integer seconds

Default: 1800 seconds

pstate

Job attribute. Cray ALPS reservation setting for CPU frequency corresponding to p-state. See BASIL 1.4 doc-
umentation.

Settable by and visible to all PBS users.

Units: hertz

Format: string

Default: unset

Example: pstate = 2200000

pgov

Job attribute. Cray ALPS reservation setting for CPU throttling corresponding to p-governor. See BASIL 1.4
documentation. We do not recommend using this attribute.

Visible to all. Settable by all.

Format: string

Default: unset

pcap_node

Job attribute. Power cap for a node. Corresponds to Cray capmc set_power_cap --node setting. See
capmc documentation.

Visible to and settable by all.

Units: watts

Format: int

Default: unset

pcap_accelerator

Job attribute. Power cap for an accelerator. Corresponds to Cray capmc set_power_cap --accel set-
ting. See capmc documentation.

Visible to and settable by all.

Units: watts

Format: int

Default: unset
AG-588 PBS Professional 2022.1 Administrator’s Guide

Managing Power Usage Chapter 15
poweroff_eligible

Vnode attribute. Specifies whether this node is eligible to have its power managed by PBS.

set by Manager. Readable by all.

Format: Boolean

Default: False (not eligible)

power_provisioning

Server attribute. Reflects use of power profiles and managing node power via PBS. Set by PBS to True when
the PBS_power hook is enabled.

Set by PBS. Read-only.

Format: Boolean

Default: unset, which behaves like False (not enabled)

power_provisioning

Vnode attribute. Specifies whether this node is eligible to have its power managed by PBS, including whether it
can use power profiles.

set by Manager. Readable by all.

Format: Boolean

Default: False (not eligible)

sleep

Vnode state. Indicates that this vnode was ramped down or powered off via PBS power management. This tells
the scheduler that it can schedule jobs on this vnode; in that case PBS powers the vnode back up.

15.3 Caveats and Restrictions for Power

Management

• If a reservation is created with a start time coming up soon, where the reservation requires nodes that are currently
powered off, the reservation may start in degraded mode until all of the nodes can be powered up.

• Do not set resources_available.eoe on vnodes. This is handled by PBS.
PBS Professional 2022.1 Administrator’s Guide AG-589

Chapter 15 Managing Power Usage
AG-590 PBS Professional 2022.1 Administrator’s Guide

16

Provisioning

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application.

16.1 Introduction

You can configure vnodes so that PBS will automatically install the OS or application that jobs need in order to run on
those vnodes. For example, you can configure a vnode that is usually running RHEL to run SLES instead whenever the
Physics group runs a job requiring SLES. If a job requires an application that is not usually installed, PBS can install the
application in order for the job to run.

You can use provisioning for booting multi-boot systems into the desired OS, downloading an OS to and rebooting a
diskless system, downloading an OS to and rebooting from disk, instantiating a virtual machine, etc. You can also use
provisioning to run a configuration script or install an application.

16.2 Definitions

AOE

The environment on a vnode. This may be one that results from provisioning that vnode, or one that is already
in place

Master Provisioning Script, Master Script

The script that makes up the provisioning hook

Provision

To install an OS or application, or to run a script which performs installation and/or setup

Provisioning Hook

The hook which performs the provisioning, either by calling other scripts or running commands

Provisioning Tool

A tool that performs the actual provisioning, e.g. HPE Performance Cluster Manager (HPCM)

Provisioned Vnode

A vnode which, through the process of provisioning, has an OS or application that was installed, or which has
had a script run on it

16.3 How Provisioning Can Be Used

• Each application requires specific version of OS
PBS Professional 2022.1 Administrator’s Guide AG-591

Chapter 16 Provisioning
The site runs multiple applications, and each application may be certified to run on a specific OS. In this situation, a
job that will run an application requiring a specific OS requests the OS, and PBS provisions the required OS.

• The site needs differently configured images of the same OS to be loaded at different times

The site has multiple projects, and each project requires the OS to be configured in a different way on a group of
hosts. In this situation, PBS provisions groups of hosts with the correct OS image, for the time period needed by
each project. The OS image is configured and supplied by the site administrator.

• The entire site needs different OSes at different times of day

The entire site runs one OS during certain hours, and a different OS at other times.

• A user reserves multiple vnodes running the same version of an OS

A user may need a specific version of an OS for a period of time. For example, a user needs 5 nodes running a spe-
cific version of RHEL from 5pm Friday until 5am Monday.

• The administrator wants to limit the number of hosts that are being provisioned at any one time, for any of the fol-
lowing reasons:

• The network can become overwhelmed transferring OS images to execution nodes

• The hosts can draw excessive power if many are powering up at the same time

• Some sites notify the administrator whenever an execution node goes down, and when several vnodes are provi-
sioned, the administrator is paged repeatedly

16.4 How Provisioning Works

16.4.1 Overview of Provisioning

PBS allows you to create a provisioning hook, which is a hook that is triggered by a provisioning event. When this hook
is triggered, it manages the required provisioning on the vnodes to be provisioned. The hook calls a provisioning mech-
anism such as HPE Performance Cluster Manager to accomplish the provisioning.

Provisioning can be the following:

• Directly installing an OS or application

• Running a script which may perform setup or installation

PBS allows you to configure each vnode with a list of available AOEs. This list is specified in the vnode's
resources_available.aoe resource. Each vnode's current_aoe attribute shows that vnode's current AOE. The scheduler
queries each vnode's aoe resource and current_aoe attribute in order to determine which vnodes to provision for each
job.

When users submit jobs, they can request a specific AOE for each job. When the scheduler runs each job, it either finds
the vnodes that satisfy the job's requirements, or provisions the required vnodes.

Users can create reservations that request AOEs. Each reservation can have at most one AOE specified for it. Any jobs
that run in that reservation must not request a different AOE.

16.4.1.1 Rebooting When Provisioning

When provisioning a vnode with some AOEs, the vnode must be rebooted as part of the provisioning process. Some OS
installations, for example, require rebooting. In this case, the provisioning script must cause the vnode to be rebooted.

When the installation does not require a reboot, the provisioning script does not need to cause the vnode to be rebooted.
For example, provisioning with some applications does not require a reboot.
AG-592 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.4.2 How Vnodes Are Selected for Provisioning

Each job can request at most one AOE. When scheduling the job, PBS looks for vnodes with the requested AOE, as with
any other resource. If there are not enough vnodes with the requested AOE, PBS tries to provision vnodes in order to sat-
isfy the job's requirements.

16.4.2.1 Provisioning Policy

PBS allows a choice of provisioning policies. You set the scheduler's provision_policy configuration parameter to be
either "avoid_provision" or "aggressive_provision". The default provisioning policy is "aggressive_provision".

avoid_provision
PBS first tries to satisfy the job's request from free vnodes that already have the requested AOE instantiated.
PBS uses node_sort_key to sort these vnodes.

If it cannot satisfy the job's request using vnodes that already have the requested AOE instantiated, it does the
following:

• PBS uses node_sort_key to select the free vnodes that must be provisioned in order to run the job, choos-
ing from vnodes that are free, provisionable, and offer the requested AOE, regardless of which AOE is
instantiated on them.

• Of the selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

aggressive_provision
PBS selects vnodes to be provisioned without considering which AOE is currently instantiated.

PBS uses node_sort_key to select the vnodes on which to run the job, choosing from vnodes that are free, pro-
visionable, and offer the requested AOE, regardless of which AOE is instantiated on them. Of the selected
vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

16.4.2.2 Examples of Vnode Selection

The following examples show how provisioning policy can affect which vnodes are selected for provisioning.

Example 16-1: 3 vnodes

In sched_config:

node_sort_key: "ncpus HIGH"

We have 3 nodes as described in the following table:

No jobs are running on any of the vnodes.

Case 1: aggressive provisioning

provision_policy: "aggressive_provision"

Job submitted with -lselect=ncpus=1:aoe=aoe1

In this case, host3 is used to run the job and host3 is provisioned.

Table 16-1: Example Configuration

Vnode/Host Number of CPUs Current AOE State

host1 1 aoe1 free

host2 2 unset free

host3 3 aoe2 free
PBS Professional 2022.1 Administrator’s Guide AG-593

Chapter 16 Provisioning
Case 2: avoiding provisioning

provision_policy: "avoid_provision"

Job submitted with -lselect=ncpus=1:aoe=aoe1

In this case, host1 is used to run the job and host1 is not provisioned.

Example 16-2: 5 vnodes

The following table shows the example configuration:

The vnodes are sorted in the order N1, N2, N3, N4, N5.

A job is submitted with:

qsub -lselect=3:ncpus=1:aoe=aoe1 -lplace=scatter

The job needs three vnodes with aoe1. Assume that all other requests except that for the AOE can be satisfied by any
vnode.

Case 1: aggressive provisioning

The scheduler selects N2, N3 and N4. It has not considered the AOE instantiated on these vnodes. It then provisions
N2 and N3 since N2 has a different AOE instantiated on it and N3 is not provisioned yet. N4 is not provisioned,
because it has the requested AOE already instantiated.

Case 2: avoiding provisioning

First, the scheduler selects N4 and N5. It does not choose N2 since it has a different AOE instantiated, and it does not
choose N3 since it does not have any AOE instantiated. But N4 and N5 together do not satisfy the job's requirement
of 3 vnodes.

Second, the scheduler seeks vnodes that if provisioned can satisfy the job's request. N2 and N3 can each satisfy the
job's request, so it chooses N2, because it comes first in sorted order.

The job runs on N4, N5 and N2. N2 is provisioned.

16.4.2.3 Rules for Vnode Selection for Provisioning

A vnode is not selected for provisioning for the following reasons:

• It does not have the requested AOE available in its list

• It does not have provisioning enabled on it

• It has other running or suspended jobs

• It already has the requested AOE

Table 16-2: Example Configuration

Vnode/Host AOE Available Current AOE State

N1 aoe1, aoe2 aoe1 busy

N2 aoe1, aoe2 aoe2 free

N3 aoe1, aoe2 NULL free

N4 aoe1, aoe2 aoe1 free

N5 aoe1, aoe2 aoe1 free
AG-594 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.4.2.4 Triggering Provisioning

When a job requires a vnode, and the vnode's current_aoe attribute is unset, or is set to a different AOE from the one
requested, the vnode is provisioned.

16.4.3 Provisioning And Reservations

16.4.3.1 Creating Reservations that Request AOEs

A reservation can request at most one AOE.

When a user creates a reservation that requests an AOE, the scheduler searches for vnodes that can satisfy the reserva-
tion. When searching, the scheduler follows the rule specified in the provision_policy scheduling parameter in
<sched_priv directory>/sched_config. See the pbs_sched(8B) manual page.

The vnodes allocated to a reservation that requests an AOE are put in the resv-exclusive state when the reservation runs.
These vnodes are not shared with other reservations or with jobs outside the reservation.

16.4.3.2 Submitting Jobs to a Reservation

If a job that requests an AOE is submitted to a reservation, the reservation must request the same AOE.

16.4.3.3 Running a Job in a Reservation Having a Requested AOE

A job can run in a reservation that has requested an AOE, as long as the job fits the following criteria:

• It requests the same AOE as the reservation

If the job has requested no AOE, or an AOE different from that of the reservation, the job is rejected.

16.4.4 How Provisioning Affects Jobs

16.4.4.1 Preemption and Provisioning

A job that has requested an AOE will not preempt another job, regardless of whether the job's requested AOE matches an
instantiated AOE. Running jobs are not preempted by jobs requesting AOEs.

16.4.4.2 Backfilling and Provisioning

If the job being backfilled around or the job doing the backfilling share a vnode, a job that has requested an AOE will not
play any part in backfilling:

• It will not be backfilled around by smaller jobs.

• It will not be used as the job that backfills around another job.

16.4.4.3 Walltime and Provisioning

A job's walltime clock is started after provisioning is over.
PBS Professional 2022.1 Administrator’s Guide AG-595

Chapter 16 Provisioning
16.4.4.4 Using qrun

When a job requesting an AOE is run via qrun -H, the following happens:

• If the requested AOE is available on the specified vnodes, those vnodes are provisioned with the requested AOE

• If the requested AOE is not available on the specified vnodes, the job is held

16.4.5 Vnode States and Provisioning

16.4.5.1 States Associated With Provisioning

The following vnode states are associated with provisioning:

provisioning
A vnode is in the provisioning state while it is in the process of being provisioned. No jobs are run on vnodes in
the provisioning state.

wait-provision
There is a limit on the maximum number of vnodes that can be in the provisioning state. This limit is specified
in the server's max_concurrent_provision attribute. If a vnode is to be provisioned, but cannot because the
number of concurrently provisioning vnodes has reached the specified maximum, the vnode goes into the
wait-provisioning state. No jobs are run on vnodes in the wait-provisioning state.

resv-exclusive
The vnodes allocated to a reservation that requests an AOE are put in the resv-exclusive state when the reserva-
tion runs. These vnodes are not shared with other reservations or with jobs outside the reservation.

16.4.5.2 Provisioning Process

The following table describes how provisioning and vnode state transitions interact:

Table 16-3: Vnode State Transitions and Provisioning

Event
Starting

Vnode State
Ending Vnode

State

Vnode is selected for provisioning free provisioning

Provisioning on vnode finishes provisioning free

1. Job running on this vnode leaving some resources available

2. No job running on this vnode

free free

Job running on this vnode, using all resources free job-busy

Vnode is selected for provisioning, but other vnodes being provisioned have
already reached maximum allowed number of concurrently provisioning
vnodes

free wait-provisioning

This vnode is waiting to be provisioned for a multi-vnode job, and provision-
ing fails for another of the job's vnodes

wait-provisioning free

Provisioning fails for this vnode provisioning offline

This vnode is waiting to be provisioned, and another vnode finishes provi-
sioning, bringing the total number of provisioning vnodes below the limit
specified in max_concurrent_provision

wait-provisioning provisioning
AG-596 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.4.5.3 Vnode State When Provisioning Fails

If provisioning fails on a vnode, that vnode is put into the offline state.

If provisioning for a multi-vnode job fails on one vnode, any vnodes in the wait-provisioning state are put into the free
state.

16.4.5.4 Using the qmgr Command on Vnodes In Process of

Provisioning

The following changes cannot be made to a provisioning vnode (a vnode in the provisioning state):

• Changing value of current_aoe vnode attribute

• Modifying resource resources_available.aoe

• Changing the state of the vnode. The qmgr command returns an error if this is attempted.

• Deleting the vnode from the server. The qmgr command returns an error if this is attempted.

The following can be modified while a vnode is provisioning:

• The server's max_concurrent_provision attribute

• A provisioning vnode's provision_enable attribute

The following cannot be set on the server host:

• current_aoe vnode attribute

• provision_enable vnode attribute

• The resources_available.aoe resource

16.4.6 Attributes, Resources, and Parameters Affecting

Provisioning

16.4.6.1 Host-level Resources

aoe
The built-in aoe resource is a list of AOEs available on a vnode. Case-sensitive. You specify the list of AOEs
that can be requested on a vnode by setting the value of resources_available.aoe to that list. Each job can
request at most one AOE.

Automatically added to the "resources" line in <sched_priv directory>/sched_config.

Cannot be modified while a vnode is provisioning.

Non-consumable. Cannot be set on the server host. Can be set only by a Manager.

Format: string_array.

Default: unset.

Python attribute value type: str
PBS Professional 2022.1 Administrator’s Guide AG-597

Chapter 16 Provisioning
16.4.6.2 Vnode Attributes

current_aoe
The current_aoe vnode attribute shows which AOE is currently instantiated on a vnode. Case-sensitive.

At startup, each vnode's current_aoe attribute is unset. You must set the attribute to the currently instantiated
AOE if you want the scheduler to be able to choose vnodes efficiently.

The value of this attribute is set automatically after a vnode is provisioned.

This attribute cannot be modified while a vnode is provisioning.

Cannot be set on the server host. Settable by Manager only; visible to all.

Format: String.

Default: Unset.

provision_enable
This attribute controls whether the vnode can be provisioned. If set to True, the vnode can be provisioned.

Cannot be set on the server host.

Settable by Manager only; visible to all.

Format: Boolean

Default: Unset

16.4.6.3 Server Attributes

max_concurrent_provision
The maximum number of vnodes allowed to be in the process of being provisioned. Settable by Manager only;
readable by all. When unset, default value is used. Cannot be set to zero; previous value is retained.

Format: Integer

Default: 5

Python attribute value type: int

16.4.6.4 Hook Attributes

All attributes of the provisioning hook affect provisioning. See “Hook Attributes” on page 349 of the PBS Professional
Reference Guide.

16.4.6.5 Scheduler Configuration Parameters

provision_policy
Specifies the provisioning policy to be used. Valid values: avoid_provision, aggressive_provision.

avoid_provision
PBS first tries to satisfy the job's request from free vnodes that already have the requested AOE instanti-
ated. PBS uses node_sort_key to sort these vnodes.

If it cannot satisfy the job's request using vnodes that already have the requested AOE instantiated, it does
the following:

PBS uses node_sort_key to select the free vnodes that must be provisioned in order to run the job,
choosing from vnodes that are free, provisionable, and offer the requested AOE, regardless of which
AOE is instantiated on them.

Of the selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.
AG-598 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
aggressive_provision
PBS selects vnodes to be provisioned without considering which AOE is currently instantiated.

PBS uses node_sort_key to select the vnodes on which to run the job, choosing from vnodes that are free,
provisionable, and offer the requested AOE, regardless of which AOE is instantiated on them. Of the
selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

Default: "aggressive_provision".

16.5 Configuring Provisioning

16.5.1 Overview of Configuring Provisioning

The administrator configures provisioning attributes, provides a provisioning tool, and writes a provisioning hook. The
administrator configures each vnode to be provisioned with a list of AOE resources, where each resource is an AOE that
is available to be run on that vnode. These resources are tags that tell the scheduler what can be run on that vnode. The
administrator should also inform the scheduler about the current environment on each vnode, by setting the vnode's
current_aoe attribute. It is also necessary to enable provisioning on each vnode to be provisioned and to set provision-
ing policy at the server and scheduler.

16.5.1.1 Steps in Configuring Provisioning

These are the steps that the administrator must take:

1. Provide a provisioning tool such as HPE Performance Cluster Manager (HPCM). See section 16.5.2, “Provide a
Provisioning Tool”, on page 599.

2. Prepare each OS, application, or script that is to be used in provisioning. See section 16.5.3, “Prepare Images”, on
page 600.

3. Configure each vnode to be provisioned with the appropriate resources. See section 16.5.4, “Define aoe Resources”,
on page 600.

4. Optional: publish each vnode's current AOE. See section 16.5.5, “Inform Scheduler of Current AOE”, on page 600.

5. Write the provisioning hook's script. See section 16.5.6, “Write the Provisioning Script”, on page 601.

6. Create the empty provisioning hook, import the script, and configure the hook. See section 16.5.7, “Create and Con-
figure the Provisioning Hook”, on page 602.

7. Configure provisioning policy. See section 16.5.8, “Configure Provisioning Policy”, on page 603.

8. Enable provisioning on vnodes. See section 16.5.9, “Enable Provisioning on Vnodes”, on page 604.

9. Enable the provisioning hook. See section 16.5.10, “Enable Provisioning Hook”, on page 604.

16.5.2 Provide a Provisioning Tool

For each vnode you wish to provision, there must be a provisioning tool that can be used on that vnode. This provision-
ing tool can either be written into the provisioning hook script, or be a separate script that is called by the provisioning
hook script. You can write the provisioning tool yourself, or you can use something like the HPE Performance Cluster
Manager (HPCM) cluster management tool. Your provisioning tool may be able to employ network-accessible power
control units.
PBS Professional 2022.1 Administrator’s Guide AG-599

Chapter 16 Provisioning
16.5.3 Prepare Images

You must prepare each image, application, or script you will use. Make sure that each is available to the target vnode.
For example, if you use a diskless node server, put your images on the diskless node server.

The values for the ncpus and mem resources must be the same for all OS images that may be instantiated on a given
vnode.

16.5.4 Define aoe Resources

The aoe resource is of type string_array, and is used to hold the names of the AOEs available at each vnode. This
resource is not consumable. This resource is unset by default, and by default is added to the resources line in
<sched_priv directory>/sched_config. See “Resources Built Into PBS” on page 265 of the PBS Profes-
sional Reference Guide. The aoe resource is visible to all, but settable by the PBS Manager and Operator only.

The scheduler must be able to find out which AOEs can be run on which vnodes. To tag each vnode with the AOEs that
can run on it, set that vnode's resources_available.aoe attribute to the list of available AOEs. For example, if vnode V1
is to run RHEL and SLES, and the hook script will recognize rhel and sles, set the vnode's resources_available.aoe
attribute to show this:

Qmgr: set node V1 resources_available.aoe = "rhel, sles"

It is recommended that you make a list of all of the AOEs that may be used in provisioning in your PBS complex. The
list is to facilitate script writing and resource configuration. Each entry in this list should contain at least the following
information:

• Full description of the AOE

• Resource name of the AOE

• Vnodes that are to run the AOE

• Location where script should look for the AOE

For example, the list might look like the following table:

16.5.5 Inform Scheduler of Current AOE

Each vnode has an attribute called current_aoe which is used to tell the scheduler what the vnode's current AOE is. This
attribute is unset by default. The attribute is of type string. It is visible to all, but settable by the PBS Manager only.

Table 16-4: Example AOE List

Description
Resource

Name
Vnodes Location

SuSE SLES 12 64-bit sles12 mars, jupiter,
neptune, pluto

imageserver.exam-
ple.com:/images/sles12-image

SuSE SLES 15 64-bit sles15 mars, jupiter,
pluto

imageserver.exam-
ple.com:/images/sles15-image

Red Hat Enterprise
Linux 8 64-bit

rhel7 luna, aitne, io imageserver.exam-
ple.com:/images/rhel8-image

Windows Server 2016
64-bit

winsrv16 luna, aitne, io \\WinServer\ C:\images\winsrv16
AG-600 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
You can set this attribute on each vnode that will be used in provisioning. Set it to the value of the AOE that is currently
instantiated on the vnode. So for example, using the table in section 16.5.4, “Define aoe Resources”, on page 600, if
vnode pluto is running 64-bit SuSE SLES 15, set current_aoe to sles15:

Qmgr: set node pluto current_aoe = sles15

When PBS provisions a vnode with a new AOE, the PBS server sets the value of current_aoe to the new AOE.

If PBS cannot provision a vnode with the desired AOE, it marks the vnode offline and unsets the value of current_aoe.

16.5.6 Write the Provisioning Script

You create the provisioning hook using a provisioning script which must manage all provisioning, either directly, or indi-
rectly by calling other scripts. The script in the hook is the master provisioning script.

The script that does the provisioning must have the logic needed to provision the specified vnode with the specified AOE.

There are two types of provisioning. One is when the vnode is rebooted after installing/uninstalling the OS/application
or running the script. The other is when the vnode is not rebooted after installing/uninstalling the OS/application or run-
ning the script.

The master provisioning script must meet the following requirements:

• Written in Python

• Arguments to the script are the vnode name and the AOE name

• If the vnode must be rebooted for provisioning, the provisioning script must cause the target vnode to be rebooted

• Must indicate success using the correct return value:

• Return pbs.event.accept(0) if provisioning is successful and the vnode is rebooted

• Return pbs.event.accept(1) if provisioning is successful and the vnode is not rebooted

• Must indicate failure to PBS by using pbs.event.reject()

• If the master provisioning script calls other scripts, it must wait for them to finish before returning success or failure
to PBS

16.5.6.1 Arguments to Master Script

The arguments to the master script are the following:

• Name of vnode to be provisioned

Supplied to the hook via the PBS provision event object, as pbs.event.vnode

• Name of AOE to be instantiated on the target vnode

Supplied to the hook via the PBS provision event object, as pbs.event.aoe

These values can be passed to scripts that are called by the master script.

16.5.6.2 Return Values

The master script must indicate to PBS whether it succeeded or failed in a way that PBS can understand.
PBS Professional 2022.1 Administrator’s Guide AG-601

Chapter 16 Provisioning
16.5.6.2.i Success

By default, pbs.event.accept() returns zero. The script must return different values for successful provisioning, depend-
ing on whether the vnode is rebooted:

• If provisioning is successful and the vnode is rebooted, the script must return 0 (zero) to PBS via
pbs.event.accept(0).

• If provisioning is successful and the vnode is not rebooted, the script must return 1 (one) to PBS via
pbs.event.accept(1).

16.5.6.2.ii Failure

If provisioning fails, the script must use pbs.event.reject() to indicate failure. By default, pbs.event.reject() returns
255. To return another failure code, use the following:

pbs.event.reject(error message, error code)

where error code is any number between 2 and 255. Returning an error code in pbs.event.reject() is optional.

16.5.6.3 Master Script Calls Subscript

Often, the master script (the hook script) calls another script, depending on the provisioning required. The subscript does
the actual provisioning of the target vnode with the requested AOE. In this case, the master script must wait for the sub-
script to return and indicate success or failure. The master script then propagates the result to PBS.

Example of a fragment of a master script calling a subscript:

return_value = os.system("/var/vendor/vendor_prov.sh " <arguments to vendor_prov.sh>)

16.5.7 Create and Configure the Provisioning Hook

The provisioning hook causes any provisioning to happen. The provisioning hook is a Python script which either does
the provisioning directly or calls other scripts or tools. Typically the provisioning hook calls other scripts, which do the
actual work of provisioning. For complete information on writing hooks, see the PBS Professional Hooks Guide.

You can have at most one provisioning hook. Do not attempt to create more than one provisioning hook.

In the steps that follow, we use as examples a provisioning hook named "Provision_Hook", and an ASCII script named
"master_provision.py".

16.5.7.1 Create the Hook

To create the provisioning hook:

Qmgr: create hook <hook name>

For example, to create a provisioning hook called Provision_Hook:

Qmgr: create hook Provision_Hook

16.5.7.2 Import the Hook Script

If the hook script is called "master_provision.py", and it is ASCII, and it is located in /root/data/, importing
the hook script looks like this:

Qmgr: import hook Provision_Hook application/x-python default
/root/data/master_provision.py

See "Importing Hooks" on page 35 in the PBS Professional Hooks Guide for more about importing hooks.
AG-602 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.5.7.3 Configure the Hook Script

16.5.7.3.i Set Event Type

The event type for the provisioning hook is called "provision". To set the event type:

Qmgr: set hook Provision_Hook event = provision

Do not try to assign more than one event type to the provisioning hook.

16.5.7.3.ii Set Alarm Time

The default alarm time for hooks is 30 seconds. This may be too short for a provisioning hook. You should set the
alarm time to a value that is slightly more than the longest time required for provisioning. Test provisioning each AOE,
and find the longest time required, then add a small amount of extra time. To set the alarm time:

Qmgr: set hook Provision_Hook alarm = <number of seconds required>

16.5.8 Configure Provisioning Policy

16.5.8.1 Set Maximum Number of Concurrently Provisioning Vnodes

The value of the server's max_concurrent_provision attribute specifies the largest number of vnodes that can be in the
process of provisioning at any time. The default value of this attribute is 5. Set the value of this attribute to the largest
number of vnodes you wish to have concurrently provisioning. See section 16.4.6.3, “Server Attributes”, on page 598 for
more information on the attribute.

16.5.8.1.i Considerations

You may wish to limit the number of hosts that can be in the process of provisioning at the same time:

• So that the network isn't overwhelmed transferring OS images to execution nodes

• So the hosts won't draw excessive power when powering up at the same time

Many sites have tools that notify them when an execution node goes down. You may want to avoid being paged every
time an execution node is provisioned with a new AOE.

16.5.8.2 Set Scheduling Policy

When a job is scheduled to be run, and the job requests an AOE, PBS can either try to fit the job on vnodes that already
have that AOE instantiated, or it can choose the vnodes regardless of AOE. Choosing regardless of AOE is the default
behavior; the assumption is that the chances of finding free vnodes that match all the requirements including that of the
requested AOE are not very high.

Provisioning policy is controlled by the provision_policy scheduling parameter in <sched_priv direc-
tory>/sched_config. This parameter is a string which can take one of two values: avoid_provision or
aggressive_provision. If you want PBS to try first to use vnodes whose AOEs already match the requested AOE, set
provision_policy to avoid_provision. If you want PBS to choose vnodes regardless of instantiated AOE, set it to
aggressive_provision.

For details about the provision_policy parameter, see section 16.4.2.1, “Provisioning Policy”, on page 593.

For jobs that do not request an AOE, node_sort_key is used to choose vnodes.
PBS Professional 2022.1 Administrator’s Guide AG-603

Chapter 16 Provisioning
16.5.9 Enable Provisioning on Vnodes

PBS will provision only those vnodes that have provisioning enabled. Provisioning on each vnode is controlled by its
provision_enable attribute. This attribute is Boolean, with a default value of False. You enable provisioning on a
vnode by setting its provision_enable attribute to True.

This attribute cannot be set to True on the server host.

See section 16.4.6.2, “Vnode Attributes”, on page 598 for details about the provision_enable vnode attribute.

16.5.10 Enable Provisioning Hook

The last step in configuring provisioning is enabling the provisioning hook. The provisioning hook is enabled when its
enabled attribute is set to True. To set the enabled attribute to True for the provisioning hook named Provision_Hook:

Qmgr: set hook Provision_Hook enabled = True

16.6 Viewing Provisioning Information

16.6.1 Viewing Provisioning Hook Contents

To see the contents of the provisioning hook, export them:

qmgr -c "export hook <hook name> application/x-python default" > <output-path>/<output-filename>

For example, if the provisioning hook is named Provision_Hook, and you wish to export the contents to
/usr/user1/hook_contents:

qmgr -c "export hook Provision_Hook application/x-python default" > /usr/user1/hook_contents

16.6.2 Viewing Provisioning Hook Attributes

To view the provisioning hook's attributes, use the list hook option to the qmgr command:

qmgr -c "list hook <hook name>"
AG-604 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.6.3 Printing Provisioning Hook Creation Commands

To print the provisioning hook's creation commands, use the print hook option to the qmgr command:

qmgr -c "p hook"

#

Create hooks and set their properties.

#

#

Create and define hook my_prov_hook

#

create hook my_prov_hook

set hook my_prov_hook type = site

set hook my_prov_hook enabled = True

set hook my_prov_hook event = provision

set hook my_prov_hook user = pbsadmin

set hook my_prov_hook alarm = 30

set hook my_prov_hook order = 1

import hook my_prov_hook application/x-python base64 -

c2xzbGwK

16.6.4 Viewing Attributes and Resources Affecting

Provisioning

16.6.4.1 Server Attributes

To see the server attributes affecting provisioning, print the server's information using the qmgr command:

qmgr -c "print server"
PBS Professional 2022.1 Administrator’s Guide AG-605

Chapter 16 Provisioning
You will see output similar to the following:

qmgr

Max open servers: 49

Qmgr: p s

#

Create queues and set their attributes.

#

#

Create and define queue workq

#

create queue workq

set queue workq queue_type = Execution

set queue workq enabled = True

set queue workq started = True

#

Set server attributes.

#

set server scheduling = True

set server default_queue = workq

set server log_events = 511

set server mail_from = adm

set server resv_enable = True

set server node_fail_requeue = 310

set server pbs_license_min = 0

set server pbs_license_max = 2147483647

set server pbs_license_linger_time = 31536000

set server license_count = "Avail_Global:0 Avail_Local:256 Used:0 High_Use:0"

set server max_concurrent_provision = 5
AG-606 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.6.4.2 Viewing Vnode Attributes and Resources

To see vnode attributes and resources affecting provisioning, use the -a option to the pbsnodes command:

pbsnodes -a

host1

 Mom = host1

 ntype = PBS

 state = free

 pcpus = 2

 resources_available.aoe = osimage1, osimage2

 resources_available.arch = linux

 resources_available.host = host1

 resources_available.mem = 2056160kb

 resources_available.ncpus = 2

 resources_available.vnode = host1

 resources_assigned.mem = 0kb

 resources_assigned.ncpus = 0

 resources_assigned.vmem = 0kb

 resv_enable = True

 sharing = default_shared

 provision_enable = True

 current_aoe = osimage2

16.7 Requirements and Restrictions

16.7.1 Site Requirements

16.7.1.1 Single-vnode Hosts Only

PBS will provision only single-vnode hosts. Do not attempt to use provisioning on hosts that have more than one vnode.

16.7.1.2 Provisioning Tool Required

For each vnode you wish to provision, there must be a provisioning tool that can be used on that vnode. Examples of
provisioning tools are the following:

• The HPE Performance Cluster Manager (HPCM) cluster management tool

• Dual boot system

• Network-accessible power control units

16.7.1.3 Single Provisioning Hook Allowed

The PBS server allows only one provisioning hook. If you have an existing provisioning hook and you import a provi-
sioning script, that script will become the contents of the hook, whether or not the hook already has a script. The new
script will overwrite the existing provisioning hook script.
PBS Professional 2022.1 Administrator’s Guide AG-607

Chapter 16 Provisioning
16.7.1.4 Provisioning Hook Cannot Have Multiple Event Types

The provisioning hook cannot have more than one event type.

16.7.1.5 AOE Names Consistent Across Complex

Make AOE names consistent across the complex. The same AOE should have the same name everywhere.

16.7.2 Usage Requirements

16.7.2.1 Restriction on Concurrent AOEs on Vnode

Only one AOE can be instantiated at a time on a vnode.

Only one kind of aoe resource can be requested in a job. For example, an acceptable job could make the following
request:

-l select=1:ncpus=1:aoe=suse+1:ncpus=2:aoe=suse

16.7.2.2 Vnode Job Restrictions

A vnode with any of the following jobs will not be selected for provisioning:

• One or more running jobs

• A suspended job

• A job being backfilled around

16.7.2.3 Vnode Reservation Restrictions

A vnode will not be selected for provisioning for job MyJob if the vnode has a confirmed reservation, and the start time
of the reservation is before job MyJob will end.

A vnode will not be selected for provisioning for a job in reservation R1 if the vnode has a confirmed reservation R2, and
an occurrence of R1 and an occurrence of R2 overlap in time and share a vnode for which different AOEs are requested
by the two occurrences.

16.7.2.4 Hook Script and AOE Must Be Compatible

The requested AOE must be available to the vnode to be provisioned. The following must be True:

• The AOE must be in the list of available AOEs for the vnode

• Each AOE listed on a vnode must be recognized by the provisioning hook script.

• The vnode must have provisioning enabled

16.7.2.5 Provisioning Hook Must Be Ready

• The provisioning hook must obey the following rules:

• It must exist

• It must have a Python script imported

• It must be enabled

• It must be designed to invoke an external script or command for AOEs that are to be used
AG-608 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.7.2.6 Server Host Cannot Be Provisioned

The server host cannot be provisioned: a MoM can run on the server host, but that MoM's vnode cannot be provisioned.
The provision_enable vnode attribute, resources_available.aoe, and current_aoe cannot be set on the server host.

16.7.2.7 PBS Attributes Not Available to Provisioning Hook

The provisioning hook cannot operate on PBS attributes except for the following:

• The name of the vnode to be provisioned: pbs.event.vnode

• The AOE to be instantiated: pbs.event.aoe

16.7.2.8 avoid_provision Incompatible with smp_cluster_dist

The avoid_provision provisioning policy is incompatible with the smp_cluster_dist scheduling scheduler configuration
parameter. If a job requests an AOE, the avoid_provision policy overrides the behavior of smp_cluster_dist.

16.8 Defaults and Backward Compatibility

By default, PBS does not provide provisioning. You must configure PBS to provide provisioning.

16.9 Example Scripts

16.9.1 Sample Master Provisioning Hook Script With

Explanation

We show a sample provisioning hook script, and an explanation of what the script does. For readability, the sample script
is a master script calling two subscripts.

This provisioning hook allows two kinds of provisioning request:

• For the application AOE named "App1", via the script app_prov.sh

The app_prov.sh script does not reboot the vnode

• For other provisioning, via the vendor-provided provisioning shell script vendorprov.sh

The vendorprov.sh script reboots the vnode
PBS Professional 2022.1 Administrator’s Guide AG-609

Chapter 16 Provisioning
16.9.1.1 Sample Master Provisioning Hook Script

import pbs (1)

import os (2)

e = pbs.event() (3)

vnode = e.vnode (4)

aoe = e.aoe (5)

if (aoe == "App1"): (6)

appret = os.system("/var/user/app_prov.sh

 " + vnode + " " + aoe) (7)

if appret != 1: (8)

e.reject("Provisioning without reboot

 failed", 210) (9)

else:

e.accept(1) (10)

ret = os.system("/var/vendor/vendorprov.sh

 " + vnode + " " + aoe) (11)

if ret != 0: (12)

e.reject("Provisioning with reboot

 failed", 211) (13)

else:

e.accept(0) (14)

16.9.1.2 Explanation of Sample Provisioning Hook Script

• Lines 1 and 2 import the pbs and os modules.

• Line 3 puts the PBS provisioning event into the local variable named "e".

• Lines 4 and 5 store the target vnode name and the name of the AOE to be instantiated on the target vnode in local
variables.

• Line 6 checks whether provisioning of the application AOE named "App1" is requested.

• Line 7 is where the actual code to do non-rebooting provisioning could go. In this example, we call a subscript,
passing the name of the target vnode and the requested AOE, and storing the return value in "appret".

The non-rebooting provisioning subscript should return 1 on success.

• Line 8 checks whether non-rebooting provisioning via app_prov.sh succeeded.

• Line 9 returns the error code 210 and an error message to PBS if app_prov.sh failed.

• Line 10 returns 1 via pbs.event.accept(1) if non-rebooting provisioning succeeded.

• Line 11 calls the vendor-supplied script that is responsible for doing rebooting provisioning whenever "App1" is not
the AOE.

The name of the target vnode and the requested AOE are passed to this script.
AG-610 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
The vendor-supplied script should expect these two arguments. The return value from this script is stored in the
variable named "ret".

• Line 12 checks whether rebooting provisioning via the vendor-supplied script vendorprov.sh was successful.

• Line 13: If the return value is anything but zero (success), the provisioning hook script passes the error code 211
back to PBS, along with an error message.

• Line 14 returns success to PBS via pbs.event.accept(0) and the master script exits.

16.9.2 Sample Master Provisioning Hook Script Calling

Performance Cluster Manager

The following is a master provisioning hook script that calls HPE Performance Cluster Manager (HPCM):

-*- coding: utf-8 -*-

import pbs

import os

e = pbs.event()

vnode = e.vnode

aoe = e.aoe

if (aoe=="App1"):

ret = os.system("/root/osprov/application.sh " + vnode + " " + aoe)

if ret != 0:

e.reject("Non-reboot provisioning failed",ret)

else:

e.accept(1)

ret = os.system("/root/osprov/sgi_provision.sh " + vnode + " " + aoe)

if ret != 0:

e.reject("Reboot provisioning failed",ret)

else:

e.accept(0)

16.9.3 Sample Script Set

This is a set of example Linux scripts designed to work together. They are the following:

provision_hook.py

This is the script for the provisioning hook. It calls the master provisioning script.

provision_master.py:

This is the master provisioning script. It is responsible for rebooting the machine being provisioned. It calls
update_grub.sh to update the current AOE.

update_grub.sh

This shell script updates the linux grub.conf file and sets the value for current_aoe after the reboot.

The update_grub.sh script must be modified according to the grub configuration of the system in question
before being run.
PBS Professional 2022.1 Administrator’s Guide AG-611

Chapter 16 Provisioning
16.9.3.1 Provisioning Hook Script

provision_hook.py:

import pbs

import os

e = pbs.event()

vnode = e.vnode

aoe = e.aoe

#print "vnode:" + vnode

#print "AOE:" + aoe

if (aoe=="App1"):

print "Provisioning an application"

e.accept(1)

ret = os.system("python /root/provision_master.py " + vnode + " " + aoe + " " + "lin")

#print "Python top level script returned " + str(ret)

if ret != 0:

e.reject("Provisioning failed",ret)

else:

e.accept(0)
AG-612 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.9.3.2 Master Provisioning Script

provision_master.py:

#!/usr/bin/python

#--------------------

success : 0

failure : 1

#--------------------

win_or_lin == 1 : windows

win_or_lin == 0 : linux

#--------------------

1 is TRUE

0 is FALSE

#--------------------

import sys

import os

vnode = sys.argv[1]

aoe = sys.argv[2]

win_or_lin = sys.argv[3]

print vnode, aoe

if not aoe.find('win'):

print "aoe is win"

isvnodewin = 1

else:

print "aoe is *nix"

isvnodewin = 0

print "win_or_lin = [", win_or_lin, "]"

if (win_or_lin == "win"):

print "entering window server"

if isvnodewin:

#------------ WINDOWS -> WINDOWS

ret = os.system("pbs-sleep 05")

#------------ WINDOWS -> WINDOWS

else:

#------------ WINDOWS -> LINUX

ret = os.system("pbs-sleep 05")

#------------ WINDOWS -> LINUX
PBS Professional 2022.1 Administrator’s Guide AG-613

Chapter 16 Provisioning
ret = os.system("pbs-sleep 45")

print "Pinging machine until it is up..."

timeout = 120

ticks = 0

while 1:

ret = os.system("ping -c 1 -i 5 " + vnode + " -w 10 > /dev/null 2>&1")

if not ret:

print "that machine is now up"

exit(0)

ticks = ticks + 1

print "ticks = ", ticks

if ticks > timeout:

print "exit ticks = ", ticks

print "that machine didn't come up after 2 mins,FAIL"

exit(1)

else:

print "entering linux server"

if isvnodewin:

#------------ LINUX -> WINDOWS

ret = os.system("sleep 05")

#------------ LINUX -> WINDOWS

else:

#------------ LINUX -> LINUX

ret = os.system("scp -o StrictHostKeyChecking=no /root/update_grub.sh " + vnode + ":/root
> /dev/null 2>&1")

if ret != 0:

print "scp failed to copy"

exit(1)

ret = os.system("/usr/bin/ssh -o StrictHostKeyChecking=no " + vnode + "
\"/root/update_grub.sh " + vnode + " " + aoe + " 1 " + " \" > /dev/null 2>&1")

if ret != 0:

print "failed to run script"

exit(1)

ret = os.system("/usr/bin/ssh -o StrictHostKeyChecking=no " + vnode + " \"reboot\"" + " >
/dev/null 2>&1")

if ret != 0:

print "failed to reboot that machine"

exit(1)

#------------ LINUX -> LINUX
AG-614 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
ret = os.system("sleep 45")

print "Pinging machine until it is up..."

timeout = 120

ticks = 0

while 1:

ret = os.system("ping -c 1 -i 5 " + vnode + " -w 10 > /dev/null 2>&1")

if not ret:

print "that machine is now up"

exit(0)

print "ticks = ", ticks

ticks = ticks + 1

if ticks > timeout:

print "That machine didn't come up after 2 mins. FAIL"

exit(1)
PBS Professional 2022.1 Administrator’s Guide AG-615

Chapter 16 Provisioning
16.9.3.3 Grub Update Shell Script

update_grub.sh:

#! /bin/sh

if [$# -lt 2]; then

echo "syntax: $0 <machine ip> <aoe name>"

exit 1

fi

machine=$1

aoe_name=$2

menufile="/boot/grub/grub.conf"

if [! -f "$menufile"]; then

echo "grub.conf file not found. $machine using grub bootloader?"

exit 1

fi

link=`ls -l $menufile | cut -c1`

if ["$link" = "l"]; then

menufile=`ls -l $menufile | awk -F"-> " '{print $2}'`

echo "Found link file, original file is $menufile"

fi

titles=`cat $menufile | grep title | awk -F"title" '{print $2}' | sed 's/^[\t]//g'`

lines=`echo -e "$titles" | wc -l`

found_aoe_index=-1

count=0

while [$count -lt $lines]

do

lineno=`expr $count + 1`

title=`echo -e "$titles" | head -n $lineno | tail -n 1`

if ["$aoe_name" = "$title"]; then

found_aoe_index=$count

fi

count=`expr $count + 1`

done

if [$found_aoe_index = -1]; then

echo "Requested AOE $aoe_name is not found on machine $machine"

exit 2

fi

new_def_line="default=$found_aoe_index"
AG-616 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
def_line=`cat $menufile | grep "^default="`

echo "new_def_line=$new_def_line"

echo "def_line=$def_line"

echo "menufile=$menufile"

cp $menufile /boot/grub/grub.conf.backup

cat $menufile | sed "s/^$def_line/$new_def_line/g" > grub.out

if [-s grub.out]; then

mv grub.out $menufile

else

exit 1

fi

service pbs stop

exit 0

16.10 Advice and Caveats

16.10.1 Using Provisioning Wisely

It is recommended that when using provisioning, you set PBS up so as to prevent things such as the following:

• User jobs not running because vnodes used in a reservation have been provisioned, and provisioning for the reserva-
tion job will take too long

• Excessive amounts of time being taken up by provisioning from one AOE to another and back again

In order to avoid problems like the above, you can do the following to keep specific AOE requests together:

• For each AOE, associate a set of vnodes with a queue. Use a hook to move jobs into the right queues.

• Create a reservation requesting each AOE, then use a hook to move jobs requesting AOEs into the correct reserva-
tion.
PBS Professional 2022.1 Administrator’s Guide AG-617

Chapter 16 Provisioning
16.10.1.1 Preventing Provisioning

You may need to prevent specific users or groups from using provisioning. You can use a job submission, job modifica-
tion, or reservation creation hook to prevent provisioning. For more about hooks, see the PBS Professional Hooks
Guide. The following is an example of a hook script to prevent USER1 from provisioning:

import pbs

import re

#--- deny user access to provisioning

e = pbs.event()

j = e.job #--- Use e.resv to restrict provisioning in reservation

who = e.requestor

unallow_ulist = ["USER1"]

if who not in unallow_ulist

e.accept(0)

#User request AOE in select?

if j.Resource_List["select"] != None:

s = repr(j.Resource_List["select"])

if re.search("aoe=", s) != None:

pbs.logmsg(pbs.LOG_DEBUG, "User %s not allowed to

provision" % (who))

e.reject("User not allowed to provision")

#User request AOE?

if j.Resource_List["aoe"] != None:

pbs.logmsg(pbs.LOG_DEBUG, "User %s not allowed to

provision" % (who))

e.reject("User not allowed to provision")

e.accept(0)

16.10.2 Allow Enough Time in Reservations

If a job is submitted to a reservation with a duration close to the walltime of the job, provisioning could cause the job to
be terminated before it finishes running, or to be prevented from starting. If a reservation is designed to take jobs
requesting an AOE, leave enough extra time in the reservation for provisioning.
AG-618 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
16.11 Errors and Logging

16.11.1 Errors

16.11.1.1 Errors Resulting in Marking Vnodes Offline

A vnode is marked offline if:

• Provisioning fails for the vnode

• The AOE reported by the vnode does not match the requested AOE after the provisioning script finishes

A vnode is not marked offline if provisioning fails to start due to internal errors in the script.

16.11.1.2 Errors Resulting in Requeueing Job

Before provisioning a vnode with a requested OS, the server checks to see whether MoM's hook files are synced. If not,
the server creates a timed task to check again. If the server fails to create the timed task, it requeues the job, and logs fol-
lowing error messages at log level 0x0001:

"Resource temporarily unavailable (11) in prov_startjob, Unable to set task for prov_startjob;
requeueing the job"

"Cannot allocate memory (12) in prov_startjob, Unable to set task for prov_startjob; requeuing the
job"

"Cannot allocate memory (12) in check_and_run_jobs, Unable to set task for prov_startjob;
requeueing the job"

16.11.2 Logging

16.11.2.1 Accounting Logs

For each job and reservation, an accounting log entry is made whenever provisioning starts and provisioning ends. Each
such log entry contains a list of the vnodes that were provisioned, the AOE that was provisioned on these vnodes, and the
start and end time of provisioning.

The accounting log entry for the start of provisioning is identified by the header "P", and the entry for the end of provi-
sioning is identified by the header "p".

Example:

Printed when job starts provisioning:

"01/15/2009 12:34:15;P;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=START start_time=1231928746"

Printed when job stops provisioning:

"01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=SUCCESS
end_time=1231928812"

Printed when provisioning for job failed:

"01/15/2009 12:34:15;p;108.mars;user=user1 group=group1 jobname=STDIN queue=workq
prov_vnode=jupiter:aoe=osimg1+venus:aoe=osimg1 provision_event=END status=FAILURE
end_time=1231928812"
PBS Professional 2022.1 Administrator’s Guide AG-619

Chapter 16 Provisioning
16.11.2.2 Server Logs

16.11.2.2.i Messages Printed at Log Level 0x0080

"vnode <vnode name>: Vnode offlined since it failed provisioning"

"vnode <vnode name>: Vnode offlined since server went down during provisioning"

"Provisioning for Job <job id> succeeded, running job"

"Job failed to start provisioning"

"Provisioning for Job <job id> failed, job held"

"Provisioning for Job <job id> failed, job queued"

16.11.2.2.ii Messages Printed at Log Level 0x0100

"Provisioning of Vnode <vnode name> successful"

"Provisioning of <vnode name> with <AOE name> for <job ID> failed, provisioning exit
status=<number>"

"Provisioning of <vnode name> with <aoe name> for <job id> timed out"

"Provisioning vnode <vnode> with AOE <AOE> started successfully"

"provisioning error: AOE mis-match"

"provisioning error: vnode offline"

16.11.2.2.iii Messages Printed at Log Level 0x0002

"Provisioning hook not found"

16.11.2.2.iv Messages Printed at Log Level 0x0001

"Provisioning script recompilation failed"

"Resource temporarily unavailable (11) in prov_startjob, Unable to set task for prov_startjob;
requeueing the job"

"Cannot allocate memory (12) in prov_startjob, Unable to set task for prov_startjob; requeueing
the job"

"Cannot allocate memory (12) in check_and_run_jobs, Unable to set task for prov_startjob;
requeueing the job"

16.11.2.3 Scheduler Logs

16.11.2.3.i Messages Printed at Log Level 0x0400

Printed when vnode cannot be selected for provisioning because requested AOE is not available on vnode:

"Cannot provision, requested AOE <aoe-name> not available on vnode"

Printed when vnode cannot be selected for provisioning because vnode has running or suspended jobs, or the reservation
or job would conflict with an existing reservation:

"Provision conflict with existing job/reservation"

Printed when vnode cannot be selected for provisioning because provision_enable is unset or set False on vnode:

"Cannot provision, provisioning disabled on vnode"

Printed when job cannot run because server is not configured for provisioning:

"Cannot provision, provisioning disabled on server"

Printed when multiple vnodes are running on the host:

"Cannot provision, host has multiple vnodes"
AG-620 PBS Professional 2022.1 Administrator’s Guide

Provisioning Chapter 16
Printed when vnodes are sorted according to avoid_provision policy:

"Re-sorted the nodes on aoe <aoe name>, since aoe was requested"

16.11.2.3.ii Messages Printed at Log Level 0x0100

Printed when a vnode is selected for provisioning by a job:

"Vnode <vnode name> selected for provisioning with <AOE name>"

16.11.3 Error Messages

Printed when vnode is provisioning and current_aoe is set or unset or resources_available.aoe is modified via qmgr:

"Cannot modify attribute while vnode is provisioning"

Printed when qmgr is used to change state of vnode which is currently provisioning:

"Cannot change state of provisioning vnode"

Printed when vnode is deleted via 'qmgr > delete node <name>' while it is currently provisioning:

"Cannot delete vnode if vnode is provisioning"

Printed when provision_enable, current_aoe or resources_available.aoe are set on host running PBS server, sched-
uler, and communication daemons:

"Cannot set provisioning attribute on host running PBS server and scheduler"

Printed when current_aoe is set to an AOE name that is not listed in resources_available.aoe of the vnode:

"Current AOE does not match with resources_available.aoe"

Printed when an event of a hook is set to 'provision' and there exists another hook that has event 'provision':

"Another hook already has event 'provision', only one 'provision' hook allowed"

Printed when qsub has -laoe and -lselect=aoe:

"-lresource= cannot be used with "select" or "place", resource is: aoe"

Job comment printed when job fails to start provisioning:

"job held, provisioning failed to start"

Printed when job is submitted or altered so that it does not meet the requirements that all chunks must request same AOE,
and this AOE must match that of any reservation to which the job is submitted:

"Invalid provisioning request in chunk(s)"
PBS Professional 2022.1 Administrator’s Guide AG-621

Chapter 16 Provisioning
AG-622 PBS Professional 2022.1 Administrator’s Guide

17

Support for HPE

17.1 Support for HPE with Cpusets

17.1.1 Briefly, How PBS Manages Cpusets

As of version 2020.1, PBS uses the standard MoM on HPE machines, and uses the cgroups hook to manage cpusets on
HPE machines. See Chapter 6, "Configuring and Using PBS with Cgroups", on page 311.

PBS automatically examines the topology of the machine, and creates child vnodes to represent subsets of the machine.
PBS also organizes the machine's vnodes into placement sets. When PBS runs a job on an HPE execution host, the
cgroups hook creates the cpuset in which the job runs, and destroys the cpuset after the job is finished.

17.1.2 Cpusets and Vnodes

The PBS MoM represents a machine as a set of vnodes. Each vnode is visible via commands such as pbsnodes. Each
vnode must have its own logical memory pool, so you get one vnode per logical memory pool. All of the vnodes on one
multi-vnode host are managed by one instance of pbs_mom.

A cpuset is a group of CPUs and memory nodes around which an inescapable wall has been placed. The OS manages a
cpuset so that processes executing within the cpuset are typically confined to use only the resources defined by the
cpuset.

17.1.3 Requirements for Managing Cpusets

If you want PBS to manage the cpusets on a machine:

• Use the cgroups hook

• You must use a supported version of HPE MPI

• You use the PBS start/stop script to start MoM instead of pbs_mom

17.1.4 Where to Use Cpusets

Use PBS to manage your cpusets wherever you want jobs to be fenced into their own CPUs and memory. This can also
be useful on other machines, such as the HPE 8600, depending on the individual machine.

17.1.5 Settings for sharing Attribute

The cgroups hook sets the sharing attribute for each vnode as follows:

• On MC990X and Superdome Flex, the hook sets the sharing attribute for the parent vnode to default_shared

• On MC990X and Superdome Flex, the hook sets the sharing attribute for all other vnodes to default_shared

• On 8600, the hook sets the sharing attribute for each vnode to default_shared
PBS Professional 2022.1 Administrator’s Guide AG-623

Chapter 17 Support for HPE
17.1.5.1 Creating Vnodes

We recommend using the cgroups hook to manage the machine and create any child vnodes. If you use the cgroups
hook, do not create vnodes via a Version 2 configuration file. However, if you are not using the cgroups hook, you can
create your vnode definitions by hand. You can have MoM create any child vnodes via a Version 2 configuration file.
See section 3.3, “Creating Vnodes”, on page 42.

17.1.5.1.i Caveats for Creating Vnodes

Do not attempt to create more than one vnode per logical memory pool. Your jobs will not run correctly.

17.1.5.2 Configuring Vnodes

If necessary, you can modify child vnodes created by the hook, by using an exechost_startup hook or via a Version 2
configuration file. See section 3.4, “Configuring Vnodes”, on page 45.

17.1.6 Comprehensive System Accounting

PBS support for CSA on HPE systems is no longer available. The CSA functionality for HPE systems has been
removed from PBS.

17.2 Support for HPE Cray Shasta

PBS runs on HPE Cray Shasta exactly as it does on standard Linux machines. The only information in this chapter that
applies to HPE Cray Shasta is contained within this section (Section 17.2, "Support for HPE Cray Shasta"). Each com-
pute node behaves like a standard Linux machine, and runs one MoM. By default, each compute node is represented by
one vnode. When you create vnodes on HPE Cray Shasta, use the host shortname as the vnode name.

17.2.1 HPE Cray Shasta Is Different from XC

If you are used to PBS on Cray XC machines, working with HPE Cray Shasta is different. Configuring PBS on HPE
Cray Shasta is the same as on a standard Linux machine. You can ignore all of the Cray XC instructions in the rest of this
chapter. For example:

• Batch mode and state do not apply

• Special Cray built-in resources do not apply to HPE Cray Management System

• You don't need to set vntype

• You don't need node_fail_requeue to be zero

• The PBS_alps_inventory_check hook is not used for HPE Cray Shasta

• You don't need vnode_pool

• Hyperthreads are the same as on a standard Linux machine

17.2.1.1 Not Supported on HPE Cray Shasta

• Suspend/resume is not supported on HPE Cray Shasta

• Power awareness is not supported on HPE Cray Shasta
AG-624 PBS Professional 2022.1 Administrator’s Guide

Support for HPE Chapter 17
17.2.2 Hook for PBS on HPE Cray Shasta

On HPE Cray Shasta, PBS uses a built-in hook called PBS_cray_atom, which runs for execjob_begin and
execjob_end events. The hook notifies the Cray when each job starts, and when each job should be deleted. This hook
should be enabled by default, but we recommend making sure that it is.

If the hook alarms while running for the execjob_begin event (POST and DELETE), the vnode(s) where the hook was
running are marked offline.

If the hook alarms while running for the execjob_end event (DELETE), the hook rejects the action. The default timeout
for this hook is 300 seconds.

17.2.2.1 HPE Cray Shasta Hook Configuration File

The configuration file for the PBS_cray_atom hook is formatted as a JSON object. Here is the default configuration
file:

{

"post_timeout": 30,

"delete_timeout": 30,

"unix_socket_file": "/var/run/jacsd/jacsd.sock"

}

17.2.2.1.i Configuration File Parameters

"post_timeout"
Time limit for POST requests.

Units: seconds

Format: float

Default: 30 seconds

"delete_timeout"
Time limit for DELETE requests.

Units: seconds

Format: float

Default: 30 seconds

"unix_socket_file"
Path to the UNIX socket file to be used for authentication.

Format: string

Default: "/var/run/jacsd/jacsd.sock"

17.2.3 Responding to Node Health

On HPE Cray Shasta, Cray tasks take care of marking nodes unavailable or available. If Cray tasks decide that node
health is not acceptable, Cray tasks will bring down the PBS MoM on that node. After you restore the node to usability,
you must restart the MoM. If there are running jobs, use the pbs_mom -p option in order to preserve and track running
jobs. See “Impact of Stop-Restart on Running Linux Jobs” on page 152 in the PBS Professional Installation & Upgrade
Guide.
PBS Professional 2022.1 Administrator’s Guide AG-625

Chapter 17 Support for HPE
AG-626 PBS Professional 2022.1 Administrator’s Guide

18

Support for NEC SX-Aurora

TSUBASA

18.1 Vnodes for NEC SX-Aurora TSUBASA

The basic hardware unit for NEC SX-Aurora TSUBASA is a vector host (a standard x86 server) connected to a set of
accelerators called vector engines (VEs) via optional PCIe. The unit can consist of one or more NUMA nodes. Each unit
uses one or more host channel adapters to communicate with other units and with the rest of the world.

The increasing order of communication overhead is first within a vector engine, then between vector engines via a shared
PCIe, then between vector engines via PCIes on a common vector host, and finally between vector engines on separate
vector hosts.

PBS creates topology-aware vnodes by grouping each PCIe with its associated vector host and vector engines together
into one vnode. If there is no PCIe, PBS groups the vector host and its VEs into a vnode. A NUMA node without its own
PCIe is in its own vnode.

PBS automatically creates vnodes to represent the host topology when you start PBS on execution hosts after the built-in
PBS_sx_aurora hook is enabled.

PBS tries to do topology-aware scheduling by grouping job processes on vector engines in a way that produces the low-
est communication overhead. When a job requests vector engines, PBS tries to assign vector engines from a single
vnode to minimize communication overhead between vector engines.

For how to request resources on NEC SX-Aurora TSUBASA, see "Submitting Jobs to NEC SX-Aurora TSUBASA", on
page 205 of the PBS Professional User’s Guide.

18.2 Terminology

HCA

Host channel adapter. Network interconnect used by vnode. Each vector host can have one or more HCAs.

Vector engine, VE

Accelerator associated with vector host. Executes parallel and/or vectorized numeric operations.

Vector host, VH

Standard x86 server. Performs tasks such as I/O.

VE offloading

Main operations that take place on the vector host offload parallel and/or vectorized numeric operations to vec-
tor engines. In offloading, NEC MPI launches processes on the VH, and those processes then launch other job
processes on VEs assigned to the job. See "Using VE Offloading", on page 210 of the PBS Professional User’s
Guide.
PBS Professional 2022.1 Administrator’s Guide AG-627

Chapter 18 Support for NEC SX-Aurora TSUBASA
18.3 Resources for SX-Aurora TSUBASA

nves
Host-level consumable integer. Allows you to specify the number of vector engines per chunk. PBS sets the
available VEs on a vnode in resources_available.nves. The default for resources_available.nves is num-
ber of VEs attached to the PCIe. The out-of-the-box default value for a job request is zero; PBS assigns a value
of zero unless the administrator has set the value otherwise.

nhcas
Chunk-level non-consumable integer. When requested in a job chunk, PBS sets _NEC_HCA_LIST_IO and
_NEC_HCA_LIST_MPI environment variables accordingly for that chunk. When not requested for a chunk,
PBS sets _NEC_HCA_LIST_IO and _NEC_HCA_LIST_MPI to include all HCAs on a host.

ve_mem
Job-wide string. Used for reporting the maximum memory on vector engines used by job.

ve_cput
Job-wide string. Used for reporting the total CPU time, in seconds, on vector engines used by job.

ncpus
PBS sets the value of resources_available.ncpus on each vnode to (#CPUs on whole host / #vnodes on host)
- #VEs on vnode. One CPU per VE is reserved for the VEOS daemon.

mem
PBS sets the value of resources_available.mem on each vnode by dividing the memory of the whole host
equally among the vnodes on the host.
AG-628 PBS Professional 2022.1 Administrator’s Guide

Support for NEC SX-Aurora TSUBASA Chapter 18
18.4 Configuring PBS for NEC SX-Aurora TSUBASA

1. Make sure that the PBS server and MoM daemons are installed and started. See “Installing via RPM on Linux Sys-
tems” on page 23 in the PBS Professional Installation & Upgrade Guide.

2. Enable the PBS_sx_aurora hook:

sudo /opt/pbs/bin/qmgr -c "set pbshook PBS_sx_aurora enabled=True"

3. Optional: the default frequency for the hook is 20 seconds. You can set the frequency for the PBS_sx_aurora hook in
seconds:

sudo /opt/pbs/bin/qmgr -c "set pbshook PBS_sx_aurora freq=<frequency>"

4. Create the custom resource nves for requesting and managing VEs:

sudo /opt/pbs/bin/qmgr -c "c r nves type= long,flag=nhm"

5. Add the custom nves resource to the {PBS_HOME}/sched_priv/sched_config resources: line:

resources: "ncpus, mem, arch, host, vnode, aoe, eoe, nves"

6. HUP the scheduler(s):

kill -HUP <scheduler PID>

7. Create the custom resource nhcas for managing HCAs:

sudo /opt/pbs/bin/qmgr -c "c r nhcas type= long,flag=hm"

8. Create the custom resources ve_cput and ve_mem for accounting:

sudo /opt/pbs/bin/qmgr -c "c r ve_cput type=long, flag=h"

sudo /opt/pbs/bin/qmgr -c "c r ve_mem type=size, flag=h"

9. Recommended: sort your vnodes first by nves, then by ncpus. Replace the default node_sort_key in
{PBS_HOME}/sched_priv/sched_config with the following:

node_sort_key: "nves HIGH unused"

node_sort_key: "ncpus HIGH unused"

10. Set NEC-specific environment variables for all hosts. Set the following in each host's
{PBS_HOME}/pbs_environment file:

NMPI_LAUNCHER_EXEC={PBS_EXEC}/bin/pbs_tmrsh

NMPI_TTY_COMPAT=ON

11. For NEC MPI version 2.21.0 or later, install the execjob_epilogue hook named "run_epilogue_necmpi" to clean up
the memory on VE nodes that were used by a job, after the job finishes. Otherwise the memory could, very rarely,
remain unreleased:

qmgr -c "create hook run_epilogue_necmpi event=execjob_epilogue"

qmgr -c "set hook run_epilogue_necmpi enabled=True"

qmgr -c "set hook run_epilogue_necmpi user=pbsuser"

qmgr -c "set hook run_epilogue_necmpi order=999"

qmgr -c "import hook run_epilogue_necmpi application/x-python default
/opt/nec/ve/mpi/libexec/memrelease.py"

12. Restart PBS so that the PBS_sx_aurora hook can create vnodes on all hosts in the cluster:

sudo systemctl restart pbs
PBS Professional 2022.1 Administrator’s Guide AG-629

Chapter 18 Support for NEC SX-Aurora TSUBASA
18.5 Debugging on NEC SX-Aurora TSUBASA

• To see all the DEBUG and INFO messages logged by the hook, increase the log level by setting the $logevent
parameter to 4095 (0xffffffff) in the MoM's configuration file, PBS_HOME/mom_priv/config.

• If you need to detect failed devices faster, you can change the hook's frequency. The frequency is specified in sec-
onds. The default hook frequency is 20 seconds. You can set the frequency for the PBS_sx_aurora hook:
sudo /opt/pbs/bin/qmgr -c "set pbshook PBS_sx_aurora freq=<frequency>"

18.6 Suspending and Resuming Jobs

On the SX-Aurora TSUBASA, partial process swapping (PPS) means copying part of the memory on VEs being used by
VE processes onto memory on the VH (the PPS buffer), then later copying the PPS buffer on the VH back to memory on
the VEs.

PPS allows high-priority jobs to run before current lower-priority VE processes finish, by suspending and swapping out
those lower-priority processes, then resuming the swapped-out VE processes after the high-priority jobs finish.

Swapping out a VE process means copying part of the memory area being used by the VE process onto the PPS buffer,
and freeing the memory area so that other, higher-priority, VE processes can use it.

Swapping in a VE process means copying the memory area in the PPS buffer used for the swapped-out VE process back
to memory on the VE.

When PBS runs a higher-priority job by swapping out a lower-priority job, it does the following:

1. Suspend the execution of VE processes and VH processes belonging to the lower priority job

2. Swap out the VE processes of the lower-priority job, using SX-Aurora TSUBASA interfaces

3. Run the higher-priority job

4. After completion of the higher-priority job, swap the VE processes of the lower-priority job back

5. Resume the execution of the lower-priority job

18.7 Job Accounting on NEC SX-Aurora TSUBASA

When PBS writes accounting records, PBS records nves in both Resource_List.nves and resources_assigned.nves.
PBS also writes ve_mem and ve_cput as part of the value of the job's resources_used attribute.
AG-630 PBS Professional 2022.1 Administrator’s Guide

19

Mixed Linux-Windows

Operation

19.1 Introduction to Mixed Linux-Windows

Operation

You can add Windows execution and client hosts to a Linux PBS complex, creating a mixed-mode complex. These Win-
dows hosts must be in an Active Directory domain. Linux systems must use MUNGE rather than reserved-port authenti-
cation, and Windows users must be active directory users. Communication should be encrypted using TLS for improved
security. The server needs to authenticate both Linux and Windows users. We describe how to set up a mixed-mode
complex in this section.

On Windows, MoM automatically sets resources_available.arch to "windows" for the local vnode. Users submitting
Windows jobs must request Windows hosts by specifying "windows" for the arch resource. For example:

qsub -lselect=1:arch=windows ...

Users submitting Windows jobs must cache their passwords at each execution and client host before submitting jobs, and
each time their password changes. Job submitters use the pbs_login command to cache their passwords.

19.1.1 Caveats for Mixed Linux-Windows Operation

• You cannot submit a Linux job from a Windows client

• Group limits are not enforced for Windows jobs; for example, "set queue max_queued_res.ncpus = [g:<group
name> = <limit>]" has no effect

19.2 Configuration

1. Start with a normal working Linux PBS complex. See the PBS Professional Installation & Upgrade Guide.

19.2.1 Configure Authentication

1. Configure MUNGE authentication for Linux clients and pwd for Windows clients.

The default reserved-port (resvport) method is not secure for mixed-mode operation, because Windows does not
have a concept of reserved ports. Follow the instructions in section 11.4, “Authentication for Daemons & Users”, on
page 508. After you have integrated MUNGE, put this in the server's /etc/pbs.conf file:

PBS_SUPPORTED_AUTH_METHODS=munge, pwd

2. Restart the PBS daemons. On each Linux host:

systemctl restart pbs
PBS Professional 2022.1 Administrator’s Guide AG-631

Chapter 19 Mixed Linux-Windows Operation
or

<path to start/stop script> pbs restart

3. Make sure that you can submit jobs and that hooks work.

19.2.2 Windows Hosts and Users in Active Directory Domain

1. Make sure the new Windows execution and client hosts are part of the same Windows Active Directory domain.

2. Make sure that Active Directory Authentication works: verify that the users added to the AD domain can log in to all
the Windows hosts.

19.2.3 Allow Linux Authentication of Windows Active Domain

Users

You can use various methods to allow Linux hosts to authenticate Windows Active Domain users. We show an example
using SSSD here.

1. On the Linux host running the server, and any hosts running extra comms, configure sssd so that the users of the
Windows domain can log in to the Linux host on which pbs_server and sssd run. For an example, see section
11.4.5, “Configuring SSSD”, on page 510. For information on configuring sssd, see
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/
index#sssd-ad-proc and https://access.redhat.com/articles/3023951.

If you want the Linux host to automatically create a home directory for an Active Directory user if that home direc-
tory does not exist at login, you may have to set SELinux to permissive mode. This is optional.

2. Verify that sssd is correctly configured.

a. Run the following commands:

id <username>

su - <username>

<password>

b. As a Windows domain user, ssh to the Linux host running sssd

19.2.4 Configure User Authorization

We recommend setting flatuid to False for the PBS complex, so that users need a .rhosts file to enable authorization.
For example, to configure the .rhosts file so that user User1 can submit jobs from submission host Winclient1, make
sure that there is a file named .rhosts in User1's home directory on the server host, and that this file contains the follow-
ing entry:

Winclient1 User1
AG-632 PBS Professional 2022.1 Administrator’s Guide

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#sssd-ad-proc
https://access.redhat.com/articles/3023951

Mixed Linux-Windows Operation Chapter 19
19.2.5 Install PBS on Windows Hosts

1. Install MoMs on your Windows execution hosts, and install the PBS client commands on your Windows client hosts.
See section 3.7, “Installing PBS on Windows Hosts”, on page 37.

2. Configure the remote file copy mechanism to be used by Windows execution hosts:

• If you will use scp for your remote file copy mechanism, configure passwordless ssh; see section 9.7.10.1,
“Enabling Passwordless Authentication”, on page 448.

• If you will use the $usecp MoM parameter to specify your remote file copy mechanism, you do not need to
configure passwordless ssh, unless it is required by the MPI implementation you are using.

3. Create the parent vnode for each Windows host; see section 3.3.3, “Creating the Parent Vnode”, on page 44:

qmgr -c "create node <name of parent vnode>"

19.2.6 Set Up TLS Encryption

Configure TLS encryption for daemon-daemon communication. For Windows authentication to work securely, we
strongly recommend using TLS encryption in the complex. To set up TLS encryption, we need a CA certificate and TLS
certificate key pair generated from any system with openssl set up. We will use the same key pair on all the server and
comm hosts. For an example of how to configure PBS for TLS encryption, see section 11.5.2.2, “Example of Configur-
ing PBS for TLS Encryption”, on page 518.

19.3 Troubleshooting Mixed Linux-Windows

Complex

• Job comment contains "failed to Impersonate Logged On User on <hostname>:job has bad password"

The user might not be allowed to log on locally according to the local or global policy settings; MoM is unable to
impersonate the job submitter in order to run the job. Check the Windows policy settings; make sure the user is
allowed to log in to the execution host.

• Failed to send auth request
auth: error returned: 15029

auth: Failed to send auth request

No support for requested service.

cannot connect to server pbsserver3 (errno=15029)

Check whether the server's PBS_SUPPORTED_AUTH_METHOD parameter includes pwd; add it if not. Restart
the server and try again.

• User not known to the underlying authentication module
auth: error returned: 15019

auth: PAM authentication failed for testuser2 with error: User not known to the underlying
authentication module
PBS Professional 2022.1 Administrator’s Guide AG-633

Chapter 19 Mixed Linux-Windows Operation
When this error occurs despite testuser2 existing and giving the correct password, it may be due to SSSD settings.
One reason could be that 'use_fully_qualified_domain' is True in the SSSD settings. Change that to False and ver-
ify that the user can log in from the server using the following commands, in our example:

id username:

[pbsadmin@pbsserver3 ~]$ id testuser4

uid=775213102(testuser4) gid=775200513(domain users) groups=775200513(domain users)

su - username:

[pbsadmin@pbsserver3 ~]$ su - testuser2

Password:

Last login: Mon Apr 20 13:40:32 UTC 2022 on pts/1

[testuser2@pbsserver3 ~]$

• Windows MoM fails to register

After installing pbs_mom on Windows and executing win_postinstall.py, even though the postinstall script
completes successfully, the server still shows state of the new Windows vnode as "state-unknown, down". In the
comm logs there are repeated messages of authentication failure for the service account.

Check for and delete a stale password file named ".pbs_cred.CR" from the home directory of the PBS service
account used to run the Windows MoM.

• Vnode does not go to free state, and the following error message appears in the server logs
init_pam;libpam.so not found

validate_auth_data;Failed to initialize the library

tcp_pre_process;Failed to initialize the library

wait_request;process socket failed

Check whether the pam library is installed. If it is installed, make sure that the PATH variable points to the location
where the library is installed. The library name might be libpam.so.*. In this case, create a soft link to the library as
shown in the example below:

ln -s /usr/lib64/libpam.so.0.83.1 /usr/lib64/libpam.so

• Files fail to stage out using scp.exe from C:\Windows\System32\OpenSSH

With OpenSSH (scp.exe) installed in the C:\Windows\System32 folder, stage out failures are observed as shown:

12/27/2022 00:25:58;0100;PBS_stage_file;Job;11.mixlin;User pbsuser passworded

12/27/2022 00:25:58;0080;PBS_stage_file;Job;sys_copy;CreateProcessAsUser(928,
C:/Windows/System32/OpenSSH-Win64/scp.exe -Brv \PROGRA~2\PBS\home\spool\11.mixlin.OU
"pbsuser@mixlin:/home/pbsuser/STDIN.o11") under acct pbsuser
wdir=C:\Users\pbsuser\Documents\PBS Pro}}

12/27/2022 00:25:58;0080;PBS_stage_file;Fil;sys_copy;command:
C:/Windows/System32/OpenSSH-Win64/scp.exe -Brv C:/PROGRA~2/PBS/home/spool/11.mixlin.OU
pbsuser@mixlin:/home/pbsuser/STDIN.o11 status=10002, try=1

This is caused by Windows WOW64 filesystem redirection, since PBS is a 32-bit application. See Microsoft article
https://docs.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector.

Replace "Sysetm32" with "Sysnative" in the PBS_SCP parameter in pbs.conf and restart the PBS_MOM service.
You do not need to move or reinstall OpenSSH from C:\Windows\System32 path.
AG-634 PBS Professional 2022.1 Administrator’s Guide

https://docs.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector

https://docs.microsoft.com/en-us/windows/win32/winprog64/file-system-redirector

20

Problem Solving

Additional information is always available online at the PBS website, www.pbsworks.com. The last section in this chap-
ter tells you how to get additional assistance from the PBS Support staff.

20.1 Debugging Tools

20.1.1 Debugging Commands

The following commands will provide helpful debugging information: qstat, tracejob, qmgr, and pbsnodes.

20.1.2 Setting Corefile Size

To set the size of the core file for a PBS daemon, you can set PBS_CORE_LIMIT in pbs.conf. Set this on the
machine where the daemon runs. This can be set to an integer number of bytes or to the string "unlimited". If this is
unset, the limit is inherited from the shell environment, which you can check via uname -c.

20.1.3 Using the debuginfo RPM Package

PBS is shipped with debuginfo package(s). When you unzip the PBS product download package the debuginfo pack-
age(s) can be found alongside the other PBS packages containing the server etc.

Normally, you do not need to install any debuginfo package(s). You only need to install the debuginfo package(s) when
the support team recommends doing so to aid in diagnosing a problem. The contents of the debuginfo package files are
automatically installed in the default location for your Linux distribution, typically under /usr/lib/debug and
/usr/src/debug.

The debuginfo package(s) names are platform-dependent. When you install a debuginfo package, nothing additional is
installed in PBS_HOME or PBS_EXEC.

20.1.4 Finding PBS Version Information

Use the qstat command to find out what version of PBS Professional you have.

qstat -fB

In addition, each PBS command will print its version information if given the --version option. This option cannot
be used with other options.

20.1.5 Troubleshooting and Hooks

PBS is shipped with tools for debugging hooks. See "Debugging Hooks", on page 183 of the PBS Professional Hooks
Guide.

You may wish to disable hook execution in order to debug PBS issues. To verify whether hooks are part of the problem,
disable each hook by setting its enabled attribute to False.
PBS Professional 2022.1 Administrator’s Guide AG-635

Chapter 20 Problem Solving
20.2 Security and Permissions Problems

20.2.1 Directory Permission Problems

If for some reason the access permissions on the PBS file tree are changed from their default settings, a component of the
PBS system may detect this as a security violation, and refuse to execute. If this is the case, an error message to this effect
will be written to the corresponding log file. You can run the pbs_probe command to check (and optionally correct)
any directory permission (or ownership) problems. See “pbs_probe” on page 80 of the PBS Professional Reference
Guide for details on usage of the pbs_probe command.

20.2.1.1 Correcting Permissions Problems on Linux

You can use the pbs_probe command to detect and repair file and directory permissions problems. You can run
pbs_probe in report mode or fix mode; in report mode, it reports the errors found; in fix mode, it attempts to fix
detected problems, and reports any problems it could not fix.

To fix permissions errors, log into the host you wish to check, and run the following command:

pbs_probe -f

See the pbs_probe(8B) manual page.

20.2.1.2 Correcting Permissions Problems on Windows

You can use the pbs_mkdirs command to correct file and directory permissions problems on Windows. The com-
mand checks and if necessary repairs the permissions of configuration files such as pbs_environment and
mom_priv/config. You should run the pbs_mkdirs command only while the PBS MoMs are stopped.

To repair permissions on an execution host, log into the host and run the following commands:

net stop pbs_mom

pbs_mkdirs mom

net start pbs_mom

20.3 Troubleshooting Jobs

20.3.1 Job Held Due to Invalid Password

If a job fails to run due to an invalid password, then the job is held with hold type p (bad password), its comment field
updated with why it failed, and an email is sent to the owner for remedy action. Root or administrator can release the
hold via qrls. See “qhold” on page 150 of the PBS Professional Reference Guide and “qrls” on page 183 of the PBS Pro-
fessional Reference Guide.
AG-636 PBS Professional 2022.1 Administrator’s Guide

Problem Solving Chapter 20
20.3.2 Requeueing a Job "Stuck" on a Down Vnode

PBS Professional will detect if a vnode fails when a job is running on it, and will automatically requeue and schedule the
job to run elsewhere. If the user marked the job as "not rerunnable" (i.e. via the qsub -r n option), then the job will be
deleted rather than requeued. If the affected vnode is on the primary execution host, the requeue will occur quickly. If it
is another vnode in the set assigned to the job, it could take a few minutes before PBS takes action to requeue or delete
the job. However, if the auto-requeue feature is not enabled, or if you wish to act immediately, you can manually force
the requeueing and/or rerunning of the job. See section 8.6.2, “Node Fail Requeue: Jobs on Failed Vnodes”, on page
412.

If you wish to have PBS simply remove the job from the system, use the "-Wforce" option to qdel:

qdel -Wforce <job ID>
If instead you want PBS to requeue the job, and have it immediately eligible to run again, use the "-Wforce" option to
qrerun

qrerun -Wforce <job ID>
See "Job Input & Output Files", on page 33 of the PBS Professional User’s Guide.

20.3.3 Job Cannot be Executed

If a user receives a mail message containing a job ID and the line "Job cannot be executed", the job was aborted by MoM
when she tried to place it into execution. The complete reason can be found in one of two places, MoM's log file or the
standard error file of the user's job. If the second line of the message is "See Administrator for help", then MoM aborted
the job before the job's files were set up. The reason will be noted in MoM's log. Typical reasons are a bad user/group
account, checkpoint/restart file, or a system error. If the second line of the message is "See job standard error file", then
MoM had created the job's file and additional messages were written to standard error. This is typically the result of a bad
resource request.

20.3.4 Running Jobs with No Active Processes

On very rare occasions, PBS may be in a situation where a job is in the Running state but has no active processes. This
should never happen as the death of the job's shell should trigger MoM to notify the server that the job exited and
end-of-job processing should begin. If this situation is noted, PBS offers a way out. Use the qsig command to send
SIGNULL, signal 0, to the job. If MoM finds there are no processes then she will force the job into the exiting state. See
“qsig” on page 195 of the PBS Professional Reference Guide.

20.3.5 Jobs that Can Never Run

If backfilling is being used, the scheduler looks at the job being backfilled around and determines whether that job can
never run.

If backfilling is being used, the scheduler determines whether that job can or cannot run now, and if it can't run now,
whether it can ever run. If the job can never run, the scheduler logs a message saying so.

The scheduler only considers the job being backfilled around. That is the only job for which it will log a message saying
the job can never run.

This means that a job that can never run will sit in the queue until it becomes the most deserving job. Whenever this job
is considered for having small jobs backfilled around it, the error message "resource request is impossible to solve: job
will never run" is printed in the scheduler's log file. If backfilling is not being used, this message will not appear.

If backfilling is not being used, the scheduler determines only whether that job can or cannot run now. The scheduler
won't determine if a job will ever run or not.
PBS Professional 2022.1 Administrator’s Guide AG-637

Chapter 20 Problem Solving
20.3.6 Job Comments for Problem Jobs

PBS can detect when a job cannot run with the current unused resources and when a job will never be able to run with all
of the configured resources. PBS can set the job's comment attribute to reflect why the job is not running.

If the job's comment starts with "Can never run", the job will never be able to run with the resources that are currently
configured. This can happen when:

• A job requests more of a consumable resource than is available on the entire complex

• A job requests a non-consumable resource that is not available on the complex

For example, if there are 128 total CPUs in the complex, and the job requests 256 CPUs, the job's comment will start
with this message.

If the job's comment starts with "Not running", the job cannot run with the resources that are currently available. For
example, if a job requests 8 CPUs and the complex has 16 CPUs but 12 are in use, the job's comment will start with this
message.

You may see the following comments. R is for "Requested", A is for "Available", and T is for "Total":

"Not enough free nodes available"

"Not enough total nodes available"

"Job will never run with the resources currently configured in the complex"

"Insufficient amount of server resource <resource name> (R | A | T | <requested value>
!=<available values for requested resource>)

"Insufficient amount of queue resource <resource name> (R | A | T | <requested value> !=<available
values for requested resource>)

"Error in calculation of start time of top job"

"Can't find start time estimate"

The "Can Never Run" prefix may be seen with the following messages:

"Insufficient amount of resource <resource name> (R | A | T | <requested value> !=<available
values for requested resource>)"

"Insufficient amount of Server resource <resource name> (R | A | T | <requested value>
!=<available values for requested resource>)"

"Insufficient amount of Queue resource <resource name> (R | A | T | <requested value> !=<available
values for requested resource>)"

"Not enough total nodes available"

"can't fit in the largest placement set, and can't span psets"

20.3.7 Bad UID for Job Execution

For a job to be accepted by the PBS server, the user at the submitting host must pass an ruserok() test.

From the RCMD(3) man page:

The iruserok() and ruserok() functions take a remote host's IP address or name, respectively, two usernames
and a flag indicating whether the local user's name is that of the superuser. Then, if the user is NOT the superuser, it
checks the /etc/hosts.equiv file. If that lookup is not done, or is unsuccessful, the .rhosts in the local user's home
directory is checked to see if the request for service is allowed.

If this file does not exist, is not a regular file, is owned by anyone other than the user or the superuser, or is writable by
anyone other than the owner, the check automatically fails. Zero is returned if the machine name is listed in the
hosts.equiv file, or the host and remote username are found in the .rhosts file; otherwise iruserok() and ruserok()
return -1. If the local domain (as obtained from gethostname(2)) is the same as the remote domain, only the
machine name need be specified.
AG-638 PBS Professional 2022.1 Administrator’s Guide

Problem Solving Chapter 20
If the server attribute flatuid is set to true, this test is skipped and the job is accepted based on the submitting users name
alone (with obvious security implications).

You can run the following command:

Qmgr: set server flatuid=true

Flatuid or not, to run as a user other than the job owner (the submitter) you must have authorization to do so. Otherwise,
any user could run a job as any other user. You authorize for userA to run a job as userB the same way you authorize
userA@host1 to run a job as userA on host2 when flatuid is Not SET, i.e. see .ruserok() and .rhosts.

Here is a test program to see if ruserok passes for a given user and host. There are two use cases:

• User submitting job from remote host to server getting unexpected "Bad UID" message. That is, user doesn't have
access when he thinks he should.

• User(s) can delete, etc other user(s) jobs. That is, one user is able to act as what he thinks is a different user, server
sees them as being equivalent.

Build this with "cc ruserok.c -o ruserok"

Usage (run on the PBS server system):

ruserok remote_host remote_user1 local_user2

where:

remote_host: the host from which the job is being submitted, or where the PBS client command is issued

remote_user1: the username of the user submitting the job, or issuing the client command

loca_user2: the username of the user remote_user1 is trying to submit the job as, or owner of the job that
remote_user1 is trying to act on with the client command

#include <errno.h>

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

int rc;

char hn[257];

if (argc != 4)

{ fprintf(stderr, "Usage: %s remote_host remote_user1 local_user2\n", argv[0]); return 1;
}

if (gethostname(hn, 256) < 0)

{ perror("unable to get hostname"); return 2; }

hn[256] = '\0';

printf("on local host %s, from remote host %s\n", hn, argv[1]);

rc = ruserok(argv[1], 0, argv[2], argv[3]);

if (rc == 0)

printf("remote user %s is allowed access as local user %s\n", argv[2], argv[3]);

else

printf("remote user %s is denied access as local user %s\n", argv[2], argv[3]);

return 0;

}

PBS Professional 2022.1 Administrator’s Guide AG-639

Chapter 20 Problem Solving
20.3.8 Windows: Bad UID for Job Execution

If, when attempting to submit a job to a remote server, qsub reports:

BAD uid for job execution

Then you need to add an entry in the remote system's .rhosts or hosts.equiv pointing to your Windows machine.
Be sure to put in all hostnames that resolve to your machine. See section 2.3.6, “User Authorization Under Windows”,
on page 15.

If remote account maps to an Administrator-type account, then you need to set up a .rhosts entry, and the remote
server must carry the account on its acl_roots list.

20.3.9 New Jobs Not Running

If PBS loses contact with the Altair License Server, any jobs currently running will not be interrupted or killed. The PBS
server will continually attempt to reconnect to the license server, and re-license the assigned vnodes once the contact to
the license server is restored.

No new jobs will run if PBS server loses contact with the ALM license server.

20.3.10 Job Stuck in Exiting State

A job can be stuck in the Exiting state if the user submits the job from a directory where the user does not have write
access. You can forcefully delete the job:

20.3.10.1 qdel -Wforce <job ID>

20.4 Troubleshooting Daemons

20.4.1 Server Host Bogs Down After Startup

If the server host becomes unresponsive a short time after startup, the server may be trying to contact the wrong license
server.

20.4.1.1 Symptoms

15 seconds to one or two minutes after you start the PBS server, the system becomes unresponsive.

20.4.1.2 Problem

The problem may be caused by the pbs_license_info server attribute pointing to an old FLEX license server. This
attribute should point to the new ALM license server. See the PBS Works Licensing Guide.

20.4.1.3 Treatment

On some Linux systems, the effects of memory starvation on subsequent responsiveness may be long-lasting. Therefore,
instead of merely killing and restarting the PBS server, we recommend rebooting the machine.
AG-640 PBS Professional 2022.1 Administrator’s Guide

Problem Solving Chapter 20
Take the following steps:

1. Reboot the machine into single-user mode.

2. Determine the correct value for pbs_license_info and set the PBS_LICENSE_INFO entry in pbs.conf to this
value.

3. Reboot, or change runlevel to multi-user.

4. Using qmgr, set the pbs_license_info server attribute to the correct value:

qmgr -c "set server pbs_license_info = <port>@<license server hostname>"

qmgr -c "set server scheduling= true"

5. Stop the PBS server process.

6. Continue normally.

20.4.2 Server Does Not Start

The server may not start due to problems with the data service. For more on the PBS data service, see “pbs_dataservice”
on page 61 of the PBS Professional Reference Guide.

20.4.3 Primary Server Periodically Restarting

If the primary server keeps restarting, an unknown secondary server may be contacting it. This can happen when
PBS_PRIMARY and PBS_SECONDARY are missing from pbs.conf, but a secondary server has been started.

20.4.4 PBS Data Service Does Not Start

• You may need to create the data service management account. This must be creating before installing PBS. See
“Create PBS Data Service Management Account” on page 23 in the PBS Professional Installation & Upgrade Guide.

• If you see an error message saying "PBS data service is running on another host - cannot start", there may be a prob-
lem with the lock file in $PBS_HOME/dataservice/pbs_dblock:

• Problem during failover between two hosts, where the primary host still has a lock on the file

• Ungraceful shutdown, where the primary host has an incorrectly, still-locked, lock file; look at the primary
server host.

• File system issues that interfere with the locking, unlocking, and/or access, of the lock file.

20.4.5 Server Dies Inexplicably

Check the data service. When the data service dies, the server automatically goes down too.

20.4.6 Data Service Running When PBS Server is Down

You can use the pbs_dataservice command to stop the data service. See “pbs_dataservice” on page 61 of the PBS
Professional Reference Guide.
PBS Professional 2022.1 Administrator’s Guide AG-641

Chapter 20 Problem Solving
20.4.7 Scheduler Cannot Reliably Contact Server

If you see a series of 15031 errors, this can happen when PBS_PRIMARY and PBS_SECONDARY are missing from
pbs.conf, but a secondary server has been started.

20.4.8 PBS Daemon Will Not Start

If the PBS server, MoM, or scheduler fails to start up, it may be refusing to start because it has detected permissions
problems in its directories or on one or more of its configuration files, such as pbs_environment or
mom_priv/config.

20.4.9 Troubleshooting Windows Daemon Problems

20.4.9.1 Windows: MoMs Do Not Start

• In the case where the PBS daemons, the Active Directory database, and the domain controller are all on the same
host, some PBS MoMs may not start up immediately. If the Active Directory services are not running when the PBS
MoMs are started, the MoMs won't be able to talk to the domain controller. This can prevent the PBS MoMs from
starting. As a workaround, wait until the host is completely up, then retry starting the failing MoM.

Example:

net start pbs_mom

• In a domained environment, if the PBS service account is a member of any group besides "Domain Users", the
install program will fail to add the PBS service account to the local Administrators group on the install host. Make
sure that the PBS service account is a member of only one group, "Domain Users" in a domained environment.

• If the MoM fails to start up because of permission problems on some of its configuration files like
pbs_environment or mom_priv/config, then correct the permission by running:
pbs_mkdirs mom

20.5 Troubleshooting Vnodes

20.5.1 Vnodes Down

The PBS server determines the state of hosts (up or down), by communicating with MoM on the host. The state of
vnodes may be listed by two commands: qmgr and pbsnodes

Qmgr: list node @active

pbsnodes -a

Node jupiter state = state-unknown, down

A vnode in PBS may be marked "down" in one of two substates. For example, the state above of vnode "jupiter" shows
that the server has not had contact with MoM since the server came up. Check to see if a MoM is running on the vnode.
If there is a MoM and if the MoM was just started, the server may have attempted to poll her before she was up. The
server should see her during the next polling cycle in 10 minutes. If the vnode is still marked "state-unknown, down"
after 10+ minutes, either the vnode name specified in the server's node file does not map to the real network hostname or
there is a network problem between the server host and the vnode.

If the vnode is listed as:

pbsnodes -a

Node jupiter state = down
AG-642 PBS Professional 2022.1 Administrator’s Guide

Problem Solving Chapter 20
then the server has been able to ping MoM on the vnode in the past, but she has not responded recently. The server will
send a "ping" PBS message to every free vnode each ping cycle, 10 minutes. If a vnode does not acknowledge the ping
before the next cycle, the server will mark the vnode down.

20.5.2 Bad Vnode on Startup

If, when the server starts up, one or more vnodes cannot be resolved, the server marks the bad vnode(s) in state
"state-unknown, down".

20.6 Troubleshooting Client Commands

20.6.1 Windows: Client Commands Slow

PBS caches the IP address of the local host, and uses this to communicate between the daemons. If the cached IP address
is invalidated, PBS can become slow. In both scenarios, jobs must be killed and restarted.

20.6.1.1 Scenario: Wireless Router, DHCP Enabled

The system is connected to a wireless router that has DHCP enabled. DHCP returned a new IP address for the server
short name, but DNS is resolving the server full name to a different IP address.

The IP address and server full name have become invalid due to the new DHCP address. PBS has cached the IP address
of the server full name.

Therefore, the PBS server times out when trying to connect to the scheduler and local MoM using the previously cached
IP address. This makes PBS slow.

Symptom:

1. PBS is slow.

a. Server logs show "Could not contact scheduler".

b. pbsnodes -a shows that the local node is down.

2. First IP addresses returned below don't match:

cmd.admin> pbs_hostn -v <server_short_name>

cmd.admin> pbs_hostn -v <server_full_name>

Workaround: cache the correct new IP address of the local server host.

1. Add the address returned by pbs_hostn -v <server_short_name> (normally the DHCP address) to
%WINDIR%\system32\drivers\etc\hosts file as follows:
<DHCP address> <server_full_name> <server_short_name>

2. Restart the MoM:

cmd.admin> net stop pbs_mom

cmd.admin> net start pbs_mom

20.6.2 Windows: qstat Errors

If the qstat command produces an error such as:

illegally formed job identifier.
PBS Professional 2022.1 Administrator’s Guide AG-643

Chapter 20 Problem Solving
This means that the DNS lookup is not working properly, or reverse lookup is failing. Use the following command to ver-
ify DNS reverse lookup is working

pbs_hostn -v hostname

If however, qstat reports "No Permission", then check pbs.conf, and look for the entry "PBS_EXEC". qstat (in
fact all the PBS commands) will execute the command "PBS_EXEC\sbin\pbs_iff" to do its authentication. Ensure
that the path specified in pbs.conf is correct.

20.6.3 Clients Unable to Contact Server

If a client command (such as qstat or qmgr) is unable to connect to a server there are several possibilities to check. If
the error return is 15034, "No server to connect to", check (1) that there is indeed a server running and (2) that the default
server information is set correctly. The client commands will attempt to connect to the server specified on the command
line if given, or if not given, the server specified by SERVER_NAME in pbs.conf.

If the error return is 15007, "No permission", check for (2) as above. Also check that the executable pbs_iff is
located in the search path for the client and that it is setuid root. Additionally, try running pbs_iff by typing:

pbs_iff -t server_host 15001

Where server_host is the name of the host on which the server is running and 15001 is the port to which the server
is listening (if started with a different port number, use that number instead of 15001). Check for an error message
and/or a non-zero exit status. If pbs_iff exits with a non-zero status, either the server is not running or was installed
with a different encryption system than was pbs_iff.

20.7 Troubleshooting PBS Licenses

20.7.1 Wrong License Server: Out of Memory

If you run out of memory shortly after startup, the server may be looking for the wrong license server. See section
20.4.1, “Server Host Bogs Down After Startup”, on page 640.

20.7.2 Unable to Connect to License Server

If PBS cannot contact the license server, the server will log a message:

"Unable to connect to license server at pbs_license_info=..."

If the license server location is incorrectly initialized (e.g. if the host name or port number is incorrect), PBS may not be
able to pinpoint the misconfiguration as the cause of the failure to reach a license server.

If PBS cannot detect a license server host and port when it starts up, the server logs an error message:

"Did not find a license server host and port (pbs_license_info=<X>). No external license server
will be contacted"

20.7.3 Insufficient Minimum Licenses

If the PBS server cannot get the number of licenses specified in pbs_license_min from the license server, the server will
log a message:

"checked-out only <X> CPU licenses instead of pbs_license_min=<Y> from license server at host <H>,
port <P>. Will try to get more later."
AG-644 PBS Professional 2022.1 Administrator’s Guide

Problem Solving Chapter 20
20.7.4 Wrong Type of License

If the PBS server encounters a proprietary license key that is of the wrong type, the server will log the following mes-
sage:

"license key #1 is invalid: invalid type or version".

20.8 Crash Recovery

PBS daemons could terminate unexpectedly either because the host machine stops running or because the daemon itself
stops running. The daemon may be killed by mistake, or may (rarely) crash. The server may terminate if the filesystem
runs out of space.

20.8.1 Recovery When Host Machine Stops

If the host machine stops running, no special steps are required, since PBS will be started when the machine starts.

20.8.1.1 Execution Host Stops

If the host machine is an execution host, any jobs that were running on that host were terminated when the machine
stopped, and when MoM is restarted, she will report to the server that those jobs are dead, and begin normal activity. The
server will automatically restart any jobs that can be restarted.

Shutting down one host of a multi-host job will cause that job to be killed. The job will have to be rerun; restarting the
MoM on the stopped host with the -p option will not help the job. See “pbs_mom” on page 71 of the PBS Professional
Reference Guide.

20.8.1.2 Server/scheduler/communication Host Stops

If the host machine is the server/scheduler/communication host, no data is lost and no jobs are lost, because the server
writes everything to disk. The server is restarted automatically upon machine startup.

The scheduler is started automatically upon machine startup. The scheduler starts fresh each cycle, so it does not lose
data.

20.8.2 Recovery When Daemon Stops

For more detailed information on starting and stopping PBS, see “Starting & Stopping PBS on Linux” on page 141 in the
PBS Professional Installation & Upgrade Guide.
PBS Professional 2022.1 Administrator’s Guide AG-645

Chapter 20 Problem Solving
20.9 Other Troubleshooting

20.9.1 Problem With Dynamic Resource

If you need to debug a dynamic resource being supplied by an external script, it may help to follow these steps:

1. Set the scheduler's log_events parameter to 4095 (everything is logged)
qmgr -c "set sched <scheduler name> log_events = 4095"

2. Send a SIGHUP to the scheduler (pbs_sched)

3. The scheduler log will contain the value the scheduler reads from the external script

20.9.2 Cannot Create Formula or Hook

You must run qmgr at the server host when operating on the server's job_sort_formula attribute or on hooks. For exam-
ple, attempting to create the formula at another host will result in the following error:

qmgr obj= svr=default: Unauthorized Request job_sort_formula

20.9.3 Windows: PBS Cannot Locate Configuration File

If PBS is installed on a hard drive other than C:, it may not be able to locate the pbs.conf global configuration file. If
this is the case, PBS will report the following message:

E:\Program Files\PBS\exec\bin>qstat -

pbsconf error: pbs conf variables not found:

PBS_HOME PBS_EXEC

No such file or directory

qstat: cannot connect to server UNKNOWN (errno=0)

To correct this problem, set PBS_CONF_FILE to point pbs.conf to the right path. Normally, during PBS Windows
installation, this would be set in system autoexec.bat which will be read after the Windows system has been
restarted. Thus, after PBS Windows installation completes, be sure to reboot the Windows system in order for this vari-
able to be read correctly.

20.9.4 Filesystem Runs Out of Space

If your filesystem has run out of space, the server may experience errors or may crash. If the server is still running, you
need only to free up enough space. If the server has crashed, you must restart it. See “Server: Starting, Stopping,
Restarting” on page 145 in the PBS Professional Installation & Upgrade Guide.

20.9.5 Unrecognized Timezone Variable

Problem: you see this message:

pbs_rsub: Bad time specification(s)

Reason: The time zone is not specified correctly in PBS_TZID. On later Linux updates, the system's zoneinfo files may
have some countries represented under different names from those in previous releases. For example, Asia/Calcutta has
been replaced by Asia/Kolkata.
AG-646 PBS Professional 2022.1 Administrator’s Guide

Problem Solving Chapter 20
In order to create reservations, the PBS server must recognized the PBS_TZID environment variable at the submission
host. The appropriate zone location for the submission host can be obtained from the machine on which the PBS Profes-
sional server is installed.

• On Linux platforms, either use the tzselect command, if it is available, or look in the underlying operating sys-
tem's zone.tab timezone location file, which may be found under /usr/share/zoneinfo/zone.tab.
While the PBS server is running and can contact the execution machine, use the Linux tzselect utility to deter-
mine the value for PBS_TZID.

• On all other platforms, look in the list of libical supported zoneinfo locations available under
$PBS_EXEC/lib/ical/zoneinfo/zones.tab.

20.10 Getting Help

If the material in the PBS manuals is unable to help you solve a particular problem, you may need to contact the PBS
Support Team for assistance. The PBS Professional support team can be reached directly via email and phone; contact
information is on the inside front cover of each manual.
PBS Professional 2022.1 Administrator’s Guide AG-647

Chapter 20 Problem Solving
AG-648 PBS Professional 2022.1 Administrator’s Guide

Index

$logevent MoM parameter AG-430
$restrict_user AG-521
$restrict_user_exceptions AG-521
$restrict_user_maxsysid AG-521
.rhosts AG-507

A
access

by group AG-492
by user AG-492

effect of flatuid AG-506
control lists AG-492
from host AG-492
to a queue AG-492
to a reservation AG-492
to server AG-492

accounting
account AG-534, AG-538, AG-539
alt_id AG-534, AG-539
authorized_hosts AG-532
authorized_users AG-532
ctime AG-532, AG-533, AG-534, AG-536, AG-539,

AG-541, AG-542
duration AG-532
end AG-532, AG-534, AG-540
etime AG-533, AG-534, AG-536, AG-539, AG-540,

AG-541, AG-542
exec_host AG-535
exec_vnode AG-535
Exit_status AG-535, AG-540
group AG-533, AG-535, AG-536, AG-539, AG-540,

AG-541, AG-543
jobname AG-533, AG-535, AG-539, AG-540,

AG-541, AG-543
jobobit AG-535, AG-540
name AG-532
owner AG-532
qtime AG-533, AG-535, AG-536, AG-539, AG-540,

AG-541, AG-543
queue AG-532, AG-533, AG-535, AG-536, AG-539,

AG-540, AG-541, AG-543
Resource_List AG-532, AG-533, AG-535, AG-536,

AG-539, AG-540, AG-541, AG-543
session AG-533, AG-535, AG-536, AG-540,

AG-542, AG-543
start AG-532, AG-533, AG-535, AG-536, AG-540,

AG-542, AG-543
user AG-533, AG-535, AG-536, AG-539, AG-540,

AG-542, AG-543
accounting_id AG-534, AG-538
acl_group_enable

queue attribute AG-500
acl_groups

queue attribute AG-500
acl_host_enable

queue attribute AG-500
server attribute AG-500

acl_hosts
queue attribute AG-500
server attribute AG-500

acl_roots AG-524
acl_user_enable

queue attribute AG-500
server attribute AG-500

acl_users
queue attribute AG-500
server attribute AG-500

ACLs AG-492
default behavior AG-493
format AG-493
group AG-494
host AG-494
matching entry AG-495
modifying behavior AG-493
overrides AG-506
removing entity AG-497
rules for creating AG-497
user AG-494
who can create AG-498

activate a power profile AG-586
advance reservation AG-196, AG-532
aggressive_provision AG-593
AOE AG-591
aoe resource

defining AG-600
application license

floating AG-272
definition AG-229

floating externally-managed AG-272
PBS Professional 2022.1 Administrator’s Guide AG-649

Index
application licenses AG-270
floating license PBS-managed AG-273
license units and features AG-271
overview AG-254
per-host node-locked example AG-275
types AG-270

ASAP reservation AG-196
authentication AG-577
authorization AG-577
Authorized_Groups reservation attribute AG-501
Authorized_Hosts reservation attribute AG-501
Authorized_Users reservation attribute AG-501
average CPU usage enforcement AG-303
average_cpufactor AG-303
average_percent_over AG-303
average_trialperiod AG-303
avoid_provision AG-593

B
backfill_prime AG-193
basic fairshare AG-139
batch requests AG-430
Boolean

format AG-234
borrowing vnode AG-228, AG-266
built-in resource AG-228

C
checkpoint AG-532, AG-637

preemption via AG-186
chunk AG-229
clienthost AG-521
configuration

file staging AG-581
rsync AG-581
server AG-21

consumable resource AG-229
CPU AG-229
cpuaverage AG-303
cput AG-142
creating queues AG-25
creation of provisioning hooks AG-602
current_aoe AG-600
current_eoe AG-587
custom resource AG-229

custom resources
application licenses AG-270

floating managed by PBS AG-273
overview AG-254
per-host node-locked AG-275
types AG-270

how to use AG-252
scratch space

overview AG-254
static host-level AG-265
static server-level AG-264

cycle harvesting
ideal_load AG-125
max_load AG-125

D
deactivate a power profile AG-586
debuginfo AG-635
decay AG-142
dedicated time AG-127
defining aoe resource AG-600
defining provisioning policy AG-603
defining resources

multi-vnode machines AG-268
degraded reservation AG-196
department AG-140
DIS AG-422
DNS AG-644
dynamic fit AG-168
dynamic resource AG-229

E
egroup AG-140

euser AG-140
eligible wait time AG-128
eligible_time AG-128, AG-130, AG-534, AG-539
energy AG-587
enforcement AG-578
eoe AG-583, AG-587
euser AG-140
exec_host AG-532
exiting AG-128
express_queue AG-183

F
fair_share

scheduler parameter AG-139
fairshare AG-138, AG-183
fairshare entities AG-140
fairshare ID AG-140
fairshare_perc AG-152
file staging

configuration AG-581
AG-650 PBS Professional 2022.1 Administrator’s Guide

Index
files
pbs.conf AG-644
policy AG-578

location AG-578
finished jobs AG-479
flatuid server attribute AG-506
float

format AG-234
floating license

definition AG-229
example AG-272
example of externally-managed AG-272

format
Boolean AG-234
float AG-234
size AG-235
string resource value AG-235, AG-240
string_array AG-235, AG-240

G
gethostname AG-521
Globus AG-21
group

access AG-492
ACLs AG-494
limit AG-229, AG-285

generic AG-285
individual AG-285

H
HCA AG-627
help, getting AG-647
history jobs AG-479
hooks

creation of provisioning AG-602
provisioning AG-591

host
access AG-492
ACLs AG-494

host channel adapter AG-627
hosts.equiv AG-507

I
ideal_load

cycle harvesting AG-125
indirect resource AG-229, AG-266
ineligible_time AG-128
InfiniBand AG-573
initial_time AG-129
instance AG-196
instance of a standing reservation AG-196
instantiation AG-578

J
job history AG-479

changing settings AG-481
configuring AG-480
enabling AG-480
setting duration AG-480

job that can never run AG-637
job-specific ASAP reservation AG-196
job-specific now reservation AG-196
job-specific reservation AG-196
job-specific start reservation AG-196

L
last_state_change_time

vnode attribute AG-587
last_used_time

vnode attribute AG-587
license

application
floating AG-272

floating
definition AG-229

limit AG-230, AG-284
attributes AG-290
cput AG-301
file size AG-301
generic group limit AG-229, AG-285
generic project limit AG-285
generic user limit AG-229, AG-285
group limit AG-229, AG-285
individual group limit AG-229, AG-285
individual project limit AG-285
individual user limit AG-230, AG-285
overall AG-230, AG-285
pcput AG-301
pmem AG-301
project limit AG-285
pvmem AG-301
user limit AG-230, AG-285
walltime AG-301

limits
generic and individual AG-288
group AG-283
overall limits AG-288
project AG-283
resource usage AG-283
scope AG-286
setting limits AG-292
user AG-283

location
policy files AG-578
PBS Professional 2022.1 Administrator’s Guide AG-651

Index
log events
MoM AG-430
scheduler AG-430
server AG-430

log levels AG-429
log_events

server attribute AG-430
logs

permissions AG-580

M
mailer AG-21
maintenance reservation AG-196
Manager

privilege AG-491
managers server attribute AG-491
managing vnode AG-230, AG-266
master provisioning script AG-591, AG-601
master script AG-591, AG-601
matching ACL entry AG-495
max_concurrent_provision AG-603
max_group_res AG-299
max_group_run AG-299
max_group_run_soft AG-299
max_load

cycle harvesting AG-125
max_queuable AG-299
max_queued AG-291
max_queued_res AG-291
max_run AG-290
max_run_res AG-291
max_run_res_soft AG-291
max_run_soft AG-290
max_running AG-299
max_user_res AG-299
max_user_res_soft AG-299
max_user_run AG-299
max_user_run_soft AG-299
max_walltime AG-215
memory-only vnode AG-230
min_walltime AG-215
MoM

log events AG-430
MPI_USE_IB AG-573
mpiexec AG-571
multihost placement sets AG-169
MUNGE AG-509

N
natural vnode AG-42
NEC SX-Aurora process swapping AG-630
NEC SX-Aurora TSUBASA AG-627
nhcas AG-628

node_idle_limit
server attribute AG-588

non-consumable resource AG-230
nonprimetime_prefix AG-193
normal_jobs AG-183
nves AG-628

O
Operator

privilege AG-490
operators server attribute AG-491
opt_backfill_fuzzy AG-111
overall limit AG-230, AG-285

P
partial process swapping AG-630
password

invalid AG-636
pbs.conf AG-581, AG-586, AG-644
PBS_AUTH_METHOD AG-422
PBS_BATCH_SERVICE_PORT AG-422
PBS_BATCH_SERVICE_PORT_DIS AG-422
PBS_COMM_LOG_EVENTS AG-422
PBS_COMM_ROUTERS AG-422
PBS_COMM_THREADS AG-422
PBS_CONF_SYSLOG AG-426, AG-435
PBS_CONF_SYSLOGSEVR AG-426, AG-435
PBS_CORE_LIMIT AG-423
PBS_CP AG-423
PBS_DAEMON_SERVICE_USER AG-423
PBS_DATA_SERVICE_PORT AG-423
PBS_ENCRYPT_METHOD AG-423
PBS_ENVIRONMENT AG-423
PBS_EXEC AG-379, AG-423
PBS_EXEC/share AG-578
PBS_HOME AG-379, AG-423
pbs_iff AG-644
PBS_LEAF_NAME AG-423
PBS_LEAF_ROUTERS AG-423
PBS_LOCALLOG AG-423, AG-435
PBS_LOG_HIGHRES_TIMESTAMP AG-423
PBS_MAIL_HOST_NAME AG-23, AG-424
PBS_MANAGER_SERVICE_PORT AG-424
pbs_mkdirs AG-636
PBS_MOM_HOME AG-379, AG-424
PBS_MOM_NODE_NAME AG-424
PBS_MOM_SERVICE_PORT AG-424
PBS_MPI_DEBUG AG-573
PBS_OUTPUT_HOST_NAME AG-424
PBS_PRIMARY AG-379, AG-424
pbs_probe AG-636
PBS_RCP AG-424, AG-581
PBS_REMOTE_VIEWER AG-424
AG-652 PBS Professional 2022.1 Administrator’s Guide

Index
pbs_rsub AG-501
PBS_SCHED_THREADS AG-425
PBS_SCP AG-425, AG-581
PBS_SECONDARY AG-379, AG-425
PBS_SERVER AG-379, AG-425
PBS_SERVER_HOST_NAME AG-425
PBS_START_COMM AG-425
PBS_START_MOM AG-379, AG-425
PBS_START_SCHED AG-379, AG-425
PBS_START_SERVER AG-379, AG-425
PBS_SUPPORTED_AUTH_METHODS AG-425
PBS_TMPDIR AG-426
pbsfs AG-143
pcap_accelerator AG-535, AG-539, AG-541, AG-588
pcap_node AG-535, AG-539, AG-541, AG-588
PCIe AG-627
permissions

logs AG-580
pgov AG-535, AG-539, AG-541, AG-588
p-governor AG-585, AG-588
placement

task AG-167
placement pool AG-168
placement set AG-168
placement sets

multihost AG-169
policy

defining provisioning AG-603
files AG-578

location AG-578
power profile

activate AG-586
deactivate AG-586

power profiles AG-583
power_off_iteration

server attribute AG-589
power_provisioning AG-587

server attribute AG-587, AG-589
vnode attribute AG-589

poweroff_eligible AG-589
PPS AG-630
preempt_order AG-179
preempt_prio AG-180
preempt_queue_prio AG-180
preempt_sort AG-180
preemption AG-179
preemption via checkpoint AG-186
preemptive scheduling AG-179
preemptive_sched AG-179
primary server AG-424
prime_spill AG-194
primetime_prefix AG-193

privilege
Manager AG-491
Operator AG-490
user AG-490

project AG-285, AG-533, AG-535, AG-536, AG-539,
AG-540, AG-541, AG-543

project limit AG-285
generic AG-285
individual AG-285

project limits AG-283
prologue AG-586
provision_policy AG-593
provisioning

creation of hooks AG-602
defining policy AG-603
hooks AG-591
master script AG-601

writing AG-601
overview AG-592
policy AG-593
rebooting AG-592
reservations AG-595
vnode selection AG-593
vnode states AG-596

pstate AG-588

Q
qdel AG-637
qmgr AG-21, AG-644
qrerun AG-637
qstat AG-644
qsub AG-637
query_other_jobs AG-580
queue AG-33

access to a AG-492
ACL AG-493
attribute

acl_group_enable AG-500
acl_groups AG-500
acl_host_enable AG-500
acl_hosts AG-500
acl_user_enable AG-500
acl_users AG-500

queue_softlimits AG-183
queued jobs AG-285
queued_jobs_threshold AG-291
queued_jobs_threshold_res AG-291
queues

creating AG-25

R
rcp AG-424
PBS Professional 2022.1 Administrator’s Guide AG-653

Index
rebooting
provisioning AG-592

reservation AG-532
access to a AG-492
ACL AG-493
advance AG-196
ASAP AG-196
attribute

Authorized_Groups AG-501
Authorized_Hosts AG-501
Authorized_Users AG-501

control of creation AG-493
degraded AG-196
instance AG-196
job-specific AG-196

ASAP AG-196
now AG-196
start AG-196

maintenance AG-196
now AG-196
reservation ID AG-197
soonest occurrence AG-196
standing AG-196

instance AG-196
soonest occurrence AG-196

reservations AG-195
provisioning AG-595

resource AG-230
built-in AG-228
consumable AG-229
custom AG-229
dynamic AG-229
indirect AG-229, AG-266
non-consumable AG-230
shared AG-230, AG-266

resource limits AG-283
resource usage limits AG-283
Resource_List AG-532, AG-533, AG-535, AG-536,

AG-539, AG-540, AG-541, AG-543
Resource_List.eoe AG-587
resources

unset AG-159
resources_assigned AG-541
resources_available.eoe AG-587
resources_used.energy AG-586, AG-587
restrict_user AG-521
restrict_user_exceptions AG-521
restrict_user_maxsysid AG-522
resv_enable AG-501
resv_enable server attribute AG-493
roles AG-489
RPM

debuginfo AG-635

rsync
configuration AG-581

run_count AG-533, AG-536, AG-543
run_time AG-128

S
sched_preempt_enforce_resumption AG-181
scheduler

log events AG-430
scp AG-425
scratch space AG-254

dynamic
host-level AG-270
server-level AG-269

static
host-level AG-270
server-level AG-270

script
master provisioning AG-601
writing provisioning AG-601

secondary server AG-425
security_context job attribute AG-578
server

access to AG-492
ACL AG-493
attribute

acl_host_enable AG-500
acl_hosts AG-500
acl_user_enable AG-500
acl_users AG-500
flatuid AG-506
log_events AG-430
managers AG-491
operators AG-491
resv_enable AG-493

log events AG-430
parameters AG-20
primary AG-424
recording configuration AG-21
secondary AG-425

server attributes
node_idle_limit AG-588
power_off_iteration AG-589
power_provisioning AG-587

server_softlimits AG-183
set_power_cap AG-588
setting limits AG-292
shared resource AG-230, AG-266
shares AG-139
size

format AG-235
sleep

vnode state AG-589
AG-654 PBS Professional 2022.1 Administrator’s Guide

Index
soonest occurrence AG-196
sort key AG-146
sshd AG-351
standing reservation AG-196
start reservation AG-196
states

vnodes and provisioning AG-596
static fit AG-168
strict_ordering and backfilling AG-222
string AG-240
string resource value

format AG-235, AG-240
string_array AG-240

format AG-235, AG-240
support team AG-647
SX-Aurora AG-627
syslog AG-434

T
task placement AG-167
TSUBASA AG-627
type codes AG-430

U
unknown node AG-139
unknown_shares AG-139
unset resources AG-159
usage limits AG-283
user

access AG-492
ACLs AG-494
privilege AG-490
roles AG-489

user limit AG-230, AG-285
generic AG-285
individual AG-285

user limits AG-283

V
VE AG-627
VE offloading AG-627
ve_cput AG-628, AG-630
ve_mem AG-628, AG-630
vector engine AG-627
vector host AG-627
version information AG-635
VH AG-627
virtual nodes AG-41

vnode AG-41
borrowing AG-228, AG-266
managing AG-230, AG-266
memory-only AG-230
natural AG-42
selection for provisioning AG-593
states and provisioning AG-596

vnode attributes
last_state_change_time AG-587
last_used_time AG-587

W
Windows

password AG-636
writing provisioning script AG-601

X
X forwarding AG-427
xauth AG-427
PBS Professional 2022.1 Administrator’s Guide AG-655

Index
AG-656 PBS Professional 2022.1 Administrator’s Guide

Altair PBS Professional 2022.1

Plugins (Hooks) Guide

You are reading the Altair PBS Professional 2022.1

Hooks Guide (HG)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation vii

1 New Hook Features 1
1.1 New Hook Features. 1
1.2 Changes in Previous Releases . 2
1.3 Deprecations and Removals . 4

2 Introduction to Hooks 5
2.1 Introduction to Hooks . 5
2.2 Glossary . 5
2.3 Prerequisites and Requirements for Hooks. 7
2.4 Uses for Hooks . 7

3 Quick Start with Hooks 11
3.1 Simple How-to for Writing Hooks . 11
3.2 Writing Hooks: Basic Hook Structure . 11
3.3 Example of Simple Hook. 12
3.4 Importing Hook Configuration File. 13
3.5 Creating and Importing Your Hook . 13
3.6 Setting Attributes for Your Hook . 13

4 Hook Basics 15
4.1 Hook Basics . 15
4.2 Viewing Hook Information . 23
4.3 Restarting the Python Interpreter . 24
4.4 Attributes and Parameters Affecting Hooks . 25
4.5 Python Modules and PBS . 25
4.6 See Also . 27

5 Creating and Configuring Hooks 29
5.1 Creating and Configuring Site-defined Hooks. 30
5.2 Writing Hook Scripts to Operate on PBS Elements. 41
5.3 Advice and Caveats for Writing Hooks . 74
PBS Professional 2022.1 Hooks Guide HG-v

Contents
6 Hook Objects and Methods 81
6.1 The pbs Module. 82
6.2 PBS Interface Objects . 83
6.3 Events . 86
6.4 Server Objects. 128
6.5 Queue Objects . 131
6.6 Job Objects . 132
6.7 The exec_vnode Object . 142
6.8 Chunk Objects. 143
6.9 Reservation Objects . 144
6.10 Vnode Objects. 146
6.11 Management Objects . 150
6.12 server_attribute Objects . 156
6.13 Configuration File Python Elements . 160
6.14 Constant Objects. 164
6.15 Object Members and Methods . 164

7 Built-in Hooks 179
7.1 Managing Built-in Hooks . 179
7.2 Prerequisites . 179
7.3 Allowed Operations . 179
7.4 Viewing Built-in Hooks. 179
7.5 Setting Attributes of Built-in Hooks . 180
7.6 Editing and Importing Configuration Files for Built-in Hooks. 180
7.7 Restrictions . 180
7.8 Replacing a Built-in Hook with Your Own Hook . 180
7.9 Errors and Logging when Operating on Built-in Hooks . 181

8 Debugging Hooks 183
8.1 The pbs_python Hook Debugging Tool . 183
8.2 Files for Debugging . 183
8.3 Steps to Debug a Hook Using pbs_python . 191
8.4 Caveats and Restrictions for pbs_python . 192
8.5 Examples of Using pbs_python to Debug Hooks. 193
8.6 Using Log Messages to Debug Hook Scripts . 201
8.7 Checking Hook Syntax using Python . 201
8.8 Examples of Debugging Files . 201
8.9 Interactive Debugging using pbs_python . 248
8.10 Error Reporting and Logging. 248

9 Hook Examples 257

Index 319
HG-vi PBS Professional 2022.1 Hooks Guide

1

New Hook Features

This chapter briefly lists new features by release, with the most recent listed first. This chapter also lists deprecated ele-
ments, such as options, keywords, etc.

The Release Notes included with this release of PBS Professional list all new features in this version of PBS Professional,
and any warnings or caveats. Be sure to review the Release Notes, as they may contain information that was not available
when this book was written.

1.1 New Hook Features

New postqueuejob Hook Event

PBS provides the new postqueuejob hook event; see section 6.3.1.3, “postqueuejob: Event after Job is Queued”, on
page 93

New management Hook Event

PBS provides the new management hook event; see section 6.3.1.13, “management: qmgr Operation Event at Server
Host”, on page 101

New modifyvnode Hook Event

PBS provides the new modifyvnode hook event for tracking vnode state changes; see section 6.3.1.15, “modifyvnode:
Event after Vnode Changes State”, on page 102

New jobobit Hook Event

PBS provides the new jobobit hook event for tracking when a job or subjob leaves execution; see section 6.3.1.7, “jobo-
bit: Event when Server Receives Job or Subjob Obit”, on page 97

New resv_begin Hook Event

PBS provides the new resv_begin hook event; see section 6.3.1.11, “resv_begin: Event when Reservation Starts”, on
page 100

New resv_confirm Hook Event

PBS provides the new resv_confirm hook event; see section 6.3.1.9, “resv_confirm: Event when Reservation is Con-
firmed”, on page 99

New modifyresv Hook Event

PBS provides the new modifyresv hook event; see section 6.3.1.10, “modifyresv: Event when Reservation is Altered”,
on page 99

New Vnode State Objects

Hooks use new vnode state objects; the previous state objects are deprecated. See section 6.10.5.1, “Vnode State Con-
stant Objects”, on page 148.
PBS Professional 2022.1 Hooks Guide HG-1

Chapter 1 New Hook Features
1.2 Changes in Previous Releases

Improved Cgroups Hook (2020.1)

The cgroups hook is improved for 2020.1. See "Configuring and Using PBS with Cgroups" on page 311 in the PBS Pro-
fessional Administrator’s Guide.

Faster Read of Custom Job Resources by Execution Hooks (2020.1)

You can specify which custom job resources are cached at MoMs so that execution hooks can read them faster. See
"Specifying Whether Resource is Cached at MoM" on page 259 in the PBS Professional Administrator’s Guide.

New Post-suspend and Pre-resume Hooks (2020.1)

PBS has two new hook events for just after suspending a job and just before resuming it. See section 6.3.1, “Event
Types”, on page 87.

Python Version Changed to 3.6 (19.4.1)

PBS 19.4.1 uses Python version 3.6.

Hooks Support Reliable Job Startup and Run (19.2)

Hooks have been enhanced to allow you to provide jobs with extra vnodes in case of vnode failure. See "Vnode Fault
Tolerance for Job Start and Run" on page 403 in the PBS Professional Administrator’s Guide.

New Reservation End Hook (19.2)

You can create hooks for the end of a reservation. See "resv_end: Event when Reservation Ends" on page 100 in the PBS
Professional Hooks Guide.

Python Version Changed to 2.7.1 (18.2.3)

PBS 18.2.3 uses Python 2.7.1. The use of Python 2.5.1 is deprecated.

Periodic Server Hook (18.2.3)

PBS has a periodic hook that runs at the server. See section 6.3.1.14, “periodic: Periodic Event at Server Host”, on page
101.

Hook to Run Job Start Time Estimator (18.2.3)

PBS has a built-in hook named PBS_est that can run the job start time estimator. See "Estimating Job Start Time" on
page 132 in the PBS Professional Administrator’s Guide.

Configurable Python Interpreter Restarts (18.2.3)

You can configure how often you want the Python interpreter to restart. See section 4.3, “Restarting the Python Inter-
preter”, on page 24.

PBS Can Report Custom Resources Set in Hooks (18.2.3)

MoM can accumulate and report custom resources that are set in a hook. See section 5.2.4.12, “Setting Job Resources in
Hooks”, on page 50.

The execjob_prologue Hook Runs on All Sister MoMs (18.2.3)

The execjob_prologue hook runs on all sister MoMs. See section 6.3.1.17, “execjob_prologue: Event Just Before Exe-
cution of Top-level Job Process”, on page 104.

New Hook Events (13.0)

PBS provides three new hook events:

• An execjob_launch hook runs just before MoM runs the user's program

• An execjob_attach hook runs when pbs_attach is called

• An exechost_startup hook runs when MoM starts up or is HUPed
HG-2 PBS Professional 2022.1 Hooks Guide

New Hook Features Chapter 1
See section 4.1.2, “When and Where Hooks Run”, on page 15, section 6.3.1.18, “execjob_launch: Event when Execution
Host Receives Job”, on page 106, section 6.3.1.19, “execjob_attach: Event when pbs_attach() runs”, on page 107, and
section 6.3.1.25, “exechost_startup: Event When Execution Host Starts Up”, on page 114.

Configuration Files for Hooks (13.0)

You can use configuration files with hooks. See section 5.1.6, “Using Hook Configuration Files”, on page 33.

Configuring Vnodes in Hooks (13.0)

You can use hooks to configure vnode attributes and resources. See section 5.2.4.11, “Setting and Unsetting Vnode
Resources and Attributes”, on page 49.

Adding Custom Resources in Hooks (13.0)

You can use hooks to add custom non-consumable host-level resources. See section 5.2.7, “Adding Custom Host-level
Resources”, on page 69.

Node Health Hook Features (13.0)

PBS has node health checking features for hooks. You can offline and clear vnodes, and restart the scheduling cycle. See
section 5.2.12.4, “Offlining and Clearing Vnodes Using the fail_action Hook Attribute”, on page 72 and section 5.2.6,
“Restarting Scheduler Cycle After Hook Failure”, on page 69.

Hook Debugging Enhancements (13.0)

You can get hooks to produce debugging information, and then read that information in while debugging hooks. See
Chapter 8, "Debugging Hooks", on page 183.

Managing Built-in Hooks (13.0)

You can enable and disable built-in hooks. See Chapter 7, "Built-in Hooks", on page 179.

Scheduler Does not Trigger modifyjob Hooks (13.0)

The scheduler does not trigger modifyjob hooks. See Chapter 5, "Creating and Configuring Hooks", on page 29.

runjob Hook can Modify Job Attributes (12.2)

The runjob hook can modify a job's attributes and resources. See section 5.2.4, “Using Attributes and Resources in
Hooks”, on page 45.

Execution Event and Periodic Hooks (12.0)

You can write hooks that run at the execution host when the job reaches the execution host, when the job starts, ends, is
killed, and is cleaned up. You can also write hooks that run periodically on all execution hosts. See Chapter 5, "Creating
and Configuring Hooks", on page 29.

Vnode Access for Hooks (11.0)

Hooks have access to vnode attributes and resources. See Chapter 5, "Creating and Configuring Hooks", on page 29.

Provisioning (10.2)

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application. See Chapter 16, "Provisioning", on page 591.

New Hook Type (10.2)

PBS has a new hook type which can be triggered when a job is to be run. See "Creating and Configuring Hooks” on
page 29.

Hooks (10.0)

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or modify
the upcoming action. This provides job filtering, patches or workarounds, and extends the capabilities of PBS, without
the need to modify source code. See Chapter 5, "Creating and Configuring Hooks", on page 29.
PBS Professional 2022.1 Hooks Guide HG-3

Chapter 1 New Hook Features
1.3 Deprecations and Removals

The use of Python 2.x is deprecated. PBS now uses Python 3.6. (19.4.1)
HG-4 PBS Professional 2022.1 Hooks Guide

2

Introduction to Hooks

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or modify
the upcoming action. This provides job filtering, patches, MoM startup checks, workarounds, etc., and extends the capa-
bilities of PBS, without the need to modify source code.

This chapter describes how hooks can be used, how they work, the interface to hooks provided by the pbs module, how
to create and deploy hooks, and how to get information about hooks.

Please read the entire chapter, and the "Special Notes (Hooks)" section of the release notes, before writing any hooks.

2.1 Introduction to Hooks

A hook is a block of Python code that PBS executes at certain events, for example, when a job is queued. As long as the
Python code conforms to the rules we describe, you can have it do whatever you want. Each hook can accept (allow) or
reject (prevent) the action that triggers it. The hook can modify the input parameters given for the action. The hook can
also make calls to functions external to PBS. The hook can use a configuration file that you provide. PBS provides an
interface for use in hooks. This interface allows hooks to read and/or modify things such as job, server, vnode, and queue
attributes, and the event that triggered the hook.

2.1.1 Built-in Hooks

Some functions of standard PBS are accomplished through built-in hooks. We use the keyword pbshook with these
hooks. These hooks are not designed to be altered, so they have some restrictions placed on them. See Chapter 7,
"Built-in Hooks", on page 179.

2.2 Glossary

Accept an action

The hook allows the action to take place.

Action

A PBS operation or state transition. Also called an event. For a list of events, see section 6.3.1, “Event
Types”, on page 87.

Built-in hook

A hook that is supplied as part of PBS. These hooks cannot be created or deleted by administrators.

Creating a hook

When you "create a hook" using qmgr, you're telling PBS that you want it to make you an empty hook object
that has no characteristics other than a name.

Event

A PBS operation or state transition. Also called action. For a list of events, see section 6.3.1, “Event Types”,
on page 87.
PBS Professional 2022.1 Hooks Guide HG-5

Chapter 2 Introduction to Hooks
Execution event hook, MoM hook

A hook that runs at an execution host. These hooks run after a job is received by MoM. Execution event hooks
have names prefixed with "execjob_".

Failure action

The action taken when a hook fails to execute. Specified in the fail_action hook attribute. See section 5.1.9.2,
“Using the fail_action Hook Attribute”, on page 37.

Hook configuration file

Configuration file specific to a particular hook. See section 5.1.6, “Using Hook Configuration Files”, on page
33.

Importing a hook

When you "import a hook" using qmgr, you're telling PBS which Python script to run when the hook is trig-
gered.

Importing a hook configuration file

When you "import a hook configuration file" using qmgr, you're telling PBS which file should be stored as the
configuration file for the specified hook.

Job hook, job-related hook

A hook that is triggered by a a job event. See section 4.1.2.1, “Job-related Hooks that Run at Server Before Job
Execution (Server Job Hooks)”, on page 15 and section 4.1.2.2, “Job-related Hooks that Run at Execution Host
(MoM Job Hooks)”, on page 16.

MoM hook, execution event hook

A hook that runs at an execution host. These hooks run after a job is received by MoM. Execution event hooks
have names prefixed with "execjob_"

Non-job hook

A hook that is not triggered by a job. See section 4.1.2.4, “Non-job Server Hooks”, on page 18 and section
4.1.2.5, “Non-job MoM Hooks”, on page 19.

pbshook

PBS keyword for a built-in hook.

pbs module

The pbs module provides an interface to PBS and the hook environment. The interface is made up of Python
objects, object members, and methods. You can operate on these objects using Python code.

Pre-execution event hook, server hook

A hook that runs at the PBS server. A server hook runs before the job is sent to MoM. These hooks do not run
on execution hosts. Pre-execution event hooks are for job submission, moving a job, altering a job, or just
before sending a job to an execution host.

Reject an action

The hook prevents the action from taking place. For example, if a runjob hook rejects a job, the job is
requeued.

Reservation hook

A hook that is triggered by a reservation event. See section 4.1.2.3, “Reservation Hooks Run at Server”, on
page 17.

Server hook, pre-execution event hook

A hook that runs at the PBS server. These hooks do not run on execution hosts.
HG-6 PBS Professional 2022.1 Hooks Guide

Introduction to Hooks Chapter 2
2.3 Prerequisites and Requirements for Hooks

• To create a hook under Linux, you must be logged into the primary or secondary server host as root. You must cre-
ate any hooks at the primary or secondary server host.

• When creating hooks, make sure that each execution host where execution or periodic hooks should run has the
$reject_root_scripts MoM parameter set to False. The default for this parameter is False.

• In order for execution event hooks to function, either the query_other_jobs server attribute must be set to True, or
root at every execution host must be added to the managers list (root@hostname must be added to the managers
server attribute). If you have any hooks running with user set to pbsuser, you will have to set query_other_jobs
to True (you probably don't want to add pbsuser to managers).

A normal, non-privileged, user cannot circumvent, disable, add, delete, or modify hooks or the environment in which the
hooks are run.

2.4 Uses for Hooks

2.4.1 Routing Jobs

• Route jobs into specific queues or between queues:

• Automatically route interactive jobs into a particular execution queue

• Move a job to another queue; for example, if project allocation is used up, move job to "background" queue

• Reject job submissions that do not specify a valid queue, printing an error message explaining the problem

• Enable project-based ACLs for queues to make sure the appropriate job runs in the correct queue
PBS Professional 2022.1 Hooks Guide HG-7

Chapter 2 Introduction to Hooks
2.4.2 Managing Resource Requests and Usage

• Reject improperly specified jobs:

• Reject jobs which do not specify walltime

• Reject jobs that request a number of processors that is not a multiple of 8

• Reject jobs requesting a specific queue, but not requesting memory

• Reject jobs whose processors per node is not specified or is not numeric

• Modify job resource requests:

• Apply default memory limit to jobs that request a specific queue

• Check on requested CPU and memory and modify these or supply them if missing

• Adjust for the fact that users ask for 2GB on a machine that has 2GB physical memory, but only 1.8 GB avail-
able memory, by changing the memory request to 1.8GB

• Reject parallel jobs for some queues.

• Set default properties, for example, if "myri" is not set, set it to "False" to ensure Myrinet is used only for Myrinet
jobs.

• Convert from ALPS-specific resource request strings into PBS-specific job requirements.

• Automatically translate old syntax to new syntax.

• Compensate for dissimilar system capabilities; for example, allow users to use more CPUs only if they use old, slow
machines.

• Limit reservations submitted by users to a maximum amount of resources and walltime, but do not limit reservations
submitted by PBS administrators.

• Define resources and set values.

2.4.3 Ensuring that Jobs Run Properly

• Make sure that jobs, or all jobs in a queue, request exclusive access (-l place=excl).

• Reject multi-host jobs, restricting each job to a single machine.

• Put a hold on the job if there isn't enough scratch space when the job is submitted.

• Reject jobs that could cause problems, based on the user and type of job that have caused previous problems. For
example, if Bill's Abaqus jobs crash the system, reject new Abaqus jobs from Bill.

• Validate an input deck before the job is submitted.

• Modify a job's dependency list when the job is rejected.

• Modify a job's list of environment variables before it gets to the execution host(s).

2.4.4 Managing Job Output

• Manage where output goes by modifying a job's output path with the job's ID.

2.4.5 Controlling Interactive Jobs

• Control interactive job submission; for example, enable or disable interactive jobs at the server or queue level
HG-8 PBS Professional 2022.1 Hooks Guide

Introduction to Hooks Chapter 2
2.4.6 Helping Schedule Jobs

• Increase the priority of an array job once the first subjob runs, by modifying the value of a job resource used in the
job sorting formula

• Change scheduling according to user and job:

• Set initial user-dependent coefficients for the scheduling formula. For example, set values of custom resources
based on job attributes and user

• Set whether or not the job is rerunnable, based on user

• Calculate CPH (CPH == total ncpus * walltime in hours) and set a custom CPH job resource to the value

• Set initial priorities for jobs

• Periodically run the job start time estimator named pbs_est at the server. See “Estimating Job Start Time” on
page 132 of the PBS Professional Administrator’s Guide.

2.4.7 Communicating Information to Users

• Report useful error messages back to the user, e.g., "You do not have sufficient walltime left to run your
job for 1:00:00. Your walltime balance is 00:30:00."

2.4.8 Managing User Activity

• Reject jobs from blacklisted users

• Prevent users from using qalter to change their jobs in any way, allowing only administrators to qalter jobs

• Prevent users from bypassing controls: disallow a job being submitted to queueA in a held state and then being
moved to queueB where the job would not have passed hook checks for queueB initially. For example, if a queue-
job hook disallows interactive jobs for queueB, the administrator also needs to ensure that an interactive job is not
initially submitted to queueA and later moved to queueB

• Prevent users from overriding node_group_key with qsub -lplace = group = X, or with qalter

• Restrict the ability to submit a reservation to PBS administrators only

2.4.9 Enabling Accounting and Validation

• Make sure correct project designation is used: if no project or account string is found, look up username in database
to find appropriate project to use and add it as project or account string before submission

• Submit job to correct queue based on project: check for project number and submit job to queues based on project
type, e.g. project number 1234 jobs get submitted into "challenge" queue; similarly for "standard" queue, etc

• Validate project before the job executes; if validation fails, do not start job, and print error message. Validation can
be based on project name, or for example requested resources, such as CPU hours

2.4.10 Allocation Management (Budgeting)

• You can use a job submission (queuejob) hook to check whether an entity has enough resources allocated to accept
the job.

• You can use a hook that runs just before the job is sent to the execution host (runjob) to perform allocation manage-
ment tasks such as deducting requested amounts of resources from an entity's allocation.

• You can use a hook that runs after a job finishes (execjob_epilogue) to perform final allocation management tasks
such as allocation reconciliation.
PBS Professional 2022.1 Hooks Guide HG-9

Chapter 2 Introduction to Hooks
2.4.11 Managing Job Execution

Hooks that run periodically at execution hosts can do the following:

• Modify job environment variables

• Check vnode health

• Report I/O wait time

• Report memory usage integral (MB*time used)

• Report energy usage to run a given job, if you have power sensors on vnodes

• Report actual usage of accelerator hardware (FPGAs, GPUs, etc)

• Interrogate HW performance counters so that you can flag codes that are not running efficiently (e.g. FLOPS < 5%
of peak FLOPS)

• Record how much disk space a job has accumulated in PBS_JOBDIR

• Record power usage, energy usage, and disk space usage

Hooks that run just before the user's program executes can do the following:

• Change the job shell or executable

• Change the job shell or executable arguments

• Change the job's environment variables

2.4.12 Configuring Vnodes

Hooks that run when an execution host starts can do the following:

• Configure vnodes on the local host

• Create custom resources for vnodes

• Offline vnodes that are not ready for use

• Return vnodes to use that have been offlined

2.4.13 Provisioning Vnodes

• Provision a vnode with a new AOE. See Chapter 16, "Provisioning", on page 591.

2.4.14 Accepting or Rejecting Job Task Attachment

• Allow or disallow action when MoM is about to attach a process for a job

2.4.15 Tracking Vnode State Changes

You can use the modifyvnode hook event to track vnode state changes so that you can account for vnode time. See sec-
tion 6.3.1.15, “modifyvnode: Event after Vnode Changes State”, on page 102.
HG-10 PBS Professional 2022.1 Hooks Guide

3

Quick Start with Hooks

3.1 Simple How-to for Writing Hooks

We will go into the details of what goes into a hook later in the chapter, but here we show the basics of how to create a
hook. Steps for creating a hook:

1. Log into the server host as root

2. Write the hook script

3. Create an empty hook via qmgr

4. Set the attributes of the hook so that it triggers when you want, etc

5. If the hook will use a configuration file:

a. Write the hook configuration file

b. Import the hook configuration file

6. Import the hook script into the empty hook. You do not need to restart the MoM, unless it's an exechost_startup
hook. Since exechost_startup hooks run only when MoM starts up or is HUPed, if you want the hook to run now,
restart or kill -HUP the MoM.

3.2 Writing Hooks: Basic Hook Structure

• Import the pbs and sys modules:
import pbs

import sys

• Use the try... except construction, where you test for conditions in the try block, and accept or reject the event:
try:

…

except:

Consider either rerunning the job or deleting the job inside the except: block.

• Treat the SystemExit exception as a normal occurrence, and pass if it occurs:
except SystemExit:

pass

• Reject the event, or rerun or delete the job, if any other exception occurs:
except:

pbs.event().reject("%s hook failed with %s")

• If the requestor is the scheduler, and where appropriate, the server or MoM, allow the action to take place:
if pbs.event().requestor in ["PBS_Server", "Scheduler", "pbs_mom"]:

pbs.event().accept()
PBS Professional 2022.1 Hooks Guide HG-11

Chapter 3 Quick Start with Hooks
The following code fragment is a basic hook skeleton:

import pbs

import sys

e=pbs.event()

j=e.job

try:

if e.requestor in ["Scheduler"]:

e.accept()

…

except SystemExit:

pass

except:

j.rerun()

e.reject("%s hook failed with %s. Please contact Admin" % (e.hook_name, sys.exc_info()[:2]))

3.3 Example of Simple Hook

Example 3-1: Set job priority

Set a job's priority

import pbs

import sys

e = pbs.event()

try:

Get the hook event information and parameters

This will be for the 'modifyjob' event type.

Ignore requests from scheduler or server

if e.requestor in ["PBS_Server", "Scheduler"]:

e.accept()

Get the information for the job being queued

j = e.job

Set the job's priority

j.Priority = 7

accept the event

e.accept()

except SystemExit:

pass

except:

e.reject("Failed to set job priority")
HG-12 PBS Professional 2022.1 Hooks Guide

Quick Start with Hooks Chapter 3
3.4 Importing Hook Configuration File

If you want your hook to use a configuration file, you can import the configuration file. A configuration file is not
required.

Syntax for importing a configuration file:

Qmgr: import hook <hook_name> application/x-config <content-encoding>
<input_config_file>

Here, <content-encoding> can be "default" (7-bit) or "base64".

See section 5.1.6, “Using Hook Configuration Files”, on page 33.

3.5 Creating and Importing Your Hook

When you "create a hook" using qmgr, you're telling PBS that you want it to make you an empty hook object that has no
characteristics other than a name. When you "import a hook" using qmgr, you're telling PBS which Python script to run
when the hook is triggered.

Syntax for creating a hook:

Qmgr: create hook <hook name>

Simple syntax for importing a hook:

Qmgr: import hook <hook name> application/x-python <content-encoding> <input_file>

This uses the script named <input_file> as the contents of your hook.

• The <input_file> must be encoded with <content-encoding>.

• The allowed values for <content-encoding> are "default" (7 bit) and "base64".

• <input_file> must be locally accessible to both qmgr and the batch server.

• A relative path in <input_file> is relative to the directory where qmgr was executed.

• If your hook already has a content script, then that is overwritten by this import call.

• If the name of <input_file> contains spaces, <input file> must be quoted.

3.6 Setting Attributes for Your Hook

Hooks have attributes that control their behavior, such as which events trigger the hook, the time to allow the hook to
execute, etc. The only attribute you must set for a simple hook is the event(s) that will trigger the hook. Choose your
hook type according to the event you want, by looking in Table 5-1, “Hook Trigger Events,” on page 32.

Syntax for setting the hook event(s):

Qmgr: set hook <hook name> event = <event name>
Qmgr: set hook <hook name> event = "<event name>, <event name>"

For more details on setting hook trigger events, see section 5.1.5, “Setting Hook Trigger Events”, on page 31.

You can set the rest of the hook's attributes if you wish. To set a hook attribute:

Qmgr: set hook <hook name> <attribute> = <value>

For a list of all the hook attributes, see section 5.1.9.3, “List of Hook Attributes”, on page 38.
PBS Professional 2022.1 Hooks Guide HG-13

Chapter 3 Quick Start with Hooks
HG-14 PBS Professional 2022.1 Hooks Guide

4

Hook Basics

4.1 Hook Basics

4.1.1 Accepting or Rejecting Actions

Hooks accept (allow) or reject (prevent) actions, modify input parameters, modify job attributes, environment variables,
programs, program arguments, and change internal or external values.

Each action can have zero or more hooks. Each hook must either accept or reject its action. All of an action's hooks are
run when that action is to be performed. For PBS to perform an action, all hooks enabled for that action must accept the
action. If any hook rejects the action, the action is not performed by PBS. If a hook script doesn't call accept() or
reject(), and it doesn't encounter an exception, PBS behaves as if the hook accepts the action. An action is always
accepted, unless:

• pbs.event().reject() is called

• An unhandled exception is encountered

• The hook alarm has been triggered due to hook timeout being reached

When PBS executes the hooks for an action, it stops processing hooks at the first hook that rejects the action.

4.1.1.1 Examples of Accepting and Rejecting Actions

Example 4-1: Accepting an action: In this example, userA submits a job to queue Queue1, and the job submission action
has two hooks: hook1 disallows jobs submitted by UserB, and hook2 disallows jobs being submitted directly to
Queue2. Both hook1 and hook2 accept userA's job submission to Queue1, so the submission goes ahead.

Example 4-2: Rejecting an action: In this example, userA uses the qmove command to try to move jobA from Queue1
to Queue2. The job move action has two hooks: hook3 disallows jobs being moved into Queue2, and hook4 disal-
lows userB moving jobs out of Queue1. In this example, hook3 rejects the action, so the move operation is disal-
lowed, even though hook4 would have accepted the action.

4.1.2 When and Where Hooks Run

Each type of event has a corresponding type of hook. The following are the events where you can run hooks, with the
hook type:

4.1.2.1 Job-related Hooks that Run at Server Before Job Execution

(Server Job Hooks)

Job-related hooks that run at the server, before a job is received by an execution host:

queuejob: Before queueing a job

postqueuejob: After queueing a job

modifyjob: When modifying a job, except when scheduler makes the modification (can also run after job is received
by execution host)

movejob: When moving a job
PBS Professional 2022.1 Hooks Guide HG-15

Chapter 4 Hook Basics
runjob: Just before a job is sent to an execution host

jobobit: When server receives job or subjob obit from MoM on primary execution host

Figure 4-1: Server job hooks

4.1.2.2 Job-related Hooks that Run at Execution Host (MoM Job

Hooks)

Hooks that run at execution hosts, after a job is received by an execution host (execution event hooks):

provision: When provisioning a vnode

execjob_begin: When a job is received by an execution host, after stagein

execjob_prologue: Just before starting a job's shell

execjob_launch: Just before starting the user's program

execjob_attach: When running pbs_attach()

execjob_postsuspend: Just after suspending a job

execjob_preresume: Just before resuming a job

execjob_preterm: Just before killing a job

execjob_epilogue: Just after executing or killing a job, but before job is cleaned up

execjob_end: Just after cleaning a job up
HG-16 PBS Professional 2022.1 Hooks Guide

Hook Basics Chapter 4
Figure 4-2: MoM job hooks

4.1.2.3 Reservation Hooks Run at Server

Reservation hooks run at the server:

resvsub: When a reservation is submitted
PBS Professional 2022.1 Hooks Guide HG-17

Chapter 4 Hook Basics
resv_confirm: When a reservation is confirmed

resv_begin: When reservation begins

modifyresv: When modifying a PBS reservation

resv_end: When a PBS reservation ends or is deleted

Figure 4-3: Reservation hooks

4.1.2.4 Non-job Server Hooks

Non-job hooks that run at the server:

management: When an administrator uses a qmgr directive on an object such as a vnode or hook

periodic: Periodically at the server

modifyvnode: After a vnode changes state
HG-18 PBS Professional 2022.1 Hooks Guide

Hook Basics Chapter 4

Figure 4-4: Non-job server hooks

4.1.2.5 Non-job MoM Hooks

Non-job hooks that run at execution hosts:

exechost_periodic: Periodically on all execution hosts

exechost_startup: When an execution host is started or receives a HUP

Figure 4-5: Non-job MoM hooks

4.1.2.6 Each Triggering Event Runs One Hook Instance

Each time an event triggers a hook, the hook runs for that instance of the event. If you have written a hook that runs at
job submission, this hook will run for each job that is submitted to this server. Each MoM runs one copy of each of her
execution hooks per job. Execution hooks run one per job at the MoM, not one per vnode. For a job that runs on four
vnodes of a multi-vnoded machine where all the vnodes are managed by one MoM, where you have written one execu-
tion hook, only one instance of the hook runs for that job.

Each time a job goes through a triggering event, PBS runs any relevant hooks. This means that if you run a job, that trig-
gers a runjob hook. If the job is killed and requeued and runs again, the runjob hook runs again.

If the scheduler modifies a job, any modifyjob hooks are not triggered.
PBS Professional 2022.1 Hooks Guide HG-19

Chapter 4 Hook Basics
4.1.2.7 Hooks for Peer Scheduling

When you are using peer scheduling, and a job is pulled from one complex to another, the pulling complex applies its
hooks as if the job had been submitted locally, and the furnishing complex applies its postqueuejob and movejob
hooks. Figure 4-6 shows an example of the hooks that are triggered when a job is moved from complex A containing a
movejob hook to complex B containing a queuejob hook and a postqueuejob hook.

Figure 4-6: Hooks that run when job is moved via peer scheduling

4.1.2.8 Execution Event Hook Triggers in Lifecycle of Job

The hooks triggered for an MPI job depend on whether MPI processes are spawned using the PBS TM interface via
tm_spawn(), or are spawned using pbs_attach(). When a process is spawned using tm_spawn(), MoM starts
the process. When a process uses pbs_attach(), pbs_attach() starts the process and informs MoM of the pro-
cess ID.

The following shows where execution event hooks are triggered in the lifecycle of a normal, successful job. We show
the timing for hooks on the primary execution host, on a sister vnode where a process is spawned using tm_spawn(),
and on a sister vnode where a process is spawned using pbs_attach().

Table 4-1: Execution Event Hook Timing

Job Lifecycle

Hooks Are Triggered

Primary
Execution Host

Sister
(tm_spawn)

Sister
(pbs_attach)

Application licenses are checked out

Any required job-specific staging and
execution directories are created

PBS_JOBDIR and job's jobdir attribute
are set to pathname of staging and execu-
tion directory

Files are staged in

execjob_begin execjob_begin execjob_begin
HG-20 PBS Professional 2022.1 Hooks Guide

Hook Basics Chapter 4
Job is sent to MoM

execjob_prologue

If there is no
execjob_prologue
hook, the prologue
script runs

Server writes accounting log "S" record

Primary execution host tells sister MoMs
they will run job task(s)

If necessary, MoM creates work directory

MoM creates temporary directory for job

MoM sets TMPDIR, JOBDIR, and other
environment variables in job's environ-
ment

MoM performs hardware-dependent
setup: The job's cpusets are created,
ALPS reservations are created

execjob_launch

The job script starts

Job starts an MPI process on sister vnode

execjob_prologue execjob_prologue

execjob_launch, for
all tasks on this sister

execjob_attach, for all
tasks on this sister

Job is suspended

execjob_postsuspend execjob_postsuspend execjob_postsuspend

execjob_preresume

execjob_preresume
(if successful on pri-
mary MoM)

execjob_preresume
(if successful on pri-
mary MoM)

Job is resumed

The job script finishes

Table 4-1: Execution Event Hook Timing

Job Lifecycle

Hooks Are Triggered

Primary
Execution Host

Sister
(tm_spawn)

Sister
(pbs_attach)
PBS Professional 2022.1 Hooks Guide HG-21

Chapter 4 Hook Basics
4.1.3 Account Under Which Hooks Run

A hook runs as the administrator or as the job owner, depending on the value of the hook's user attribute. If this is set to
pbsadmin, the hook runs as the Administrator. If this is set to pbsuser, the hook runs as the job owner.

4.1.4 Permissions and Location for Hook Creation and

Modification

Hooks can be created or modified only by the administrator, and only at the hosts on which the primary and secondary
servers run.

4.1.5 Failover

The secondary server uses the same filesystem as the primary server. Any hooks created are stored in the same place and
are accessible by both servers, whether the primary or the secondary server is running.

When the secondary server takes over for the primary server after the primary's host has gone down or becomes inacces-
sible, any hooks created at the primary server continue to function under the secondary server.

If the you create a new hook while the secondary server has control, that hook will persist once the primary server takes
over: if the primary server comes back up and takes over, hooks created while the secondary server had control continue
to function.

execjob_epilogue

If there is no
execjob_epilogue
hook, the epilogue
script runs

execjob_epilogue execjob_epilogue

If MoM kills job, just before she kills it execjob_preterm

Server receives job or subjob obit

Server writes accounting log "E" record

Any specified file staging out takes
place, including stdout and stderr

Files staged in or out are deleted

Any job-specific staging and execution
directories are removed

The job's cpusets are destroyed

Job files are deleted

execjob_end execjob_end execjob_end

Application licenses are returned to pool

Table 4-1: Execution Event Hook Timing

Job Lifecycle

Hooks Are Triggered

Primary
Execution Host

Sister
(tm_spawn)

Sister
(pbs_attach)
HG-22 PBS Professional 2022.1 Hooks Guide

Hook Basics Chapter 4
4.1.6 What Hooks Cannot Access or Do

• Hooks cannot read or modify anything not presented in the PBS hook interface

• Hooks cannot modify the server or any queues

• Pre-execution event hooks cannot read or set vnode attributes or resources, except that the runjob hook can set the
state attribute for any vnode to be used by the job

• Hooks do not have access to other servers besides the default server:

• Hooks cannot change the destination server to a non-default server

• Hooks can allow a job submission or a qmove to a non-default server, and can change the destination server
from a remote server to the default server

• Hooks cannot directly print to stdout or stderr or read from stdin.

• movejob hooks do not run on pbs_rsub -Wqmove=<job ID>

4.1.7 What Hooks Should Not Do

• Hooks should not edit configuration files directly, meaning hooks should not edit the following:

PBS_HOME/sched_priv/sched_config

PBS_HOME/sched_priv/fairshare

PBS_HOME/sched_priv/dedicated

PBS_HOME/sched_priv/holidays

/etc/pbs.conf

PBS_HOME/server_priv/resourcedef

PBS_HOME/mom_priv/config

• Hooks should not execute PBS commands

4.2 Viewing Hook Information

4.2.1 Listing Hooks

To list one hook and its attributes on the current server:

Qmgr: list hook <hook name>

To list all hooks and their attributes on the current server:

Qmgr: list hook

4.2.2 Viewing Hook Contents

To view the contents of a hook, export the hook's contents:

qmgr -c "export hook <hook_name> <content-type> <content-encoding>" > [<output_file>]

You cannot export the contents of a built-in hook.
PBS Professional 2022.1 Hooks Guide HG-23

Chapter 4 Hook Basics
4.2.3 Printing Hook Creation Commands

To view the commands to create one hook, including any configuration file:

Qmgr: print hook <hook name>

To view the commands to create all the hooks on the default server, including their configuration files:

Qmgr: print hook

or

qmgr -c "print hook"

For example, to see the commands used to create hook1 and hook2:

qmgr -c "print hook"

create hook hook1

import hook hook1 application/x-python base64 - cHJpbnQgImhlbGxvLCB3b3JsZCIK

set hook hook1 event=movejob

set hook hook1 alarm=10

set hook hook1 order=5

create hook hook2

import hook hook2 application/x-python base64 - servaJLSDFSESF

set hook hook2 event=queuejob

set hook hook2 alarm=15

set hook hook2 order=60

…

4.2.4 Re-creating Hooks

To re-create a hook, including its configuration file, you feed qmgr hook descriptions back into qmgr. These hook
descriptions are the same information that qmgr prints out. To print out the statements needed to recreate a hook, use the
print hook or print hook <hook name> qmgr commands.

For example, to save information for hook1 and hook2:

qmgr -c "print hook" > hookInfo

To re-create hook1 and hook2, with their configuration files:

qmgr < hookInfo

4.3 Restarting the Python Interpreter

PBS keeps track of the number of hooks serviced, the number of objects created, and the time since the Python inter-
preter was last restarted. You can set a limit for the number of hooks created in the python_restart_max_hooks server
attribute, a limit for the number of objects created in the python_restart_max_objects server attribute, and a limit for
the minimum time interval at which to restart the Python interpreter in the python_restart_min_interval server
attribute.
HG-24 PBS Professional 2022.1 Hooks Guide

Hook Basics Chapter 4
python_restart_max_hooks
The maximum number of hooks to be serviced before the Python interpreter is restarted. If this number is
exceeded, and the time limit set in python_restart_min_interval has elapsed, the Python interpreter is
restarted.

Type: integer

Default: 100

Python type: int

python_restart_max_objects
The maximum number of objects to be created before the Python interpreter is restarted. If this number is
exceeded, and the time limit set in python_restart_min_interval has elapsed, the Python interpreter is
restarted.

Type: integer

Default: 1000

Python type: int

python_restart_min_interval
The minimum time interval before the Python interpreter is restarted. If this interval has elapsed, and either the
maximum number of hooks to be serviced (set in python_restart_max_hooks) has been exceeded or the max-
imum number of objects to be created (set in python_restart_max_objects) has been exceeded, the Python
interpreter is restarted.

Type: integer seconds or [[HH:]MM:]SS

Default: 30

Python type: pbs.duration

4.4 Attributes and Parameters Affecting Hooks

• Each hook's attributes affect the behavior of that hook. Hook attributes are listed in “Hook Attributes” on page 349
of the PBS Professional Reference Guide.

• The $reject_root_scripts MoM parameter controls whether MoM accepts new hook scripts.

• The server attributes that control when the Python interpreter is restarted are listed in Chapter 4, "Restarting the
Python Interpreter", on page 24.

4.5 Python Modules and PBS

When you run a hook inside pbs_python, the hook has access to modules here:

• In PBS_EXEC/python

• In PBS_EXEC/lib/python/altair

Your hook can use other modules if you specify them in the hook.
PBS Professional 2022.1 Hooks Guide HG-25

Chapter 4 Hook Basics
The PBS_EXEC/python modules are in the following directories:

PBS_EXEC/python/lib/python36.zip

PBS_EXEC/python/lib/python3.6

PBS_EXEC/python/lib/python3.6/plat-linux2

PBS_EXEC/python/lib/python3.6/lib-tk

PBS_EXEC/python/lib/python3.6/lib-dynload

PBS_EXEC/python/lib/python3.6/site-packages

4.5.1 Python Module Caveats

In order to use PBS_EXEC/python/lib/python3.6/site-packages, you must first call the following:

import site

site.main()

4.5.2 Modifying Python Modules

If you need to use other modules, we recommend that you put the modules in a different directory from
PBS_EXEC/lib/python.

To use other modules besides the ones in PBS_EXEC/lib/python, specify the path in the hook.

If you are adding modules that are not in PBS_EXEC/lib/python, you can do this:

import sys

if '/usr/lib64/python3.6' not in sys.path:

sys.path.append('/usr/lib64/python3.6')

import pbs

If you need to include user-defined paths ahead of the default modules, you can do the following. For example, if you put
a module in /usr/lib64/python3.6, in /usr/local/lib64/python3.6, and in /usr/local/lib64/custom/python and
you want to load them before the PBS-provided modules, add them to your hook this way:

import sys

my_paths = ['/usr/lib64/python3.6',

'/usr/local/lib64/python3.6',

'/usr/local/lib64/custom/python']

for my_path in my_paths:

if my_path not in sys.path:

sys.path.insert(0, my_path)

import pbs

4.5.2.1 Caveats for Modifying Python Modules

If you change a Python module in a server job hook (queuejob, postqueuejob, movejob, modifyjob, runjob, etc.), you
must restart the server in order to use the new module, because "import" is cached.

4.5.3 Listing Modules in pbs_python

You can find the list of modules supported by pbs_python via:

/opt/pbs/bin/pbs_python -c 'help("modules")'
HG-26 PBS Professional 2022.1 Hooks Guide

Hook Basics Chapter 4
4.6 See Also

For a description of the PBS hook APIs, see the PBS Professional Programmer's Guide. Each PBS object's attribute's
Python type is listed in its description in “Attributes” on page 277 of the PBS Professional Reference Guide. For exam-
ple, “Server Attributes” on page 281 of the PBS Professional Reference Guide lists the Python type for the
job_sort_formula server attribute.

The following man pages and equivalent sections contain useful information:

Table 4-2: See Also

Man Page Guide Section

pbs_module(7B) section 28.3.1, “The pbs Module”, on page 112 of the PBS Professional Program-
mer's Guide

 pbs_stathook(3B) section 28.4.2, “The pbs_stathook() API”, on page 118 of the PBS Professional Pro-
grammer's Guide

pbs_hook_attributes(7B) “Hook Attributes” on page 349 of the PBS Professional Reference Guide

pbs_job_attributes(7B) “Job Attributes” on page 327 of the PBS Professional Reference Guide

pbs_server_attributes(7B) “Server Attributes” on page 281 of the PBS Professional Reference Guide

pbs_queue_attributes(7B) “Queue Attributes” on page 311 of the PBS Professional Reference Guide

pbs_node_attributes(7B) “Vnode Attributes” on page 320 of the PBS Professional Reference Guide

qmgr(1B) “qmgr” on page 152 of the PBS Professional Reference Guide

qsub(1B) “qsub” on page 216 of the PBS Professional Reference Guide

qmove(1B) “qmove” on page 175 of the PBS Professional Reference Guide

qalter(1B) “qalter” on page 130 of the PBS Professional Reference Guide

pbs_rsub(1B) “pbs_rsub” on page 96 of the PBS Professional Reference Guide

pbs_manager(3B) "pbs_manager” on page 41 of the PBS Professional Programmer's Guide
PBS Professional 2022.1 Hooks Guide HG-27

Chapter 4 Hook Basics
HG-28 PBS Professional 2022.1 Hooks Guide

5

Creating and Configuring

Hooks

Contents

5.1 Creating and Configuring Site-defined Hooks . HG-36
5.1.1 Introduction to Creating and Configuring Hooks. HG-36
5.1.2 Overview of Creating and Configuring a Hook . HG-36
5.1.3 Creating Empty Hooks . HG-37
5.1.4 Deleting Hooks . HG-37
5.1.5 Setting Hook Trigger Events . HG-37
5.1.6 Using Hook Configuration Files. HG-39
5.1.7 Importing Hooks. HG-41
5.1.8 Exporting Hooks. HG-42
5.1.9 Setting and Unsetting Hook Attributes. HG-43
5.1.10 Enabling and Disabling Hooks . HG-44
5.1.11 Setting the Relative Order of Hook Execution. HG-45
5.1.12 Setting Hook Timeout . HG-45
5.1.13 Setting Hook Interval (Frequency) . HG-46
5.1.14 Setting Hook User Account . HG-46

5.2 Writing Hook Scripts to Operate on PBS Elements . HG-47
5.2.1 How We Define and Refer to Objects and Methods . HG-47
5.2.2 Recommended Hook Script Structure . HG-48
5.2.3 Hook Alarm Calls and Unhandled Exceptions. HG-50
5.2.4 Using Attributes and Resources in Hooks . HG-51
5.2.5 Using select and place in Hooks. HG-74
5.2.6 Restarting Scheduler Cycle After Hook Failure. HG-75
5.2.7 Adding Custom Host-level Resources . HG-75
5.2.8 Printing And Logging Messages . HG-76
5.2.9 Capturing Return Code. HG-77
5.2.10 When You Need Persistent Data . HG-77
5.2.11 Setting Up Job Environment on Sisters . HG-77
5.2.12 Offlining Bad Vnodes. HG-78

5.3 Advice and Caveats for Writing Hooks . HG-80
5.3.1 Rules for Hook Access and Behavior. HG-80
5.3.2 Check for Parameter Validity . HG-80
5.3.3 Make Changes Only On Acceptance . HG-81
5.3.4 Offline Vnodes when exechost_startup Hook Rejects . HG-81
5.3.5 Minimize Unnecessary Steps . HG-81
5.3.6 Use Fast Operations . HG-81
5.3.7 Avoiding Interference with Normal Operation . HG-82
5.3.8 Avoiding Problems . HG-83
5.3.9 Restrictions . HG-84
5.3.10 Scheduling Impact of Hooks . HG-84
5.3.11 Windows Caveats . HG-85
PBS Professional 2022.1 Hooks Guide HG-29

Chapter 5 Creating and Configuring Hooks
5.1 Creating and Configuring Site-defined Hooks

In this chapter we describe how to create and configure site-defined hooks. For information about operating on built-in
hooks, see Chapter 7, "Built-in Hooks", on page 179.

5.1.1 Introduction to Creating and Configuring Hooks

Hooks can only be created, run, or modified by the Administrator, and only on the host(s) on which the primary or sec-
ondary server runs.

You create hooks using the qmgr command to create, delete, import, or export the hook. The qmgr command operates
on the hook object.

Syntax for operating on hooks:

qmgr -c "<command> hook <hook name> [<arguments to command>]"

where

command is create, delete, set, unset, list, print, import, export

5.1.1.1 Hook Name Restrictions

• Each hook must have a unique name.

• The name must be alphanumeric, and start with an alphabetic character.

• The name must not begin with "PBS".

• The name of a hook can be a legal PBS object name, such as the name of a queue.

• Hook names are case-sensitive.

5.1.2 Overview of Creating and Configuring a Hook

The following is an overview of the steps to create a hook. Each step is described in the following sections. You must be
logged into the primary or secondary server host as root.

1. Use the create hook qmgr command to create an empty hook with the name you specify

2. Import the contents of a hook script into the hook

3. Set the hook's trigger event

4. If the hook will use a configuration file, write and import the configuration file

5. Set the hook's order of execution, if there is another hook for the same event

6. Optionally, set the hook's timeout

7. Make sure that the $reject_root_scripts MoM configuration parameter is set to False on all execution hosts where
you want hooks to run. The default for this parameter is False.

You do not need to restart the MoM.

5.1.2.1 Example of Creating and Configuring a Hook

Create the hook:

Qmgr: create hook hook1
HG-30 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
Import the hook script named hook1_script.py into the hook:

Qmgr: import hook hook1 application/x-python default /hooks/hook1_script.py

Make hook1 a queuejob hook:

Qmgr: set hook hook1 event = queuejob

Make this the second queuejob hook:

Qmgr: set hook hook1 order = 2

Set the hook to time out after 60 seconds:

Qmgr: set hook hook1 alarm = 60

Look at the $reject_root_scripts MoM configuration parameter where you want the hook to run, and make sure it is set
to False.

5.1.3 Creating Empty Hooks

To create a hook, use the create hook command in qmgr to create an empty hook with the name you specify:

The create hook qmgr command creates an empty hook.

Syntax for creating a hook:

Qmgr: create hook <hook name>

5.1.3.1 Example of Creating an Empty Hook

To create the hook named "hook1", specify a filename, for example "/hooks/hook1.py", that is locally accessible to
qmgr and the PBS server:

Qmgr: create hook hook1

5.1.4 Deleting Hooks

To delete a hook, you use the delete hook command in qmgr.

Syntax for deleting a hook:

Qmgr: delete hook <hook name>

5.1.4.1 Example of Deleting a Hook

To delete hook hook1:

Qmgr: delete hook hook1

5.1.5 Setting Hook Trigger Events

To set the events that will cause a hook to be triggered, use the set hook <hook name> event command in
qmgr. You can add triggering events to a hook.

To set one event:

Qmgr: set hook <hook name> event = <event name>
PBS Professional 2022.1 Hooks Guide HG-31

Chapter 5 Creating and Configuring Hooks
Designate triggers for a hook by setting <event name> to one of the following events:

To add an event:

Qmgr: set hook <hook name> event += <event name>

For a detailed description of each event, see section 6.3.1, “Event Types”, on page 87.

Table 5-1: Hook Trigger Events

Action (Event) Event Name

Before queueing job queuejob

After queueing job postqueuejob

Moving job movejob

Modifying job, except when scheduler makes modification modifyjob

Before a job is sent to an execution host runjob

When server receives job or subjob obit jobobit

When reservation is submitted resvsub

When reservation is confirmed resv_confirm

When reservation is modified modifyresv

When reservation begins resv_begin

When reservation ends resv_end

When qmgr directive is used on object management

Periodically on server host periodic

After vnode changes state modifyvnode

When vnode is provisioned provision

When a job is received by an execution host, after stagein execjob_begin

Just before executing a job's top shell execjob_prologue

Just before executing the user's program execjob_launch

When pbs_attach() is called execjob_attach

Just after suspending a job execjob_postsuspend

Just before resuming a job execjob_preresume

Just before killing a job execjob_preterm

Just after executing or killing a job, but before job is cleaned up execjob_epilogue

Just after cleaning up a job that has finished or been killed execjob_end

When an execution host starts up or receives a HUP exechost_startup

Periodically on all execution hosts exechost_periodic
HG-32 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.1.5.1 Example of Setting Hook Trigger Events

To set an event that will cause hook "UserFilter" to be triggered:

Qmgr: set hook UserFilter event = queuejob

Add another event:

Qmgr: set hook UserFilter event += modifyjob

Set two events at once:

Qmgr: set hook UserFilter event = "queuejob, modifyjob"

You must enclose the value in double quotes if it contains a comma.

5.1.6 Using Hook Configuration Files

You can customize the behavior of a hook by providing a configuration file for the hook. You write the hook so that it
reads and acts on its configuration file. Hooks are not required to use configuration files. A configuration file can con-
tain whatever information is useful to the hook. A configuration file is just a file of whatever information you want; the
way the hook reads and uses the contents of a configuration file is up to you. The hook itself processes the configuration
file.

5.1.6.1 Format of Configuration File

PBS supports several file formats for configuration files. The format of the file is specified in its suffix. Formats can be
specified in any of the following ways:

• .ini

• .json

• .txt (generic, no special format)

• .xml

• No suffix: treat the input file as if it is a .txt file

• The dash (-) symbol: configuration file content will be taken from STDIN. The content is treated as if it is a .txt file.

For example, to import a configuration file in .json format:

qmgr -c "import hook <hook_name> application/x-config default input_file.json"

5.1.6.2 Importing Configuration File

To provide a configuration file for a hook, you import the configuration file into the hook. The import command is the
same as for a hook, except that you set <content-type> to "application/x-config". Syntax for importing a configuration
file:

Qmgr: import hook <hook_name> application/x-config <content-encoding>
<input_config_file>

or

qmgr -c "import hook <hook_name> application/x-config <content-encoding> <input_config_file>"

where <content-encoding> is "default" (7-bit) or "base64".
PBS Professional 2022.1 Hooks Guide HG-33

Chapter 5 Creating and Configuring Hooks
This uses the contents of <input_config_file> or stdin (-) as the contents of configuration file for hook <hook_name>.

• The <input_config_file> or stdin (-) data must have a format <content-type> and must be encoded with <con-
tent-encoding>.

• The allowed values for <content-encoding> are "default" (7bit) and "base64".

• If the source of input is stdin (-) and <content-encoding> is "default", then qmgr expects the input data to be ter-
minated by EOF.

• If the source of input is stdin (-) and <content-encoding> is "base64", then qmgr expects input data to be termi-
nated by a blank line.

• <input_config_file> must be locally accessible to both qmgr and the requested batch server.

• A relative path <input_config_file> is relative to the directory where qmgr was executed.

• If a hook already has a configuration file, then that is overwritten by this import call.

• If <input_config_file> name contains spaces, <input_config_file> must be quoted.

• There is no restriction on the size of the hook configuration file.

5.1.6.2.i Examples of Importing Configuration Files

Importing a Python configuration file:

qmgr -c 'import hook hook1 application/x-config default hello.py'

Importing a JSON configuration file:

qmgr -c 'import hook hook1 application/x-config default hello.json'

5.1.6.3 Exporting Configuration Files

To edit or display the content of a hook configuration file associated with the hook named <hook_name>, export the con-
figuration file. Use the export command:

qmgr -c "export hook <hook_name> application/x-config default" > <output file>

5.1.6.4 How Hooks Find Configuration Files

There are two ways to retrieve a configuration file in a hook.

• PBS puts the configuration file in a location that can be read by the hook, and sets the
PBS_HOOK_CONFIG_FILE environment variable to that path. Your hook script can use this path:
import os

import ConfigParser

if "PBS_HOOK_CONFIG_FILE" in os.environ:

config_file = os.environ["PBS_HOOK_CONFIG_FILE"]

config = ConfigParser.RawConfigParser()

config.read(os.environ["PBS_HOOK_CONFIG_FILE")

• Your hook can use the pbs.hook_config_filename variable, which contains the path to the configuration file. See
"pbs.hook_config_filename” on page 160.

If there is no configuration file, this variable returns None.

5.1.6.5 Changing a Hook Configuration File

To replace the content of a hook configuration file, export the file, edit it, and issue another "import" hook command
with updated <input_config_file> content.
HG-34 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.1.6.6 Validation and Errors

• PBS pre-validates <input_config_file> according to its file format, and returns an error in qmgr's STDERR if valida-
tion fails. For example:
qmgr -c "import hook submit application/x-config default file.json"

"Failed to validate config file, hook 'submit' config file not overwritten"

• If the input configuration file given is of unrecognized suffix, the following message is returned in qmgr's STDERR.
"<input-file> contains an invalid suffix, should be one of: .json .py .txt .xml .ini"

• If you import a configuration file and PBS cannot open the file because it is non-existent, has permission problems,
or has another system-related error, the following error message is printed in STDERR:
"qmgr: hook error: failed to open <filename> - <error message>"

• If you attempt to export a hook configuration file, but the file is unwriteable due to ownership or permission prob-
lems, the following error message is printed to STDERR:
"qmgr: hook error: <output_file> permission denied"

5.1.7 Importing Hooks

To import a hook, you import the contents of a hook script into the hook. You must specify a filename that is locally
accessible to qmgr and the PBS server.

Syntax for importing a hook:

Qmgr: import hook <hook_name> <content-type> <content-encoding> {<input_file>|-}

This uses the contents of <input_file> or stdin (-) as the contents of hook <hook_name>.

• The <input_file> or stdin (-) data must have a format <content-type> and must be encoded with <content-encod-
ing>.

• For script files, the only <content-type> currently supported is "application/x-python".

• The allowed values for <content-encoding> are "default" (7 bit) and "base64".

• If the source of input is stdin (-) and <content-encoding> is "default", then qmgr expects the input data to be ter-
minated by EOF.

• If the source of input is stdin (-) and <content-encoding> is "base64", then qmgr expects input data to be termi-
nated by a blank line.

• <input_file> must be locally accessible to both qmgr and the requested batch server.

• A relative path in <input_file> is relative to the directory where qmgr was executed.

• If a hook already has a content script, then that is overwritten by this import call.

• If the name of <input_file> contains spaces, <input file> must be quoted.

• There is no restriction on the size of the hook script.
PBS Professional 2022.1 Hooks Guide HG-35

Chapter 5 Creating and Configuring Hooks
5.1.7.1 Examples of Importing Hooks

Example 5-1: Given a Python script in ASCII text file "hello.py", this makes its contents into the script contents of
hook1:

#cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

qmgr -c 'import hook hook1 application/x-python default hello.py'

Example 5-2: Given a base64-encoded file "hello.py.b64", qmgr unencodes the file's contents, and then makes this
script the contents of hook1:

cat hello.py.b64

cHJpbnQgImhlbGxvLCB3b3JsZCIK

qmgr -c 'import hook hook1 application/x-python base64 hello.py.b64'

Example 5-3: Read stdin for text containing data until EOF, and make this into the script contents of hook1:

qmgr -c 'import hook hook1 application/x-python default -'

import pbs

pbs.event().job.comment="Hello from stdin"

Ctrl-D

Example 5-4: Read stdin for a base64-encoded string of data terminated by a blank line. PBS unencodes the data and
makes this script the contents of hook1.

qmgr -c 'import hook hook1 application/x-python base64 -'

cHJpbnQgImhlbGxvLCB3b3JsZCIK

Ctrl-D

5.1.8 Exporting Hooks

Syntax for exporting a hook:

qmgr -c "export hook <hook_name> <content-type> <content-encoding>" > <output_file>

This dumps the script contents of hook <hook_name> into <output_file>, or stdout if <output_file> is not specified.

• The resulting <output_file> or stdout data is of <content-type> and <content-encoding>.

• The only <content-type> currently supported for scripts is "application/x-python".

• The allowed values for <content-encoding> are "default" (7bit) and "base64".

• <output_file> must be a path that can be created by qmgr.

• Any relative path in <output_file> is relative to the directory where qmgr was executed.

• If <output_file> already exists it is overwritten. If PBS is unable to overwrite the file due to ownership or permis-
sion problems, then an error message is displayed in stderr.

• If the <output_file> name contains spaces, <output file> must be enclosed in quotes.
HG-36 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.1.8.1 Examples of Exporting Hooks

Example 5-5: Dumps hook1's script contents directly into the file "hello.py.out":

qmgr -c "export hook hook1 application/x-python default" > hello.py
cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

Example 5-6: To dump the script contents of a hook 'hook1' into a file in "\My Hooks\hook1.py":

qmgr -c "export hook hook1 application/x-python default" > "\My Hooks\hook1.py"

Example 5-7: Dump hook1's script contents base64-encoded into a file called "hello.py.b64":

qmgr -c "export hook hook1 application/x-python base64" > hello.py.b64

cat hello.py.b64

cHJpbnQgImhlbGxvLCB3b3JsZCIK

Example 5-8: Dump hook1's script contents directly to stdout:

qmgr -c "export hook hook1 application/x-python default"

import pbs

pbs.event().job.comment="Hello, world"

Example 5-9: Dump hook1's script contents base64-encoded into stdout:

qmgr -c "export hook hook1 application/x-python base64"

 cHJpbnQgImhlbGxvLCB3b3JsZCIK

5.1.9 Setting and Unsetting Hook Attributes

You configure a hook using the qmgr command to set or unset its attributes. An unset hook attribute takes the default
value for that attribute.

Hook attributes can be viewed via qmgr:

Qmgr: list hook <hook name>

To set a hook attribute:

Qmgr: set hook <hook name> <attribute> = <value>

To unset a hook attribute:

Qmgr: unset hook <hook name> <attribute>

For example, to unset hook1's alarm attribute, causing its value to revert to its default value:

Qmgr: unset hook hook1 alarm

This causes hook1's alarm to revert to the default of 30 seconds.

5.1.9.1 Caveats for Setting Hook Attributes

You cannot set the type attribute for a built-in hook.

5.1.9.2 Using the fail_action Hook Attribute

The fail_action hook attribute is a string_array and can take on multiple values:

None
No action is taken.
PBS Professional 2022.1 Hooks Guide HG-37

Chapter 5 Creating and Configuring Hooks
offline_vnodes
After unsuccessful hook execution, offlines the vnodes managed by the MoM executing the hook. Can be set
for execjob_begin, execjob_prologue, and exechost_startup hooks only.

clear_vnodes_upon_recovery
After successful hook execution, clears vnodes previously offlined via "offline_vnodes" fail action. Can be set
for exechost_startup hooks only.

scheduler_restart_cycle
After unsuccessful hook execution, restarts scheduling cycle. Can be set for execjob_begin and
execjob_prologue hooks only.

Default value: "None"

If you specify offlining or clearing vnodes in addition to restarting the scheduler, the scheduler restart happens last. The
order of the values is not important.

To set the attribute:

qmgr -c "set hook <hook_name> fail_action = <fail_action value>"

qmgr -c "set hook <hook_name> fail_action = '<fail_action value>,<fail_action value>'"

To add a value to the list of values:

qmgr -c "set hook <hook_name> fail_action += <fail_action value>"

To remove a value from the list of values:

qmgr -c "set hook <hook_name> fail_action -= <fail_action value>"

To find out what the values are:

qmgr -c "list hook <hook_name> fail_action"

<hook_name>

fail_action = <fail_action value>

To unset the attribute:

qmgr -c "unset hook <hook_name> fail_action"

See section 5.2.12.4, “Offlining and Clearing Vnodes Using the fail_action Hook Attribute”, on page 72 and section
5.2.6, “Restarting Scheduler Cycle After Hook Failure”, on page 69.

5.1.9.3 List of Hook Attributes

Hook attributes are listed in “Hook Attributes” on page 349 of the PBS Professional Reference Guide.

5.1.10 Enabling and Disabling Hooks

A hook is either enabled, and will run when its action happens, or is disabled, and will not run. Hooks are enabled by
default.

Syntax to enable a hook:

Qmgr: set hook <hook name> enabled=True

Syntax to disable a hook:

Qmgr: set hook <hook name> enabled=False
HG-38 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.1.10.1 Example of Enabling and Disabling Hooks

To enable hook1:

Qmgr: set hook hook1 enabled=True

To disable hook1:

Qmgr: set hook hook1 enabled=False

5.1.11 Setting the Relative Order of Hook Execution

When there are multiple hooks of the same type for one action, you may wish to specify the order in which these hooks
are run. The order in which the hooks for an action are run is determined by each hook's order attribute. Hooks with a
lower value for order will run before hooks with a higher value. To set the relative order in which the hooks for an action
will be run, set each hook's order attribute.

Syntax:

Qmgr: set hook <hook name> order=<ordering>

<ordering> is an integer. Hooks with lower values for <ordering> run before those with higher values; a hook with
order=1 runs before a hook with order=2.

Valid values for order:

• Built-in hooks can be from -1000 to 2000

• Site hooks can be from 1 to 1000

The order in which hooks of the same type for unrelated actions execute is undefined. For example, there are two
queuejob hooks, Hook1 and Hook2, and userA submits jobA and userB submits jobB. While Hook1 always runs before
Hook2 for the same job, the order of execution is undefined for different jobs. So the order could be:

Hook1 (jobB)

Hook1 (jobA)

Hook2 (jobA)

Hook2 (jobB)

5.1.11.1 Example of Setting Relative Order of Hook Execution

To set hookA to run first and hookB to run second:

Qmgr: set hook hookA order=2
Qmgr: set hook hookB order=5

5.1.11.2 Caveats for Setting Relative Order of Hooks

The order attribute is ignored for exechost_periodic and periodic hooks.

5.1.12 Setting Hook Timeout

You may wish to specify how long PBS should wait for a hook to run. Execution for each hook times out after the num-
ber of seconds specified in the hook's alarm attribute. If the hook does not run in the specified time, PBS aborts the hook
and rejects the hook's action.

Syntax:

Qmgr: set hook <hook name> alarm=<timeout>
PBS Professional 2022.1 Hooks Guide HG-39

Chapter 5 Creating and Configuring Hooks
<timeout> is the number of seconds PBS will allow the hook to run.

When a hook timeout is triggered, the hook script gets a Python KeyboardInterrupt from the PBS server. The server
logs show:

06/17/2008 17:57:16;0001;Server@host2;Svr;Server@host2;PBS server internal error (15011) in
Python script received a KeyboardInterrupt, <type 'exceptions.KeyboardInterrupt'>

5.1.12.1 Example of Setting Hook Timeout

To set the number of seconds that PBS will wait for hook hook1 to execute before aborting the hook and reject the action:

Qmgr: set hook hook1 alarm=20

5.1.13 Setting Hook Interval (Frequency)

You can specify the interval at which a periodic hook runs. You can do this only for hooks whose event type is
exechost_periodic or periodic.

Syntax:

Qmgr: set hook <hook name> freq=<interval>

<interval> is the number of seconds elapsed between calls to this hook.

5.1.13.1 Example of Setting Hook Interval (Frequency)

To set the number of seconds between calls to an exechost_periodic or periodic hook:

Qmgr: set hook hook1 freq=200

5.1.14 Setting Hook User Account

You can specify the account under which a hook runs.

Syntax:

Qmgr: set hook <hook name> user=<pbsadmin | pbsuser>

pbsadmin specifies that the hook runs as root or as administrator.

pbsuser specifies that the hook runs as the job owner.

You can specify that a hook runs as the job owner only for execjob_prologue, execjob_epilogue, and execjob_preterm
hooks.

If you do not set the account, it defaults to pbsadmin.

5.1.14.1 Example of Setting Hook User Account

To set the account under which a hook runs:

Qmgr: set hook hook1 user=pbsuser
HG-40 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2 Writing Hook Scripts to Operate on PBS

Elements

5.2.1 How We Define and Refer to Objects and Methods

5.2.1.1 Scope of Object or Method

When we define an object or method, we show the scope of the object or method. For example, the scope of a job is the
pbs module, so we call it a pbs.job, and a server has the same scope, so it is a pbs.server. Similarly, the logjobmsg()
method has module-wide scope, and is defined as pbs.logjobmsg().

However, the scope of a job ID object is the job, not the module, so it is defined as a pbs.job.id, and the scope of the job's
is_checkpointed() method is the job, so it is defined as pbs.job.is_checkpointed().

5.2.1.2 Referring to Objects

In a hook, you refer to the triggering event using pbs.event(). In a hook that is triggered by a job-related event, such as
a movejob or execjob_begin hook, the event has an associated pbs.job object representing the job that triggered the
event, and you refer to it using pbs.event().job. You can refer to members of that job object using pbs.event().job.<mem-
ber>. For example, to refer to the ID of the job associated with the event, you use pbs.event().job.id. To use the
is_checkpointed() method on the job associated with the event, you use pbs.event().job.is_checkpointed(). You can use
shortcuts:

e = pbs.event()

j = e.job

c = j.is_checkpointed()

5.2.1.3 How to Retrieve Objects: Event vs. Server

Each event has access to specific objects, listed in Table 6-26, “Using Event Object Members in Job Events,” on
page 116 and Table 6-27, “Using Event Object Members in Reservation and Other Non-job Events,” on page 117. You
can manipulate many of these objects through the event. To retrieve the job that triggered an event, you refer to it this
way: pbs.event().job.

The server has read access to all objects in the pbs module. You refer to these objects through the server. For example,
to retrieve a job whose ID is "1234" through the server, you use pbs.server().job("1234"). You cannot manipulate an
object that is retrieved through the server.

5.2.1.3.i Retrieving Jobs

The way you retrieve a job determines how much access you have to that job. You can retrieve a job either through the
event, via pbs.event().job, or through the server, via pbs.server().job().

If you retrieve a job through an event, the event gives you the job itself, represented as an object. You can see and alter
some job attributes for an event-retrieved job object. To get the job object representing the job associated with the cur-
rent event, on which you can operate, use pbs.event().job. We show which hooks can see and set each job attribute in
Table 5-6, “Job Attributes Readable & Settable via Job Events,” on page 56 and Table 5-7, “Job Attributes Readable &
Settable via Reservation & Other Non-job Events,” on page 58.

However, if you retrieve a job through the server, the server gives you an instantiated job object that contains a copy of
the job. You cannot set any job attributes for a server-retrieved job object, and trying to operate on a server-retrieved
copy of the job causes an exception. In order to get read-only information about a particular job with ID <id>, use
pbs.server().job('<job ID>'). This returns a read-only copy of the job.
PBS Professional 2022.1 Hooks Guide HG-41

Chapter 5 Creating and Configuring Hooks
You can see all of the attributes for a server-retrieved job object, except in a queuejob hook. In a queuejob hook, the
event gives you the job as it exists before the server sees it, but the server cannot retrieve it, because the job has not yet
made it to the server.

5.2.1.3.ii Retrieving Vnodes

Vnode objects behave like job objects. If you retrieve a vnode object through an event, via pbs.event().vnode_list[], you
can see some of the vnode's attributes, and set vnode attributes.

We list which hooks can read and/or set each vnode attribute in Table 5-8, “Vnode Attributes Readable & Settable via Job
Events,” on page 61 and Table 5-9, “Vnode Attributes Readable & Settable via Reservation & Other Non-job Events,” on
page 62.

We list which hooks can read and/or set each vnode resource in Table 5-13, “Vnode Resources Readable & Settable by
Hooks via Job Events,” on page 66 and Table 5-14, “Vnode Resources Readable & Settable by Hooks via Reservation &
Other Non-job Events,” on page 67.

If you retrieve a vnode object through an execjob_* event, you are retrieving a vnode associated with the job that trig-
gered the event.

If you retrieve a vnode object through the server, via pbs.server().vnode(), you have a copy of the vnode, and you can
see all of the vnode's attributes, but you cannot set any of them.

5.2.1.3.iii Retrieving Queues

You can retrieve queues through the server only, using pbs.server().queue("<queue name>"), or using
pbs.server().queues(). You cannot make any changes to queue objects in hooks. These are read-only.

You can change a job's destination queue, but only to a queue at the local server. Hooks have access only to the local
server. Hooks can allow a job submission to a remote server, but they cannot specify a remote server. See section
5.3.9.1, “Local Server Only”, on page 78. Hooks can specify the destination queue at a local server for a queuejob or
movejob event, whether the original destination queue was at the local server or a remote server.

To specify a destination queue at the local server:

pbs.event().job.queue = pbs.server().queue("<local_queue>")

Do not specify a queue at a remote server in a hook script.

5.2.1.3.iv Retrieving Reservations

In order to get information about a reservation via a reservation-related event, use pbs.event().resv. Note that
pbs.server() cannot return information about a reservation before the reservation has been created.

5.2.2 Recommended Hook Script Structure

5.2.2.1 Catch Exceptions

Your hook script should catch all exceptions except for SystemExit. We recommend that you catch exceptions via try...
except and accompany them with a call to pbs.event().reject().

It is helpful if it displays a useful error message in the stderr of the command triggering the hook. The error message
should show the type of the error and should describe the error.
HG-42 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
Here is the recommended script structure:

import pbs

import sys

try:

…

except SystemExit:

pass

except:

pbs.event().job.rerun()

pbs.event().reject("%s hook failed with %s. Please contact \

Admin" % (pbs.event().hook_name, sys.exc_info()[:2]))

5.2.2.1.i Example of Catching Exceptions

This example shows how a coding error in the hook is caught with the except statement, and an appropriate error mes-
sage is generated. In line 7, the statement k=5/0 generates a divide-by-zero error. The hook script is designed to reject
interactive jobs that are submitted to queue "nointer".

import pbs

import sys

try:

batchq = "nointer"

e = pbs.event()

j = e.job

k = 5/0

if j.queue and j.queue.name == batchq and j.interactive:

e.reject("Can't submit an interactive job in '%s' queue" %

(batchq))

except SystemExit:

pass

except:

e.reject("%s hook failed with %s. Please contact Admin" % (e.hook_name, sys.exc_info()[:2]))

The hook is triggered:

% qsub job.scr

qsub: c1 hook failed with (<class 'ZeroDivisionError'>, ZeroDivisionError('division by zero',)).
Please contact Admin
PBS Professional 2022.1 Hooks Guide HG-43

Chapter 5 Creating and Configuring Hooks
5.2.2.1.ii Table of Exceptions

The following exceptions may be raised when using the pbs.* objects:

5.2.3 Hook Alarm Calls and Unhandled Exceptions

• An execjob_begin or exechost_startup hook can cause a failure action to take place when the hook script fails
due to an alarm call or an unhandled exception. Otherwise, the following happens:

Table 5-2: Exceptions Raised When Using pbs.* Objects

Object Exception

pbs.BadAttributeValueError Raised when setting member value of a pbs.* object to an invalid value.

pbs.BadAttributeValueTypeError Raised when setting member value of a pbs.* object to an invalid type.

pbs.BadResourceValueError Raised when setting resource value of a pbs.* object to an invalid value.

pbs.BadResourceValueTypeError Raised when setting resource value of a pbs.* object to an invalid type.

pbs.EventIncompatibleError Raised when referencing a nonexistent member in pbs.event.

Example: calling pbs.event().resv for pbs.event().type of
pbs.HOOK_EVENT_QUEUEJOB

pbs.UnsetAttributeNameError Raised when referencing a non-existent member name of a pbs.* object.

pbs.UnsetResourceNameError Raised when referencing a non-existent resource name of a pbs.* object.

SystemExit 1. Raised when pbs.event().reject() terminates hook execution.

2. Raised when pbs.event().accept() terminates hook execution.
HG-44 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
If a pre-execution event or execution event hook encounters an unhandled exception:

• PBS rejects the corresponding action. The command that initiates the action results in the following message in
stderr:

"<command_name>: request rejected as filter hook <hook_name> encountered an exception. Please
inform Admin"

• The following message appears in the appropriate PBS daemon log, logged under PBSEVENT_DEBUG2 event
class:

"<request type> hook <hook_name> encountered an exception, request rejected"

• The job is left unmodified.

• If an exechost_startup hook script encounters an unexpected error causing an unhandled exception, vnode changes
do not take effect, but MoM continues to run, and the following message appears at level PBSEVENT_DEBUG2
in mom_logs:
"exechost_startup hook <hook_name> encountered an exception, request rejected"

• The following statements will cause an unhandled exception if they appear in a hook script as is:

• ZeroDivisionError exception raised:

val = 5/0

• BadAttributeValueError exception raised; pbs.hold_types and strings don't mix:

pbs.event().job.Hold_Types = "z"

• EventIncompatibleError exception raised for the following runjob event; runjob event has job attribute, not
resv attribute:

r = pbs.event().resv

• You can use execjob_begin and exechost_startup hooks to offline vnodes when those hooks encounter alarm
calls or unhandled exceptions. See “Offlining and Clearing Vnodes Using the fail_action Hook Attribute” on page
72 of the PBS Professional Reference Guide. You can then clear the offline state from those vnodes later when an
exechost_startup hook runs successfully.

• You can use an execjob_begin hook restart the scheduler cycle when the hook encounters an alarm call or unhan-
dled exception. See “Restarting Scheduler Cycle After Hook Failure” on page 69 of the PBS Professional Reference
Guide.

For a list of exceptions, see Table 5.2.2.1.ii, “Table of Exceptions,” on page 44.

5.2.4 Using Attributes and Resources in Hooks

5.2.4.1 Using Built-in vs. Custom Resources in Hooks

Hooks have more access to built-in resources than they do to custom resources. All hooks can read built-in resources.
All event hooks that run at the server can read all custom resources via pbs.event(), as well as via pbs.server(). How-
ever, hooks that run at the execution host can read custom resources only via pbs.server(). So for example if a job
requests a custom resource, a runjob hook can read the resource, but an execjob_begin hook cannot.

5.2.4.2 Creating and Setting Custom Resources in Hooks

You can create a custom resource only in an exechost_startup hook. You can set a custom resource in a hook that runs
at the server or using an exechost_startup hook. To create and set a custom resource in a vnode's
resources_available attribute via an exechost_startup hook:

qmgr -c "create hook start event=exechost_startup"

qmgr -c "import hook start application/x-python default start.py"

qmgr -c "export hook start application/x-python default"
PBS Professional 2022.1 Hooks Guide HG-45

Chapter 5 Creating and Configuring Hooks
Hook script:

import pbs

e=pbs.event()

localnode=pbs.get_local_nodename()

e.vnode_list[localnode].resources_available['foo_i'] = 7

e.vnode_list[localnode].resources_available['foo_f'] = 5.0

e.vnode_list[localnode].resources_available['foo_str'] = "seventyseven"

Note that while an exechost_startup hook cannot read an existing custom resource, it can create and set a new one.

When you create a custom job resource in an exechost_startup hook, the m flag is set by default. See "Specifying
Whether Resource is Cached at MoM" on page 259 in the PBS Professional Administrator’s Guide.

5.2.4.3 Determining Whether to Use Creation Method to Set Attribute

or Resource

The way you set an attribute or resource depends on the type of the attribute or resource:

• If the attribute or resource is a string (str), an integer (int), a Boolean (bool), a long (long), or a floating point (float),
you can set it directly:

pbs.event().job.<attribute name> = <attribute value>
pbs.event().job.Resource_List["<resource name>"]=<resource value>

For example:

jobA = pbs.event().job

jobA.Account_Name = "AccountA"

jobA.Priority = 100

• However, if the attribute or resource is any other type, you must use the corresponding creation method to instantiate
an object of the correct type with the desired value as a formatted input string, then assign the object to the job. For
example:
pbs.event().job.Hold_Types = pbs.hold_types("uo")

For creation methods, see section 6.15.3, “PBS Types and Their Methods”, on page 168.

5.2.4.3.i Caveat for Objects Requiring Creation Method

You can operate on these objects only as if they are strings. Use repr() on the object to get its full string representa-
tion. You can then manipulate this representation using the built-in methods for Python 'str'.

5.2.4.3.ii Python Types not Requiring Creation Method

The following Python types do not require you to use an explicit creation method:

bool

float

int

str

5.2.4.4 How to Unset an Attribute or Resource

To unset an attribute or resource, set <attribute value> to None:

pbs.event().job.<attribute name> = None
HG-46 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
When you unset an attribute or resource, it takes its default value.

5.2.4.4.i How to Unset an Attribute or Resource Requiring Creation Method

You can unset a job attribute or resource that has a creation method by setting it to None.

Example:

pbs.event().job.Hold_Types = None

5.2.4.5 Using Attributes in Hooks: Reading vs. Setting

All hooks can read, but not set, all job, vnode, server, queue, and reservation attributes via pbs.server().job(),
pbs.server().vnode(), pbs.server().queue(), etc.

We list which job attributes can be read or set when the job is retrieved through an event in Table 5-6, “Job Attributes
Readable & Settable via Job Events,” on page 56 and Table 5-7, “Job Attributes Readable & Settable via Reservation &
Other Non-job Events,” on page 58.

We list which vnode attributes can be read or set when the vnode is retrieved through an event in Table 5-8, “Vnode
Attributes Readable & Settable via Job Events,” on page 61 and Table 5-9, “Vnode Attributes Readable & Settable via
Reservation & Other Non-job Events,” on page 62.

We list which reservation attributes can be read or set when the reservation is retrieved through an event in Table 5-10,
“Reservation Attributes Readable & Settable in Reservation Hooks,” on page 63.

No hooks can see or set any scheduler attributes.

The job, vnode, or reservation object's attributes appear to the hook as they would be after the event, not before it, for all
hooks except runjob hooks.

5.2.4.6 Setting Time Attributes

For the job attributes Execution_Time, ctime, etime, mtime, obittime, qtime, and stime, the pbs.job object expects or
shows the number of seconds since Epoch. The only one of these that can be set is Execution_Time.

For the reservation attributes reserve_start, reserve_end, and ctime, the pbs.resv object expects and shows the number
of seconds since Epoch. The ctime attribute cannot be set.

If you wish to set the value for Execution_Time, reserve_start, or reserve_end using the [[CCYY]MMDDhhmm[.ss]
format, or to see the value of any of the time attributes in the ASCII time format, load the Python time module and use
the functions time.mktime([CCYY, MM, DD, hh, mm, ss, -1, -1, -1]) and time.ctime().

Example:

import time

job.Execution_Time = time.mktime([07, 11, 28, 14, 10, 15, -1, -1, -1])

time.ctime(job.Execution_Time)

'Wed Nov 28 14:10:15 2007'

If reserve_duration is unset or set to None, the reservation's duration is taken from the walltime resource attribute asso-
ciated with the reservation request. If reserve_duration and walltime are both specified, meaning not set to None,
reserve_duration will take precedence.
PBS Professional 2022.1 Hooks Guide HG-47

Chapter 5 Creating and Configuring Hooks
5.2.4.7 Special Characters in Variable_List Job Attribute

When special characters are used in Variable_List job attributes, they must be escaped. For this attribute, special charac-
ters are comma (,), single quote ('), double quote ("), and backslash (\). PBS requires each of these to be escaped with a
backslash. However, Python requires that double quotes and backslashes also be escaped with a backslash. If the special
character inside a string is a single quote, you must enclose the string in double quotes. If the special character inside the
string is a double quote, you must enclose the string in single quotes. The following rules show how to use special char-
acters in a Variable_List attribute when writing a Python script:

For example, if the path is:

"\Documents and Settings\pbstest\bin:\windows\system32"

This is how the path shows up in a script:

job.Variable_List["PATH"] = "\\Documents and Settings\\pbstest\\bin:\\windows\\system32"

5.2.4.8 Using string_array Attributes and Resources

5.2.4.8.i Handling Literal Values and Special Characters in string_array Format

In order to capture a literal value or special characters in a string_array attribute or resource, enclose the entire string
array in single quotes.

For an attribute or resource whose type is string_array and whose value contains one or more commas (","), the whole
string must be enclosed in single quotes, outside of its double quotes. For example:

If our string array has a single element consisting of "glad, elated":

job.Resource_List["test_string_array"] = '"glad, elated"'

If our string array has two elements, where one is "glad, elated" and the other is "happy":

job.Resource_List["test_string_array"] = '"glad, elated","happy"'

5.2.4.9 Using Resources in Hooks: Reading vs. Setting

All hooks can read, but not set, all job, vnode, server, queue, and reservation resources via pbs.server().job(),
pbs.server().vnode(), pbs.server().queue(), etc.

The resources that can be read or set via pbs.event() vary by hook:

We list the job resources that can be read and set via an event in each kind of hook in Table 5-11, “Built-in Job Resources
Readable & Settable by Hooks via Job Events,” on page 64 and Table 5-12, “Built-in Job Resources Readable & Settable
by Hooks via Reservation & Other Non-job Events,” on page 65.

We list the vnode resources that can be read and set via an event in each kind of hook in Table 5-13, “Vnode Resources
Readable & Settable by Hooks via Job Events,” on page 66 and Table 5-14, “Vnode Resources Readable & Settable by
Hooks via Reservation & Other Non-job Events,” on page 67.

Table 5-3: How to Use Special Characters in Python Scripts

Character Example Value How to Represent Value in Python Script

, (comma) a,b "a\\,b" or 'a\\,b'

' (single quote) c’d "c\\'d"

" (double quote) f"g"h 'f\\\"g\\\"h'

\ (backslash) \home\dir\files "\\home\\dir\\files" or '\\home\\dir\\files'
HG-48 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
We give an overview of the resources that can be read and set by each hook in Table 5-4, “Overview of Resources Read-
able & Settable by Hooks via Job Events,” on page 53 and Table 5-5, “Overview of Resources Readable & Settable by
Hooks via Reservation and Other Non-job Events,” on page 53. In these tables, if we say that a hook can read or set a
group of resources, for example the server's resources_available attribute, that means that the hook can read or set all of
the resources for that group.

5.2.4.10 Reading Resources in Hooks

PBS resources are represented as objects of type pbs.pbs_resource, where the resource names are the keys. This type
is described in section 6.15.3.19, “Method to Create or Set Resource List”, on page 171. Built-in resources are listed in
“List of Built-in Resources” on page 259 of the PBS Professional Reference Guide.

You can read a resource through objects such as the server, the event that triggered the hook, or the vnode to which a
resource belongs. For example:

pbs.server().resources_available["<resource name>"]

pbs.event().job.Resource_List["<resource name>"]

pbs.event().vnode_list[<vnode name>].resources_available["ncpus"]

The resource name must be in quotes.

Example: Get the number of CPUs in a job's Resource_List attribute:

ncpus=pbs.event().job.Resource_List["ncpus"]

5.2.4.10.i Converting walltime to Seconds

If you want to see a job's walltime in seconds:

int(pbs.event().job.Resource_List["walltime"])

For example:

pbs.logmsg(pbs.LOG_DEBUG, "walltime=%d" % (int(pbs.event().job.Resource_List["walltime"])))

If walltime is "00:30:15", this results in the following:

walltime=1815

5.2.4.11 Setting and Unsetting Vnode Resources and Attributes

You can set and unset vnode resources and attributes using the vnode_list[] object in an exechost_startup or
exechost_periodic hook. Any changes made this way are merged with those defined in a Version 2 vnode configuration
file.

To set the attributes and resources for a particular vnode:

pbs.event().vnode_list[<vnode name>].<attribute> = <value>

pbs.event().vnode_list["<vnode name>"].resources_available["<resource name>"] = <resource value>

Resource names and string values must be quoted.

Some examples:

pbs.event().vnode_list["V2"].pcpus = 5

pbs.event().vnode_list["V2"].resources_available["ncpus"] = 3

pbs.event().vnode_list["V2"].resources_available.["mem"] = pbs.size("100gb")

pbs.event().vnode_list["V2"].arch = "linux"

pbs.event().vnode_list["V2"].state = pbs.ND_OFFLINE

pbs.event().vnode_list["V2"].sharing = pbs.ND_FORCE_EXCL
PBS Professional 2022.1 Hooks Guide HG-49

Chapter 5 Creating and Configuring Hooks
To unset a resource value, specify "None" as its value:

pbs.event().vnode_list[<vnode_name>].resources_available[<res>] = None

pbs.event().vnode_list[<vnode_name>].<attribute> = None

5.2.4.12 Setting Job Resources in Hooks

You can set a job's Resource_List in pre-execution event hooks listed in Table 5-11, “Built-in Job Resources Readable
& Settable by Hooks via Job Events,” on page 64 and Table 5-12, “Built-in Job Resources Readable & Settable by Hooks
via Reservation & Other Non-job Events,” on page 65.

You can use an execution event hook (execjob_prologue, execjob_epilogue, and exechost_periodic) to set the value
of a job's resources_used for host-level resources. The values of these resources are then reported in the job's
resources_used attribute. For multi-vnode jobs, numeric values are summed and string resources are aggregated on a
per-MoM basis.

5.2.4.12.i Steps for Setting Job Resources in Hooks

You can set values for a job's Resource_List or resources_used attributes as follows:

pbs.event().job.Resource_List["<resource name>"] = <resource value>

pbs.event().job.resources_used["<resource name>"] = <resource value>

For example:

pbs.event().job.Resource_List["mem"] = 8gb

5.2.4.12.ii String Resource Format for Python

Each string value returned by a MoM is a JSON object (a Python dictionary), which is an unordered set of key-value
pairs, where each object begins with a left curly brace ("{"), and ends with a right curly brace ("}"). Each key is followed
by a colon (":"), and the key-value pairs are separated using a comma (","). The key is enclosed in double quotes (allow-
ing backslash escapes).

5.2.4.12.iii Setting String Job Resources in Hooks

When all values are in JSON format, the resulting string resource value is a union of all dictionary items, shown in
qstat -f output and accounting logs as:

resources_used.<resource_name> = {<MoMA_JSON_item_value>, <MoMB_JSON_item_value>,
<MoMC_JSON_item_value>, ..}

Example 5-10: If MoMA returns '{ "a":1, "b":2 }', MoMB returns '{ "c":1 }', and MoMC returns '{"d":4}' for
resources_used.foo_str. We see the following:

resources_used.foo_str='{"a": 1, "b": 2, "c":1,"d": 4}'

If two or more values have the same value for the key, only one of them is retained, depending on Python's operation of
merging dictionary items. We recommend that hook writers make the keys unique; you can do this by using the value
returned by pbs.get_local_nodename() as part of the key.

When at least one of the values obtained from a sister MoM is not of JSON format, the string cannot be accumulated, and
resources_used remains unset. PBS writes an error message in the MoM logs as follows:

"Job <jobid> resources_used.<string_resource> cannot be accumulated: value <input value> from MoM
<hostname> not JSON-format: <exception_error_message>."
HG-50 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.12.iv Example of Setting Resources in Hooks

Example 5-11: Using an epilogue hook that runs on all the MoMs, we set different resources_used values depending
on whether the hook executes on the primary execution host or a sister MoM:

#: qmgr -c "list hook epi"

Hook epi

type = site

enabled = true

event = execjob_epilogue

user = pbsadmin

alarm = 30

order = 1

debug = false

fail_action = none

qmgr -c "e h epi application/x-python default"

import pbs

e=pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "executed epilogue hook")

if e.job.in_ms_mom(): #set in MS mom

 e.job.resources_used["vmem"] = pbs.size("9gb")

 e.job.resources_used["foo_i"] = 9

 e.job.resources_used["foo_f"] = 0.09

 e.job.resources_used["foo_str"] = '{"nine":9}'

 e.job.resources_used["cput"] = 10

 e.job.resources_used["foo_assn2"] = '{"vn1":1,"vn2":2,"vn3":3}'

else: # set in sister mom

 e.job.resources_used["vmem"] = pbs.size("10gb")

 e.job.resources_used["foo_i"] = 10

 e.job.resources_used["foo_f"] = 0.10

 e.job.resources_used["foo_str"] = '{"ten":10}'

 e.job.resources_used["cput"] = 20

 e.job.resources_used["foo_assn2"] = '{"vn4":4,"vn5":5,"vn6":6}'

Using two execution hosts, submit the following job:

% cat job.scr2

PBS -l select=2:ncpus=1

pbsdsh -n 1 hostname

sleep 300

% qsub job.scr2

102.corretja
PBS Professional 2022.1 Hooks Guide HG-51

Chapter 5 Creating and Configuring Hooks
When the job completes, we can see values for resources_used. With server job_history_enable=True, we can check
the values in a finished job. Values in bold show resources accumulated from both MoMs:

% qstat -x -f 102

...

resources_used.cpupercent = 0

resources_used.cput = 00:00:30

resources_used.vmem = 19gb

resources_used.foo_f = 0.19

resources_used.foo_i = 19

resources_used.foo_str = '{"nine": 9, "ten": 10}'

resources_used.foo_assn2='{"vn1": 1, "vn2": 2 ,"vn3": 3 ,"vn4": 4, "vn5": 5, "vn6": 6}'

resources_used.mem = 0kb

resources_used.ncpus = 2

resources_used.walltime = 00:00:05

The accounting logs show the same values:

8/03/2016 18:28:13;E;102.corretja;user=alfie group=users project=_pbs_project_default
jobname=job.scr2 queue=workq ctime=1470263288 qtime=1470263288 etime=1470263288
start=1470263288 exec_host=corretja/0+nadal/0 exec_vnode=(corretja:ncpus=1)+(nadal:ncpus=1)
Resource_List.ncpus=2 Resource_List.nodect=2 Resource_List.place=free
Resource_List.select=2:ncpus=1 session=16986 end=1470263293 Exit_status=143
resources_used.cpupercent=0 resources_used.cput=00:00:30 resources_used.vmem=19gb
resources_used.foo_f=0.19 resources_used.foo_i=19 resources_used.foo_str='{"nine": 9, "ten":
10}' resources_used.foo_assn2='{"vn1": 1, "vn2": 2 ,"vn3": 3 ,"vn4": 4, "vn5": 5, "vn6": 6}'
resources_used.mem=0kb resources_used.ncpus=2 resources_used.walltime=00:00:05 run_count=1

5.2.4.12.v Setting Built-in Job Resource in Hook Prevents MoM from Updating
Resource

If you use a hook to set the value of a built-in host-level resource for a specific job, MoM no longer updates the value of
the resource for that job; she leaves that to you. You can get MoM to resume updating the resource for that job only by
changing the hook so that it doesn't set the resource, and restarting the job.

Under Linux, job resources_used that MoM does not modify if they've been set in a hook are cput, walltime, mem,
vmem, ncpus, and cpupercent.

Under Windows, job resources_used that MoM does not modify if they've been set in a hook are cput, walltime, mem,
and ncpus.
HG-52 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.13 Overview of Readable & Settable Resources

Here we list an overview of which resources can be read or set in hooks. An "r" indicates read, an "s" indicates set, and
an "o" indicates that this resource can be set but the action has no effect. See Table 4-1, “Execution Event Hook Tim-
ing,” on page 20 for more information about why some operations have no effect. The following tables show which
resource categories are readable or settable in hooks:

Table 5-4: Overview of Resources Readable & Settable by Hooks via Job Events

Resource Category
p

ro
v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

Job Resource_List (Varies; see Table
5-11)

--- r, s r, s r r, s Table
5-11

Table
5-11

r r r r r r r r r

Job resources_used --- o --- r r r r r, s r, s r, s r r r r, s r, s r
Vnode resources_available --- --- r --- --- --- --- r, s r, s r r r r r, s r, s r
Vnode resources_assigned r r r r r r r r r r r r r r r r
Server resources_available r r r r r r r r r r r r r r r r
Server resources_assigned r r r r r r r r r r r r r r r r
Server resources_default r r r r r r r r r r r r r r r r
Server resources_max r r r r r r r r r r r r r r r r
Queue resources_available r r r r r r r r r r r r r r r r
Queue resources_assigned r r r r r r r r r r r r r r r r
Queue resources_default r r r r r r r r r r r r r r r r
Queue resources_max r r r r r r r r r r r r r r r r
Queue resources_min r r r r r r r r r r r r r r r r
Reservation Resource_List --- r r r r r r r r r r r r r r r

Table 5-5: Overview of Resources Readable & Settable by Hooks via Reservation and
Other Non-job Events

Resource Category

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

Job Resource_List (Varies; see Table 5-11) --- --- --- --- --- --- --- --- r r
Job resources_used r --- r --- --- --- --- --- r r, s
Vnode resources_available --- --- --- --- --- --- r, s r r, s r, s
Vnode resources_assigned r --- r --- --- --- r r r r
Server resources_available r r r r r --- r --- r r
Server resources_assigned r r r r r --- r --- r r
Server resources_default r r r r r --- r --- r r
PBS Professional 2022.1 Hooks Guide HG-53

Chapter 5 Creating and Configuring Hooks
5.2.4.14 Caveats for Setting and Unsetting Attributes and Resources

5.2.4.14.i When to Change Reservation Attributes

The only time that a reservation's attributes can be altered is during the creation of that reservation in a resvsub hook or
the altering of a reservation via a modifyresv hook.

5.2.4.14.ii Caution About Unsetting Reservation walltime Resource

The walltime resource is used to determine the reservation's reserve_duration parameter when the reservation's
reserve_duration attribute is not set or is set to None. If a reservation hook attempts to unset the walltime parameter, for
example:

pbs.event().resv.Resource_List["walltime"] = None

This will result in the following error:

% pbs_rsub -R 1800 -l ncpus=1

pbs_rsub: Bad time specification(s)

5.2.4.14.iii Changing Job Attributes for a Running Job

When a job is running, only the cput and walltime attributes can be modified. Attempting to change any other attributes
for a running job will cause the corresponding qalter action to be rejected. For example, if the job is running, this line
in a hook will cause qalter to be rejected:

pbs.event().job.Resource_List["mem"] = pbs.size("10mb")

To avoid having the qalter action rejected, check to see whether the job is running, and follow up accordingly. For
example:

e = pbs.event()

if e.job.job_state in [pbs.JOB_STATE_RUNNING, pbs.JOB_STATE_EXITING, pbs.JOB_STATE_TRANSIT]:

e.accept()

5.2.4.14.iv Do Not Unset Array Job Indices

Do not unset pbs.event().job.array_indices_submitted for an array job in a modifyjob hook. For example:

pbs.event().job.array_indices_submitted = None

Server resources_max r r r r r --- r --- r r
Queue resources_available r r r r r --- r --- r r
Queue resources_assigned r r r r r --- r --- r r
Queue resources_default r r r r r --- r --- r r
Queue resources_max r r r r r --- r --- r r
Queue resources_min r r r r r --- r --- r r
Reservation Resource_List r, s r r, s r r --- --- --- r r

Table 5-5: Overview of Resources Readable & Settable by Hooks via Reservation and
Other Non-job Events

Resource Category

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
HG-54 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
If the hook script is executed for a job array, the qalter request will fail with the message:

Cannot modify attribute while job running <job array ID>

5.2.4.14.v Do Not Create Job or Reservation Variable List

Hooks are not allowed to create job or reservation Variable_List attributes. Hooks can modify the existing Variable_List
job attribute which is supplied by PBS, by modifying values in the list. The following are disallowed in a hook:

pbs.event().job.Variable_List = dict()

pbs.event().resv.Variable_List = dict()

These calls will cause the following exception:

04/07/2008 11:22:14;0001;Server@host2;Svr;Server@host2;PBS server internal error (15011) in Error
evaluating Python script, attribute 'Variable_List' cannot be directly set.

To modify the Variable_List attribute:

pbs.event().job.Variable_List["SIMULATE"] = "HOOK1"

5.2.4.14.vi Changing Vnode state Attribute

A vnode's state can be set within a runjob hook only if the runjob hook execution concludes with a pbs.event().reject()
call. This means that if a statement that sets a vnode's state appears in a runjob hook script, it takes effect only if the fol-
lowing is the last line to be executed:

pbs.event().reject()

To set a vnode's state, the syntax is one of the following:

pbs.vnode.state = <vnode state constant>

pbs.vnode.state += <vnode state constant>

pbs.vnode.state -= <vnode state constant>

where <vnode state constant> is one of the constant objects listed in section 6.10.5.1, “Vnode State Constant Objects”,
on page 148.

Examples of changing a vnode's state attribute:

• To offline a vnode:
pbs.vnode.state = pbs.ND_OFFLINE

• To add another value to the list of vnode states:
pbs.vnode.state += pbs.ND_DOWN

• To remove a value from the list of vnode states:
pbs.vnode.state -= pbs.ND_OFFLINE

When a vnode's state attribute has no states set, the vnode's state is equivalent to free. This means that you can remove
all values, and the vnode will become free.

When a vnode's state is successfully set, the following message is displayed and logged at event class 0x0004:

Node;<vnode-name>;attributes set: state - <vnode state constant> by <hook_name>

You can set a vnode's state attribute in any execution hook and in a periodic hook, and changes to vnode attributes take
effect whether the execution hook or periodic hook calls accept() or reject().

5.2.4.14.vii Attribute Change Failure is Silent

If you attempt to change the value for an attribute in an unsupported way, PBS does not warn you that your attempt
failed.
PBS Professional 2022.1 Hooks Guide HG-55

Chapter 5 Creating and Configuring Hooks
5.2.4.14.viii Lengthened walltime Can Interfere with Reservations

If a hook lengthens the walltime of a running job, you run the risk that the new walltime will interfere with existing res-
ervations etc.

5.2.4.14.ix Setting Vnode Resources in Hooks Overwrites Previous Value

When you set resources_available for a vnode, inside or outside of a hook, you are overwriting the previous value.
There is no way in a hook to know whether a value was set inside or outside a hook (for example, using qmgr or a vnode
definition file). There is no way to prevent a value set inside a hook from being modified outside of the hook.

5.2.4.14.x Changing Resources in Accounting Logs

If you use a non-execjob_end execution hook to set a value for resources_used, the new value for resources_used
appears in the accounting logs.

5.2.4.14.xi When Setting Resources Has No Effect

• If you use an execjob_end execution hook to set a value for resources_used, it has no effect, because MoM has
already sent the final values for resources_used to the server.

• You cannot use a hook to set a server-level resource. PBS ignores these actions in a hook.

• You cannot use the qmgr command to set resources_used for a job.

5.2.4.14.xii Changes to Vnodes via execjob_end Hook Can Be Lost on Rerun

If you make changes to a vnode in an execjob_end hook, and the job is rerun or requeued, the changes to the vnode can
be lost.

5.2.4.15 Tables: Reading & Setting Job Attributes in Hooks

The following tables list the job attributes that can be read or set when the job is retrieved via an event. An "r" indicates
read, an "s" indicates set, and an "o" indicates that this attribute can be set but the action has no effect. See Table 4-1,
“Execution Event Hook Timing,” on page 20 for more information about why some operations have no effect.

Table 5-6: Job Attributes Readable & Settable via Job Events

Job Attribute

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

accounting_id --- --- --- r r r r r --- --- --- --- --- --- --- --- ---
Account_Name --- r, s r r r, s r r r r r r r r r r r r
accrue_type --- --- --- r r r r r r r r r r r r r r
alt_id --- --- --- r r r r r --- --- --- --- --- --- --- --- ---
argument_list --- --- r r --- r r r r r r r r r r r r
array --- --- r --- --- --- --- --- --- --- --- --- --- --- --- --- ---
array_id --- --- r r r r r r r r r r r r r r r
array_index --- --- r r r r r r r r r r r r r r r
array_indices_remaining --- --- r r r r r r --- --- --- --- --- --- --- --- ---
array_indices_submitted --- r, s r r --- --- --- --- --- --- --- --- --- --- --- --- ---
array_state_count --- --- r r r r r r --- --- --- --- --- --- --- --- ---
HG-56 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
block --- --- r r r, s r r r --- --- --- --- --- --- --- --- ---
Checkpoint --- r, s r r r, s r r r r r r r r r r r r
comment --- --- --- r --- r r r --- --- --- --- --- --- --- --- ---
create_resv_from_job --- r, s r r, s r, s r, s r, s r r, s r, s r, s r, s r, s r, s r, s r, s r, s
ctime --- --- r r r r r r --- --- --- --- --- --- --- --- ---
depend --- r, s r r r, s r, s r r --- --- --- --- --- --- --- --- ---
egroup --- --- r r r r r r r r r r r r r r r
eligible_time --- --- --- r r, s r r r --- --- --- --- --- --- --- --- ---
Error_Path --- r, s r r r, s r, s r, s r r r r r r r r r r
estimated --- --- --- r r r r r --- --- --- --- --- --- --- --- ---
etime --- --- r r r r r r --- --- --- --- --- --- --- --- ---
euser --- --- r r r r r r r r r r r r r r r
Executable --- r, s r r --- r r r --- --- --- --- --- --- --- --- ---
Execution_Time --- r, s r r r, s r, s r r r, s r, s r, s r r r r, s r, s r
exec_host --- --- --- r --- --- --- --- r r r r r r r r r
exec_vnode --- --- --- r --- r r r r r r r r r r r r
Exit_status --- --- --- r r r r r --- --- --- r r r --- r r
group_list --- r, s r r r, s r r r r r r r r r r r r
hashname --- --- --- r r r r r r r r r r r r r r
Hold_Types --- r, s r r r, s r, s r r r, s r, s r, s r r r r, s r, s r
interactive --- r, s r r r, o r r r r r r r r r r r r
jobdir --- --- --- r r --- --- --- --- --- --- --- --- --- --- r ---
Job_Name --- r, s r r r, s r r r r r r r r r r r r
Job_Owner --- --- r r r r r r --- --- --- --- --- --- --- --- ---
job_state --- --- r r r r r r --- --- --- --- --- --- --- --- ---
Join_Path --- r, s r r r, s r r r r r r r r r r r r
Keep_Files --- r, s r r r, s r r r r r r r r r r r r
Mail_Points --- r, s r r r, s r r r --- --- --- --- --- --- --- --- ---
Mail_Users --- r, s r r r, s r r r r r r r r r r r r
max_run_subjobs --- r, s r --- r, s --- --- --- --- --- --- --- --- --- --- --- ---
mtime --- --- r r r r r r --- --- --- --- --- --- --- --- ---
no_stdio_sockets --- --- --- r --- r r r r r r r r r r r r
obittime --- --- --- r r r r r --- --- --- --- --- --- --- --- ---
Output_Path --- r, s r r r, s r, s r, s r r r r r r r r r r
Priority --- r, s r r r, s r r r --- --- --- --- --- --- --- --- ---
project --- r, s r, s r r, s r, s r r r r r r r r r r r
qtime --- --- r r r r r r --- --- --- --- --- --- --- --- ---
queue --- r, s r r, s r r r r r r r r r r r r r
queue_rank --- --- r r r r r r --- --- --- --- --- --- --- --- ---
queue_type --- --- r r r r r r --- --- --- --- --- --- --- --- ---
release_nodes_on_stageout --- r, s r --- r, s --- --- --- --- --- --- --- --- --- --- --- ---
Rerunable --- r, s r r r, s r r r --- --- --- --- --- --- --- --- ---

Table 5-6: Job Attributes Readable & Settable via Job Events

Job Attribute

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

PBS Professional 2022.1 Hooks Guide HG-57

Chapter 5 Creating and Configuring Hooks

resources_released --- r r r r r r r --- --- --- --- --- --- --- --- ---
resources_released_list --- r r r r r r r --- --- --- --- --- --- --- --- ---
resources_used --- --- --- r r r r r r, s r, s r, s r r r r, s r, s r
Resource_List (with restrictions; see
Table 5-11)

--- r, s r, s r r, s r, s r, s r r r r r r r r r r

run_count --- r, s r r r, s r r r r, s r, s r, s r r r r, s r, s r
run_version --- --- --- r r r r r r r r r r r r r r
sandbox --- r, s r r r, s r r r r r r r r r r r r
schedselect --- --- r r r r r r --- --- --- --- --- --- --- --- ---
sched_hint --- --- --- r --- r r r --- --- --- --- --- --- --- --- ---
server --- --- r r r r r r r r r r r r r r r
session_id --- --- --- --- --- --- --- --- --- --- --- --- r r r r r
Shell_Path_List --- r, s r r r, s r r r r r r r r r r r r
stagein --- r, s r r r, s r r r r r r r r r r r r
stageout --- r, s r r r, s r r r r r r r r r r r r
Stageout_status --- --- --- r r r r r --- --- --- --- --- --- --- --- ---
stime --- --- --- r r r r r --- --- --- --- --- --- --- --- ---
Submit_arguments --- --- r r --- r r r --- --- --- --- --- --- --- --- ---
substate --- --- r r r r r r --- --- --- --- --- --- --- --- ---
sw_index --- --- --- r r r r r --- --- --- --- --- --- --- --- ---
umask --- r, s r r r, s r r r r r r r r r r r r
User_List --- r, s r r r, s r r r --- --- --- --- --- --- --- --- ---
Variable_List --- r, s r r r, s r, s r, s r r, s r r r r r r r r

Table 5-7: Job Attributes Readable & Settable via Reservation & Other Non-job
Events

Job Attribute

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

accounting_id --- --- --- --- --- --- --- --- --- ---
Account_Name --- --- --- --- --- --- --- --- --- r
accrue_type --- --- --- --- --- --- --- --- --- r
alt_id --- --- --- --- --- --- --- --- --- ---
argument_list --- --- --- --- --- --- --- --- --- r
array --- --- --- --- --- --- --- --- --- ---

Table 5-6: Job Attributes Readable & Settable via Job Events

Job Attribute

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

HG-58 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
array_id --- --- --- --- --- --- --- --- --- r
array_index --- --- --- --- --- --- --- --- --- r
array_indices_remaining --- --- --- --- --- --- --- --- --- ---
array_indices_submitted --- --- --- --- --- --- --- --- --- ---
array_state_count --- --- --- --- --- --- --- --- --- ---
block --- --- --- --- --- --- --- --- --- ---
Checkpoint --- --- --- --- --- --- --- --- --- r
comment --- --- --- --- --- --- --- --- --- ---
create_resv_from_job --- --- --- --- --- --- --- --- --- ---
ctime --- --- --- --- --- --- --- --- --- ---
depend --- --- --- --- --- --- --- --- --- ---
egroup --- --- --- --- --- --- --- --- --- r
eligible_time --- --- --- --- --- --- --- --- --- ---
Error_Path --- --- --- --- --- --- --- --- --- r
estimated --- --- --- --- --- --- --- --- --- ---
etime --- --- --- --- --- --- --- --- --- ---
euser --- --- --- --- --- --- --- --- --- r
Executable --- --- --- --- --- --- --- --- --- ---
Execution_Time --- --- --- --- --- --- --- --- --- r, s
exec_host --- --- --- --- --- --- --- --- --- r
exec_vnode --- --- --- --- --- --- --- --- --- r
Exit_status --- --- --- --- --- --- --- --- --- ---
group_list --- --- --- --- --- --- --- --- --- r
hashname --- --- --- --- --- --- --- --- --- r
Hold_Types --- --- --- --- --- --- --- --- --- r, s
interactive --- --- --- --- --- --- --- --- --- r
jobdir --- --- --- --- --- --- --- --- --- ---
Job_Name --- --- --- --- --- --- --- --- --- r
Job_Owner --- --- --- --- --- --- --- --- --- ---
job_state --- --- --- --- --- --- --- --- --- ---
Join_Path --- --- --- --- --- --- --- --- --- r
Keep_Files --- --- --- --- --- --- --- --- --- r
Mail_Points --- --- --- --- --- --- --- --- --- ---
Mail_Users --- --- --- --- --- --- --- --- --- r
max_run_subjobs --- --- --- --- --- --- --- --- --- ---
mtime --- --- --- --- --- --- --- --- --- ---
no_stdio_sockets --- --- --- --- --- --- --- --- --- r
obittime --- --- --- --- --- --- --- --- --- ---
Output_Path --- --- --- --- --- --- --- --- --- r
Priority --- --- --- --- --- --- --- --- --- ---
project --- --- --- --- --- --- --- --- --- r
qtime --- --- --- --- --- --- --- --- --- ---

Table 5-7: Job Attributes Readable & Settable via Reservation & Other Non-job
Events

Job Attribute

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
PBS Professional 2022.1 Hooks Guide HG-59

Chapter 5 Creating and Configuring Hooks
queue --- --- --- --- --- --- --- --- --- r
queue_rank --- --- --- --- --- --- --- --- --- ---
queue_type --- --- --- --- --- --- --- --- --- ---
release_nodes_on_stageout --- --- --- --- --- --- --- --- --- ---
Rerunable --- --- --- --- --- --- --- --- --- ---
resources_released --- --- --- --- --- --- --- --- --- ---
resources_released_list --- --- --- --- --- --- --- --- --- ---
resources_used --- --- --- --- --- --- --- --- r, s r, s
Resource_List (with restrictions; see Table 5-11) --- --- --- --- --- --- --- --- --- r
run_count --- --- --- --- --- --- --- --- --- r, s
run_version --- --- --- --- --- --- --- --- --- r
sandbox --- --- --- --- --- --- --- --- --- r
schedselect --- --- --- --- --- --- --- --- --- ---
sched_hint --- --- --- --- --- --- --- --- --- ---
server --- --- --- --- --- --- --- --- --- r
session_id --- --- --- --- --- --- --- --- --- ---
Shell_Path_List --- --- --- --- --- --- --- --- --- r
stagein --- --- --- --- --- --- --- --- --- r
stageout --- --- --- --- --- --- --- --- --- r
Stageout_status --- --- --- --- --- --- --- --- --- ---
stime --- --- --- --- --- --- --- --- --- ---
Submit_arguments --- --- --- --- --- --- --- --- --- ---
substate --- --- --- --- --- --- --- --- --- ---
sw_index --- --- --- --- --- --- --- --- --- ---
umask --- --- --- --- --- --- --- --- --- r
User_List --- --- --- --- --- --- --- --- --- ---
Variable_List --- --- --- --- --- --- --- --- --- r, s

Table 5-7: Job Attributes Readable & Settable via Reservation & Other Non-job
Events

Job Attribute

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
HG-60 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.16 Tables: Reading & Setting Vnode Attributes in Hooks

The following tables show the vnode attributes that can be read or set when the vnode object is retrieved via an event.
An "r" indicates read, an "s" indicates set, and an "o" indicates that this attribute can be set but the action has no effect.
See Table 4-1, “Execution Event Hook Timing,” on page 20 for more information about why some operations have no
effect.

Table 5-8: Vnode Attributes Readable & Settable via Job Events

Vnode Attribute

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

comment --- r, s r, s r, s --- --- --- r, s r, s r, s r r r r, s r, s r, s
current_aoe --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
hpcbp_enable --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
hpcbp_stage_protocol --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
hpcbp_user_name --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
hpcbp_webservice_address --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
in_multivnode_host --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
jobs --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
license --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
license_info --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
Mom --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
name --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
no_multinode_jobs --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
ntype --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
pbs_version --- --- --- --- --- --- --- r r r r r r r r r
pcpus --- --- --- --- --- --- --- r r r r r r r r r
pnames --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
Port --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
Priority --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
provision_enable --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
queue --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
resources_assigned --- --- --- --- --- --- --- r r r r r r r r r
resources_available --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
resv --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
resv_enable --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
sharing --- --- --- --- --- --- --- r, s r, s r, s r r r r, s r, s r, s
state --- --- --- --- --- r, s r r, s r, s r, s r r r r, s r, s r, s
topology_info --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
PBS Professional 2022.1 Hooks Guide HG-61

Chapter 5 Creating and Configuring Hooks

Table 5-9: Vnode Attributes Readable & Settable via Reservation & Other Non-job
Events

Vnode Attribute

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e
 (

fo
r

v
n

o
d

e
 a

n
d

 v
n

o
d

e
_
o

)

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

comment --- --- --- --- --- --- --- r r, s r, s
current_aoe --- --- --- --- --- --- --- r r, s r, s
hpcbp_enable --- --- --- --- --- --- --- r r, s r, s
hpcbp_stage_protocol --- --- --- --- --- --- --- r r, s r, s
hpcbp_user_name --- --- --- --- --- --- --- r r, s r, s
hpcbp_webservice_address --- --- --- --- --- --- --- r r, s r, s
in_multivnode_host --- --- --- --- --- --- --- r --- ---
jobs --- --- --- --- --- --- --- r --- ---
license --- --- --- --- --- --- --- r --- ---
license_info --- --- --- --- --- --- --- r --- ---
Mom --- --- --- --- --- --- --- r r, s r, s
name --- --- --- --- --- --- --- r --- ---
no_multinode_jobs --- --- --- --- --- --- --- r r, s r, s
ntype --- --- --- --- --- --- --- r r, s r, s
pbs_version --- --- --- --- --- --- --- r r r
pcpus --- --- --- --- --- --- --- r r r
pnames --- --- --- --- --- --- --- r r, s r, s
Port --- --- --- --- --- --- --- r r, s r, s
Priority --- --- --- --- --- --- --- r r, s r, s
provision_enable --- --- --- --- --- --- --- r r, s r, s
queue --- --- --- --- --- --- --- r r, s r, s
resources_assigned --- --- --- --- --- --- --- r r r
resources_available --- --- --- --- --- --- --- r r, s r, s
resv --- --- --- --- --- --- --- r --- ---
resv_enable --- --- --- --- --- --- --- r r, s r, s
sharing --- --- --- --- --- --- --- r r, s r, s
state --- --- --- --- --- --- r, s r r, s r, s
topology_info --- --- --- --- --- --- --- r r r
HG-62 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.4.17 Table: Reading & Setting Reservation Attributes in

Reservation Hooks

Reservation attributes can be read and set through an event only in reservation hooks. No other hooks can read or set res-
ervation attributes through an event. All hooks can read, but not set, all reservation attributes by retrieving the reserva-
tion object through the server, using pbs.server().resv(). The following table shows the reservation attributes that can be
read or set when the reservation object is retrieved via a reservation event:

Table 5-10: Reservation Attributes Readable & Settable in Reservation Hooks

Reservation Attribute resvsub resv_confirm modifyresv resv_begin resv_end

Account_Name r r r r r

Authorized_Groups r, s r r, s r r

Authorized_Hosts r, s r r, s r r

Authorized_Users r, s r r, s r r

ctime r r r r r

group_list r, s r r, s r r

hashname r r r r r

interactive r, s r r, s r r

Mail_Points r, s r r, s r r

Mail_Users r, s r r, s r r

mtime r r r r r

Priority r r r r r

queue r r r r r

reserve_count r r r r r

reserve_duration r, s r r, s r r

reserve_end r, s r r, s r r

reserve_ID r r r r r

reserve_index r r r r r

reserve_job r r r r r

Reserve_Name r, s r r, s r r

Reserve_Owner r r r r r

reserve_retry r r r r r

reserve_rrule r, s r r, s r r

reserve_start r, s r r, s r r

reserve_state r r r r r

reserve_substate r r r r r

reserve_type r r r r r

Resource_List r, s r r, s r r
PBS Professional 2022.1 Hooks Guide HG-63

Chapter 5 Creating and Configuring Hooks
5.2.4.18 Tables: Reading & Setting Built-in Job Resources in Hooks

The following tables show the built-in members of the job's Resource_List attribute that can be read or set in each type
of hook, when retrieving the object through an event.

An "r" indicates read, an "s" indicates set, and an "o" indicates that this resource can be set but the action has no effect.
See Table 4-1, “Execution Event Hook Timing,” on page 20 for more information about why some operations have no
effect. For more about custom resources, see section 5.2.4.1, “Using Built-in vs. Custom Resources in Hooks”, on page
45.

resv_nodes r r r r r

server r, s r r, s r r

User_List r r r r r

Variable_List r, s r r, s r r

Table 5-11: Built-in Job Resources Readable & Settable by Hooks via Job Events

Resource in Resource_List

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

aoe --- r, s r, s r r, s r, s r r --- --- --- --- --- --- --- --- ---
arch --- r, s r, s r r, s r, s r, s r r r r r r r r r r
cput --- r, s r, s r r, s r, s r, s r r r r r r r r r r
exec_vnode --- r, s r, s r r, s r, s r, s r --- --- --- --- --- --- --- --- ---
file --- r, s r, s r r, s r, s r, s r r r r r r r r r r
host --- r, s r, s r r, s r, s r r --- --- --- --- --- --- --- --- ---
max_walltime --- r, s r, s r r, s r, s r, s r --- --- --- --- --- --- --- --- ---
mem --- r, s r, s r r, s r, s r r r r r r r r r r r
min_walltime --- r, s r, s r r, s r, s r, s r --- --- --- --- --- --- --- --- ---
mpiprocs --- r, s r, s r r, s r, s r r --- --- --- --- --- --- --- --- ---
nchunk --- r, s r, s r r, s r, s r r --- --- --- --- --- --- --- --- ---
ncpus --- r, s r, s r r, s r, s r r r r r r r r r r r
nice --- r, s r, s r r, s r, s r, s r r r r r r r r r r
nodect --- r, s r, s r r, s r r r --- --- --- --- --- --- --- --- ---
nodes --- r, s r, s r r, s r, s r r --- --- --- --- --- --- --- --- ---
ompthreads --- r, s r, s r r, s r, s r r --- --- --- --- --- --- --- --- ---
pcput --- r, s r, s r r, s r, s r, s r r r r r r r r r r
pmem --- r, s r, s r r, s r, s r, s r r r r r r r r r r
pvmem --- r, s r, s r r, s r, s r, s r r r r r r r r r r
site --- r, s r, s r r, s r, s r, s r r r r r r r r r r
software --- r, s r, s r r, s r, s r, s r --- --- --- --- --- --- --- --- ---
soft_walltime --- r, s r, s r r, s r, s r, s r --- --- --- --- --- --- --- --- ---

Table 5-10: Reservation Attributes Readable & Settable in Reservation Hooks

Reservation Attribute resvsub resv_confirm modifyresv resv_begin resv_end
HG-64 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5

start_time --- r, s r, s r r, s r, s r, s r --- --- --- --- --- --- --- --- ---
vmem --- r, s r, s r r, s r, s r r r r r r r r r r r
vnode --- r, s r, s r r, s r, s r, s r --- --- --- --- --- --- --- --- ---
vntype --- r, s r, s r r, s r, s r r --- --- --- --- --- --- --- --- ---
walltime --- r, s r, s r r, s r, s r, s r r r r r r r r r r

Table 5-12: Built-in Job Resources Readable & Settable by Hooks via Reservation &
Other Non-job Events

Resource in Resource_List

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

aoe --- --- --- --- --- --- --- --- --- ---
arch --- --- --- --- --- --- --- --- --- r
cput --- --- --- --- --- --- --- --- --- r
exec_vnode --- --- --- --- --- --- --- --- --- ---
file --- --- --- --- --- --- --- --- --- r
host --- --- --- --- --- --- --- --- --- ---
max_walltime --- --- --- --- --- --- --- --- --- ---
mem --- --- --- --- --- --- --- --- --- r
min_walltime --- --- --- --- --- --- --- --- --- ---
mpiprocs --- --- --- --- --- --- --- --- --- ---
nchunk --- --- --- --- --- --- --- --- --- ---
ncpus --- --- --- --- --- --- --- --- r r
nice --- --- --- --- --- --- --- --- --- r
nodect --- --- --- --- --- --- --- --- --- ---
nodes --- --- --- --- --- --- --- --- --- ---
ompthreads --- --- --- --- --- --- --- --- --- ---
pcput --- --- --- --- --- --- --- --- --- r
pmem --- --- --- --- --- --- --- --- --- r
pvmem --- --- --- --- --- --- --- --- --- r
site --- --- --- --- --- --- --- --- --- r
software --- --- --- --- --- --- --- --- --- ---
soft_walltime --- --- --- --- --- --- --- --- --- ---
start_time --- --- --- --- --- --- --- --- --- ---
vmem --- --- --- --- --- --- --- --- --- r

Table 5-11: Built-in Job Resources Readable & Settable by Hooks via Job Events

Resource in Resource_List

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

PBS Professional 2022.1 Hooks Guide HG-65

Chapter 5 Creating and Configuring Hooks
5.2.4.19 Tables: Reading & Setting Vnode Resources in Hooks

The following tables show the built-in members of the vnode's resources_available attribute that can be read or set in
each type of hook, when retrieving the object through an event. An "r" indicates read, an "s" indicates set, and an "o"
indicates that this resource can be set but the action has no effect. See Table 4-1, “Execution Event Hook Timing,” on
page 20 for more information about why some operations have no effect.

vnode --- --- --- --- --- --- --- --- --- ---
vntype --- --- --- --- --- --- --- --- --- ---
walltime --- --- --- --- --- --- --- --- --- r

Table 5-13: Vnode Resources Readable & Settable by Hooks via Job Events

Resource in
resources_available

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

aoe --- --- --- --- --- --- --- --- r r r r r r r r r
arch --- --- --- --- --- --- --- --- r r r r r r r r r
cput --- --- --- --- --- --- --- --- r r r r r r r r r
exec_vnode --- --- --- --- --- --- --- --- r r r r r r r r r
file --- --- --- --- --- --- --- --- r r r r r r r r r
host --- --- --- --- --- --- --- --- r r r r r r r r r
max_walltime --- --- --- --- --- --- --- --- r r r r r r r r r
mem --- --- --- --- --- --- --- --- r r r r r r r r r
min_walltime --- --- --- --- --- --- --- --- r r r r r r r r r
mpiprocs --- --- --- --- --- --- --- --- r r r r r r r r r
nchunk --- --- --- --- --- --- --- --- r r r r r r r r r
ncpus --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
nice --- --- --- --- --- --- --- --- r r r r r r r r r
nodect --- --- --- --- --- --- --- --- r r r r r r r r r
nodes --- --- --- --- --- --- --- --- r r r r r r r r r
ompthreads --- --- --- --- --- --- --- --- r r r r r r r r r
pcput --- --- --- --- --- --- --- --- r r r r r r r r r
pmem --- --- --- --- --- --- --- --- r r r r r r r r r
pvmem --- --- --- --- --- --- --- --- r r r r r r r r r
site --- --- --- --- --- --- --- --- r r r r r r r r r

Table 5-12: Built-in Job Resources Readable & Settable by Hooks via Reservation &
Other Non-job Events

Resource in Resource_List

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
HG-66 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5

software --- --- --- --- --- --- --- --- r r r r r r r r r
start_time --- --- --- --- --- --- --- --- r r r r r r r r r
vmem --- --- --- --- --- --- --- --- r r r r r r r r r
vnode --- --- --- --- --- --- --- --- r r r r r r r r r
vntype --- --- --- --- --- --- --- --- r r r r r r r r r
walltime --- --- --- --- --- --- --- --- r r r r r r r r r

Table 5-14: Vnode Resources Readable & Settable by Hooks via Reservation & Other
Non-job Events

Resource in resources_available

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

aoe --- --- --- --- --- --- --- r r, s r, s
arch --- --- --- --- --- --- --- r r, s r, s
cput --- --- --- --- --- --- --- r r, s r, s
exec_vnode --- --- --- --- --- --- --- r r, s r, s
file --- --- --- --- --- --- --- r r, s r, s
host --- --- --- --- --- --- --- r r, s r, s
max_walltime --- --- --- --- --- --- --- r r, s r, s
mem --- --- --- --- --- --- --- r r, s r, s
min_walltime --- --- --- --- --- --- --- r r, s r, s
mpiprocs --- --- --- --- --- --- --- r r, s r, s
nchunk --- --- --- --- --- --- --- r r, s r, s
ncpus --- --- --- --- --- --- --- r r, s r, s
nice --- --- --- --- --- --- --- r r, s r, s
nodect --- --- --- --- --- --- --- r r, s r, s
nodes --- --- --- --- --- --- --- r r, s r, s
ompthreads --- --- --- --- --- --- --- r r, s r, s
pcput --- --- --- --- --- --- --- r r, s r, s
pmem --- --- --- --- --- --- --- r r, s r, s
pvmem --- --- --- --- --- --- --- r r, s r, s
site --- --- --- --- --- --- --- r r, s r, s
software --- --- --- --- --- --- --- r r, s r, s
start_time --- --- --- --- --- --- --- r r, s r, s
vmem --- --- --- --- --- --- --- r r, s r, s

Table 5-13: Vnode Resources Readable & Settable by Hooks via Job Events

Resource in
resources_available

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

PBS Professional 2022.1 Hooks Guide HG-67

Chapter 5 Creating and Configuring Hooks
5.2.5 Using select and place in Hooks

All hooks can read, but not set, a job's select and place statements via pbs.server().job(), pbs.server().vnode(),
pbs.server().queue(), etc. The following tables show the type of hook that can read or set a job's select and place state-
ments, when retrieving the object through an event. An "r" indicates read, an "s" indicates set. See Table 4-1, “Execu-
tion Event Hook Timing,” on page 20 for more information about why some operations have no effect.

vnode --- --- --- --- --- --- --- r r, s r, s
vntype --- --- --- --- --- --- --- r r, s r, s
walltime --- --- --- --- --- --- --- r r, s r, s

Table 5-15: Hooks that Can Read & Set Job select and place Statements via Job
Events

Select or Place

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

m
o

v
e
jo

b

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d
Job place statement --- r, s r, s r, s r r, s r r r r r r r r r r r
Job select statement --- r, s r, s r, s r r, s r r --- --- --- --- --- --- --- --- ---

Table 5-16: Hooks that Can Read & Set Job select and place Statements via
Reservation & Other Non-job Events

Select or Place

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

Job place statement --- --- --- --- --- --- --- --- --- ---
Job select statement --- --- --- --- --- --- --- --- --- ---

Table 5-14: Vnode Resources Readable & Settable by Hooks via Reservation & Other
Non-job Events

Resource in resources_available

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
HG-68 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.2.5.1 How to Set select and place in Hooks

You must use the associated creation method to instantiate an object of the correct type with the desired value, then
assign the object to the job. Syntax:

job.Resource_List["place"] = pbs.place("[arrangement]:[sharing]:[group]")

job.Resource_List["select"] = pbs.select("[N:]res=val[:res=val][+[N:]res=val[:res=val] ...]")

Example 5-12: Set a job's select and place directives:

jobB = pbs.event().job

jobB.Resource_List["place"] = pbs.place("pack:exclhost")

jobB.Resource_List["select"] = pbs.select("2:mem=2gb:ncpus=1+6:mem=8gb:ncpus=16")

See "pbs.select()” on page 173 and "pbs.place()” on page 172.

For modifying a job's select statement when allowing jobs access to extra vnodes, see section 6.15.3.24, “Method to
Increment select Object Chunks”, on page 173 and section 6.6.2.4, “Job Object Method to Release Vnodes”, on page
141. For more about making jobs more reliable, see “Vnode Fault Tolerance for Job Start and Run” on page 403 of the
PBS Professional Administrator’s Guide.

5.2.5.2 Caveats for Using select and place in Hooks

You may want to check resource requests for a queuejob hook If a user submits a job using old -lnodes or -lncpus
syntax, this is translated to a select statement, but only after a queuejob hook has run.

5.2.6 Restarting Scheduler Cycle After Hook Failure

You can restart the scheduler after an execjob_begin hook fails due to an alarm call or unhandled exception, or when
the hook fails due to an internal error such as a full disk or not enough memory on the host, for example, a malloc()
error. To restart the scheduler after failure of an execjob_begin hook, set the value of an execjob_begin or
execjob_prologue hook's fail_action attribute to include "scheduler_restart_cycle".

qmgr -c "set hook <hook_name> fail_action += scheduler_restart_cycle"

See section 5.1.9.2, “Using the fail_action Hook Attribute”, on page 37.

5.2.7 Adding Custom Host-level Resources

You can add new custom host-level resources and set their values in resources_available for a vnode by using
vnode_list[]in an exechost_startup or execjob_launch hook. Any changes made this way are merged with those
defined in a Version 2 vnode configuration file. Upon startup, MoM reads configuration files before executing the
exechost_startup or execjob_launch hook.

To add a new custom host-level resource, and set its value:

v = pbs.event().vnode_list[<vnode name>]

v.resources_available[<new_resource>] = <value>
PBS Professional 2022.1 Hooks Guide HG-69

Chapter 5 Creating and Configuring Hooks
The type of the resource is inferred from the value assigned to the resource. Python types map to PBS types as shown in
the following table:

You must also make the resource usable by the scheduler: see "Allowing Jobs to Use a Resource" on page 261 in the PBS
Professional Administrator’s Guide.

To delete a custom resource created in a hook, use qmgr. See section 5.14.2.6.iv, “Deleting Custom Resources”, on page
260.

Example 5-13: Adding custom resources:

If you have these instructions in a hook:

vn.resources_available["fab_int"] = 9

vn.resources_available["fab_str"] = "happy"

vn.resources_available["fab_bool"] = False

vn.resources_available["fab_size"] = pbs.size("7mb")

vn.resources_available["fab_time"] = pbs.duration("00:30:00")

vn.resources_available["fab_float"] = 7.0

This is equivalent to the following qmgr commands:

qmgr -c "create resource fab_int type=long,flag=h"

qmgr -c "create resource fab_str type=string,flag=h"

qmgr -c "create resource fab_bool type=boolean,flag=h"

qmgr -c "create resource fab_size type=size,flag=h"

qmgr -c "create resource fab_time type=long,flag=h"

qmgr -c "create resource fab_float type=float,flag=h"

5.2.8 Printing And Logging Messages

Server hooks write log messages to the server logs. MoM hooks write their log messages to the MoM logs. See "Event
Logging" on page 428 in the PBS Professional Administrator’s Guide.

Hooks can log a custom string in the local daemon's log, at message log event class pbs.LOG_DEBUG (0x0004). This
is done using the pbs.logjobmsg(job ID, message) facility. See "pbs.logjobmsg()” on page 176 and section 6.15.4.4,
“Message Log Level Objects”, on page 177.

Hooks can specify a message for use when the corresponding action is rejected. This message is printed to stderr by the
command that triggered the event, and is printed in the daemon's log. This is done using the pbs.event().reject(<mes-
sage>) function. See "pbs.event().reject()” on page 126 for information on how to specify a rejection message.

Table 5-17: Resource Types when Adding via vnode_list

Python Type Type

int Long

str String

bool Boolean

pbs.size Size

pbs.duration Long

float Float

Any Python type without an explicit match String
HG-70 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
Hooks cannot directly print to stdout or stderr, or read from stdin. See section 5.3.8.1, “Avoid Hook File I/O”, on
page 77, and section 8.10.2.8, “Hooks Attempting I/O”, on page 252.

5.2.9 Capturing Return Code

To capture an application's return code, you capture the return code in Python and then return it from the hook. You can
use the Python subprocess module. Here is an example snippet:

import sys

if "<path to subprocess module>" not in sys.path:

sys.path.append("<path to subprocess module>")

import subprocess

try:

retcode = subprocess.call("mycommand myarg", shell=True)

except OSError:

retcode = -1

return retcode

5.2.10 When You Need Persistent Data

If you need your data to be persistent, your hook(s) must be able to save and retrieve the information. Hooks are state-
less, and each invocation of a hook has no knowledge of prior state of jobs, vnodes, etc. If you want to retain state across
invocations of a hook, you can have the hook write what you need to a well-known location such as PBS_HOME. When the
hook is invoked, it can read in the data, and before the hook exits, it can update the data. You can use whatever format
you like for the data.

5.2.11 Setting Up Job Environment on Sisters

If you need to set up the job's environment on sister MoMs, use an execjob_begin hook. This hook can set up the
desired environment on sister MoMs so that the job can use the new environment.

If job tasks are spawned on sister MoMs via a tightly-integrated MPI that uses tm_spawn(), any execjob_prologue
and execjob_launch hooks run on the sister MoMs. However, if job tasks are started using pbs_attach(),
execjob_attach and execjob_prologue (on the first task attached) hooks run on sister MoMs instead. For a detailed
description of the order in which hooks run on the primary and secondary execution hosts, see Table 4-1, “Execution
Event Hook Timing,” on page 20.

The old-style prologue runs only on the primary execution host; you cannot use it to set up the environment on sister
MoMs.

All job tasks running on vnodes managed by the same MoM get the same environment.
PBS Professional 2022.1 Hooks Guide HG-71

Chapter 5 Creating and Configuring Hooks
5.2.12 Offlining Bad Vnodes

5.2.12.1 General Method for Offlining Bad Vnodes

If you need to offline a bad vnode where a hook is running:

this_vnode = pbs.event()vnode_list[pbs.get_local_nodename()]

this_vnode.state = pbs.ND_OFFLINE

this_vnode.comment = "offlining this vnode"

5.2.12.2 Offlining Vnodes Associated with an Event

For example, in a job-related event, you can offline the vnodes and reject the job:

for v in pbs.event().vnode_list.keys():

pbs.event().vnode_list[v].state = pbs.ND_OFFLINE

pbs.event().vnode_list[v].comment = "Offlining this vnode"

pbs.event().reject("Job tried to run on bad vnodes")

5.2.12.3 Using List of Failed Vnodes to Offline Vnodes that Have Gone

Bad During Start or Run

For each execjob_prologue and execjob_launch event, PBS records the list of vnodes, with their assigned resources,
that are marked as bad by MoM. This list can include those vnodes from sister MoMs that failed to join the job, that
rejected an execjob_begin hook or execjob_prologue hook request, or that encountered a communication error while
the primary MoM was polling the sister MoM host. PBS records this list in the pbs.event().vnode_list_fail[] hook
parameter. This parameter is a dict (dictionary of pbs.vnode objects keyed by vnode name).

You can use a hook to walk through this list and offline the bad vnodes. Here is a code snippet:

for vn in e.vnode_list_fail:

 v = e.vnode_list_fail[vn]

 pbs.logmsg(pbs.LOG_DEBUG, "offlining %s" % (vn,))

 v.state = pbs.ND_OFFLINE

5.2.12.4 Offlining and Clearing Vnodes Using the fail_action Hook

Attribute

The way this works is that when a vnode fails a health check in an execjob_begin hook, it is offlined via
"offline_vnodes". Once the vnode is offlined, no other jobs are sent to the vnode, so no other execjob_begin hooks will
run until the vnode is cleared. You then use "clear_vnodes_upon_recovery" in an exechost_startup hook which runs
when the MoM starts up or is HUPed.

5.2.12.4.i Offlining Vnodes Using the fail_action Hook Attribute

You can offline vnodes when an execjob_prologue, execjob_begin or exechost_startup hook fails due to an alarm
call or unhandled exception, or when the hook fails due to an internal error such as a full disk or not enough memory on
the host, for example, a malloc() error.

To offline vnodes upon failure, set the value of the hook's fail_action attribute to include "offline_vnodes". This marks
the vnodes managed by the hook's MoM as offline.

qmgr -c "set hook <hook_name> fail_action += offline_vnodes"
HG-72 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
When a vnode is offlined using the fail_action attribute, the vnode's comment attribute is set to an explanation:

"offlined by hook <hook_name> due to hook error"

See section 5.1.9.2, “Using the fail_action Hook Attribute”, on page 37.

5.2.12.4.ii Clearing Vnodes Using the fail_action Hook Attribute

When an exechost_startup hook runs successfully and does not encounter any uncaught exception or alarm timeout,
you can clear the offline state from vnodes that were previously marked offline via fail_action.

To clear the offline state from vnodes that were previously offlined via the "offline_vnodes" fail_action attribute, set the
value of the exechost_startup hook's fail_action attribute to include "clear_vnodes_upon_recovery". This clears
the offline state from the vnodes managed by the hook's MoM.

qmgr -c "set hook <hook_name> fail_action += clear_vnodes_upon_recovery"

If you have fixed your execjob_begin script, and want to send jobs again to the vnodes managed by the MoM where the
script runs, clear the offline states and comments from the vnodes managed by that MoM:

• Clear the offline state:
pbsnodes -r <MoM host>

• Clear the comment:
qmgr -c "u n <vn1>,<vn2>,... comment"

Or for long lists of vnodes:

qmgr -c "unset node `pbsnodes -vl | awk '{if(NR == 1) {printf "%s", $1} else {printf ",%s",
$1}}'` comment"

You can write an exechost_periodic hook that monitors the states of the vnodes, so that when it finds offlined vnodes
with vnode comment messages matching "offlined by hook…", the hook clears the comment and offline states.

See section 5.1.9.2, “Using the fail_action Hook Attribute”, on page 37.
PBS Professional 2022.1 Hooks Guide HG-73

Chapter 5 Creating and Configuring Hooks
5.3 Advice and Caveats for Writing Hooks

5.3.1 Rules for Hook Access and Behavior

The following are rules and recommendations for writing hooks:

• When modifying hooks or their configuration files, do not edit the .CF or .PY files directly. You might think this is
a shortcut; it's not. Changes to execution hooks will not be propagated to the MoMs.

• Use only the documented interfaces. Hooks which access PBS information or modify PBS in any way except
through these interfaces are erroneous and unsupported.

• Do not attempt to manipulate the hook stored by PBS, except as specified in Chapter 7, "Built-in Hooks", on page
179.

• Don't delete attributes.

• Don't change environment variables set by PBS. See “Environment Variables” on page 233 of the PBS Professional
Reference Guide for a list of these environment variables.

• Do not try to access the following (a well-written, portable hook will not depend on any of the following informa-
tion):

• Server configuration information: qmgr, resourcedef and pbs.conf

• Scheduling information: qmgr, sched_config, fairshare, dedicated, holidays

• Do not write hooks that depend on the behavior of other hooks.

• Do not make assumptions about the value of PATH; use "import sys" and modify sys.path

• Do not make assumptions about the value of the current working directory.

• For information about umask, see“qalter” on page 130 of the PBS Professional Reference Guide, “qsub” on page
216 of the PBS Professional Reference Guide, and “Job Attributes” on page 327 of the PBS Professional Reference
Guide.

• Do not depend on order of execution of unrelated hooks. For example, do not depend on one job submission's
queuejob hooks running entirely before another job submission's queuejob hooks. It is not guaranteed that all of
one job's hooks will finish before another job's hooks start.

• The Resource_List attribute, like others, is a pbs.pbs_resource. These objects support a restricted set of opera-
tions. They can reference values by index. Other features, such as has_key(), are not available. See section
6.15.3.19, “Method to Create or Set Resource List”, on page 171.

• Hooks which execute PBS commands are erroneous and unsupported. The behavior of executing PBS commands
inside a hook is undefined (and is likely to cause the hook to hang).

5.3.2 Check for Parameter Validity

To make hook scripts more robust, check first for the validity of the event parameters before using them, by comparing
against None:

if pbs.event().job != None:

If pbs.event().job_o != None:

If pbs.event().src_queue != None:

If pbs.event().resv != None:

If pbs.event().vnode != None:

If pbs.event().aoe != None:
HG-74 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.3.2.1 Resource Requests and queuejob Hooks

You may want to check resource requests for a queuejob hook If a user submits a job using old -lnodes or -lncpus
syntax, this is translated to a select statement, but only after a queuejob hook has run.

5.3.2.2 Example of Checking Validity

% cat t2245.py

import pbs

e = pbs.event()

if e.type == pbs.HOOK_EVENT_QUEUEJOB and (e.job == None):

e.reject("Event Job parameter is unset!")

elif e.type == pbs.HOOK_EVENT_MODIFYJOB and ((e.job == None) or (e.job_o == None)):

e.reject("Event Job or Job_o parameter is unset!")

elif e.type == pbs.HOOK_EVENT_RESVSUB and (e.resv == None):

e.reject("Event Resv parameter is unset!")

elif e.type == pbs.HOOK_EVENT_RUNJOB and (e.job == None):

e.reject("Event Job parameter is unset!")

5.3.3 Make Changes Only On Acceptance

We recommend that your hook does not make changes unless the hook accepts its event. You do not want to have to back
changes out upon a reject().

5.3.4 Offline Vnodes when exechost_startup Hook Rejects

We recommend that before calling pbs.event().reject() in an exechost_startup or execjob_launch hook, you set the
vnodes managed by the local MoM offline with an accompanying comment. This stops jobs from being sent to the
affected vnodes. For example:

vnlist = pbs.event().vnode_list

for v in vnlist.keys():

vnlist[v].state = pbs.ND_OFFLINE

vnlist[v].comment = "bad configuration"

pbs.event().reject("not accepting jobs")

5.3.5 Minimize Unnecessary Steps

To speed up your hooks, move any steps to where they are used the fewest times possible. For example, if you retrieve
several pieces of information about a job, but only use them if one of them fits a certain criterion, put the bulk of the
information-retrieval steps in the section where you do the work on the job.

5.3.6 Use Fast Operations

Some of the examples we provide could be faster. Instead of using "==", you can use the bitwise ampersand operator
("&").
PBS Professional 2022.1 Hooks Guide HG-75

Chapter 5 Creating and Configuring Hooks
5.3.7 Avoiding Interference with Normal Operation

5.3.7.1 Treat SystemExit as a Normal Occurrence

Both pbs.event().accept() and pbs.event().reject() terminate hook execution by throwing a SystemExit exception. A
"try...except" clause without arguments will catch all exceptions. If hook content appears in a "try except " clause, add
the following to treat SystemExit as a normal occurrence:

except SystemExit:

pass

Here is an example of an except clause that will catch SystemExit:

try:

...

except:

...

In the above case, we need to add the except SystemExit, so that it will look like this:

try:

...

except SystemExit:

pass

except:

...

If the existing code has a specified exception, we don't need to add "except SystemExit:", since this hook script is only
catching one particular exception and will not match SystemExit. For example:

try:

...

except pbs.BadAttributeValueError:

...

5.3.7.2 Allow the Server to Modify Jobs

The server uses the qalter command during normal operation to modify jobs. Therefore, if you have a modifyjob
hook script, make sure you do not interfere with qalter commands issued by the server. Catch these cases by starting
the hook with an if clause that accepts modification of jobs by PBS:

e = pbs.event()

if e.requestor in ["PBS_Server"]:

e.accept()

While the scheduler also uses the qalter command to modify jobs, this does not trigger any modifyjob hooks.

5.3.7.3 Stay Within the Scheduler Alarm Time

Consider setting hook alarm values in runjob hooks so that they do not unduly delay the scheduler. The scheduler will
wait for a hook to finish executing. The scheduler's cycle time has a default value of 20 minutes, and is specified in the
scheduler's sched_cycle_length attribute.
HG-76 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.3.8 Avoiding Problems

5.3.8.1 Avoid Hook File I/O

When the PBS server is running, stdout, stderr, and stdin are closed. A hook script attempting I/O will get an excep-
tion. To avoid this, redirect input and output to a file. See section 8.10.2.8, “Hooks Attempting I/O”, on page 252.

5.3.8.2 Avoid Contacting Bad Host

Be careful not to specify a bad host in <job ID> in pbs.event().job.depend. If it references a non-existent or heavily
loaded PBS server, the current PBS server could hang for a few minutes as it tries to contact the bad host. For example:

pbs.event().job.depend = pbs.depend("after:23.bad_host")

The PBS server could hang while trying to contact "bad_host".

5.3.8.3 Avoid os._exit() Python Function

Do not use the os._exit() Python function. It will cause the PBS server to exit.

5.3.8.4 Avoid Attempting to Log Message Using Bad Job ID

If the pbs.logjobmsg() method is passed a bad job ID, it raises a Python ValueError.

5.3.8.5 Avoid Taking Up Lots of Memory

Certain function calls in PBS Python hooks are expensive to use in terms of memory. If they are called repeatedly in
loops, they can use up a lot of memory, potentially causing the server to hang or crash. For example, the following is
expensive since each iterative call to pbs.server().vnodes() causes internal allocation of memory, which won't be freed
until after the hook executes.

In order to avoid this, produce the output only once, save it to memory, and iterate using the copy. For example:

vnl = []

vni = pbs.server().vnodes()

for vn in vni:

pbs.logmsg(pbs.LOG_DEBUG, "found vn.name=%s" %(vn.name))

vnl.append(vn)

The following functions in PBS Python hooks return iterators, and should be used carefully:

• Iterate over a list of jobs:

pbs.server().jobs()

pbs.queue.jobs()

• Iterate over a list of queues:

pbs.server().queues()

• Iterate over a list of vnodes:

pbs.server().vnodes()

• Iterate over a list of reservations:

pbs.server().resvs()
PBS Professional 2022.1 Hooks Guide HG-77

Chapter 5 Creating and Configuring Hooks
5.3.8.6 Testing Vnode State

To see whether a vnode has a particular state set:

If v.state == pbs.ND_OFFLINE:

pbs.logmsg(pbs.LOG_DEBUG, "vnode %s is offline!" % (v.name))

5.3.9 Restrictions

5.3.9.1 Local Server Only

Hooks cannot access a server other than the local server. Hooks also cannot specify a non-default server. So for example
if a job submission specifies a queue at a server other than the default, the hook can allow that submission, or can change
it to the default server, but cannot change it to another non-default server.

5.3.9.2 Dictionary Data Type Restriction

The Python types listed as dictionaries, such as pbs.event().env, support a restricted set of operations. They can refer-
ence values by index. Other features, such as has_key(), are not available.

5.3.10 Scheduling Impact of Hooks

5.3.10.1 Effect of runjob Hooks on Preemption

With preemption turned on, the scheduler preempts low-priority jobs to run a high-priority job. If the high-priority job is
rejected by a runjob hook, then the scheduler undoes the preemption of the low-priority jobs. Suspended jobs are
resumed, and checkpointed jobs are restarted.

5.3.10.2 Effect of runjob Hooks with Strict Ordering

When strict_ordering is set to True and backfill_depth is set to 0, a most-deserving job that is repeatedly rejected by a
runjob hook will prevent other jobs from being able to run. A well-written hook would put the job on hold or requeue the
job with a later execution time to prevent idling the system.

5.3.10.3 Effect of runjob Hooks with round_robin and by_queue

With round_robin and by_queue set to True, a job continually rejected by a runjob hook may prevent other jobs from
the same queue from being run. A well-written hook would put the job on hold or requeue the job with a later execution
time to allow other jobs in the same queue to be run.

A runjob hook's performance directly affects the responsiveness of the PBS scheduler. Consider carefully the trade-off
between the work such a hook needs to do and your scheduler's required performance.

5.3.10.4 Peer Scheduling and Hooks

When a job is pulled from one complex to another, the following happens:

• Hooks are applied at the new complex as if the job had been submitted locally

• Any movejob hooks at the furnishing server are run
HG-78 PBS Professional 2022.1 Hooks Guide

Creating and Configuring Hooks Chapter 5
5.3.10.5 Performance Considerations

5.3.10.5.i Cost of Accessing Data

• Using pbs.server() to get data about server, queues, jobs, vnodes, or reservations can be slow if run in an execution
hook. This is because of the overhead involved when the function has to directly connect to the server and pass
requests (via TCP). However, you can speed up reading of custom job resources by setting the m flag. See "Speci-
fying Whether Resource is Cached at MoM" on page 259 in the PBS Professional Administrator’s Guide.

• Making queries to pbs.server().resources_available[] can be slow.

5.3.10.5.ii Cost of Different Hooks

• Any queuejob hooks execute once per job submission

• Any runjob hooks execute once per attempt to run a job, after the scheduler has found a place for it

What this means to the hook writer:

• Your queuejob hooks can generally get away with longer run times

• Any hook that needs to listen to queuejob events needs to be quick to decide whether it is needed or not

For a fast hook, avoid these:

• Running external commands

• Network connections

• File I/O and logging

• Storing information in server or vnode settings

• Using pbs.server().resources_available

• Iterating over the entire set of vnodes or jobs using pbs.server().vnodes() or pbs.server().jobs().

In addition, see section 5.3.5, “Minimize Unnecessary Steps”, on page 75 and section 5.3.6, “Use Fast Operations”, on
page 75.

5.3.10.6 Effect of Hooks on Job Eligible Time

When eligible time is enabled and a job is blocked by a queuejob hook, the job accrues initial_time. When a job is
accepted or rejected by modifyjob or movejob hooks, the job continues to accrue whatever kind of time it was accruing.
When a job is requeued by a runjob hook or an execution event hook, the scheduler evaluates what kind of time the job
should accrue based on resources and policy.

5.3.11 Windows Caveats

5.3.11.1 Special Characters in Pathnames

On Windows, where backslashes may appear in pathnames, escape each backslash with another backslash, or use the raw
('r') operator to form the string. Both of the following work:

e = pbs.event()

e.progname = "C:\\Program Files\\PBS\\exec\\bin\\pbsnodes.exe"

e.progname = r"C:\Program Files\PBS\exec\bin\pbsnodes.exe"

See section 6.3.3, “Event Object Member Caveats”, on page 125.

5.3.11.2 Importing and Exporting Hooks

If the name of <input_file> contains spaces, <input file> must be quoted.
PBS Professional 2022.1 Hooks Guide HG-79

Chapter 5 Creating and Configuring Hooks
5.3.11.3 Modifying Events

On Windows, in a multi-vnoded job, be careful modifying pbs.event().progname and pbs.event().argv[] parameters;
some values are tacked on by pbs_mom and are required. See section 6.3.3.1, “Modifying progname or argv[] Under
Windows”, on page 125.

5.3.11.4 Using Sleep in a Hook Script

Under Windows, the PBS server or MoM cannot interrupt a hook script executing the Python time.sleep(). The server
needs to be able to interrupt the script if the script reaches its timeout. In order to be able to interrupt the script, create a
sleep that incrementally sleeps for 1 second. The server can then interrupt the hook script in between the sleeps. For
example:

import time

def mysleep(sec):

for i in range(sec):

time.sleep(1)

mysleep(30) <-- pseudo sleep for 30 seconds
HG-80 PBS Professional 2022.1 Hooks Guide

6

Hook Objects and Methods

Contents

6.1 The pbs Module . 88
6.2 PBS Interface Objects . 89

6.2.1 Maps of Members and Methods for Events and Entities . 90
6.3 Events . 92

6.3.1 Event Types . 93
6.3.2 Event Object Members . 122
6.3.3 Event Object Member Caveats . 131
6.3.4 Event-only Methods . 131
6.3.5 Event Object Method Caveats . 132
6.3.6 Examples of Using Event Objects . 133

6.4 Server Objects . 134
6.4.1 Server Object Members . 134
6.4.2 Setting Server Object Members . 135
6.4.3 Examples of Using Server Object Members . 135
6.4.4 Server Object Methods . 135

6.5 Queue Objects . 137
6.5.1 Queue Object Members . 137
6.5.2 Queue Object Methods . 138
6.5.3 Queue Type Constant Objects . 138

6.6 Job Objects . 138
6.6.1 Job Object Members. 139
6.6.2 Job Object Methods for Execution Hooks . 146

6.7 The exec_vnode Object . 148
6.7.1 The exec_vnode Object Members . 148
6.7.2 Using pbs.vchunk Objects in exec_vnode . 148
6.7.3 Restrictions on exec_vnode Objects . 149

6.8 Chunk Objects . 149
6.8.1 Chunk Object Members and Methods . 149

6.9 Reservation Objects. 150
6.9.1 Reservation Object Members . 150
6.9.2 Using Reservation States . 151

6.10 Vnode Objects . 152
6.10.1 Vnode Object Members . 153
6.10.2 Vnode Object Methods. 153
6.10.3 Vnode Type Constant Objects . 154
6.10.4 Vnode Sharing Constant Objects . 154
6.10.5 Using Vnode States . 154

6.11 Management Objects . 156
6.11.1 Example Management Object . 156
6.11.2 Management Object Members . 157

6.12 server_attribute Objects. 162
6.12.1 server_attribute Object Members . 163

6.13 Configuration File Python Elements . 166
6.13.1 Variable Containing Hook Configuration File Path . 166
PBS Professional 2022.1 Hooks Guide HG-81

Chapter 6 Hook Objects and Methods
6.13.2 Dictionary of PBS Configuration File Entries . 166
6.14 Constant Objects . 170
6.15 Object Members and Methods . 170

6.15.1 PBS Objects and Object Members . 171
6.15.2 Methods Available in Events . 171
6.15.3 PBS Types and Their Methods. 174
6.15.4 Global Methods . 182

List of Tables

Table 6-1: Event Types and Objects . 93
Table 6-2: Using Event Object Members in Job Events . 122
Table 6-3: Using Event Object Members in Reservation and Other Non-job Events. 123
Table 6-4: Server State Constant Objects . 134
Table 6-5: Queue Type Constant Objects . 138
Table 6-6: Values for the accrue_type Member . 140
Table 6-7: Job State Objects . 141
Table 6-8: Job Substate Objects . 142
Table 6-9: Reservation State Objects . 151
Table 6-10: Vnode Type Objects . 154
Table 6-11: Vnode Sharing Objects . 154
Table 6-12: Vnode State Constant Objects . 154
Table 6-13: Commands Used in Directives. 158
Table 6-14: Management Object Types . 160
Table 6-15: Reply Choice Types. 161
Table 6-16: Attribute Operators . 164
Table 6-17: Attribute Flags . 165
Table 6-18: Parameters in pbs.conf . 166
Table 6-19: PBS Objects and Object Members. 171
Table 6-20: Methods Available in Job Events . 171
Table 6-21: Methods Available in Reservation and Other Non-job Events 173
Table 6-22: Behavior for increment specification. 180
Table 6-23: Message Log Level Objects. 183

Table 6-24:

6.1 The pbs Module

The pbs module provides an interface to PBS and the hook environment. The interface is made up of Python functions,
objects, object members, and methods. You can operate on the objects and object members, and use the functions and
methods in your Python code. In order to use the pbs module, you must begin your Python code by importing the pbs
module. For example, in a script that modifies a job:

import pbs

pbs.event().job.comment="Modified this job"

For the contents of the pbs module, see section 4.5, “Python Modules and PBS”, on page 25.
HG-82 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.2 PBS Interface Objects

The PBS interface contains different kinds of objects:

• Objects to represent PBS entities, e.g. jobs, server, queues, vnodes, reservations, events, log messages, etc.

• Objects to represent job, server, vnode, queue, and reservation attributes.

• Objects to represent PBS management operations, e.g. setting, creating, etc. objects

• Objects to represent arguments to PBS commands, PBS version information, etc.

• Constant objects to represent event types, states, log event classes, queue types, and exceptions.
PBS Professional 2022.1 Hooks Guide HG-83

Chapter 6 Hook Objects and Methods

H

6.2.1 Maps of Members and Methods for Events and

Entities
G-84 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
Figure 6-1 shows a map of members and methods for the main PBS entities:

Figure 6-1:Map of members and methods for the main PBS entities
PBS Professional 2022.1 Hooks Guide HG-85

Chapter 6 Hook Objects and Methods
Figure 6-2 shows hook event members and methods. For descriptions of events, see section 6.3, “Events”, on page 86.

Figure 6-2:Event members and methods

6.3 Events

pbs.event

A pbs.event object represents the event that has triggered a hook. You can pass the object to the hook script, and use it
in the script. To retrieve objects associated with the event, use this:

pbs.event().<object>
HG-86 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
For example, to retrieve the job that triggered an event:

pbs.event().job

There are several types of events. Each type of event is triggered by a different occurrence, and each type has a corre-
sponding hook type. Each type of event has access to different data, and can perform different operations. Some data
and operations are common to all events.

Each type of event hook can read and set different job, vnode, and reservation attributes and resources. Each type of
event can read different server and queue attributes and resources. We list which attributes and resources can be set for
each event in section 5.2.4, “Using Attributes and Resources in Hooks”, on page 45.

6.3.1 Event Types

pbs.event().type

The type of the event. Represents the type attribute of the hook. The pbs.event().type object can take one or more of
the values shown here. The following table summarizes the event types, their constant objects, their triggers, and when
and where they run, and gives a pointer to a complete description of the associated hook:

Table 6-25: Event Types and Objects

Event Type & Constant
Object

Trigger Where Run Description

queuejob

pbs.HOOK_EVENT_QUEUEJOB

pbs.QUEUEJOB (deprecated)

Triggered by qsub and the
pbs_submit() API call.

Not triggered by requeueing a job
(qrerun) or on node_fail_requeue,
when a job is discarded by the MoM
because the execution host went
down.

A queuejob hook is executed after all
processing of qsub input, and just
before the job is queued.

At server See section 6.3.1.2,
“queuejob: Event when
Job is Queued”, on
page 92.

modifyjob

pbs.HOOK_EVENT_MODIFYJO
B

pbs.MODIFYJOB (deprecated)

Triggered by qalter, the
pbs_alterjob() API call, calcu-
lating eligible time, and setting the
job's comment.

A modifyjob hook is executed after all
processing of qalter input, and just
before the job's attributes are modi-
fied.

Not triggered when the scheduler
modifies a job.

At server See section 6.3.1.5,
“modifyjob: Event
when Job is Altered”,
on page 94.

resvsub

pbs.HOOK_EVENT_RESVSUB

pbs.RESVSUB (deprecated)

Triggered by pbs_rsub and the
pbs_submitresv() API call.

A resvsub hook is executed after all
processing of pbs_rsub input, and
just before a reservation is created.

At server See section 6.3.1.8,
“resvsub: Event when
Reservation is Cre-
ated”, on page 98.
PBS Professional 2022.1 Hooks Guide HG-87

Chapter 6 Hook Objects and Methods
movejob

pbs.HOOK_EVENT_MOVEJOB

pbs.MOVEJOB (deprecated)

Triggered by qmove and the
pbs_movejob() API call.

Not triggered by pbs_rsub
-Wqmove=<job ID>.

A movejob hook is executed after
qmove arguments are processed, but
before a job is moved from one queue
to another.

At server See section 6.3.1.4,
“movejob: Event when
Job is Moved”, on page
93.

runjob

pbs.HOOK_EVENT_RUNJOB

pbs.RUNJOB (deprecated)

Triggered by qrun and the
pbs_runjob() API call.

A runjob hook is executed just before
a job is sent to an execution host.

At server See section 6.3.1.6,
“runjob: Event Before
Job is Received by
MoM”, on page 96.

provision

pbs.HOOK_EVENT_PROVISION

pbs.PROVISION (deprecated)

A provision hook is executed when a
vnode is provisioned.

On all MoM
hosts allocated
to the job

See section 6.3.1.27,
“provision: Hook for
Provisioning Vnodes”,
on page 116.

execjob_begin

pbs.HOOK_EVENT_EXECJOB_
BEGIN

pbs.EXECJOB_BEGIN (depre-
cated)

An execjob_begin hook is executed
when MoM receives the job, after any
files or directories are staged in.

On primary
MoM host, and
if successful,
on all sister
MoM hosts
allocated to job

See section 6.3.1.16,
“execjob_begin: Event
when Execution Host
Receives Job”, on page
103.

execjob_prologue

pbs.HOOK_EVENT_EXECJOB_
PROLOGUE

pbs.EXECJOB_PROLOGUE
(deprecated)

An execjob_prologue hook is exe-
cuted just before the first job process
is started.

On primary
MoM host, and
on all sister
MoM hosts
where any job
task is
spawned or
attached

See section 6.3.1.17,
“execjob_prologue:
Event Just Before Exe-
cution of Top-level Job
Process”, on page 104.

execjob_epilogue

pbs.HOOK_EVENT_EXECJOB_
EPILOGUE

pbs.EXECJOB_EPILOGUE (dep-
recated)

An execjob_epilogue hook is exe-
cuted after all of the job processes
have terminated, after executing or
killing a job, but before job is cleaned
up

On all MoM
hosts allocated
to the job

See section 6.3.1.23,
“execjob_epilogue:
Event Just After Kill-
ing Job Tasks”, on
page 111.

execjob_end

pbs.HOOK_EVENT_EXECJOB_
END

pbs.EXECJOB_END (deprecated)

An execjob_end hook is executed on
all hosts allocated to a job, at the end
of all job processing

On all MoM
hosts allocated
to the job

See section 6.3.1.24,
“execjob_end: Event
After Job Cleanup”, on
page 113.

Table 6-25: Event Types and Objects

Event Type & Constant
Object

Trigger Where Run Description
HG-88 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
execjob_preterm

pbs.HOOK_EVENT_EXECJOB_
PRETERM

pbs.EXECJOB_PRETERM (dep-
recated)

An execjob_preterm hook is exe-
cuted when the job receives a termina-
tion signal.

On all MoM
hosts allocated
to the job

See section 6.3.1.22,
“execjob_preterm:
Event Just Before Kill-
ing Job Tasks”, on
page 110.

execjob_launch

pbs.HOOK_EVENT_EXECJOB_
LAUNCH

pbs.EXECJOB_LAUNCH (depre-
cated)

An execjob_launch hook is executed
just before the user's program is run.

On primary
MoM host, and
on all sister
MoM hosts
where MPI
tasks are
started with
tm_spawn()

See section 6.3.1.18,
“execjob_launch:
Event when Execution
Host Receives Job”, on
page 106

exechost_periodic

pbs.HOOK_EVENT_EXECHOST
_PERIODIC

pbs.EXECHOST_PERIODIC
(deprecated)

An exechost_periodic hook is exe-
cuted at specified intervals

On all MoM
hosts in the
complex

See section 6.3.1.26,
“exechost_periodic:
Periodic Events on All
Execution Hosts”, on
page 115.

exechost_startup

pbs.HOOK_EVENT_EXECHOST
_STARTUP

pbs.EXECHOST_STARTUP
(deprecated)

An exechost_startup hook is exe-
cuted when a MoM starts up or
receives a HUP (Linux).

On all MoM
hosts in the
complex.

See section 6.3.1.25,
“exechost_startup:
Event When Execu-
tion Host Starts Up”,
on page 114.

execjob_attach

pbs.HOOK_EVENT_EXECJOB_
ATTACH

pbs.EXECJOB_ATTACH (depre-
cated)

An execjob_attach hook is executed
before any execjob_prologue hooks
run

On each MoM
host where
pbs_attach
() runs

See section 6.3.1.19,
“execjob_attach: Event
when pbs_attach()
runs”, on page 107.

periodic

pbs.HOOK_EVENT_PERIODIC

pbs.PERIODIC (deprecated)

A periodic hook is executed at speci-
fied intervals.

At server See section 6.3.1.14,
“periodic: Periodic
Event at Server Host”,
on page 101

resv_end

pbs.HOOK_EVENT_RESV_END

pbs.RESV_END (deprecated)

Triggered by pbs_rdel or the
pbs_delresv API call.

A resv_end hook is executed when a
reservation or an instance of a stand-
ing reservation ends or is deleted, just
before jobs are deleted from the reser-
vation queue.

At server See section 6.3.1.12,
“resv_end: Event when
Reservation Ends”, on
page 100.

Table 6-25: Event Types and Objects

Event Type & Constant
Object

Trigger Where Run Description
PBS Professional 2022.1 Hooks Guide HG-89

Chapter 6 Hook Objects and Methods
execjob_postsuspend

pbs.HOOK_EVENT_EXECJOB_
POSTSUSPEND

pbs.EXECJOB_POSTSUSPEND
(deprecated)

An execjob_postsuspend hook is
executed just after successfully sus-
pending the job

On all MoM
hosts allocated
to the job

See section 6.3.1.20,
“execjob_postsuspend:
Event Just After Sus-
pending Job”, on page
109.

execjob_preresume

pbs.HOOK_EVENT_EXECJOB_
PRERESUME

pbs.EXECJOB_PRERESUME
(deprecated)

An execjob_preresume hook is exe-
cuted just before resuming the job

First on the
primary MoM
host, and if
that is success-
ful, on the sis-
ter MoM hosts

See section 6.3.1.21,
“execjob_preresume:
Event Just Before
Resuming Job”, on
page 109.

pbs.MOM_EVENTS

pbs.HOOK_EVENT_MOM_EVE
NTS

None --- This event is all
execjob_* and
exechost_* MoM
hook events ANDed
together.

management

pbs.HOOK_EVENT_MANAGEM
ENT

pbs.MANAGEMENT (deprecated)

A management hook runs when a
qmgr directive is used on a PBS
object such as a vnode or hook

At server See section 6.3.1.13,
“management: qmgr
Operation Event at
Server Host”, on page
101.

modifyvnode

pbs.HOOK_EVENT_MODIFYVN
ODE

pbs.MODIFYVNODE (deprecated)

A modifyvnode hook runs after a
vnode changes state.

At server See section 6.3.1.15,
“modifyvnode: Event
after Vnode Changes
State”, on page 102.

jobobit

pbs.HOOK_EVENT_JOBOBIT

Triggered when server receives job or
subjob obit

At server See section 6.3.1.7,
“jobobit: Event when
Server Receives Job or
Subjob Obit”, on page
97.

resv_begin

pbs.HOOK_EVENT_RESV_BEGI
N

pbs.RESV_BEGIN (deprecated)

A resv_begin hook runs when a res-
ervation begins.

At server See section 6.3.1.11,
“resv_begin: Event
when Reservation
Starts”, on page 100.

Table 6-25: Event Types and Objects

Event Type & Constant
Object

Trigger Where Run Description
HG-90 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.1 Getting Human-readable Names for Hook Event Types

Each hook event type corresponds to a human-readable string. For example, 8388608 corresponds to
"HOOK_EVENT_JOBOBIT". The pbs.REVERSE_HOOK_EVENT object is a Python dictionary of event types
mapped to human-readable names. This is useful for logging events. The type for an event is found in pbs.event.type.

6.3.1.1.i Syntax

<string> = pbs.REVERSE_HOOK_EVENT[<event type>]
For example:

my_event_type_str = pbs.REVERSE_HOOK_EVENT[my_event.type]

or

<string> = pbs.REVERSE_HOOK_EVENT[pbs.<event type>]

For example:

my_event_type_str = pbs.REVERSE_HOOK_EVENT[pbs.HOOK_EVENT_QUEUEJOB]

6.3.1.1.ii Example

Example 6-1: Printing a human-readable name for a pbs.HOOK_EVENT_QUEUEJOB event type using the type:

If the event is my_event and the event is of type pbs.HOOK_EVENT_QUEUEJOB:

print(pbs.REVERSE_HOOK_EVENT[my_event.type])

results in:

HOOK_EVENT_QUEUEJOB

resv_confirm

pbs.HOOK_EVENT_RESV_CON
FIRM

pbs.RESV_CONFIRM (depre-
cated)

A resv_confirm hook is executed
when a reservation is confirmed or
reconfirmed

At server See section 6.3.1.9,
“resv_confirm: Event
when Reservation is
Confirmed”, on page
99.

modifyresv

pbs.HOOK_EVENT_MODIFYRE
SV

pbs.MODIFYRESV (deprecated)

Triggered by pbs_ralter and the
pbs_modify_resv API call.

A modifyresv hook runs when a res-
ervation is altered.

At server See section 6.3.1.10,
“modifyresv: Event
when Reservation is
Altered”, on page 99.

postqueuejob

pbs.POSTQUEUEJOB

Triggered by qsub and the
pbs_submit() API call.

Not triggered by requeueing a job
(qrerun) or on node_fail_requeue,
when a job is discarded by the MoM
because the execution host went
down.

A postqueuejob hook is executed
after the job is queued; the job already
has new queue and/or server values
when this hook runs.

At server See section 6.3.1.3,
“postqueuejob: Event
after Job is Queued”,
on page 93.

Table 6-25: Event Types and Objects

Event Type & Constant
Object

Trigger Where Run Description
PBS Professional 2022.1 Hooks Guide HG-91

Chapter 6 Hook Objects and Methods
6.3.1.2 queuejob: Event when Job is Queued

6.3.1.2.i Modifying Job Submission (qsub)

• When a job is submitted via qsub, queuejob hooks can modify the following things explicitly specified in the job
submission:

• Job attributes that can be set via qsub

• Job comment

• Resources requested by the job

• When a job is submitted via qsub, queuejob hooks can add resource requests to those specified in the job submis-
sion

• The input job attributes on which queuejob hooks operate are those that exist after all qsub processing is com-
pleted. These input attributes include:

• Command line arguments

• Script directives

• Server default_qsub_arguments

• When a queuejob hook runs at job submission, the hook can affect only that job.

• A queuejob hook runs once per subjob.

• For queuejob hooks, the input job attributes do not include:

• Server or queue resources_default or default_chunk.

• Conversions from old syntax (-lnodes or -lncpus) to new select and place syntax

See section 5.2.4, “Using Attributes and Resources in Hooks”, on page 45, for a complete listing of attributes and
resources that this hook can modify.

6.3.1.2.ii The queuejob Hook Interface

The event type for this event is pbs.HOOK_EVENT_QUEUEJOB.

A queuejob hook runs after all processing of qsub input, just before the job reaches the server, and before the job is
queued, including when a job is peer queued to a server that has a queuejob hook. (See Figure 4-6.) The hook is trig-
gered by qsub or the pbs_submit() API call. A queuejob hook is not triggered by requeueing a job (qrerun) or
on node_fail_requeue, when a job is discarded by the MoM because the execution host went down. A queuejob hook
runs once per job array.

In a queuejob event, the event's job object members are as they would be if the job were to be successfully submitted.

A pbs.HOOK_EVENT_QUEUEJOB event has the following member, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().job
A pbs.job object with the attributes and resources specified at submission for the job being queued. See section
6.6, “Job Objects”, on page 132.

A pbs.HOOK_EVENT_QUEUEJOB event has the methods listed in section 6.15.2, “Methods Available in Events”, on
page 165.

A pbs.event().accept() terminates hook execution and allows the job to be queued, and any changes to job attributes or
resources take effect.

A pbs.event().reject() terminates hook execution and causes the job not to be queued. The job is not accepted by the
server, and is not assigned a job ID.
HG-92 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.2.iii Caveats for queuejob Hook

If a user submits a job using old -lnodes or -lncpus syntax, this is translated to a select statement, but only after a
queuejob hook has run. The queuejob hook does have access to the job's resource request.

6.3.1.3 postqueuejob: Event after Job is Queued

6.3.1.3.i Calculating Budget Required to Run Job

After a job is queued, postqueuejob hooks can use the updated job information to e.g. calculate the budget required to
run the job. The hook can affect only that job. The hook can affect only the Resource_List and project job attributes.

The input job attributes on which postqueuejob hooks operate are those that exist after the job is enqueued. For post-
queuejob hooks, the input job attributes include:

• Server or queue resources_default or default_chunk

• Conversions from old syntax (-lnodes or -lncpus) to new select and place syntax

6.3.1.3.ii The postqueuejob Hook Interface

The event type for this event is pbs.POSTQUEUEJOB.

A postqueuejob hook runs after the job is queued, including when a job is peer queued to a server that has a postqueue-
job hook. (See Figure 4-6.)

The hook is triggered by qsub or the pbs_submit() API call.

A postqueuejob hook is not triggered by requeueing a job (qrerun) or on node_fail_requeue, when a job is discarded
by the MoM because the execution host went down.

A postqueuejob hook runs once per subjob.

A postqueuejob hook runs as pbsadmin.

A pbs.POSTQUEUEJOB event has the following member, in addition to those listed in section 6.3.2, “Event Object
Members”, on page 116:

pbs.event().job
A pbs.job object with the attributes and resources assigned after the job is queued. See section 6.6, “Job
Objects”, on page 132.

A pbs.POSTQUEUEJOB event has the methods listed in section 6.15.2, “Methods Available in Events”, on page 165.

A pbs.event().accept() terminates hook execution, and any changes to job attributes or resources take effect.

A pbs.event().reject() terminates hook execution, and no changes are made to the job.

6.3.1.4 movejob: Event when Job is Moved

6.3.1.4.i Modifying Job Move (qmove)

• When a job is moved via qmove, movejob hooks can modify the arguments passed to qmove

• When a movejob hook runs, it can change the job's destination queue to any queue on the default server

A movejob hook can specify only local queues as the destination queue. Whether a job is submitted with a local
queue or a remote queue as its destination, a movejob hook can change the destination to a local queue.

The only job attribute that a movejob event hook can set is the job's destination queue.

6.3.1.4.ii The movejob Hook Interface

The type for this event is pbs.HOOK_EVENT_MOVEJOB.
PBS Professional 2022.1 Hooks Guide HG-93

Chapter 6 Hook Objects and Methods
The server runs its movejob hooks when any of the following happens:

• This server is the furnishing server when peer scheduling a job

• A job is moved from this server to another server via the qmove command

• A job is moved between two queues on this server

A movejob hook is executed after qmove arguments are processed, but before a job is moved from one queue to another.
This hook is triggered by qmove and the pbs_movejob() API call. movejob hooks are not triggered by pbs_rsub
-Wqmove=<job ID>. A movejob hook runs once per job array.

A job object's attributes appear to a movejob hook as they would be after the event, not before it.

The hook shows the job's originating queue in the pbs.event().src_queue object member.

A pbs.HOOK_EVENT_MOVEJOB event has the following members, in addition to those listed insection 6.3.2, “Event
Object Members”, on page 116:

pbs.event().job
A pbs.job object representing the job being moved. See section 6.6, “Job Objects”, on page 132.

Note that pbs.event().job.queue refers to the destination queue, not the current queue.

pbs.event().src_queue
The pbs.queue object representing the originating queue where pbs.event().job came from.

A pbs.event().accept() terminates hook execution and allows the job to be moved, and any changes to job attributes or
resources take effect.

A pbs.event().reject() terminates hook execution and causes the job not to be moved.

6.3.1.5 modifyjob: Event when Job is Altered

6.3.1.5.i Modifying Job Change (qalter)

• When a job is changed via qalter, modifyjob hooks can modify the arguments passed to qalter

• When a modifyjob hook runs, it can change the attributes of the job that can be changed via qalter

Before the job runs, this hook can set any job attribute that can be changed via qalter, can set the job's comment, and
can set any resource requested by the job.

While the job is running, the only job attributes and resources that the hook can set are those that can be changed via the
qalter command: the job's cput and walltime. See section 5.2.4, “Using Attributes and Resources in Hooks”, on page
45, for a complete listing of attributes and resources that this hook can modify.

See “qalter” on page 130 of the PBS Professional Reference Guide and “Job Attributes” on page 327 of the PBS Profes-
sional Reference Guide.

6.3.1.5.ii The modifyjob Hook Interface

The type for this event is pbs.HOOK_EVENT_MODIFYJOB.

A modifyjob hook is executed after all processing of qalter input, and just before the job's attributes are modified. The
hook is triggered by the following:

• A qalter command, except when the scheduler calls the command

• The pbs_alterjob() API call

• Calculating eligible time

• Setting the job's comment

A modifyjob hook runs once per job array.

In a modifyjob event hook, the pbs.event().job object's attributes appear to a modifyjob hook as they would be after the
job is modified, not before.
HG-94 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
A modifyjob event hook shows the original job with all its attributes in pbs.event().job_o.

A pbs.HOOK_EVENT_MODIFYJOB event has the following members, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().job
A pbs.job object representing the job changes being requested. See section 6.6, “Job Objects”, on page 132. In
this job object, only attributes and resources that are to be modified by the qalter command are populated,
and they are populated with the new requested values. In this job object, attributes or resources that are not
slated to be modified are not populated.

pbs.event().job_o
A read-only pbs.job object representing the original job, before the job was modified via qalter. All
attributes and resources are populated. See section 6.3.2.12, “Original Job Event Member”, on page 121.

A pbs.HOOK_EVENT_MODIFYJOB event has the methods listed in section 6.15.2, “Methods Available in Events”,
on page 165.

A pbs.event().accept() terminates hook execution and allows the job to be altered, and any changes to job attributes or
resources take effect.

A pbs.event().reject() terminates hook execution and causes the job not to be altered.
PBS Professional 2022.1 Hooks Guide HG-95

Chapter 6 Hook Objects and Methods
6.3.1.6 runjob: Event Before Job is Received by MoM

6.3.1.6.i Changes Before Job is Sent to MoM (qrun)

When the scheduler runs a job or the administrator runs a job using the qrun command, any runjob hooks are executed.

• On accepting a job, a runjob hook can modify the following:

• The job's Error_Path attribute

• The job's Output_Path attribute

• All of the job's Variable_List attribute members

• The following Resource_List attribute members:

cput

exec_vnode

file

max_walltime

min_walltime

nice

pcput

pmem

pvmem

site

software

start_time

walltime

• When a runjob hook rejects a job, it can do the following:

• Set the job's depend attribute

• Set any members of the job's Variable_List attribute

• Place a hold on the job

• Release a hold on the job

• Set the job's project attribute

• Change the time the job is allowed to begin execution

• Set any of the job's Resource_List attribute members except nodect

• Change the state of a vnode where the job would have run

We list the job resources that can be read and set via a runjob event in Table 5-11, “Built-in Job Resources Readable &
Settable by Hooks via Job Events,” on page 64 and Table 5-12, “Built-in Job Resources Readable & Settable by Hooks
via Reservation & Other Non-job Events,” on page 65.

We list the vnode resources that can be read and set via a runjob event in Table 5-13, “Vnode Resources Readable & Set-
table by Hooks via Job Events,” on page 66 and Table 5-14, “Vnode Resources Readable & Settable by Hooks via Reser-
vation & Other Non-job Events,” on page 67.

A runjob hook can modify a vnode only if the hook rejects the event, and the vnode is in the job's exec_vnode attribute.
For a vnode, the hook can modify only the state attribute. The only pre-execution event hook that can change this
attribute is a runjob hook.
HG-96 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.6.ii The runjob Hook Interface

The event type is pbs.HOOK_EVENT_RUNJOB.

A runjob event occurs when one of the following happens:

• The administrator uses the qrun command

• The scheduler chooses to run a job and calls pbs_runjob()

A runjob hook is executed just before a job is sent to the execution host. It is triggered by qrun and the
pbs_runjob() API call. A runjob hook runs once per subjob.

For a runjob hook only, job object attributes appear as they would be before the event takes place.

A pbs.HOOK_EVENT_RUNJOB event has the following member, in addition to those listed in section 6.3.2, “Event
Object Members”, on page 116:

pbs.event().job
A pbs.job object representing the job being run. See section 6.6, “Job Objects”, on page 132.

A pbs.HOOK_EVENT_RUNJOB event has the methods listed in section 6.15.2, “Methods Available in Events”, on
page 165.

A pbs.event().accept() terminates hook execution and allows the job to be sent to the execution host, and any changes to
job attributes or resources take effect.

A pbs.event().reject() terminates hook execution and causes the job to be requeued instead of being sent to the execution
host. When a job is requeued by this hook, the scheduler considers it for execution in the next scheduling cycle.

6.3.1.7 jobobit: Event when Server Receives Job or Subjob Obit

When the server receives a job or subjob obit, a jobobit hook has read-only access to the job or subjob.

6.3.1.7.i The jobobit Hook Interface

This event type is pbs.HOOK_EVENT_JOBOBIT.

The jobobit hook runs on the server host when:

• Job finishes execution

• Subjob finishes execution

• Job array parent job ends

• A job is requeued in order to rerun it

• A running job is deleted and the primary MoM cannot be reached

• A running job is deleted by force

The jobobit hook runs as pbsadmin.

A pbs.HOOK_EVENT_JOBOBIT event has the following member, in addition to those listed in section 6.3.2, “Event
Object Members”, on page 116:

pbs.event().job
A read-only pbs.job object representing the job or subjob leaving execution. See section 6.6, “Job Objects”, on
page 132.

If this job is in a reservation, the job object has a read-only reservation object as a member:

pbs.event().job.resv
A read-only pbs.resv object representing the reservation the job is in. See section 6.9, “Reservation Objects”,
on page 144.
PBS Professional 2022.1 Hooks Guide HG-97

Chapter 6 Hook Objects and Methods
A pbs.HOOK_EVENT_JOBOBIT event has the methods listed in section 6.15.2, “Methods Available in Events”, on
page 165.

A call to pbs.event().accept() or to pbs.event().reject(<message>) terminates hook execution. Neither call has any
effect on the job.

If the jobobit hook script encounters an unexpected error causing an unhandled exception, or if the script terminates due
to a hook alarm, the error is logged in the server log.

6.3.1.8 resvsub: Event when Reservation is Created

6.3.1.8.i Modifying Reservation Creation (pbs_rsub)

• When an advance, standing, or job-specific reservation is created via pbs_rsub, resvsub hooks can modify the
reservation's attributes that can be set via pbs_rsub

• When an advance, standing, or job-specific reservation is created, resvsub hooks can specify additional attributes
that can be specified via pbs_rsub

• The input reservation attributes on which resvsub hooks operate are those that exist after all pbs_rsub processing
of command line arguments is completed

• For resvsub hooks, the input reservation attributes do not include:

• Server or queue resources_default or default_chunk.

• Conversions from old syntax (-lnodes & -lncpus) to new select and place syntax

The only time that a reservation can be modified is during its creation. A resvsub event hook can set any settable reser-
vation attribute and any resource that can be specified via pbs_rsub. See Table 5-10, “Reservation Attributes Read-
able & Settable in Reservation Hooks,” on page 63 for a complete list of the reservation attributes that this hook can read
and set.

6.3.1.8.ii The resvsub Hook Interface

The type for this event is pbs.HOOK_EVENT_RESVSUB.

A resvsub hook is executed after all processing of pbs_rsub input, and just before a reservation is created. The hook
is triggered by pbs_rsub and the pbs_submitresv() API call.

A reservation object's attributes appear to a resvsub hook as they would be after the event, not before it.

A pbs.HOOK_EVENT_RESVSUB event has the following member, in addition to those listed in section 6.3.2, “Event
Object Members”, on page 116:

pbs.event().resv
A pbs.resv object containing the attributes and resources specified for the reservation being requested. See
section 6.9, “Reservation Objects”, on page 144.

A pbs.HOOK_EVENT_RESVSUB event has the methods listed in section 6.15.2, “Methods Available in Events”, on
page 165.

A pbs.event().accept() terminates hook execution and allows creation of the reservation, and any changes to reservation
resources take effect.

A pbs.event().reject() terminates hook execution and causes the reservation not to be created.
HG-98 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.9 resv_confirm: Event when Reservation is Confirmed

6.3.1.9.i Reservation Confirmation

• When an advance, standing, or job-specific reservation is created via pbs_rsub, resv_confirm hooks has
read-only access to the reservation object

• The input reservation attributes on which resv_confirm hooks operate are those that exist after the reservation is
confirmed

See Table 5-10, “Reservation Attributes Readable & Settable in Reservation Hooks,” on page 63 for a complete list of
the reservation attributes that this hook can read.

6.3.1.9.ii The resv_confirm Hook Interface

The type for this event is pbs.HOOK_EVENT_RESV_CONFIRM

The hook is triggered by pbs_rsub and the pbs_submitresv() API call.

A resvconfirm hook runs as pbsadmin.

A pbs.HOOK_EVENT_RESV_CONFIRM event has the following member, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().resv
A pbs.resv object containing the attributes and resources specified for the reservation being requested. See
section 6.9, “Reservation Objects”, on page 144.

A pbs.HOOK_EVENT_RESV_CONFIRM event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.

A pbs.event().accept() terminates hook execution.

A pbs.event().reject() terminates hook execution and stops any other pbs.HOOK_EVENT_RESV_CONFIRM hooks
from being triggered.

6.3.1.10 modifyresv: Event when Reservation is Altered

6.3.1.10.i Modifying Reservation Changes (pbs_ralter)

A modifyresv event hook can set any settable reservation attribute and any resource that can be specified via
pbs_ralter. See Table 5-10, “Reservation Attributes Readable & Settable in Reservation Hooks,” on page 63 for a
complete list of the reservation attributes that this hook can read and set.

6.3.1.10.ii The modifyresv Hook Interface

The type for this event is pbs.HOOK_EVENT_MODIFYRESV.

A modifyresv hook is executed before processing of pbs_ralter input, just before the reservation is changed.

The hook is triggered by pbs_ralter and the pbs_modify_resv() API call.

A modifyresv hook runs as pbsadmin.

A pbs.HOOK_EVENT_MODIFYRESV event has the following members, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().resv
A pbs.resv object containing the list of requested changes. See section 6.9, “Reservation Objects”, on page
144.

pbs.event().resv_o
A read-only pbs.resv object containing the attributes and resources of the reservation before the changes are
made. See section 6.9, “Reservation Objects”, on page 144.
PBS Professional 2022.1 Hooks Guide HG-99

Chapter 6 Hook Objects and Methods
A pbs.HOOK_EVENT_MODIFYRESV event has the methods listed in section 6.15.2, “Methods Available in Events”,
on page 165.

A pbs.event().accept() terminates hook execution and allows changing and reconfirming the reservation.

A pbs.event().reject() terminates hook execution; there is no change to the reservation and the reservation is not recon-
firmed.

6.3.1.11 resv_begin: Event when Reservation Starts

6.3.1.11.i Reservation Start

• When an advance, standing, or job-specific reservation starts, resv_begin hooks have read-only access to the reser-
vation object

See Table 5-10, “Reservation Attributes Readable & Settable in Reservation Hooks,” on page 63 for a complete list of
the reservation attributes that this hook can read.

6.3.1.11.ii The resv_begin Hook Interface

The type for this event is pbs.HOOK_EVENT_RESV_BEGIN.

A resv_begin hook is executed when a reservation or an instance of a standing reservation begins.

A resv_begin hook runs as pbsadmin.

A pbs.HOOK_EVENT_RESV_BEGIN event has the following member, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().resv
A read-only pbs.resv object containing the attributes and resources specified for the reservation. See section
6.9, “Reservation Objects”, on page 144.

A pbs.HOOK_EVENT_RESV_BEGIN event has the methods listed in section 6.15.2, “Methods Available in Events”,
on page 165.

A pbs.event().accept() terminates hook execution.

A pbs.event().reject() terminates hook execution.

6.3.1.12 resv_end: Event when Reservation Ends

A resv_end event hook can read server and reservation attributes. See Table 5-10, “Reservation Attributes Readable &
Settable in Reservation Hooks,” on page 63 for a complete list of the reservation attributes that this hook can read.

6.3.1.12.i The resv_end Hook Interface

The type for this event is pbs.HOOK_EVENT_RESV_END.

A resv_end hook runs as pbsadmin.

Triggered by pbs_rdel or the pbs_delresv API call, for an advance reservation or an instance of a standing reser-
vation.

A resv_end hook is executed when a confirmed reservation ends or is deleted.

Runs just before jobs are deleted from the reservation queue.

A pbs.HOOK_EVENT_RESV_END event has the following member, in addition to those listed in section 6.3.2, “Event
Object Members”, on page 116:

pbs.event().resv
A pbs.resv object containing the attributes and resources specified for the reservation being requested. See
section 6.9, “Reservation Objects”, on page 144.
HG-100 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
A pbs.HOOK_EVENT_RESV_END event has the methods listed in section 6.15.2, “Methods Available in Events”, on
page 165.

A pbs.event().reject() does not interrupt the execution of the process invoking it.

6.3.1.13 management: qmgr Operation Event at Server Host

6.3.1.13.i qmgr Operation Events at Server Host

After qmgr is used to operate on an object, a management hook can report on the operation. The hook has read-only
access to the changes made using qmgr. The hook can report information about the requested operation, any associated
attributes, and the status of the completed operation.

This hook is useful for logging changes made by administrators and for figuring out why the behavior of PBS has
changed. You can use it to track server management operations, such as adding a new node, importing a hook script, etc.

This hook is triggered by operations that use qmgr directives such as create, set, or import, to operate on PBS objects
such as vnodes, attributes, or hooks. This hook is not triggered by qmgr directives that do not act on objects, such as
print, exit, or help. For a list of hook triggers and objects see section 6.11, “Management Objects”, on page 150.

This event contains information about whether the server management operation succeeded or failed.

6.3.1.13.ii The management Hook Interface

This event type is pbs.HOOK_EVENT_MANAGEMENT.

A management hook script is executed by the server after a server management operation is completed.

The management hook runs as pbsadmin.

A pbs.HOOK_EVENT_MANAGEMENT event has the following member, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().management
A pbs.management object representing the PBS server management operation that was executed. The man-
agement object and the operation cannot be modified with this hook event. See section 6.11, “Management
Objects”, on page 150.

A pbs.HOOK_EVENT_MANAGEMENT event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.

A call to pbs.event().accept() terminates hook execution. No change is made to the operation.

A call to pbs.event().reject(<message>) prevents any management hooks with higher order from being triggered. No
change is made to the operation.

If the management hook script encounters an unexpected error causing an unhandled exception, or times out due to the
hook's alarm setting, the hook will behave as it does on a pbs.event().reject().

6.3.1.14 periodic: Periodic Event at Server Host

6.3.1.14.i Periodic Events at Server Host

Periodically, at the server host, a periodic hook can:

• Run qstat, job start time estimator named pbs_est, etc.

6.3.1.14.ii The periodic Hook Interface

This event type is pbs.HOOK_EVENT_PERIODIC.
PBS Professional 2022.1 Hooks Guide HG-101

Chapter 6 Hook Objects and Methods
The periodic hook runs periodically on the server host, in the background. The hook begins periodic execution, and the
interval timer is restarted, when any of the following happens:

• The hook is enabled

• The hook is imported

• The server starts

The periodic hook runs as pbsadmin.

The interval between calls to periodic hooks is specified in the freq hook attribute. See section 5.1.13, “Setting Hook
Interval (Frequency)”, on page 40.

A pbs.HOOK_EVENT_PERIODIC event has the following member, in addition to those listed in section 6.3.2, “Event
Object Members”, on page 116:

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name. See section 6.3.2.24, “The Vnode List Event
Member”, on page 123 for information about using pbs.event().vnode_list[].

A pbs.HOOK_EVENT_PERIODIC event has the methods listed in section 6.15.2, “Methods Available in Events”, on
page 165.

A call to pbs.event().accept() causes any changes made to objects exposed in the hook to take effect.

A call to pbs.event().reject(<message>) prevents any changes from taking effect.

A call to pbs.event().reject(<message>) causes the following messages to appear in the server log:

"run_periodic_hook; request rejected by <hook_name>"

<message>

The periodic hook continues to be periodically called whether or not there are errors in hook script execution or a call to
the pbs.event().reject() action. To stop the hook from being called, either disable it or delete it:

#qmgr -c "s h <periodic hook> enabled=f"

#qmgr -c "d h <periodic hook>"

If the periodic hook script encounters an unexpected error causing an unhandled exception, or if the script terminates due
to a hook alarm, all changes do not take effect. In addition, one of the following messages appears in the MoM log at
event class PBSEVENT_DEBUG2:

"periodic hook <hook_name> encountered an exception, request rejected"

"alarm call while running periodic hook '<hook_name>', request rejected"

6.3.1.14.iii Caveats for periodic Event Hooks

The order attribute is ignored for periodic hooks. It does not guarantee the execution order of a list of periodic hooks.

6.3.1.15 modifyvnode: Event after Vnode Changes State

6.3.1.15.i Vnode State Change

After a vnode changes state, a modifyvnode hook has read-only access to two vnode objects, one of which represents the
current (modified) state, and one of which represents the previous (unmodified) state. For each, the hook can read, but
not set, vnode attributes and resources.

6.3.1.15.ii The modifyvnode Hook Interface

The type for this event is pbs.HOOK_EVENT_MODIFYVNODE.

A modifyvnode hook is executed after a vnode changes state. The hook is triggered by a vnode state change.

A modifyvnode hook runs as pbsadmin.
HG-102 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
A pbs.HOOK_EVENT_MODIFYVNODE event has the following members, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().vnode
A read-only pbs.vnode object representing the vnode after the state change.

pbs.event().vnode_o
A read-only pbs.vnode object representing the the original vnode with all its attributes before the state change.

A pbs.HOOK_EVENT_MODIFYVNODE event has the following methods, in addition to those listed in section 6.15.2,
“Methods Available in Events”, on page 165:

pbs.event().vnode.extract_state_ints()
Returns a list of the string values currently set in the vnode's state bits

pbs.event().vnode.extract_state_strs()
Returns a list of the integer values currently set in the vnode's state bits

See section 6.10, “Vnode Objects”, on page 146.

A pbs.event().accept() or pbs.event().reject() terminates hook execution. The vnode and vnode_o objects are unaf-
fected by either call.

For an example of a modifyvnode hook, see section 9.10, “modifyvnode Hook Example”, on page 313.

6.3.1.15.iii Caveats for modifyvnode Hooks

Vnodes often undergo many state changes per administrative command. We recommend running a modifyvnode hook
only when necessary, and making your modifyvnode hooks as efficient and fast as possible. See section 5.3.6, “Use Fast
Operations”, on page 75.

6.3.1.16 execjob_begin: Event when Execution Host Receives Job

6.3.1.16.i Changes When Job is Received by MoM

When MoM receives a job, an execjob_begin hook can:

• Modify the job's Execution_Time, Hold_Types, Variable_List, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

6.3.1.16.ii The execjob_begin Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_BEGIN.

An execjob_begin hook executes on the primary MoM host and then, if successful, executes on all the sister MoM hosts
allocated to the job. The hook executes when the host first receives the job, after any files or directories are staged in.

A pbs.HOOK_EVENT_EXECJOB_BEGIN event has the following members and methods, in addition to those listed in
section 6.3.2, “Event Object Members”, on page 116:

pbs.event().job
This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 132.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.24, “The Vnode List Event Member”, on page 123 for information about using
pbs.event().vnode_list[].
PBS Professional 2022.1 Hooks Guide HG-103

Chapter 6 Hook Objects and Methods
A pbs.HOOK_EVENT_EXECJOB_BEGIN event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.

A call to pbs.event().accept() means the job can proceed with execution, and any changes to job attributes, resources, or
the vnode list take effect.

A call to pbs.event().reject(<message>) automatically causes the job to be killed and tells the server to requeue the job.
In addition, any changes to job attributes, resources, or vnode list take effect. When a job is requeued by this hook, the
scheduler considers it for execution in the next scheduling cycle.

• If the pbs.event().reject(<message>) call is made on a primary execution host, the following message appears in
the MoM log at log event class PBSEVENT_DEBUG2:
"execjob_begin request rejected by <hook_name>"

<message>

The rejection message <message> also appears in the STDERR of the program such as qrun invoking
pbs_runjob() API:

• If the pbs.event().reject(<message>) call is made on a sister host, the following message appears in the MoM log
at log event class PBSEVENT_DEBUG2:
"execjob_begin request rejected by <hook_name>"

<message>

In addition, this message appears in mom_logs on the primary execution host:

"job_start_error: <hook errno> from node <hostname> could not JOIN_JOB successfully.

• If pbs_runjob() was invoked by the scheduler, the following job comment appears:
"Not running: PBS Error: <message>"

If the execjob_begin hook script encounters an unexpected error causing an unhandled exception, or if the script termi-
nates due to a hook alarm, the job is automatically killed and the server requeues the job. All job changes, vnode
changes, or requests for host reboot or scheduler cycle restarts do not take effect. In this case, one of the the following
messages appears in the MoM log at event class PBSEVENT_DEBUG2:

"execjob_begin hook <hook_name> encountered an exception, request rejected"

"alarm call while running execjob_begin hook '<hook_name>', request rejected"

6.3.1.17 execjob_prologue: Event Just Before Execution of Top-level

Job Process

6.3.1.17.i Changes Before Job Shell is Executed

Just before a job's top shell is executed, an execjob_prologue hook can:

• Modify the job's Execution_Time, Hold_Types, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Modify a job's vnode request

• Put a bad vnode in the pbs.event().vnode_list_fail[] list

6.3.1.17.ii The execjob_prologue Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_PROLOGUE.
HG-104 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
An execjob_prologue hook runs on the primary MoM host. If the hook runs successfully on the primary MoM host, an
execjob_prologue hook runs on each of the sister MoM hosts allocated to the job. On the primary MoM host, an
execjob_prologue hook executes just prior to executing the top-level shell or cmd process of the job. This is where the
prologue executes. On a sister MoM host, the hook executes just before the first task of the job on this host is spawned,
and before any execjob_launch or execjob_attach hooks. See Table 4-1, “Execution Event Hook Timing,” on
page 20.

An execjob_prologue hook overrides a prologue. If an execjob_prologue hook exists and is enabled, MoM executes
the hook. Otherwise, she executes the prologue.

A pbs.HOOK_EVENT_EXECJOB_PROLOGUE event has the following members, in addition to those listed in sec-
tion 6.3.2, “Event Object Members”, on page 116:

pbs.event().job
This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 132.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.24, “The Vnode List Event Member”, on page 123 for information about using
pbs.event().vnode_list[].

This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 132.

pbs.event().vnode_list_fail[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job
but are marked as unhealthy. See section 6.3.2.25, “The Failed Vnode List Event Member”, on page 125 for
information about pbs.event().vnode_list_fail[].

A pbs.HOOK_EVENT_EXECJOB_PROLOGUE event has the following methods, in addition to those listed in sec-
tion 6.15.2, “Methods Available in Events”, on page 165:

pbs.event().job.release_nodes()
This method releases unneeded vnodes from a job's vnode request. See section 6.6.2.4, “Job Object Method to
Release Vnodes”, on page 141.

A pbs.event().accept() allows the job to continue its normal execution, and any changes to job attributes, resources, or
vnode list take effect.

A pbs.event().reject(<message>) causes the job to be killed, and the owning server to requeue the job. Any changes to
job attributes, resources, or vnode list take effect. When a job is requeued by this hook, the scheduler considers it for
execution in the next scheduling cycle.

• On the primary execution host, the following job-level mom_logs entries appear:
"execjob_prologue request rejected by <hook_name>"

<message>

• On a sister vnode, the following job-level mom_logs entries appear:
"execjob_prologue request rejected by <hook_name>"

<message>

• In addition, the following message appears in the STDERR of the program invoking the tm_attach() API, such as
the pbs_attach() command:
"a hook has rejected the task manager request"

If the following setting is specified in the hook script, just before issuing a pbs.event().reject(), the job is deleted instead
of being requeued:

pbs.event().job.delete()

If the user attribute of the execjob_prologue hook is set to pbsuser, the hook script executes under the context of the
job owner (the value of the euser job attribute).
PBS Professional 2022.1 Hooks Guide HG-105

Chapter 6 Hook Objects and Methods
If the execjob_prologue hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, the job is killed and the server requeues the job. All job changes, vnode changes, or
requests for host reboot or scheduler cycle restarts, do not take effect. In addition, one of the following messages appears
in the MoM log at event class PBSEVENT_DEBUG2:

"execjob_prologue hook <hook_name> encountered an exception, request rejected"

"alarm call while running execjob_prologue hook '<hook_name>', request rejected"

The standard output and standard error of an execjob_prologue hook script are not connected to the standard output and
standard error of the job.

6.3.1.18 execjob_launch: Event when Execution Host Receives Job

6.3.1.18.i Changes Before User Program is Executed

Just before the user's program is executed, an execjob_launch hook can:

• Change the job's top shell or executable

• Change the arguments to the shell or executable

• Change the job's environment variables

• Modify job and vnode attributes

• Modify a job's vnode request and list

• Put a bad vnode in the pbs.event().vnode_list_fail[] list

An execjob_launch hook cannot modify anything else.

6.3.1.18.ii The execjob_launch Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_LAUNCH.

An execjob_launch hook runs on the primary MoM host just before executing the user's program. The hook runs on the
sister MoM hosts allocated to the job, just before executing the user's program as specified in a tm_spawn() API call,
which is called from pbsdsh and pbs_tmrsh.

Any execjob_launch hooks runs after execjob_prologue hooks.

 This hook cannot use any of the job's methods.

A pbs.HOOK_EVENT_EXECJOB_LAUNCH event hook has access to the following members, in addition to those
listed in section 6.3.2, “Event Object Members”, on page 116:

pbs.event().argv[]
This is a pbs.argv[] object representing the arguments to the shell or executable. See section 6.3.2.2, “Job Pro-
gram Arguments Event Member”, on page 118.

pbs.event().env
This is a pbs.env[] object representing the job's environment variables. See section 6.3.2.5, “Job Environment
Event Member”, on page 119.

pbs.event().job
This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 132.

pbs.event().progname
This is a pbs.progname object representing the job shell or executable. See section 6.3.2.15, “Job Executable
Event Member”, on page 121.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to the job
that caused the execjob_launch hook to execute. See section 6.3.2.24, “The Vnode List Event Member”, on
page 123 for information about pbs.event().vnode_list[].
HG-106 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbs.event().vnode_list_fail[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job
but are marked as unhealthy. Seesection 6.3.2.25, “The Failed Vnode List Event Member”, on page 125 for
information about pbs.event().vnode_list_fail[].

A pbs.HOOK_EVENT_EXECJOB_LAUNCH event has the following methods, in addition to those listed in section
6.15.2, “Methods Available in Events”, on page 165:

pbs.event().job.release_nodes()
This method releases unneeded vnodes from a job's vnode request. See section 6.6.2.4, “Job Object Method to
Release Vnodes”, on page 141.

A call to pbs.event().accept() means the job can proceed with execution, and any changes to progname, argv[], and
env[] take effect. If the hook makes changes to the job's progname, argv[], or env[] parameters, the appropriate
PBSEVENT_DEBUG2 message(s) appear in mom_logs for each change in a value:

"progname orig: <original_progname>"

"progname new: <updated_progname>"

"argv orig: <original_argv>"

"argv new: <updated_argv>"

"env orig: <original_env>"

"env new: <updated_env>"

A call to pbs.event().reject(<message>) causes the job to be terminated with a non-zero Exit_Status value, and the
following PBSEVENT_DEBUG2 messages to appear in mom_logs:

"execjob_launch" request rejected by '<hook_name>'"

<message>

If the execjob_launch hook script encounters an unexpected error causing an unhandled exception, the job is terminated
with a non-zero Exit_Status value, and the following PBSEVENT_DEBUG2 messages appear in mom_logs:

"execjob_launch hook <hook_name> encountered an exception, request rejected"

If the execjob_launch hook script terminates due to a hook alarm, the job is terminated with a non-zero Exit_Status
value, and the following PBSEVENT_DEBUG2 messages appear in mom_logs:

"alarm call while running execjob_launch hook '<hook_name>', request rejected"

6.3.1.19 execjob_attach: Event when pbs_attach() runs

6.3.1.19.i Event when pbs_attach() Runs

When pbs_attach() is called, an execjob_attach hook can accept or reject the procedure where the process ID is
attached to the job.

6.3.1.19.ii The execjob_attach Hook Interface

An execjob_attach hook runs on any MoM host where an MPI process is spawned using pbs_attach(). The
execjob_attach hook runs for each process ID.

The execjob_attach hook runs before any execjob_prologue hooks run on behalf of the first task. See Table 4-1,
“Execution Event Hook Timing,” on page 20.

An execjob_attach hook cannot modify any PBS objects.

A pbs.HOOK_EVENT_EXECJOB_ATTACH event has the following members, in addition to those listed in section
6.3.2, “Event Object Members”, on page 116:
PBS Professional 2022.1 Hooks Guide HG-107

Chapter 6 Hook Objects and Methods
pbs.event().job
This is a pbs.job object representing the job that is about to run. See section 6.6, “Job Objects”, on page 132.
For this hook, this job object is read-only.

pbs.event().pid
This is a Python int representing the process ID whose session ID is being added to the job tasks list. This hook
cannot modify the value of the process ID.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
The list of vnodes is read-only for this event. See section 6.3.2.24, “The Vnode List Event Member”, on page
123 for information about using pbs.event().vnode_list[].

A pbs.HOOK_EVENT_EXECJOB_BEGIN event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.

On a call to pbs.event().accept(), MoM proceeds as usual to add the session ID of the process ID to the job's task list.

On a call to pbs.event().reject(<message>), the following happens:

• Hook execution terminates

• MoM does not get the session ID

• PBS prints the following message in mom_logs at log level PBSEVENT_DEBUG2:
"execjob_attach" request rejected by '<hook_name>'"

<message>

If the execjob_attach hook script encounters an unhandled exception:

• Hook execution terminates

• MoM does not get the session ID of the process ID

• The following message appears in mom_logs at PBSEVENT_DEBUG2:
"execjob_attach hook <hook_name> encountered an exception, request rejected"

If the execjob_attach hook script terminates due to a hook alarm, MoM does not get the session ID of the process ID,
and the following message appears in mom_logs at PBSEVENT_DEBUG2:

"alarm call while running execjob_attach hook '<hook_name>', request rejected"

6.3.1.19.iii Caveats for execjob_attach Hooks

• Do not attempt to modify pbs.event().pid. If you do:

• Hook execution is terminated

• MoM does not get the session ID of the process ID

• The following messages appear in mom_logs at PBSEVENT_DEBUG2:

"execjob_attach hook <hook_name> encountered an exception, request rejected"

"event attribute 'pid' is read-only"

• Do not attempt to modify pbs.event().job or the objects in pbs.event().vnode_list[]. If you do:

• Hook execution is terminated

• MoM does not get the session ID of the process ID

• The following messages appear in mom_logs at PBSEVENT_DEBUG2:

"execjob_attach hook <hook_name> encountered an exception, request rejected"

"nothing is settable inside an execjob_attach hook!"
HG-108 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.20 execjob_postsuspend: Event Just After Suspending Job

6.3.1.20.i The execjob_postsuspend Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_POSTSUSPEND.

This hook runs on all of the MoM hosts assigned to a job, after the job has been successfully suspended.

An execjob_postsuspend hook:

• Cannot modify any PBS objects

• Cannot be used to set a fail action

• Must run as pbsadmin

• Does not interrupt the flow of suspend/resume

A pbs.HOOK_EVENT_EXECJOB_POSTSUSPEND event has the following members, in addition to those listed in
section 6.3.2, “Event Object Members”, on page 116:

pbs.event().job
This is a pbs.job object representing the job that has just been suspended. See section 6.6, “Job Objects”, on
page 132. For this hook, this job object is read-only.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
The list of vnodes is read-only for this event. See section 6.3.2.24, “The Vnode List Event Member”, on page
123 for information about using pbs.event().vnode_list[].

A pbs.HOOK_EVENT_EXECJOB_POSTSUSPEND event has the methods listed in section 6.15.2, “Methods Avail-
able in Events”, on page 165.

On a call to pbs.event().accept(), nothing happens.

On a call to pbs.event().reject(<message>), the following happens:

• Hook execution terminates

• PBS prints the following message in mom_logs at log level PBSEVENT_DEBUG2:
"execjob_postsuspend" request rejected by '<hook_name>'"

<message>

6.3.1.21 execjob_preresume: Event Just Before Resuming Job

6.3.1.21.i The execjob_preresume Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_PRERESUME.

This hook runs on the primary MoM host when this MoM receives a request to resume a job, and then if this is success-
ful, the primary MoM sends a request to the sisters to resume the job, at which point this hook runs on the sister MoM
hosts. All of the execjob_preresume hooks for a job must succeed in order for the job to resume.

An execjob_preresume hook:

• Cannot modify any PBS objects

• Cannot be used to set a fail action

• Must run as pbsadmin

A pbs.HOOK_EVENT_EXECJOB_PRERESUME event has the following members, in addition to those listed in sec-
tion 6.3.2, “Event Object Members”, on page 116:
PBS Professional 2022.1 Hooks Guide HG-109

Chapter 6 Hook Objects and Methods
pbs.event().job
This is a pbs.job object representing the job that has just been suspended. See section 6.6, “Job Objects”, on
page 132. For this hook, this job object is read-only.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
The list of vnodes is read-only for this event. See section 6.3.2.24, “The Vnode List Event Member”, on page
123 for information about using pbs.event().vnode_list[].

A pbs.HOOK_EVENT_EXECJOB_PRERESUME event has the methods listed in section 6.15.2, “Methods Available
in Events”, on page 165.

On a call to pbs.event().accept(), nothing happens

On a call to pbs.event().reject(<message>), the following happens:

• Hook execution terminates

• All MoMs where job processes were running are prevented from resuming the job

• PBS prints the following message in mom_logs at log level PBSEVENT_DEBUG2:
"execjob_preresume" request rejected by '<hook_name>'"

<message>

6.3.1.22 execjob_preterm: Event Just Before Killing Job Tasks

6.3.1.22.i Changes Before Job is Killed

Just before a job is killed, an execjob_preterm hook can:

• Modify the job's Execution_Time, Hold_Types, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Cause the job to keep running

6.3.1.22.ii The execjob_preterm Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_PRETERM.

An execjob_preterm hook executes on all the MoM hosts allocated to a job. This hook runs only when a qdel has been
issued. It does not run for any other job termination. For example, it does not run on a qrerun or when a job goes over
its limit. On the primary MoM host, the hook executes when the job receives a signal from the server for the job to ter-
minate. On a sister MoM host, this hook executes when the sister receives a request from the primary MoM host to ter-
minate the job, just before the sister signals the task on this host to terminate.

A pbs.HOOK_EVENT_EXECJOB_PRETERM event has the following members, in addition to those listed in section
6.3.2, “Event Object Members”, on page 116:

pbs.event().job
This is a pbs.job object representing the job that is about to run (or be killed). See section 6.6, “Job Objects”, on
page 132.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.24, “The Vnode List Event Member”, on page 123 for information about using
pbs.event().vnode_list[].

A pbs.HOOK_EVENT_EXECJOB_PRETERM event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.
HG-110 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
A pbs.event().accept() call allows job cancellation or deletion to happen, and any changes to job attributes, resources, or
vnode list take effect.

A pbs.event().reject() call causes the job instance on a vnode to continue running, because the terminate signal is not
delivered to the job. Any changes to job attributes, resources, or vnode list take effect.

• On the primary execution host, a pbs.event().reject(<message>) causes the following to appear in the STDERR of
the program (qdel) invoking the pbs_deljob() API:
"hook rejected request"

• The following message appears in the MoM log at log event class PBSEVENT_DEBUG2:
"execjob_preterm request rejected by <hook_name>"

<message>

• On a sister host, a pbs.event().reject(<message>) causes the following message to appear in the MoM log at log
event class PBSEVENT_DEBUG2:
"execjob_preterm request rejected by <hook_name>"

<message>

If the user attribute of the execjob_preterm hook is set to pbsuser, the hook script executes under the context of the job
owner (the value of the euser job attribute).

If the execjob_preterm hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, the job continues to run, and all job changes, vnode changes, requests for host reboot or
scheduler cycle restarts, do not take effect. In addition, one of the the following messages appears in the MoM log at
event class PBSEVENT_DEBUG2:

"execjob_preterm hook <hook_name> encountered an exception, request rejected"

"alarm call while running execjob_preterm hook '<hook_name>', request rejected"

6.3.1.23 execjob_epilogue: Event Just After Killing Job Tasks

6.3.1.23.i Changes After Job is Executed

Just after a job is executed, an execjob_epilogue hook can:

• Modify the job's Execution_Time, Hold_Types, and resources_used attributes

• Flag the job to be rerun

• Kill the job

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Use the job's exit status

6.3.1.23.ii The execjob_epilogue Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_EPILOGUE.

An execjob_epilogue hook executes on all the MoM hosts allocated to the job. On a primary MoM host, the hook exe-
cutes after all the job tasks/processes on the host have been killed, and basic CPU and memory resource usage informa-
tion have been logged, but before job processes are cleaned up. This is where the epilogue executes. On a sister MoM
host, the hook executes after the sister MoM receives a request to kill the job and has signaled the job tasks to terminate.

When an execjob_epilogue hook modifies the resources_used job attribute, it is modifying only the value counted at
the local host. For example, if a job runs on two hosts, using four minutes of CPU time on each host, and the hook
changes that to three minutes (and this hook runs at both hosts), the job's final CPU time total is six minutes instead of
eight.

An execjob_epilogue hook overrides an epilogue. If an execjob_epilogue hook exists and is enabled, MoM executes
the hook. Otherwise, she executes the epilogue.
PBS Professional 2022.1 Hooks Guide HG-111

Chapter 6 Hook Objects and Methods
A pbs.HOOK_EVENT_EXECJOB_EPILOGUE event has the following members, in addition to those listed in section
6.3.2, “Event Object Members”, on page 116:

pbs.event().job
This is a pbs.job object representing the job that just finished. See section 6.6, “Job Objects”, on page 132.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.24, “The Vnode List Event Member”, on page 123 for information about using
pbs.event().vnode_list[].

A pbs.HOOK_EVENT_EXECJOB_EPILOGUE event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.

The execjob_epilogue hook has access to the job’s exit status because it is available at this point. The exit status looks
like this:

pbs.event().job.Exit_status
A Python int that holds the exit value of the top level shell of the job script. This value is valid only if the hook
is executing on a primary execution host.

A call to pbs.event().accept() continues the normal end-of-job processing, and any changes to job attributes, resources,
or vnode list take effect.

A call to pbs.event().reject() causes the job on the current vnode to exit, and the owning server to completely delete the
job. Any changes to job attributes, resources, or vnode list take effect.

• On a primary execution host, a pbs.event().reject(<message>) causes the following message to appear in the
MoM log at log event class PBSEVENT_DEBUG2:
"execjob_epilogue request rejected by <hook_name>"

<message>

• On a sister host, a pbs.event().reject(<message>) causes the following message to appear in the MoM log at log
event class PBSEVENT_DEBUG2:
"execjob_epilogue request rejected by <hook_name>"

<message>

• If the following call has been made prior to calling pbs.event().reject(), the owning server requeues the job:
pbs.event().job.rerun()

If the user attribute of the execjob_epilogue hook is set to pbsuser, the hook script executes under the context of the
job owner (the value of the euser job attribute).

If the execjob_epilogue hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, this causes the job on the current vnode to exit, and the owning server to completely delete
the job. All job changes, vnode changes, requests for host reboot or scheduler cycle restarts, do not take effect. In addi-
tion, one of the following messages appears in the MoM log at event class PBSEVENT_DEBUG2:

"execjob_epilogue hook <hook_name> encountered an exception, request rejected"

"alarm call while running execjob_epilogue hook '<hook_name>', request rejected"

The standard output and standard error of an execjob_epilogue hook script are not connected to the standard output and
standard error of the job.
HG-112 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.24 execjob_end: Event After Job Cleanup

6.3.1.24.i Changes After Job Finishes or is Killed

Just after a job is cleaned up after it finishes execution or is killed, an execjob_end hook can:

• Set attributes and resources on the vnode(s) managed by the MoM where this job executes

• Use the job's exit status

An execjob_end hook cannot effectively modify the job's Execution_Time and Hold_Types attributes. These changes
will not be visible to the server, because the job is already cleaned up and reported.

6.3.1.24.ii The execjob_end Hook Interface

This event type is pbs.HOOK_EVENT_EXECJOB_END.

An execjob_end hook executes on all the MoM hosts allocated to a job. The hook is executed after a job is cleaned up.

A pbs.HOOK_EVENT_EXECJOB_END event has the following members, in addition to those listed in section 6.3.2,
“Event Object Members”, on page 116:

pbs.event().job
This is a pbs.job object representing the job that just ran. See section 6.6, “Job Objects”, on page 132.

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are assigned to this job.
See section 6.3.2.24, “The Vnode List Event Member”, on page 123 for information about using
pbs.event().vnode_list[].

A pbs.HOOK_EVENT_EXECJOB_END event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.

The execjob_end hook has access to the job’s exit status because it is available at this point. The exit status looks like
this:

pbs.event().job.Exit_status
A Python int that holds the exit value of the top level shell of the job script. This value is valid only if the hook
is executing on a primary execution host.

A call to pbs.event().accept() ends the job, and any changes to job attributes, resources, or vnode list take effect.

A call to pbs.event().reject(<message>) also ends the job, and any changes to job attributes, resources, or vnode list
also take effect.

A call to pbs.event().reject(<message>) on a primary execution host causes the following message to appear in the
MoM log at log event class PBSEVENT_DEBUG2:

"execjob_end request rejected by <hook_name>"

<message>

A call to pbs.event().reject(<message>) on a sister host causes the following message to appear in the MoM log at log
event class PBSEVENT_DEBUG2:

"execjob_end request rejected by <hook_name>"

<message>

If the execjob_end hook script encounters an unexpected error causing an unhandled exception, or if the script termi-
nates due to a hook alarm, the job terminates, and all job changes, vnode changes, requests for host reboot or scheduler
cycle restarts, do not take effect. In addition, one of the following messages appear in the MoM logs at event class
PBSEVENT_DEBUG2:

"execjob_end hook <hook_name> encountered an exception, request rejected"

"alarm call while running execjob_end hook '<hook_name>', request rejected"
PBS Professional 2022.1 Hooks Guide HG-113

Chapter 6 Hook Objects and Methods
6.3.1.25 exechost_startup: Event When Execution Host Starts Up

6.3.1.25.i Event when Execution Host Starts or Receives HUP

When an execution host starts up or receives a HUP, an exechost_startup hook can:

• Create vnodes on local host

• Create custom resources for vnodes

• Offline vnodes that are not ready for use

• Return vnodes to use that have been previously offlined

• Modify the attributes and resources of the vnodes managed by the local MoM

6.3.1.25.ii The exechost_startup Hook Interface

This event type is pbs.HOOK_EVENT_EXECHOST_STARTUP.

The exechost_startup hook runs on a MoM host every time its MoM starts up, or when a Linux pbs_mom receives a
SIGHUP signal. This hook executes after MoM loads pbs.conf values, reads mom_priv/config values, and runs plat-
form-specific initializations, for example cpuset initialization, including topology data gathering. If there are Version 2
configuration files, this hook sets vnode definitions from those Version 2 configuration files.

The exechost_startup hook runs independently of jobs; it depends only on MoM startup and HUP.

A pbs.HOOK_EVENT_EXECHOST_STARTUP event has the following member, in addition to those listed in section
6.3.2, “Event Object Members”, on page 116:

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are managed by the
MoM where the hook runs. See section 6.3.2.24, “The Vnode List Event Member”, on page 123 for information
about using pbs.event().vnode_list[].

A pbs.HOOK_EVENT_EXECHOST_STARTUP event has the methods listed in section 6.15.2, “Methods Available in
Events”, on page 165.

On a call to pbs.event().accept() or pbs.event().reject(), vnode changes take effect, and MoM continues to run.

A call to pbs.event().reject(<message>) causes the following messages to appear in the MoM log:

"exechost_startup" request rejected by hook <hook_name>"

<message>

If the exechost_startup hook script encounters an unexpected error causing an unhandled exception:

• Vnode changes do not take effect

• MoM continues to run

• The following message appears at PBSEVENT_DEBUG2 in mom_logs:
"exechost_startup hook <hook_name> encountered an exception, request rejected"

If the exechost_startup hook script terminates due to a hook alarm, vnode changes do not take effect, MoM continues
to run, and the following message appears at PBSEVENT_DEBUG2 in mom_logs:

"alarm call while running exechost_startup hook '<hook_name>', request rejected'
HG-114 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.1.25.iii Advice on Using exechost_startup Hooks

• We recommend that your hook does not make changes unless the hook accepts its event. You do not want to have to
back changes out upon a reject().

• For exceptions, we recommend that you catch them via try... except and accompany them with a call to
pbs.event().reject().

• We recommend that before calling pbs.event().reject(), you set the vnodes managed by the local MoM offline with
an accompanying comment. This stops jobs from being sent to the affected vnodes. For example:
vnlist = pbs.event().vnode_list

for v in vnlist.keys():

vnlist[v].state = pbs.ND_OFFLINE

vnlist[v].comment = "bad configuration"

pbs.event().reject("not accepting jobs")

6.3.1.26 exechost_periodic: Periodic Events on All Execution Hosts

6.3.1.26.i Periodic Events at Execution Hosts

Periodically, at each execution host, an exechost_periodic hook can:

• Set attributes and resources for any vnode managed by the MoM on the host where the hook runs. This means that
an instance of a hook can affect more than one vnode only when the hook is running on a multi-vnode host.

• Set attributes or resources for each job managed by the local MoM.

6.3.1.26.ii The exechost_periodic Hook Interface

This event type is pbs.HOOK_EVENT_EXECHOST_PERIODIC.

The exechost_periodic hook runs periodically on all the MoM hosts in the complex.

The interval between calls to exechost_periodic hooks is specified in the freq hook attribute. See section 5.1.13, “Set-
ting Hook Interval (Frequency)”, on page 40.

A pbs.HOOK_EVENT_EXECHOST_PERIODIC event has the following members, in addition to those listed in sec-
tion 6.3.2, “Event Object Members”, on page 116:

pbs.event().vnode_list[]
This is a dictionary of pbs.vnode objects, keyed by vnode name, listing the vnodes that are managed by the
MoM where the hook runs. See section 6.3.2.24, “The Vnode List Event Member”, on page 123 for information
about using pbs.event().vnode_list[].

pbs.event().job_list[]
List of the pbs.job objects managed by the local MoM. This hook can set the attributes and resources for these
jobs. See section 6.3.2.11, “Job List Event Member”, on page 120.

A pbs.HOOK_EVENT_EXECHOST_PERIODIC event has the methods listed in section 6.15.2, “Methods Available
in Events”, on page 165.

A call to pbs.event().accept() or pbs.event().reject(<message>) causes any changes made to vnodes to take effect.

A call to pbs.event().reject(<message>) causes the following messages to appear in the MoM log:

"exechost_periodic" request rejected by hook <hook_name>"

<message>

The periodic hook continues to be periodically called whether or not there are errors in hook script execution or a call to
the pbs.event().reject() action. To stop the hook from being called, either disable it or delete it:

#qmgr -c "s h <periodic hook> enabled=f"

#qmgr -c "d h <periodic hook>"
PBS Professional 2022.1 Hooks Guide HG-115

Chapter 6 Hook Objects and Methods
If the exechost_periodic hook script encounters an unexpected error causing an unhandled exception, or if the script ter-
minates due to a hook alarm, all vnode changes, requests for host reboot or scheduler cycle restarts, do not take effect. In
addition, one of the following messages appears in the MoM log at event class PBSEVENT_DEBUG2:

"exechost_periodic hook <hook_name> encountered an exception, request rejected"

"alarm call while running exechost_periodic hook '<hook_name>', request rejected"

6.3.1.26.iii Caveats for exechost_periodic Event Hooks

The order attribute is ignored for exechost_periodic hooks. It does not guarantee the execution order of a list of peri-
odic hooks.

6.3.1.27 provision: Hook for Provisioning Vnodes

When a job requests provisioning of a vnode, a provision hook can cause a new AOE to be instantiated on the vnode.
The provisioning hook reads the name of the vnode to be provisioned and the AOE to be instantiated, and runs a provi-
sioning script.

See "Provisioning" on page 591 in the PBS Professional Administrator’s Guide.

6.3.2 Event Object Members

Some event object members are hook attributes, and some exist as part of the event object but are not hook attributes.
The following tables summarize the members for event objects, and show which event objects have access to each mem-
ber, and whether the event hook can read and set the member. An "r" indicates read, an "s" indicates set, and an "o" indi-
cates that this member can be set but the action has no effect. See Table 4-1, “Execution Event Hook Timing,” on
page 20 for more information about why some operations have no effect.

Table 6-26: Using Event Object Members in Job Events

Event Object Member

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d
pbs.event().alarm --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().argv[] --- --- --- --- --- --- --- --- --- --- r, s --- --- --- --- --- ---
pbs.event().debug --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().enabled --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().env --- --- --- --- --- --- --- --- --- --- r, s --- --- --- --- --- ---
pbs.event().fail_action --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().freq --- --- r, s --- --- --- r, s --- --- --- --- --- --- --- --- --- ---
pbs.event().hook_name r r r r r r r r r r r r r r r r r
pbs.event().hook_type r r r r r r r r r r r r r r r r r
pbs.event().job --- r, s r, s r, s r, s r, s r, s r, s r, s r, s r r r r r, s r, s r, s
pbs.event().job_list (jobs) --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().job_o --- --- --- --- r --- --- --- --- --- --- --- --- --- --- --- ---
pbs.management --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().order --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().pid --- --- --- --- --- --- --- --- --- --- --- r --- --- --- --- ---
HG-116 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6

pbs.event().progname --- --- --- --- --- --- --- --- --- --- r, s --- --- --- --- --- ---
pbs.event().requestor r r r r r r r r r r r r r r r r r
pbs.event().requestor_host r r r r r r r r r r r r r r r r r
pbs.event().resv --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().resv_o --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().src_queue --- --- --- r --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().type r r r r r r r r r r r r r r r r r
pbs.event().user --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().vnode --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
pbs.event().vnode_list[] --- --- --- --- --- --- --- --- r, s r, s r, s r r, s r, s r, s r, s r, s
pbs.event().vnode_list_fail[] --- --- --- --- --- --- --- --- --- r r --- --- --- --- --- ---
pbs.event().vnode_o --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

Table 6-27: Using Event Object Members in Reservation and Other Non-job Events

Event Object Member

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

pbs.event().alarm --- --- --- --- --- --- --- --- --- ---
pbs.event().argv[] --- --- --- --- --- --- --- --- --- ---
pbs.event().debug --- --- --- --- --- --- --- --- --- ---
pbs.event().enabled --- --- --- --- --- --- --- --- --- ---
pbs.event().env --- --- --- --- --- --- --- --- --- ---
pbs.event().fail_action --- --- --- --- --- --- --- --- --- ---
pbs.event().freq --- --- --- --- --- --- --- --- --- ---
pbs.event().hook_name r r r r r --- --- r r r
pbs.event().hook_type r r r r r --- --- r r r
pbs.event().job --- --- --- --- --- --- --- --- --- ---
pbs.event().job_list (jobs) --- --- --- --- --- --- --- --- r, s ---
pbs.event().job_o --- --- --- --- --- --- --- --- --- ---
pbs.management --- --- --- --- --- --- --- --- --- ---
pbs.event().order --- --- --- --- --- --- --- --- --- ---
pbs.event().pid --- --- --- --- --- --- --- --- --- ---
pbs.event().progname --- --- --- --- --- --- --- --- --- ---
pbs.event().requestor r r r r r --- --- --- r r
pbs.event().requestor_host r r r r r --- --- --- r r

Table 6-26: Using Event Object Members in Job Events

Event Object Member

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

PBS Professional 2022.1 Hooks Guide HG-117

Chapter 6 Hook Objects and Methods
An event object (an object returned by pbs.event()) has one or more of the following members:

6.3.2.1 Hook Alarm Event Member

pbs.event().alarm

Hook attribute. Number of seconds to allow a hook to run before the hook times out. Must be greater than zero. See
“alarm” on page 349 of the PBS Professional Reference Guide.

Type: Integer

6.3.2.2 Job Program Arguments Event Member

pbs.event().argv[]

The list of arguments to be passed to the job script. The arguments can be modified in an execjob_launch hook.

Type: Python list of strings

To add another argument to the argument list, append it:

pbs.event().argv.append(<new_argument>)

To clear out existing argv[] entries and supply a new set of arguments, use the following:

pbs.event().argv = [] (sets argv[] to empty list)
pbs.event().argv.append(<arg0>)

pbs.event().argv.append(<arg1>)

…

pbs.event().argv.append(<argN>)

pbs.event().resv table
5-10

table
5-10

table
5-10

table
5-10

table
5-10

--- --- --- --- ---

pbs.event().resv_o --- --- table
5-10

--- --- --- --- --- --- ---

pbs.event().src_queue --- --- --- --- --- --- --- --- --- ---
pbs.event().type r r r r r --- --- --- r r
pbs.event().user --- --- --- --- --- --- --- --- --- ---
pbs.event().vnode --- --- --- --- --- --- --- r --- ---
pbs.event().vnode_list[] --- --- --- --- --- --- --- --- r, s r, s
pbs.event().vnode_list_fail[] --- --- --- --- --- --- --- --- --- ---
pbs.event().vnode_o --- --- --- --- --- --- --- r --- ---

Table 6-27: Using Event Object Members in Reservation and Other Non-job Events

Event Object Member

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

HG-118 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
On Windows, where backslashes may appear in pathnames, escape each backslash with another backslash, or use the raw
(’r’) operator to form the string. Both of the following work:

e = pbs.event()

e.progname = "C:\\Program Files\\PBS Pro\\exec\\bin\\pbsnodes.exe"

e.progname = r"C:\Program Files\PBS Pro\exec\bin\pbsnodes.exe"

See section 6.3.3, “Event Object Member Caveats”, on page 125.

To log the arguments to the program, and update some of them:

for a in pbs.event().argv:

pbs.logmsg(pbs.LOG_DEBUG, "a=%s" % (a,))

argv = pbs.event().argv

argv[1] = "beta"

argv[3] = "gamma"

6.3.2.3 Hook Debug Behavior Indicator Event Member

pbs.event().debug

Hook attribute. Specifies whether or not the hook produces debugging files under
PBS_HOME/server_priv/hooks/tmp or PBS_HOME/mom_priv/hooks/tmp. Files are named hook_<hook
event>_<hook name>_<unique ID>.in, .data, and .out. See "Producing Files for Debugging" on page 183 in the PBS
Professional Hooks Guide, and “debug” on page 349 of the PBS Professional Reference Guide.

Type: Boolean

6.3.2.4 Hook Enable or Disable Event Member

pbs.event().enabled

Hook attribute. Specifies whether or not the hook is enabled. See “enabled” on page 349 of the PBS Professional Ref-
erence Guide.

Type: Boolean

6.3.2.5 Job Environment Event Member

pbs.event().env

The job's environment. Can be modified in an execjob_launch hook.

Type: dictionary of environment "<variable>=<value>" entries, with <variable> serving as the dictionary key.

To modify a particular environment entry:

pbs.event().env[<variable>] = <value>

To add more entries to the env[] dictionary:

pbs.event().env[<new_var>] = <value>

To clear out existing env[] entries and specify a new environment:

pbs.event().env = pbs.pbs_env()

pbs.event().env[<var1>] = <value1>

pbs.event().env[<var2>] = <value2>

…

pbs.event[<varN>.] = <valueN>
PBS Professional 2022.1 Hooks Guide HG-119

Chapter 6 Hook Objects and Methods
To unset an existing environment variable:

pbs.event().env[<var>] = None

To embed a comma in an environment variable, escape the value with single quotes:

pbs.event().env[<var>] = '"<value>"'

On Windows, where backslashes appear in pathnames, either escape the backslash with another backslash, or use the raw
(’r’) operator to form the string. Both of the following examples will work:

e = pbs.event()

e.progname = "C:\\Program Files\\PBS Pro\\exec\\bin\\pbsnodes.exe"

e.progname = r"C:\Program Files\PBS Pro\exec\bin\pbsnodes.exe"

See section 6.3.3, “Event Object Member Caveats”, on page 125.

Example 6-2: To log the contents of a job's environment variables:

for v in pbs.event().env.keys():

e = pbs.event().env[v]

pbs.logmsg(pbs.LOG_DEBUG, "env[%s]=%s" % (v,e))

6.3.2.6 Failure Action Event Member

pbs.event().fail_action

Hook attribute. Action to take on hook failure or on subsequent successful execution. See “fail_action” on page 351 of
the PBS Professional Reference Guide.

6.3.2.7 Frequency Event Member

pbs.event().freq

Hook attribute. Frequency at which to run hook. See “freq” on page 351 of the PBS Professional Reference Guide.

6.3.2.8 Hook Name Event Member

pbs.event().hook_name

Name of the hook being executed.

Type: str

6.3.2.9 Hook Type Event Member

pbs.event().hook_type

The type of the hook. The only valid value is "site". Represents the Type hook attribute.

Type: str

6.3.2.10 Job Event Member

pbs.event().job

The job that triggered the event. A pbs.job object. See section 6.6, “Job Objects”, on page 132.

6.3.2.11 Job List Event Member

pbs.event().job_list

The list of jobs managed by the local MoM. Each job is a pbs.job, described in section 6.6, “Job Objects”, on page 132.
HG-120 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
For a list of settable job attributes, see section 5.2.4.15, “Tables: Reading & Setting Job Attributes in Hooks”, on page 56.

For a list of settable job resources, see section 5.2.4.18, “Tables: Reading & Setting Built-in Job Resources in Hooks”, on
page 64.

Type: dictionary of pbs.job objects

To print the jobs in the list:

for k in pbs.event().job_list.keys():

print pbs.event().job_list[k]

To set a job attribute or resource for all jobs in the list:

for k in pbs.event().job_list.keys():

pbs.event().job_list[k].<attribute> = <value>

In an exechost_periodic hook, attributes are set after the hook ends in a call to pbs.event().accept() or
pbs.event().reject(), but not when the hook encounters an uncaught exception or hits an alarm call.

In an exechost_periodic hook, you can flag a job to be requeued using rerun() or deleted using delete() when the
server is notified that the job has terminated.

Example 6-3: Rerun all jobs in this MoM's job list:

% cat period.py

import pbs

for k in pbs.event().job_list.keys():

pbs.event().job_list[k].rerun()

6.3.2.12 Original Job Event Member

pbs.event().job_o

This is a pbs.job object representing the original job, before the job was modified via qalter. All resources and
attributes are populated.

See section 6.6, “Job Objects”, on page 132.

6.3.2.13 Order Event Member

pbs.event().order

Hook attribute. Order in which to run hook. See “order” on page 351 of the PBS Professional Reference Guide.

6.3.2.14 Process ID Event Member

pbs.event().pid

The process ID of a task belonging to a job.

Type: int

6.3.2.15 Job Executable Event Member

pbs.event().progname

The path to the job shell or executable. This is settable in an execjob_launch hook as follows:

pbs.event().progname = "<path_to_the_script>"

When setting the value, specify the full path. Otherwise, the path may not be found, and the shell or executable may not
run.
PBS Professional 2022.1 Hooks Guide HG-121

Chapter 6 Hook Objects and Methods
Type: str

6.3.2.16 Requestor Event Member

pbs.event().requestor

The requestor of the event.

PBS daemons can request actions. If a daemon requests an action, the requestor member contains one of
"PBS_Server", "Scheduler", or "pbs_mom". If the requestor is root, the member contains "root".

For Windows systems, if the requestor is the administrator, the member contains the account name of the administrator.

Type: str

6.3.2.17 Requestor Host Event Member

pbs.event().requestor_host

The name of the host from which the event was requested.

Type: str

6.3.2.18 Reservation Event Member

pbs.event().resv

A reservation object being requested in a reservation event. For a modifyresv event, this object contains not the reserva-
tion, but a list of requested changes. See section 6.9, “Reservation Objects”, on page 144.

6.3.2.19 Reservation, Before Changes, Event Member

pbs.event().resv_o

A reservation object that represents the reservation being requested in a reservation event, before changes. See section
6.9, “Reservation Objects”, on page 144.

6.3.2.20 Source Queue Event Member

pbs.event().src_queue

The pbs.queue object representing the original queue where pbs.event().job came from.

See section 6.5, “Queue Objects”, on page 131.

6.3.2.21 Event Type Event Member

pbs.event().type

Hook attribute. The event type, for example, queuejob or movejob. Valid values: one of the PBS event type constants
listed in section 6.3.1, “Event Types”, on page 87. See “type” on page 351 of the PBS Professional Reference Guide.

Type: A PBS event type constant, such as pbs.HOOK_EVENT_QUEUEJOB, pbs.HOOK_EVENT_RESVSUB

6.3.2.22 Event User Event Member

pbs.event().user

Hook attribute. The username under which the hook executes. See “user” on page 351 of the PBS Professional Refer-
ence Guide.

Valid values: pbsadmin, pbsuser.
HG-122 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbsadmin
On Linux, this is root. On Windows, this is simply a substitute for the PBS service account; it is not the name of
the PBS service account.

pbsuser
The hook runs under the account of the job owner, which is the value of the euser job attribute. Can be used for
execjob_prologue, execjob_epilogue, execjob_preterm events only.

Default value: pbsadmin

Type: String, str

6.3.2.23 The Current and Original Vnode Event Members

pbs.event().vnode

pbs.event().vnode_o

The modifyvnode event hook has read-only access to the pbs.event().vnode object, which represents the vnode after a
state change has occurred, and the pbs.event().vnode_o object, which represents the vnode before the state change
occurred.

6.3.2.24 The Vnode List Event Member

pbs.event().vnode_list[]

Execution event hooks have access to the list of vnodes assigned to the job. Periodic event hooks have access to the list
of vnodes managed by the local MoM. The exechost_startup and execjob_launch hooks can create and modify the
vnodes managed by the local MoM.

When a vnode is in such a list, the hook has access to the attributes and resources of that vnode.

We list which hooks can operate on vnode_list[] in Table 6-26, “Using Event Object Members in Job Events,” on
page 116 and Table 6-27, “Using Event Object Members in Reservation and Other Non-job Events,” on page 117.

We list which hooks can read and/or set each vnode attribute in Table 5-8, “Vnode Attributes Readable & Settable via Job
Events,” on page 61 and Table 5-9, “Vnode Attributes Readable & Settable via Reservation & Other Non-job Events,” on
page 62.

We list which hooks can read and/or set each vnode resource in Table 5-13, “Vnode Resources Readable & Settable by
Hooks via Job Events,” on page 66 and Table 5-14, “Vnode Resources Readable & Settable by Hooks via Reservation &
Other Non-job Events,” on page 67.

When this list is retrieved through an execution event, it is associated with a job, and only vnodes assigned to the job
have attributes, resources_available, resources_assigned.ncpus, and resources_assigned.mem filled in; on other
vnodes, only pbs.vnode().name is available. See section 6.10, “Vnode Objects”, on page 146.

You can use an exechost_startup or execjob_launch hook to create vnodes on the host where the hook runs:

pbs.event().vnode_list[<new vnode>] = pbs.vnode(<new vnode name>)

If you want to use an execjob_* hook to manipulate a vnode that is not assigned to the job, but is still managed by the
hook's MoM, you must first instantiate the object for that vnode with the name of the new vnode:

pbs.event().vnode_list[<new vnode>] = pbs.vnode(<new vnode name>)
PBS Professional 2022.1 Hooks Guide HG-123

Chapter 6 Hook Objects and Methods
Once you have instantiated your new vnode (which must still be managed by your hook's MoM), you can operate on it as
shown here:

• To list all vnodes:
for v in pbs.event().vnode_list.keys():

pbs.logmsg(pbs.LOG_DEBUG, "found vnode %s" % (pbs.event().vnode_list[v].name))

• To get the parent vnode managed by the local MoM, use the pbs.get_local_nodename() function to return the local
parent vnode name where this hook is executing, and then use pbs.event().vnode_list[<local parent vnode
name>].
local_node = pbs.get_local_nodename()

If the parent vnode name used on the server when adding this host to the complex is different from that returned by
gethostname() on the host, use PBS_MOM_NODE_NAME in the hosts's /etc/pbs.conf file to make the par-
ent node name consistent with the one used by the server.

• To find the other vnodes managed by the hook's MoM:

a. Query the server for its list of vnodes:

pbs.server().vnodes()

b. Look in the Mom attribute in the resulting list of vnodes for a match to the output of:

pbs.get_local_nodename()

• Setting and unsetting attributes and resources:

To set the attributes and resources for a particular vnode:

pbs.event().vnode_list[<vnode name>].<attribute> = <value>
pbs.event().vnode_list[<vnode name>].<resources_available>["<resource name>"] = <value>

You can unset a resource value by specifying "None" as its value:

pbs.event().vnode_list[<vnode_name>].resources_available["<resource name>"] = None

Resource names and string values must be quoted.

For details and examples, see section 5.2.4.11, “Setting and Unsetting Vnode Resources and Attributes”, on page 49.

• You can add new custom host-level, non-consumable resources and their values to resources_available for a
vnode:

vnode_list[<vnode name>].resources_available[<new resource>] = <value>

For details and examples, see section 5.2.7, “Adding Custom Host-level Resources”, on page 69.

You cannot modify a vnode that is managed by a different MoM from where the hook is running. If you try to do this, the
following error message appears in the server's log at log event class PBSEVENT_DEBUG2:

"<node_host_name>; Not allowed to update <vnode name>, as it is owned by a different mom"

A hook that runs as "pbsuser" (execjob_prologue, execjob_epilogue, execjob_preterm) is not allowed to manipulate
pbs.event().vnode_list[], unless the executing user is a PBS Manager or Operator. If a hook running as an unprivileged
user tries to change pbs.event().vnode_list[], the following error message appears in the server's log at log event class
PBSEVENT_DEBUG2:

"<node_host_name>; Not allowed to update vnodes or to request scheduler restart cycle, if run as
a non-manager/operator user"
HG-124 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.2.25 The Failed Vnode List Event Member

pbs.event().vnode_list_fail[]

For each execjob_prologue and execjob_launch event, PBS records the list of vnodes, with their assigned resources,
that are marked as bad by MoM. This list can include those vnodes from sister MoMs that failed to join the job, that
rejected an execjob_begin hook or execjob_prologue hook request, or that encountered a communication error while
the primary MoM was polling the sister MoM host. PBS records this list in the pbs.event().vnode_list_fail[] hook
parameter. For how vnodes are marked as failed, see “Checking Vnodes and Marking Them as Failed” on page 406 of
the PBS Professional Administrator’s Guide.

Type: dict (dictionary of pbs.vnode objects keyed by vnode name)

6.3.3 Event Object Member Caveats

6.3.3.1 Modifying progname or argv[] Under Windows

On Windows, in a multi-vnoded job, be careful modifying pbs.event().progname and pbs.event().argv[] parameters;
some values are tacked on by pbs_mom and are required. For example, if a multi-vnode job has in its script:

pbsdsh -n 1 cmd.exe /C echo hi

This causes an installed execjob_launch hook to execute on the sister MoM specified at node index '1'. The
execjob_launch hook sees:

pbs.event().progname=cmd.exe

pbs.event().argv[0]=cmd.exe

pbs.event().argv[1]=/c

pbs.event().argv[2]=C:/PROGRA~1/PBSPRO~1/exec/sbin/mom_open_demux.exe

pbs.event().argv[3]=174.host1

pbs.event().argv[5]=cmd.exe

pbs.event().argv[6]=/C

pbs.event().argv[7]=echo

pbs.event().argv[8]=hi

It is important not to modify pbs.event().progname and pbs.event().argv[0],...,pbs.event().argv[3]. These are auto-
matically added by pbs_mom for execution and collecting output.

You can modify pbs.event().argv[] values starting at index 5, and you can use pbs.event().argv.extend() to add more
arguments. Here we modify values for indices 5 through 8, and add pbs.event().argv[9], making it "hello":

pbs.event().argv[5] = "pbsnodes.exe"

pbs.event().argv[6] = "-a"

pbs.event().argv[7] = ""

pbs.event().argv[8] = ""

pbs.event().argv.extend(["hello"])

6.3.4 Event-only Methods

6.3.4.1 Event Method for Accepting Event

pbs.event().accept()

Terminates hook execution and causes PBS to perform the associated action.
PBS Professional 2022.1 Hooks Guide HG-125

Chapter 6 Hook Objects and Methods
6.3.4.2 Event Method for Rejecting Event

pbs.event().reject()

pbs.event().reject(["<error message>"][,<error code>])

Terminates hook execution and instructs PBS to not perform the associated action. If the <message> argument is given,
it is shown in the appropriate PBS daemon log, and in the stderr of the PBS command that caused this event to take
place.

By default, pbs.event().reject() returns 255. To return an error code other than 255, specify a value between 2 and 255
in the optional <error code>.

6.3.5 Event Object Method Caveats

pbs.event().accept() terminates hook execution by throwing a SystemExit exception. So if hook content appears in a
try…except clause that has no arguments to the except clause, always add the following to treat SystemExit as a normal
occurrence:

except SystemExit:

pass

See section 5.3.7.1, “Treat SystemExit as a Normal Occurrence”, on page 76.
HG-126 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.3.6 Examples of Using Event Objects

Example 6-4: Inside a hook script, create a PBS event object:

e = pbs.event()

Example 6-5: Get the event type:

type = e.type

Example 6-6: Get the user who requested the event action:

who = e.requestor

Example 6-7: Get the host where the request came from:

host = e.requestor_host

Example 6-8: The event type is pbs.HOOK_EVENT_QUEUEJOB. Get the number of CPUs requested for the job
being queued:

j = e.job

res = j.Resource_List["ncpus"]

Example 6-9: Reset the number of CPUs requested by the job:

j.Resource_List["ncpus"] = 1

Example 6-10: The event type is pbs.HOOK_EVENT_MOVEJOB. Get the request parameters:

j = e.job

q = j.queue

Example 6-11: Accept an event request:

e.accept()

Example 6-12: Reject an event request:

e.reject("Can't set interactive attribute")

Example 6-13: Put a job into a wait state and requeue the job in 3600 seconds (1 hour):

import time

...

j.Execution_Time = time.time() + 3600

Example 6-14: Put a hold on a job:

j = pbs.event().job

j.Hold_Types = pbs.hold_types("u")

j.Hold_Types = pbs.hold_types("uo")

j.Hold_Types += pbs.hold_types("s")

or

j.Hold_Types = pbs.hold_types("<hold_list>")

Example 6-15: Release a hold on a job:

j.Hold_Types -= pbs.hold_types("un")

j.Hold_Types -= pbs.hold_types("sp")

j.Hold_Types -= pbs.hold_types("o")

or

j.Hold_Types -= pbs.hold_types("<hold_list>")
PBS Professional 2022.1 Hooks Guide HG-127

Chapter 6 Hook Objects and Methods
6.4 Server Objects

pbs.server

This object represents a PBS server. This object can either represent the local server, or be just a coding construct, not
representing an actual server. If it represents the local server, you can read but cannot set its attributes. If it is just a cod-
ing construct that does not represent an actual server, you can set its attributes. You cannot alter the PBS server. If this
server object represents the PBS server, it is the server at which the triggering event is taking place, and at which the
hook is executing. The only PBS server available to hooks is the local server.

s = pbs.server(["<name>"])

Creates an instance of a PBS server object. If <name> is not specified, the object represents the default server.

You can use pbs.server() to retrieve server, queue, job, vnode, and reservation information, and pass it to a hook script.
You cannot set attributes or resources for objects that are retrieved through the server via pbs.server().

6.4.1 Server Object Members

Some server object members are server attributes, and some are not. A pbs.server has the following members:

6.4.1.1 Server Name Member

pbs.server().name

The server hostname.

Example: myhost.mydomain.com

This member is read-only.

Python type: str

6.4.1.2 Server Attribute Members

pbs.server().<attribute name>

The PBS server attribute named <attribute name>. The pbs.server object has a member to represent each server
attribute, spelled exactly like the attribute. For information about using attributes, see section 5.2.4, “Using Attributes
and Resources in Hooks”, on page 45.

Server attributes are listed in “Server Attributes” on page 281 of the PBS Professional Reference Guide. Attribute cre-
ation methods are described in section 6.15.3, “PBS Types and Their Methods”, on page 168.

6.4.1.2.i Server State Attribute Member

pbs.server().server_state

The server_state server attribute. It can take one of the following values, represented by constant objects:

Table 6-28: Server State Constant Objects

Object State

pbs.SV_STATE_IDLE Idle

pbs.SV_STATE_ACTIVE Scheduling

pbs.SV_STATE_HOT Hot_Start
HG-128 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.4.2 Setting Server Object Members

If the server object does not represent the PBS server, you can set, but not unset, server object members. If a server
object does represent the PBS server, you cannot set values for object members. To set the value for the server attribute
named <attribute name> to <attribute value>, where s is an instance of pbs.server:

s.<attribute name> = <attribute value>

6.4.3 Examples of Using Server Object Members

s = pbs.server()

Example 6-16: Get server name:

name = s.name

Example 6-17: Get the value of the server attribute pbs_license_min:

min = s.pbs_license_min

6.4.4 Server Object Methods

6.4.4.1 Method to Return Job

pbs.server().job(’<job ID>’)

Returns a pbs.job object for the job with ID <id>, residing on the local server. Returns None if the job with ID <id> does
not exist at the server. See section 6.6, “Job Objects”, on page 132.

6.4.4.2 Method to Return Job Iterator

pbs.server().jobs()

Returns a Python iterator that iterates over a list of pbs.job objects residing on the local server. Returns an empty iterator
if no jobs exist on the local server. See section 6.6, “Job Objects”, on page 132.

Example:

for j in s.jobs():

 pbs.logmsg(pbs.LOG_DEBUG, "found job %s" % (j.id))

6.4.4.3 Method to Return Queue

pbs.server().queue("<queue_name>")

Returns a pbs.queue object representing the queue named <queue name> that is managed by the local server. See
section 6.5, “Queue Objects”, on page 131.

A value of None is returned if the queue named <queue_name> does not exist at the local server.

pbs.SV_STATE_SHUTDEL Terminating, Delayed

pbs.SV_STATE_SHUTIMM Terminating

pbs.SV_STATE_SHUTSIG Terminating

Table 6-28: Server State Constant Objects

Object State
PBS Professional 2022.1 Hooks Guide HG-129

Chapter 6 Hook Objects and Methods
6.4.4.4 Method to Return Queue Iterator

pbs.server().queues()

Returns a Python iterator that iterates over a list of queue objects managed by the the local server. Returns an empty iter-
ator if no queues exist at the local server. See section 6.5, “Queue Objects”, on page 131.

6.4.4.5 Method to Return Reservation

pbs.server().resv("<reservation ID>")

Returns a pbs.resv object for <reservation ID> on the local server. Returns None if <reservation ID> does not exist.
See section 6.9, “Reservation Objects”, on page 144.

6.4.4.6 Method to Return Reservation Iterator

pbs.server().resvs()

Returns a Python iterator that iterates over a list of pbs.resv objects residing on the local server. Returns an empty itera-
tor if no reservations exist at the local server. See section 6.9, “Reservation Objects”, on page 144.

6.4.4.7 Method to Restart Scheduler Cycle

pbs.server().scheduler_restart_cycle()

This directs the current PBS server to tell the scheduler to restart its scheduling cycle.

A hook with its user attribute set to pbsuser cannot successfully invoke pbs.scheduler_restart_cycle(), unless the
hook's executing user is a PBS Manager or Operator. If this is attempted, the scheduler is not restarted, and the following
message appears at log event class PBSEVENT_DEBUG2 in the MoM logs:

"<node_host_name>;Not allowed to update vnodes or to request scheduler_restart_cycle, if run as a
non-manager/operator user"

6.4.4.8 Method to Return Named Vnode

pbs.server().vnode("<vnode name>")

Returns a pbs.vnode object representing the vnode with name <vnode name> that is managed by the current server.

Returns None if <vnode name> does not exist.

6.4.4.9 Method to Return Vnode List

pbs.server().vnodes()

Returns a list of pbs.vnode objects managed by current server.

Returns an empty iterator if no vnodes exist at the local server.

Example:

for vn in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "found vn %s" % (vn.name))
HG-130 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.5 Queue Objects

pbs.queue

A pbs.queue object represents a PBS queue. This object can either represent an actual PBS queue, or be just a coding
construct, not representing an actual queue. If it is just a coding construct, you can set its attributes. If it represents an
actual queue, you can read but cannot set its attributes. You cannot set the attributes of any actual queue in any
hook.

To get information about a particular queue with name <name>, you must go through the associated server. Use:

q = pbs.server().queue("<name>")

To get a list of queues from the server:

pbs.server().queues()

6.5.1 Queue Object Members

Some queue object members are queue attributes, and some are not.

6.5.1.1 Queue Object Name Member

queue.name

A queue.name is the name of that queue.

This member is read-only.

Python type: str

6.5.1.2 Queue Object Attribute Members

A pbs.queue has a member representing each of its attributes. Each member that is not a string, int, bool, long, or float
has a corresponding creation method; see section 6.15.3, “PBS Types and Their Methods”, on page 168. See section
5.2.4, “Using Attributes and Resources in Hooks”, on page 45.

queue.<attribute name>

The queue attribute named <attribute name>. Queue attributes are listed in “Queue Attributes” on page 311 of the PBS
Professional Reference Guide.

Example 6-18: Get the queue object representing the queue workq, and its Priority value:

q = s.queue("workq")

prio = q.Priority

6.5.1.3 Setting Queue Object Attributes

You can set or unset queue object attributes for queue objects that don't represent an actual queue. To set the value of a
queue object attribute named <attribute name>:

pbs.queue.<attribute name> = <attribute value>

You cannot set or unset attributes for an actual queue.
PBS Professional 2022.1 Hooks Guide HG-131

Chapter 6 Hook Objects and Methods
6.5.2 Queue Object Methods

6.5.2.1 Method to Return Job

queue.job()

pbs.queue.job("<job ID>")

Returns a pbs.job object representing PBS job with ID <job ID>. This job must be residing on the queue. Returns None
if the job with the specified job ID does not exist, or if the job is not in the queue. See section 6.6, “Job Objects”, on page
132.

6.5.2.2 Method to Return Job Iterator

queue.jobs()

Returns a Python iterator that iterates over a list of pbs.job objects representing the jobs on the queue. Returns an empty
iterator if no jobs exist on the queue. See section 6.6, “Job Objects”, on page 132.

Example:

for j in pbs.server().queue("workq").jobs():

pbs.logmsg(pbs.LOG_DEBUG, "found job %s" % (j.id))

6.5.3 Queue Type Constant Objects

Queue types are represented by constant objects. The pbs.queue.queue_type member represents the type of the
queue. It can take on the following values:

6.6 Job Objects

pbs.job

A pbs.job object represents a PBS job.

You can retrieve the job object either through an associated event or through the server. The job object represents one of
the following, depending on how it is retrieved:

• The PBS job associated with the event that triggers the hook. To get the job associated with the current event, go
through the event that triggered the hook:

pbs.event().job

A call to pbs.event().job can return only the job associated with the current event.

When you get a job using pbs.event().job, the hook can read and set the job attributes and resources listed in
Table 5-6, “Job Attributes Readable & Settable via Job Events,” on page 56 and Table 5-11, “Built-in Job Resources
Readable & Settable by Hooks via Job Events,” on page 64.

• A job at the server at which the hook is executing. To get a particular job with ID <id>, go through the server:

Table 6-29: Queue Type Constant Objects

Object Queue Type

pbs.QTYPE_EXECUTION Execution

pbs.QTYPE_ROUTE Route
HG-132 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbs.server().job("<job ID>")

When you get a job using pbs.server().job("<job ID>"), the hook can read all job attributes and resources, but can set
none.

• To get a list of jobs at the server:

pbs.server().jobs()

For information about a list of jobs visible through events, see section 6.3.2.11, “Job List Event Member”, on page 120
and section 6-26, “Using Event Object Members in Job Events”, on page 116 for the events that can use this list.

All job objects have the same members and methods. Each hook can read or set different attributes and resources. We
describe what each type of hook can do in section 6.3, “Events”, on page 86.

If you use a hook to make a change to a job, that change is visible to all PBS daemons.

6.6.1 Job Object Members

6.6.1.1 Job ID Member

job.id

The PBS job ID.

Read-only.

Python type: str

6.6.1.2 Job Attribute Members

A pbs.job object has a member to represent each job attribute. Each one is spelled exactly like the corresponding
attribute. We list job object members here that require creation methods, require special treatment, or that are not job
attributes. All job attribute members that are not listed here are defined this way:

job.<attribute name>

The type of the attribute is given in the attribute description, in “Job Attributes” on page 327 of the PBS Professional
Reference Guide.

For information about using job attributes in hooks, see section 5.2.4, “Using Attributes and Resources in Hooks”, on
page 45.

We list the job resources that can be read and set via an event in each kind of hook in Table 5-11, “Built-in Job Resources
Readable & Settable by Hooks via Job Events,” on page 64 and Table 5-12, “Built-in Job Resources Readable & Settable
by Hooks via Reservation & Other Non-job Events,” on page 65.

We list the vnode resources that can be read and set via an event in each kind of hook in Table 5-13, “Vnode Resources
Readable & Settable by Hooks via Job Events,” on page 66 and Table 5-14, “Vnode Resources Readable & Settable by
Hooks via Reservation & Other Non-job Events,” on page 67.
PBS Professional 2022.1 Hooks Guide HG-133

Chapter 6 Hook Objects and Methods
6.6.1.2.i Job accrue_type Attribute Member

job.accrue_type

Represents the job's accrue_type attribute. Represented as a Python int. This member can take the following values:

6.6.1.2.ii Job array_indices_submitted Attribute Member

job.array_indices_submitted

Job attribute. Python type: range

See section 6.15.3.21, “Method to Create or Set range Object”, on page 173.

6.6.1.2.iii Job Checkpoint Attribute Member

job.Checkpoint

Job attribute. Python type: pbs.checkpoint

See section 6.15.3.3, “Method to Create or Set Checkpoint String”, on page 168.

6.6.1.2.iv Job depend Attribute Member

job.depend

Job attribute. Python type: pbs.depend

See section 6.15.3.4, “Method to Create or Set Dependency Object”, on page 169.

6.6.1.2.v Job Execution_Time Attribute Member

job.Execution_Time

Job attribute. Time when the current job is eligible to run. Syntax:

job.Execution_Time = time.mktime([<YY>, <MM>, <DD>, <HH>, <MM>, <SS>, <WEEKDAY>, <YEARDAY>
<ISDST>])

For example, the following sets a job's Execution_Time to: March 1, 2012 at 09:00 am:

job.Execution_Time = time.mktime([2012, 3, 1, 12, 9, 0, -1, -1, -1])

Python type: int

6.6.1.2.vi Job exec_host Attribute Member

job.exec_host

Job attribute. Python type: pbs.exec_host

See section 6.15.3.7, “Method to Create or Set exec_host Object”, on page 169.

Table 6-30: Values for the accrue_type Member

Integer Value Name

0 initial_time

1 ineligible_time

2 eligible_time

3 run_time
HG-134 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.6.1.2.vii Job exec_vnode Attribute Member

job.exec_vnode

Job attribute. Python type: pbs.exec_vnode

This complex object is described in section 6.7, “The exec_vnode Object”, on page 142.

See also section 6.15.3.8, “Method to Create or Set exec_vnode Object”, on page 170.

6.6.1.2.viii Job group_list Attribute Member

job.group_list

Job attribute. Python type: pbs.group_list

See section 6.15.3.9, “Method to Create or Set group_list Object”, on page 170.

6.6.1.2.ix Job Hold_Types Attribute Member

job.Hold_Types

Job attribute. Python type: pbs.hold_types

See section 6.15.3.10, “Method to Create or Set hold_types Object”, on page 170.

6.6.1.2.x Job job_state and substate Attribute Members

job.job_state

Job attribute. Represents the job's state. Can be compared to the constants representing job states.

Use job state constant objects to test the state of a job. For example:

e = pbs.event()

if e.job.job_state == pbs.JOB_STATE_RUNNING :

e.accept()

The job_state member can take on any of the values listed here:

Table 6-31: Job State Objects

Numeric
Value

Type State Description

0 pbs.JOB_STATE_TRANSIT T Job is in transition (being moved to a new location)

1 pbs.JOB_STATE_QUEUED Q Job is queued, eligible to run or be routed

2 pbs.JOB_STATE_HELD H Job is held.

3 pbs.JOB_STATE_WAITING W Job is waiting for its requested execution time to be
reached, or the job's specified stagein request has failed for
some reason.

4 pbs.JOB_STATE_RUNNING R Job is running

5 pbs.JOB_STATE_EXITING E Job is exiting after having run

6 pbs.JOB_STATE_EXPIRED X Subjobs only; subjob is finished (expired.)

7 pbs.JOB_STATE_BEGUN B Job arrays only: job array has started

8 pbs.JOB_STATE_MOVED M Job has been moved to another server
PBS Professional 2022.1 Hooks Guide HG-135

Chapter 6 Hook Objects and Methods
job.substate

Job attribute. Represents the job's substate. Can be compared to the constants representing job substates.

The substate member can take on any of the values listed here:

9 pbs.JOB_STATE_FINISHED F Job is finished: job executed successfully, job was termi-
nated while running, job execution failed, or job was
deleted before execution

400 pbs.JOB_STATE_SUSPEND S Job is suspended by PBS so that a higher-priority job can
run.

410 pbs.JOB_STATE_SUSPEND_
USERACTIVE

U Job is suspended due to workstation becoming busy

Table 6-32: Job Substate Objects

Numeric
Value

Type Description

-1 pbs.JOB_SUBSTATE_UNKNOWN Substate is unknown

 0 pbs.JOB_SUBSTATE_TRANSIN Transit in, prior to waiting for commit

 1 pbs.JOB_SUBSTATE_TRANSICM Transit in, waiting for commit

 2 pbs.JOB_SUBSTATE_TRNOUT transiting job outbound, not ready to commit

 3 pbs.JOB_SUBSTATE_TRNOUTCM transiting outbound, ready to commit

 10 pbs.JOB_SUBSTATE_QUEUED Job queued and ready for scheduling

 11 pbs.JOB_SUBSTATE_PRESTAGEIN job queued, has files to stage in

 13 pbs.JOB_SUBSTATE_SYNCRES Job waiting on sync start ready

 14 pbs.JOB_SUBSTATE_STAGEIN job staging in files before waiting

 15 pbs.JOB_SUBSTATE_STAGEGO job staging in files before running

 16 pbs.JOB_SUBSTATE_STAGECMP job stage in complete

 20 pbs.JOB_SUBSTATE_HELD job held - user or operator

 21 pbs.JOB_SUBSTATE_SYNCHOLD job held waiting on sync regist

 22 pbs.JOB_SUBSTATE_DEPNHOLD job held - waiting on dependency

 30 pbs.JOB_SUBSTATE_WAITING Job waiting until user-specified execution time

 37 pbs.JOB_SUBSTATE_STAGEFAIL job held - file stage in failed

 41 pbs.JOB_SUBSTATE_PRERUN job sent to MoM to run

 42 pbs.JOB_SUBSTATE_RUNNING Running

 43 pbs.JOB_SUBSTATE_SUSPEND Suspended by Operator or Manager

 45 pbs.JOB_SUBSTATE_SCHSUSP Suspended by scheduler

Table 6-31: Job State Objects

Numeric
Value

Type State Description
HG-136 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.6.1.2.xi Getting Human-readable Names for Job State and Substate Types

The pbs.REVERSE_JOB_STATE object is a Python dictionary of job states mapped to human-readable names, and
the pbs.REVERSE_JOB_SUBSTATE object is a Python dictionary of job substates mapped to human-readable
names. This is useful for logging job information. The type for a state is found in pbs.job.job_state, and the type for a
substate is found in pbs.job.substate.

Syntax

<string> = pbs.REVERSE_JOB_STATE[<job state type>]

 50 pbs.JOB_SUBSTATE_EXITING Server received job obit

 51 pbs.JOB_SUBSTATE_STAGEOUT Staging out stdout/err and other files

 52 pbs.JOB_SUBSTATE_STAGEDEL Deleting stdout/err files and staged-in files

 53 pbs.JOB_SUBSTATE_EXITED MoM releasing resources

 54 pbs.JOB_SUBSTATE_ABORT Job is being aborted by server

 56 pbs.JOB_SUBSTATE_KILLSIS (Set by MoM) Mother Superior telling sisters to
kill everything

 57 pbs.JOB_SUBSTATE_RUNEPILOG (Set by MoM) job epilogue running

 58 pbs.JOB_SUBSTATE_OBIT (Set by MoM) job obit notice sent

 59 pbs.JOB_SUBSTATE_TERM Waiting for site-defined job termination action
script

 60 pbs.JOB_SUBSTATE_RERUN Job to be rerun, MoM sending stdout/stderr back
to server

 61 pbs.JOB_SUBSTATE_RERUN1 Job to be rerun, staging out files

 62 pbs.JOB_SUBSTATE_RERUN2 Job to be rerun, deleting files

 63 pbs.JOB_SUBSTATE_RERUN3 Job to be rerun, freeing resources

 69 pbs.JOB_SUBSTATE_EXPIRED subjob is gone

 70 pbs.JOB_SUBSTATE_BEGUN Array job has begun

 71 pbs.JOB_SUBSTATE_PROVISION Job is waiting for vnode(s) to be provisioned
with requested AOE.

 72 pbs.JOB_SUBSTATE_WAITING_JOIN_JOB Waiting to join job

 91 pbs.JOB_SUBSTATE_TERMINATED Job is terminated

 92 pbs.JOB_SUBSTATE_FINISHED Job is finished

 93 pbs.JOB_SUBSTATE_FAILED Job failed

 94 pbs.JOB_SUBSTATE_MOVED Job was moved

 153 pbs.JOB_SUBSTATE_DELJOB (Set by MoM) Mother Superior waiting for
delete ACK from sisters

Table 6-32: Job Substate Objects

Numeric
Value

Type Description
PBS Professional 2022.1 Hooks Guide HG-137

Chapter 6 Hook Objects and Methods
For example:
my_job_state_str = pbs.REVERSE_JOB_STATE[my_job.job_state]

or

<string> = pbs.REVERSE_JOB_STATE[pbs.<job state>]

For example:

my_job_state_str = pbs.REVERSE_JOB_STATE[pbs.JOB_STATE_RUNNING]

Example

Example 6-19: Printing a human-readable name for a pbs.JOB_STATE_RUNNING job state using the type:

If the job is my_job and the state is pbs.JOB_STATE_RUNNING:

print(pbs.REVERSE_JOB_STATE[my_job.job_state])

results in:

JOB_STATE_RUNNING

6.6.1.2.xii Job Join_Path Attribute Member

job.Join_Path

Job attribute. Python type: pbs.join_path

See section 6.15.3.12, “Method to Create or Set join_path Object”, on page 170.

6.6.1.2.xiii Job Keep_Files Attribute Member

job.Keep_Files

Job attribute. Python type: pbs.keep_files

See section 6.15.3.13, “Method to Create or Set keep_files Object”, on page 171.

6.6.1.2.xiv Job Mail_Points Attribute Member

job.Mail_Points

Job attribute. Python type: pbs.mail_points

See section 6.15.3.15, “Method to Create or Set mail_points Object”, on page 171.

6.6.1.2.xv Job Mail_Users Attribute Member

job.Mail_Users

Job attribute. Python type: pbs.email_list

See section 6.15.3.6, “Method to Create or Set Email List”, on page 169.

6.6.1.2.xvi Job Queue Attribute Member

job.queue

Job attribute. Python type: pbs.queue

6.6.1.2.xvii Job Resource_List Attribute Member

job.Resource_List[]

job.Resource_List["<resource name>"]

Job attribute. The job's Resource_List attribute.

Python type: dictionary: Resource_List["<resource name>"]=<value> where <resource name> is any built-in or
custom resource
HG-138 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.6.1.2.xviii Job resources_used Attribute Member

job.resources_used["<resource name>"]

Job attribute. The job's resources_used attribute, which lists the resources used by the job. See section 5.2.4, “Using
Attributes and Resources in Hooks”, on page 45.

Python type: dictionary: resources_used["<resource name>"]=<value> where <resource name> is any built-in or
custom resource

6.6.1.2.xix Job resv Member

job.resv

If the job is in a reservation, the corresponding job object has a resv reservation member. See section 6.9, “Reservation
Objects”, on page 144.

6.6.1.2.xx Job run_count Attribute Member

job.run_count

Job attribute. Execution hooks must run with user = pbsadmin to reduce the value of this member. Execution hooks
running with user = pbsuser cannot reduce the value of this member.

Python type: int

6.6.1.2.xxi Job stagein and stageout Attribute Members

job.stagein

job.stageout

Job attribute. Python type: pbs.staging_list

See section 6.15.3.27, “Method to Create or Set staging_list Object”, on page 175.

6.6.1.2.xxii Job User_List Attribute Member

job.User_List

Job attribute. Python type: pbs.user_list

See section 6.15.3.29, “Method to Create or Set user_list Object”, on page 176.

6.6.1.2.xxiii Job Variable_List Attribute Member

job.Variable_List[<variable>]

Job attribute. Holds the job's environment variables. Syntax:

job.Variable_List[<variable>] = <value>

Python type: dictionary: Variable_List["<variable name>"]=<value>

6.6.1.3 Setting Job Attributes

How you set a job attribute depends on the type of the attribute; those of type str, int, bool, long, and float can be set
directly. Job attributes of other types require creation methods. Job attribute creation methods are listed in section
6.15.3, “PBS Types and Their Methods”, on page 168.

To set job attributes and resources directly:

pbs.event().job.<attribute> = <value>

pbs.event().job.Resource_List["<resource name>"] = <value>

See section 5.2.4.3, “Determining Whether to Use Creation Method to Set Attribute or Resource”, on page 46.
PBS Professional 2022.1 Hooks Guide HG-139

Chapter 6 Hook Objects and Methods
See section 5.2.4, “Using Attributes and Resources in Hooks”, on page 45.

6.6.1.4 Examples of Using Job Object Members

Get the job's Priority value:

prio = job.Priority

Reset the Priority value of job j:

job.Priority = 5

Get the job's PBS_O_WORKDIR environment variable:

workdir = job.Variable_List["PBS_O_WORKDIR"]

6.6.2 Job Object Methods for Execution Hooks

Job objects have the following methods. Most methods are available in execjob_ hooks except for the execjob_launch
hook, and in the exechost_periodic hook.

6.6.2.1 Job Object Method to Report Checkpoint

job.is_checkpointed()

Returns a Python bool value which is True if the job was checkpointed under the control of the PBS MoM.

For example, you could use this in an execjob_epilogue hook, where the hook writer directs the job to be requeued if the
job was checkpointed under the control of PBS:

cat epi.py

import pbs

If pbs.event().job.is_checkpointed():

pbs.event().job.rerun()

pbs.event().reject("job to be requeued")

qmgr -c "create hook epi event=execjob_epilogue"

qmgr - c "import hook epi application/x-python default epi.py"

6.6.2.2 Job Object Method to Report Execution Host Role

job.in_ms_mom()

Returns a Python bool value. Returns True if this job object is running on the primary execution host.

6.6.2.3 Job Object Method to Delete Job

job.delete()

When this method is used in an execution hook, the job is flagged at the server for deletion after its processes have termi-
nated and any epilogue or execjob_epilogue hook has run.

When this method is used in a non-execution hook script, it raises a Python "NotImplementedError" exception.

If the job.delete() method is used in an execjob_end hook, it has no effect, because in this case the server has already
performed end-of-job processing before the execution hook runs.

The job.delete() method overrides the job.rerun() method. If both are used, job.delete() takes precedence.
HG-140 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.6.2.4 Job Object Method to Release Vnodes

job.release_nodes()

job.release_nodes(keep_select=<select specification>)

Automatically selects vnodes that satisfy the new request and are healthy, keeps them in the job's vnode request, and
releases all others. The method automatically trims out any vnodes in the pbs.event().vnode_list_fail[] list.

You can call pbs.event().job.release_nodes(keep_select = <desired vnodes>) in an execjob_launch or
execjob_prologue hook. Note that despite the method being named "release_nodes", it keeps the specified vnodes and
releases all other vnodes. You can specify the job's original vnode request as the vnodes to keep.

The pbs.event().job.release_nodes() method returns a PBS job object which has the updated values for the job's
exec_vnode and Resource_List attributes.

This method is only effective when it runs at the primary MoM.

This method can be used only when it's used for a job whose tolerate_node_failures attribute is set to job_start or all.

6.6.2.4.i Advice and Recommendations for Using release_nodes Method

• Put the call to this method in an 'if pbs.event().job.in_ms_mom()' clause

• Request vnodes that are a subset of the existing vnode request

• Because an execjob_launch hook is also called when spawning tasks via pbsdsh and tm_spawn, ensure that any
execjob_launch hook invoking release_nodes() has 'PBS_NODEFILE' in the pbs.event().env list. The pres-
ence of 'PBS_NODEFILE' in the environment ensures that the primary MoM is executing on behalf of starting the
top level job, and not spawning a sister task. You can add the following at the top of the hook:

if 'PBS_NODEFILE' not in pbs.event().env:

 pbs.event().accept()

...

pbs.release_nodes(keep_select=...)

• On Windows, where PBS_NODEFILE always appears in pbs.event().env, put the following at the top of any
execjob_launch hook:

if any("mom_open_demux.exe") in s for s in e.argv):

 e.accept()

6.6.2.4.ii Side Effects of Using release_nodes() Method

When release_nodes() is successfully executed from execjob_prologue or execjob_launch hooks, the following
happen:

• PBS generates the s accounting record.

• The primary MoM notifies the sister MoMs to update their internal nodes tables, so that the task manager API (e.g.
tm_spawn, pbsdsh) will be aware of the change in the future.

• If the pbs_cgroups hook is enabled, the cgroup already created for the job is updated to match the job's new
resources. If the kernel rejects the update to the job's cgroup resources, the job is aborted at the execution host, and
requeued/rerun at the server.

6.6.2.5 Job Object Method to Re-run Job

job.rerun()

When this method is used in an execution hook, the job is flagged at the server for requeueing after its processes have ter-
minated and any epilogue or execjob_epilogue hook has run.

When this method is used in a non-execution hook script, it raises a Python "NotImplementedError" exception.
PBS Professional 2022.1 Hooks Guide HG-141

Chapter 6 Hook Objects and Methods
If the job.rerun() method is used in an execjob_end hook, it has no effect, because in this case the server has already per-
formed end-of-job processing before the execution hook runs.

The job.delete() method overrides the job.rerun() method. If both are used, job.delete() takes precedence.

6.7 The exec_vnode Object

pbs.exec_vnode

An exec_vnode object represents a job's exec_vnode attribute.

6.7.1 The exec_vnode Object Members

A pbs.exec_vnode object has the following member:

6.7.1.1 The exec_vnode Chunks Member

pbs.exec_vnode.chunks[]

List of pbs.vchunk objects. These objects represent the chunks assigned to a job. See section 6.8, “Chunk Objects”, on
page 143.

6.7.2 Using pbs.vchunk Objects in exec_vnode

• To get a list of pbs.vchunks in pbs.event().job.exec_vnode:

pbs.event().job.exec_vnode.chunks

For example, to log the name of the vnode containing each vchunk:

chunklist = pbs.event().job.exec_vnode.chunks

for chunk in chunklist:

pbs.logmsg(pbs.LOG_DEBUG, "chunk.vnode_name=%s " % (chunk.vnode_name))

• To get a pbs.vchunk with a specific index:

pbs.event().job.exec_vnode.chunks[<index>]

• For example, to get the vchunk in pbs.event().job.exec_vnode with index number 2:

pbs.event().job.exec_vnode.chunks[2]

Example 6-20: List the job ID, vnode name, and resources in exec_vnode:

j = pbs.event().job

pbs.logmsg(pbs.LOG_DEBUG, "job %s exec_vnode = %s" % (j.id, j.exec_vnode))

chunklist = j.exec_vnode.chunks

for c in chunklist:

pbs.logmsg(pbs.LOG_DEBUG, "c.vnode_name=%s " % (c.vnode_name))

for r in c.chunk_resources.keys():

pbs.logmsg(pbs.LOG_DEBUG, "c.chunk_resources[%s]=%s" % (r,

c.chunk_resources[r]))
HG-142 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
Sample output:

10:16:53;0006;Server@jobim;Hook;Server@jobim;job 153.jobim exec_vnode =
(jobim[2]:ncpus=2:mem=10240kb)+ (jobim[1]:ncpus=2:mem=10240kb) +
(jobim[3]:ncpus=2:mem=2048kb)

10:16:53;0006;Server@jobim;Hook;Server@jobim;c.vnode_name= jobim[2]
10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[ncpus]=2

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[mem]=10240kb

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.vnode_name=jobim[1]

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[ncpus]=2

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[mem]=10240kb

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.vnode_name=jobim[3]

10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[ncpus]=2
10:16:53;0006;Server@jobim;Hook;Server@jobim; c.chunk_resources[mem]=2048kb

6.7.3 Restrictions on exec_vnode Objects

A job's exec_vnode attribute is read-only. You cannot set its value, and you cannot build an exec_vnode object using
pbs.vchunk objects.

6.8 Chunk Objects

pbs.vchunk

A pbs.vchunk object represents a chunk specification. It is used in a job's exec_vnode attribute or select statement.

6.8.1 Chunk Object Members and Methods

A pbs.vchunk object has the following members:

6.8.1.1 Chunk Object Vnode Name Member

vchunk.vnode_name

Name of the vnode from which the chunk is taken.

Python type: str

6.8.1.2 Chunk Object Chunk Resources Member

vchunk.chunk_resources[]

Resources assigned to the chunk.

Python type: Dictionary containing <resource name>=<value> pairs.

Syntax: chunk_resources['<resource name>'] = <resource value> where <resource name> is any custom or built-in
resource.
PBS Professional 2022.1 Hooks Guide HG-143

Chapter 6 Hook Objects and Methods
6.8.1.3 Chunk Object Method to Return chunk_resources Keys

vchunk.chunk_resources.keys()

Returns list of <resource name> keys of chunk_resources[]. This list makes it convenient to list all the values of
chunk_resources[].

6.9 Reservation Objects

pbs.resv

A pbs.resv object represents a PBS reservation. If the reservation is associated with the triggering event, you can read
and set reservation attributes and resources in a resvsub hook, and read them in a resv_end hook.

We list the reservation attributes and resources that can be set in reservation hooks in Table 5-10, “Reservation Attributes
Readable & Settable in Reservation Hooks,” on page 63.

If the reservation is retrieved through the server, and is not associated with the triggering event, you can read all its
attributes and resources, but set none.

If you are working with the reservation being created using pbs_rsub, you must use pbs.event().resv. The server can-
not return information about the reservation, because it has not yet been created.

In order to retrieve information about the reservation associated with the triggering action, you must use a reference to
the reservation object represented by:

pbs.event().resv

To get a copy of a particular reservation, use:

pbs.server().resv("<reservation name>")

To get a list of the reservations at a server:

pbs.server().resvs()

6.9.1 Reservation Object Members

A pbs.resv object has members that represent reservation attributes, and the resvid member which exists for the job
object but is not an attribute of a reservation.

6.9.1.1 Reservation ID Member

resv.resvid

The reservation ID.

Example: "R221.myhost".

This member is read-only.

Python type: str

6.9.1.2 Reservation Attribute Members

resv.<attribute name>

The reservation attribute named <attribute name>. Each member is spelled exactly like the corresponding attribute.
HG-144 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.9.1.3 Setting Reservation Object Attribute Values

You can set, but not unset, reservation object attributes.

To see a list of which reservation attributes can be read and set by each hook, see Table 5-10, “Reservation Attributes
Readable & Settable in Reservation Hooks,” on page 63.

Some attributes require creation methods when setting them. See section 5.2.4.3, “Determining Whether to Use Creation
Method to Set Attribute or Resource”, on page 46. To set a simple reservation object attribute:

pbs.resv.<attribute name> = <attribute value>

Reservation attribute creation methods are listed in section 6.15.3, “PBS Types and Their Methods”, on page 168.

See section 5.2.4, “Using Attributes and Resources in Hooks”, on page 45.

6.9.1.4 Examples of Using Reservation Object Attributes

Example 6-21: Get the reservation's owner:

owner = pbs.server().resv(<reservation ID>).Reserve_Owner

Example 6-22: Reset the reservation's name:

pbs.event().resv(<reservation ID>).Reserve_Name = "Resv2008"

6.9.2 Using Reservation States

6.9.2.1 Reservation State Constant Objects

The pbs.resv.reserve_state member represents the state of the reservation. It can take on the following values, which
are represented by constant objects:

Table 6-33: Reservation State Objects

Object State

pbs.RESV_STATE_NONE RESV_NONE

pbs.RESV_STATE_UNCONFIRMED RESV_UNCONFIRMED

pbs.RESV_STATE_CONFIRMED RESV_CONFIRMED

pbs.RESV_STATE_WAIT RESV_WAIT

pbs.RESV_STATE_TIME_TO_RUN RESV_TIME_TO_RUN

pbs.RESV_STATE_RUNNING RESV_RUNNING

pbs.RESV_STATE_FINISHED RESV_FINISHED

pbs.RESV_STATE_BEING_DELETED RESV_BEING_DELETED

pbs.RESV_STATE_DELETED RESV_DELETED

pbs.RESV_STATE_DELETING_JOBS RESV_DELETING_JOBS

pbs.RESV_STATE_DEGRADED RESV_DEGRADED

pbs.RESV_STATE_BEING_ALTERED RESV_BEING_ALTERED

pbs.RESV_STATE_IN_CONFLICT RESV_IN_CONFLICT
PBS Professional 2022.1 Hooks Guide HG-145

Chapter 6 Hook Objects and Methods
6.9.2.2 Getting Human-readable Names for Reservation State Values

The pbs.REVERSE_RESV_STATE object is a Python dictionary of reservation states mapped to human-readable
names. This is useful for logging reservation information. The type for a state is found in pbs.resv.reserve_state.

6.9.2.2.i Syntax

<string> = pbs.REVERSE_RESV_STATE[<reservation state type>]
For example:

my_resv_state_str = pbs.REVERSE_RESV_STATE[my_resv.reserve_state]

or

<string> = pbs.REVERSE_RESV_STATE[pbs.<reservation state>]

For example:

my_resv_state_str = pbs.REVERSE_RESV_STATE[pbs.RESV_STATE_CONFIRMED]

6.9.2.2.ii Example

Example 6-23: Printing a human-readable name for a pbs.RESV_STATE_CONFIRMED reservation state using the
type:

If the reservation is my_resv and the state is pbs.RESV_STATE_CONFIRMED:

print(pbs.REVERSE_RESV_STATE[my_resv.reserve_state])

results in:

RESV_STATE_CONFIRMED

6.10 Vnode Objects

pbs.vnode

A pbs.vnode object represents a PBS vnode.

The way in which you retrieve a vnode controls what you can do with the vnode.

If a vnode is retrieved through an event, using pbs.event().v node_list[], and is managed by the same MoM where the
event hook runs:

• You can set the vnode attributes listed in Table 5-8, “Vnode Attributes Readable & Settable via Job Events,” on
page 61 and Table 5-9, “Vnode Attributes Readable & Settable via Reservation & Other Non-job Events,” on
page 62.

• You can set the vnode resources listed in Table 5-13, “Vnode Resources Readable & Settable by Hooks via Job
Events,” on page 66 and Table 5-14, “Vnode Resources Readable & Settable by Hooks via Reservation & Other
Non-job Events,” on page 67.

However, if a vnode is not retrieved through an event, or is not managed by the same MoM where the hook runs, you can
read all vnode attributes and resources, but set none.

The modifyvnode event has read-only access to a vnode before and after a state change. Execution events have access
to the list of vnodes associated with the job. Periodic events have access to the list of vnodes managed by the local MoM.
See section 6.3.2.24, “The Vnode List Event Member”, on page 123.

• To retrieve the list of vnodes associated with an execution event or a periodic event:

pbs.event().vnode_list[]

• To retrieve a specific vnode that is associated with an execution or periodic event, use the list of vnodes associated
with the event, and specify the vnode name:
HG-146 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
pbs.event().vnode_list["<vnode name>"]

• To retrieve the vnodes associated with a pre-execution event, get the job's exec_vnode attribute:

pbs.event().job.exec_vnode

• To retrieve the server's list of vnodes:

pbs.server().vnodes()

• To retrieve a named vnode through the server:

pbs.server().vnode("<vnode name>")

6.10.1 Vnode Object Members

vnode.<attribute name>

A pbs.vnode object has a member representing each attribute, and each member is spelled exactly like the corresponding
attribute.

We list which vnode attributes can be set by each hook in Table 5-8, “Vnode Attributes Readable & Settable via Job
Events,” on page 61 and Table 5-9, “Vnode Attributes Readable & Settable via Reservation & Other Non-job Events,” on
page 62.

See section 5.2.4.3, “Determining Whether to Use Creation Method to Set Attribute or Resource”, on page 46. Attribute
creation methods are listed in section 6.15.3, “PBS Types and Their Methods”, on page 168. See section 5.2.4, “Using
Attributes and Resources in Hooks”, on page 45.

6.10.1.1 The topology_info Attribute Member

vnode.topology_info

Vnode attribute. The topology_info vnode attribute shows topology information. This attribute is visible only in hooks,
and can be used only in hooks.

Python type: str

6.10.1.2 Vnode Attribute Restrictions

• The only vnode attribute that can be changed by a pre-execution hook is the state attribute

• The only pre-execution hook that can change the vnode state attribute is the runjob hook

• Execution and periodic hooks can change all settable vnode attributes

6.10.2 Vnode Object Methods

6.10.2.1 Vnode Object Members to Retrieve Vnode States

vnode.extract_state_ints()

Returns a list of the integer values currently set in the vnode's state bits.

vnode.extract_state_strs()

Returns a list of the string values currently set in the vnode's state bits.
PBS Professional 2022.1 Hooks Guide HG-147

Chapter 6 Hook Objects and Methods
6.10.3 Vnode Type Constant Objects

The pbs.vnode.ntype member represents the type of the vnode. It can take on the following values:

6.10.4 Vnode Sharing Constant Objects

The pbs.vnode.sharing member represents the vnode's sharing attribute. It can take on the following values:

6.10.5 Using Vnode States

6.10.5.1 Vnode State Constant Objects

The pbs.vnode.state member represents the state of the vnode. It can take on the following values:

Table 6-34: Vnode Type Objects

Object Type

pbs.ND_PBS Represents pbs value for vnode ntype attribute

Table 6-35: Vnode Sharing Objects

Object Sharing Value

pbs.ND_DEFAULT_EXCL Represents default_excl vnode sharing attribute value

pbs.ND_DEFAULT_EXCLHOST Represents default_exclhost vnode sharing attribute value

pbs.ND_DEFAULT_SHARED Represents default_shared vnode sharing attribute value

pbs.ND_FORCE_EXCL Represents force_excl vnode sharing attribute value

pbs.ND_FORCE_EXCLHOST Represents force_exclhost vnode sharing attribute value

pbs.ND_IGNORE_EXCL Represents ignore_excl vnode sharing attribute value

Table 6-36: Vnode State Constant Objects

Object State

pbs.ND_STATE_FREE Represents free vnode state

Replaces pbs.ND_FREE

pbs.ND_STATE_OFFLINE Represents offline vnode state

Replaces pbs.ND_OFFLINE

pbs.ND_STATE_DOWN Represents down vnode state

Replaces pbs.ND_DOWN

pbs.ND_STATE_UNRESOLVABLE Represents unresolvable vnode state

Replaces pbs.ND_UNRESOLVABLE

pbs.ND_STATE_JOBBUSY Represents job-busy vnode state

Replaces pbs.ND_JOBBUSY
HG-148 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.10.5.2 Getting Human-readable Names for Vnode State

The pbs.REVERSE_NODE_STATE object is a Python dictionary of vnode states mapped to human-readable names.
This is useful for logging vnode information. The type for a vnode state is found in pbs.vnode.state.

6.10.5.2.i Syntax

<string> = pbs.REVERSE_NODE_STATE[<vnode state type>]
For example:

my_vnode_state_str = pbs.REVERSE_NODE_STATE[my_vnode.state]

or

<string> = pbs.REVERSE_NODE_STATE[pbs.<vnode state>]

For example:

my_vnode_state_str = pbs.REVERSE_NODE_STATE[pbs.ND_STATE_FREE]

6.10.5.2.ii Example

Example 6-24: Printing a human-readable name for a pbs.ND_STATE_FREE vnode state using the type:

If the vnode is my_vnode and the state is pbs.ND_STATE_FREE:

print(pbs.REVERSE_NODE_STATE[my_vnode.state])

results in:

ND_STATE_FREE

pbs.ND_STATE_STALE Represents stale vnode state

Replaces pbs.ND_STALE

pbs.ND_STATE_JOB_EXCLUSIVE Represents job-exclusive vnode state

Replaces pbs.ND_JOB_EXCLUSIVE

pbs.ND_STATE_BUSY Represents busy vnode state

Replaces pbs.ND_BUSY

pbs.ND_STATE_UNKNOWN Represents state-unknown, down vnode state

pbs.ND_STATE_PROV Represents provisioning vnode state

Replaces pbs.ND_PROV

pbs.ND_STATE_WAIT_PROV Represents wait-provisioning vnode state

Replaces pbs.ND_WAIT_PROV

pbs.ND_STATE_RESV_EXCLUSIVE Represents resv-exclusive vnode state

Replaces pbs.ND_RESV_EXCLUSIVE

pbs.ND_STATE_MAINTENANCE Represents maintenance vnode state

pbs.ND_STATE_SLEEP Represents sleep vnode state

Table 6-36: Vnode State Constant Objects

Object State
PBS Professional 2022.1 Hooks Guide HG-149

Chapter 6 Hook Objects and Methods
6.11 Management Objects

pbs.management

A pbs.management object represents a management operation in which a qmgr command is used to operate on an
entity such as a server, scheduler, queue, vnode, resource, hook, or built-in hook. For a list of entities see section
6.11.2.3, “Management Member: Entity Name”, on page 153.

To refer to a management object in a hook and name it "mgt":

mgt = pbs.event().management

Example 6-25: Using qmgr to create a vnode via qmgr -c 'create node mom1':

• The entity name is captured in the objname management member; here it is "mom1"

• The entity type is captured in the objtype management member; in this case it is pbs.MGR_OBJ_NODE

• The management object command is captured in the cmd management member; it is
pbs.MGR_CMD_CREATE

Each operation on an entity can include one or more targets and alteration. Each target and associated alteration is cap-
tured in a pbs.server_attribute object; these objects are found in the attribs[] management operation member. See sec-
tion 6.11.2.1, “Management Member: List of Targets and Alterations”, on page 151.

Example 6-26: We have a management object generated by using qmgr to set multiple attributes via qmgr -c 'set
node mom1 state=free,resources_available.ncpus=1024,mem-=16777216':

• The entity name is "mom1"

• The entity type is pbs.MGR_OBJ_NODE

• The management object command is pbs.MGR_CMD_SET

• The management operation includes three targets and associated alterations:

1. Target is the vnode state, and the alteration is setting the state to Free

2. Target is resources_available.ncpus, and the alteration is setting it to 1024

3. Target is resources_available.mem, and the alteration is reducing it by 16777216

The reply fields in the management object are populated based on the success or failure of the requested operation.

We show a detailed example of a management object in Example Management Object.

6.11.1 Example Management Object

Example 6-27: We use the following command:

qmgr -c "set node mom1
state=free,resources_available.ncpus=1024,resources_available.mem-=16777216"

Our management event hook script contains:

mgt = pbs.event().management

So the command above results in the following values in the mgt management object:

mgt.cmd <-- pbs.MGR_CMD_SET
mgt.objtype <-- pbs.MGR_OBJ_NODE
mgt.objname <-- "mom1"
mgt.request_time <-- (Timestamp in seconds since epoch)

In addition, the mgt object has a list of pbs.server_attribute instances, called "mgt.attribs". These represent the alter-
ations we gave to the qmgr command, as well as any alterations performed while processing the request.
HG-150 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
In our example, the mgt.attribs list consists of three elements, each representing an alteration. We show the effect on
mgt.attribs[] of each alteration:

Reducing resources_available.mem by 16777216:

mgt.attribs[0].name <-- "resources_available"
mgt.attribs[0].resource <-- "mem"
mgt.attribs[0].op <-- pbs.BATCH_OP_DECR
mgt.attribs[0].value <-- "16777216"
mgt.attribs[0].flags <-- 0
mgt.attribs[0].sisters <-- []

Setting the vnode's resources_available.ncpus to 1024:

mgt.attribs[1].name <-- "resources_available"
mgt.attribs[1].resource <-- "ncpus"
mgt.attribs[1].op <-- pbs.BATCH_OP_SET
mgt.attribs[1].value <-- "1024"
mgt.attribs[1].flags <-- 0
mgt.attribs[1].sisters <-- []

Setting the vnode state to Free:

mgt.attribs[2].name <-- "state"
mgt.attribs[2].resource <-- (No resource)
mgt.attribs[2].op <-- pbs.BATCH_OP_SET
mgt.attribs[2].value <-- "free"
mgt.attribs[2].flags <-- 0
mgt.attribs[2].sisters <-- []

If the operation succeeds, the reply choice has a valid reply_code, and we expect values like the following:

mgt.reply_choice <-- pbs.BRP_CHOICE_NULL
mgt.reply_code <-- 0
mgt.reply_auxcode <-- 0
mgt.reply_text <-- (No text)

If the operation fails because the node does not exist, the reply choice has values like the following:

mgt.reply_choice <-- pbs.BRP_CHOICE_Text
mgt.reply_code <-- 15062
mgt.reply_auxcode <-- 0
mgt.reply_text <-- "Unknown node "

6.11.2 Management Object Members

6.11.2.1 Management Member: List of Targets and Alterations

management.attribs[]

List of pbs.server_attribute objects. Each pbs.server_attribute object represents one target and associated alteration
in a management operation.

Note that a pbs.server_attribute object is not the same as a pbs.server().<attribute name> object.

To reference a specific target-alteration member in the list:

pbs.event().management.attribs[<index>]
PBS Professional 2022.1 Hooks Guide HG-151

Chapter 6 Hook Objects and Methods
For example:

pbs.event().management.attribs[0]

Example 6-28: Our qmgr command is qmgr -c 'set node Node1 resources_available.ncpus=4':

The target is resources_available.ncpus and the alteration is setting it to 4. If the hook script calls the manage-
ment object "mgt", the mgt.attribs[0] member looks like this:

mgt.attribs[0].name <-- "resources_available"
mgt.attribs[0].resource <-- "ncpus"
mgt.attribs[0].op <-- pbs.BATCH_OP_SET
mgt.attribs[0].value <-- "4"
mgt.attribs[0].flags <-- 0
mgt.attribs[0].sisters <-- []

See section 6.12, “server_attribute Objects”, on page 156.

6.11.2.2 Management Member: Command

management.cmd

The management command, such as "create" or "set", used in a qmgr directive to operate on an entity such as a queue or
vnode.

To reference the command in a management object:

pbs.event().management.cmd
Commands used in qmgr directives:

Table 6-37: Commands Used in Directives

Management
Command

Command Name
qmgr

Command
Abbr Effect

pbs.MGR_CMD_NONE MGR_CMD_NONE (none) --- None

pbs.MGR_CMD_CREATE MGR_CMD_CREATE create c Creates object

pbs.MGR_CMD_DELETE MGR_CMD_DELETE delete d Deletes object

pbs.MGR_CMD_SET MGR_CMD_SET set s Sets value of attribute

pbs.MGR_CMD_UNSET MGR_CMD_UNSET unset u Unsets value of attribute

pbs.MGR_CMD_LIST MGR_CMD_LIST list l Lists object attributes and their val-
ues

pbs.MGR_CMD_PRINT MGR_CMD_PRINT print p Prints creation and configuration
commands

pbs.MGR_CMD_ACTIVE MGR_CMD_ACTIVE active a Specifies active objects

pbs.MGR_CMD_IMPORT MGR_CMD_IMPORT import i Imports hook or configuration file

pbs.MGR_CMD_EXPORT MGR_CMD_EXPORT export e Exports hook or hook configuration
file

pbs.MGR_CMD_LAST MGR_CMD_LAST --- --- ---
HG-152 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.11.2.2.i Getting Human-readable Names for Commands

The pbs.REVERSE_MGR_CMDS object is a Python dictionary of management commands mapped to human-read-
able names. This is useful for logging management information. The type for a management command is found in man-
agement.cmd.

Syntax

<string> = pbs.REVERSE_MGR_CMDS[<management command type>]
For example:

my_mgt_cmd_str = pbs.REVERSE_MGR_CMDS[my_mgt_operation.cmd]

or

<string> = pbs.REVERSE_MGR_CMDS[pbs.<management operation command>]

For example:

my_mgt_cmd_str = pbs.REVERSE_MGR_CMDS[pbs.MGR_CMDS_SET]

Example

Example 6-29: Printing a human-readable name for a pbs.MGR_CMDS_SET management command using the type:

If the management operation is my_mgt_operation and the command is pbs.MGR_CMDS_SET:

print(pbs.REVERSE_MGR_CMDS[my_mgt_operation.cmd])

results in:

MGR_CMDS_SET

6.11.2.3 Management Member: Entity Name

management.objname

Name of the entity being operated on in the qmgr command. For example, if the management operation is setting the
state of the vnode named "Node1", objname is Node1.

To reference the name in a management object:

pbs.event().management.objname

6.11.2.4 Management Member: Entity Type

management.objtype

Type of the entity being operated on. For example, if the management operation is setting a vnode's resource value, the
type is pbs.MGR_OBJ_NODE.

To reference the entity type in a management object:

pbs.event().management.objtype

--- --- exit Exits (quits) the qmgr session

--- --- help or ? h, ? Prints usage to stdout

--- --- quit q Quits (exits) the qmgr session

Table 6-37: Commands Used in Directives

Management
Command

Command Name
qmgr

Command
Abbr Effect
PBS Professional 2022.1 Hooks Guide HG-153

Chapter 6 Hook Objects and Methods
Object types in management objects:

6.11.2.4.i Getting Human-readable Names for Object Types

The pbs.REVERSE_MGR_OBJS object is a Python dictionary of management object types mapped to human-read-
able names. This is useful for logging management information. The type for a management object type is found in
pbs.management.cmd.

6.11.2.4.ii Syntax

<string> = pbs.REVERSE_MGR_OBJS[<management object type>]
For example:

my_obj_type_str = pbs.REVERSE_MGR_OBJS[my_mgt_operation.objtype]

or

<string> = pbs.REVERSE_MGR_OBJS[pbs.<management operation object type>]

For example:

my_obj_type_str = pbs.REVERSE_MGR_OBJS[pbs.MGR_OBJS_QUEUE]

6.11.2.4.iii Example of Getting Human-readable Name for Object Type

Example 6-30: Printing a human-readable name for a pbs.MGR_OBJS_HOOK management object type using the
type:

If the management operation is my_mgt_operation and the object type is pbs.MGR_OBJS_HOOK:

print(pbs.REVERSE_MGR_OBJS[my_mgt_operation.objtype])

results in:

MGR_OBJS_HOOK

6.11.2.5 Management Member: Reply Auxiliary Error Code

management.reply_auxcode

Auxiliary error code.

To reference the auxiliary code in a management object:

pbs.event().management.reply_auxcode

Table 6-38: Management Object Types

Object Type Type Name Object Name Abbr. Object

pbs.MGR_OBJ_SERVER MGR_OBJ_SERVER server s server

pbs.MGR_OBJ_QUEUE MGR_OBJ_QUEUE queue q queue

pbs.MGR_OBJ_NODE MGR_OBJ_NODE node n vnode

pbs.MGR_OBJ_RSC MGR_OBJ_RSC resource r resource

pbs.MGR_OBJ_SCHED MGR_OBJ_SCHED sched sc default scheduler

multisched

pbs.MGR_OBJ_HOOK MGR_OBJ_HOOK hook h hook

pbs.MGR_OBJ_PBS_HOOK MGR_OBJ_PBS_HOOK pbshook p built-in hook
HG-154 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.11.2.6 Management Member: Reply Choice

management.reply_choice

Type of reply being returned to the user via the server management operation.

6.11.2.6.i Getting Human-readable Names for Reply Choice Types

The pbs.REVERSE_BRP_CHOICES object is a Python dictionary of management reply choice types mapped to
human-readable names. This is useful for logging management information. The type for a management reply choice
type is found in pbs.management.reply_choice.

Syntax

<string> = pbs.REVERSE_BRP_CHOICES[<management reply choice type>]
For example:

my_reply_choice_str = pbs.REVERSE_BRP_CHOICES[my_mgt_operation.reply_choice]

or

<string> = pbs.REVERSE_BRP_CHOICES[pbs.<management operation reply choice type>]

For example:

my_reply_choice_str = pbs.REVERSE_BRP_CHOICES[pbs.BRP_CHOICE_Status]

Example

Example 6-31: Printing a human-readable name for a pbs.BRP_CHOICE_Status management reply choice type using
the type:

If the management operation is my_mgt_operation and the reply choice type is pbs.BRP_CHOICE_Status:

print(pbs.REVERSE_BRP_CHOICES[my_mgt_operation.reply_choice])

results in:

BRP_CHOICE_Status

Table 6-39: Reply Choice Types

Reply Type Reply Name

pbs.BRP_CHOICE_NULL BRP_CHOICE_NULL

pbs.BRP_CHOICE_Queue BRP_CHOICE_Queue

pbs.BRP_CHOICE_RdytoCom BRP_CHOICE_RdytoCom

pbs.BRP_CHOICE_Commit BRP_CHOICE_Commit

pbs.BRP_CHOICE_Select BRP_CHOICE_Select

pbs.BRP_CHOICE_Status BRP_CHOICE_Status

pbs.BRP_CHOICE_Text BRP_CHOICE_Text

pbs.BRP_CHOICE_Locate BRP_CHOICE_Locate

pbs.BRP_CHOICE_RescQuery BRP_CHOICE_RescQuery

pbs.BRP_CHOICE_PreemptJobs BRP_CHOICE_PreemptJobs
PBS Professional 2022.1 Hooks Guide HG-155

Chapter 6 Hook Objects and Methods
6.11.2.7 Management Member: Reply Code

management.reply_code

Code returned to the user via the management operation.

To reference the reply code in a management object:

pbs.event().management.reply_code

6.11.2.8 Management Member: Reply Text

management.reply_text

Text returned to the user via the management operation.

To reference the text in a management object:

pbs.event().management.reply_text

6.11.2.9 Management Member: Request Time

management.request_time

Timestamp of request; time of the request in seconds since epoch.

To reference the request time in a management object:

pbs.event().management.request_time

6.12 server_attribute Objects

pbs.server_attribute

Represents a target and its associated alteration in a qmgr operation. The target is an attribute of an entity such as a
server or vnode, and associated alteration is the change to be performed on the attribute. For example, if we set a vnode's
resources_available.ngpus to 2, while the management object type and name represent a vnode, the server_attribute
represents a target that is "resources_available.ngpus" and the associated alteration is setting it to "2".

To reference a server_attribute object:

pbs.event().management.attribs[<index>]
For example:

pbs.event().management.attribs[0]

Each management object has a list of zero or more server_attribute objects representing the alterations to be made to
target objects; the list is called "attribs[]".

Example 6-32: Our management object is called "mgt". We use the command qmgr -c 'set node Node1
resources_available.ngpus=2'.

The target is resources_available.ngpus.

The alteration is setting it to 2.
HG-156 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
The server_attribute object looks like this:

mgt.attribs[0].name <-- "resources_available"
mgt.attribs[0].resource <-- "ngpus"
mgt.attribs[0].op <-- pbs.BATCH_OP_SET
mgt.attribs[0].value <-- "2"
mgt.attribs[0].flags <-- 0
mgt.attribs[0].sisters <-- []

Note that a pbs.server_attribute object is not the same as a pbs.server().<attribute name> object.

6.12.1 server_attribute Object Members

Each pbs.server_attribute object has its own Python attributes, such as name and value. For convenience, we are call-
ing these Python attributes members of the server_attribute object.

To reference a server_attribute object member:

pbs.event().management.attribs[<index>].<attribute>
For example:

pbs.event().management.attribs[0].name

6.12.1.1 server_attribute Object Member: Name

server_attribute.name

Name of the server_attribute object. For example, if the qmgr operation is setting the state of vnode Node1 to Free,
the name member of the server_attribute object is "state". And if the qmgr operation is setting the value of
resources_available.ncpus to 2, the name member is "resources_available".

To reference a server_attribute name member:

pbs.event().management.attribs[<index>].name

6.12.1.2 server_attribute Object Member: Resource

server_attribute.resource

If the server_attribute object is a resource, its resource member is set to the resource being altered. For example, if the
command is qmgr -c 'set node Node1 resources_available.ncpus=4', the resource member is "ncpus".

To reference a server_attribute resource member:

pbs.event().management.attribs[<index>].resource

6.12.1.3 server_attribute Object Member: Value

server_attribute.value

Value of the attribute. For example, if the qmgr operation is setting the state of vnode Node1 to Free, the value of the
server_attribute object is "free".

To reference a server_attribute value member:

pbs.event().management.attribs[<index>].value

6.12.1.4 server_attribute Object Member: Operator

server_attribute.op

Operation to be performed on the server_attribute target object.
PBS Professional 2022.1 Hooks Guide HG-157

Chapter 6 Hook Objects and Methods
To reference a server_attribute op member:

pbs.event().management.attribs[<index>].op
Attribute operators:

6.12.1.4.i Getting Human-readable Names for Operators

The pbs.REVERSE_BATCH_OPS object is a Python dictionary of management operators mapped to human-readable
names. This is useful for logging management information. The type for a management operator is found in pbs.man-
agement.server_attribute.op.

Syntax

<string> = pbs.REVERSE_BATCH_OPS[<management operator type>]
For example:

my_operator_str = pbs.REVERSE_BATCH_OPS[my_svr_attrib.op]

or

<string> = pbs.REVERSE_BATCH_OPS[pbs.<management operator>]

For example:

my_operator_str = pbs.REVERSE_BATCH_OPS[pbs.BATCH_OP_SET]

Example

Example 6-33: Printing a human-readable name for a pbs.BATCH_OP_SET management object type using the type:

If the server_attribute is my_svr_attrib and the operator is pbs.BATCH_OP_SET:

print(pbs.REVERSE_BATCH_OPS[my_svr_attrib.op])

results in:

BATCH_OP_SET

6.12.1.5 server_attribute Object Member: Flags

server_attribute.flags

Attribute flags associated with the server_attribute object.

Table 6-40: Attribute Operators

Operation Type Operation Name Symbol Effect

pbs.BATCH_OP_SET BATCH_OP_SET = Sets the value of the attribute

pbs.BATCH_OP_UNSET BATCH_OP_UNSET Unsets the value of the attribute

pbs.BATCH_OP_INCR BATCH_OP_INCR += Increases the value of the attribute

pbs.BATCH_OP_DECR BATCH_OP_DECR -= Decreases the value of the attribute

pbs.BATCH_OP_EQ BATCH_OP_EQ Tests for equality

pbs.BATCH_OP_NE BATCH_OP_NE Tests for inequality

pbs.BATCH_OP_GE BATCH_OP_GE Tests for being greater than or equal

pbs.BATCH_OP_GT BATCH_OP_GT Tests for being greater than

pbs.BATCH_OP_LE BATCH_OP_LE Tests for being less than or equal

pbs.BATCH_OP_LT BATCH_OP_LT Tests for being less than
HG-158 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
To reference a server_attribute flags member:

pbs.event().management.attribs[<index>].flags
Attribute flags:

6.12.1.5.i Getting Human-readable Names for Flags

The pbs.REVERSE_ATR_VFLAGS object is a Python dictionary of attribute flags mapped to human-readable names.
This is useful for logging management information. The type for an attribute flag is found in pbs.manage-
ment.server_attribute.flags.

Syntax

<string> = pbs.REVERSE_ATR_VFLAGS[<attribute flag type>]
For example:

my_flag_str = pbs.REVERSE_ATR_VFLAGS[my_svr_attrib.flags]

or

<string> = pbs.REVERSE_ATR_VFLAGS[pbs.<attribute flag>]

For example:

my_flag_str = pbs.REVERSE_ATR_VFLAGS[pbs.ATR_VFLAG_SET]

Example

Example 6-34: Printing a human-readable name for a pbs.ATR_VFLAG_SET attribute flag using the type:

If the server_attribute is my_svr_attrib and the flag is pbs.ATR_VFLAG_SET:

print(pbs.REVERSE_ATR_VFLAGS[my_svr_attrib.flags])

results in:

ATR_VFLAGS_SET

6.12.1.6 server_attribute Object Member: Co-resources

server_attribute.sisters

List of co-resources for the server_attribute object.

To reference a server_attribute sisters member:

pbs.event().management.attribs[<index>].sisters[<index>]

Table 6-41: Attribute Flags

Flag Type Flag Name

pbs.ATR_VFLAG_SET ATR_VFLAG_SET

pbs.ATR_VFLAG_MODIFY ATR_VFLAG_MODIFY

pbs.ATR_VFLAG_DEFLT ATR_VFLAG_DEFLT

pbs.ATR_VFLAG_MODCACHE ATR_VFLAG_MODCACHE

pbs.ATR_VFLAG_INDIRECT ATR_VFLAG_INDIRECT

pbs.ATR_VFLAG_TARGET ATR_VFLAG_TARGET

pbs.ATR_VFLAG_HOOK ATR_VFLAG_HOOK
PBS Professional 2022.1 Hooks Guide HG-159

Chapter 6 Hook Objects and Methods
6.13 Configuration File Python Elements

6.13.1 Variable Containing Hook Configuration File Path

pbs.hook_config_filename

Contains the path to the hook's configuration file, or None if there is no configuration file.

6.13.2 Dictionary of PBS Configuration File Entries

pbs.pbs_conf[]

This is a dictionary of values which represent entries in the pbs.conf file.

This reflects the contents of /etc/pbs.conf on the host where a hook runs, so pre-execution event (server) hooks get the
entries on the server host, and execution event (MoM) hooks get the entries on the execution host where the hook runs.

Example of using pbs.pbs.conf[]:

pbs.logmsg(pbs.LOG_DEBUG, "pbs home is %s" % (pbs.pbs_conf['PBS_HOME']))

If you change /etc/pbs.conf, HUP pbs_mom (Linux) and/or restart pbs_server to rebuild the dictionary with the
new contents of pbs.conf.

Each parameter in the pbs.conf file is the key to its dictionary entry. The pbs.conf file can contain the following param-
eters:

Table 6-42: Parameters in pbs.conf

Parameter Description

PBS_AUTH_METHOD Specifies default authentication method and library to be used by PBS.
Used only at authenticating client. Case-insensitive.

Default value: resvport

To use MUNGE, set to munge

PBS_BATCH_SERVICE_PORT Port on which server listens. Default: 15001

PBS_BATCH_SERVICE_PORT_DIS DIS port on which server listens.

PBS_COMM_LOG_EVENTS Communication daemon log mask. Default: 511

PBS_COMM_ROUTERS Tells a pbs_comm the location of the other pbs_comms.

PBS_COMM_THREADS Number of threads for communication daemon.

PBS_CORE_LIMIT Limit on corefile size for PBS daemons. Can be set to an integer num-
ber of bytes or to the string "unlimited". If unset, core file size limit is
inherited from the shell environment.

PBS_CP Specifies command for MoM to use for local copy

PBS_DAEMON_SERVICE_USER Username under which scheduler(s) run. Default: root

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data service. Default:
15007
HG-160 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
PBS_ENCRYPT_METHOD Specifies method and library for encrypting and decrypting data in cli-
ent-server communication. Used only at authentication client side.
Case-insensitive.

To use TLS encryption in client-server communication, set this parame-
ter to tls.

No default; if this is not set, PBS does not encrypt or decrypt data.

PBS_ENVIRONMENT Location of pbs_environment file.

PBS_EXEC Location of PBS bin and sbin directories.

PBS_HOME Location of PBS working directories.

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the dae-
mon.

By default, the name of the endpoint's host is the hostname of the
machine. You can set the name where an endpoint runs. This is useful
when you have multiple networks configured, and you want PBS to use
a particular network.

The server only queries for the canonicalized address of the MoM host,
unless you let it know via the Mom attribute; if you have set
PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure
you set the Mom attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not
affect how pbs_comm works.

PBS_LEAF_ROUTERS Location of endpoint's pbs_comm daemon(s).

PBS_LOCALLOG=<value> Enables logging to local PBS log files. Valid values:

0: no local logging

1: local logging enabled

Only available when using syslog.

PBS_LOG_HIGHRES_TIMESTAMP Controls whether daemons on this host log timestamps in microseconds.

Default timestamp log format is HH:MM:SS. With microsecond log-
ging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when using syslog.

Overridden by environment variable of the same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

PBS_MAIL_HOST_NAME Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation's Mail_Users attribute.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (":"). For how this is used in email address, see section
2.2.3, “Specifying Mail Delivery Domain”, on page 22.

PBS_MANAGER_SERVICE_PORT Port on which MoM listens. Default: 15003

PBS_MOM_HOME Location of MoM working directories.

Table 6-42: Parameters in pbs.conf

Parameter Description
PBS Professional 2022.1 Hooks Guide HG-161

Chapter 6 Hook Objects and Methods
PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child
vnodes. If this is not set, MoM defaults to using the non-canonicalized
hostname returned by gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP
address> in pbs.conf on the execution host.

Dots are not allowed in this parameter unless they are part of an IP
address.

PBS_MOM_SERVICE_PORT Port on which MoM listens. Default: 15002

PBS_OUTPUT_HOST_NAME Host to which all job standard output and standard error are delivered.
If specified in pbs.conf on a job submission host, the value of
PBS_OUTPUT_HOST_NAME is used in the host portion of the job's
Output_Path and Error_Path attributes. If the job submitter does not
specify paths for standard output and standard error, the current working
directory for the qsub command is used, and the value of
PBS_OUTPUT_HOST_NAME is appended after an at sign ("@"). If
the job submitter specifies only a file path for standard output and stan-
dard error, the value of PBS_OUTPUT_HOST_NAME is appended
after an at sign ("@"). If the job submitter specifies paths for standard
output and standard error that include host names, the specified paths
are used.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (":"). See "Delivering Output and Error Files" on page
60 in the PBS Professional Administrator’s Guide.

PBS_PRIMARY Hostname of primary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the correspond-
ing host. If you do not set PBS_LEAF_NAME on the server host,
make sure that PBS_PRIMARY matches the hostname of the server
host.

PBS_RCP Location of rcp command if rcp is used.

PBS_REMOTE_VIEWER Specifies remote viewer client.

If not specified, PBS uses native Remote Desktop client for remote
viewer.

Set on submission host(s).

Supported on Windows only.

PBS_SCHED_THREADS Maximum number of scheduler threads. Scheduler automatically caps
number of threads at the number of cores (or hyperthreads if applicable),
regardless of value of this variable.

Overridden by pbs_sched -t option and
PBS_SCHED_THREADS environment variable.

Default: 1

Table 6-42: Parameters in pbs.conf

Parameter Description
HG-162 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
PBS_SCP Location of scp command if scp is used; setting this parameter causes
PBS to first try scp rather than rcp for file transport.

PBS_SECONDARY Hostname of secondary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the secondary server host, make sure
that PBS_SECONDARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_SECONDARY matches the hostname of the
server host.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 charac-
ters. If the short name of the server host resolves to the correct IP
address, you can use the short name for the value of the PBS_SERVER
entry in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME The FQDN of the server host. Used by clients to contact server. Over-
ridden by PBS_PRIMARY and PBS_SECONDARY failover parame-
ters. Overrides PBS_SERVER parameter. Optional. If specified, must
be a fully qualified domain name. Cannot contain a colon (":"). See
"Contacting the Server" on page 60 in the PBS Professional Administra-
tor’s Guide.

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Deprecated. Set this to 1 if default scheduler is to run on this host.
Overridden by scheduler's scheduling attribute.

PBS_START_SERVER Set this to 1 if server is to run on this host.

PBS_SUPPORTED_AUTH_METHODS Specifies supported authentication methods for client-server communi-
cation. Used by authenticating server (PBS server, scheduler, MoM, or
comm); ignored at client. Case-insensitive.

If this parameter is set, PBS accepts only the methods listed.

Format: comma-separated list of authentication methods.

Default value: resvport

Example: munge,GSS

Table 6-42: Parameters in pbs.conf

Parameter Description
PBS Professional 2022.1 Hooks Guide HG-163

Chapter 6 Hook Objects and Methods
6.14 Constant Objects

Constant objects are used to represent PBS elements such as event types, job, server, reservation, and vnode states, log
event classes, queue and vnode types, and exceptions. These objects cannot be modified. When the PBS module is
imported, the constant objects are imported.

6.15 Object Members and Methods

The relationships between objects and methods are shown in Figure 6-1 and Figure 6-2.

Event object members are listed in Table 6-26, “Using Event Object Members in Job Events,” on page 116 and
Table 6-27, “Using Event Object Members in Reservation and Other Non-job Events,” on page 117.

Non-event objects and object members are listed in Table 6-43, “PBS Objects and Object Members,” on page 165.

We list the methods available for each kind of event in Table 6-44, “Methods Available in Job Events,” on page 165 and
Table 6-45, “Methods Available in Reservation and Other Non-job Events,” on page 167.

Each global method is described in section 6.15.3, “PBS Types and Their Methods”, on page 168.

Each event-only method is described in section 6.3.4, “Event-only Methods”, on page 125.

Each object-only method is described in the section for its object.

PBS_SYSLOG=<value> Controls use of syslog facility under which the entries are logged.

Valid values:

0: no syslogging

1: logged via LOG_DAEMON facility

2: logged via LOG_LOCAL0 facility

3: logged via LOG_LOCAL1 facility

...

9: logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=<value> Filters syslog messages by severity. Valid values:

0: only LOG_EMERG messages are logged

1: messages up to LOG_ALERT are logged

...

7: messages up to LOG_DEBUG are logged

PBS_TMPDIR Location of temporary files/directories used by PBS components.

Table 6-42: Parameters in pbs.conf

Parameter Description
HG-164 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.15.1 PBS Objects and Object Members

The following table lists PBS objects and their members, such as the server or jobs:

6.15.2 Methods Available in Events

The following tables list all methods, and show which events can use each method. A "y" means that the hook can use
the method, an "n" means it cannot, and an "o" means that it can but will have no effect:

Table 6-43: PBS Objects and Object Members

Object Object Member Object Sub-member

pbs.hook_config_filename
pbs.job job.id

job.<attribute name>
pbs.exec_vnode (job attribute) pbs.exec_vnode.chunks[]
pbs.resv

pbs.management pbs.server_attribute
pbs.pbs_conf[]
pbs.queue queue.<attribute name>

queue.name
pbs.resv resv.<attribute name>

resv.resvid
pbs.server pbs.server().<attribute name>

pbs.server().name
pbs.vnode vnode.<attribute name>

pbs.vchunk vchunk.chunk_resources[]
vchunk.vnode_name

Table 6-44: Methods Available in Job Events

Method

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

job.delete() n n n n n n n n y y o o o o y y o
job.in_ms_mom() n y y y y y y y y y o o y y y y y
job.is_checkpointed() n y y y y y y y y y o o y y y y y
job.release_nodes() n n n n n n n n n y y n n n n n n
job.rerun() n n n n n n n n y y o o o o y y o
pbs.acl() n y y y y y y y y y o o y y y y y
pbs.args() n y y y y y y y y y y y y y y y y
pbs.checkpoint() n y y y y y y y y y o o y y y y y
pbs.depend() n y y y y y y y y y o o y y y y y
pbs.duration() n y y y y y y y y y o o y y y y y
pbs.email_list() n y y y y y y y y y o o y y y y y
pbs.event().accept() n y y y y y y y y y y y y y y y y
PBS Professional 2022.1 Hooks Guide HG-165

Chapter 6 Hook Objects and Methods
pbs.event().reject() n y y y y y y y y y y y y y y y y
pbs.exec_host() n y y y y y y y y y o o y y y y y
pbs.exec_vnode() n y y y y y y y y y o o y y y y y
pbs.get_local_nodename() n y y y y y y y y y y y y y y y y
pbs.group_list() n y y y y y y y y y o o y y y y y
pbs.hold_types() n y y y y y y y y y o o y y y y y
pbs.job_sort_formula() n y y y y y y y y y o o y y y y y
pbs.join_path() n y y y y y y y y y o o y y y y y
pbs.keep_files() n y y y y y y y y y o o y y y y y
pbs.license_count() n y y y y y y y y y o o y y y y y
pbs.logjobmsg() n y y y y y y y y y y y y y y y y
pbs.logmsg() n y y y y y y y y y y y y y y y y
pbs.mail_points() n y y y y y y y y y o o y y y y y
pbs.node_group_key() n y y y y y y y y y o o y y y y y
pbs.path_list() n y y y y y y y y y o o y y y y y
pbs.pbs_env() n y y y y y y y y y y y y y y y y
pbs.place() n y y y y y y y y y o o y y y y y
pbs.range() n y y y y y y y y y o o y y y y y
pbs.reboot() y y y y y y y y y y y y y y y y y
pbs.route_destinations() n y y y y y y y y y o o y y y y y
pbs.select() n y y y y y y y y y o o y y y y y
pbs.select.increment_chunks() o y o o y o o o o o o o o o o o o
pbs.server().job(’<job ID>’) n y y y y y y y y y y y y y y y y
pbs.server().jobs() n y y y y y y y y y y y y y y y y
pbs.server().queue("<queue_name>") n y y y y y y y y y y y y y y y y
pbs.server().queues() n y y y y y y y y y y y y y y y y
pbs.server().resv("<reservation ID>") n y y y y y y y y y y y y y y y y
pbs.server().resvs() n y y y y y y y y y y y y y y y y
pbs.server().scheduler_restart_cycle() n y y y y y y y y y y y y y y y y
pbs.server().vnode("<vnode name>") n y y y y y y y y y y y y y y y y
pbs.server().vnodes() n y y y y y y y y y y y y y y y y
pbs.size() n y y y y y y y y y o o y y y y y
pbs.software() n y y y y y y y y y o o y y y y y
pbs.staging_list() n y y y y y y y y y o o y y y y y
pbs.state_count() n y y y y y y y y y o o y y y y y
pbs.user_list() n y y y y y y y y y o o y y y y y
pbs.version() n y y y y y y y y y y y y y y y y
queue.job() n y y y y y y y y y y y y y y y y
queue.jobs() n y y y y y y y y y y y y y y y y
vchunk.chunk_resources.keys() n y y y y y y y y y y y y y y y y
vnode.extract_state_ints()
vnode.extract_state_strs()

Table 6-44: Methods Available in Job Events

Method

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

HG-166 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
Table 6-45: Methods Available in Reservation and Other Non-job Events

Method

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

job.delete() n n n n n n n n o y
job.in_ms_mom() n n n n n n n n o y
job.is_checkpointed() n n n n n n n n o y
job.release_nodes() n n n n n n n n n n
job.rerun() n n n n n n n n o y
pbs.acl() o o o o o n o y
pbs.args() y o y o o n y y
pbs.checkpoint() o o o o o n o y
pbs.depend() o o o o o n o y
pbs.duration() o o o o o n o y
pbs.email_list() o o o o o n o y
pbs.event().accept() y o y o o n y y
pbs.event().reject() y y y y y n y y
pbs.exec_host() o o o o o n o y
pbs.exec_vnode() o o o o o n o y
pbs.get_local_nodename() y o y o o n y y
pbs.group_list() o o o o o n o y
pbs.hold_types() o o o o o n o y
pbs.job_sort_formula() o o o o o n o y
pbs.join_path() o o o o o n o y
pbs.keep_files() o o o o o n o y
pbs.license_count() o o o o o n o y
pbs.logjobmsg() y o y o o y y y
pbs.logmsg() y y y y y y y y
pbs.mail_points() o o o o o n o y
pbs.node_group_key() o o o o o n o y
pbs.path_list() o o o o o n o y
pbs.pbs_env() y o y o o n y y
pbs.place() o o o o o n o y
pbs.range() o o o o o n o y
pbs.reboot() y y y y y y y y
pbs.route_destinations() o o o o o n o y
pbs.select() o o o o o n o y
pbs.select.increment_chunks() o o o o o o o o
pbs.server().job(’<job ID>’) y o y o o , n y y
pbs.server().jobs() y o y o o n y y
pbs.server().queue("<queue_name>") y o y o o n y y
pbs.server().queues() y o y o o n y y
pbs.server().resv("<reservation ID>") y o y o o n y y
pbs.server().resvs() y o y o o n y y
pbs.server().scheduler_restart_cycle() y o y o o n y y
pbs.server().vnode("<vnode name>") y o y o o n y y
pbs.server().vnodes() y o y o o n y y
PBS Professional 2022.1 Hooks Guide HG-167

Chapter 6 Hook Objects and Methods
6.15.3 PBS Types and Their Methods

6.15.3.1 Method to Create or Set ACL

pbs.acl()

pbs.acl("[+|-]<entity>][,...]")

Creates an object representing a PBS ACL, from the specified formatted input string.

6.15.3.2 Method to Create or Set Command Argument List

pbs.args()

pbs.args("<args>")

where <args> are space-separated arguments to a command.

Creates an object representing the arguments to the command from the specified formatted input string <args>.

Example of setting a command argument list:

pbs.args("-Wsuppress_email=N -r y")

6.15.3.3 Method to Create or Set Checkpoint String

pbs.checkpoint()

pbs.checkpoint("<checkpoint_string>")

where <checkpoint_string> must be one of "n", "s", "c", "c=mmm", "w", or "w=mmm"

Creates an object representing the job Checkpoint attribute, using the specified formatted input string
<checkpoint_string>.

pbs.size() o o o o o n o y
pbs.software() o o o o o n o y
pbs.staging_list() o o o o o n o y
pbs.state_count() o o o o o n o y
pbs.user_list() o o o o o n o y
pbs.version() y o y o o n y y
queue.job() y o y o o n y y
queue.jobs() y o y o o n y y
vchunk.chunk_resources.keys() y o y o o n y y
vnode.extract_state_ints() y
vnode.extract_state_strs() y

Table 6-45: Methods Available in Reservation and Other Non-job Events

Method

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
HG-168 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.15.3.4 Method to Create or Set Dependency Object

pbs.depend()

pbs.depend("<depend_string>")

<depend_string> must be of format "<type>:<jobid>[:<jobid>...]", or "on:<count>".

where <type> is one of "after", "afterok", "afterany", "afternotok", "before", "beforeok", "beforeany", and "befor-
enotok".

Creates a PBS dependency specification object representing the job depend attribute, using the given <depend_string>.

Usage:

pbs.event().job.depend = pbs.depend("<depend_string>")

6.15.3.5 Method to Create or Set Duration from Time String or Integer

pbs.duration()

pbs.duration("[[hours:]minutes:]seconds[.milliseconds]")

Creates a time specification duration instance, returning the equivalent number of seconds from the given time string.
Represents an interval or elapsed time in number of seconds. Duration objects can be specified using either a time or an
integer. See "Method to Create or Set Duration from Time String or Integer".

pbs.duration(<integer>)

Creates an integer duration instance using the specified number of seconds.

A pbs.duration instance can be operated on by any of the Python int functions. When performing arithmetic operations
on a pbs.duration type, ensure the resulting value is a pbs.duration() type, before assigning to a job member that expects
such a type.

Example:

pbs.event().job.Resource_List["cput"] = pbs.duration(300 + d1) # safe

The following will not work, since Python evaluates from left to right, and returns result as the type at left (int):

d1 = pbs.duration(30)

pbs.event().job.Resource_List["cput"] = 300 + d1

6.15.3.6 Method to Create or Set Email List

pbs.email_list()

pbs.email_list("<email_address1>[, <email address2>...]")

Creates an object representing a mail list from the specified formatted input string.

6.15.3.7 Method to Create or Set exec_host Object

pbs.exec_host()

pbs.exec_host("host/N[*C][+...]")

Create an object representing the exec_host job attribute, using the specified input string containing host and resource
specification.
PBS Professional 2022.1 Hooks Guide HG-169

Chapter 6 Hook Objects and Methods
6.15.3.8 Method to Create or Set exec_vnode Object

pbs.exec_vnode()

pbs.exec_vnode("<vchunk>[+<vchunk> ...]")

<vchunk> is (<vnodename:ncpus=N:mem=M>)

Creates an object representing the exec_vnode job attribute, using the input string containing the vnode and resource
specification. When the qrun -H command is used, or when the scheduler runs a job, the job.exec_vnode object con-
tains the vnode specification for the job.

Example:

pbs.exec_vnode("(vnodeA:ncpus=N:mem=X)+(nodeB:ncpus=P:mem=Y+nodeC:mem=Z)")

This object is managed and accessed via the str() or repr() functions. Example:

Python> ev = pbs.server().job("10").exec_vnode

Python> str(ev) "(vnodeA:ncpus=2:mem=200m)+(vnodeB:ncpus=5:mem=1g)"

6.15.3.9 Method to Create or Set group_list Object

pbs.group_list()

pbs.group_list("<group_name>[@<host>][,<group_name>[@<host>]...]")

Creates an object representing a PBS group list from the specified formatted input string.

To use a group list object:

job.group_list = pbs.group_list(....)

6.15.3.10 Method to Create or Set hold_types Object

pbs.hold_types()

pbs.hold_types("<hold_type_str>")

where <hold_type_str> is one of "u", "o", "s", or "n".

Creates an object representing the Hold_Types job attribute from the specified formatted input string.

6.15.3.11 Method to Create or Set job_sort_formula Object

pbs.job_sort_formula()

pbs.job_sort_formula("<formula string>")

where <formula string> is a string containing a math formula. See section 4.9.21, “Using a Formula for Computing Job
Execution Priority”, on page 150.

Creates an object representing the job_sort_formula server attribute from the specified formatted input string.

6.15.3.12 Method to Create or Set join_path Object

pbs.join_path()

pbs.join_path({"oe"|"eo"|"n"})

Creates an object representing the Join_Path job attribute from the specified formatted input string.
HG-170 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.15.3.13 Method to Create or Set keep_files Object

pbs.keep_files()

pbs.keep_files("<Keep_Files option>")

where <Keep_Files option> is one of "n", "d", "o", "e", "oe", "eo".

Creates an object representing the Keep_Files job attribute from the specified formatted input string.

6.15.3.14 Method to Create or Set license_count Object

pbs.license_count()

pbs.license_count("Avail_Global:<value> Avail_Local:<value> Used:<value> High_Use:<value>")

Instantiates an object representing a license_count attribute from the specified formatted input string.

6.15.3.15 Method to Create or Set mail_points Object

pbs.mail_points()

pbs.mail_points("<mail points string>")

where mail points string is "a", "b", and/or "e", optionally with "j", or "n".

Creates a pbs.mail_points object representing a Mail_Points attribute from the specified formatted input string.

6.15.3.16 Method to Create or Set node_group_key Object

pbs.node_group_key()

pbs.node_group_key("<resource(s)>")

Creates a pbs.node_group_key object representing the resource(s) to be used for node grouping, using the specified
resource(s). The input string is a comma-separated, quoted list of resources.

6.15.3.17 Method to Create or Set path_list Object

pbs.path_list()

pbs.path_list("<path>[@<host>][,<path>@<host> ...]")

Creates an object representing a PBS pathname list from the specified formatted input string.

To use a path list object:

job.Shell_Path_List = pbs.path_list(....)

6.15.3.18 Method to Create or Set Job Environment Object

pbs.pbs_env()

Creates an empty environment variable list.

For example, to clear an environment variable list:

pbs.event().env = pbs.pbs_env()

6.15.3.19 Method to Create or Set Resource List

pbs.pbs_resource()

pbs.pbs_resource(<resource list name>)
PBS Professional 2022.1 Hooks Guide HG-171

Chapter 6 Hook Objects and Methods
Creates a pbs.pbs_resource object with the specified name.

To set values for a pbs.pbs_resource object:

<resource list name>['<resource name>']=<resource value>

For example:

Resource_List['ncpus']=8

Resource_List['mem']=pbs.size("10gb")

Resource_List['walltime']=pbs.duration('00:45:00')

A pbs.pbs_resource is similar to a dictionary, but you cannot use direct traversal. To loop through entries:

for r in <list name>.keys():

 ...

For example:

for r in <Resource_List>.keys():

 pbs.logmsg(pbs.LOG_DEBUG, "Resource_List[%s]=%s" % (r, Resource_List[r]))

which produces the following log message:

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List[walltime]=00:45:00

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List[mem]=10gb

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List[ncpus]=7

A str(<object of type pbs.pbs_resource>) produces output of the form:

<resource name>=<value>,<resource name>=<value>, ...

To do the equivalent of str():

pbs.logmsg(pbs.LOG_DEBUG, "Resource_List is %s (%s)" % (Resource_List, type(Resource_List)))

This produces the following log message:

03/08/2018 18:47:16;0006;pbs_python;Hook;pbs_python;Resource_List is
mem=10gb,ncpus=7,walltime=00:45:00 (<class 'pbs.v1._base_types.pbs_resource'>)

6.15.3.20 Method to Create or Set place Object

pbs.place()

pbs.place("[arrangement]:[sharing]:[group]")

arrangement can be "pack", "scatter", "free", "vscatter"

sharing can be "shared", "excl", "exclhost"

group can be of the form "group=<resource>"

[arrangement], [sharing], and [group] can be given in any order or combination.

Creates a place object representing the job's place specification from the specified formatted input string.

Example:

pl = pbs.place("pack:excl")

s = repr(pl) (or s = `pl`)

letter = pl[0] (assigns 'p' to letter)

s = s + ":group=host" (append to string)

pl = pbs.place(s) (update original pl)
HG-172 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.15.3.21 Method to Create or Set range Object

pbs.range()

pbs.range("<start>-<stop>:<step>")

Creates a PBS object representing a range of values from the specified formatted input string. Can be used to create a
job.array_indices_submitted object. See section 6.6.1.2.ii, “Job array_indices_submitted Attribute Member”, on page
134.

Example:

pbs.range("1-30:3")

6.15.3.22 Method to Create or Set route_destinations Object

pbs.route_destinations()

pbs.route_destinations("<queue_spec>[,<queue_spec>,...]")

where <queue_spec> is queue_name[@server_host[:port]]

Creates an object that represents a route_destinations routing queue attribute from the specified formatted input string.

6.15.3.23 Method to Create or Set select Object

pbs.select()

pbs.select("[N:]res=val[:res=val]…[+[N:]res=val[:res=val] ...]")

Creates a select object representing the job's select specification from the specified formatted input string.

Example:

sel = pbs.select("2:ncpus=1:mem=5gb+3:ncpus=2:mem=5gb")

s = repr(sel) (or s = `sel`)

letter = s[3] (assigns 'c' to letter)

s = s + "+5:scratch=10gb" (append to string)

sel = pbs.select(s) (reset the value of sel)

6.15.3.24 Method to Increment select Object Chunks

pbs.select.increment_chunks()

pbs.select.increment_chunks(<increment specification>)

Creates a select object representing the job's new select specification, which has been padded from the original accord-
ing to the increment specification.
PBS Professional 2022.1 Hooks Guide HG-173

Chapter 6 Hook Objects and Methods
You can pad all chunks, but you do not pad the primary vnode request itself; the job can only request one primary vnode.
So when a job requests 3:ncpus=8+4:ncpus=1, the non-paddable primary vnode is considered to be a separate request of
1:ncpus=8, and the paddable part is the remaining 2:ncpus=8+4:ncpus=1. :

Table 6-46: Behavior for increment specification

Value of increment
specification

Behavior

Integer amount

Format: can be with or
without quotes (a number
or a numeric string), e.g.
5 or "5"

Adds specified number of vnodes to each chunk in the job's vnode request. Examples:

Given this initial select statement:

my_select=pbs.select("ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks(2) returns:

"1:ncpus=3:mem=1gb+3:ncpus=2:mem=2gb+4:ncpus=1:mem=3gb"
Calling my_select.increment_chunks("3") returns:

"1:ncpus=3:mem=1gb+4:ncpus=2:mem=2gb+5:ncpus=1:mem=3gb"

Percentage amount

Format: a quoted numeric
string ending in a per-
cent sign, e.g. "10%"

Adds specified percent of vnodes to each chunk in the job's vnode request. Resulting
amounts are rounded up. Example:

Given this initial select statement:

my_select=pbs.select("ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks("23.5%") returns:

"1:ncpus=3:mem=1gb+2:ncpus=2:mem=2gb+3:ncpus=1:mem=3gb"
The first chunk, which is a single chunk, is left as is, and the second and third chunks are
increased by 23.5 %. 1.24 is rounded up to 2, and 2.47 is rounded up to 3.

Per-chunk specification

Format: {<chunk index>
: <increment>, ...}
where the increment can
be an integer or a per-
centage

Adds specified amount or percent to specified chunk(s). Chunk index starts at 0. Examples:

Given this initial select statement:

my_select=pbs.select("ncpus=3:mem=1gb+1:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks({0: 0, 1: 4, 2: "50%"}) returns:

"1:ncpus=3:mem=1gb+5:ncpus=2:mem=2gb+3:ncpus=1:mem=3gb"
There is no increase (0) for chunk 1, we give 4 additional chunks to chunk 2, and we
increase chunk 3 by 50%, resulting in 3.

Given this initial select statement:

my_select=pbs.select("5:ncpus=3:mem=1gb+4:ncpus=2:mem=2gb+2:ncpus=1:mem=3gb")
Calling my_select.increment_chunks("50%") or my_select.increment_chunks({0:
"50%", 1: "50%", 2: "50%}) returns:

"7:ncpus=3:mem=1gb+6:ncpus=2:mem=2gb+3:ncpus=1:mem=3gb"
The primary vnode is broken out as "1:ncpus=3:mem=1gb" and is left as is. The "50%"
increase is applied to the remaining portion, "4:ncpus=3:mem=1gb". After the increase is
applied, the original first chunk is re-created from the primary vnode and the padded
remains of the first chunk to make 7. Chunk 2 gets 6 and chunk 3 gets 3.
HG-174 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.15.3.24.i Example of Padding Chunks

The following code snippet illustrates padding a job's vnode request by one extra vnode per chunk:

import pbs

e=pbs.event()

j = e.job

new_select = e.job.Resource_List["select"].increment_chunks(1)

e.job.Resource_List["select"] = new_select

6.15.3.25 Method to Create or Set size Object

pbs.size()

You can create a pbs.size object using either a byte count or a suffix:

pbs.size(<integer>)

Creates a PBS size object using integer byte count, storing the value as the number of bytes. Size objects can be speci-
fied using either an integer or a string. See the "pbs.size("<integer><suffix>")" creation method.

pbs.size("<integer><suffix>")

Creates a PBS size object using the specified suffix. The suffix must be a multiplier defined in the table shown in “Size”
on page 360 of the PBS Professional Reference Guide. The size of a word is the word size on the execution host. Size
objects can be specified using either an integer or a string.

To operate on pbs.size instances, use the "+" and "-" operators.

To compare pbs.size instances, use the "==", "!=", ">", "<", ">=", and "<=" operators.

Example: the sizes are normalized to the smaller of the 2 suffixes. In this case, "10gb" becomes "10240mb" and is added
to "10mb":

sz = pbs.size("10gb")

sz = sz + 10mb

10250mb

Example: the following returns True because sz is greater than 100 bytes:

if sz > 100:

gt100 = True

6.15.3.26 Method to Create or Set Software Resource Object

pbs.software()

pbs.software("<software info string>")

Creates an object representing a site-dependent software resource from the specified formatted input string.

6.15.3.27 Method to Create or Set staging_list Object

pbs.staging_list()

pbs.staging_list("<filespec>[,<filespec>,...]")

where <filespec> is <execution_path>@<storage_host>:<storage_path>

Creates an object representing a job file staging parameters list from the specified formatted input string.

To use a staging list object:

job.stagein = pbs.staging_list(....)
PBS Professional 2022.1 Hooks Guide HG-175

Chapter 6 Hook Objects and Methods
6.15.3.28 Method to Create or Set state_count Object

pbs.state_count()

pbs.state_count("Transit:<U> Queued:<V> Held:<W> Running:<X> Exiting:<Y> Begun:<Z>")

Instantiates an object representing a state_count attribute from the specified formatted input string.

6.15.3.29 Method to Create or Set user_list Object

pbs.user_list()

pbs.user_list("<user>[@<host>][,<user>@<host>...]")

Creates an object representing a PBS user list from the specified formatted input string.

To use a user list object:

job.User_List = pbs.user_list(....)

6.15.3.30 Method to Create or Set PBS Version Object

pbs.version()

pbs.version("<pbs version string>")

Creates an object representing the PBS version string from the specified formatted input string.

6.15.4 Global Methods

We use "global methods" to refer to methods that are global to the module (not to a hook).

6.15.4.1 Method to Get Local Vnode Name

pbs.get_local_nodename()

This returns a Python str whose value is the name of the local parent vnode.

If you want to refer to the vnode object representing the current host, you can pass this vnode name as the key to
pbs.event().vnode_list[]. For example:

Vn = pbs.event().vnode_list[pbs.get_local_nodename()]

6.15.4.2 Method to Log Job-related String

pbs.logjobmsg()

pbs.logjobmsg(job ID, message)

where job ID must be an existing or previously existing job ID and where message is an arbitrary string.

This puts a custom string in the log of the PBS daemon running the hook, so if the method is being run by a server hook
such as queuejob, it prints to the server log, but if the method is being run at an execution host hook such as
execjob_prologue, it prints to the MoM log.

The tracejob command can be used to print out the job-related messages logged by a hook script.

Messages are logged at log event class pbs.LOG_DEBUG. See Table 6.15.4.4, “Message Log Level Objects,” on
page 177.
HG-176 PBS Professional 2022.1 Hooks Guide

Hook Objects and Methods Chapter 6
6.15.4.3 Method to Log String

pbs.logmsg()

pbs.logmsg(log event class, message)

where message is an arbitrary string, and where log event class can be one of the message log event class constants
shown in Table 6-47, “Message Log Level Objects,” on page 177.

This puts a custom string in the log of the PBS daemon running the hook, so if the method is being run by a server hook
such as queuejob, it prints to the server log, but if the method is being run at an execution host hook such as
execjob_prologue, it prints to the MoM log.

Example:

for j in pbs.server().jobs():

 pbs.logmsg(pbs.LOG_DEBUG, "found job %s" % (j.id))

6.15.4.4 Message Log Level Objects

You can use the following objects to indicate log level when placing messages in the server logs.

Table 6-47: Message Log Level Objects

Object
Deci
mal

Hex
PBS Log

Event
Filter

Name and Event Category

pbs. EVENT_ERROR 1 0x0001 error PBSEVENT_ERROR

Internal errors

pbs. EVENT_SYSTEM 2 0x0002 system PBSEVENT_SYSTEM

system errors

pbs. EVENT_ADMIN 4 0x0004 admin PBSEVENT_ADMIN

Administrative events

pbs.LOG_DEBUG 5 0x0005 admin PBSEVENT_ADMIN

Administrative events

pbs.LOG_WARNING 6 0x0006 admin PBSEVENT_ADMIN

Administrative events

pbs.LOG_ERROR 7 0x0007 admin PBSEVENT_ADMIN

Administrative events

pbs. EVENT_JOB 8 0x0008 job PBSEVENT_JOB

Job-related events

pbs. EVENT_JOB_USAGE 16 0x0010 job_usage PBSEVENT_JOB_USAGE

Job accounting info

pbs. EVENT_SECURITY 32 0x0020 Security PBSEVENT_SECURITY

Security violations

pbs. EVENT_SCHED 64 0x0040 sched PBSEVENT_SCHED

Scheduler events
PBS Professional 2022.1 Hooks Guide HG-177

Chapter 6 Hook Objects and Methods
6.15.4.5 Method to Reboot Host

pbs.reboot()

pbs.reboot([<command>])

This stops hook execution, so that remaining lines in the hook script are not executed, and starts the tasks that would nor-
mally begin after the hook is finished, such as flagging the current host to be rebooted. The MoM logs show the follow-
ing:

<hook name> requested for host to be rebooted

We recommend that before calling pbs.reboot(), you set any vnodes managed by this MoM offline, and requeue the cur-
rent job, if this hook is not an exechost_periodic hook. For example:

for v in pbs.event().vnode_list.keys():

pbs.event().vnode_list[v].state = pbs.ND_OFFLINE

pbs.event().vnode_list[v].comment = "Rebooting host"

pbs.event().job.rerun()

pbs.reboot()

The effect of the call to pbs.reboot() is not instantaneous. The reboot happens after the hook executes, and after any of
the other actions such as pbs.event().job.rerun(), pbs.event().delete(), and pbs.event().vnode_list[] take effect.

A hook with its user attribute set to pbsuser cannot successfully invoke pbs.reboot(), even if the owner is a PBS Man-
ager or Operator. If this is attempted, the host is not rebooted, and the following message appears at log event class
PBSEVENT_DEBUG2 in the MoM logs:

<hook_name>; Not allowed to issue reboot if run as user.

The <command> is an optional argument. It is a Python str which is executed instead of the reboot command that is the
default for the system. For example:

pbs.reboot("/usr/local/bin/my_reboot -s 10 -c 'going down in 10'")

The specified <command> is executed in a shell on Linux/UNIX or via cmd on Windows.

pbs. EVENT_DEBUG 128 0x0080 debug PBSEVENT_DEBUG

Common debug messages

pbs. EVENT_DEBUG2 256 0x0100 debug2 PBSEVENT_DEBUG2

Uncommon debug messages

pbs. EVENT_RESV 512 0x0200 resv PBSEVENT_RESV

Reservation-related events

pbs. EVENT_DEBUG3 1024 0x0400 debug3 PBSEVENT_DEBUG3

Less common than PBSEVENT_DEBUG2

pbs. EVENT_DEBUG4 2048 0x0800 debug4 PBSEVENT_DEBUG4

Less common than debug3

pbs. EVENT_FORCE 4096 0x8000 (No filter
applies)

PBSEVENT_FORCE

Forces a message to be logged

Table 6-47: Message Log Level Objects

Object
Deci
mal

Hex
PBS Log

Event
Filter

Name and Event Category
HG-178 PBS Professional 2022.1 Hooks Guide

7

Built-in Hooks

7.1 Managing Built-in Hooks

PBS comes shipped with built-in hooks that implement features or patch bugs. You can operate on these hooks via
qmgr. The qmgr keyword for built-in hooks is "pbshook". These hooks are named with the "PBS" prefix.

7.2 Prerequisites

You can operate on built-in hooks only from an account that has root access to the PBS server host.

When operating on a built-in hook, use the keyword "pbshook", not "hook".

7.3 Allowed Operations

You can perform a limited set of operations on built-in hooks. You can do the following:

• View attributes

• Set all attributes except for type

• Edit configuration files

• Replace with your own hook

7.4 Viewing Built-in Hooks

You can view attributes of built-in hooks:

qmgr -c "list pbshook"

Hook PBS_example_hook

type = pbs

enabled = false

event = queuejob,resvsub

user = pbsadmin

alarm = 90

order = 1000
PBS Professional 2022.1 Hooks Guide HG-179

Chapter 7 Built-in Hooks
7.5 Setting Attributes of Built-in Hooks

You can set all attributes except for the type attribute for a built-in hook. For example, you can enable and disable
built-in hooks:

qmgr -c "set pbshook <built-in hook name> enabled=true"

qmgr -c "set pbshook <built-in hook name> enabled=false"

If you disable a built-in hook, the following message is printed to qmgr's STDERR:

"WARNING: Disabling a PBS hook results in an unsupported configuration!"

7.6 Editing and Importing Configuration Files for

Built-in Hooks

You can edit and re-import a configuration file for a built-in hook. Get the contents of the configuration file by exporting
the file:

#qmgr -c "export pbshook <hook name> application/x-config default" > config_file_save

Edit the file (here, config_file.save), then re-import it:

qmgr -c "import pbshook <hook name> application/x-config <content-encoding> default
config_file.save"

7.7 Restrictions

• You cannot create or delete a built-in hook. Attempting to do so results in the following error being printed to
qmgr's STDERR:
Invalid request

• You cannot import or export content of a built-in hook. Attempting to do so results in the following error being
printed to qmgr's STDERR:
<content-type> must be application/x-config

• You cannot display the commands to re-create a built-in hook: using qmgr -c "print pbshook" won't work.

7.8 Replacing a Built-in Hook with Your Own Hook

You can replace a built-in hook with your own hook. For example, to replace a built-in exechost_startup hook:

1. Disable the built-in hook:
qmgr -c "set pbshook <built-in startup hook> enabled=false"

2. Create your own site-defined hook instead:

qmgr -c "create hook <your startup hook> event=exechost_startup"

qmgr -c "import hook <your startup hook> application/x-python default <your startup script>
HG-180 PBS Professional 2022.1 Hooks Guide

Built-in Hooks Chapter 7
7.9 Errors and Logging when Operating on Built-in

Hooks

• If you try to operate on a built-in hook from an account that does not have root or Admin access, the following error
message is issued to STDERR:
"unable to generate a hook_tempfile from <filepath> - Permission denied"

<user>@<host> is unauthorized to access hooks data from server <hostname>"

• If you try to import or export a built-in hook, you will see one of the following messages on STDERR:
qmgr -c "import pbshook <hook name> application/x-python default my_hook.py"

<content-type> must be application/x-config

or

#qmgr -c "export pbshook <hook name> application/x-python default"

<content-type> must be application/x-config
PBS Professional 2022.1 Hooks Guide HG-181

Chapter 7 Built-in Hooks
HG-182 PBS Professional 2022.1 Hooks Guide

8

Debugging Hooks

8.1 The pbs_python Hook Debugging Tool

You can use the pbs_python wrapper that is shipped with PBS to debug hooks. Either:

• Use the --hook option to pbs_python to run pbs_python as a wrapper to Python, employing the
pbs_python options. With the --hook option, you cannot use the standard Python options. The rest of this sec-
tion covers how to use pbs_python with the --hook option.

• Do not use the --hook option, so pbs_python runs the Python interpreter, with the standard Python options, and
without access to the pbs_python options.

Usage for pbs_python:

pbs_python --hook [-e <log event mask>] [-i <event input_file>] [-L <log dir>] [-l <log file>] [-o <hook execution
record>] [-r <resourcedef file>] [-s site data file] [<python script>]

For a complete description of pbs_python, see “pbs_python” on page 82 of the PBS Professional Reference Guide.

8.2 Files for Debugging

You can get each hook to write out debugging files, and then modify the files and use them as debugging input to
pbs_python. Alternatively, you can write the files yourself.

Debugging files can contain information about the event, about the site, and about what the hook changed. You can use
these as inputs to a hook when debugging.

8.2.1 Producing Files for Debugging

To get a hook to write out event and site debugging files, and a hook execution record, set its debug attribute to True
(the default is False). The files are named hook_<event type>_<hook name>_<random integer>.in, .data, and
.out. The <random integer> is the same for all output files for one run of a hook. The <random integer> is different
for each run.

The hook writes these files:

• Event file, containing the values that populate the pbs.event() objects in the hook and any other top level pbs
objects like pbs.get_local_nodename(), and job and job list information. This file always contains the event type.
The file is named hook_<event type>_<hook name>_<random integer>.in. Can be passed to pbs_python
using -i <event file> option. See section 8.2.5, “Event File”, on page 184.

• Site data file, containing the values that populate the pbs.server() objects: server, queue, vnode, etc. information.
The site data file is named hook_<event type>_<hook name>_<random integer>.data. Can be passed to
pbs_python using -s <site data file> option. This file is populated only when the hook calls
pbs.server(). See section 8.2.6, “Site Data File”, on page 190.

• Hook execution record, listing whether the hook accepted or rejected the event, and whatever was changed by the
hook, named hook_<event type>_<hook name>_<random integer>.out. See section 8.2.7, “Hook Execution
Record File”, on page 191.
PBS Professional 2022.1 Hooks Guide HG-183

Chapter 8 Debugging Hooks
So for example an execjob_begin hook named BeginHook will produce files, if PBS chooses "15223" as its random
integer, named hook_execjob_begin_BeginHook_15223.in, hook_execjob_begin_BeginHook_15223.data, and
hook_execjob_begin_BeginHook_15223.out.

8.2.2 Locations for Debugging Files

These files are written to these locations:

• Pre-execution hooks: PBS_HOME/server_priv/hooks/tmp

• All exechost_* and execjob_* hooks: PBS_HOME/mom_priv/hooks/tmp

8.2.3 Format for Debugging Files

File format for debugging files is text. For example:

pbs.event().job.Hold_Types=u

pbs.event().job.Job_Name=STDIN

pbs.event().job.Checkpoint=u

pbs.event().job.Join_Path=n

pbs.event().job.Keep_Files=n

pbs.event().job.Mail_Points=a

pbs.event().job.Priority=0

pbs.event().job.Rerunable=TRUE

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=2gb

pbs.get_local_nodename()=mars.example.com

pbs.event().type=queuejob

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().requestor=TestUser

pbs.event().requestor_host=mars.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30

8.2.4 Time Limit for Debugging Files

PBS deletes hook .in, .data, and .out files in PBS_HOME/*/hooks/tmp that are older than 20 minutes. If you need to
keep any of these files, copy them to another location.

8.2.5 Event File

The event file must contain the event type, and can contain any relevant information about the triggering event, the cur-
rent job, or list of jobs.

When the hook writes it, this file contains the values that populate the pbs.event() objects in the hook and any other top
level pbs objects such as the local vnode, the job, and the list of jobs. When a hook writes this file, it includes
pbs.event().type and the result of get_local_nodename(). Each kind of hook writes different additional pbs.event()
information.
HG-184 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
The file is named hook_<event type>_<hook name>_<random integer>.in. It can be passed to pbs_python
using the -i <event file> option.

The following tables show which information is written to the event file by each kind of hook:

Table 8-1: Event File by Hook, for Job Hooks

Event Information Written by
Hooks:

pbs.event.<list item>

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

pbs.get_local_nodename() y y y y y y y y y y y y y y y y
alarm y y y y y y y y y y y y y y y y
argv[] y y
env y y
freq
hook_name y y y y y y y y y y y y y y y y
hook_type y y y y y y y y y y y y y y y y
job.Checkpoint y y y y y y y y y
job.egroup y y y y y y y y y
job.Error_Path y y y y y y y y y
job.euser y y y y y y y y y
job.exec_vnode y y y y y y y y y
job.Exit_Status y y y
job.id y y y y y y y y y
job.jobdir y y y y y
job.job_kill_delay y y y y y y y y y
job.Job_Name y y y y y y y y y
job.Job_Owner y y y y y y y y y
job.job_state y y y y y y y y
job.Join_Path y y y y y y y y y
job.Keep_Files y y y y y y y y y
job.mtime y y y y y y y y y
job.obittime y y y
job.Output_Path y y y y y y y y y
job.Priority y y y y y y y y
job.project y y y y y y y y y
job.queue y y y y y y y y y
job.resources_used[cpupercent] y y y y y
job.resources_used[cput] y y y y y
job.resources_used[mem] y y y y y
job.resources_used[ncpus] y y y y y
job.resources_used[vmem] y y y y
job.resources_used[walltime] y y y y y
job.Resource_List[file] y y y y y y y y y
job.Resource_List[ncpus] y y y y y y y y y
job.Resource_List[place] y y y y y y y y y
job.run_count y y y y y y y y y
job.run_version y y y y y y y y y
PBS Professional 2022.1 Hooks Guide HG-185

Chapter 8 Debugging Hooks
job.schedselect y y y y y y y y y
job.server y y y y y y y y y
job.session_id y y y y y
job.substate y y y y y y y y
job.Variable_List y y y y y y y y y
job_list["<job ID>"].Checkpoint
job_list["<job ID>"].egroup
job_list["<job ID>"].Error_Path
job_list["<job ID>"].euser
job_list["<job ID>"].exec_vnode
job_list["<job ID>"].hashname
job_list["<job ID>"].jobdir
job_list["<job ID>"].job_kill_delay
job_list["<job ID>"].Job_Name
job_list["<job ID>"].Job_Owner
job_list["<job ID>"].job_state
job_list["<job ID>"].Join_Path
job_list["<job ID>"].Keep_Files
job_list["<job ID>"].mtime
job_list["<job ID>"].obittime
job_list["<job ID>"].Output_Path
job_list["<job ID>"].project
job_list["<job ID>"].queue
job_list["<job
ID>"].resources_used[cpupercent]
job_list["<job
ID>"].resources_used[cput]
job_list["<job
ID>"].resources_used[mem]
job_list["<job
ID>"].resources_used[ncpus]
job_list["<job
ID>"].resources_used[walltime]
job_list["<job ID>"].Resource_List[file]
job_list["<job
ID>"].Resource_List[ncpus]
job_list["<job
ID>"].Resource_List[place]
job_list["<job ID>"].run_count
job_list["<job ID>"].run_version
job_list["<job ID>"].schedselect
job_list["<job ID>"].server

Table 8-1: Event File by Hook, for Job Hooks

Event Information Written by
Hooks:

pbs.event.<list item>

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

HG-186 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
job_list["<job ID>"].session_id
job_list["<job ID>"].substate
job_list["<job ID>"].Variable_List
job_list["<job ID>"]._msmom
job_list["<job ID>"]._stderr_file
job_list["<job ID>"]._stdout_file
progname y y
requestor y y y y y y y y y y y y y y y y
requestor_host y y y y y y y y y y y y y y y y
resv.reserve_end
resv.reserve_start
resv.Variable_List
type y y y y y y y y y y y y y y y y
user y y y y y y y y y y y y y y y y
vnode_list["<local vnode
name>"].pbs_version

y y y y y y y y y

vnode_list["<local vnode
name>"].pcpus

y y y y y y y y y

vnode_list["<local vnode
name>"].resources_assigned[mem]

y y y y y y y y y

vnode_list["<local vnode
name>"].resources_assigned[ncpus]

y y y y y y y y y

vnode_list["<local vnode
name>"].resources_available[arch]

y y y y y y y y y

vnode_list["<local vnode
name>"].resources_available[file]
vnode_list["<local vnode
name>"].resources_available[mem]

y y y y y y y y y

vnode_list["<local vnode
name>"].resources_available[ncpus]

y y y y y y y y

Table 8-1: Event File by Hook, for Job Hooks

Event Information Written by
Hooks:

pbs.event.<list item>

p
ro

v
is

io
n

q
u

e
u

e
jo

b

p
o

s
tq

u
e
u

e
jo

b

m
o

v
e
jo

b

m
o

d
if

y
jo

b
 (

be
fo

re
 r

un
)

ru
n

jo
b

 (
o

n
 r

e
je

c
t)

ru
n

jo
b

 (
o

n
 a

c
c
e
p

t)

jo
b

o
b

it

e
x
e
c
jo

b
_
b

e
g

in

e
x
e
c
jo

b
_
p

ro
lo

g
u

e

e
x
e
c
jo

b
_
la

u
n

c
h

e
x
e
c
jo

b
_
a
tt

a
c
h

e
x
e
c
jo

b
_
p

o
s
ts

u
s
p

e
n

d

e
x
e
c
jo

b
_
p

re
re

s
u

m
e

e
x
e
c
jo

b
_
p

re
te

rm

e
x
e
c
jo

b
_
e
p

il
o

g
u

e

e
x
e
c
jo

b
_
e
n

d

PBS Professional 2022.1 Hooks Guide HG-187

Chapter 8 Debugging Hooks

Table 8-2: Event File by Hook, for Non-job Hooks

Event Information Written by Hooks:
pbs.event.<list item>

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic

pbs.get_local_nodename() y y y y y y y y y y
alarm y y y y y y y y y y
argv[]
env
freq y
hook_name y y y y y y y y y y
hook_type y y y y y y y y y y
job.Checkpoint
job.egroup
job.Error_Path
job.euser
job.exec_vnode
job.Exit_Status
job.id
job.jobdir
job.job_kill_delay
job.Job_Name
job.Job_Owner
job.job_state
job.Join_Path
job.Keep_Files
job.mtime
job.obittime
job.Output_Path
job.Priority
job.project
job.queue
job.resources_used[cpupercent]
job.resources_used[cput]
job.resources_used[mem]
job.resources_used[ncpus]
job.resources_used[vmem]
job.resources_used[walltime]
job.Resource_List[file]
job.Resource_List[ncpus]
job.Resource_List[place]
job.run_count
job.run_version
job.schedselect
job.server
job.session_id
job.substate
HG-188 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
job.Variable_List
job_list["<job ID>"].Checkpoint y
job_list["<job ID>"].egroup y
job_list["<job ID>"].Error_Path y
job_list["<job ID>"].euser y
job_list["<job ID>"].exec_vnode y
job_list["<job ID>"].hashname y
job_list["<job ID>"].jobdir y
job_list["<job ID>"].job_kill_delay y
job_list["<job ID>"].Job_Name y
job_list["<job ID>"].Job_Owner y
job_list["<job ID>"].job_state y
job_list["<job ID>"].Join_Path y
job_list["<job ID>"].Keep_Files y
job_list["<job ID>"].mtime y
job_list["<job ID>"].obittime y
job_list["<job ID>"].Output_Path y
job_list["<job ID>"].project y
job_list["<job ID>"].queue y
job_list["<job ID>"].resources_used[cpupercent] y
job_list["<job ID>"].resources_used[cput] y
job_list["<job ID>"].resources_used[mem] y
job_list["<job ID>"].resources_used[ncpus] y
job_list["<job ID>"].resources_used[walltime] y
job_list["<job ID>"].Resource_List[file] y
job_list["<job ID>"].Resource_List[ncpus] y
job_list["<job ID>"].Resource_List[place] y
job_list["<job ID>"].run_count y
job_list["<job ID>"].run_version y
job_list["<job ID>"].schedselect y
job_list["<job ID>"].server y
job_list["<job ID>"].session_id y
job_list["<job ID>"].substate y
job_list["<job ID>"].Variable_List y
job_list["<job ID>"]._msmom y
job_list["<job ID>"]._stderr_file y
job_list["<job ID>"]._stdout_file y
progname
requestor y y y y y y y
requestor_host y y y y y y y
resv.reserve_end y y y y y
resv.reserve_start y y y y y
resv.Variable_List y y y y y

Table 8-2: Event File by Hook, for Non-job Hooks

Event Information Written by Hooks:
pbs.event.<list item>

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
PBS Professional 2022.1 Hooks Guide HG-189

Chapter 8 Debugging Hooks
For example, an event file created by a queuejob hook contains this data:

pbs.get_local_nodename()=jupiter.example.com

pbs.event().type=queuejob

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().requestor=TestUser

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30

The equivalent command is:

Qmgr: list hook

8.2.5.1 Caveats

When the execjob_epilogue or execjob_end hook writes resources such as resources_used to the event file, it is
writing about only the resources on the local host.

8.2.6 Site Data File

The site data file can contain any relevant information about the server, queues, vnodes, and jobs at the server.

This file is populated only when the hook calls pbs.server().

When the hook writes it, this file contains the values that populate the server, queues, vnodes, reservations, and jobs, with
all attributes and resources for which there are values.

The site data file is named hook_<event type>_<hook name>_<random integer>.data. It can be passed to
pbs_python using the -s <site data file> option.

type y y y y y y y y y y
user y y y y y y y y y y
vnode_list["<local vnode name>"].pbs_version y
vnode_list["<local vnode name>"].pcpus y
vnode_list["<local vnode name>"].resources_assigned[mem]
vnode_list["<local vnode name>"].resources_assigned[ncpus]
vnode_list["<local vnode name>"].resources_available[arch] y
vnode_list["<local vnode name>"].resources_available[file] y
vnode_list["<local vnode name>"].resources_available[mem] y y
vnode_list["<local vnode name>"].resources_available[ncpus] y y

Table 8-2: Event File by Hook, for Non-job Hooks

Event Information Written by Hooks:
pbs.event.<list item>

re
s
v
s
u

b

re
s
v
_
c
o

n
fi

rm

m
o

d
if

y
re

s
v

re
s
v
_
b

e
g

in

re
s
v
_
e
n

d

m
a
n

a
g

e
m

e
n

t

p
e
ri

o
d

ic

m
o

d
if

y
v
n

o
d

e

e
x
e
c
h

o
s
t_

s
ta

rt
u

p

e
x
e
c
h

o
s
t_

p
e
ri

o
d

ic
HG-190 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
The following commands give equivalent information:

qstat -Bf

qstat -Qf

qstat -f

pbsnodes -av

For example, here are some representative parts of a site data file:

pbs.server().scheduling=True

pbs.server().total_jobs=2

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0 Begun:0

...

ppbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=0

...

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

...

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

...

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=2

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=0

8.2.7 Hook Execution Record File

The hook execution record file is produced when the hook runs. This file lists the following:

• Whether the event was accepted or rejected

• Any job values that were changed by the hook, showing the new values

This file is named hook_<event type>_<hook name>_<random integer>.out.

8.3 Steps to Debug a Hook Using pbs_python

When you debug a hook using pbs_python, give it the following information:

• Use the --hook option to pbs_python so that you can use the other pbs_python options

• Specify event information by using -i <event file>. At a minimum, include the type of the event, but you can
also include job and job list information. Information about the event can be one of these:

• An event information file (.in) written by the hook

• A file written by you

• Interactive input
PBS Professional 2022.1 Hooks Guide HG-191

Chapter 8 Debugging Hooks
See section 8.2.5, “Event File”, on page 184.

• Optionally, provide site data. Site data includes data about the server, queues, vnodes, etc. You specify site data in a
file by using -s <site data file name>. If you do not specify the -s option, pbs_python connects to the
server and obtains live data about the site. See section 8.2.6, “Site Data File”, on page 190. Site data can come from
one of these sources:

• A site data file (.data) written by the hook

• A file written by you

• Interactive input

• Live data from the server

• If you have added any custom resources, specify the PBS_HOME/server_priv/resourcedef file with the -r option to
pbs_python. Make sure you specify the whole path to the file. For example:
pbs_python --hook -r $PBS_HOME/server_priv/resourcedef -i <input_file> <hook.py>

• If your hook uses a configuration file, set the environment variable PBS_HOOK_CONFIG_FILE to the file's path-
name before calling pbs_python. See section 5.1.6, “Using Hook Configuration Files”, on page 33.

• Run pbs_python on the hook:
pbs_python --hook -s <site data> -i <event file> <hook script>

8.4 Caveats and Restrictions for pbs_python

• When you run a hook inside pbs_python, it has access to the extended set of PBS_EXEC/python modules listed in
section 4.5, “Python Modules and PBS”, on page 25. When you run pbs_python at the command line (without
--hook), the hook does not have access to the PBS_EXEC/lib set of modules.

• If PBS has attempted to run a job multiple times in the 20 minute window, you may need to check the timestamp of
hook debugging files (e.g. ls -lt) to figure out which files were produced during a particular hook run.

• The site data file is populated only when the hook calls pbs.server().
HG-192 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
8.5 Examples of Using pbs_python to Debug

Hooks

Example 8-1: Basic periodic hook, with updates to vnodes:

• Input file:
% cat hook.input

pbs.event().type=exechost_periodic

pbs.event().vnode_list["host1"].state=free

pbs.get_local_nodename()=host1

• Hook file:
$ cat test.py

import pbs

e = pbs.event()

pbs.event().vnode_list[pbs.get_local_nodename()].resources_available["ncpus"]=7

pbs.event().vnode_list[pbs.get_local_nodename()].resources_available["mem"]=pbs.size("7gb")

• Run:
$ pbs_python --hook -i hook.input test.py

pbs.event().accept=True

pbs.event().reject=False

pbs.event().vnode_list["host1"].resources_available[ncpus]=7

pbs.event().vnode_list["host1"].resources_available[mem]=7gb

Example 8-2: A queuejob hook:

• Input file:
$ cat qjob.input

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().type=queuejob

pbs.event().requestor=user1

pbs.event().requestor_host=host1

pbs.event().alarm=40

pbs.event().job.Job_Name=pact

pbs.event().job.Resource_List[ncpus]=1

pbs.event().job.Resource_List[mem]=1mb

• Hook file:
$ cat qjob.py

import pbs

e = pbs.event()

e.job.Priority = 7

e.job.Account_Name = "mammoth"

e.job.Resource_List["ncpus"] = 5
PBS Professional 2022.1 Hooks Guide HG-193

Chapter 8 Debugging Hooks
e.job.Resource_List["mem"] = pbs.size("5gb")

• Run:
% pbs_python --hook -i qjob.input qjob.py

pbs.event().accept=True

pbs.event().reject=False

pbs.event().job.Priority=7

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=5gb

pbs.event().job.Account_Name=mammoth

Example 8-3: Reservation hook:

• Input file:
% cat rsub.input

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().type=resvsub

pbs.event().requestor=user1

pbs.event().requestor_host=host1

pbs.event().alarm=40

pbs.event().resv.Reserve_Name=my_resv

pbs.event().resv.Resource_List[ncpus]=1

pbs.event().resv.Resource_List[mem]=1mb

• Hook file:
% cat rsub.py

import pbs

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

r = e.resv

print_attribs(r)

r.Resource_List["select"] = pbs.select("1:ncpus=1:mem=5mb")

r.Resource_List["place"] = pbs.place("pack:shared")

group_list = pbs.group_list

r.group_list = pbs.group_list("Everyone,Everyone@host2,group1@jobim")

Mail_Points= pbs.mail_points

r.Mail_Points = pbs.mail_points("a")
HG-194 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
User_List = pbs.user_list

r.User_List = pbs.user_list("pbstest,pbstest@host2")

Authorized_Users = pbs.acl

r.Authorized_Users = pbs.acl("pbstest,user1,Administrator")

Authorized_Groups = pbs.acl

r.Authorized_Groups = pbs.acl("Everyone,group1,group2")

• Run:
% pbs_python --hook -i rsub.input rsub.py

pbs.event().accept=True

pbs.event().reject=False

pbs.event().resv.group_list=Everyone,Everyone@host2,group1@jobim

pbs.event().resv.User_List=pbstest,pbstest@host2

pbs.event().resv.Resource_List[select]=1:ncpus=1:mem=5mb

pbs.event().resv.Resource_List[place]=pack:shared

pbs.event().resv.Mail_Points=a

pbs.event().resv.Authorized_Users=pbstest,user1,Administrator

pbs.event().resv.Authorized_Groups=Everyone,group1,group2

Example 8-4: A modifyjob hook:

• Hook script:
$ cat modifyjob.py

import pbs

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "------> printing job %s" % (e.job_o.id))

print_attribs(e.job_o)

e.job.Priority = 5

e.job.Resource_List["file"] = pbs.size("7gb")

e.job.Variable_List["FILE"] = "7gb"

• Use the pbs_python debugging tool.
PBS Professional 2022.1 Hooks Guide HG-195

Chapter 8 Debugging Hooks
Ensure you have the following input file:

% cat hook.input

pbs.event().type=modifyjob

pbs.event().job.id=0.host1

pbs.event().job.Variable_List=A=b

• Run the hook:
% pbs_python --hook -i hook.input modifyjob.py

• The following are printed:
pbs.event().accept=True

pbs.event().reject=False

pbs.event().job.Variable_List=A=b,FILE=7gb

pbs.event().job.Priority=5

pbs.event().job.Resource_List[file]=7gb

• The pbs_python log file shows this:

% cat <yyyymmdd>

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;----------------> printing job 0.host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;qtime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Error_Path =

host1.example.com:/home/user1/STDIN.e0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;job_state = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;schedselect =1:ncpus=1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;ctime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Rerunable = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;server = host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;egroup = pbs

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Variable_List =A=b,FILE=7gb

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Checkpoint = u

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;etime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;queue = workq

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Job_Name = STDIN

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;comment = Not Running:

Could not run job - nodes are not licensed or unable to obtain 1 cpu licenses. avail_licenses=0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;substate = 10

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;queue_rank = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;euser = user1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Mail_Points = a

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Priority = 0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;project = _pbs_project_default

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;queue_type = 1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Output_Path =

host1.example.com:/home/user1/STDIN.o0

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Hold_Types = n
HG-196 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Join_Path = n

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;mtime = 1357387083

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;id = 0.host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Resource_List =
select=1:ncpus=1,nodect=1,ncpus=1,place=free

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Keep_Files = n

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;_connect_server = host1

01/05/2013 07:50:41;0006;pbs_python;Hook;pbs_python;Job_Owner = user1@host1.example.com

Example 8-5: A movejob hook which prints job ID, src_queue, and movejob event parameters, and sets src_queue:

• Hook script:
$ cat movejob.py

import pbs

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "----------------> printing src_queue %s" % (e.src_queue.name))

print_attribs(e.src_queue)

pbs.logmsg(pbs.LOG_DEBUG, "----------------> printing job %s" % (e.job.id))

print_attribs(e.job)

e.job.queue = pbs.server().queue("workq2")

• Use the pbs_python debugging tool:

Use the following input file:

% cat hook.input2

pbs.event().type=movejob

pbs.event().job.id=<existing-job-id>
PBS Professional 2022.1 Hooks Guide HG-197

Chapter 8 Debugging Hooks
where <existing-job-id> must be some arbitrary job currently existing in the queue workq. Submit one (qsub -h)
if it doesn't exist.

• Run the hook:
% pbs_python --hook -i hook.input2 movejob.py

• The following is printed:
pbs.event().accept=True

pbs.event().reject=False

pbs.event().src_queue=workq2

• The pbs_python log file shows this:

% cat <yyyymmdd>

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;----------------> printing

src_queue workq

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;name = workq

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;----------------> printing

job 0.host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;qtime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Error_Path =
host1.example.com:/home/user1/STDIN.e0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;job_state = 1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;ctime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Rerunable = 1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;server = host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Variable_List =

PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/user1,PBS_O_HOST=host1.example.com,PBS
_O_LOGNAME=user1,PBS_O_WORKDIR=/home/user1,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/opt/pbs/bin:/o
pt/pbs/python/bin:/opt/pbs/tcltk/bin:/home/user1/bin:/opt/pbs/bin:/opt/pbs/python/bin:/opt/p
bs/tcltk/bin:/home/user1/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/user1/bin:/us
r/local/rational/releases/purify.i386_linux2.2003a.06.15.FixPack.0194:/usr/local/purify/base
/cots/flexlm.10.8.0.1/i386_linux2:/home/user1/PbsTestLab/bin:/home/user1/bin:/home/user1/bin
:/usr/local/rational/releases/purify.i386_linux2.2003a.06.15.FixPack.0194:/usr/local/purify/
base/cots/flexlm.10.8.0.1/i386_linux2:/home/user1/PbsTestLab/bin,PBS_O_QUEUE=workq,PBS_O_MAI
L=/var/spool/mail/user1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Checkpoint = u

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;etime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Job_Name = STDIN

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;comment = Not Running:

Could not run job - nodes are not licensed or unable to obtain 1 cpu licenses. avail_licenses=0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;substate = 10

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Mail_Points = a

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Priority = 0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;project = _pbs_project_default

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Output_Path =

host1.example.com:/home/user1/STDIN.o0

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Hold_Types = n

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Join_Path = n
HG-198 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;mtime = 1357387083

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;id = 0.host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Resource_List =

select=1:ncpus=1,nodect=1,ncpus=1,place=free

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Keep_Files = n

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;_connect_server = host1

01/05/2013 11:23:36;0006;pbs_python;Hook;pbs_python;Job_Owner =

user1@host1.example.com

Example 8-6: A runjob hook to print attributes:

• Hook script:

$ cat runjob.py

import pbs

import time

def print_attribs(pbs_obj):

for a in pbs_obj.attributes:

v = getattr(pbs_obj, a)

if v and str(v) != "":

pbs.logmsg(pbs.LOG_DEBUG, "%s = %s" % (a,v))

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "----------------> printing job %s" % (e.job.id))

print_attribs(e.job)

e.job.Hold_Types = pbs.hold_types("us")

e.job.Execution_Time = time.mktime([15, 11, 28, 14, 10, 15, -1, -1, 01])

e.job.project="looper"

pbs.event().reject("not allowed to run at this time!")

• Use the following input file:
% cat hook.input3

pbs.event().type=runjob

pbs.event().job.id=<existing-job-id>
PBS Professional 2022.1 Hooks Guide HG-199

Chapter 8 Debugging Hooks
where <existing-job-id> must be some arbitrary job currently existing in the server. Submit one (qsub -h) if it
doesn't exist.

• Run the hook:
pbs_python --hook -i hook.input3 runjob.py

• The execution record contains the following:
pbs.event().reject=True

pbs.event().accept=False

pbs.event().reject_msg=not allowed to run at this time!

pbs.event().job.Execution_Time=1448745015

pbs.event().job.Hold_Types=us

pbs.event().job.project=looper

• The pbs_python log file shows:

% cat <yyyymmdd>

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;----------------> printing

job 5.host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;qtime = 1357424154

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Error_Path =

host1.example.com:/home/user1/bugs/sp260361/STDIN.e5

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;job_state = 2

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;ctime = 1357424154

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Rerunable = 1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;server = host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Variable_List =

PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/user1,PBS_O_HOST=host1.example.com,PBS
_O_LOGNAME=user1,PBS_O_WORKDIR=/home/user1/bugs/sp260361,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=/
opt/pbs/bin:/opt/pbs/python/bin:/opt/pbs/tcltk/bin:/home/user1/bin:/opt/pbs/bin:/opt/pbs/pyt
hon/bin:/opt/pbs/tcltk/bin:/home/user1/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home
/user1/bin:/usr/local/rational/releases/purify.i386_linux2.2003a.06.15.FixPack.0194:/usr/loc
al/purify/base/cots/flexlm.10.8.0.1/i386_linux2:/home/user1/PbsTestLab/bin:/home/user1/bin:/
home/user1/bin:/usr/local/rational/releases/purify.i386_linux2.2003a.06.15.FixPack.0194:/usr
/local/purify/base/cots/flexlm.10.8.0.1/i386_linux2:/home/user1/PbsTestLab/bin,PBS_O_QUEUE=w
orkq,PBS_O_MAIL=/var/spool/mail/user1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Checkpoint = u

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Submit_arguments =

<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:Argument>

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;queue = workq

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Job_Name = STDIN

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;substate = 20

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Mail_Points = a

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Priority = 0

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;project = _pbs_project_default

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Output_Path =

host1.example.com:/home/user1/bugs/sp260361/STDIN.o5

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Hold_Types = u

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Join_Path = n
HG-200 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;mtime = 1357424154

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;id = 5.host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Resource_List =

select=1:ncpus=1,nodect=1,ncpus=1,place=pack

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Keep_Files = n

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;_connect_server = host1

01/05/2013 14:49:39;0006;pbs_python;Hook;pbs_python;Job_Owner =

user1@host1.example.com

8.6 Using Log Messages to Debug Hook Scripts

The following steps may help you avoid errors in hook scripts:

1. Create a hook, and import its content.

2. Temporarily set the server's log_events to a higher value such as 2047 to see plenty of logging.

3. Do a test run of the hook script, by causing events (e.g. qsub, qalter, qmove, pbs_rsub) that invoke the hook
script. Check for error messages in the server logs.

4. Correct the hook script, re-import the fixed code, and rerun the test.

5. Once the hook script is running fine, then set the server's log_events back to the default (i.e. 511).

8.7 Checking Hook Syntax using Python

You can check hook syntax using Python. If you run Python on the hook, the hook cannot import the pbs module. If the
first error you see is a failure to import the pbs module, Python did not find any syntax errors.

8.8 Examples of Debugging Files

Example 8-7: We show several hooks and their debugging files. Our example hooks are queuejob, exechost_startup,
exechost_periodic, execjob_begin, and execjob_launch.

Given the following two jobs in the system:

TestUser@jupiter:~/jobs> qstat

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

501.jupiter STDIN TestUser 0 H workq

502.jupiter STDIN TestUser 0 H workq

Given the following reservations:

TestUser@jupiter:~/jobs> pbs_rstat

Resv ID Queue User State Start / Duration / End

R503.jupiter. R503 TestUser@ CO Today 08:00 / 1800 / Today 08:30

R504.jupiter. R504 TestUser@ CO Today 09:00 / 1800 / Today 09:30
PBS Professional 2022.1 Hooks Guide HG-201

Chapter 8 Debugging Hooks
Given the following set of vnodes:

TestUser@jupiter:~/jobs> pbsnodes -av

jupiter

Mom = jupiter.example.com

Port = 15002

pbs_version = PBSPro_10.0

ntype = PBS

state = free

pcpus = 1

resv = R504.jupiter.example.com, R503.jupiter.example.com

resources_available.arch = linux

resources_available.host = jupiter

resources_available.mem = 8gb

resources_available.ncpus = 8

resources_available.vnode = jupiter

resources_assigned.mem = 0kb

resources_assigned.ncpus = 0

resources_assigned.vmem = 0kb

resv_enable = True

sharing = default_shared

mars

Mom = mars.example.com

Port = 15002

pbs_version = PBSPro_10.0

ntype = PBS

state = free

pcpus = 1

resources_available.arch = linux

resources_available.host = mars

resources_available.mem = 8gb

resources_available.ncpus = 8

resources_available.vnode = mars

resources_assigned.mem = 0kb

resources_assigned.ncpus = 0

resources_assigned.vmem = 0kb

resv_enable = True

sharing = default_shared
HG-202 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
queuejob hook attributes:

Hook qjob

type = site

enabled = true

event = queuejob

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none

queuejob hook contents:

import pbs

e=pbs.event()

e.job.Priority=7

e.job.Resource_List["file"] = pbs.size("7gb")

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

Submit the job:

% qsub job.scr

Here are the resulting *.in, *.data, and *.out files:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr /var/spool/PBS/server_priv/hooks/tmp

-rw-r--r-- 1 root root 241 Sep 17 03:54 hook_queuejob_qjob_1410940476.in

-rw-r--r-- 1 root root 18619 Sep 17 03:54 hook_queuejob_qjob_1410940476.data

-rw-r--r-- 1 root root 805 Sep 17 03:54 hook_queuejob_qjob_1410940476.out
PBS Professional 2022.1 Hooks Guide HG-203

Chapter 8 Debugging Hooks
List the queuejob hook event file:

jupiter:/var/spool/PBS/server_priv/hooks/tmp # cat hook_queuejob_qjob_1410940476.in

pbs.get_local_nodename()=jupiter.example.com

pbs.event().type=queuejob

pbs.event().hook_name=qjob

pbs.event().hook_type=site

pbs.event().requestor=TestUser

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
HG-204 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
List the queuejob hook site data file:

jupiter:/var/spool/PBS/server_priv/hooks/tmp # cat hook_queuejob_qjob_1410940476.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=2

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=0

pbs.server().resources_assigned[nodect]=0

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:32 Used:0 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o501

pbs.server().job(501.jupiter.example.com).Priority=7
PBS Professional 2022.1 Hooks Guide HG-205

Chapter 8 Debugging Hooks
pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).hop_count=1

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=2

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=0

pbs.server().queue(workq).resources_assigned[nodect]=0

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
HG-206 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
DIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).hop_count=1

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00
PBS Professional 2022.1 Hooks Guide HG-207

Chapter 8 Debugging Hooks
pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[ncpus]=0

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).hop_count=1

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2
HG-208 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).hop_count=1

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users

List the queuejob hook execution record file:

jupiter:/var/spool/PBS/server_priv/hooks/tmp # cat hook_queuejob_qjob_1410940476.out

pbs.event().job.Rerunable=1

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/TestUser
,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=
/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/bin:/home/TestUser/b
in:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs
/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.event().job.Checkpoint=u

pbs.event().job.Submit_arguments=<jsdl-hpcpa:Argument>job.scr</jsdl-hpcpa:Argument>

pbs.event().job.Job_Name=job.scr

pbs.event().job.Mail_Points=a

pbs.event().job.Priority=7

pbs.event().job.Hold_Types=n

pbs.event().job.Join_Path=n

pbs.event().job.Resource_List[file]=7gb

pbs.event().job.Keep_Files=n
PBS Professional 2022.1 Hooks Guide HG-209

Chapter 8 Debugging Hooks
The exechost_startup hook attributes:

Hook start

type = site

enabled = true

event = exechost_startup

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none

The exechost_startup hook contents:

import pbs

e=pbs.event()

e.vnode_list[pbs.get_local_nodename()].resources_available["file"] = pbs.size("7gb")

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

Restart pbs_mom. Upon startup, the exechost_startup hook writes the following files:

jupiter:/home/TestUser/jobs # cd /var/spool/PBS/mom_priv/hooks/tmp

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr

total 24

-rw-r--r-- 1 root root 455 Sep 17 04:02 hook_exechost_startup_start_11607.in

-rw-r--r-- 1 root root 115 Sep 17 04:02 hook_exechost_startup_start_11607.out

-rw-r--r-- 1 root root 12389 Sep 17 04:02 hook_exechost_startup_start_11607.data
HG-210 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
List the exechost_startup hook event file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_startup_start_11607.in

pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1

pbs.get_local_nodename()=jupiter

pbs.event().type=exechost_startup

pbs.event().hook_name=start

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
PBS Professional 2022.1 Hooks Guide HG-211

Chapter 8 Debugging Hooks
List the exechost_startup hook site data file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_startup_start_11607.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=2

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=0

pbs.server().resources_assigned[nodect]=0

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:32 Used:0 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o501

pbs.server().job(501.jupiter.example.com).Priority=7
HG-212 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1
PBS Professional 2022.1 Hooks Guide HG-213

Chapter 8 Debugging Hooks
pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=2

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=0

pbs.server().queue(workq).resources_assigned[nodect]=0

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False
HG-214 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[ncpus]=0

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb

pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[mem]=0kb

pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1
PBS Professional 2022.1 Hooks Guide HG-215

Chapter 8 Debugging Hooks
pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users

List the exechost_startup hook execution record file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_startup_start_11607.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().vnode_list["jupiter"].resources_available[file,size]=7gb
HG-216 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
The exechost_periodic hook attributes:

Hook period

type = site

enabled = true

event = exechost_periodic

user = pbsadmin

alarm = 30

freq = 30

order = 1

debug = true

fail_action = none

The contents of the exechost_periodic hook:

jupiter:/home/TestUser/jobs # qmgr -c "e h period application/x-python default"

import pbs

e=pbs.event()

e.vnode_list[pbs.get_local_nodename()].resources_available["file"] = pbs.size("7gb")

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

In our example, we have two jobs running on the execution host:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # qstat

Job id Name User Time Use S Queue

------------ ----------- ----------- -------- - -----

501.jupiter STDIN TestUser 0 H workq

502.jupiter STDIN TestUser 0 H workq

506.jupiter STDIN TestUser 00:00:00 R workq

507.jupiter STDIN TestUser 00:00:00 R workq

The *.in, *.out, and *.data files end up here:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr

-rw-r--r-- 1 root root 6885 Sep 17 04:09 hook_exechost_periodic_period_11753.in

-rw-r--r-- 1 root root 1387 Sep 17 04:09 hook_exechost_periodic_period_11753.out

-rw-r--r-- 1 root root 19039 Sep 17 04:09 hook_exechost_periodic_period_11753.data
PBS Professional 2022.1 Hooks Guide HG-217

Chapter 8 Debugging Hooks
List the exechost_periodic event file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_periodic_period_11753.in

pbs.event().freq=30

pbs.event().vnode_list["jupiter"].pcpus=1

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[arch]=linux

pbs.event().vnode_list["jupiter"].pbs_version=PBSPro_10.0

pbs.event().vnode_list["jupiter"].resources_available[file]=7gb

pbs.event().job_list["506.jupiter.example.com"].Job_Name=STDIN

pbs.event().job_list["506.jupiter.example.com"].Job_Owner=TestUser@jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].resources_used[cpupercent]=0

pbs.event().job_list["506.jupiter.example.com"].resources_used[cput]=00:00:00

pbs.event().job_list["506.jupiter.example.com"].resources_used[mem]=3880kb

pbs.event().job_list["506.jupiter.example.com"].resources_used[ncpus]=1

pbs.event().job_list["506.jupiter.example.com"].resources_used[vmem]=32192kb

pbs.event().job_list["506.jupiter.example.com"].resources_used[walltime]=00:00:13

pbs.event().job_list["506.jupiter.example.com"].job_state=T

pbs.event().job_list["506.jupiter.example.com"].queue=workq

pbs.event().job_list["506.jupiter.example.com"].server=jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].Checkpoint=u

pbs.event().job_list["506.jupiter.example.com"].Error_Path=jupiter.example.com:/home/TestUser/jo
bs/STDIN.e506

pbs.event().job_list["506.jupiter.example.com"].exec_host2=jupiter.example.com:15002/0

pbs.event().job_list["506.jupiter.example.com"].exec_vnode=(jupiter:ncpus=1)

pbs.event().job_list["506.jupiter.example.com"].Join_Path=n

pbs.event().job_list["506.jupiter.example.com"].Keep_Files=n

pbs.event().job_list["506.jupiter.example.com"].mtime=1410941347

pbs.event().job_list["506.jupiter.example.com"].Output_Path=jupiter.example.com:/home/TestUser/j
obs/STDIN.o506

pbs.event().job_list["506.jupiter.example.com"].Resource_List[file]=7gb

pbs.event().job_list["506.jupiter.example.com"].Resource_List[ncpus]=1

pbs.event().job_list["506.jupiter.example.com"].Resource_List[place]=pack

pbs.event().job_list["506.jupiter.example.com"].schedselect=1:ncpus=1

pbs.event().job_list["506.jupiter.example.com"].session_id=11683

pbs.event().job_list["506.jupiter.example.com"].jobdir=/home/TestUser

pbs.event().job_list["506.jupiter.example.com"].substate=0

pbs.event().job_list["506.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bi
n/bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PB
S_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/
gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:
/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_
QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].euser=TestUser

pbs.event().job_list["506.jupiter.example.com"].egroup=users

pbs.event().job_list["506.jupiter.example.com"].hashname=506.jupiter.example.com

pbs.event().job_list["506.jupiter.example.com"].cookie=000000002CEAFC4E0000000043354104
HG-218 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.event().job_list["506.jupiter.example.com"].run_count=1

pbs.event().job_list["506.jupiter.example.com"].job_kill_delay=10

pbs.event().job_list["506.jupiter.example.com"].project=_pbs_project_default

pbs.event().job_list["506.jupiter.example.com"].run_version=1

pbs.event().job_list["506.jupiter.example.com"]._msmom=True

pbs.event().job_list["506.jupiter.example.com"]._stdout_file=/var/spool/PBS/spool/506.jupiter.ex
ample.com.OU

pbs.event().job_list["506.jupiter.example.com"]._stderr_file=/var/spool/PBS/spool/506.jupiter.ex
ample.com.ER

pbs.event().job_list["507.jupiter.example.com"].Job_Name=STDIN

pbs.event().job_list["507.jupiter.example.com"].Job_Owner=TestUser@jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].resources_used[cpupercent]=0

pbs.event().job_list["507.jupiter.example.com"].resources_used[cput]=00:00:00

pbs.event().job_list["507.jupiter.example.com"].resources_used[mem]=3892kb

pbs.event().job_list["507.jupiter.example.com"].resources_used[ncpus]=1

pbs.event().job_list["507.jupiter.example.com"].resources_used[vmem]=32192kb

pbs.event().job_list["507.jupiter.example.com"].resources_used[walltime]=00:00:10

pbs.event().job_list["507.jupiter.example.com"].job_state=T

pbs.event().job_list["507.jupiter.example.com"].queue=workq

pbs.event().job_list["507.jupiter.example.com"].server=jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].Checkpoint=u

pbs.event().job_list["507.jupiter.example.com"].Error_Path=jupiter.example.com:/home/TestUser/jo
bs/STDIN.e507

pbs.event().job_list["507.jupiter.example.com"].exec_host2=jupiter.example.com:15002/1

pbs.event().job_list["507.jupiter.example.com"].exec_vnode=(jupiter:ncpus=1)

pbs.event().job_list["507.jupiter.example.com"].Join_Path=n

pbs.event().job_list["507.jupiter.example.com"].Keep_Files=n

pbs.event().job_list["507.jupiter.example.com"].mtime=1410941350

pbs.event().job_list["507.jupiter.example.com"].Output_Path=jupiter.example.com:/home/TestUser/j
obs/STDIN.o507

pbs.event().job_list["507.jupiter.example.com"].Resource_List[file]=7gb

pbs.event().job_list["507.jupiter.example.com"].Resource_List[ncpus]=1

pbs.event().job_list["507.jupiter.example.com"].Resource_List[place]=pack

pbs.event().job_list["507.jupiter.example.com"].schedselect=1:ncpus=1

pbs.event().job_list["507.jupiter.example.com"].session_id=11716

pbs.event().job_list["507.jupiter.example.com"].jobdir=/home/TestUser

pbs.event().job_list["507.jupiter.example.com"].substate=0

pbs.event().job_list["507.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bi
n/bash,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PB
S_O_LANG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/
gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:
/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_
QUEUE=workq,PBS_O_HOST=jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].euser=TestUser

pbs.event().job_list["507.jupiter.example.com"].egroup=users

pbs.event().job_list["507.jupiter.example.com"].hashname=507.jupiter.example.com

pbs.event().job_list["507.jupiter.example.com"].cookie=000000003C3AB5AC000000007A31CFD4
PBS Professional 2022.1 Hooks Guide HG-219

Chapter 8 Debugging Hooks
pbs.event().job_list["507.jupiter.example.com"].run_count=1

pbs.event().job_list["507.jupiter.example.com"].job_kill_delay=10

pbs.event().job_list["507.jupiter.example.com"].project=_pbs_project_default

pbs.event().job_list["507.jupiter.example.com"].run_version=1

pbs.event().job_list["507.jupiter.example.com"]._msmom=True

pbs.event().job_list["507.jupiter.example.com"]._stdout_file=/var/spool/PBS/spool/507.jupiter.ex
ample.com.OU

pbs.event().job_list["507.jupiter.example.com"]._stderr_file=/var/spool/PBS/spool/507.jupiter.ex
ample.com.ER

pbs.get_local_nodename()=jupiter

pbs.event().type=exechost_periodic

pbs.event().hook_name=period

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
HG-220 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
List the exechost_periodic site data file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_periodic_period_11753.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=4

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:2 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=2

pbs.server().resources_assigned[nodect]=2

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:30 Used:2 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o501

pbs.server().job(501.jupiter.example.com).Priority=7
PBS Professional 2022.1 Hooks Guide HG-221

Chapter 8 Debugging Hooks
pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1
HG-222 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().job(506.jupiter.example.com).Job_Name=STDIN

pbs.server().job(506.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(506.jupiter.example.com).resources_used[cpupercent]=0

pbs.server().job(506.jupiter.example.com).resources_used[cput]=00:00:00

pbs.server().job(506.jupiter.example.com).resources_used[mem]=3880kb

pbs.server().job(506.jupiter.example.com).resources_used[ncpus]=1

pbs.server().job(506.jupiter.example.com).resources_used[vmem]=32192kb

pbs.server().job(506.jupiter.example.com).resources_used[walltime]=00:00:13

pbs.server().job(506.jupiter.example.com).job_state=R

pbs.server().job(506.jupiter.example.com).queue=workq

pbs.server().job(506.jupiter.example.com).server=jupiter.example.com

pbs.server().job(506.jupiter.example.com).Checkpoint=u

pbs.server().job(506.jupiter.example.com).ctime=1410941347

pbs.server().job(506.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e506

pbs.server().job(506.jupiter.example.com).exec_host=jupiter/0

pbs.server().job(506.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(506.jupiter.example.com).Hold_Types=n

pbs.server().job(506.jupiter.example.com).Join_Path=n

pbs.server().job(506.jupiter.example.com).Keep_Files=n

pbs.server().job(506.jupiter.example.com).Mail_Points=a

pbs.server().job(506.jupiter.example.com).mtime=1410941347

pbs.server().job(506.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o506

pbs.server().job(506.jupiter.example.com).Priority=7

pbs.server().job(506.jupiter.example.com).qtime=1410941347

pbs.server().job(506.jupiter.example.com).Rerunable=True

pbs.server().job(506.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(506.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(506.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(506.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(506.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(506.jupiter.example.com).schedselect=1:ncpus=1
PBS Professional 2022.1 Hooks Guide HG-223

Chapter 8 Debugging Hooks
pbs.server().job(506.jupiter.example.com).stime=1410941347

pbs.server().job(506.jupiter.example.com).session_id=11683

pbs.server().job(506.jupiter.example.com).jobdir=/home/TestUser

pbs.server().job(506.jupiter.example.com).substate=42

pbs.server().job(506.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(506.jupiter.example.com).euser=TestUser

pbs.server().job(506.jupiter.example.com).egroup=users

pbs.server().job(506.jupiter.example.com).hashname=506.jupiter.example.com

pbs.server().job(506.jupiter.example.com).queue_rank=188

pbs.server().job(506.jupiter.example.com).queue_type=E

pbs.server().job(506.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:09 on
(jupiter:ncpus=1)

pbs.server().job(506.jupiter.example.com).etime=1410941347

pbs.server().job(506.jupiter.example.com).run_count=1

pbs.server().job(506.jupiter.example.com).project=_pbs_project_default

pbs.server().job(506.jupiter.example.com).run_version=1

pbs.server().job(507.jupiter.example.com).Job_Name=STDIN

pbs.server().job(507.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(507.jupiter.example.com).resources_used[cpupercent]=0

pbs.server().job(507.jupiter.example.com).resources_used[cput]=00:00:00

pbs.server().job(507.jupiter.example.com).resources_used[mem]=3892kb

pbs.server().job(507.jupiter.example.com).resources_used[ncpus]=1

pbs.server().job(507.jupiter.example.com).resources_used[vmem]=32192kb

pbs.server().job(507.jupiter.example.com).resources_used[walltime]=00:00:10

pbs.server().job(507.jupiter.example.com).job_state=R

pbs.server().job(507.jupiter.example.com).queue=workq

pbs.server().job(507.jupiter.example.com).server=jupiter.example.com

pbs.server().job(507.jupiter.example.com).Checkpoint=u

pbs.server().job(507.jupiter.example.com).ctime=1410941350

pbs.server().job(507.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e507

pbs.server().job(507.jupiter.example.com).exec_host=jupiter/1

pbs.server().job(507.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(507.jupiter.example.com).Hold_Types=n

pbs.server().job(507.jupiter.example.com).Join_Path=n

pbs.server().job(507.jupiter.example.com).Keep_Files=n

pbs.server().job(507.jupiter.example.com).Mail_Points=a

pbs.server().job(507.jupiter.example.com).mtime=1410941350

pbs.server().job(507.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o507

pbs.server().job(507.jupiter.example.com).Priority=7

pbs.server().job(507.jupiter.example.com).qtime=1410941350
HG-224 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(507.jupiter.example.com).Rerunable=True

pbs.server().job(507.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(507.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(507.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(507.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(507.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(507.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(507.jupiter.example.com).stime=1410941350

pbs.server().job(507.jupiter.example.com).session_id=11716

pbs.server().job(507.jupiter.example.com).jobdir=/home/TestUser

pbs.server().job(507.jupiter.example.com).substate=42

pbs.server().job(507.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(507.jupiter.example.com).euser=TestUser

pbs.server().job(507.jupiter.example.com).egroup=users

pbs.server().job(507.jupiter.example.com).hashname=507.jupiter.example.com

pbs.server().job(507.jupiter.example.com).queue_rank=189

pbs.server().job(507.jupiter.example.com).queue_type=E

pbs.server().job(507.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:09 on
(jupiter:ncpus=1)

pbs.server().job(507.jupiter.example.com).etime=1410941350

pbs.server().job(507.jupiter.example.com).run_count=1

pbs.server().job(507.jupiter.example.com).project=_pbs_project_default

pbs.server().job(507.jupiter.example.com).run_version=1

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=4

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:2 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=2

pbs.server().queue(workq).resources_assigned[nodect]=2

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00
PBS Professional 2022.1 Hooks Guide HG-225

Chapter 8 Debugging Hooks
pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).jobs=506.jupiter.example.com/0, 507.jupiter.example.com/1

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[file]=7gb

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[ncpus]=2

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[file]=7gb

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb

pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[mem]=0kb
HG-226 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com
PBS Professional 2022.1 Hooks Guide HG-227

Chapter 8 Debugging Hooks
pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users

List the exechost_periodic hook execution record file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_exechost_periodic_period_11753.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().vnode_list["jupiter"].resources_available[file,size]=7gb

pbs.event().job_list["506.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bi
n/bash,PBS_O_HOME=/home/TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O
_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/
mail/TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/ope
nmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/ga
mes:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job_list["506.jupiter.example.com"]._delete=False

pbs.event().job_list["506.jupiter.example.com"]._rerun=False

pbs.event().job_list["507.jupiter.example.com"].Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bi
n/bash,PBS_O_HOME=/home/TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O
_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/
mail/TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/ope
nmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/ga
mes:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job_list["507.jupiter.example.com"]._delete=False

pbs.event().job_list["507.jupiter.example.com"]._rerun=False

Attributes of the execjob_begin hook:

Hook begin

type = site

enabled = true

event = execjob_begin

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none
HG-228 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
Contents of the execjob_begin hook:

import pbs

e=pbs.event()

e.job.Priority=7

e.job.Variable_List["Monsieur"] = "Shlomi"

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

We submit a job:

% qsub job.scr

The resulting execjob_begin debug files are here:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # ls -ltr

-rw-r--r-- 1 root root 2263 Sep 17 04:15 hook_execjob_begin_begin_11883.in

-rw-r--r-- 1 root root 585 Sep 17 04:15 hook_execjob_begin_begin_11883.out

-rw-r--r-- 1 root root 15327 Sep 17 04:15 hook_execjob_begin_begin_11883.data
PBS Professional 2022.1 Hooks Guide HG-229

Chapter 8 Debugging Hooks
List the execjob_begin event file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_execjob_begin_begin_11883.in

pbs.event().job.id=509.jupiter.example.com

pbs.event().job.Job_Name=job.scr

pbs.event().job.Job_Owner=TestUser@jupiter.example.com

pbs.event().job.queue=workq

pbs.event().job.server=jupiter.example.com

pbs.event().job.Checkpoint=u

pbs.event().job.Error_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.e509

pbs.event().job.exec_host2=jupiter.example.com:15002/0

pbs.event().job.exec_vnode=(jupiter:ncpus=1)

pbs.event().job.Join_Path=n

pbs.event().job.Keep_Files=n

pbs.event().job.mtime=1410941704

pbs.event().job.Output_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.o509

pbs.event().job.Resource_List[file]=7gb

pbs.event().job.Resource_List[ncpus]=1

pbs.event().job.Resource_List[place]=pack

pbs.event().job.schedselect=1:ncpus=1

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,PBS_O_HOME=/home/TestUser
,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_PATH=
/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/bin:/home/TestUser/b
in:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs
/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=workq,PBS_O_HOST=jupiter.e
xample.com

pbs.event().job.euser=TestUser

pbs.event().job.egroup=users

pbs.event().job.hashname=509.jupiter.example.com

pbs.event().job.run_count=1

pbs.event().job.job_kill_delay=10

pbs.event().job.project=_pbs_project_default

pbs.event().job.run_version=1

pbs.event().job._msmom=True

pbs.event().job._stdout_file=

pbs.event().job._stderr_file=

pbs.event().vnode_list["jupiter"].resources_assigned[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_assigned[mem]=0kb

pbs.event().vnode_list["jupiter"].pcpus=1

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[arch]=linux

pbs.event().vnode_list["jupiter"].pbs_version=PBSPro_10.0

pbs.get_local_nodename()=jupiter

pbs.event().type=execjob_begin

pbs.event().hook_name=begin

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom
HG-230 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
PBS Professional 2022.1 Hooks Guide HG-231

Chapter 8 Debugging Hooks
List the execjob_begin site data file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_execjob_begin_begin_11883.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=3

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=1

pbs.server().resources_assigned[nodect]=1

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:31 Used:1 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o501

pbs.server().job(501.jupiter.example.com).Priority=7
HG-232 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1
PBS Professional 2022.1 Hooks Guide HG-233

Chapter 8 Debugging Hooks
pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().job(509.jupiter.example.com).Job_Name=job.scr

pbs.server().job(509.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(509.jupiter.example.com).job_state=R

pbs.server().job(509.jupiter.example.com).queue=workq

pbs.server().job(509.jupiter.example.com).server=jupiter.example.com

pbs.server().job(509.jupiter.example.com).Checkpoint=u

pbs.server().job(509.jupiter.example.com).ctime=1410941704

pbs.server().job(509.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/job
.scr.e509

pbs.server().job(509.jupiter.example.com).exec_host=jupiter/0

pbs.server().job(509.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(509.jupiter.example.com).Hold_Types=n

pbs.server().job(509.jupiter.example.com).Join_Path=n

pbs.server().job(509.jupiter.example.com).Keep_Files=n

pbs.server().job(509.jupiter.example.com).Mail_Points=a

pbs.server().job(509.jupiter.example.com).mtime=1410941704

pbs.server().job(509.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/jo
b.scr.o509

pbs.server().job(509.jupiter.example.com).Priority=7

pbs.server().job(509.jupiter.example.com).qtime=1410941704

pbs.server().job(509.jupiter.example.com).Rerunable=True

pbs.server().job(509.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(509.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(509.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(509.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(509.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(509.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(509.jupiter.example.com).substate=41

pbs.server().job(509.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com
HG-234 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(509.jupiter.example.com).euser=TestUser

pbs.server().job(509.jupiter.example.com).egroup=users

pbs.server().job(509.jupiter.example.com).hashname=509.jupiter.example.com

pbs.server().job(509.jupiter.example.com).queue_rank=190

pbs.server().job(509.jupiter.example.com).queue_type=E

pbs.server().job(509.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:15 on
(jupiter:ncpus=1)

pbs.server().job(509.jupiter.example.com).etime=1410941704

pbs.server().job(509.jupiter.example.com).run_count=1

pbs.server().job(509.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>job.scr</jsdl-hp
cpa:Argument>

pbs.server().job(509.jupiter.example.com).project=_pbs_project_default

pbs.server().job(509.jupiter.example.com).run_version=1

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=3

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=1

pbs.server().queue(workq).resources_assigned[nodect]=1

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com
PBS Professional 2022.1 Hooks Guide HG-235

Chapter 8 Debugging Hooks
pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).jobs=509.jupiter.example.com/0

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[file]=7gb

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[ncpus]=1

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[file]=7gb

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb

pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[mem]=0kb

pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00
HG-236 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users
PBS Professional 2022.1 Hooks Guide HG-237

Chapter 8 Debugging Hooks
List the execjob_begin hook execution record file:

jupiter:/var/spool/PBS/mom_priv/hooks/tmp # cat hook_execjob_begin_begin_11883.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,Monsieur=Shlomi,PBS_O_HOM
E=/home/TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/T
estUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/TestUser,PB
S_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/bin:/home/T
estUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/pbs/bin
:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job.Priority=7

Attributes of the execjob_launch hook:

Hook launch

type = site

enabled = true

event = execjob_launch

user = pbsadmin

alarm = 30

order = 1

debug = true

fail_action = none

Contents of the execjob_launch hook:

import pbs

e=pbs.event()

e.progname = "/bin/sleep"

e.argv[1] = "30"

s=pbs.server()

for j in s.jobs():

pbs.logmsg(pbs.LOG_DEBUG, "got j %s" % (j.id,))

for q in s.queues():

pbs.logmsg(pbs.LOG_DEBUG, "got q %s" % (q.name,))

for v in s.vnodes():

pbs.logmsg(pbs.LOG_DEBUG, "got vnode %s" % (v.name,))

for r in s.resvs():

pbs.logmsg(pbs.LOG_DEBUG, "got resv %s" % (r.resvid))

Submit a job:

% qsub job.scr
HG-238 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
The execjob_launch hook writes the *.in, *.data, and *.out files in /var/spool/PBS/spool:

jupiter:/var/spool/PBS/spool # ls -ltr /var/spool/PBS/spool

-rw------- 1 TestUser users 3489 Sep 17 04:24 hook_execjob_launch_launch_12135.in

-rw------- 1 TestUser users 1045 Sep 17 04:24 hook_execjob_launch_launch_12135.out

-rw------- 1 TestUser users 15906 Sep 17 04:24 hook_execjob_launch_launch_12135.data
PBS Professional 2022.1 Hooks Guide HG-239

Chapter 8 Debugging Hooks
List the execjob_launch hook event file:

cat hook_execjob_launch_launch_12135.in

pbs.event().progname=/bin/bash

pbs.event().argv[0]=-bash

pbs.event().env=TZ=US/Eastern,PATH=/bin:/usr/bin,PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,Monsie
ur=Shlomi,PBS_O_HOME=/home/TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PB
S_O_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spo
ol/mail/TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/
openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr
/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,HOME=/home/TestUser,LOGNAME=TestUser,PBS_JOBNA
ME=job.scr,PBS_JOBID=511.jupiter.example.com,PBS_QUEUE=workq,SHELL=/bin/bash,USER=TestUser,P
BS_JOBCOOKIE=00000000434AB4BA000000000BDC62D3,PBS_NODENUM=0,PBS_TASKNUM=1,PBS_MOMPORT=15003,
OMP_NUM_THREADS=1,NCPUS=1,PBS_NODEFILE=/var/spool/PBS/aux/511.jupiter.example.com,PBS_TMPDIR
=/var/tmp/pbs.511.jupiter.example.com,PBS_JOBDIR=/home/TestUser,PBS_ENVIRONMENT=PBS_BATCH,EN
VIRONMENT=BATCH

pbs.event().job.id=511.jupiter.example.com

pbs.event().job.Job_Name=job.scr

pbs.event().job.Job_Owner=TestUser@jupiter.example.com

pbs.event().job.job_state=T

pbs.event().job.queue=workq

pbs.event().job.server=jupiter.example.com

pbs.event().job.Checkpoint=u

pbs.event().job.Error_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.e511

pbs.event().job.exec_host2=jupiter.example.com:15002/0

pbs.event().job.exec_vnode=(jupiter:ncpus=1)

pbs.event().job.Join_Path=n

pbs.event().job.Keep_Files=n

pbs.event().job.mtime=1410942248

pbs.event().job.Output_Path=jupiter.example.com:/home/TestUser/jobs/job.scr.o511

pbs.event().job.Priority=7

pbs.event().job.Resource_List[file]=7gb

pbs.event().job.Resource_List[ncpus]=1

pbs.event().job.Resource_List[place]=pack

pbs.event().job.schedselect=1:ncpus=1

pbs.event().job.substate=0

pbs.event().job.Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash,Monsieur=Shlomi,PBS_O_HOM
E=/home/TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/T
estUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/TestUser,PB
S_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/openmpi/bin:/home/T
estUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/games:/opt/pbs/bin
:/opt/pbs/bin:/opt/pbs/bin

pbs.event().job.euser=TestUser

pbs.event().job.egroup=users

pbs.event().job.hashname=511.jupiter.example.com

pbs.event().job.cookie=00000000434AB4BA000000000BDC62D3

pbs.event().job.run_count=1

pbs.event().job.job_kill_delay=10

pbs.event().job.project=_pbs_project_default
HG-240 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.event().job.run_version=1

pbs.event().job._msmom=True

pbs.event().job._stdout_file=/var/spool/PBS/spool/511.jupiter.example.com.OU

pbs.event().job._stderr_file=/var/spool/PBS/spool/511.jupiter.example.com.ER

pbs.event().vnode_list["jupiter"].resources_assigned[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_assigned[mem]=0kb

pbs.event().vnode_list["jupiter"].pcpus=1

pbs.event().vnode_list["jupiter"].resources_available[ncpus]=1

pbs.event().vnode_list["jupiter"].resources_available[mem]=757388kb

pbs.event().vnode_list["jupiter"].resources_available[arch]=linux

pbs.event().vnode_list["jupiter"].pbs_version=PBSPro_10.0

pbs.get_local_nodename()=jupiter

pbs.event().type=execjob_launch

pbs.event().hook_name=launch

pbs.event().hook_type=site

pbs.event().requestor=pbs_mom

pbs.event().requestor_host=jupiter.example.com

pbs.event().user=pbsadmin

pbs.event().alarm=30
PBS Professional 2022.1 Hooks Guide HG-241

Chapter 8 Debugging Hooks
List the execjob_launch hook site data file:

jupiter:/var/spool/PBS/spool # cat hook_execjob_launch_launch_12135.data

pbs.server().server_state=Active

pbs.server().server_host=jupiter.example.com

pbs.server().scheduling=True

pbs.server().total_jobs=3

pbs.server().state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0 Begun:0

pbs.server().managers=TestUser@*

pbs.server().default_queue=workq

pbs.server().log_events=511

pbs.server().mail_from=adm

pbs.server().query_other_jobs=True

pbs.server().resources_default[ncpus]=1

pbs.server().default_chunk[ncpus]=1

pbs.server().resources_assigned[mem]=0mb

pbs.server().resources_assigned[ncpus]=1

pbs.server().resources_assigned[nodect]=1

pbs.server().scheduler_iteration=600

pbs.server().flatuid=True

pbs.server().resv_enable=True

pbs.server().node_fail_requeue=310

pbs.server().max_array_size=10000

pbs.server().pbs_license_min=1

pbs.server().pbs_license_max=2147483647

pbs.server().pbs_license_linger_time=3600

pbs.server().license_count=Avail_Global:0 Avail_Local:31 Used:1 High_Use:2

pbs.server().pbs_version=PBSPro_10.0

pbs.server().eligible_time_enable=False

pbs.server().max_concurrent_provision=5

pbs.server().job(501.jupiter.example.com).Job_Name=STDIN

pbs.server().job(501.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(501.jupiter.example.com).job_state=H

pbs.server().job(501.jupiter.example.com).queue=workq

pbs.server().job(501.jupiter.example.com).server=jupiter.example.com

pbs.server().job(501.jupiter.example.com).Checkpoint=u

pbs.server().job(501.jupiter.example.com).ctime=1410940219

pbs.server().job(501.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e501

pbs.server().job(501.jupiter.example.com).Hold_Types=u

pbs.server().job(501.jupiter.example.com).Join_Path=n

pbs.server().job(501.jupiter.example.com).Keep_Files=n

pbs.server().job(501.jupiter.example.com).Mail_Points=a

pbs.server().job(501.jupiter.example.com).mtime=1410940219

pbs.server().job(501.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o501

pbs.server().job(501.jupiter.example.com).Priority=7
HG-242 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(501.jupiter.example.com).qtime=1410940219

pbs.server().job(501.jupiter.example.com).Rerunable=True

pbs.server().job(501.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(501.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(501.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(501.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(501.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(501.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().job(501.jupiter.example.com).substate=20

pbs.server().job(501.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(501.jupiter.example.com).euser=TestUser

pbs.server().job(501.jupiter.example.com).egroup=users

pbs.server().job(501.jupiter.example.com).queue_rank=185

pbs.server().job(501.jupiter.example.com).queue_type=E

pbs.server().job(501.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(501.jupiter.example.com).project=_pbs_project_default

pbs.server().job(502.jupiter.example.com).Job_Name=STDIN

pbs.server().job(502.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(502.jupiter.example.com).job_state=H

pbs.server().job(502.jupiter.example.com).queue=workq

pbs.server().job(502.jupiter.example.com).server=jupiter.example.com

pbs.server().job(502.jupiter.example.com).Checkpoint=u

pbs.server().job(502.jupiter.example.com).ctime=1410940221

pbs.server().job(502.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/STD
IN.e502

pbs.server().job(502.jupiter.example.com).Hold_Types=u

pbs.server().job(502.jupiter.example.com).Join_Path=n

pbs.server().job(502.jupiter.example.com).Keep_Files=n

pbs.server().job(502.jupiter.example.com).Mail_Points=a

pbs.server().job(502.jupiter.example.com).mtime=1410940221

pbs.server().job(502.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/ST
DIN.o502

pbs.server().job(502.jupiter.example.com).Priority=7

pbs.server().job(502.jupiter.example.com).qtime=1410940223

pbs.server().job(502.jupiter.example.com).Rerunable=True

pbs.server().job(502.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(502.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(502.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(502.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(502.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(502.jupiter.example.com).schedselect=1:ncpus=1
PBS Professional 2022.1 Hooks Guide HG-243

Chapter 8 Debugging Hooks
pbs.server().job(502.jupiter.example.com).substate=20

pbs.server().job(502.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,PBS_O_HOME=/home/TestUser,PBS_O_LOGNAME=TestUser,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LA
NG=en_US.UTF-8,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/mpi/gcc/op
enmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/bin:/usr/g
ames:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,PBS_O_MAIL=/var/spool/mail/TestUser,PBS_O_QUEUE=
workq,PBS_O_HOST=jupiter.example.com

pbs.server().job(502.jupiter.example.com).euser=TestUser

pbs.server().job(502.jupiter.example.com).egroup=users

pbs.server().job(502.jupiter.example.com).queue_rank=186

pbs.server().job(502.jupiter.example.com).queue_type=E

pbs.server().job(502.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>-h</jsdl-hpcpa:A
rgument>

pbs.server().job(502.jupiter.example.com).project=_pbs_project_default

pbs.server().job(511.jupiter.example.com).Job_Name=job.scr

pbs.server().job(511.jupiter.example.com).Job_Owner=TestUser@jupiter.example.com

pbs.server().job(511.jupiter.example.com).resources_used[cpupercent]=0

pbs.server().job(511.jupiter.example.com).resources_used[cput]=00:00:00

pbs.server().job(511.jupiter.example.com).resources_used[mem]=0kb

pbs.server().job(511.jupiter.example.com).resources_used[ncpus]=1

pbs.server().job(511.jupiter.example.com).resources_used[vmem]=0kb

pbs.server().job(511.jupiter.example.com).resources_used[walltime]=00:00:00

pbs.server().job(511.jupiter.example.com).job_state=R

pbs.server().job(511.jupiter.example.com).queue=workq

pbs.server().job(511.jupiter.example.com).server=jupiter.example.com

pbs.server().job(511.jupiter.example.com).Checkpoint=u

pbs.server().job(511.jupiter.example.com).ctime=1410942249

pbs.server().job(511.jupiter.example.com).Error_Path=jupiter.example.com:/home/TestUser/jobs/job
.scr.e511

pbs.server().job(511.jupiter.example.com).exec_host=jupiter/0

pbs.server().job(511.jupiter.example.com).exec_vnode=(jupiter:ncpus=1)

pbs.server().job(511.jupiter.example.com).Hold_Types=n

pbs.server().job(511.jupiter.example.com).Join_Path=n

pbs.server().job(511.jupiter.example.com).Keep_Files=n

pbs.server().job(511.jupiter.example.com).Mail_Points=a

pbs.server().job(511.jupiter.example.com).mtime=1410942250

pbs.server().job(511.jupiter.example.com).Output_Path=jupiter.example.com:/home/TestUser/jobs/jo
b.scr.o511

pbs.server().job(511.jupiter.example.com).Priority=7

pbs.server().job(511.jupiter.example.com).qtime=1410942249

pbs.server().job(511.jupiter.example.com).Rerunable=True

pbs.server().job(511.jupiter.example.com).Resource_List[file]=7gb

pbs.server().job(511.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().job(511.jupiter.example.com).Resource_List[nodect]=1

pbs.server().job(511.jupiter.example.com).Resource_List[place]=pack

pbs.server().job(511.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().job(511.jupiter.example.com).schedselect=1:ncpus=1
HG-244 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().job(511.jupiter.example.com).stime=1410942250

pbs.server().job(511.jupiter.example.com).session_id=12134

pbs.server().job(511.jupiter.example.com).jobdir=/home/TestUser

pbs.server().job(511.jupiter.example.com).substate=42

pbs.server().job(511.jupiter.example.com).Variable_List=PBS_O_SYSTEM=Linux,PBS_O_SHELL=/bin/bash
,Monsieur=Shlomi,PBS_O_HOME=/home/TestUser,PBS_O_HOST=jupiter.example.com,PBS_O_LOGNAME=Test
User,PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_LANG=en_US.UTF-8,PBS_O_QUEUE=workq,PBS_O_MAIL=/
var/spool/mail/TestUser,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/usr/lib64/m
pi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/X11R6/b
in:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin

pbs.server().job(511.jupiter.example.com).euser=TestUser

pbs.server().job(511.jupiter.example.com).egroup=users

pbs.server().job(511.jupiter.example.com).hashname=511.jupiter.example.com

pbs.server().job(511.jupiter.example.com).queue_rank=192

pbs.server().job(511.jupiter.example.com).queue_type=E

pbs.server().job(511.jupiter.example.com).comment=Job run at Wed Sep 17 at 04:24 on
(jupiter:ncpus=1)

pbs.server().job(511.jupiter.example.com).etime=1410942249

pbs.server().job(511.jupiter.example.com).run_count=1

pbs.server().job(511.jupiter.example.com).Submit_arguments=<jsdl-hpcpa:Argument>job.scr</jsdl-hp
cpa:Argument>

pbs.server().job(511.jupiter.example.com).project=_pbs_project_default

pbs.server().job(511.jupiter.example.com).run_version=1

pbs.server().queue(workq).queue_type=Execution

pbs.server().queue(workq).total_jobs=3

pbs.server().queue(workq).state_count=Transit:0 Queued:0 Held:2 Waiting:0 Running:1 Exiting:0
Begun:0

pbs.server().queue(workq).resources_assigned[mem]=0mb

pbs.server().queue(workq).resources_assigned[ncpus]=1

pbs.server().queue(workq).resources_assigned[nodect]=1

pbs.server().queue(workq).enabled=True

pbs.server().queue(workq).started=True

pbs.server().queue(R503).queue_type=Execution

pbs.server().queue(R503).total_jobs=0

pbs.server().queue(R503).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0

pbs.server().queue(R503).acl_user_enable=True

pbs.server().queue(R503).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R503).resources_max[ncpus]=1

pbs.server().queue(R503).resources_max[walltime]=00:30:00

pbs.server().queue(R503).resources_available[ncpus]=1

pbs.server().queue(R503).resources_available[walltime]=00:30:00

pbs.server().queue(R503).enabled=True

pbs.server().queue(R503).started=False

pbs.server().queue(R504).queue_type=Execution

pbs.server().queue(R504).total_jobs=0

pbs.server().queue(R504).state_count=Transit:0 Queued:0 Held:0 Waiting:0 Running:0 Exiting:0
Begun:0
PBS Professional 2022.1 Hooks Guide HG-245

Chapter 8 Debugging Hooks
pbs.server().queue(R504).acl_user_enable=True

pbs.server().queue(R504).acl_users=TestUser@jupiter.example.com

pbs.server().queue(R504).resources_max[ncpus]=1

pbs.server().queue(R504).resources_max[walltime]=00:30:00

pbs.server().queue(R504).resources_available[ncpus]=1

pbs.server().queue(R504).resources_available[walltime]=00:30:00

pbs.server().queue(R504).enabled=True

pbs.server().queue(R504).started=False

pbs.server().vnode(jupiter).Mom=jupiter.example.com

pbs.server().vnode(jupiter).Port=15002

pbs.server().vnode(jupiter).pbs_version=PBSPro_10.0

pbs.server().vnode(jupiter).ntype=0

pbs.server().vnode(jupiter).state=0

pbs.server().vnode(jupiter).pcpus=1

pbs.server().vnode(jupiter).jobs=511.jupiter.example.com/0

pbs.server().vnode(jupiter).resv=R504.jupiter.example.com, R503.jupiter.example.com

pbs.server().vnode(jupiter).resources_available[arch]=linux

pbs.server().vnode(jupiter).resources_available[file]=7gb

pbs.server().vnode(jupiter).resources_available[host]=jupiter

pbs.server().vnode(jupiter).resources_available[mem]=8gb

pbs.server().vnode(jupiter).resources_available[ncpus]=8

pbs.server().vnode(jupiter).resources_available[vnode]=jupiter

pbs.server().vnode(jupiter).resources_assigned[mem]=0kb

pbs.server().vnode(jupiter).resources_assigned[ncpus]=1

pbs.server().vnode(jupiter).resources_assigned[vmem]=0kb

pbs.server().vnode(jupiter).resv_enable=True

pbs.server().vnode(jupiter).sharing=1

pbs.server().vnode(mars).Mom=mars.example.com

pbs.server().vnode(mars).Port=15002

pbs.server().vnode(mars).pbs_version=PBSPro_10.0

pbs.server().vnode(mars).ntype=0

pbs.server().vnode(mars).state=0

pbs.server().vnode(mars).pcpus=1

pbs.server().vnode(mars).resources_available[arch]=linux

pbs.server().vnode(mars).resources_available[file]=7gb

pbs.server().vnode(mars).resources_available[host]=mars

pbs.server().vnode(mars).resources_available[mem]=8gb

pbs.server().vnode(mars).resources_available[ncpus]=8

pbs.server().vnode(mars).resources_available[vnode]=mars

pbs.server().vnode(mars).resources_assigned[mem]=0kb

pbs.server().vnode(mars).resources_assigned[ncpus]=0

pbs.server().vnode(mars).resources_assigned[vmem]=0kb

pbs.server().vnode(mars).resv_enable=True

pbs.server().vnode(mars).sharing=1

pbs.server().resv(R503.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R503.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com
HG-246 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
pbs.server().resv(R503.jupiter.example.com).reserve_type=2

pbs.server().resv(R503.jupiter.example.com).reserve_state=2

pbs.server().resv(R503.jupiter.example.com).reserve_substate=2

pbs.server().resv(R503.jupiter.example.com).reserve_start=1410955200

pbs.server().resv(R503.jupiter.example.com).reserve_end=1410957000

pbs.server().resv(R503.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R503.jupiter.example.com).queue=R503

pbs.server().resv(R503.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R503.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R503.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R503.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R503.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R503.jupiter.example.com).ctime=1410940237

pbs.server().resv(R503.jupiter.example.com).mtime=1410940237

pbs.server().resv(R503.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R503.jupiter.example.com).euser=TestUser

pbs.server().resv(R503.jupiter.example.com).egroup=users

pbs.server().resv(R504.jupiter.example.com).Reserve_Name=NULL

pbs.server().resv(R504.jupiter.example.com).Reserve_Owner=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).reserve_type=2

pbs.server().resv(R504.jupiter.example.com).reserve_state=2

pbs.server().resv(R504.jupiter.example.com).reserve_substate=2

pbs.server().resv(R504.jupiter.example.com).reserve_start=1410958800

pbs.server().resv(R504.jupiter.example.com).reserve_end=1410960600

pbs.server().resv(R504.jupiter.example.com).reserve_duration=1800

pbs.server().resv(R504.jupiter.example.com).queue=R504

pbs.server().resv(R504.jupiter.example.com).Resource_List[ncpus]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[walltime]=00:30:00

pbs.server().resv(R504.jupiter.example.com).Resource_List[nodect]=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[select]=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).Resource_List[place]=free

pbs.server().resv(R504.jupiter.example.com).schedselect=1:ncpus=1

pbs.server().resv(R504.jupiter.example.com).resv_nodes=(jupiter:ncpus=1)

pbs.server().resv(R504.jupiter.example.com).Authorized_Users=TestUser@jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).server=jupiter.example.com

pbs.server().resv(R504.jupiter.example.com).ctime=1410940250

pbs.server().resv(R504.jupiter.example.com).mtime=1410940250

pbs.server().resv(R504.jupiter.example.com).Variable_List=PBS_O_LOGNAME=TestUser,PBS_O_HOST=jupi
ter.example.com,PBS_O_MAIL=/var/spool/mail/TestUser

pbs.server().resv(R504.jupiter.example.com).euser=TestUser

pbs.server().resv(R504.jupiter.example.com).egroup=users
PBS Professional 2022.1 Hooks Guide HG-247

Chapter 8 Debugging Hooks
List the execjob_launch hook execution record file:

jupiter:/var/spool/PBS/spool # cat hook_execjob_launch_launch_12135.out

pbs.event().accept=True

pbs.event().reject=False

pbs.event().progname=/bin/sleep

pbs.event().argv[0]=sleep

pbs.event().env=PBS_O_SYSTEM=Linux,PBS_JOBCOOKIE=00000000434AB4BA000000000BDC62D3,PBS_O_SHELL=/b
in/bash,PBS_O_HOME=/home/TestUser,PBS_O_HOST=jupiter.example.com,PBS_NODENUM=0,PBS_O_LOGNAME
=TestUser,PBS_JOBID=511.jupiter.example.com,PBS_JOBNAME=job.scr,PBS_O_LANG=en_US.UTF-8,USER=
TestUser,PATH=/bin:/usr/bin,HOME=/home/TestUser,PBS_QUEUE=workq,PBS_O_MAIL=/var/spool/mail/T
estUser,PBS_TMPDIR=/var/tmp/pbs.511.jupiter.example.com,ENVIRONMENT=BATCH,PBS_NODEFILE=/var/
spool/PBS/aux/511.jupiter.example.com,SHELL=/bin/bash,PBS_ENVIRONMENT=PBS_BATCH,Monsieur=Shl
omi,OMP_NUM_THREADS=1,NCPUS=1,PBS_JOBDIR=/home/TestUser,PBS_O_QUEUE=workq,PBS_MOMPORT=15003,
PBS_O_WORKDIR=/home/TestUser/jobs,PBS_O_PATH=/usr/local/bin:/usr/local/bin:/usr/local/bin:/u
sr/lib64/mpi/gcc/openmpi/bin:/home/TestUser/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/u
sr/X11R6/bin:/usr/games:/opt/pbs/bin:/opt/pbs/bin:/opt/pbs/bin,LOGNAME=TestUser,PBS_TASKNUM=
1,TZ=US/Eastern

8.9 Interactive Debugging using pbs_python

You can perform interactive debugging by leaving out the hook name and supplying event input information and/or site
data information. For example, to interactively debug with event input and site data information:

pbs_python --hook -i MyEventInputFile -s MySiteData

You get a pbs_python prompt, and in order to end the session, issue a pbs.event().accept() or pbs.event().reject():

>>import pbs

>>print pbs.event().job.id

1234.examplehost

>>pbs.event().accept()

8.10 Error Reporting and Logging

Hook errors are printed to stderr for the command (qsub, qalter, pbs_rsub, or qmove) that triggered the hook. If
the hook provides a custom error message, that message is treated the same way.

Hooks can log custom strings to the log file of the daemon from which the hook is executing. When logging a message,
a hook uses message logging methods to specify the message, and constant objects to specify the log event class. See
"pbs.logmsg()” on page 177, and section 6.15.4.4, “Message Log Level Objects”, on page 177.

When the PBS server starts, it prints to the server logs both the Python version integrated with the server, and a list of all
the hook names registered with the server.

To see only hook-related 0x0400 messages in the MoM logs, such as "<hook name>;started", "<hook_name>;finished",
set the $logevent MoM parameter to 0x400 in the MoM configuration file.

To see all the different types of MoM log messages, set $logevent to 0xffff.

The default value for the $logevent MoM parameter is 975, so that the following log events are captured. See “Log
Levels” on page 375 of the PBS Professional Reference Guide for more about log levels.

PBSEVENT_ERROR

PBSEVENT_SYSTEM
HG-248 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
PBSEVENT_ADMIN

PBSEVENT_JOB

PBSEVENT_JOB_USAGE

PBSEVENT_SECURITY

PBSEVENT_DEBUG

PBSEVENT_DEBUG2

PBSEVENT_RESV

8.10.1 Errors During Creation and Deployment

8.10.1.1 Hook Name Matches Existing Hook

Creating a hook whose name matches that of an existing hook: the following error message is printed in stderr and in
the server logs:

"hook error: hook name <hook_name> already registered, try another name"

8.10.1.2 Using a Hook Name that Starts with "PBS"

Using a hook name that starts with "PBS": the hook name is rejected with the following error in qmgr's stderr, as well
as in the server logs:

"hook error: cannot use PBS as a prefix - it is reserved for PBS hooks"

8.10.1.3 Deleting a Non-Existent Hook

Deleting a non-existent hook: the following is returned in qmgr's stderr and server logs:

"qmgr: hook error: <non-existent hook name> does not exist"

8.10.1.4 Specifying a Non-Existent Event Type

Specifying a non-existent event type: an error message is printed to qmgr's stderr and also to the server logs:

Example:

Qmgr: set hook hook1 event="mom_checkpoint"

"hook error: invalid argument to event. Should be one of: queuejob, modifyjob, resvsub, movejob,
runjob, provision, execjob_begin, execjob_prologue, execjob_epilogue, execjob_preterm,
execjob_end, exechost_periodic, execjob_launch, exechost_startup, execjob_attach or "" for no
event."

"qmgr: hook error returned from server"

8.10.1.5 Using a Bad Hook Value

Putting in a bad hook value: an error is printed to qmgr's stderr and also to the server logs:

Example:

Qmgr: set hook hook2 order=1025

"qmgr obj=hookA svr=default: order given (1025) is outside the acceptable range of [1, 1000] for
type 'site'."

"qmgr: hook error returned from server"
PBS Professional 2022.1 Hooks Guide HG-249

Chapter 8 Debugging Hooks
8.10.1.6 Unauthorized User

If qmgr is invoked, and the object being operated on is "hook", and the executing user at some host does not have access
to the target server's private location for hooks data, then the following error is issued to stderr and server logs:

"<user>@<host> is unauthorized to access hooks data from server <hostname>"

8.10.1.7 Setting a Bad Hook Type

Setting a bad type to a hook produces the following error message in qmgr's stderr and also in the server logs:

"hook error: invalid argument to type. Must be site"

8.10.1.8 Setting a Bad Alarm Value

Setting a bad alarm value to a hook produces the following error message in qmgr's stderr and also in the server logs:

"hook error: alarm value of a hook must be > 0"

8.10.1.9 Exporting To Non-Writable File

Exporting a hook's content to a file that is not writable due to ownership or permission problems results in the following
error message being printed to stderr:

"qmgr: hook error: <output_file> permission denied"

8.10.1.10 Setting Bad Hook user Attribute

Setting a value for the user attribute of a hook to something other than "pbsadmin" produces the following error mes-
sage in qmgr's stderr and also in the server logs:

"hook error: user value of a hook must be pbsadmin, pbsuser"

This attribute does not need to be set to the actual name of the PBS service account.

8.10.1.11 Importing From Non-Readable File

Importing a hook where the PBS server is unable to open the input file because the file is non-existent, has a permission
problem, or any other system-related error causes the following error message to be printed in stderr and in the server
logs:

"qmgr: hook error: unable to open <filename> by server run by <user>@<host>: <error message>"

Examples:

"qmgr: hook error: unable to open hook1.py by server run by pbsadmin@hostX: permission denied"

"qmgr: hook error: unable to open hook1.py by server run by pbsadmin@hostY: No such file or
directory"

8.10.1.12 Importing or Exporting with Wrong Content Type

Importing or exporting a hook where the <content-type> is something other than "application/x-python" causes the fol-
lowing error message to be printed in stderr and in the server logs:

"qmgr: hook error: <content_type> must be 'application/x-python'"

Importing/exporting a hook where the <content-encoding> is something other than "default" or "base64" causes the
following error message to be printed in stderr and on the server logs:

"qmgr: hook error: <content_encoding> must be 'default' or 'base64'"
HG-250 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
An import call on a hook that already has a content script results in the following informational message being printed in
stdout and server logs:

"qmgr: hook <hook_name> contents overwritten by file <hook input file>

8.10.1.13 Setting Vnode State to Invalid Value

Setting a vnode's state attribute to an invalid value causes the pbs.BadAttributeValueError exception to be raised.

8.10.1.14 Creating a Hook with Same Name as Existing Hook

You may find that when you remove a hook, it may take some time for the hook to be completely purged. If you run
"qmgr -c 'create hook <hook_name>'" where a previous hook of the same <hook_name> still exists, you
will see the following message:

"hook name <hook_name> is pending delete, try another name"

Either specify another name for the hook, or retry the qmgr request again later, after the previous hook is completely
purged.

8.10.2 Errors And Messages During Hook Execution

8.10.2.1 Successful Operation of runjob Hook

When a hook successfully sets an attribute, one of the following is written to the server's log:

<job ID>; '<hook name>' hook set job's <attribute name> = <value>

or

Job held by '<hook name>' hook on <timedate>

8.10.2.2 Unsuccessful Operation for runjob Hook

When a hook fails to set an attribute, the following is written to the server's log:

<job ID>; '<hook name>' hook failed to set job's <attribute name> = <value>

8.10.2.3 Rejecting an Action

If a hook rejects an action by calling the pbs.event().reject() function:

• The following messages are printed to stderr of the command that triggered the hook:
"<command_name>: Request rejected by filter hook <hook_name>" "<command_name>:<'msg' value passed

to pbs.event().reject()>"

where 'msg' is the message passed (if any) as input to pbs.event().reject().

• The following messages are printed in the appropriate PBS daemon log, logged at event class 0x0400:
"<user>@<host>…<request type> request rejected by <hook name> "<user>@<host> …<request type>

<'msg' value passed to pbs.event().reject()>"
PBS Professional 2022.1 Hooks Guide HG-251

Chapter 8 Debugging Hooks
8.10.2.4 Triggering an Alarm

If the alarm was triggered while executing a hook:

• The command that initiated the request gets the following messages in its stderr:
"<command_name>: Request rejected by filter hook <hook_name>" "<command_name>: alarm call while

running hook <hook_name>"

• The following entry appears in the appropriate PBS daemon log, logged under event class PBSEVENT_DEBUG2:
"<user>@<host>…<request type> alarm call while running hook <hook_name>, request rejected"

8.10.2.5 Encountering an Unhandled Exception

If a hook encounters an unhandled exception:

• PBS rejects the corresponding action. The command that triggered the hook gets the following message in stderr:
"<command_name>: request rejected as filter hook <hook_name> encountered an exception. Inform

admin."

• The following message appears on the appropriate PBS daemon log, logged under PBSEVENT_DEBUG2 event
class:
"<request type> hook <hook_name> encountered an exception, request rejected"

See section 5.2.3, “Hook Alarm Calls and Unhandled Exceptions”, on page 44.

8.10.2.6 Starting and Finishing Hook Execution

Whenever hook execution starts or finishes, timestamped 0x0400 event class log messages appear in the appropriate PBS
daemon log:

 "11/13/2007 00:00:42 …<user>@<host>…<request type> running hook named <hook name>"

"11/13/2007 00:01:42<user@><host>…<request type> <hook_name> finished"

8.10.2.7 Hook Timeout

When a hook timeout is triggered, the hook script gets a Python KeyboardInterrupt from the PBS server. The server logs
show the following:

06/17/2008 17:57:16;0001;Server@host2;Svr;Server@host2;PBS server internal error (15011) in
Python script received a KeyboardInterrupt, <type 'exceptions.KeyboardInterrupt'>

8.10.2.8 Hooks Attempting I/O

When the PBS server is running, stdout, stderr, and stdin are closed, so that a hook script containing calls to print to
standard output or standard error, or to read input from standard input, gets the following exception:

02/24/2008 08:03:34;0086;Server@a-centauri;Svr;Server@a-centauri;Compiling script file:
</var/spool/pbs/server_priv/hooks/hook_test.PY>

02/24/2008 08:03:34;0001;Server@a-centauri;Svr;Server@a-centauri;PBS server internal error
(15011) in Error evaluating Python script, <type 'exceptions.IOError'>

8.10.2.9 Bad Value for debug Attribute

If you specify an invalid value for a hook's debug attribute, the following error message appears in qmgr's STDERR:

"unexpected value '<bad_val>' must be (not case sensitive) true|t|y|1|false|f|n|0"
HG-252 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
8.10.2.10 Commands Fail Inside Hooks

When a command fails inside a hook, but succeeds outside the hook, the problem may be a difference in the environ-
ments.

8.10.2.11 runjob Hook Errors

8.10.2.11.i Modifying Hold, Execution Time, Dependency, or Project of Accepted
Job

If a runjob hook accepts an event request, using pbs.event().accept(), but attempts to set a disallowed attribute, the hook
request is rejected.

If the hook is triggered by a qrun command, the following message is sent to stderr where the qrun command was
run. If the hook is triggered when the scheduler tries to run the job, the following message is written to the job's com-
ment attribute:

request rejected by filter hook <hook_name>: cannot modify job after runjob request has been
accepted.

The following message is written to the PBS server log, at log event class PBSEVENT_DEBUG2:

<hook name>; Found job <attribute name> attribute flagged to be set

runjob request rejected by <hook name>: cannot modify job after runjob request has been accepted.

8.10.2.11.ii Modifying Disallowed Attributes of Rejected Job

If a runjob hook rejects an event request, using pbs.event().reject(), but attempts to do any of the above, the following
message is written to the PBS server log, at log event class 0x0100:

runjob request rejected by <hook name>: cannot modify job attribute

<attribute name> after runjob request has been rejected.

8.10.2.11.iii Modifying Vnode

If a runjob hook event is accepted via a pbs.event().accept() call, and yet an attempt is made to modify a vnode's state,
then the hook request is rejected. The following message is sent to the stderr of qrun, and becomes the job's comment:

request rejected by filter hook <hook_name>: cannot modify vnode after runjob request has been
accepted.

The following message appears in the PBS server log, logged at event class PBSEVENT_DEBUG2:

runjob request rejected by <hook name>: cannot modify a vnode after runjob request has been
accepted.

8.10.2.11.iv runjob Hook Referencing Wrong Parameter

If a runjob hook attempts to reference a pbs.event() parameter other than pbs.event().job, the exception pbs.EventIn-
compatibleError is raised.

8.10.2.11.v Attempting to Set Restricted Resource

A runjob hook cannot set the value of a Resource_LIst member other than those listed in Table 5-11, “Built-in Job
Resources Readable & Settable by Hooks via Job Events,” on page 64.
PBS Professional 2022.1 Hooks Guide HG-253

Chapter 8 Debugging Hooks
Setting any of the wrong resources results in the following:

• The hook request is rejected

• The following message is sent to the STDERR of qrun, or after the failed pbs_runjob():
" request rejected by filter hook: '<hook name>' hook failed to set job's

Resource_List.<resc_name> = <resc_value> (not allowed)"

• The scheduler updates the affected job's comment attribute with the above message.

• The following message appears in the server's log, logged at level PBSEVENT_DEBUG2:
"runjob request rejected: '<hook name>' hook failed to set job's Resource_list.<resc_name> =

<resc_value> (not allowed)"

8.10.2.12 Special Errors Requiring Support

If you encounter any of the following log messages, an internal failure has occurred during hook setup. Please contact
PBS Professional support:

04/15/2011 17:55:23;0100;Server@jobim;Hook;<hook_name>t3;Encountered an error while setting event

04/15/2011 17:55:23;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_job, partially populated python job object

04/15/2011 17:55:23;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_server, partially populated python server object

04/15/2011 17:55:26;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_queue, partially populated python queue object

04/15/2011 17:55:26;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_vnode, partially populated python vnode object

04/15/2011 17:55:26;0001;Server@jobim;Svr;Server@jobim;PBS server internal error (15011) in
_get_resv, warning: partially populated python resv object

8.10.3 Errors During Startup

If the server starts up and encounters a hook that has no content (no script was imported into the hook), PBS displays the
following warning:

"failed to stat <path_server_priv_hooks>/<hook_name>.PY"

"failed to allocate storage for python script

<path_server_priv_hooks>/<hook_name>.PY"

8.10.4 Errors in Hook Updates

Updates to hooks are asynchronous with respect to jobs. During an update, some jobs may run on updated MoMs while
others run on MoMs that are not yet updated. A multi-host job that started running before the update may find itself run-
ning on some MoMs that are updated and some that are not. In addition, a multi-host job that starts during the update
may start on updated and non-updated MoMs. When a job triggers a hook, the hook that runs is the current hook, not the
hook that was there when the job started. If you change, delete, or add a hook while a job is running, and the job subse-
quently triggers the hook, that job will encounter whatever changes have propagated to the MoM.

• If a job runs where a hook update is incomplete, PBS prints the following to the server's log file:
"vnode <node_name>'s parent mom <mom_host>:<mom_port> has a pending copy hook or delete hook

request"
HG-254 PBS Professional 2022.1 Hooks Guide

Debugging Hooks Chapter 8
Bear in mind that hooks are updated asynchronously with respect to jobs, so a multi-host job that started before the
update may encounter an incompletely updated hook.

• As PBS copies or deletes execution or periodic hooks to the MoMs, the following messages are printed in the
server's log file at 2047:
"successfully sent hook file <filename> to <mom_hostname>"

"successfully sent rescdef file <filename> to <mom host name>"

"successfully deleted hook file <filename> from <mom host name>"

"successfully deleted rescdef file <filename> from <mom host name>"

"failed to copy hook file <filename> to <mom host name>"

"failed to copy rescdef file <filename> to <mom host name>"

"failed to delete hook file <filename> from <mom host name>"

"failed to delete rescdef file <filename> from <mom host name>"

• You may find that when you remove a hook, it takes some time for the hook to be completely purged. If you run
"qmgr -c 'create hook <hook_name>'" where a previous hook of the same <hook_name> still exists,
you will see the following message:
"hook name <hook_name> is pending delete, try another name"

Either specify another name for the hook, or retry the qmgr request again later, after the previous hook is completely
purged.

• If a hook tries to use a resource that is not yet propagated, this will cause an exception, which if unhandled, may
delete the job. Write your hooks so that they trap exceptions and deal gracefully with the job. For example, you can
use pbs.event().job.rerun(). Custom resources are propagated to MoMs under the following circumstances:

• When you install PBS on a multi-vnoded machine

• When you add MoMs, resources are propagated to those MoMs

• When you create a custom resource inside a hook

8.10.5 Hook-related Error Codes

The following are hook-related error codes:

Table 8-3: Hook-related Error Codes

Error Name Code Description

PBSE_MOM_INCOMPLETE_HOOK 15167 Execution hook not fully transferred to a particular MoM

PBSE_MOM_REJECT_ROOT_SCRIPTS 15168 A MoM has rejected a request to copy a hook-related file,
or a job script to be executed by root

PBSE_HOOK_REJECT 15169 A MoM received a reject result from an execution or peri-
odic hook

PBSE_HOOK_REJECT_RERUNJOB 15170 Hook rejection requiring a job to be rerun

PBSE_HOOK_REJECT_DELETEJOB 15171 Hook rejection requiring a job to be deleted
PBS Professional 2022.1 Hooks Guide HG-255

Chapter 8 Debugging Hooks
8.10.6 Troubleshooting

8.10.6.1 Bad Interpreter Path

If you see the following error:

/opt/pbs/bin/pbs_python: bad interpreter: No such file or directory

You should check to see whether this is a valid path on this host. Try to cd to the job execution directory and execute
any command using this interpreter path.

8.10.6.2 Viewing Hook Propagation

You don't need to restart pbs_mom for a MoM hook to take effect. If you use qmgr, PBS takes care of copying the new
hook over to the MoM, in the background. It's possible a job may have seen the old MoM hook before the new hook
arrives. After the new hook arrives, you'll see a message in the server_logs with the following:

vnode <name>'s parent mom <mom_name> has a pending copy hook or delete hook request
HG-256 PBS Professional 2022.1 Hooks Guide

9

Hook Examples

Contents

9.1 queuejob Hook Examples . 264
9-1 Reject jobs which do not specify walltime. 264
9-2 Reject jobs with CPU requests that are not multiples of 8 . 265
9-3 If a user asks for -l ncpus=8:ppn=24, change ncpus to 24 . 267
9-4 Calculate and set custom resource . 268
9-5 Put interactive jobs in a particular queue . 269
9-6 Set job project based on queue where job is submitted . 270
9-7 Speed up throughput of interactive jobs . 271
9-8 Validate job account . 272
9-9 Check job resource request and verify that job can run in this complex . 274

9.2 modifyjob Hook Examples . 292
9-10 Prevent users from using qalter to change their jobs . 292
9-11 Reject jobs requesting a specific queue that do not request mem . 293

9.3 jobobit Hook Examples . 294
9-12 jobobit hook . 294

9.4 execjob_launch Hook Examples . 295
9-13 Modify arguments to job program . 295

9.5 execjob_prologue and execjob_epilogue Hook Examples . 296
9-14 Run shell script prologue or epilogue. 296

9.6 exechost_startup Hook Examples . 309
9-15 Create vnode and set vnode resources . 309

9.7 exechost_periodic Hook Examples . 311
9-16 Monitor load; offline or free vnode depending on CPU load. 311
9-17 Periodically update resources on vnodes . 312
9-18 Log loads on vnodes . 314
9-19 Set job attributes and resources . 315

9.8 resvsub Hook Examples . 316
9-20 Restrict ability to submit reservations to PBS administrators . 316

9.9 periodic Hook Examples . 318
9-21 Run job start time estimator . 318

9.10 modifyvnode Hook Example. 319
9-22 Hook that records current and previous vnode values in the PBS log, for the case where the vnode just

went down:319
9.11 Multi-event Hooks. 323

9-23 Helper function for logging exceptions more completely and flexibly:. 323
PBS Professional 2022.1 Hooks Guide HG-257

Chapter 9 Hook Examples
9.1 queuejob Hook Examples

Example 9-1: Reject jobs which do not specify walltime

Hook type: queuejob

Script RequireWalltime.py:

import pbs

import sys

try:

e = pbs.event()

j = e.job

if j.Resource_List["walltime"] == None :

e.reject("Job has no walltime requested")

except SystemExit:

pass

except pbs.UnsetResourceNameError:

e.reject("Job has no walltime requested")

Create hook and import script:

qmgr -c 'create hook RequireWalltime event="queuejob"'

qmgr -c 'import hook RequireWalltime application/x-python default RequireWalltime.py'
HG-258 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Example 9-2: Reject jobs with CPU requests that are not multiples of 8

Hook type: queuejob

Script Multiple8.py:

import pbs

import sys

e = pbs.event()

j = e.job

mult_limit = 8

if j.Resource_List["ncpus"] != None:

try:

e = pbs.event()

j = e.job

R = j.Resource_List["ncpus"] % mult_limit

if R != 0:

e.reject("Ncpus resource is not a multiple of %s." % (mult_limit,))

except SystemExit:

pass

except (pbs.UnsetResourceNameError, TypeError):

e.reject("Bad ncpus resource value.")

else:

R = pbs.event().job.Resource_List

sel = repr(R["select"])

tot_ncpus = 0

for chunk in sel.split("+"):

nchunks = 1

for c in chunk.split(":"):

kv = c.split("=")

if len(kv) == 1:

nchunks = kv[0]

elif len(kv) == 2:

if kv[0] == "ncpus":

tot_ncpus += (int(nchunks) * int(kv[1]))

try:

mod = tot_ncpus % mult_limit

if mod != 0:

e.reject("Ncpus resource is not a multiple of %s." % \

(mult_limit,))

except SystemExit:

pass

except (pbs.UnsetResourceNameError, TypeError):
PBS Professional 2022.1 Hooks Guide HG-259

Chapter 9 Hook Examples
e.reject("Bad Ncpus resource value.")

Create hook and import script:

qmgr -c 'create hook Multiple8 event="queuejob"'

qmgr -c 'import hook Multiple8 application/x-python default Multiple8.py'
HG-260 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Example 9-3: If a user asks for -l ncpus=8:ppn=24, change ncpus to 24

Hook type: queuejob

Script ChangeNcpus.py:

import pbs

import sys

try:

e = pbs.event()

j = e.job

j.Resource_List["ncpus"] = max(j.Resource_List["ncpus"],j.Resource_List["ppn"])

except SystemExit:

pass

except (pbs.UnsetResourceNameError, pbs.BadResourceValError):

e.reject("Failed to reset ncpus value")

Create hook and import script:

qmgr -c 'create hook ChangeNcpus event="queuejob"'

qmgr -c 'import hook ChangeNcpus application/x-python default ChangeNcpus.py'
PBS Professional 2022.1 Hooks Guide HG-261

Chapter 9 Hook Examples
Example 9-4: Calculate and set custom resource

Hook type: queuejob

Custom resource cph == total ncpus * walltime (in hours). Calculate it and set its value.

You must create the cph resource before using it.

Script CustCPH.py:

import pbs

R = pbs.event().job.Resource_List

sel = repr(R["select"])

tot_ncpus = 0

for chunk in sel.split("+"):

nchunks = 1

for c in chunk.split(":"):

kv = c.split("=")

if len(kv) == 1:

nchunks = kv[0]

elif len(kv) == 2:

if kv[0] == "ncpus":

tot_ncpus += (int(nchunks) * int(kv[1]))

R["cph"] = tot_ncpus * R["walltime"]

Create hook and import script:

qmgr -c 'create hook CustCPH event="queuejob"'

qmgr -c 'import hook CustCPH application/x-python default CustCPH.py'
HG-262 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Example 9-5: Put interactive jobs in a particular queue

Hook type: queuejob

Put job into "interQ" if the job was submitted interactively (using qsub -I).

Script IQueue.py:

get the pbs module

import pbs

import sys

try:

Get the hook event information and parameters

This will be for the 'queuejob' event type.

e = pbs.event()

Get the information for the job being queued

j = e.job

if j.interactive:

Get the "interQ" queue object

q = pbs.server().queue("interQ")

Reset the job's destination queue

parameter for this event

j.queue = q

accept the event

e.accept()

except SystemExit:

pass

except:

e.reject("Failed to route job to queue interQ")

Create hook and import script:

qmgr -c 'create hook IQueue event="queuejob"'

qmgr -c 'import hook IQueue application/x-python default IQueue.py'
PBS Professional 2022.1 Hooks Guide HG-263

Chapter 9 Hook Examples
Example 9-6: Set job project based on queue where job is submitted

Hook type: queuejob

The following is a snippet of a queuejob hook:

import pbs

e = pbs.event()

If e.job.queue == None:

user did not specify a queue to submit to, so use default

target_qname = pbs.server().default_queue

else:

target_qname = e.job.queue.name

If (target_qname == "large") or (target_qname == "medium"):

e.job.project = "some_large_medium_project"
HG-264 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Example 9-7: Speed up throughput of interactive jobs

Hook type: queuejob

Use a queuejob hook that determines whether a job entering the system is an interactive job. If so, it directs the job to the
high priority queue specified in 'high_priority_queue', and tells the server to restart the scheduling cycle. You must first
define a "high" queue as follows:

qmgr -c "create queue high queue_type=e,Priority=150"

qenable high

qstart high

The default priority for an express queue is 150. If you do not want interactive jobs to go into an express queue, set the
priority of the queue named "high" to a value greater than ordinary queues but lower than the value for an express queue.
See section 4.9.18, “Express Queues”, on page 138.

Instantiate the hook as follows:

qmgr -c "create hook rapid_inter event=queuejob"

qmgr -c "import hook rapid_inter application/x-python default rapid_inter.py"

Hook script:

import pbs

high_priority_queue="high"

e = pbs.event()

if e.job.interactive:

high = pbs.server().queue(high_priority_queue)

if high != None:

e.job.queue = high

pbs.logmsg(pbs.LOG_DEBUG, "quick start interactive job")

pbs.server().scheduler_restart_cycle()
PBS Professional 2022.1 Hooks Guide HG-265

Chapter 9 Hook Examples
Example 9-8: Validate job account

This hook reads valid accounts from a JSON file.

import os

import simplejson

try:

import pbs

pbs_conf = pbs.pbs_conf

except ImportError:

pass

Read in the configurations file

pbs_hook_cfg = pbs.hook_config_filename

if pbs_hook_cfg == None:

pbs.logmsg(pbs.EVENT_DEBUG3,"%s"%os.environ)

pbs_hook_cfg = os.environ["PBS_HOOK_CONFIG_FILE"]

pbs.logmsg(pbs.EVENT_DEBUG3,"read config file: %s"%pbs.hook_config_filename)

config_file = open(pbs.hook_config_filename).read()

va_cfg = simplejson.loads(config_file)

#pbs.logmsg(pbs.EVENT_DEBUG2,"config file: %s"%va_cfg)

je = pbs.event()

j = pbs.event().job

user=je.requestor

account=j.Account_Name

#pbs.logmsg(pbs.EVENT_DEBUG2,"my Account_Name is: %s"%account)

#pbs.logmsg(pbs.EVENT_DEBUG2,"allowed users for this account are:
%s"%va_cfg["accounts"][account])

if user in va_cfg["accounts"][account]:

pbs.logmsg(pbs.EVENT_DEBUG2,"user is allowed to submit to account")

else:

pbs.logmsg(pbs.EVENT_DEBUG2,"user is NOT allowed to submit to account")

je.reject("user is unauthorized to submit to this account")
HG-266 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Here is an example JSON file with valid accounts:

{

 "accounts": {

 "account1":["user1"],

 "account11":["user11"],

 "account2":["user2"],

 "accountall":["user1","user2"]

 }

}

PBS Professional 2022.1 Hooks Guide HG-267

Chapter 9 Hook Examples
Example 9-9: Check job resource request and verify that job can run in this complex

#!/usr/bin/env python

-*- coding: utf-8 -*-

Purpose: To check the request of the job and verify that it will be able to

run on this cluster

#

Setup: Modify the config file. You will need to provide the correct

information for your complex

import pbs

import sys

import os

from string import join

import simplejson as json

import traceback

import re

import string

pbs.logmsg(pbs.EVENT_DEBUG, "Entering the check limits hook")

e = pbs.event()

py_base_dir = pbs.pbs_conf['PBS_EXEC'] + "/python/lib/python2.5"

try:

sys.path.index(py_base_dir + 'site-packages')

except ValueError:

sys.path = [py_base_dir,

py_base_dir + 'plat-linux2',

py_base_dir + 'lib-tk',

py_base_dir + 'lib-dynload',

py_base_dir + 'site-packages'] \

+ sys.path

def caller_name():

return str(sys._getframe(1).f_code.co_name)

Define error codes

class AdminError(Exception):

pass

class ConfigError(AdminError):

pass

def e_reject(msg):
HG-268 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Message: %s" % (caller_name(), msg))

pbs.event().reject(msg)

#

FUNCTION decode_dict

#

def decode_dict(data):

rv = {}

for key, value in data.iteritems():

if isinstance(key, unicode):

key = key.encode('utf-8')

if isinstance(value, unicode):

value = value.encode('utf-8')

elif isinstance(value, list):

value = decode_list(value)

elif isinstance(value, dict):

value = decode_dict(value)

rv[key] = value

return rv

def decode_list(data):

rv = []

for item in data:

if isinstance(item, unicode):

item = item.encode('utf-8')

elif isinstance(item, list):

item = decode_list(item)

elif isinstance(item, dict):

item = decode_dict(item)

rv.append(item)

return rv

#

FUNCTION convert_size

#

Convert a string containing a size specification (e.g. "1m") to a

string using different units (e.g. "1024k").

#

This function only interprets a decimal number at the start of the string,

stopping at any unrecognized character and ignoring the rest of the string.

#

When down-converting (e.g. MB to KB), all calculations involve integers and

the result returned is exact. When up-converting (e.g. KB to MB) floating

point numbers are involved. The result is rounded up. For example:

#

PBS Professional 2022.1 Hooks Guide HG-269

Chapter 9 Hook Examples
1023MB -> GB yields 1g

1024MB -> GB yields 1g

1025MB -> GB yields 2g <-- This value was rounded up

#

Pattern matching or conversion may result in exceptions.

#

def convert_size(value, units='b'):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

pbs.logmsg(pbs.EVENT_DEBUG3, "value: %s, units: %s" % (value, units))

logs = {'b': 0, 'k': 10, 'm': 20, 'g': 30,

't': 40, 'p': 50, 'e': 60, 'z': 70, 'y': 80}

try:

new = units[0].lower()

if new not in logs:

new = 'b'

val, old = re.match('([-+]?\d+)([bkmgtpezy]?)',

str(value).lower()).groups()

val = int(val)

if val < 0:

raise ValueError('Value may not be negative')

if old not in logs.keys():

old = 'b'

factor = logs[old] - logs[new]

val *= 2 ** factor

slop = val - int(val)

val = int(val)

if slop > 0:

val += 1

pbs.size() does not like units following zero

if val <= 0:

pbs.logmsg(pbs.EVENT_DEBUG3, "Return value: %s" % str(0))

return '0'

else:

pbs.logmsg(pbs.EVENT_DEBUG3, "Return value: %s" % str(val) + new)

return str(val) + new

except:

pbs.logmsg(pbs.EVENT_DEBUG3, "Return value: None")

return None

#

FUNCTION size_as_int

#

Convert a size string to an integer representation of size in bytes

#

HG-270 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
def size_as_int(value):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

return int(convert_size(value).rstrip(string.ascii_lowercase))

#

FUNCTION caller_name

#

Return the name of the calling function or method.

#

Read the config file in json format

def parse_config_file(e, s):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

config = {}

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Server Name: %s" %

 (caller_name(), s.name))

Identify the config file and read in the data

if pbs.hook_config_filename is not None:

config_file = pbs.hook_config_filename

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Config file is %s" %

 (caller_name(), config_file))

try:

config = json.load(open(config_file, 'r'),

 object_hook=decode_dict)

except IOError:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Encountered IOError:\n %s" %

 (caller_name(), sys.exec_info()[0]))

raise ConfigError("I/O error reading config file")

except json.JSONDecodeError:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Encountered DecodeError:\n %s" %

 (caller_name(), sys.exec_info()[0]))

raise ConfigError(

"JSON parsing error reading config file")

except Exception:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Encountered error:\n %s" %

 (caller_name(), sys.exec_info()[0]))

raise

else:

raise ConfigError("No configuration file present")

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Config file:\n %s" %
PBS Professional 2022.1 Hooks Guide HG-271

Chapter 9 Hook Examples
 (caller_name(), config))

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 0 " % (caller_name()))

Set some defaults if they are not present

if 'clusters' not in config:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 1 " % (caller_name()))

e_reject("Please define the cluster inputs ")

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 1.5 " % (caller_name()))

if s.name not in config['clusters']:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 2 " % (caller_name()))

e_reject("Cluster: %s needs to be " % s.name +

 "defined in the config file: %s" % config['clusters'].keys())

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 2.5 " % (caller_name()))

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: %s " % (caller_name(), s.name))

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: %s " %

 (caller_name(), config["clusters"][s.name]))

if 'default_queue' not in config["clusters"][s.name]:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 3 " % (caller_name()))

Find the default queue

config["clusters"][s.name]['default_queue'] = s.default_queue

e_reject("Please define the default queue for the job")

else:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 4 " % (caller_name()))

try:

s.queues(config["clusters"][s.name]['default_queue'])

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: I am here 5 " % (caller_name()))

except:

pbs.logmsg(pbs.EVENT_DEBUG3, "%s not found in pbs complex " %

 config["clusters"][s.name]['default_queue'])

config["clusters"][s.name]['default_queue'] = s.default_queue

pbs.logmsg(pbs.EVENT_DEBUG3, "Changed default queue to %s" %

 config["clusters"][s.name]['default_queue'])

if 'site_info' not in config["clusters"][s.name]:

config["clusters"][s.name]['site_info'] = "not undefined"

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Return Config file:\n %s" %

 (caller_name(), config))

return config

def chunk_resource_check(e, request, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

pbs.logmsg(pbs.EVENT_DEBUG3, "Request: %s" % (request))

pbs.logmsg(pbs.EVENT_DEBUG3, "type: %s" % (type(request[0])))

pbs.logmsg(pbs.EVENT_DEBUG3, "type: %s" % (type(request[1])))

resource = request[0]
HG-272 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
if resource not in cluster:

pbs.logmsg(pbs.EVENT_DEBUG3,

 "Resource %s is not defined in the cfg" %

 resource)

try:

pbs.logmsg(pbs.EVENT_DEBUG3,

 "Trying to return an int for %s" % (request))

return int(request[1])

except:

pbs.logmsg(pbs.EVENT_DEBUG3,

 "Returning a string")

return request[1]

elif resource == 'mem':

value = pbs.size(request[1])

clust_res = pbs.size(str(cluster[resource]))

elif isinstance(cluster[resource], int):

value = int(request[1])

clust_res = cluster[resource]

elif isinstance(cluster[resource], float):

value = int(request[1])

clust_res = cluster[resource]

else:

pbs.logmsg(pbs.EVENT_DEBUG3, "Not checking resource: %s" % (resource))

return True

pbs.logmsg(pbs.EVENT_DEBUG3, "Resource: %s" % (resource))

pbs.logmsg(pbs.EVENT_DEBUG3, "R:%s A:%s" %

 (str(request[1]), str(clust_res)))

if value > clust_res:

pbs.logmsg(pbs.EVENT_DEBUG3, "I am here")

line = "\nError: You requested %s=%s per " % (resource, value) + \

 "node. This exceeds the available %s " % resource + \

 "on a %s node (%s)\n" % (cluster['name'], clust_res)

if resource == 'ncpus':

clust_mem = pbs.size(str(cluster['mem']))

line += "For example on %s use -l " % cluster['name'] + \

"select=2:%s=%s:mem=%s" % \

(resource, cluster[resource], clust_mem)

else:

line += "For example on %s use -l " % cluster['name'] + \

"select=2:ncpus=%s:%s=%s" % \

(cluster['ncpus'], resource, clust_res)

line += "\nIf you still have questions, " + \

"please refer to %s" % \

cluster['site_info']

pbs.logmsg(pbs.EVENT_DEBUG3, "line: %s" % (line))
PBS Professional 2022.1 Hooks Guide HG-273

Chapter 9 Hook Examples
e_reject(line)

return False

pbs.logmsg(pbs.EVENT_DEBUG3, "Return %s value: %s" % (resource, value))

return value

def job_ncpus_check(e, request, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

pbs.logmsg(pbs.EVENT_DEBUG3, "Request: %s" % (request))

ncpus = int(request[1])

if ncpus > int(cluster['ncpus']):

line = "\nError: You requested ncpus=%d in a chunk. This " % ncpus + \

 "is more than is available on a %s " % cluster['name'] + \

 "compute node (%d).\n" % (int(cluster['ncpus']))

line += "For example, on %s, use -l " % cluster['name'] + \

"select=2:ncpus=%s:mpiprocs=%s " % \

(cluster['ncpus'], cluster['ncpus']) + \

"to use %d cores\n" % \

(2 * int(cluster['ncpus']))

line += "If you still have questions, refer to %s.\n" % \

cluster['site_info']

pbs.logmsg(pbs.EVENT_DEBUG3, "line: %s" % (line))

e_reject(line)

return ncpus

def job_mem_check(e, request, s, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

pbs.logmsg(pbs.EVENT_DEBUG3, "Request: %s" % (request))

mem = pbs.size(request[1])

clust_mem = pbs.size(str(cluster['mem']))

pbs.logmsg(pbs.EVENT_DEBUG3, "Cluster mem: %s" % (clust_mem))

if mem > clust_mem:

pbs.logmsg(pbs.EVENT_DEBUG3, "I am here")

line = "\nError: You requested %s of memory per " % mem + \

 "node. This exceeds the available memory " + \

 "on a %s node (%s)\n" % (cluster['name'], clust_mem)

pbs.logmsg(pbs.EVENT_DEBUG3, "line: %s" % (line))

line += "For example on %s use -l " % cluster['name'] + \

"select=2:ncpus=%s:mpiprocs=%s:mem=%s" % \

(cluster['ncpus'], cluster['ncpus'], clust_mem)

pbs.logmsg(pbs.EVENT_DEBUG3, "line: %s" % (line))

line += "\nIf you still have questions, " + \

"please refer to %s" % \

cluster['site_info']
HG-274 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
e_reject(line)

pbs.logmsg(pbs.EVENT_DEBUG3, "Return mem value: %s" % (mem))

return mem

def job_size_mem(mem, ncpus, R, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "Check placement: %s" %

 (repr(R['place'])))

if repr(R['place']).find('excl') == -1:

pbs.logmsg(pbs.EVENT_DEBUG3, "Set mem for non excl job")

mem_line = 'mem=%s' % pbs.size(convert_size(ncpus * size_as_int(

cluster['default_mem_per_core']), "mb"))

else:

pbs.logmsg(pbs.EVENT_DEBUG3, "Set mem for excl job")

mem_line = 'mem=%s' % pbs.size(convert_size(

cluster['ncpus'] * size_as_int(

cluster['default_mem_per_core']), "mb"))

pbs.logmsg(pbs.EVENT_DEBUG3, "mem_line: %s" % mem_line)

return mem_line

def job_requested_queue(j, s, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

Check to see if the queue has been specified, if not specify the default

as defined in the config file.

if hasattr(j.queue, 'name'):

pbs.logmsg(pbs.EVENT_DEBUG3, "job queue: %s" %

 j.queue.name)

else:

pbs.logmsg(pbs.EVENT_DEBUG3, "Set job queue to : %s" %

 cluster['default_queue'])

j.queue = s.queue("%s" % cluster['default_queue'])

pbs.logmsg(pbs.EVENT_DEBUG3, "job queue: %s" %

 j.queue.name)

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Leaving" % (caller_name()))

def job_select_cores_only(sel, s, cluster):

Initialize local variables

R = pbs.event().job.Resource_List

tmp_select = list()

try:

tot_ncpus = int(sel)
PBS Professional 2022.1 Hooks Guide HG-275

Chapter 9 Hook Examples
tot_mpiprocs = int(sel)

pbs.logmsg(pbs.EVENT_DEBUG3, "tot_ncpus: %s" % tot_ncpus)

pbs.logmsg(pbs.EVENT_DEBUG3, "Mem/Core: %s" %

 cluster['default_mem_per_core'])

tot_mem = pbs.size(convert_size(tot_ncpus *

size_as_int(cluster['default_mem_per_core']), "mb"))

pbs.logmsg(pbs.EVENT_DEBUG3, "tot_ncpus: %d\ttot_mem: %s" %

 (tot_ncpus, tot_mem))

Check to see if tot_ncpus > total ncpus on cluster

if tot_ncpus > cluster['total_cpus']:

reject_job("total", "ncpus", tot_ncpus, cluster['total_cpus'],

 s.name, cluster)

cores_per_node = int(cluster['ncpus'])

full_nodes = int(tot_ncpus / cores_per_node)

remaining_cores = tot_ncpus % cores_per_node

pbs.logmsg(pbs.EVENT_DEBUG3, "tot_ncpus: %d\tfull_nodes: %d\t" %

 (tot_ncpus, full_nodes) +

 "remaining_cores: %d\ttot_mem: %s" %

 (remaining_cores, tot_mem))

if 'resize_select' in cluster and cluster['resize_select']:

pbs.logmsg(pbs.EVENT_DEBUG3, "Resizing select statement")

if full_nodes == 0:

tmp_select.append("1:ncpus=%d:mpiprocs=%d:mem=%s" %

 (remaining_cores, remaining_cores, pbs.size(

 convert_size(remaining_cores * size_as_int(

 cluster['default_mem_per_core']), "mb"))))

elif remaining_cores == 0:

pbs.logmsg(pbs.EVENT_DEBUG3, "Remaining cores: 0")

pbs.logmsg(pbs.EVENT_DEBUG3, "Cluster: %s" % cluster)

tmp_select.append("%d:ncpus=%d:mpiprocs=%d:mem=%s" %

 (full_nodes, cores_per_node, cores_per_node,

 pbs.size(convert_size(

 int(cores_per_node) * size_as_int(

 cluster['default_mem_per_core']), "mb"))))

pbs.logmsg(pbs.EVENT_DEBUG3, "tmp_select: %s" % tmp_select)

else:

tmp_select.append("%d:ncpus=%d:mpiprocs=%d:mem=%s" %

 (full_nodes, cores_per_node, cores_per_node,

 pbs.size(convert_size(

 cores_per_node * size_as_int(

 cluster['default_mem_per_core']), "mb"))))
HG-276 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
tmp_select.append("1:ncpus=%d:mpiprocs=%d:mem=%s" %

 (remaining_cores, remaining_cores,

 pbs.size(convert_size(

 remaining_cores * size_as_int(

 cluster['default_mem_per_core']), "mb"))))

Replace the old select statement with the new select statement

R['select'] = pbs.select(join(tmp_select, '+'))

pbs.logmsg(pbs.EVENT_DEBUG3, "New select Line: %s" % R['select'])

pbs.logmsg(pbs.EVENT_DEBUG3, "Server: %s" % s.name)

pbs.logmsg(pbs.EVENT_DEBUG3, "tot_ncpus: %d,\tcluster cores: %s" %

 (tot_ncpus, int(cluster['ncpus'])))

return True

except ValueError:

return False

def job_requested_resources(e, j, s, cluster, cfg):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

R = j.Resource_List

sel = repr(R["select"])

if R["select"] == None:

sel = '1'

pbs.logmsg(pbs.LOG_WARNING, "%s: Requested Resources: %s" %

 (caller_name(), R))

if 'accept_empty_select' in cfg['clusters'][s.name]:

if cfg['clusters'][s.name]['accept_empty_select']:

return False

Calculate the ncpus and memory requested by this job

tot_ncpus = 0

tot_mpiprocs = 0

tot_mem = pbs.size("0kb")

tot_ngpus = 0

tot_nmics = 0

Initialize a tmp select list

tmp_select = list()

pbs.logmsg(pbs.EVENT_DEBUG3, "Select Line: %s" % sel)

Check to see if the users just selected ncpus verses a chunk

i.e select=32 vs select=1:ncpus=32:mpiprocs=32:mem=32gb
PBS Professional 2022.1 Hooks Guide HG-277

Chapter 9 Hook Examples
status = job_select_cores_only(sel, s, cluster)

pbs.logmsg(pbs.EVENT_DEBUG3,

 "job_select_cores_only Status: %s" % status)

if not status:

pbs.logmsg(pbs.EVENT_DEBUG3, "Eval select Line: %s" % R['select'])

for chunk in sel.split("+"):

nchunks = 1

tmp_chunk = chunk.split(":")

mpiprocs = -1

ncpus = -1

mem = 1900

for c in tmp_chunk:

pbs.logmsg(pbs.EVENT_DEBUG3, "Chunk: %s" % c)

kv = c.split("=")

if len(kv) == 1:

nchunks = kv[0]

elif kv[0] == "ncpus":

pbs.logmsg(pbs.EVENT_DEBUG3, "ncpus: %s" % kv)

ncpus = chunk_resource_check(e, kv, cluster)

tot_ncpus += int(nchunks) * ncpus

elif kv[0] == "ngpus":

pbs.logmsg(pbs.EVENT_DEBUG3, "ngpus: %s" % kv)

ngpus = chunk_resource_check(e, kv, cluster)

tot_ngpus += int(nchunks) * ngpus

elif kv[0] == "nmics":

pbs.logmsg(pbs.EVENT_DEBUG3, "nmics: %s" % kv)

nmics = chunk_resource_check(e, kv, cluster)

tot_nmics += int(nchunks) * nmics

elif kv[0] == "mpiprocs":

pbs.logmsg(pbs.EVENT_DEBUG3, "mpiprocs: %s" % kv)

mpiprocs = chunk_resource_check(e, kv, cluster)

tot_mpiprocs += int(nchunks) * mpiprocs

elif kv[0] == "mem":

pbs.logmsg(pbs.EVENT_DEBUG3, "mem: %s" % kv)

mem = chunk_resource_check(e, kv, cluster)

pbs.logmsg(pbs.EVENT_DEBUG3, "mem: %s" % mem)

pbs.logmsg(pbs.EVENT_DEBUG3, "nchunks: %d" % int(nchunks))

pbs.logmsg(pbs.EVENT_DEBUG3, "mem (b): %d" %

 size_as_int(str(mem)))

mem = pbs.size(convert_size(
HG-278 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
 int(nchunks) * size_as_int(mem), "mb"))

pbs.logmsg(pbs.EVENT_DEBUG3, "mem: %s" % mem)

tot_mem = tot_mem + mem

pbs.logmsg(pbs.EVENT_DEBUG3, "Total mem: %s" % tot_mem)

Set up the ncpus, mpiprocs, and mem if not set by the user

if ncpus == -1:

ncpus = 1

tmp_chunk.append('ncpus=%d' % ncpus)

if mpiprocs == -1:

tmp_chunk.append('mpiprocs=%d' % ncpus)

if mpiprocs > ncpus:

e_reject("You cannot specify more mpiprocs than ncpus\n" +

 "You specified: %s" % sel)

if mem == 1900 and cluster['assign_mem_per_core']:

tmp_chunk.append(job_size_mem(mem, ncpus, R, cluster))

tmp_select.append(join(tmp_chunk, ':'))

R['select'] = pbs.select(join(tmp_select, '+'))

pbs.logmsg(pbs.EVENT_DEBUG3, "Check tot_ncpus: %d" %

 (tot_ncpus))

Check to see if tot_ncpus > total ncpus on cluster

if tot_ncpus > cluster['total_cpus']:

reject_job("total", "ncpus", tot_ncpus, cluster['total_cpus'],

 s.name, cluster)

if pbs.size(tot_mem) > pbs.size(cluster['total_mem']):

tot_mem = pbs.size(convert_size(tot_mem, "gb"))

reject_job("total", "mem", tot_mem, cluster['total_mem'],

 s.name, cluster)

pbs.logmsg(pbs.EVENT_DEBUG3, "Return resource totals")

return {'tncpus': tot_ncpus, 'tmem': tot_mem, 'tmpiprocs': tot_mpiprocs,

'tnmics': tot_nmics, 'tngpus': tot_ngpus}

def reject_job(ltype, lres, lrequest, rlimit, lname, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

line = "\nInvalid job request.\n"

if ltype == "total":

line += "Job requested %s=%s and the total available for %s " % \

(lres, lrequest, lname) + \

"is %s=%s\n" % (lres, rlimit)
PBS Professional 2022.1 Hooks Guide HG-279

Chapter 9 Hook Examples
elif (lres == "ncpus" or lres == "mem" or lres == "nmics" or

 lres == "ngpus"):

if lname is not "":

line += "Job requested %s=%s and the %s limit for the %s %s " % \

(lres, lrequest, ltype, lname, ltype) + \

"is %s=%s\n" % (lres, rlimit)

else:

line += "Job requested %s=%s and the limit for the %s is " % \

(lres, lrequest, ltype) + "%s=%s\n" % (lres, rlimit)

elif lres == "walltime":

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: resource limit %s" %

 (caller_name(), lres))

if ltype == "None" or ltype is None:

line += "Job has not requested a walltime \nPlease add a " + \

"walltime and resubmit.\n"

line += "For example: To request 24 hours add this to the " + \

"submission line -lwalltime=24:00:00\n"

if ltype == "max":

if lname is not "":

line += "Job has requested %s walltime which " % lrequest + \

"exceeds the %s %s walltime limit of %s\n" % \

(lname, ltype, rlimit)

else:

line += "Job has requested %s walltime which " % lrequest + \

"exceeds the %s walltime limit of %s\n" % \

(ltype, rlimit)

line += "Please change the walltime or queue (depending on " + \

"the violated walltime limits) and resubmit.\n"

if ltype == "min":

if lname is not "":

line += "Job requested %s walltime which is " % lrequest + \

"less than the %s %s walltime limit of %s\n" % \

(lname, ltype, rlimit)

else:

line += "Job requested %s walltime which is " % lrequest + \

"less than the %s walltime limit of %s\n" % \

(ltype, rlimit)

line += "Please change the walltime or queue (depending on " + \

"the violated walltime limits) and resubmit.\n"

else:

pbs.logmsg(pbs.EVENT_DEBUG3, "Unknown resource: %s" % (lres))

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: line %s" %

 (caller_name(), line))

line += "If you believe that this is a valid " + \

"job request, please contact the HPC staff\n"
HG-280 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
line += "For more information, please refer to %s\n" % \

cluster['site_info']

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Ready to reject job" % (caller_name()))

e_reject(line)

def check_ncpus_limits(job_res, j, s, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

ncpus_max_qlim = s.queue(j.queue.name).resources_max['ncpus']

ncpus_min_qlim = s.queue(j.queue.name).resources_min['ncpus']

ncpus_max_slim = s.resources_max['ncpus']

pbs.logmsg(pbs.EVENT_DEBUG3, "ncpus_max_qlim: %s" %

 (ncpus_max_qlim))

pbs.logmsg(pbs.EVENT_DEBUG3, "ncpus_max_slim: %s" %

 (ncpus_max_slim))

R = j.Resource_List

pbs.logmsg(pbs.EVENT_DEBUG3, "Job Resource List: %s" % (R))

if R["ncpus"] != None:

ncpus_req = R["ncpus"]

else:

ncpus_req = job_res['tncpus']

pbs.logmsg(pbs.EVENT_DEBUG3, "Required ncpus: %s" % (ncpus_req))

pbs.logmsg(pbs.EVENT_DEBUG3,

 "Above Find the PBS_GENERIC ncpus limit")

Find the PBS_GENERIC ncpus limit

pbs.logmsg(pbs.EVENT_DEBUG3, "Above ncpus checks:")

Check to see if requested ncpus does not violate the limits

if ((ncpus_max_qlim is not None) and

(int(ncpus_req) > int(ncpus_max_qlim))):

pbs.logmsg(pbs.EVENT_DEBUG3, "ncpus_max_qlim:")

reject_job("queue", "ncpus", ncpus_req, ncpus_max_qlim,

 j.queue.name, cluster)

elif ((ncpus_min_qlim is not None) and

 (int(ncpus_req) < int(ncpus_min_qlim))):

pbs.logmsg(pbs.EVENT_DEBUG3, "ncpus_min_qlim:")

reject_job("queue", "ncpus", ncpus_req, ncpus_min_qlim,

 j.queue.name, cluster)

elif ((ncpus_max_slim is not None) and

 (int(ncpus_req) > int(ncpus_max_slim))):

pbs.logmsg(pbs.EVENT_DEBUG3, "ncpus_max_slim:")

reject_job("server", "ncpus", ncpus_req, ncpus_max_slim,

 "", cluster)
PBS Professional 2022.1 Hooks Guide HG-281

Chapter 9 Hook Examples
pbs.logmsg(pbs.EVENT_DEBUG3, "Done with ncpus checks")

def check_mem_limits(job_res, j, s, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

Mem limit checking section

pbs.logmsg(pbs.EVENT_DEBUG3, "Looking at mem limits")

mem_lim = s.queue(j.queue.name).max_run_res['mem']

pbs.logmsg(pbs.EVENT_DEBUG3,

 "PBS_GENERIC mem limit: %s" % (mem_lim))

mem_max_qlim = s.queue(j.queue.name).resources_max['mem']

pbs.logmsg(pbs.EVENT_DEBUG3, "mem_max_qlim: %s" % (mem_max_qlim))

Get the requested memory

R = j.Resource_List

if R["mem"] != None:

mem_req = R["mem"]

else:

mem_req = job_res['tmem']

pbs.logmsg(pbs.EVENT_DEBUG3, "Required mem: %s" % (mem_req))

Find the PBS_GENERIC mem limit

if mem_lim is not None:

tmp_mem_lim = mem_lim.split(',')

pbs.logmsg(pbs.EVENT_DEBUG3, "Above tmp_mem_lim: %s" %

 (tmp_mem_lim))

mem_lim = -1

for limit in tmp_mem_lim:

if "PBS_GENERIC=" in limit:

mem_lim = pbs.size(limit.split('=')[1].replace(']',

 ''))

else:

mem_lim = -1

Check to see if requested mem does not violate the limits

pbs.logmsg(pbs.EVENT_DEBUG3, "mem_lim: %s" % (mem_lim))

pbs.logmsg(pbs.EVENT_DEBUG3, "mem_req: %s" % (mem_req))

if mem_lim != -1 and pbs.size(mem_req) > mem_lim:

pbs.logmsg(pbs.EVENT_DEBUG3, "mem_req > mem_lim")

reject_job("user", "mem", mem_req, mem_lim,

 j.queue.name, cfg['clusters'][s.name])

elif mem_max_qlim is not None and pbs.size(mem_req) > mem_max_qlim:

pbs.logmsg(pbs.EVENT_DEBUG3, "mem_req > mem_max_lim")
HG-282 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
reject_job("queue", "mem", mem_req, mem_max_qlim,

 j.queue.name, cfg['clusters'][s.name])

def check_walltime(j, s, cluster):

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

R = j.Resource_List

if R["walltime"] != None:

wt_req = R["walltime"]

else:

wt_req = None

pbs.logmsg(pbs.EVENT_DEBUG3, "Requested walltime: %s" %

 (wt_req))

Get the walltime limits

limit_name = j.queue.name

wt_max = s.queue(limit_name).resources_max['walltime']

wt_min = s.queue(limit_name).resources_min['walltime']

pbs.logmsg(pbs.EVENT_DEBUG3, "Wall Limit: %s" % (wt_max))

pbs.logmsg(pbs.EVENT_DEBUG3, "Wall Requested: %s" % (wt_req))

if wt_max is not None and wt_req > wt_max:

pbs.logmsg(pbs.EVENT_DEBUG3, "This job should exit: %s" %

 (wt_req))

pbs.logmsg(pbs.EVENT_DEBUG3, "Check the walltimes")

if wt_max is None:

Check to see if it is set at the server level

wt_max = s.resources_max['walltime']

if wt_max is not None:

limit_name = "server"

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: Method called" % (caller_name()))

pbs.logmsg(pbs.EVENT_DEBUG3, "%s: req: %s, max: %s, min: %s, name: %s" %

 (caller_name(), wt_req, wt_max, wt_min, limit_name))

if wt_req is None:

if 'require_walltime' in cluster:

if cluster['require_walltime']:

reject_job("None", "walltime", "", "", limit_name, cluster)

elif wt_max is not None and wt_req > wt_max:

reject_job("max", "walltime", wt_req, wt_max,

 limit_name, cluster)

elif wt_min is not None and wt_req < wt_min:

reject_job("min", "walltime", wt_req, wt_min,

 limit_name, cluster)

else:

return True
PBS Professional 2022.1 Hooks Guide HG-283

Chapter 9 Hook Examples
return False

def main():

pbs.logmsg(pbs.EVENT_DEBUG3, "Entering check limits hook")

e = pbs.event()

j = e.job

s = pbs.server()

who = e.requestor

Read in the config file

cfg = parse_config_file(e, s)

cluster = cfg['clusters'][s.name]

Check to see if we are running in test mode

if 'test_mode' in cfg['clusters'][s.name]:

if cfg['clusters'][s.name]['test_mode']:

pbs.logmsg(pbs.EVENT_DEBUG3, "Entering check user")

pbs.logmsg(pbs.EVENT_DEBUG3, "cfg: %s" % cfg['clusters'][s.name])

if 'test_users' in cfg['clusters'][s.name]:

pbs.logmsg(pbs.EVENT_DEBUG3, "check user: %s" % who)

if who not in cfg['clusters'][s.name]['test_users']:

pbs.logmsg(pbs.EVENT_DEBUG3,

 "User %s not in test users %s" %

 (who, cfg['clusters'][s.name]['test_users']))

e.accept()

else:

pbs.logmsg(pbs.EVENT_DEBUG3,

 "Running hook for User %s" % who)

Collect the job requested resources

pbs.logmsg(pbs.EVENT_DEBUG3, "Ready to look at job requested resources")

job_res = job_requested_resources(e, j, s, cluster, cfg)

pbs.logmsg(pbs.EVENT_DEBUG3, "Returned totals: %s" % job_res)

try:

pbs.logmsg(pbs.EVENT_DEBUG3, "Default Queue: %s" %

 cluster['default_queue'])

job_requested_queue(j, s, cluster)

pbs.logmsg(pbs.EVENT_DEBUG3, "job queue %s" % j.queue.name)

Find the server limits

q = s.queue(j.queue.name)

pbs.logmsg(pbs.EVENT_DEBUG3, "queue %s" % q.name)
HG-284 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
for key in q.attributes.keys():

exec "a=q.%s" % key

check server/queue limits section

pbs.logmsg(pbs.EVENT_DEBUG3, "Ready to check queue/server limits")

if job_res is not False:

if cfg['clusters'][s.name]['check_ncpus']:

check_ncpus_limits(job_res, j, s, cluster)

if cfg['clusters'][s.name]['check_mem']:

check_mem_limits(job_res, j, s, cluster)

if cfg['clusters'][s.name]['check_walltime']:

check_walltime(j, s, cluster)

except:

err = sys.exc_info()[0]

pbs.logmsg(pbs.EVENT_DEBUG3, "This job had an exception: %s" % err)

pass

if __name__ == 'builtins':

try:

pbs.logmsg(pbs.EVENT_DEBUG, "Entering the main loop")

main()

except SystemExit:

pass

except AdminError, exc:

pbs.logmsg(pbs.EVENT_DEBUG3, "Encountered Admin Error")

Something on the system is misconfigured

pbs.logmsg(pbs.EVENT_DEBUG3,

 str(traceback.format_exc().strip().splitlines()))

msg = ("Admin error in %s handling %s event" %

 (e.hook_name, "queuejob"))

pbs.logmsg(pbs.EVENT_ERROR, msg)

e_reject(msg)

except:

e_reject("%s hook failed with %s.\nPlease contact your sys admin " +

 "if this problem persists for more than 10 minutes" %

 (e.hook_name, sys.exc_info()[:2]))
PBS Professional 2022.1 Hooks Guide HG-285

Chapter 9 Hook Examples
9.2 modifyjob Hook Examples

Example 9-10: Prevent users from using qalter to change their jobs

Hook type: modifyjob

Allow only administrators to change jobs.

Script NoAlter.py, on Windows, in a domain:

import os

import pbs

e = pbs.event()

j = e.job

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

isadmin=0

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "Administrator"]

if who in admin_ulist:

isadmin=1

else:

cmd = "net user " + who + " /domain"

admin_glist = ['Administrators', 'Domain Admins', 'Enterprise

Admins']

for line in os.popen(cmd).readlines():

if line.find("Group") >= 0:

for li in line.split("*"):

if li.strip() in admin_glist:

isadmin=1

break

if e.type == pbs.HOOK_EVENT_MODIFYJOB and not isadmin:

e.reject("Normal users are not allowed to modify their jobs")

Script NoAlter.py, on Linux:

import pbs

e = pbs.event()

j = e.job

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "root"]

if who not in admin_ulist:

e.reject("Normal users are not allowed to modify their jobs")

Create hook and import script:

qmgr -c 'create hook NoAlter event="modifyjob"'

qmgr -c 'import hook NoAlter application/x-python default NoAlter.py'
HG-286 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Example 9-11: Reject jobs requesting a specific queue that do not request mem

Hook type: modifyjob

Reject jobs requesting workq2 if they don't also request memory.

Script queuespec.py:

import pbs

import sys

try:

e = pbs.event()

j = e.job

if j.queue.name == "workq2" and not j.Resource_List["mem"]:

e.reject("workq2 requires job to have mem specification")

except SystemExit:

pass

except:

e.reject("%s hook failed with %s. Please contact

Admin" % (e.hook_name, sys.exc_info()[:2]))

Create hook, import script:

qmgr -c 'create hook queuespec event="modifyjob"'

qmgr -c 'import hook queuespec application/x-python default queuespec.py'
PBS Professional 2022.1 Hooks Guide HG-287

Chapter 9 Hook Examples
9.3 jobobit Hook Examples

Example 9-12: jobobit hook

import pbs

import sys

try:

e = pbs.event()

job = e.job

pbs.logjobmsg(job.id, 'jobobit hook, "%s" started' % (e.hook_name,))

pbs.logjobmsg(job.id, 'jobobit hook, job starttime:%s' % (job.stime,))

pbs.logjobmsg(job.id, 'jobobit hook, job obittime:%s' % (job.obittime,))

pbs.logjobmsg(job.id, 'jobobit hook, job_state=%s' % (job.job_state,))

pbs.logjobmsg(job.id, 'jobobit hook, job_substate=%s' % (job.substate,))

state_desc = pbs.REVERSE_JOB_STATE.get(job.job_state, '(None)')

substate_desc = pbs.REVERSE_JOB_SUBSTATE.get(job.substate, '(None)')

pbs.logjobmsg(job.id, 'jobobit hook, job_state_desc=%s' % (state_desc,))

pbs.logjobmsg(job.id, 'jobobit hook, job_substate_desc=%s' % (substate_desc,))

if hasattr(job, "resv") and job.resv:

pbs.logjobmsg(job.id, 'jobobit hook, resv:%s' % (job.resv.resvid,))

pbs.logjobmsg(job.id, 'jobobit hook, resv_nodes:%s' % (job.resv.resv_nodes,))

pbs.logjobmsg(job.id, 'jobobit hook, resv_state:%s' % (job.resv.reserve_state,))

else:

pbs.logjobmsg(job.id, 'jobobit hook, resv:(None)')

pbs.logjobmsg(job.id, 'jobobit hook, "%s" finished' % (e.hook_name,))

except Exception as err:

ty, _, tb = sys.exc_info()

pbs.logmsg(pbs.LOG_ERROR, "jobobit hook, error: " + str(ty) +

str(tb.tb_frame.f_code.co_filename) + str(tb.tb_lineno))

e.reject()

else:

e.accept()

PBS server log excerpt of a jobobit hook executing:

10/11/2021 19:57:16.179481;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook, "jobobit_example"
started

10/11/2021 19:57:16.179498;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook, job starttime:1633982235

10/11/2021 19:57:16.179505;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook, job obittime:1633982236

10/11/2021 19:57:16.179511;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook, job_state=5

10/11/2021 19:57:16.179521;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook, job_substate=53

10/11/2021 19:57:16.179529;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook,
job_state_desc=JOB_STATE_EXITING

10/11/2021 19:57:16.179534;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook,
job_substate_desc=JOB_SUBSTATE_EXITED

10/11/2021 19:57:16.179540;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook, resv:(None)

10/11/2021 19:57:16.179545;0008;Server@pdw-s1;Job;7.pdw-s1;jobobit hook, "jobobit_example"
finished
HG-288 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
9.4 execjob_launch Hook Examples

Example 9-13: Modify arguments to job program

Hook type: execjob_launch

The argv[] entries can be modified to change the existing arguments to progname.

Given the following hook:

cat launch.py

import pbs

e = pbs.event()

e.argv[1] = "cool"

qmgr -c "create hook launch event=execjob_launch"

qmgr -c "import hook launch application/x-python default launch.py"

So if a job is submitted as follows:

% qsub -- /bin/echo uncool

When the job is submitted, progname = "/bin/echo", argv[0] = "/bin/echo", argv[1]="uncool". However, when the
job executes, the execjob_launch hook runs, causing "/bin/echo cool" to execute instead of "/bin/echo uncool".
PBS Professional 2022.1 Hooks Guide HG-289

Chapter 9 Hook Examples
9.5 execjob_prologue and execjob_epilogue Hook

Examples

Example 9-14: Run shell script prologue or epilogue.

You can use this hook when the execjob_prologue and execjob_epilogue events are used in other hooks, such as the
cgroups hook, and you still want to run the classic prologue and epilogue scripts we describe in section “Using Shell
Scripts for Prologue and Epilogue”, on page 458 in the PBS Professional Administrator’s Guide. Additionally, the
hook introduces parallel prologue and epilogue shell scripts.

See “Using Hooks for Prologue and Epilogue”, on page 462 in the PBS Professional Administrator’s Guide, for con-
figuration and installation instructions.

This hook is included in $PBS_EXEC/unsupported. as run_pelog_shell.py, along with its configuration file,
run_pelog_shell.ini.

Configuration File

Here is the contents of run_pelog_shell.ini:

[run_pelog_shell]

Enable parallel prologues/epilogues that run on sister moms. Note that all

the normal requirements apply, except the scripts should be named pprologue

and pepilogue.

ENABLE_PARALLEL=False

Provide verbose hook output to the user's .o/.e file

VERBOSE_USER_OUTPUT=False

DEFAULT_ACTION can be one of DELETE or RERUN

DEFAULT_ACTION=RERUN

Enable Torque argument compatibility

TORQUE_COMPAT=False
HG-290 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Hook Script

Here is the hook script (the contents of run_pelog_shell.py):

import pbs

import os, sys

import time

Set up a few variables

start_time=time.time()

pbs_event=pbs.event()

hook_name=pbs_event.hook_name

hook_alarm=30 # default, we'll read it from the .HK later

DEBUG=False # default, we'll read it from the .HK later

job=pbs_event.job

The trace_hook function has been written to be portable between hooks.

def trace_hook(**kwargs):

"""Simple exception trace logger for PBS hooks

loglevel=<int> (pbs.LOG_DEBUG): log level to pass to pbs.logmsg()

reject=True: reject the job upon completion of logging trace

trace_in_reject=<bool> (False): pass trace to pbs.event().reject()

trace_in_reject=<str>: message to pass to pbs.event().reject() with trace

Usage:

try:

your=code(here)

except:

trace_hook()

"""

import sys

if 'loglevel' in kwargs:

loglevel=kwargs['loglevel']

else:

loglevel=pbs.LOG_ERROR

if 'reject' in kwargs:

reject=kwargs['reject']

else:

reject=True

if 'trace_in_reject' in kwargs:

trace_in_reject=kwargs['trace_in_reject']

else:

trace_in_reject=False

Associate hook events with the appropriate PBS constant. This is a list

of all hook events as of PBS Pro 13.0. If the event does not exist, it is

removed from the list.

hook_events=['queuejob', 'modifyjob', 'movejob', 'runjob', 'execjob_begin',
PBS Professional 2022.1 Hooks Guide HG-291

Chapter 9 Hook Examples
 'execjob_prologue', 'execjob_launch', 'execjob_attach',

 'execjob_preterm', 'execjob_epilogue', 'execjob_end',

 'resvsub', 'resv_end', 'provision', 'exechost_periodic',

 'exechost_startup', 'periodic']

hook_event={}

for he in hook_events:

Only set available hooks for the current version of PBS.

if hasattr(pbs, he.upper()):

event_code=eval('pbs.'+he.upper())

hook_event[event_code]=he

hook_event[he]=event_code

hook_event[he.upper()]=event_code

del event_code

else:

del hook_events[hook_events.index(he)]

trace={

'line': sys.exc_info()[2].tb_lineno,

'module':sys.exc_info()[2].tb_frame.f_code.co_name,

'exception': sys.exc_info()[0].__name__,

'message': sys.exc_info()[1].message,

}

tracemsg='%s hook %s encountered an exception: Line %s in %s %s: %s' %(

hook_event[pbs.event().type], pbs.event().hook_name,

trace['line'], trace['module'], trace['exception'], trace['message']

)

rejectmsg="Hook Error: request rejected as filter hook '%s' encountered " \

"an exception. Please inform Admin" % pbs.event().hook_name

if not isinstance(loglevel, int):

pbs.logmsg(pbs.LOG_ERROR, 'trace_hook() called with invalid argument' \

' (loglevel=%s), setting to pbs.LOG_ERROR. ' % repr(loglevel))

loglevel=pbs.LOG_ERROR

pbs.logmsg(loglevel, tracemsg)

if reject:

tracemsg+=', request rejected'

if isinstance(trace_in_reject, bool):

if trace_in_reject:

pbs.event().reject(tracemsg)

else:

pbs.event().reject(rejectmsg)

else:

pbs.event().reject(str(trace_in_reject)+'Line %s in %s %s:\n%s' % (

trace['line'],trace['module'],trace['exception'],
HG-292 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
trace['message']))

class JobLog:

""" Class for managing output to job stdout and stderr."""

def __init__(self):

PBS_SPOOL=os.path.join(pbs_conf()['PBS_MOM_HOME'], 'spool')

self.stdout_log=os.path.join(PBS_SPOOL,

 '%s.OU' % str(pbs.event().job.id))

self.stderr_log=os.path.join(PBS_SPOOL,

 '%s.ER' % str(pbs.event().job.id))

if str(pbs.event().job.Join_Path) == 'oe':

self.stderr_log=self.stdout_log

elif str(pbs.event().job.Join_Path) == 'eo':

self.stdout_log=self.stderr_log

def stdout(self, msg):

"""Write msg to appropriate file handle for stdout"""

import sys

try:

if not pbs.event().job.interactive and pbs.event().job.in_ms_mom:

logfile=open(self.stdout_log, 'ab+')

else:

logfile=sys.stdout

if DEBUG:

pbs.logmsg(pbs.EVENT_DEBUG3,

'%s;%s;[DEBUG3]: writing %s to %s' %

(pbs.event().hook_name,

 pbs.event().job.id,

 repr(msg),

 logfile.name))

logfile.write(msg)

logfile.flush()

logfile.close()

except IOError:

trace_hook()

def stderr(self, msg):

"""Write msg to appropriate file handle for stdout"""

import sys

try:
PBS Professional 2022.1 Hooks Guide HG-293

Chapter 9 Hook Examples
if not pbs.event().job.interactive and pbs.event().job.in_ms_mom():

logfile=open(self.stderr_log, 'ab+')

else:

logfile=sys.stderr

if DEBUG:

pbs.logmsg(pbs.EVENT_DEBUG3,

'%s;%s;[DEBUG3]: writing %s to %s' %

(pbs.event().hook_name,

 pbs.event().job.id,

 repr(msg),

 logfile.name))

logfile.write(msg)

logfile.flush()

logfile.close()

except IOError:

trace_hook()

Read in pbs.conf

def pbs_conf(pbs_key=None):

"""Function to return the values from /etc/pbs.conf

If the PBS python interpreter hasn't been recycled, it is not necessary

to re-read and re-parse /etc/pbs.conf. This function will simply return

the variable that exists from the first time this function ran.

Creates a dict containing the key/value pairs in pbs.conf, accounting for

comments in lines and empty lines.

Returns a string representing the pbs.conf setting for pbs_key if set, or

the dict of all pbs.conf settings if pbs_key is not set.

"""

import os

if hasattr(pbs_conf, 'pbs_keys'):

return pbs_conf.pbs_keys[pbs_key] if pbs_key else pbs_conf.pbs_keys

if 'PBS_CONF_FILE' in os.environ.keys():

pbs_conf_file=os.environ['PBS_CONF_FILE']

elif sys.platform == 'win32':

if 'ProgramFiles(x86)' in os.environ.keys():

program_files=os.environ['ProgramFiles(x86)']

else:

program_files=os.environ['ProgramFiles']

pbs_conf_file='%s\\PBS Pro\\pbs.conf' % program_files

else:

pbs_conf_file='/etc/pbs.conf'
HG-294 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
pbs_conf.pbs_keys=dict([line.split('#')[0].strip().split('=') \

for line in open(pbs_conf_file) \

if not line.startswith('#') and '=' in line])

if 'PBS_MOM_HOME' not in pbs_conf.pbs_keys.keys():

pbs_conf.pbs_keys['PBS_MOM_HOME'] = \

pbs_conf.pbs_keys['PBS_HOME']

return pbs_conf.pbs_keys[pbs_key] if pbs_key else pbs_conf.pbs_keys

Primary hook execution begins here

try:

def rejectjob(reason, action=DEFAULT_ACTION):

"""Log job rejection and then call pbs.event().reject()"""

Arguments to pbs.event().reject() do nothing in execjob events. Log a

warning instead, update the job comment, then reject the job.

if action == RERUN:

job.rerun()

reason='Requeued - %s' % reason

elif action == DELETE:

job.delete()

reason='Deleted - %s' % reason

else:

reason='Rejected - %s' % reason

job.comment='%s: %s' % (hook_name, reason)

pbs.logmsg(pbs.LOG_WARNING, ';'.join([hook_name, job.id, reason]))

pbs.logjobmsg(job.id, reason) # Add a message that can be tracejob'd

if VERBOSE_USER_OUTPUT:

print reason

pbs_event.reject()

For the path to mom_priv, we use PBS_MOM_HOME in case that is set,

pbs_conf() will return PBS_HOME if it is not.

mom_priv=os.path.abspath(os.path.join(

pbs_conf()['PBS_MOM_HOME'],'mom_priv'))

Get the hook alarm time from the .HK file if it exists.

hk_file=os.path.join(mom_priv,'hooks','%s.HK' % hook_name)

if os.path.exists(hk_file):

hook_settings=dict([l.strip().split('=') for l in

open(hk_file,'r').readlines()])

if 'alarm' in hook_settings.keys():
PBS Professional 2022.1 Hooks Guide HG-295

Chapter 9 Hook Examples
hook_alarm=int(hook_settings['alarm'])

if 'debug' in hook_settings.keys():

DEBUG=True if hook_settings['debug']=='true' else False

if DEBUG:

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;[DEBUG] starting.' %

 (hook_name, job.id))

if 'PBS_HOOK_CONFIG_FILE' in os.environ:

config_file = os.environ["PBS_HOOK_CONFIG_FILE"]

config=dict([l.split('#')[0].strip().split('=')

 for l in open(config_file,'r').readlines() if '=' in l])

Set the true/false configurations

if 'ENABLE_PARALLEL' in config.keys():

ENABLE_PARALLEL=config['ENABLE_PARALLEL'].lower()[0] in ['t', '1']

if 'VERBOSE_USER_OUTPUT' in config.keys():

VEROSE_USER_OUTPUT=config['VERBOSE_USER_OUTPUT'].lower()[0] in ['t', '1']

if 'DEFAULT_ACTION' in config.keys():

if config['DEFAULT_ACTION'].upper() == 'DELETE':

DEFAULT_ACTION=DELETE

elif config['DEFAULT_ACTION'].upper() == 'RERUN':

DEFAULT_ACTION=RERUN

else:

pbs.logmsg(pbs.LOG_WARN,

'%s;%s;[ERROR] ' % (hook_name, job.id) + \

'DEFAULT_ACTION in %s.ini must be one ' % (hook_name) + \

'of DELETE or RERUN.')

if 'TORQUE_COMPAT' in config.keys():

TORQUE_COMPAT=config['TORQUE_COMPAT'].lower()[0] in ['t', '1']

Skip sister mom if parallel pelogs aren't enabled.

if not ENABLE_PARALLEL and not job.in_ms_mom():

pbs_event.accept()

Prologues and epilogues have different arguments

if pbs_event.type == pbs.HOOK_EVENT_EXECJOB_PROLOGUE:

event='prologue'

args=[

job.id, # argv[1]

job.euser, # argv[2]

job.egroup # argv[3]

]

if TORQUE_COMPAT:

args.extend([

job.Job_Name, # argv[4]
HG-296 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
job.Resource_List, # argv[5]

job.queue.name, # argv[6]

job.Account_Name or '' # argv[7]

])

elif pbs_event.type == pbs.HOOK_EVENT_EXECJOB_EPILOGUE:

null='null' if not TORQUE_COMPAT else ''

event='epilogue'

args=[

job.id, # argv[1]

job.euser, # argv[2]

job.egroup, # argv[3]

job.Job_Name, # argv[4]

job.session_id, # argv[5]

job.Resource_List, # argv[6]

job.resources_used, # argv[7]

job.queue.name, # argv[8]

job.Account_Name or null, # argv[9]

job.Exit_status # argv[10]

]

else: # hook has wrong events added

pbs.logmsg(pbs.LOG_WARNING,

 '%s;%s;[ERROR] PBS event type %s not supported in this hook.' %

 (hook_name, job.id, pbs_event.type))

pbs_event.accept()

Handle empty arguments

args=[str(a) if (a or a == 0) else '' for a in args]

if DEBUG: pbs.logmsg(pbs.LOG_DEBUG,

'%s;%s;[DEBUG] %s event triggered.' % \

(hook_name, job.id, event))

if DEBUG:

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;[DEBUG3] args=%s' % \

(hook_name, job.id, repr(args)))

execjob_prologue and execjob_epilogue hooks can run on all nodes, so use

pprologue/pepilogue if available and not on primary execution node.

p='' if job.in_ms_mom() else 'p'

if DEBUG:

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;[DEBUG] %s.' %

(pbs_event.hook_name,

 job.id,

 'in sister mom' if p else 'in the primary execution host'))
PBS Professional 2022.1 Hooks Guide HG-297

Chapter 9 Hook Examples
script=os.path.join(mom_priv, p+event)

if sys.platform == 'win32':

script=script + '.bat'

if DEBUG:

pbs.logmsg(pbs.EVENT_DEBUG3, '%s;%s;[DEBUG3] script set to %s.' % (

pbs_event.hook_name, job.id, script))

correct_permissions = False

if not script:

pbs_event.accept()

if not os.path.exists(script):

pbs_event.accept()

if sys.platform == 'win32':

Windows support is currently not implemented.

pbs.logmsg(pbs.LOG_WARNING,

 '%s;%s;[ERROR] ' % (hook_name, job.id) + \

 'Classic prologues and epilogues on Windows are not ' + \

 'currently implemented in this hook.')

pbs_event.accept()

else:

try:

struct_stat = os.stat(script)

except OSError:

rejectjob('Could not stat the %s script (%s).' %

 (event, script), RERUN)

We mask for read and execute on owner make sure no one else can write

with 0522 (?r?x?w??w?). With this, permissions such as 0777 masked by

522 will return 522. Acceptable permissions will return 500.

correct_permissions = bool(struct_stat.st_mode & 0522 == 0500 and

 struct_stat.st_uid == 0)

if correct_permissions:

import signal

import subprocess

import shlex

Correction for subprocess SIGPIPE handling courtesy of Colin Watson:

http://www.chiark.greenend.org.uk/~cjwatson/blog/python-sigpipe.html

def subprocess_setup():

"""subprocess_setup corrects a known bug where python installs a
HG-298 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
SIGPIPE handler by default. This is usually not what non-Python

subprocesses expect"""

signal.signal(signal.SIGPIPE, signal.SIG_DFL)

if DEBUG:

pbs.logmsg(pbs.EVENT_DEBUG2,

'%s;%s;[DEBUG2] script %s has appropriate permissions.' %

(hook_name, job.id, script))

change to the correct working directory (PBS_HOME):

os.chdir(pbs_conf()['PBS_MOM_HOME'])

add PBS_JOBDIR environment variable, accounting for empty job.jobdir

os.environ['PBS_JOBDIR'] = job.jobdir or ''

shell=""

if sys.platform == 'win32': #win32 is _always_ cmd

shell="cmd /c"

else:

check the script for the interpreter line

shebang=open(script, 'r').readline().strip().split('#!')

if len(shebang)==2:

shell=shebang[1].split()[0]

if not os.path.exists(shell):

rejectjob(

'Interpreter specified in %s (%s) does not exist.' %

(p+event, shell),

RERUN)

else:

rejectjob('No interpreter specified in %s.' % (p+event), RERUN)

if DEBUG:

pbs.logmsg(pbs.EVENT_DEBUG2,

 '%s;%s;[DEBUG2] interpreter set to "%s".' %

 (hook_name, job.id, shell))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;running %s.' %

 (hook_name, job.id, p+event))

We perform a shlex.split to make sure we capture any #! arguments

cmd=shlex.split('%s %s' % (shell, script))

cmd.extend(args)

if DEBUG:

pbs.logmsg(pbs.EVENT_DEBUG3,

'%s;%s;[DEBUG3] cmd=%s' % (hook_name, job.id, repr(cmd)))
PBS Professional 2022.1 Hooks Guide HG-299

Chapter 9 Hook Examples
if str(job.Join_Path) in ['oe','eo']:

proc=subprocess.Popen(

cmd,

stdout=subprocess.PIPE,

stderr=subprocess.STDOUT,

preexec_fn=subprocess_setup)

else:

proc=subprocess.Popen(

cmd,

stdout=subprocess.PIPE,

stderr=subprocess.PIPE,

preexec_fn=subprocess_setup)

Wait for the script to gracefully exit.

while time.time() < start_time + hook_alarm - 5:

if proc.poll() is not None:

break

time.sleep(1)

If we reach the alarm time - 5 seconds, send a SIGTERM

if proc.poll() is None:

pbs.logmsg(pbs.LOG_WARNING,

 '%s;%s;[WARNING] Terminating %s after %s seconds' % \

 (hook_name, job.id, event, int(time.time() - start_time)))

os.kill(proc.pid, signal.SIGTERM)

while time.time() < start_time + hook_alarm - 3:

if proc.poll() is not None:

break

time.sleep(0.5)

If we reach an alarm time - 3 seconds, send a SIGKILL

if proc.poll() is None:

pbs.logmsg(pbs.LOG_WARNING,

 '%s;%s;[WARNING] Killing %s after %s seconds' % \

 (hook_name, job.id, event, int(time.time() - start_time)))

os.kill(proc.pid, signal.SIGKILL)

while time.time() < start_time + hook_alarm - 1:

if proc.poll() is not None:

break

time.sleep(0.5)

If we still can't kill the script, log a warning and let pbs kill it

if proc.poll() is None:

pbs.logmsg(pbs.LOG_WARNING,

 '%s;%s;[WARNING] Unable to kill %s after %s seconds' % \
HG-300 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
 (hook_name, job.id, event, start_time - time.time()))

Get the stdout and stderr from the pelog

(o, e)=proc.communicate()

if DEBUG:

pbs.logmsg(

pbs.EVENT_DEBUG2,

'%s;%s;[DEBUG2]: stdout=%s, stderr=%s.' %

(hook_name, job.id, repr(o), repr(e)))

joblog=JobLog()

if o:

joblog.stdout(o)

if e:

joblog.stderr(e)

if proc.returncode:

return_action=RERUN

if event == 'prologue':

return_action=RERUN

if proc.returncode == 1:

return_action=DELETE

elif event == 'epilogue':

return_action=DELETE

if proc.returncode == 2:

return_action=RERUN

rejectjob(

'%s exited with a status of %s.' % (p+event, proc.returncode),

return_action)

else:

if DEBUG:

pbs.logmsg(pbs.LOG_DEBUG,

'%s;%s;[DEBUG] %s exited with a status of 0.' %

(hook_name, job.id, p+event))

if pbs_event.type == pbs.HOOK_EVENT_EXECJOB_PROLOGUE and VERBOSE_USER_OUTPUT:

print '%s: attached as primary execution host.' % \

pbs.get_local_nodename()

pbs_event.accept()

else:

rejectjob("The %s does not have the correct " % (p+event) + \

 'permissions. See the section entitled, ' + \

 '"Prologue and Epilogue Requirements" in the PBS Pro ' + \
PBS Professional 2022.1 Hooks Guide HG-301

Chapter 9 Hook Examples
 "Administrator's Guide.", RERUN)

except SystemExit:

pass

except:

trace_hook()
HG-302 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
9.6 exechost_startup Hook Examples

Example 9-15: Create vnode and set vnode resources

Hook type: exechost_startup

% cat startup.py

import pbs

e=pbs.event()

for v in e.vnode_list.keys():

vn = e.vnode_list[v]

vn.resources_available["file"] = pbs.size("7gb")

vn.resources_available["fab_int"] = 9

vn.resources_available["fab_str"] = "happy"

vn.resources_available["fab_bool"] = False

vn.resources_available["fab_size"] = pbs.size("7mb")

vn.resources_available["fab_time"] = pbs.duration("00:30:00")

vn.resources_available["fab_float"] = 7.0

e.vnode_list["mars[1]"] = pbs.vnode("mars[1]")

e.vnode_list["mars[1]"].resources_available["ncpus"] = 7

Create hook

qmgr -c "create hook start event=exechost_startup"

qmgr -c "import hook start application/x-python default startup.py"

Restart MoM

kill <pbs_mom PID>

then

systemctl start pbs
PBS Professional 2022.1 Hooks Guide HG-303

Chapter 9 Hook Examples
or

/etc/init.d/pbs start (start MoM)

Output

pbsnodes -av

mars

Mom = mars.example.com

Port = 15002

pbs_version = PBSPro_12.3.0.140813

ntype = PBS

state = free

pcpus = 4

resources_available.arch = linux

resources_available.fab_bool = False

resources_available.fab_float = 7

resources_available.fab_int = 9

resources_available.fab_size = 7mb

resources_available.fab_str = happy

resources_available.fab_time = 1800

resources_available.file = 7gb

resources_available.host = mars

resources_available.mem = 8gb

resources_available.ncpus = 5

resources_available.vmem = 16gb

resources_available.vnode = mars

…

mars[1]

Mom = mars.example.com

Port = 15002

pbs_version = PBSPro_12.3.0.140813

ntype = PBS

state = free

resources_available.arch = linux

resources_available.file = 7gb

resources_available.host = mars

resources_available.ncpus = 7 (set in hook)
resources_available.vnode = mars[1]
HG-304 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
9.7 exechost_periodic Hook Examples

Example 9-16: Monitor load; offline or free vnode depending on CPU load

Hook type: exechost_periodic

Monitor load average on the local host. Offline or free the vnode representing the host depending on the CPU load.

You can modify values for ideal_load and max_load. Your hook does the following:

If the system's CPU load average rises above max_load, the state of the vnode corresponding to the current host is set to
offline. This prevents the scheduler from scheduling jobs on this vnode.

If the system's CPU load average falls below ideal_load, the state of the vnode representing the current host is set to
free. This allows the scheduler to schedule jobs on this vnode.

To instantiate this hook, specify the following:

qmgr -c "create hook load_balance event=exechost_periodic,freq=10"

qmgr -c "import hook load_balance application/x-python default load_balance.py"

Hook script:

import pbs

import os

import re

ideal_load=1.5

max_load=2.0

get_la: returns a list of load averages within the past 1-minute, 5-minute, 15-minutes range.

def get_la():

line=os.popen("uptime").read()

r = re.search(r'load average: (\S+), (\S+), (\S+)$', line).groups()

return map(float, r)

local_node = pbs.get_local_nodename()

vnl = pbs.event().vnode_list

current_state = pbs.server().vnode(local_node).state

mla = get_la()[0]

if (mla >= max_load) and ((current_state == pbs.ND_OFFLINE) == 0):

vnl[local_node].state = pbs.ND_OFFLINE

vnl[local_node].comment = "offlined node as it is heavily loaded"

elif (mla < ideal_load) and ((current_state == pbs.ND_OFFLINE) != 0):

vnl[local_node].state = pbs.ND_FREE

vnl[local_node].comment = None
PBS Professional 2022.1 Hooks Guide HG-305

Chapter 9 Hook Examples
Example 9-17: Periodically update resources on vnodes

Hook type: exechost_periodic

Periodically update the values of a set of custom resources for the vnode where the current MoM runs.

The current set includes two size types, which are scratch and home

Prerequisites:

1. Create the following custom resources:
qmgr -c "create resource scratch type=size, flag=nh"

qmgr -c "create resource home type=size, flag=nh"

2. Add the new resources to the "resources:" line in the sched_config file and restart pbs_sched:

% cat PBS_HOME/sched_priv/sched_config resources

ncpus, mem, arch, [...], scratch, home

3. Install this hook as follows:

qmgr -c "create hook mom_dyn_res event=exechost_periodic,freq=30"

qmgr -c "import hook mom_dyn_res application/x-python default mom_dyn_res.py"

The mom_dyn_res.py script:

NOTE:

Update the dyn_res[] array below to include any other custom resources

to be included in the updates. Ensure that each resource added has an

entry in the scheduler's sched_config file.

import pbs

import os

import sys

get_filesystem_avail_unprivileged: returns available size in kbytes

(in pbs.size type) to unprivileged users, of the filesystem where

'dirname' resides.

def get_filesystem_avail_unprivileged(dirname):

o = os.statvfs(dirname)

return pbs.size("%skb" % ((o.f_bsize * o.f_bavail) / 1024))

get_filesystem_avail_privileged: returns available size in kbytes

(in pbs.size type) to privileged users, of the filesystem where 'dirname'

resides.

def get_filesystem_avail_privileged(dirname):

o = os.statvfs(dirname)

return pbs.size("%skb" % ((o.f_bsize * o.f_bfree) / 1024))

try:

Define here the custom resources as key, and the function and its

argument for obtaining the value of the custom resource:
HG-306 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Format: dyn_res[<resource_name>] = [<function_name>,

<function_argument>]

So "<function_name>(<function_argument>)" is called to return the

value for custom <resource_name>.

dyn_res = {}

dyn_res["scratch"] = [get_filesystem_avail_unprivileged, "/tmp"]

dyn_res["home"]= [get_filesystem_avail_unprivileged, "/home"]

vnl = pbs.event().vnode_list

local_node = pbs.get_local_nodename()

for k in dyn_res.keys():

vnl[local_node].resources_available[k] = dyn_res[k][0](dyn_res[k][1])

except SystemExit:

pass

except:

e = pbs.event()

e.reject("%s hook failed with %s. Please contact Admin" % \

(e.hook_name, sys.exc_info()[:2]))
PBS Professional 2022.1 Hooks Guide HG-307

Chapter 9 Hook Examples
Example 9-18: Log loads on vnodes

Hook type: exechost_periodic

You must create the custom resources r1m, r5m, and r15m on the vnodes.

#cat getload.py

import pbs

import sys

import os

load = os.getloadavg()

r1m = load[0]

r5m = load[1]

r15m = load[2]

e = pbs.event()

mynode = pbs.get_local_nodename()

v = e.vnode_list[mynode]

v.resources_available["r1m"] = r1m

v.resources_available["r5m"] = r5m

v.resources_available["r15m"] = r15m

pbs.logmsg(pbs.LOG_DEBUG,"getloadavg: vnode %s, r1m = %f, r5m = %f, r15m = %f" %

(repr(mynode), r1m, r5m, r15m))
HG-308 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Example 9-19: Set job attributes and resources

Hook type: exechost_periodic

% cat period.py

import pbs

E = pbs.event()

for k in e.job_list.keys():

e.job_list[k].resources_used["mem"] = pbs.size("7gb")

e.job_list[k].Variable_List["POLI"] = "negri"

e.job_list[k].Hold_Types = pbs.hold_types("us")

Create the hook:

qmgr -c "create hook period event=exechost_periodic,freq=30"

qmgr -c "import hook period application/x-python default period.py"

Submit several jobs:

% qsub job.scr

<job-id1>

% qsub job.scr

<job-id2>

As the exechost_periodic hook executes, the jobs get the new values:

% qstat -f <job-id1>

…

Resources_used.mem = 7gb

Hold_Types = us

Variable_List = …POLI=negri…

2

% qstat -f <job-id1>

…

Resources_used.mem = 7gb

Hold_Types = us

Variable_List = …POLI=negri…
PBS Professional 2022.1 Hooks Guide HG-309

Chapter 9 Hook Examples
9.8 resvsub Hook Examples

Example 9-20: Restrict ability to submit reservations to PBS administrators

Hook type: resvsub

Script NoSub.py on Windows:

import pbs

import os

e = pbs.event()

r = e.resv

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

isadmin=0

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "Administrator"]

if who in admin_ulist:

isadmin=1

else:

cmd = "net user " + who + "/domain"

admin_glist = ['Administrators', 'Domain Admins', 'Enterprise

Admins']

for line in os.popen(cmd).readlines():

if line.find("Group") >= 0:

for li in line.split("*"):

if li.strip() in admin_glist:

isadmin=1

break

if e.type == pbs.HOOK_EVENT_RESVSUB and not isadmin:

e.reject("Only admins allowed to create reservations!")
HG-310 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Script NoSub.py on Linux:

import pbs

import os

e = pbs.event()

r = e.resv

who = e.requestor

pbs.logmsg(pbs.LOG_DEBUG, "requestor=%s" % (who,))

admin_ulist = ["PBS_Server", "Scheduler", "pbs_mom", "root"]

if e.type == pbs.HOOK_EVENT_RESVSUB and who not in admin_ulist:

e.reject("Only admins allowed to create reservations!")

Create hook and import script:

qmgr -c 'create hook NoSub event="resvsub"'

qmgr -c 'import hook NoSub application/x-python default NoSub.py'
PBS Professional 2022.1 Hooks Guide HG-311

Chapter 9 Hook Examples
9.9 periodic Hook Examples

Example 9-21: Run job start time estimator

Hook type: periodic

Run job start time estimator named pbs_est.

Script run_pbs_est.py:

import pbs

import time

import os

import subprocess

pbs_est_cmd = os.path.join(pbs.pbs_conf['PBS_EXEC'], 'sbin', 'pbs_est')

e = pbs.event()

pbs.logmsg(pbs.LOG_DEBUG, "Starting job start time estimation task")

exit_stat = subprocess.call([pbs_est_cmd], shell=True)

if exit_stat != 0:

e.reject("%s exited abnormally with return code %d" % (pbs_est_cmd, exit_stat))

else:

e.accept()
HG-312 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
9.10 modifyvnode Hook Example

Example 9-22: Hook that records current and previous vnode values in the PBS log, for the case where the vnode just
went down:

VnodeDownReport draft 20201102 19:46

Sample modifyvnode event hook script

import pbs

import os, sys

try:

e = pbs.event()

vnode = e.vnode # Represents the current (recently changed) state

vnode_o = e.vnode_o # Represents the state prior to the change

if ((int(vnode.state)) & pbs.ND_STATE_VNODE_UNAVAILABLE) and not ((int(vnode_o.state)) &
pbs.ND_STATE_VNODE_UNAVAILABLE):

#

A node just went down. Report current and previous vnode values.

#

Reports attributes in "Table 5-7: Vnode Attributes" from the 2020.1 Hooks Guide,

EXCEPT:

arch (vnode attribute not defined in demo deployment)

hpcbp_enable (vnode attribute not defined in demo deployment)

hpbcbp_stage_protocol (vnode attribute not defined in demo deployment)

hpcbp_webservice_address (vnode attribute not defined in demo deployment)

hhpcbp_user_name (vnode attribute not defined in demo deployment)

topology_info (due to output size)

#

Demonstrate the new vnode state list functions

vnode_state_str_list = ",".join(vnode.extract_state_strs())

vnode_o_state_str_list = ",".join(vnode_o.extract_state_strs())

vnode_state_int_list = ','.join([str(_) for _ in vnode.extract_state_ints()])

vnode_o_state_int_list = ','.join([str(_) for _ in vnode_o.extract_state_ints()])

First print the state values

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;state: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, hex(vnode.state), hex(vnode_o.state)))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;state string list: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode_state_str_list, vnode_o_state_str_list))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;state int list: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode_state_int_list, vnode_o_state_int_list))

Next print the remaining vnode members

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;comment: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.comment, vnode_o.comment))
PBS Professional 2022.1 Hooks Guide HG-313

Chapter 9 Hook Examples
pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;current_aoe: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.current_aoe, vnode_o.current_aoe))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;in_multivnode_host: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.in_multivnode_host, vnode_o.in_multivnode_host))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;jobs: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.jobs, vnode_o.jobs))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;last_state_change_time: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, str(vnode.last_state_change_time),
str(vnode_o.last_state_change_time)))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;Mom: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.Mom, vnode_o.Mom))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;ntype: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, hex(vnode.ntype), hex(vnode_o.ntype)))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;pcpus: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.pcpus, vnode_o.pcpus))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;pnames: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.pnames, vnode_o.pnames))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;Port: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.Port, vnode_o.Port))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;Priority: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.Priority, vnode_o.Priority))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;provision_enable: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.provision_enable, vnode_o.provision_enable))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;queue: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.queue, vnode_o.queue))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;resources_assigned: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.resources_assigned, vnode_o.resources_assigned))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;resources_available: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.resources_available, vnode_o.resources_available))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;resv: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.resv, vnode_o.resv))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;resv_enable: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.resv_enable, vnode_o.resv_enable))

pbs.logmsg(pbs.LOG_DEBUG, '%s;%s;sharing: vnode=%s vnode_o=%s' % \

(e.hook_name, vnode.name, vnode.sharing, vnode_o.sharing))

e.accept()

except SystemExit:

pass

except:

pbs.event().reject("%s hook failed with %s" % \

(pbs.event().hook_name, sys.exc_info()[:2]))
HG-314 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
Here is a PBS log excerpt of a vnode state change in response to a host being offlined via "sudo pbsnodes -o
my_mom1":

11/04/2020 05:08:24.288615;0004;Server@my_server;Node;my_mom1;attributes set: at request of
root@my_server.local

11/04/2020 05:08:24.294421;0100;Server@my_server;Node;my_mom1;set_vnode_state;vnode.state=0x1
vnode_o.state=0x0 vnode.last_state_change_time=1604466504
vnode_o.last_state_change_time=1604466244 state_bits=0x1 state_bit_op_type_str=Nd_State_Set
state_bit_op_type_enum=0

11/04/2020
05:08:24.296099;0800;Server@my_server;Hook;hook_perf_stat;label=hook_modifyvnode_VnodeDownRe
port_278 action=server_process_hooks profile_start

11/04/2020 05:08:24.296171;0400;Server@my_server;Hook;VnodeDownReport;started

11/04/2020 05:08:24.296208;0086;Server@my_server;Svr;Server@my_server;Compiling script file:
</var/spool/pbs/server_priv/hooks/VnodeDownReport.PY>

11/04/2020
05:08:24.296986;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;state:
vnode=0x1 vnode_o=0x0

11/04/2020
05:08:24.297004;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;state
string list: vnode=ND_STATE_OFFLINE,ND_STATE_VNODE_UNAVAILABLE
vnode_o=ND_STATE_FREE,ND_STATE_VNODE_AVAILABLE

11/04/2020
05:08:24.297012;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;state int
list: vnode=1,409903 vnode_o=0,8400

11/04/2020
05:08:24.297021;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;comment:
vnode=None vnode_o=None

11/04/2020
05:08:24.297029;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;current_
aoe: vnode=None vnode_o=None

11/04/2020
05:08:24.297037;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;in_multi
vnode_host: vnode=None vnode_o=None

11/04/2020
05:08:24.297053;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;jobs:
vnode=None vnode_o=None

11/04/2020
05:08:24.297062;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;last_sta
te_change_time: vnode=1604466504 vnode_o=1604466244

11/04/2020
05:08:24.297071;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;Mom:
vnode=my_mom1.local vnode_o=my_mom1.local

11/04/2020
05:08:24.297079;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;ntype:
vnode=0x0 vnode_o=0x0

11/04/2020
05:08:24.297087;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;pcpus:
vnode=4 vnode_o=4

11/04/2020
05:08:24.297095;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;pnames:
vnode=None vnode_o=None
PBS Professional 2022.1 Hooks Guide HG-315

Chapter 9 Hook Examples
11/04/2020
05:08:24.297103;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;Port:
vnode=15002 vnode_o=15002

11/04/2020
05:08:24.297110;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;Priority
: vnode=None vnode_o=None

11/04/2020
05:08:24.297118;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;provisio
n_enable: vnode=None vnode_o=None

11/04/2020
05:08:24.297126;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;queue:
vnode=None vnode_o=None

11/04/2020
05:08:24.297137;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;resource
s_assigned: vnode=hbmem=0kb,mem=0kb,ncpus=0,vmem=0kb
vnode_o=hbmem=0kb,mem=0kb,ncpus=0,vmem=0kb

11/04/2020
05:08:24.297146;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;resource
s_available: vnode=arch=linux,host=my_mom1,mem=2038904kb,ncpus=4,vnode=my_mom1
vnode_o=arch=linux,host=my_mom1,mem=2038904kb,ncpus=4,vnode=my_mom1

11/04/2020
05:08:24.297154;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;resv:
vnode=None vnode_o=None

11/04/2020
05:08:24.297163;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;resv_ena
ble: vnode=1 vnode_o=1

11/04/2020
05:08:24.297171;0006;Server@my_server;Hook;Server@my_server;VnodeDownReport;my_mom1;sharing:
vnode=1 vnode_o=1

11/04/2020
05:08:24.297186;0800;Server@my_server;Hook;hook_perf_stat;label=hook_modifyvnode_VnodeDownRe
port_278 action=run_code walltime=0.000320 cputime=0.000000

11/04/2020 05:08:24.297246;0400;Server@my_server;Hook;VnodeDownReport;finished

11/04/2020
05:08:24.297285;0800;Server@my_server;Hook;hook_perf_stat;label=hook_modifyvnode_VnodeDownRe
port_278 action=server_process_hooks walltime=0.001183 cputime=0.000000 profile_stop

11/04/2020 05:08:24.297300;0004;Server@my_server;Node;my_mom1;attributes set: state + offline
HG-316 PBS Professional 2022.1 Hooks Guide

Hook Examples Chapter 9
9.11 Multi-event Hooks

Example 9-23: Helper function for logging exceptions more completely and flexibly:

The trace_hook function has been written to be portable between hooks.

def trace_hook(**kwargs):

"""Simple exception trace logger for PBS hooks

loglevel=<int> (pbs.LOG_DEBUG): log level to pass to pbs.logmsg()

reject=True: reject the job upon completion of logging trace

trace_in_reject=<bool> (False): pass trace to pbs.event().reject()

trace_in_reject=<str>: message to pass to pbs.event().reject() with trace

Usage:

try:

your=code(here)

except:

trace_hook()

"""

import pbs

import sys

if 'loglevel' in kwargs:

loglevel=kwargs['loglevel']

else:

loglevel=pbs.LOG_ERROR

if 'reject' in kwargs:

reject=kwargs['reject']

else:

reject=True

if 'trace_in_reject' in kwargs:

trace_in_reject=kwargs['trace_in_reject']

else:

trace_in_reject=False

Associate hook events with the appropriate PBS constant. This is a list

of all hook events as of PBS Pro 13.0. If the event does not exist, it is

removed from the list.

hook_events=['queuejob', 'modifyjob', 'movejob', 'runjob', 'execjob_begin',

 'execjob_prologue', 'execjob_launch', 'execjob_attach',

 'execjob_preterm', 'execjob_epilogue', 'execjob_end',

 'resvsub', 'provision', 'exechost_periodic',

 'exechost_startup']

hook_event={}

for he in hook_events:

Only set available hooks for the current version of PBS.
PBS Professional 2022.1 Hooks Guide HG-317

Chapter 9 Hook Examples
if hasattr(pbs, he.upper()):

event_code=eval('pbs.'+he.upper())

hook_event[event_code]=he

hook_event[he]=event_code

hook_event[he.upper()]=event_code

del event_code

else:

del hook_events[hook_events.index(he)]

trace={

'line': sys.exc_info()[2].tb_lineno,

'module':sys.exc_info()[2].tb_frame.f_code.co_name,

'exception': sys.exc_info()[0].__name__,

'message': sys.exc_info()[1].message,

}

tracemsg='%s hook %s encountered an exception: Line %s in %s %s: %s' %(

hook_event[pbs.event().type], pbs.event().hook_name,

trace['line'], trace['module'], trace['exception'], trace['message']

)

rejectmsg="Hook Error: request rejected as filter hook '%s' encountered " \

"an exception. Please inform Admin" % pbs.event().hook_name

if not isinstance(loglevel, int):

pbs.logmsg(pbs.LOG_ERROR, 'trace_hook() called with invalid argument' \

' (loglevel=%s), setting to pbs.LOG_ERROR. ' % repr(loglevel))

loglevel=pbs.LOG_ERROR

pbs.logmsg(loglevel, tracemsg)

if reject:

tracemsg+=', request rejected'

if isinstance(trace_in_reject, bool):

if trace_in_reject:

pbs.event().reject(tracemsg)

else:

pbs.event().reject(rejectmsg)

else:

pbs.event().reject(str(trace_in_reject)+'Line %s in %s %s:\n%s' % (

trace['line'],trace['module'],trace['exception'],

trace['message']))
HG-318 PBS Professional 2022.1 Hooks Guide

Index

A
accept an action HG-5
action HG-5
attributes in hooks

reservation attributes HG-63
vnode attributes HG-61

B
built-in hook HG-5

C
configuration file HG-6

hook HG-6
creating HG-5
creating a hook HG-5
creating empty hooks HG-31

D
deleting hooks HG-31
DIS HG-160

E
enabling and disabling hooks HG-38
event HG-5

execution HG-6
non-job HG-6
pre-execution HG-6
types HG-15

event types HG-15
events

exechost_periodic HG-97, HG-101, HG-114,
HG-115

execjob_begin HG-103, HG-106
execjob_end HG-111, HG-113
execjob_epilogue HG-111
execjob_preterm HG-110
execjob_prologue HG-104
modifyjob HG-94
movejob HG-93
queuejob HG-92, HG-93
resvsub HG-98, HG-99, HG-100, HG-102
runjob HG-97

exechost_periodic HG-89
exechost_periodic events HG-97, HG-101, HG-114,

HG-115

exechost_startup HG-89
execjob_attach HG-89
execjob_begin HG-88
execjob_begin events HG-103, HG-106
execjob_end HG-88
execjob_end events HG-111, HG-113
execjob_epilogue HG-88
execjob_launch HG-89
execjob_postsuspend HG-90
execjob_preresume HG-90
execjob_preterm HG-89
execjob_preterm events HG-110
execjob_prologue HG-88
execjob_prologue events HG-104
execution event HG-6
execution event hooks HG-6
exporting hooks HG-36
extract_state_ints() HG-103, HG-147
extract_state_strs() HG-103, HG-147

F
failover and hooks HG-22
failure action HG-6
file

hook configuration HG-6

H
hook configuration file HG-6

I
importing HG-6
importing a hook HG-6
importing hooks HG-35

J
job

attributes in hooks HG-56
job.accrue_type HG-134
job.array_indices_submitted HG-134
job.Checkpoint HG-134
job.delete() HG-140
job.depend HG-134
job.exec_host HG-134
job.exec_vnode HG-135
job.Execution_Time HG-134
PBS Professional 2022.1 Hooks Guide HG-319

Index
job.group_list HG-135
job.Hold_Types HG-135
job.id HG-133
job.in_ms_mom() HG-140
job.is_checkpointed() HG-140
job.job_state HG-135
job.Mail_Points HG-138
job.Mail_Users HG-138
job.rerun() HG-141
job.resources_used HG-139
job.resv HG-139
job.stagein HG-139
job.stageout HG-139
job.substate HG-136
job.User_List HG-139
jobobit HG-90, HG-97

L
log level objects HG-177
logging

hooks log level objects HG-177

M
management HG-90
management.cmd HG-152
management.objname HG-153
management.objtype HG-153
management.reply_auxcode HG-154
management.reply_choice HG-155
management.reply_code HG-156
management.reply_text HG-156
management.request_time HG-156
modifyjob HG-87
modifyjob events HG-94
modifyresv HG-91
modifyvnode HG-90
MoM hook HG-6
MoM hooks HG-6
movejob HG-88
movejob events HG-93

N
non-job event HG-6
non-job event hooks HG-6

O
overview of creating hooks HG-30

P
pbs module HG-6
pbs.acl() HG-168
pbs.args() HG-168

pbs.checkpoint() HG-168
pbs.depend() HG-169
pbs.duration() HG-169
pbs.email_list() HG-169
pbs.event().accept() HG-125
pbs.event().alarm HG-118
pbs.event().fail_action HG-120
pbs.event().freq HG-120
pbs.event().hook_name HG-120
pbs.event().hook_type HG-120
pbs.event().order HG-121
pbs.event().pid HG-121
pbs.event().reject() HG-126
pbs.event().requestor HG-122
pbs.event().requestor_host HG-122
pbs.event().type HG-122
pbs.event().user HG-122
pbs.event().vnode HG-123
pbs.event().vnode_o HG-123
pbs.exec_host() HG-169
pbs.exec_vnode HG-142
pbs.exec_vnode() HG-170
pbs.get_local_nodename() HG-176
pbs.group_list() HG-170
pbs.hold_types() HG-170
pbs.job HG-132
pbs.job_sort_formula() HG-170
pbs.join_path() HG-170
pbs.keep_files() HG-171
pbs.license_count() HG-171
pbs.logmsg() HG-177
pbs.mail_points() HG-171
pbs.management HG-150
pbs.node_group_key() HG-171
pbs.path_list() HG-171
pbs.pbs_env() HG-171
pbs.place() HG-172
pbs.queue HG-131
pbs.queue.job() HG-132
pbs.range() HG-173
pbs.reboot() HG-178
pbs.resv HG-144
pbs.route_destinations() HG-173
pbs.select() HG-173
pbs.server HG-128
pbs.server(). HG-128
pbs.server().job() HG-129
pbs.server().jobs() HG-129
pbs.server().name HG-128
pbs.server().queue() HG-129
pbs.server().queues() HG-130
pbs.server().resv() HG-130
pbs.server().resvs() HG-130
pbs.server().scheduler_restart_cycle() HG-130
HG-320 PBS Professional 2022.1 Hooks Guide

Index
pbs.server().vnode() HG-130
pbs.server().vnodes() HG-130
pbs.server_attribute HG-156
pbs.size() HG-175
pbs.software() HG-175
pbs.staging_list() HG-175
pbs.state_count() HG-176
pbs.user_list() HG-176
pbs.vchunk HG-143
pbs.version() HG-176
pbs.vnode HG-146
PBS_AUTH_METHOD HG-160
PBS_BATCH_SERVICE_PORT HG-160
PBS_BATCH_SERVICE_PORT_DIS HG-160
PBS_COMM_LOG_EVENTS HG-160
PBS_COMM_ROUTERS HG-160
PBS_COMM_THREADS HG-160
PBS_CONF_SYSLOG HG-164
PBS_CONF_SYSLOGSEVR HG-164
PBS_CORE_LIMIT HG-160
PBS_CP HG-160
PBS_DAEMON_SERVICE_USER HG-160
PBS_DATA_SERVICE_PORT HG-160
PBS_ENCRYPT_METHOD HG-161
PBS_ENVIRONMENT HG-161
PBS_EXEC HG-161
PBS_HOME HG-161
PBS_LEAF_NAME HG-161
PBS_LEAF_ROUTERS HG-161
PBS_LOCALLOG HG-161
PBS_LOG_HIGHRES_TIMESTAMP HG-161
PBS_MAIL_HOST_NAME HG-161
PBS_MANAGER_SERVICE_PORT HG-161
PBS_MOM_HOME HG-161
PBS_MOM_NODE_NAME HG-162
PBS_MOM_SERVICE_PORT HG-162
PBS_OUTPUT_HOST_NAME HG-162
PBS_PRIMARY HG-162
PBS_RCP HG-162
PBS_REMOTE_VIEWER HG-162
PBS_SCHED_THREADS HG-162
PBS_SCP HG-163
PBS_SECONDARY HG-163
PBS_SERVER HG-163
PBS_SERVER_HOST_NAME HG-163
PBS_START_COMM HG-163
PBS_START_MOM HG-163
PBS_START_SCHED HG-163
PBS_START_SERVER HG-163
PBS_SUPPORTED_AUTH_METHODS HG-163
PBS_TMPDIR HG-164
pbshook HG-6
periodic HG-89
postqueuejob HG-91

pre-execution event HG-6
pre-execution event hooks HG-6
primary server HG-162
provision HG-88

Q
queue. HG-131
queue.job() HG-132
queue.jobs() HG-132
queue.name HG-131
queuejob HG-87
queuejob events HG-92, HG-93
queuejob hook events HG-92

R
rcp HG-162
reject an action HG-6
reservation

attributes in hooks HG-63
Reservation hook HG-6
resources

in hooks HG-48
resv. HG-144
resv.resvid HG-144
resv_begin HG-90
resv_confirm HG-91
resvsub HG-87, HG-89
resvsub events HG-98, HG-99, HG-100, HG-102
runjob HG-88
runjob events HG-97

S
scp HG-163
secondary server HG-163
server

primary HG-162
secondary HG-163

server hook HG-6
server_attribute.flags HG-158
server_attribute.name HG-157
server_attribute.op HG-157
server_attribute.resource HG-157
server_attribute.sisters HG-159
server_attribute.value HG-157
setting hook timeout HG-39
setting hook trigger events HG-31
setting order of hook execution HG-39
setting trigger events HG-31

V
vchunk.chunk_resources.keys() HG-143, HG-144
vchunk.vnode_name HG-143
PBS Professional 2022.1 Hooks Guide HG-321

Index
vnode
attributes in hooks HG-61

vnode.topology_info HG-147

W
writing hooks

simple how-to HG-11
HG-322 PBS Professional 2022.1 Hooks Guide

Altair PBS Professional 2022.1

Reference Guide

You are reading the Altair PBS Professional 2022.1

Reference Guide (RG)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation ix

1 Glossary of Terms 1

2 PBS Commands 21
2.1 Our Command Notation . 21
2.2 List of Commands . 22
2.3 mpiexec . 27
2.4 pbs. 29
2.5 pbsdsh. 30
2.6 pbsfs . 32
2.7 pbsnodes. 36
2.8 pbsrun . 41
2.9 pbsrun_unwrap . 51
2.10 pbsrun_wrap . 52
2.11 pbs_account . 54
2.12 pbs_attach. 56
2.13 pbs_comm. 58
2.14 pbs_dataservice . 61
2.15 pbs_ds_password . 62
2.16 pbs_hostn . 64
2.17 pbs_idled . 65
2.18 pbs_iff . 67
2.19 pbs_interactive . 68
2.20 pbs_login . 69
2.21 pbs_mkdirs . 70
2.22 pbs_mom. 71
2.23 pbs_mpihp. 76
2.24 pbs_mpirun . 78
2.25 pbs_probe . 80
2.26 pbs_python . 82
2.27 pbs_ralter . 85
2.28 pbs_rdel. 90
2.29 pbs_release_nodes. 92
2.30 pbs_rstat . 94
2.31 pbs_rsub . 96
2.32 pbs_sched. 105
2.33 pbs_server. 107
2.34 pbs_snapshot . 111
2.35 pbs_tclsh . 122
2.36 pbs_tmrsh . 123
2.37 pbs_topologyinfo . 125
2.38 pbs_wish . 127
2.39 printjob. 128
2.40 qalter . 130
PBS Professional 2022.1 Reference Guide RG-v

Contents
2.41 qdel . 143
2.42 qdisable . 146
2.43 qenable . 148
2.44 qhold . 150
2.45 qmgr . 152
2.46 qmove . 175
2.47 qmsg . 177
2.48 qorder . 179
2.49 qrerun . 181
2.50 qrls. 183
2.51 qrun . 185
2.52 qselect . 189
2.53 qsig . 195
2.54 qstart . 198
2.55 qstat. 200
2.56 qstop . 214
2.57 qsub. 216
2.58 qterm . 236
2.59 tracejob . 238
2.60 win_postinstall.py . 241

3 MoM Parameters 243
3.1 Syntax of MoM Configuration File . 243
3.2 Contents of MoM Configuration File . 244

4 Scheduler Parameters 251
4.1 Format of Scheduler Configuration File. 251
4.2 Configuration Parameters . 252

5 List of Built-in Resources 259
5.1 Resource Data Types . 259
5.2 Viewing Resource Information . 261
5.3 Resource Flags . 262
5.4 Attributes where Resources Are Tracked . 263
5.5 Resource Table Format. 264
5.6 Resources Built Into PBS . 265

6 Attributes 277
6.1 Attribute Behavior . 277
6.2 How To Set Attributes . 277
6.3 Viewing Attribute Values . 278
6.4 Attribute Table Format. 279
6.5 Caveats . 280
6.6 Server Attributes . 281
6.7 Scheduler Attributes . 298
6.8 Reservation Attributes . 303
6.9 Queue Attributes . 311
6.10 Vnode Attributes . 320
6.11 Job Attributes . 327
6.12 Hook Attributes . 349
RG-vi PBS Professional 2022.1 Reference Guide

Contents
7 Formats 353
7.1 Non-resource Formats . 353
7.2 Resource Formats. 359

8 States 361
8.1 Job States . 361
8.2 Job Array States . 363
8.3 Subjob States . 363
8.4 Server States. 364
8.5 Vnode States. 365
8.6 Reservation States . 367

9 The PBS Configuration File 369
9.1 Format of Configuration File . 369
9.2 Contents of Configuration File. 369

10 Log Levels 375
10.1 Log Levels . 375

11 Job Exit Status 377
11.1 Job Exit Status . 377

12 Example Configurations 379
12.1 Single Vnode System . 379
12.2 Separate Server and Execution Host . 380
12.3 Multiple Execution Hosts . 380
12.4 Multi-level Route Queues . 381
12.5 External Software License Management. 383
12.6 Multiple User ACL Example . 384

13 Run Limit Error Messages 385
13.1 Run Limit Error Messages. 385

14 Error Codes 387

15 Request Codes 393

16 PBS Environment Variables 397

17 File Listing 401

18 Introduction to PBS 409
18.1 Acknowledgements . 409

Index 411
PBS Professional 2022.1 Reference Guide RG-vii

Contents
RG-viii PBS Professional 2022.1 Reference Guide

1

Glossary of Terms

This chapter describes the terms used in PBS Professional documentation.

Accept an action (Hooks)

A hook accepts an action when the hook allows the action to take place.

Access control list, ACL

An ACL, or Access Control List, is a list of users, groups, or hosts from which users or groups may be attempt-
ing to gain access. This list defines who or what is allowed or denied access to parts of PBS such as the server,
queues, or reservations. A server ACL applies to access to the server, and therefore all of PBS. A queue's ACL
applies only to that particular queue. A reservation's ACL applies only to that particular reservation. See
"ACLs" on page 493 in the PBS Professional Administrator’s Guide.

Access to a queue

Applies to users, groups, and hosts. Being able to submit jobs to the queue, move jobs into the queue, being
able to perform operations on jobs in the queue, and being able to get the status of the queue.

Access to a reservation

Applies to users, groups, and hosts. Being able to place jobs in the reservation, whether by submitting jobs to
the reservation or moving jobs into the reservation. It also means being able to delete the reservation, and being
able to operate on the jobs in the reservation.

Access to the server

Applies to users, groups, and hosts. Being able to run PBS commands to submit jobs and perform operations on
them such as altering, selecting, and querying status. It also means being able to get the status of the server and
queues.

Account string

An account string is an arbitrary character string of characters that your site may use to provide additional
accounting or charge information. The syntax is unspecified except that it must be a single string. When pro-
vided on the command line to a PBS utility or in a directive in a PBS job script, any embedded white space must
be escaped by enclosing the string in quotes.

Action (Hooks)

A PBS operation or state transition. The actions that hooks can affect are submitting a job, altering a job, run-
ning a job, making a reservation, and moving a job to another queue.

Active (Failover)

A server daemon is active when it is managing user requests and communicating with a scheduler and MoMs.

Active Directory (Windows)

Active Directory is an implementation of LDAP directory services by Microsoft to use in Windows environ-
ments. It is a directory service used to store information about the network resources (e.g. user accounts and
groups) across a domain.

Admin (Windows)

A user logged in from an account that is either:

1. A member of a group having full control over the local computer and the domain controller

2. Allowed to make domain and schema changes to the Active Directory.
PBS Professional 2022.1 Reference Guide RG-1

Chapter 1 Glossary of Terms
Administrator

Same as PBS Administrator.

Linux: person with Manager privilege and root access.

Windows: person with Manager privilege who is a member of the local Administrators group.

A person who administers PBS, performing functions such as downloading, installing, upgrading, configuring,
or managing PBS.

Administrator is distinguished from "site administrator", although often these are the same person.

Administrators (Windows)

A group that has built-in capabilities that give its members full control over the local system, or the domain con-
troller host itself.

Advance reservation

A reservation for a specific set of resources for a specified start time and duration in the future. Advance reser-
vations are created by users to reserve resources for jobs. The reservation is available only to the creator of the
reservation and any users or groups specified by the creator.

ALM license server

The license server that supplies licenses to run a PBS complex. See the PBS Works Licensing Guide.

AOE, Application operating environment

The environment on a vnode. This may be one that results from provisioning that vnode, or one that is already
in place

API

PBS provides an Application Programming Interface, or API, which is used by the commands to communicate
with the server. This API is described in the PBS Professional Programmer's Guide. A site may make use of the
API to implement new commands if so desired.

Application checkpoint

The application performs its own checkpointing when it receives the appropriate signal etc.

Array job

See "Job array".

ASAP reservation, job-specific ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Attribute

An attribute is a data item belonging to an object such as a job, reservation, vnode, queue, hook, scheduler, or
server. The attribute's value affects the behavior of or provides information about the object. See Chapter 6,
"Attributes", on page 277. You specify attributes via the qmgr command.

Backfilling

A scheduling policy where

1. High-priority jobs are scheduled for execution

2. Lower-priority jobs are run if the following conditions are true:

Resources (that cannot be used by the high-priority jobs) are available

The lower-priority jobs will not delay the higher-priority jobs

Lower-priority jobs selected for execution are those next in priority order that will fit in the available resources.
RG-2 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Batch, Batch processing

Allowing jobs to be run outside of the interactive login environment.

Borrowing vnode

The vnode where a shared vnode resource is available, but not managed.

Built-in hook

A hook that is supplied as part of PBS. These hooks cannot be created or deleted by administrators. See "Man-
aging Built-in Hooks" on page 179 in the PBS Professional Hooks Guide.

Built-in resource

A resource that is defined in PBS Professional as shipped. Examples of built-in resources are ncpus, which
tracks the number of CPUs, and mem, which tracks memory. See "Built-in vs. Custom Resources" on page 231
in the PBS Professional Administrator’s Guide.

Checkpoint/Restart

Allows jobs to be checkpointed and restarted. Uses OS-provided or third-party checkpoint/restart facility.

Checkpoint and Abort, checkpoint_abort

The checkpoint script or tool writes a restart file, then PBS kills and requeues the job. The job resumes from the
start file when it is executed again.

Child vnode

On a multi-vnode machine, there is one parent vnode and one or more child vnodes. For multi-vnode machines,
child vnodes represent hardware. See "Parent vnode” on page 13.

Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process. See
"Chunk Resources" on page 233 in the PBS Professional Administrator’s Guide or "Requesting Resources in
Chunks", on page 55 of the PBS Professional User’s Guide.

Chunk-level resource, host-level resource

A resource that is available at the host level, for example, CPUs or memory. Chunk resources are requested
inside of a selection statement. The resources of a chunk are to be applied to the portion of the job running in
that chunk.

Chunk resources are requested inside a select statement. A single chunk is requested using this form:

-l select=<resource name>=<value>:<resource name>=<value>
For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[number of chunks]<chunk specification>
For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb

To request different chunks, concatenate the chunks using the plus sign ("+"):

-l select=[number of chunks]<chunk specification>+[number of chunks]<chunk specification>
For example, to request two kinds of chunks, one with 2 CPUs per chunk, and one with 8 CPUs per chunk, both
kinds with 4GB of memory:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB

Chunk set

An identical set of chunks requested in a select statement. The following is a chunk set: 4:ncpus=8:mem=4GB
PBS Professional 2022.1 Reference Guide RG-3

Chapter 1 Glossary of Terms
Cluster

A relatively homogeneous set of systems that are used as if they are a single machine.

Commands

PBS supplies both command line programs that are POSIX 1003.2d conforming and a graphical interface.
These are used to submit, monitor, modify, and delete jobs. These client commands can be installed on any sys-
tem type supported by PBS and do not require the local presence of any of the other components of PBS.

There are three classifications of commands: user commands (which any authorized user can use), Operator
commands, and Manager (or administrator) commands. Operator and Manager commands require specific
access privileges.

Communication daemon, comm

The daemon which handles communication between the server, scheduler, and MoMs. Executable is
pbs_comm.

Complex

A PBS complex consists of the machines running one primary server+scheduler (plus, optionally, a secondary
backup server+scheduler) and all the machines on which the MoMs (attached to this server+scheduler) are run-
ning. A complex can be a heterogeneous mix of system architectures, and can include one or more clusters.

Consumable resource

A consumable resource is a resource that is reduced or taken up by being used. Examples of consumable
resources are memory or CPUs. See "Consumable vs. Non-consumable Resources" on page 231 in the PBS
Professional Administrator’s Guide.

CPU

Has two meanings, one from a hardware viewpoint, and one from a software viewpoint:

1. A core. The part of a processor that carries out computational tasks. Some systems present virtual cores,
for example in hyperthreading.

2. Resource required to execute a program thread. PBS schedules jobs according, in part, to the number of
threads, giving each thread a core on which to execute. The resource used by PBS to track CPUs is called
"ncpus". The number of CPUs available for use defaults to the number of cores reported by the OS. When
a job requests one CPU, it is requesting one core on which to run.

Creating a hook

When you "create a hook" using qmgr, you're telling PBS that you want it to make you an empty hook object
that has no characteristics other than a name.

Custom resource

A resource that is not defined in PBS as shipped. Custom resources are created by the PBS administrator or by
PBS for some systems. See "Built-in vs. Custom Resources" on page 231 in the PBS Professional Administra-
tor’s Guide.

Data service account

Created by PBS on installation. Account that is internal to the data service, with its own data service password.
Used by PBS to log into and do operations on the data service. PBS maps this account to the PBS data service
management account. Must have same name as PBS data service management account.

Data service management account

Created by administrator. Account with a system password. Data service account maps to the PBS data service
management account and both must have the same name.
RG-4 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Default server

The default server is the server which handles any server tasks, such as client requests, unless you specify a dif-
ferent server. By default, PBS provides a default server; you do not need to take any action to have a default
server. If you have installed more than one server, you can specify the default using these:

• The PBS_DEFAULT environment variable

• The PBS_SERVER parameter in /etc/pbs.conf on the local host

If both are present, PBS_DEFAULT overrides PBS_SERVER.

Server names have the following format:

<hostname>[:<port number>]
where hostname is the fully-qualified domain name of the host on which the server is running and port number
is the port number to which to connect. If you do not specify port number, PBS defaults to using 15001.

There is always at least one active server; the default server is the active server unless another server has been
made active.

Degraded reservation

An advance reservation for which one or more associated vnodes are unavailable.

A standing reservation for which one or more vnodes associated with any occurrence are unavailable.

Delegation (Windows)

A capability provided by Active Directory that allows granular assignment of privileges to a domain account or
group. So for instance, instead of adding an account to the "Account Operators" group which might give too
much access, delegation allows giving the account read access only to all domain users and groups information.
This is done via the Delegation wizard.

Deprecate

We use deprecated to mean that something such as a feature or a platform is still supported, but will not be sup-
ported beginning with a later release. When a feature is no longer supported, we say it has been removed or is
obsolete.

Destination, destination identifier, destination queue, destination server

String. One or more queues or a server. Jobs may be queried at or sent to a destination queue. Commands may
be directed to a destination queue or server. A destination may be at the default PBS server or at another server.

Destination queue format:

<queue name>
Indicates specified queue at default server.

@<server name>
When moving a job, indicates default queue at that server.

When operating on queues, can indicate all queues at that server.

<queue name>@<server name>
Indicates specified queue at specified server.

Destination server format:

(no server name)
Indicates default server.

@<server name>
Indicates specified server.

@default
Indicates default server.
PBS Professional 2022.1 Reference Guide RG-5

Chapter 1 Glossary of Terms
Directive

A means by which the user specifies to PBS the value of a job submission variable such as number of CPUs, the
name of the job, etc. The default start of a directive is "#PBS". PBS directives either specify resource require-
ments or attribute values. See page "Using PBS Directives", on page 17 of the PBS Professional User’s Guide.

Domain Admin Account (Windows)

A domain account on Windows that is a member of the "Domain Admins" group.

Domain Admins (Windows)

A global group whose members are authorized to administer the domain. By default, the Domain Admins group
is a member of the Administrators group on all computers that have joined a domain, including the domain con-
trollers.

Domain User Account (Windows)

A domain account on Windows that is a member of the Domain Users group.

Domain Users (Windows)

A global group that, by default, includes all user accounts in a domain. When you create a user account in a
domain, it is added to this group automatically.

Endpoint

A PBS server, scheduler, or MoM daemon.

Enterprise Admins (Windows)

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make forest-wide changes in Active Directory, such as adding child domains.

Entity, PBS entity

A user, group, or host.

Entity share

Setting job execution and/or preemption priority according to how much of the fairshare tree is assigned to each
job's owner.

Event

A PBS operation or state transition. Also called action. For a list of events, see "Event Types" on page 87 in
the PBS Professional Hooks Guide.

Execution event hook

A hook that runs at an execution host. These hooks run after a job is received by MoM. Execution event hooks
have names prefixed with "execjob_".

Execution host

A computer which runs PBS jobs. An execution host is a system with a single operating system (OS) image, a
unified virtual memory space, one or more CPUs and one or more IP addresses. Systems like Linux clusters,
which contain separate computational units each with their own OS, are collections of hosts. Systems such as
the HPE 8600 are also collections of hosts.

An execution host can be comprised of one or more vnodes. On the HPE 8600, each blade is treated as a vnode.
See "Vnode".

Execution queue

A queue from which a job can be executed.

Failover

The PBS complex can run a backup server. If the primary server fails, the secondary takes over without an
interruption in service.
RG-6 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Failure action

The action taken when a hook fails to execute. Specified in the fail_action hook attribute. See "Using the
fail_action Hook Attribute" on page 37 in the PBS Professional Hooks Guide.

Fairshare

A scheduling policy that prioritizes jobs according to how much of a specified resource is being used by, and
has recently been used by, job submitters. Job submitters can be organized into groups and subgroups, so that
jobs can also be prioritized according to those groups' resource usage. Users and groups can each be allotted a
percentage of total resource usage. See "Using Fairshare" on page 138 in the PBS Professional Administrator’s
Guide.

File staging

File staging is the transfer of files between a specified storage location and the execution host. See "Stage in"
and "Stage out".

Finished jobs

Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution

Floating license

A unit of application license dynamically allocated (checked out) when a user begins using an application on
some host (when the job starts), and deallocated (checked in) when a user finishes using the application (when
the job ends).

Furnishing queue/complex

In peer scheduling, the queue/complex from which jobs are pulled to be run at another queue/complex

Generic group limit

A limit that applies separately to groups at the server or a queue. This is the limit for groups which have no indi-
vidual limit specified. A limit for generic groups is applied to the usage across the entire group. A separate
limit can be specified at the server and each queue.

Generic project limit

Applies separately to projects at the server or a queue. The limit for projects which have no individual limit
specified. A limit for generic projects is applied to the usage across the entire project. A separate limit can be
specified at the server and each queue.

Generic user limit

A limit that applies separately to users at the server or a queue. This is the limit for users who have no individ-
ual limit specified. A separate limit for generic users can be specified at the server and at each queue.

Group

A collection of system users. A user must be a member of at least one group, and can be a member of more than
one group.

Group access, Access by group

Refers to access to PBS objects, such as the server, queues, and reservations. A user in the specified group is
allowed access at the server, queues, and reservations

Group ID (GID)

Unique numeric identifier assigned to each group. See "Group".
PBS Professional 2022.1 Reference Guide RG-7

Chapter 1 Glossary of Terms
Group limit

Refers to configurable limits on resources and jobs. This is a limit applied to the total used by a group, whether
the limit is a generic group limit or an individual group limit.

History jobs

Jobs which will no longer execute at this server:

• Moved jobs

• Finished jobs

Hold

A restriction which prevents a job from being executed. When a job has a hold applied to it, it is in the Held (H)
state. See section 2.44, “qhold”, on page 150.

Hook

Hooks are custom executables that can be run at specific points in the execution of PBS. They accept, reject, or
modify the upcoming action. This provides job filtering, patches or workarounds, and extends the capabilities
of PBS, without the need to modify source code.

Host

A machine running an operating system. A host can be made up of one or more vnodes. All vnodes of a host
share the same value for resources_available.host.

Host access, Access from host

Refers to user access at the server, queues, and reservations from the specified host

Hostname

A hostname is a string. A hostname is of the form <machine name>.<domain name>, where domain name is a
hierarchical, dot-separated list of subdomains. A hostname cannot contain the following:

• A dot ("."), other than as a subdomain separator

• The commercial at sign, "@", as this is often used to separate a file from the host in a remote file name

• To prevent confusion with port numbers, a hostname cannot contain a colon (":")

HTT

Intel's Hyper-Threading Technology

Idle

A server daemon is idle when it is running, but only accepting handshake messages, not performing workload
management.

Importing a hook

When you "import a hook" using qmgr, you're telling PBS which Python script to run when the hook is trig-
gered.

Importing a hook configuration file

When you "import a hook configuration file" using qmgr, you're telling PBS which file should be stored as the
configuration file for the specified hook.

Indirect resource

A shared vnode resource at vnode(s) where the resource is not defined, but which share the resource.

Individual group limit

Applies separately to groups at the server or a queue. This is the limit for a group which has its own individual
limit specified. An individual group limit overrides the generic group limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire group. A separate limit can be
specified at the server and each queue.
RG-8 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Individual project limit

Applies separately to projects at the server or a queue. Limit for a project which has its own individual limit
specified. An individual project limit overrides the generic project limit, but only in the same context, for
example, at a particular queue. The limit is applied to the usage across the entire project. A separate limit can
be specified at the server and each queue.

Individual user limit

Applies separately to users at the server or a queue. This is the limit for users who have their own individual
limit specified. A limit for an individual user overrides the generic user limit, but only in the same context, for
example, at a particular queue. A separate limit can be specified at the server and each queue.

Installation account

The account used by the administrator when installing PBS. Not the pbsadmin account used by PBS.

Interactive job

A job where standard input and output are connected to the terminal from which the job was submitted.

Job or Batch job

A unit of work managed by PBS. A job is a related set of tasks, created and submitted by the user. The user
specifies the resources required by the job, and the processes that make up the job. When the user submits a job
to PBS, the user is handing off these tasks to PBS to manage. PBS then schedules the job to be run, and man-
ages the running of the job, treating the tasks as parts of a whole. A job is usually composed of a set of direc-
tives and a shell script.

Job array

A job array is a container for a collection of similar jobs submitted under a single job ID. It can be submitted,
queried, modified and displayed as a unit. The jobs in the collection are called subjobs. For more on job arrays,
see "Job Arrays", on page 153 of the PBS Professional User’s Guide.

Job array identifier

The identifier returned upon success when submitting a job array.

Job array identifiers are a sequence number followed by square brackets:

<sequence number>[][.<server name>][@<server name>]
Example:

1234[]

Note that some shells require that you enclose a job array ID in double quotes.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job array IDs start again at 0.

Job array range

A specification for a set of subjobs within a job array. When specifying a range, indices used must be valid
members of the job array's indices. Format:

<sequence number>[<first>-<last>:<step>][.server][@new server]
first is the first index of the subjobs.

last is the last index of the subjobs.

step is the stepping factor.

Job ID, Job identifier

When a job is successfully submitted to PBS, PBS returns a unique identifier for the job. Format:
PBS Professional 2022.1 Reference Guide RG-9

Chapter 1 Glossary of Terms
<sequence number>[.<server>][@<new server>]
The <server> portion indicates the name of the original server where the job was submitted.

The @<new server> portion indicates the current location of the job if it is not at the original server.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job IDs start again at 0.

Job name, Job array name

A job name or job array name can be at most 230 characters. It must consist only of alphabetic, numeric, plus
sign ("+"), dash or minus or hyphen ("-"), underscore ("_"), and dot or period (".") characters.

Default: if a script is used to submit the job, the job's name is the name of the script. If no script is used, the
job's name is "STDIN".

Job state

A job exists in one of the possible states throughout its existence within the PBS system. For example, a job can
be queued, running, or exiting. See "States” on page 361.

Job-specific ASAP reservation, ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Job-specific now reservation, now reservation

Reservation created for a specific running job. PBS creates a job-specific now reservation on the same
resources as the job is using, and moves the job into the reservation. The reservation is created and starts run-
ning immediately when you use pbs_rsub --job <job ID> on a running job.

Job-specific reservation

A reservation created for a specific job, for the same resources that the job requested.

Job-specific start reservation, start reservation

Reservation created for a specific job, for the same resources the job requests. PBS starts the job according to
scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the job into the
reservation. Created when you use qsub -Wcreate_resv_from_job=true to submit a job or when you
qalter a job to set the job's create_resv_from_job attribute to True.

Job Submission Description Language (JSDL)

Language for describing the resource requirements of jobs.

Job-wide resource, server resource, queue resource

A job-wide resource, also called a server-level or queue-level resource, is a resource that is available to the
entire job at the server or queue.

A job-wide resource is available to be consumed or matched at the server or queue if you set the server or queue
resources_available.<resource name> attribute to the available or matching value. For example, you can
define a custom resource called FloatingLicenses and set the server's resources_available.FloatingLicenses
attribute to the number of available floating licenses.

Examples of job-wide resources are shared scratch space, application licenses, or walltime.

A job can request a job-wide resource for the entire job, but not for individual chunks. Job-wide resources are
requested outside of a selection statement, in this form:
RG-10 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
-l keyword=value[,keyword=value ...]
where keyword identifies either a consumable resource or a time-based resource such as walltime.

A resource request "outside of a selection statement" means that the resource request comes after "-l", but not
after "-lselect=".

Kill a job

To terminate the execution of a job.

Leaf

An endpoint (a server, scheduler, or MoM daemon.)

License Manager Daemon (lmx-serv-altair)

Daemon that functions as the license server. ALM license server. See the PBS Works Licensing Guide.

License server

Manages licenses for PBS jobs. ALM license server. See the PBS Works Licensing Guide.

License Server List Configuration

One form of redundant license server configuration. A collection of "<port number>@<hostname>" settings,
pointing to license servers managing Altair licenses. Each server on the list is tried in turn. There could be X
licenses on <server1>, Y licenses on <server2>, and Z licenses on <server3>, and the total licenses available
would actually be X+Y+Z, but a request must be satisfied only by one server at a time. The first running server
is the only server queried. See the PBS Works Licensing Guide.

Limit

A maximum that can be applied in various situations:

• The maximum number of jobs that can be queued

• The maximum number of jobs that can be running

• The maximum number of jobs that can be queued and running

• The maximum amount of a resource that can be allocated to queued jobs

• The maximum amount of a resource that can be consumed at any time by running jobs

• The maximum amount of a resource that can be allocated to queued and running jobs

Linux-Windows complex, Windows-Linux complex

A PBS complex with a Linux server/scheduler/comm host and Windows execution and client hosts.

Load balance

Scheduling policy wherein jobs are distributed across multiple hosts to even out the workload on each host.

Manager

A person who has been granted Manager privilege by being listed in the server's managers attribute. A Man-
ager is authorized to use all restricted capabilities of PBS. A PBS Manager may act upon the server, queues, or
jobs. See "Manager" on page 491 in the PBS Professional Administrator’s Guide.

Managing vnode

The vnode where a shared vnode resource is defined, and which manages the resource.

Master provisioning script, Master script (Hooks)

The script that makes up the provisioning hook.

Memory-only vnode

Represents a node board that has only memory resources (no CPUs).
PBS Professional 2022.1 Reference Guide RG-11

Chapter 1 Glossary of Terms
Mixed-mode complex

A PBS complex with a Linux server/scheduler/comm host, Linux execution and client hosts, and Windows exe-
cution and client hosts.

MoM

The daemon which runs on an execution host, managing the jobs on that host. MoM is the informal name for
the process called pbs_mom. One MoM runs on each execution host.

MoM runs each job when it receives a copy of the job from the server. MoM creates a new session that is as
identical to the user's login session as possible. For example under Linux, if the user's login shell is csh, MoM
creates a session in which .login is run as well as .cshrc. MoM returns the job's output to the user when
directed to do so by the server.

MoM is a reverse-engineered acronym that stands for "Machine Oriented Mini-server".

Monitoring

The act of tracking and reserving system resources and enforcing usage policy. This covers both user-level and
system-level monitoring as well as monitoring running jobs. Tools are provided to aid human monitoring of the
PBS system as well.

Primary execution host MoM (was Mother Superior)

The MoM on the head or first host of a multihost job. This MoM controls the job, communicates with the
server, and controls and consolidates resource usage information. When a job is to run on more than one execu-
tion host, the job is sent to the MoM on the primary execution host, which then starts the job.

Moved jobs

Jobs which were moved to another server

No longer used. See "Execution host".

Non-consumable resource

A non-consumable resource is a resource that is not reduced or taken up by being used. Examples of non-con-
sumable resources are Boolean resources and walltime. See "Consumable vs. Non-consumable Resources" on
page 231 in the PBS Professional Administrator’s Guide.

Non-job event hook

A hook that is not directly related to a specific job. Non-job event hooks are periodic hooks, startup hooks, pro-
visioning hooks, and reservation creation hooks.

Now reservation, job-specific now reservation

Reservation created for a specific running job. PBS creates a job-specific now reservation on the same
resources as the job is using, and moves the job into the reservation. The reservation is created and starts run-
ning immediately when you use pbs_rsub --job <job ID> on a running job.

Object, PBS object

An element of PBS such as the server, a queue, or a reservation
RG-12 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Occurrence of a standing reservation

An instance of the standing reservation.

An occurrence of a standing reservation behaves like an advance reservation, with the following exceptions:

• While a job can be submitted to a specific advance reservation, it can only be submitted to the standing res-
ervation as a whole, not to a specific occurrence. You can only specify when the job is eligible to run. See
the qsub(1B) man page.

• When an advance reservation ends, it and all of its jobs, running or queued, are deleted, but when an occur-
rence ends, only its running jobs are deleted.

Each occurrence of a standing reservation has reserved resources which satisfy the resource request, but each
occurrence may have its resources drawn from a different source. A query for the resources assigned to a stand-
ing reservation will return the resources assigned to the soonest occurrence, shown in the resv_nodes attribute
reported by pbs_rstat.

Operator

This term means a person who has been granted Operator privilege by being listed in the server's operators
attribute. An Operator can use some but not all of the restricted capabilities of PBS. See "Operator" on page
490 in the PBS Professional Administrator’s Guide.

Overall limit

Limit on the total usage. In the context of server limits, this is the limit for usage at the PBS complex. In the
context of queue limits, this is the limit for usage at the queue. An overall limit is applied to the total usage at
the specified location. Separate overall limits can be specified at the server and each queue.

Owner, Job owner

The user who submitted a specific job to PBS.

Parameter

A parameter specifies an element of the behavior of a component of PBS. For example, MoMs have parame-
ters specifying which events to log, or what the maximum load should be. Parameters are specified by editing
the component's configuration files.

Parent vnode

For single-vnode machines, the only vnode is the parent vnode.

For multi-vnode machines, there is a vnode called the parent vnode. A parent vnode does not correspond to any
actual hardware. The parent vnode is used to define any placement set information that is invariant for a given
host. The parent vnode is also used to define dynamic host-level resources, and can be used to define shared
resources. See "Parent Vnodes and Child Vnodes" on page 42 in the PBS Professional Administrator’s Guide.
We used to call this vnode the "natural vnode".

For multi-vnode machines, vnodes that represent hardware are called child vnodes. See "Child vnode” on
page 3.

Node

A host

pbshook

Keyword used by qmgr to operate on built-in hooks.

PBS Entity

A user, group, or host

pbs module

The pbs module is an interface to PBS and the hook environment. The interface is made up of Python objects,
which have attributes and methods. You can operate on these objects using Python code.
PBS Professional 2022.1 Reference Guide RG-13

Chapter 1 Glossary of Terms
PBS Object

An element of PBS such as the server, a queue, or a reservation

PBS Administrator

Same as Administrator.

Linux: person with Manager privilege and root access.

Windows: person with Manager privilege who is a member of the local Administrators group.

A person who administers PBS, performing functions such as downloading, installing, upgrading, configuring,
or managing PBS.

PBS Administrator is distinguished from "site administrator", although often these are the same person.

pbsadmin (Windows)

The account that is used to execute the PBS MoM, pbs_mom, via the Service Control Manager on Windows.
This must be "pbsadmin".

PBS_HOME

The path containing PBS files. The path under which PBS files are installed on the local system.

Default: /var/spool/pbs

PBS_EXEC

The path containing PBS executables. The path under which PBS executables are installed on the local system.

Default: /opt/pbs

PBS Professional

A workload management system consisting of a server, a scheduler, and any number of execution hosts each
managed by a MoM. PBS accepts batch jobs from users, and schedules them on execution hosts according to
the policy chosen by the site. PBS manages the jobs and their output according to site-specified policy.

Peer scheduling

A feature allowing different PBS complexes to automatically run each others' jobs. This way jobs can be
dynamically load-balanced across the complexes. Each complex involved in peer scheduling is called a peer.

Placement set

A set of vnodes on which jobs can be run, selected so that the job will run as efficiently as possible. Placement
sets are used to improve task placement (optimizing to provide a "good fit") by exposing information on system
configuration and topology. See "Placement Sets" on page 167 in the PBS Professional Administrator’s Guide.

Placement set series

The set of placement sets defined by a resource, where each set has the same value for the resource. If the
resource takes on N values, there are N placement sets in the series. See "Placement Sets" on page 167 in the
PBS Professional Administrator’s Guide.

Placement pool

All of the placement sets defined at a PBS object. Each queue can have its own placement pool, and the server
can have its own placement pool. See "Placement Sets" on page 167 in the PBS Professional Administrator’s
Guide.

Policy, Scheduling policy

The set of rules by which a scheduler selects jobs for execution.

POSIX

Refers to the various standards developed by the Technical Committee on Operating Systems and Application
Environments of the IEEE Computer Society under standard P1003.
RG-14 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Preempt

Stop one or more running jobs in order to start a higher-priority job.

Preemption level

Job characteristic used to determine whether a job may preempt another or may be preempted, such as being in
an express queue, having an owner who is over a soft limit, being a normal job, or having an owner who is over
a fairshare allotment.

Preemption method

The method by which a job is preempted. This can be checkpointing, suspension, or requeueing.

Preemption target

A preemption target is a job in a specified queue or a job that has requested a specified resource. The queue
and/or resource is specified in another job's Resource_List.preempt_targets.

Pre-execution event hook

A hook that runs before the job is accepted by MoM. These hooks do not run on execution hosts. Pre-execution
event hooks are for job submission, moving a job, altering a job, or just before sending a job to an execution
host.

Primary scheduler

The PBS Professional scheduler daemon which is running during normal operation.

Primary execution host

The execution host where a job's top task runs, and where the MoM that manages the job runs.

Primary server

The PBS Professional server daemon which is running during normal operation.

Primetime and non-primetime

An arbitrary, defined set of time slots during which scheduling follows the rules specified for primetime. By
default primetime is 24/7, but you can define it to be any desired time slots. If a time slot is not primetime, it is
non-primetime, during which scheduling follows non-primetime rules. There are default behaviors for prime-
time and non-primetime, but you can set up the behavior you want for each type. You can also define primetime
and non-primetime queues. Jobs in a primetime queue run only during primetime, and jobs in non-primetime
queues run only during non-primetime. See "Using Primetime and Holidays" on page 189 in the PBS Profes-
sional Administrator’s Guide.

Project

In PBS, a project is a way to group jobs independently of users and groups. A project is a tag that identifies a set
of jobs. Each job's project attribute specifies the job's project.

Project limit

This is a limit applied to the total used by a project, whether the limit is a generic project limit or an individual
project limit.

Provision

To install an OS or application, or to run a script which performs installation and/or setup

Provisioned vnode

A vnode which, through the process of provisioning, has an OS or application that was installed, or which has
had a script run on it

Provisioning hook

The hook which performs the provisioning, either by calling other scripts or by running commands
PBS Professional 2022.1 Reference Guide RG-15

Chapter 1 Glossary of Terms
Provisioning tool

A tool that performs the actual provisioning, e.g. HPE Performance Cluster Manager (HPCM).

Pulling queue

In peer scheduling, the queue into which jobs are pulled, and from which they are run

Queue

A queue is a named container for jobs at a server. There are two types of queues in PBS: routing queues and exe-
cution queues. A routing queue is a queue used to move jobs to other queues including those that exist on other
PBS servers. A job must reside in an execution queue to be eligible to run and remains in an execution queue
during the time it is running. In spite of the name, jobs in a queue need not be processed in queue order
(first-come first-served or FIFO).

Queuing

The collecting together of work or tasks to be run on a computer. Users submit tasks or "jobs" to the resource
management system where they are queued up until the system is ready to run them.

Redundant License Server Configuration

Allows licenses to continue to be available should one or more license servers fail. There are two types: 1)
license server list configuration, and 2) three-server configuration. See the PBS Works Licensing Guide.

Reject an action (Hooks)

An action is rejected when a hook prevents the action from taking place.

Requeue

The process of stopping a running job and putting it back into the queued ("Q") state.

Rerunnable

If a running PBS job can be terminated and then restarted from the beginning without harmful side effects, the
job is rerunnable. The job's Rerunnable attribute must be set to y in order for PBS to consider a job to be rerun-
nable.

Reservation degradation

PBS attempts to ensure that reservations run by finding usable vnodes when reservation vnodes become
unavailable.

Reservation ID, reservation identifier

When a reservation is successfully submitted to PBS, PBS returns a unique identifier for the reservation.

Format for advance reservation:

R<sequence number>[.server][@new server]
Format for standing reservation:

S<sequence number>[.server][@new server]
Format for maintenance reservation:

M<sequence number>[.server][@new server]

Resource

A resource can be something used by a job, such as CPUs, memory, high-speed switches, scratch space, appli-
cation licenses, or time, or it can be an arbitrary item defined for another purpose. PBS has built-in resources,
and allows custom-defined resources. See "Using PBS Resources" on page 227 in the PBS Professional
Administrator’s Guide.

Restart

A job that was stopped after being checkpointed while previously executing is executed again, starting from the
point where it was checkpointed.
RG-16 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Restart File

The job-specific file that is written by the checkpoint script or tool. This file contains any information needed to
restart the job from where it was when it was checkpointed.

Restart Script

The script that MoM runs to restart a job. This script is common to all jobs, and so must use the information in
a job's restart file to restart the job.

Route a job

When PBS moves a job between queues. PBS provides a mechanism whereby a job is automatically moved
from a routing queue to another queue. This is performed by PBS. The resource request for each job in a rout-
ing queue is examined, and the job is placed in a destination queue which matches the resource request. The
destination queue can be an execution queue or another routing queue.

Routing queue

A queue that serves as a temporary holding place for jobs, before they are moved to another queue. Jobs cannot
run from routing queues.

 Scheduler

A scheduler is a daemon which implements some or all of the site's job scheduling policy controlling when and
where each job is run. A scheduler is a process called pbs_sched.

Scheduling

The process of selecting which jobs to run when and where, according to a predetermined policy. Sites balance
competing needs and goals on the system(s) to maximize efficient use of resources (both computer time and
people time).

Scheduling policy

Scheduling policy determines when each job runs, and and how much of each resource it can use. Scheduling
policy consists of a system for determining the priority of each job, combined with a set of limits on how many
jobs can be run, and/or how much of each resource can be used.

Schema Admins (Windows)

A group that exists only in the root domain of an Active Directory forest of domains. The group is authorized to
make schema changes in Active Directory.

Secondary scheduler

The PBS Professional scheduler daemon which takes over when the primary scheduler is not available.

Secondary server

The PBS Professional server daemon which takes over when the primary server fails.

Sequence number

The numeric part of a job ID, job array ID, or reservation ID, for example, 1234. The largest value that can be
used for a sequence number is set in the max_job_sequence_id job attribute.
PBS Professional 2022.1 Reference Guide RG-17

Chapter 1 Glossary of Terms
 Server

The central PBS daemon, which does the following:

• Handles PBS commands

• Receives and creates batch jobs

• Sends jobs for execution

The server is the process called pbs_server.

Each PBS complex has one primary server, and if the complex is configured for failover, a secondary server.

The server contains a licensing client which communicates with the licensing server for licensing PBS jobs.

PBS provides a default server; see "Default server” on page 5.

Server name

A server name is an ASCII character string. Format:

<hostname>[:<port number>]
The network routine gethostbyname is used to translate this to a network address. The network routine
getservbyname is used to determine the port number. An alternate port number may be specified by
appending a colon (":") and the port number to the hostname.

Shared resource

A vnode resource defined and managed at one vnode, but available for use at others.

Shrink-to-fit job

A job that requests the min_walltime resource. A shrink-to-fit job requests a running time in a specified range,
where min_walltime is required, and max_walltime is not. PBS computes the actual walltime.

Sister

Any MoM that is not on the head or first host of a multihost job. A sister is directed by the primary execution
host. Also called a subordinate MoM.

Sisterhood

All of the MoMs involved in running a particular job.

Site

A location which for our purposes uses (or will use) PBS. A site can employ one or more PBS complexes, each
made up of any combination of hardware and software that PBS supports.

Snapshot Checkpoint

The checkpoint script or tool writes a restart file, and the job continues to execute. The job resumes from this
start file if the system experiences a problem during the job's subsequent execution.

Soonest occurrence of a standing reservation

The occurrence which is currently active, or if none is active, it is the next occurrence.

Stage in

The process of moving one or more job-related files from a storage location to the execution host before running
the job.

Stage out

The process of moving one or more job-related files from the execution host to a storage location after running
the job.
RG-18 PBS Professional 2022.1 Reference Guide

Glossary of Terms Chapter 1
Staging and execution directory

The staging and execution directory is a directory on the execution host where the following happens:

• Files are staged into this directory before execution

• The job runs in this directory

• Files are staged out from this directory after execution

A job-specific staging and execution directory can be created for each job, or PBS can use a specified directory,
or a default directory. See "Staging and Execution Directories for Job" on page 473 in the PBS Professional
Administrator’s Guide.

Standing reservation

An advance reservation which recurs at specified times. For example, the user can reserve 8 CPUs and 10GB
every Wednesday and Thursday from 5pm to 8pm, for the next three months.

Start reservation, Job-specific start reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS starts the job
according to scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the
job into the reservation. Created when you use qsub -Wcreate_resv_from_job=true on a queued
job.

State

The PBS server, vnodes, reservations, and jobs can be in various states, depending on what PBS is doing. For
example the server can be idle or scheduling, vnodes can be busy or free, and jobs can be queued or running,
among other states. For a complete description of states, see "States” on page 361.

Strict ordering

A scheduling policy where jobs are run according to policy order. If the site-specified policy dictates a particu-
lar priority ordering for jobs, that is the order in which they are run. Strict ordering can be modified by backfill-
ing in order to increase throughput. See "Backfilling".

Subject

A process belonging to a job run by an authorized, unprivileged user (a job submitter.)

Subjob

One of the jobs in a job array, e.g. 1234[7], where 1234[] is the job array itself, and 7 is the index. Queued
subjobs are not individually listed in the queue; only their job array is listed. Running subjobs are individually
listed.

Subjob index

The unique index which differentiates one subjob from another. This must be a non-negative integer.

Subordinate MoM

Any MoM that is not on the head or first host of a multihost job. A subordinate MoM is directed by the primary
execution host. Also called a sister.

Task

A process belonging to a job. A POSIX session started by MoM on behalf of a job.

Task placement

The process of choosing a set of vnodes to allocate to a job that will both satisfy the job's resource request
(select and place specifications) and satisfy the configured scheduling policy.

Three-server configuration

One form of redundant license server configuration. Means that if any 2 of the 3 license servers are up and run-
ning (referred to as a quorum), the system is functional, with 1 server acting as master who can issue licenses. If
the master goes down, another server must take over as master. See the PBS Works Licensing Guide.
PBS Professional 2022.1 Reference Guide RG-19

Chapter 1 Glossary of Terms
TPP

TCP-based Packet Protocol. Protocol used by pbs_comm.

User

Has two meanings:

1. A person who submits jobs to PBS, as differentiated from Operators, Managers and administrators. See
"User" on page 490 in the PBS Professional Administrator’s Guide.

2. A system user, identified by a unique character string (the user name) and by a unique number (the user ID).
Any person using the system has a username and user ID.

User access, Access by user

The specified user is allowed access at the server, queues, and reservations .

User ID, UID

A unique numeric identifier assigned to each user.

User limit

Refers to configurable limits on resources and jobs. A limit placed on one or more users, whether generic or
individual.

Vchunk

The part of a chunk that is supplied by one vnode. If a chunk is broken up across multiple vnodes, each vnode
supplies a vchunk.

Version 1 configuration file

MoM configuration file containing MoM configuration parameters. See Chapter 3, "MoM Parameters", on
page 243.

Version 2 configuration file

Also called vnodedefs file. Vnode configuration file containing vnode attribute and resource settings. Created
using pbs_mom -s insert command. See "Version 2 Vnode Configuration Files" on page 46 in the PBS
Professional Administrator’s Guide.

Virtual processor, VP

PBS can treat a vnode as if it has more processors available than the number of physical processors. When
resources_available.ncpus is set to a number higher than the actual number of physical processors, the vnode
can be said to have virtual processors. Also called logical processors.

Vnode

A virtual node, or vnode, is an abstract object representing a host or a set of resources which form a usable part
of an execution host. This could be an entire host, or a nodeboard or a blade. A single host can be made up of
multiple vnodes. Each vnode can be managed and scheduled independently. Each vnode in a complex must
have a unique name. Vnodes on a host can share resources, such as node-locked licenses.

vnodedefs file

A Version 2 configuration file. Vnode configuration file containing vnode attribute and resource settings. Cre-
ated using pbs_mom -s insert command. See "Version 2 Vnode Configuration Files" on page 46 in the
PBS Professional Administrator’s Guide.

vp

Virtual processor. The smallest unit of execution resources that can be specified to run a job.

Windows-Linux complex, Linux-Windows complex

A PBS complex with a Linux server/scheduler/comm host and Windows execution and client hosts.
RG-20 PBS Professional 2022.1 Reference Guide

2

PBS Commands

The commands described in this chapter work with a live PBS Professional complex; you cannot use these implementa-
tions on a simulation. The Simulate feature uses commands that are implemented for use with simulations; for those, see
Chapter 3, "Simulate Command Reference", on page 21 of the PBS Professional Simulate Guide.

2.1 Our Command Notation

Optional Arguments

Optional arguments are enclosed in square brackets. For example, in the qstat man page, the -E option is shown this
way:

qstat [-E]

To use this option, you would type:

qstat -E

Variable Arguments

Variable arguments (where you fill in the variable with the actual value) such as a job ID or vnode name are enclosed in
angle brackets. Here's an example from the pbsnodes man page:

pbsnodes -v <vnode>

To use this command on a vnode named "my_vnode", you'd type:

pbsnodes -v my_vnode

Optional Variables

Optional variables are enclosed in angle brackets inside square brackets. In this example from the qstat man page, the
job ID is optional:

qstat [<job ID>]

To query the job named "1234@my_server", you would type this:

qstat 1234@my_server

Literal Terms

Literal terms appear exactly as they should be used. For example, to get the version for a command, you type the com-
mand, then "--version". Here's the syntax:

qstat --version

And here's how you would use it:

qstat --version

Multiple Alternative Choices

When there are multiple options and you should choose one, the options are enclosed in curly braces. For example, if
you can use either "-n" or "--name":

{-n | --name}
PBS Professional 2022.1 Reference Guide RG-21

Chapter 2 PBS Commands
2.2 List of Commands

2.2.1 Requirements for Commands

Some PBS commands require root privilege or PBS Operator or Manager privilege in order to run. Some can be exe-
cuted by anyone, but the output depends upon the privilege of the user.

Most PBS commands require that the server be running; some require that MoMs be running.

The following table lists the commands, and indicates the permissions required to use each, and whether the server or
MoM must be running.

Table 2-1: PBS Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?

mpiexec Runs MPI programs under PBS
on Linux

Any No No

pbs Start, stop, restart, or get the
PIDs of PBS daemons

Root on Linux; Admin
on Windows

No No

pbsdsh Distributes tasks to vnodes under
PBS

Root on Linux; Admin
on Windows

No Yes

pbsfs Show or manipulate PBS fair-
share usage data

Any Yes No

pbsnodes Query PBS host or vnode status,
mark hosts free or offline, change
the comment for a host, or output
vnode information

Result depends on per-
mission

Yes No

pbsrun General-purpose wrapper script
for mpirun

Root or PBS adminis-
trator only

No No

pbsrun_unwrap Unwraps mpirun, reversing
pbsrun_wrap

Root on Linux No No

pbsrun_wrap General-purpose script for wrap-
ping mpirun in pbsrun

Root on Linux No No

pbs_account For Windows. Manage PBS ser-
vice account

Admin on Windows No No

pbs_attach Attaches a session ID to a PBS
job

Root, Admin, or job
owner

Yes Yes

pbs_comm Starts the PBS communication
daemon

Root on Linux No No

pbs_dataservice Start, stop, or check the status of
PBS data service

Root on Linux No No
RG-22 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
pbs_ds_password Sets or changes data service user
account or its password

Root on Linux; Admin
on Windows

No No

pbs_hostn Reports hostname and network
address(es)

Any No No

pbs_idled Runs PBS daemon that monitors
the console and informs
pbs_mom of idle time

Root or PBS adminis-
trator only

No No

pbs_iff Tests authentication with the
server

Any; useful only to root Yes No

pbs_interactive For Windows. Register, unregis-
ter, or get the version of
PBS_INTERACTIVE service

Administrator only No No

pbs_login Caches encrypted user password
for authentication

Any No, for PBS
service
account

Yes, for job
submitters

No

pbs_mkdirs For Windows. Create, or fix the
permissions of, the directories
and files used by PBS

PBS administrator only No No

pbs_mom Runs the PBS job monitoring and
execution daemon

Root on Linux; Admin
on Windows

No No

pbs_mpihp Runs an MPI application in a
PBS job with HP MPI

Any Yes Yes

pbs_mpirun Runs MPI programs under PBS
with MPICH

Any Yes Yes

pbs_probe Deprecated. Reports PBS diag-
nostic information and fixes per-
mission errors

Root or PBS adminis-
trator only

No No

pbs_python Python interpreter for debugging
a hook script from the command
line

Any No No

pbs_ralter Modifies an existing advance,
standing, or job-specific reserva-
tion

Job owner or PBS
administrator

Yes No

pbs_rdel Deletes a PBS advance, standing,
or job-specific reservation

Any Yes No

Table 2-1: PBS Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?
PBS Professional 2022.1 Reference Guide RG-23

Chapter 2 PBS Commands
pbs_release_nodes Releases sister hosts or vnodes
assigned to a PBS job

Job owner, PBS Man-
ager, Operator, admin-
istrator, root on Linux,
Admin on Windows

Yes Yes

pbs_rstat Shows status of PBS advance,
standing, or job-specific reserva-
tions

Any Yes No

pbs_rsub Creates a PBS advance, standing,
or job-specific reservation

Any Yes No

pbs_sched Runs a PBS scheduler Root on Linux No No

pbs_server Starts a PBS batch server Root on Linux No No

pbs_snapshot Linux only. Captures PBS work-
load and configuration data

Root on Linux Yes No

pbs_tclsh Deprecated. TCL shell with
TCL-wrapped PBS API

Any No No

pbs_tmrsh TM-enabled replacement for
rsh/ssh for use by MPI imple-
mentations

Any No Yes

pbs_topologyinfo Reports topological information Root or Windows
administrator only

No No

pbs_wish Deprecated. TK window shell
with TCL-wrapped PBS API

Any No No

printjob Prints job information Root or Windows
Administrator only

No No

qalter Alters a PBS job Any Yes No

qdel Deletes PBS jobs Any Yes No

qdisable Prevents a queue from accepting
jobs

Manager or Operator
only

Yes No

qenable Allows a queue to accept jobs Manager or Operator
only

Yes No

qhold Holds PBS batch jobs Some holds can be set
by Operator, Manager,
root, or administrator
only

Yes No

qmgr Administrator's command inter-
face for managing PBS

Any Yes No

Table 2-1: PBS Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?
RG-24 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
qmove Moves a PBS job from one queue
to another

Any; managers and
operators can move
jobs in some cases
where unprivileged
users cannot

Yes No

qmsg Writes message string into one or
more job output files

Any Yes No

qorder Swaps queue positions of two
PBS jobs

Any Yes No

qrerun Requeues a PBS job Manager or Operator
only

Yes No

qrls Releases holds on PBS jobs Some holds can be
released by Operator,
Manager, root, or
administrator only

Yes No

qrun Runs a PBS job immediately Operator or Manager
only

Yes No

qsig Selects specified PBS jobs Any Yes No

qsig Send signal to PBS job Operator or Manager
required to send
admin-suspend,
admin-resume, sus-
pend, and resume.
Any privilege for other
signals.

Yes Yes

qstart Turns on scheduling or routing
for the jobs in a PBS queue

Operator or Manager
only

Yes No

qstat Displays status of PBS jobs,
queues, or servers

Result depends on per-
mission

Yes No

qstop Prevents PBS jobs in the speci-
fied queue from being scheduled
or routed

Operator or Manager
only

Yes No

qsub Submits a job to PBS Any Yes No

qterm Terminates one or both PBS serv-
ers, and optionally terminates
scheduler and/or MoMs

Operator or Manager
only

Yes No

tracejob Extracts and prints log messages
for a PBS job

Root or PBS adminis-
trator only

No No

win_postinstall.py For Windows. Configures PBS
services

Administrator No No

Table 2-1: PBS Commands

Command Action
Permission
Required

Server
Must Be

Running?

MoM
Must Be

Running?
PBS Professional 2022.1 Reference Guide RG-25

Chapter 2 PBS Commands
2.2.2 Windows Requirements

Under Windows, use double quotes when specifying arguments to PBS commands.
RG-26 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.3 mpiexec

Runs MPI programs under PBS on Linux

2.3.1 Synopsis

mpiexec

mpiexec --version

2.3.2 Description

The PBS mpiexec command provides the standard mpiexec interface on a system running supported versions of HPE
MPI. If executed on a different system, it will assume it was invoked by mistake. In this case it will use the value of
PBS_O_PATH to search for the correct mpiexec. If one is found, the PBS mpiexec will exec it.

The PBS mpiexec calls the HPE mpirun(1).

It is transparent to the user; MPI jobs submitted outside of PBS run as they would normally. MPI jobs can be launched
across multiple HPE systems. PBS will manage, track, and cleanly terminate multi-host MPI jobs. PBS users can run an
MPI job within a specific partition.

If CSA has been configured and enabled, PBS will collect accounting information on all tasks launched by an MPI job.
CSA information will be associated with the PBS job ID that invoked it, on each execution host.

If the PBS_MPI_DEBUG environment variable's value has a nonzero length, PBS writes debugging information to stan-
dard output.

2.3.3 Usage

The PBS mpiexec command presents the mpiexec interface described in section "4.1 Portable MPI Process Startup"
of the "MPI-2: Extensions to the Message-Passing Interface" document in http://www.mpifo-
rum.org/docs/mpi-20-html/node42.htm

2.3.4 Options

--version
The mpiexec command returns its PBS version information and exits. This option can only be used alone.

2.3.5 Requirements

• System running a supported version of HPE MPI.

• PBS uses HPE's mpirun(1) command to launch MPI jobs. HPE's mpirun must be in the standard location.

• The location of pbs_attach() on each vnode of a multi-vnode MPI job must be the same as it is on the primary
execution host vnode.

• In order to run multihost jobs, the HPE Array Services must be correctly configured. HPE systems communicating
via HPE's Array Services must all use the same version of the sgi-arraysvcs package. HPE systems communi-
cating via HPE's Array Services must have been configured to interoperate with each other using the default array.
See HPE's array_services(5) man page.
PBS Professional 2022.1 Reference Guide RG-27

Chapter 2 PBS Commands
2.3.6 Environment Variables

PBS_ENVIRONMENT
The PBS_ENVIRONMENT environment variable is used to determine whether mpiexec is being called from
within a PBS job.

PBS_MPI_DEBUG
The PBS mpiexec checks the PBS_MPI_DEBUG environment variable. If this variable has a nonzero
length, debugging information is written.

PBS_O_PATH
The PBS mpiexec uses the value of PBS_O_PATH to search for the correct mpiexec if it was invoked by
mistake.

2.3.7 Path

PBS' mpiexec is located in PBS_EXEC/bin/mpiexec.

2.3.8 See Also

The PBS Professional Administrator's Guide, "pbs_attach” on page 56

HPE man pages: HPE's mpirun(1), HPE's mpiexec_mpt(1), HPE's array_services(5)
RG-28 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.4 pbs

Start, stop, restart, or get the PIDs of PBS daemons

2.4.1 Synopsis

pbs [start | stop | restart | status]

2.4.2 Description

The pbs command starts, stops or restarts all PBS daemons on the local machine, or reports the PIDs of all daemons
when given the status argument. Does not affect other hosts.

You can start, stop, restart, or status the PBS daemons using the systemctl command; see “Starting & Stopping PBS
on Linux” on page 141 in the PBS Professional Installation & Upgrade Guide.

2.4.2.1 Caveats

This command operates only on daemons that are marked as active in pbs.conf. For example, if PBS_START_MOM
is set to 0 in the local pbs.conf, this command will not operate on pbs_mom, and will not start, stop, or restart
pbs_mom.

This command is typically placed in /etc/init.d so that PBS starts up automatically.

2.4.2.2 Required Privilege

You need root privilege to use this command to start, stop, or restart PBS daemons.

A non-root user can use this command to get the PIDs of PBS daemons.

2.4.3 Arguments

restart
All daemons on the local machine are stopped, then they are restarted. PBS reports the name of the license
server and the number and type of licenses available.

start
Each daemon on the local machine is started. PBS reports the number and type of licenses available, as well as
the name of the license server. Any running jobs are killed.

status
PBS reports the PID of each daemon on the local machine.

stop
Each daemon on the local machine is stopped, and its PID is reported.

2.4.4 See Also

The PBS Professional Administrator's Guide, "pbs_comm” on page 58, "pbs_mom” on page 71, "pbs_sched” on
page 105, "pbs_server” on page 107
PBS Professional 2022.1 Reference Guide RG-29

Chapter 2 PBS Commands
2.5 pbsdsh

Distributes tasks to vnodes under PBS

2.5.1 Synopsis

pbsdsh [-c <copies>] [-s] [-v] [-o] -- <program> [<program args>]

pbsdsh [-n <vnode index>] [-s] [-v] [-o] -- <program >[<program args>]

pbsdsh --version

2.5.2 Description of pbsdsh Command

The pbsdsh command allows you to distribute and execute a task on each of the vnodes assigned to your job by execut-
ing (spawning) the application on each vnode. The pbsdsh command uses the PBS Task Manager, or TM, to distribute
the program on the allocated vnodes.

When run without the -c or the -n option, pbsdsh will spawn the program on all vnodes allocated to the PBS job. The
spawns take place concurrently; all execute at (about) the same time.

Note that the double dash must come after the options and before the program and arguments. The double dash is only
required for Linux.

The pbsdsh command runs one task for each line in the $PBS_NODEFILE. Each MPI rank gets a single line in the
$PBS_NODEFILE, so if you are running multiple MPI ranks on the same host, you still get multiple pbsdsh tasks on
that host.

2.5.2.1 Example

The following example shows the pbsdsh command inside of a PBS batch job. The options indicate that the user wants
pbsdsh to run the myapp program with one argument (app-arg1) on all four vnodes allocated to the job (i.e. the
default behavior).

#!/bin/sh

#PBS -l select=4:ncpus=1

#PBS -l walltime=1:00:00

pbsdsh ./myapp app-arg1

2.5.3 Options to pbsdsh Command

-c <copies>
The program is spawned copies times on the vnodes allocated, one per vnode, unless copies is greater than the
number of vnodes. If copies is greater than the number of vnodes, it wraps around, running multiple instances
on some vnodes. This option is mutually exclusive with -n.

-n <vnode index>
The program is spawned only on a single vnode, which is the vnode index-th vnode allocated. This option is
mutually exclusive with -c.

-o
No obit request is made for spawned tasks. The program does not wait for the tasks to finish.
RG-30 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-s
The program is run in turn on each vnode, one after the other.

-v
Produces verbose output about error conditions and task exit status.

--version
The pbsdsh command returns its PBS version information and exits. This option can only be used alone

2.5.4 Operands

program
The first operand, program, is the program to execute. The double dash must precede program under Linux.

program args
Additional operands, program args, are passed as arguments to the program.

2.5.5 Standard Error

The pbsdsh command writes a diagnostic message to standard error for each error occurrence.

2.5.6 Caveats

The pbsdsh command does not check for host availability. This can lead to the following problems:

• If you run pbsdsh while one of the hosts is down, pbsdsh enters an infinite loop

• If you restart the primary execution host while pbsdsh is running, pbsdsh exits with an error because it loses con-
nection with MoM on the primary

• Starting pbsdsh right after a host restart may result in an error on task spawn because the task can be sent to the
host before the host rejoins the job (and receives ports through which it should communicate)

2.5.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "qsub” on page 216, "TM Library Rou-
tines" on page 95 in the PBS Professional Programmer’s Guide
PBS Professional 2022.1 Reference Guide RG-31

Chapter 2 PBS Commands
2.6 pbsfs

Show or manipulate PBS fairshare usage data

2.6.1 Synopsis

Showing usage data:

pbsfs [-c <entity1> <entity2>] [-g <entity>] [-I <scheduler name>] [-p] [-t]

Manipulating usage data:

pbsfs [-d] [-e] [-I <scheduler name>] [-s <entity> <usage value>]

Printing version:

pbsfs --version

2.6.2 Description

You can use the pbsfs command to print or manipulate a PBS scheduler's fairshare usage data. You can print the usage
data in various formats, described below. Changes made using pbsfs take effect in the next scheduling cycle; you do
not need to restart or HUP a scheduler for changes to take effect.

We recommend that if you use the options that manipulate usage data, you should do this when a scheduler is not sched-
uling jobs, because scheduling while changing fairshare usage data may give unwanted results.

2.6.2.1 Prerequisites

The server must be running in order to use the pbsfs command.

2.6.2.2 Permissions

You must be root to run the pbsfs command; if not, it will print the error message, "Unable to access fair-
share data".

2.6.3 Options to pbsfs

You can safely use the following options while jobs are being scheduled:

(no options)
Same as pbsfs -p.

-c <entity1> <entity2>
Compares two fairshare entities.

-g <entity>
Prints a detailed listing for the specified entity, including the path from the root of the tree to the entity.

-I <scheduler name>
Specifies name of scheduler whose data is to be manipulated or shown. Required for multischeds; optional for
default scheduler. Name of default scheduler is "default". If not specified, pbsfs operates on default sched-
uler.
RG-32 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-p
Prints the fairshare tree as a table, showing for each internal and leaf vertex the group ID of the vertex's parent,
group ID of the vertex, vertex shares, vertex usage, and percent of shares allotted to the vertex.

-t
Prints the fairshare tree in a hierarchical format.

--version
The pbsfs command returns its PBS version information and exits. This option can only be used alone.

It is not recommended to be scheduling jobs when you use the following options:

-d
Decays the fairshare tree by the amount specified in the fairshare_decay_factor scheduler parameter.

-e
Trims fairshare tree to just the entities in the resource_group file. Unknown entities and their usage are
deleted; as a result the unknown group has no usage and no children.

-s <entity> <usage value>
Sets entity's usage value to usage value. Editing a non-leaf entity is ignored. All non-leaf entity usage values
are calculated each time you use the pbsfs command to make changes.

2.6.3.1 Output Formats for pbsfs

The pbsfs command can print output in three different formats:

pbsfs -g <entity>

Prints a detailed listing for the specified entity. Example:

pbsfs –g pbsuser3

fairshare entity: pbsuser3

Resgroup: 20

cresgroup: 22

Shares: 40

Percentage: 24.000000%

fairshare_tree_usage: 0.832973

usage: 1000 (cput)

usage/perc: 4167

Path from root:

TREEROOT : 0 1201 / 1.000 = 1201

group2 : 20 1001 / 0.600 = 1668

pbsuser3 : 22 1000 / 0.240 = 4167
PBS Professional 2022.1 Reference Guide RG-33

Chapter 2 PBS Commands
pbsfs,

pbsfs -p

Prints the entire tree as a table, with data in columns. Example:

pbsfs

Fairshare usage units are in: cput

TREEROOT : Grp: -1 cgrp: 0 Shares: -1 Usage: 1201 Perc: 100.000%

group2 : Grp: 0 cgrp: 20 Shares: 60 Usage: 1001 Perc: 60.000%

pbsuser3 : Grp: 20 cgrp: 22 Shares: 40 Usage: 1000 Perc: 24.000%

pbsuser2 : Grp: 20 cgrp: 21 Shares: 60 Usage: 1 Perc: 36.000%

group1 : Grp: 0 cgrp: 10 Shares: 40 Usage: 201 Perc: 40.000%

pbsuser1 : Grp: 10 cgrp: 12 Shares: 50 Usage: 100 Perc: 20.000%

pbsuser : Grp: 10 cgrp: 11 Shares: 50 Usage: 100 Perc: 20.000%

unknown : Grp: 0 cgrp: 1 Shares: 0 Usage: 1 Perc: 0.000%

pbsfs -t

Prints the entire tree as a tree, showing group-child relationships. Example:

pbsfs –t

 TREEROOT(0)

 group2(20)

 pbsuser3(22)

 pbsuser2(21)

 group1(10)

 pbsuser1(12)

 pbsuser(11)

 unknown(1)

2.6.3.2 Data Output by pbsfs

cresgroup, cgrp
Group ID of the entity

fairshare entity
The specified fairshare tree entity

fairshare usage units
The resource for which a scheduler accumulates usage for fairshare calculations. This defaults to cput (CPU
seconds) but can be set in a scheduler's configuration file.

fairshare_tree_usage
The entity's effective usage. See "Computing Effective Usage (fairshare_tree_usage)" on page 144 in the PBS
Professional Administrator’s Guide.

Path from root
The path from the root of the tree to the entity. A scheduler follows this path when comparing priority between
two entities.

Percentage, perc
The percentage of the shares in the tree allotted to the entity, computed as fairshare_perc. See "Computing
Target Usage for Each Vertex (fairshare_perc)" on page 144 in the PBS Professional Administrator’s Guide.

Resgroup, Grp
Group ID of the entity's parent group
RG-34 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Shares
The number of shares allotted to the entity

usage
The amount of usage by the entity

usage/perc
The value a scheduler uses to the pick which entity has priority over another. The smaller the number the higher
the priority.

2.6.4 See Also

"Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.
PBS Professional 2022.1 Reference Guide RG-35

Chapter 2 PBS Commands
2.7 pbsnodes

Query PBS host or vnode status, mark hosts free or offline, change the comment for a host, or output vnode information

2.7.1 Synopsis

pbsnodes [-o | -r] [-s <server name>] [-C <comment>] <hostname> [<hostname> ...]

pbsnodes [-l] [-s <server name>]

pbsnodes -v <vnode> [<vnode> ...] [-s <server name>]

pbsnodes -a[v] [-S[j][L]] [-F json|dsv [-D <delimiter>]] [- s <server name>]

pbsnodes [-H] [-S[j][L]] [-F json|dsv [-D <delimiter>]] <hostname> [<hostname> ...]

pbsnodes --version

2.7.2 Description

The pbsnodes command is used to query the status of hosts or vnodes, to mark hosts FREE or OFFLINE, to edit a
host's comment attribute, or to output vnode information. The pbsnodes command obtains host information by send-
ing a request to the PBS server.

2.7.2.1 Using pbsnodes

To list all vnodes:

pbsnodes -av

To print the status of the specified host or hosts, run pbsnodes with no options (except the -s option) and with a list of
hosts.

To print the command usage, run pbsnodes with no options and without a list of hosts.

To remove a vnode from the scheduling pool, mark it OFFLINE. If it is marked DOWN, when the server next queries
the MoM, and can connect, the vnode will be marked FREE.

To offline a single vnode in a multi-vnoded system, use:

qmgr -c "set node <vnode name> state=offline"

2.7.2.2 Output

The order in which hosts or vnodes are listed in the output of the pbsnodes command is undefined. Do not rely on out-
put being ordered.

If you print attributes, pbsnodes prints out only those attributes which are not at default values.

2.7.2.3 Permissions

PBS Manager or Operator privilege is required to execute pbsnodes with the -o or -r options, to view custom
resources which have been created to be invisible to users, and to see some output such as PBS version.
RG-36 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.7.3 Options to pbsnodes

(no options)

If neither options nor a host list is given, the pbsnodes command prints usage syntax.

-a
Lists all hosts and all their attributes (available and used.)

When used with the -v option, lists all vnodes.

When listing a host with multiple vnodes:

The output for the jobs attribute lists all the jobs on all the vnodes on that host. Jobs that run on more than
one vnode will appear once for each vnode they run on.

For consumable resources, the output for each resource is the sum of that resource across all vnodes on that
host.

For all other resources, e.g. string and Boolean, if the value of that resource is the same on all vnodes on
that host, the value is returned. Otherwise the output is the literal string "<various>".

-C <comment>
Sets the comment attribute for the specified host(s) to the value of comment. Comments containing spaces
must be quoted. The comment string is limited to 80 characters. Usage:

pbsnodes -C <comment> <hostname> [<hostname> ...]

To set the comment for a vnode:

qmgr -c "s n <vnode name> comment=<comment>"

-F dsv [-D <delimiter>]
Prints output in delimiter-separated value format. Optional delimiter specification. Default delimiter is vertical
bar ("|").

-F json
Prints output in JSON format.

-H <hostname> [<hostname> ...]
Prints all non-default-valued attributes for specified hosts and all vnodes on specified hosts.
PBS Professional 2022.1 Reference Guide RG-37

Chapter 2 PBS Commands
-j
Displays the following job-related headers for specified vnodes:

Note that nmics is a custom resource that must be created by the administrator if you want it displayed here.

Each subjob is treated as a unique job.

-L
Displays output with no restrictions on column width.

-l
Lists all hosts marked as DOWN or OFFLINE. Each such host's state and comment attribute (if set) is listed.
If a host also has state STATE-UNKNOWN, it is listed. For hosts with multiple vnodes, only hosts where all
vnodes are marked as DOWN or OFFLINE are listed.

-o <hostname> [<hostname> ...]
Marks listed hosts as OFFLINE even if currently in use. This is different from being marked DOWN. A host
that is marked OFFLINE continues to execute the jobs already on it, but is removed from the scheduling pool
(no more jobs are scheduled on it.)

For hosts with multiple vnodes, pbsnodes operates on a host and all of its vnodes, where the hostname is
resources_available.host, which is the name of the parent vnode.

To offline all vnodes on a multi-vnoded machine:

pbsnodes -o <name of parent vnode>

To offline a single vnode on a multi-vnoded system, use:

Qmgr: qmgr -c "set node <vnode name> state=offline"

Requires PBS Manager or Operator privilege.

-r <hostname> [<hostname> ...]
Clears OFFLINE from listed hosts.

Table 2-2: Output for -j Option

Header Width Description

vnode 15 Vnode name

state 15 Vnode state

njobs 6 Number of jobs on vnode

run 5 Number of running jobs at vnode

susp 6 Number of suspended jobs at vnode

mem f/t 12 Vnode memory free/total

ncpus f/t 7 Number of CPUs at vnode free/total

nmics f/t 7 Number of MICs free/total

ngpus f/t 7 Number of GPUs at vnode free/total

jobs No restriction List of job IDs on vnode
RG-38 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-S
Displays the following vnode information:

Note that nmics and OS are custom resources that must be created by the administrator if you want their values
displayed here.

-s <server name>
Specifies the PBS server to which to connect.

-v [<vnode> [<vnode> ...]]
Lists all non-default-valued attributes for each specified vnode.

With no arguments, prints one entry for each vnode in the PBS complex.

With one or more vnodes specified, prints one entry for each specified vnode.

When used with -a, lists all vnodes.

--version
The pbsnodes command returns its PBS version information and exits. This option can only be used alone.

2.7.4 Operands

<server name>
Specifies the server to which to connect. Default: default server.

<hostname> [<hostname> ...]
Specifies the host(s) to be queried or operated on.

<vnode> [<vnode> ...]
Specifies the vnode(s) to be queried or operated on.

Table 2-3: Output for -S Option

Header Width Description

name 15 Vnode name

state 15 Vnode state

OS 8 Value of OS custom resource, if any

hardware 8 Value of hardware custom resource, if any

host 15 Hostname

queue 10 Value of vnode's queue attribute

ncpus 7 Number of CPUs at vnode

nmics 7 Number of MICs at vnode

mem 8 Vnode memory

ngpus 7 Number of GPUs at vnode

comment No restriction Vnode comment
PBS Professional 2022.1 Reference Guide RG-39

Chapter 2 PBS Commands
2.7.5 Exit Status

Zero
Success

Greater than zero
• Incorrect operands are given

• pbsnodes cannot connect to the server

• There is an error querying the server for the vnodes

2.7.6 See Also

The PBS Professional Administrator's Guide, "qmgr” on page 152
RG-40 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.8 pbsrun

General-purpose wrapper script for mpirun

2.8.1 Synopsis

pbsrun

pbsrun --version

2.8.2 Description

pbsrun is a wrapper script for any of several versions of mpirun. This provides a user-transparent way for PBS to
control jobs which call mpirun in their job scripts. The pbsrun_wrap script instantiates pbsrun so that the wrapper
script for the specific version of mpirun being used has the same name as that version of mpirun.

If the mpirun wrapper script is run inside a PBS job, it translates any mpirun call of the form:

mpirun [<options>] <executable> [<args>]

into

mpirun [<options>] pbs_attach [<special options to pbs_attach>] <executable> [<args>]

where special options refers to any option needed by pbs_attach to do its job (e.g. -j $PBS_JOBID).

If the wrapper script is executed outside of PBS, a warning is issued about "not running under PBS", but it proceeds as if
the actual program had been called in standalone fashion.

The pbsrun wrapper script is not meant to be executed directly; instead it is instantiated by pbsrun_wrap. It is cop-
ied to the target directory and renamed "pbsrun.<mpirun version/flavor>" where mpirun version/flavor is a
string that identifies the mpirun version being wrapped (e.g. ch_gm).

The pbsrun script, if executed inside a PBS job, runs an initialization script, named
$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.init, then parses mpirun-like arguments from
the command line, sorting which options and option values to retain, to ignore, or to transform, before calling the actual
mpirun script with a "pbs_attach" prefixed to the executable. The actual mpirun to call is found by tracing the link
pointed to by $PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.link.

For all of the wrapped MPIs, the maximum number of ranks that can be launched is the number of entries in
$PBS_NODEFILE.

The wrapped MPIs are:

• MPICH-GM's mpirun (mpirun.ch_gm) with rsh/ssh (The wrapper is deprecated as of 14.2.1)

• MPICH-MX's mpirun (mpirun.ch_mx) with rsh/ssh (The wrapper is deprecated as of 14.2.1)

• MPICH-GM's mpirun (mpirun.mpd) with MPD (The wrapper is deprecated as of 14.2.1)

• MPICH-MX's mpirun (mpirun.mpd) with MPD (The wrapper is deprecated as of 14.2.1)

• MPICH2's mpirun

• Intel MPI's mpirun (The wrapper is deprecated as of 13.0)

• MVAPICH1's mpirun (The wrapper is deprecated as of 14.2.1)

• MVAPICH2's mpiexec
PBS Professional 2022.1 Reference Guide RG-41

Chapter 2 PBS Commands
2.8.3 Options

--version
The pbsrun command returns its PBS version information and exits. This option can only be used alone.

2.8.4 Initialization Script

The initialization script, called $PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.init, where
mpirun version/flavor reflects the mpirun flavor/version being wrapped, can be modified by an administrator to cus-
tomize against the local flavor/version of mpirun being wrapped.

Inside this sourced init script, 8 variables are set:

options_to_retain="-optA -optB <val> -optC <val1> val2> ..."

options_to_ignore="-optD -optE <n> -optF <val1> val2> ..."

options_to_transform="-optG -optH <val> -optI <val1> val2> ..."

options_to_fail="-optY -optZ ..."

options_to_configfile="-optX <val> ..."

options_with_another_form="-optW <val> ..."

pbs_attach=pbs_attach

options_to_pbs_attach="-J $PBS_JOBID"

2.8.4.1 Initialization Script Options

options_to_retain
Space-separated list of options and values that pbsrun.<mpirun version/flavor> passes on to the
actual mpirun call. Options must begin with "-" or "--", and option arguments must be specified by some arbi-
trary name with left and right arrows, as in "<val1>".

options_to_ignore
Space-separated list of options and values that pbsrun.<mpirun version/flavor> does not pass on to
the actual mpirun call. Options must begin with "-" or "--", and option arguments must be specified by arbi-
trary names with left and right arrows, as in "<n>".

options_to_transform
Space-separated list of options and values that pbsrun modifies before passing on to the actual mpirun call.

options_to_fail
Space-separated list of options that will cause pbsrun to exit upon encountering a match.

options_to_configfile
Single option and value that refers to the name of the configuration file containing command line segments
found in certain versions of mpirun.

options_with_another_form
Space-separated list of options and values that can be found in options_to_retain, options_to_ignore, or
options_to_transform, whose syntax has an alternate, unsupported form.

pbs_attach
Path to pbs_attach, which is called before the executable argument of mpirun.

options_to_pbs_attach
Special options to pass to the pbs_attach call. You may pass variable references (e.g. $PBS_JOBID) and
they are substituted by pbsrun to actual values.
RG-42 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
If pbsrun encounters any option not found in options_to_retain, options_to_ignore, and options_to_transform, it is
flagged as an error.

These functions are created inside the init script. These can be modified by the PBS administrator.

transform_action () {

passed actual values of $options_to_transform

args=$*

}

boot_action () {

mpirun_location=$1

}

evaluate_options_action () {

passed actual values of transformed options

args=$*

}

configfile_cmdline_action () {

args=$*

}

end_action () {

mpirun_location=$1

}

transform_action()
The pbsrun.<mpirun version/flavor> wrapper script invokes the function transform_action()
(called once on each matched item and value) with actual options and values received matching one of the
options_to_transform. The function returns a string to pass on to the actual mpirun call.

boot_action()
Performs any initialization tasks needed before running the actual mpirun call. For instance, GM's MPD
requires the MPD daemons to be user-started first. This function is called by the pbsrun.<mpirun ver-
sion/flavor> script with the location of actual mpirun passed as the first argument. Also, the
pbsrun.<mpirun version/flavor> checks for the exit value of this function to determine whether or
not to progress to the next step.

evaluate_options_action()
Called with the actual options and values that resulted after consulting options_to_retain, options_to_ignore,
options_to_transform, and executing transform_action(). This provides one more chance for the script writer
to evaluate all the options and values in general, and make any necessary adjustments, before passing them on to
the actual mpirun call. For instance, this function can specify what the default value is for a missing -np
option.
PBS Professional 2022.1 Reference Guide RG-43

Chapter 2 PBS Commands
configfile_cmdline_action()
Returns the actual options and values to be put in before the option_to_configfile parameter.

configfile_firstline_action()
Returns the item that is put in the first line of the configuration file specified in the option_to_configfile param-
eter.

end_action()
Called by pbsrun.<mpirun version/flavor> at the end of execution. It undoes any action done by
transform_action(), such as cleanup of temporary files. It is also called when pbsrun.<mpirun ver-
sion/flavor> is prematurely killed. This function is called with the location of actual mpirun passed as
first argument.

The actual mpirun program to call is the path pointed to by $PBS_EXEC/lib/MPI/pbsrun.<mpirun ver-
sion/flavor>.link.

2.8.4.2 Modifying *.init Scripts

In order for administrators to modify *.init scripts without breaking package verification in RPM, master copies of
the initialization scripts are named *.init.in. pbsrun_wrap instantiates the *.init.in files as *.init. For
instance, $PBS_EXEC/lib/MPI/pbsrun.mpich2.init.in is the master copy, and pbsrun_wrap instantiates it
as $PBS_EXEC/lib/MPI/pbsrun.mpich2.init. pbsrun_unwrap takes care of removing the *.init files.

2.8.5 Versions/Flavors of mpirun

2.8.5.1 MPICH-GM mpirun (mpirun.ch_gm) with rsh/ssh:
pbsrun.ch_gm

2.8.5.1.i Syntax

pbsrun.ch_gm <options> <executable> <arg1> <arg2> ... <argn>

Deprecated. The PBS wrapper script to MPICH-GM's mpirun (mpirun.ch_gm) with rsh/ssh process startup
method is named pbsrun.ch_gm.

If executed inside a PBS job, this allows for PBS to track all MPICH-GM processes started by rsh/ssh so that PBS can
perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_gm were used.

2.8.5.1.ii Options Handling

If executed inside a PBS job script, all mpirun.ch_gm options given are passed on to the actual mpirun call with
these exceptions:

-machinefile <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.
RG-44 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.8.5.1.iii Wrap/Unwrap

To wrap MPICH-GM's mpirun script:

pbsrun_wrap [MPICH-GM_BIN_PATH]/mpirun.ch_gm pbsrun.ch_gm

To unwrap MPICH-GM's mpirun script:

pbsrun_unwrap pbsrun.ch_gm

2.8.5.2 MPICH-MX mpirun (mpirun.ch_mx) with rsh/ssh:

pbsrun.ch_mx

2.8.5.2.i Syntax

pbsrun.ch_mx <options> <executable> <arg1> <arg2> ... <argn>

The wrapper is deprecated. The PBS wrapper script to MPICH-MX's mpirun (mpirun.ch_gm) with rsh/ssh pro-
cess startup method is named pbsrun.ch_mx.

If executed inside a PBS job, this allows PBS to track all MPICH-MX processes started by rsh/ssh so that PBS can
perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_mx were used.

2.8.5.2.ii Options Handling

If executed inside a PBS job script, all mpirun.ch_gm options given are passed on to the actual mpirun call with
some exceptions:

-machinefile <file>
The file argument contents is ignored and replaced by the contents of $PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.

2.8.5.2.iii Wrap/Unwrap

To wrap MPICH-MX's mpirun script:

pbsrun_wrap [MPICH-MX_BIN_PATH]/mpirun.ch_mx pbsrun.ch_mx

To unwrap MPICH-MX's mpirun script:

pbsrun_unwrap pbsrun.ch_mx

2.8.5.3 MPICH-GM mpirun (mpirun.mpd) with MPD: pbsrun.gm_mpd

2.8.5.3.i Syntax

pbsrun.gm_mpd <options> <executable> <arg1> <arg2> ... <argn>

The wrapper is deprecated. The PBS wrapper script to MPICH-GM's mpirun (mpirun.ch_gm) with MPD process
startup method is called pbsrun.gm_mpd.

If executed inside a PBS job, this allows PBS to track all MPICH-GM processes started by the MPD daemons so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_gm with MPD were used.
PBS Professional 2022.1 Reference Guide RG-45

Chapter 2 PBS Commands
2.8.5.3.ii Options Handling

If executed inside a PBS job script, all mpirun.ch_gm with MPD options given are passed on to the actual mpirun
call with these exceptions:

-m <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.

2.8.5.3.iii Startup/Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either rsh or ssh based
on the value of the environment variable RSHCOMMAND. The default is rsh.

The script also takes care of shutting down the MPD daemons at the end of a run.

2.8.5.3.iv Wrap/Unwrap

To wrap MPICH-GM's mpirun script with MPD:

pbsrun_wrap [MPICH-GM_BIN_PATH]/mpirun.mpd pbsrun.gm_mpd

To unwrap MPICH-GM's mpirun script with MPD:

pbsrun_unwrap pbsrun.gm_mpd

2.8.5.4 MPICH-MX mpirun (mpirun.mpd) with MPD: pbsrun.mx_mpd

2.8.5.4.i Syntax

pbsrun.mx_mpd <options> <executable> <arg1> <arg2> ... <argn>

The wrapper is deprecated. The PBS wrapper script to MPICH-MX's mpirun (mpirun.ch_mx) with MPD process
startup method is called pbsrun.mx_mpd.

If executed inside a PBS job, this allows PBS to track all MPICH-MX processes started by the MPD daemons so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun.ch_mx with MPD were used.

2.8.5.4.ii Options Handling

If executed inside a PBS job script, all mpirun.mx_mpd with MPD options given are passed on to the actual mpirun
call with these exceptions:

-m <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to the user to
make sure only PBS hosts are specified in the process group file; MPI processes spawned are not guaranteed to
be under the control of PBS.
RG-46 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.8.5.4.iii Startup/Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either rsh or ssh , based
on the value of the environment variable RSHCOMMAND. The default is rsh.

The script also takes care of shutting down the MPD daemons at the end of a run.

2.8.5.4.iv Wrap/Unwrap

To wrap MPICH-MX's mpirun script with MPD:

pbsrun_wrap [MPICH-MX_BIN_PATH]/mpirun.mpd pbsrun.mx_mpd

To unwrap MPICH-MX's mpirun script with MPD:

pbsrun_unwrap pbsrun.mx_mpd

2.8.5.5 MPICH2 mpirun: pbsrun.mpich2

2.8.5.5.i Syntax

pbsrun.mpich2 [<global args>] [<local args>] <executable> [<args>] [: [<local args>] <executable> [<args>]]

- or -

pbsrun.mpich2 -configfile <configfile>

where configfile contains command line segments as lines:

[local args] executable1 [args]

[local args] executable2 [args]

[local args] executable3 [args]

The PBS wrapper script to MPICH2's mpirun is called pbsrun.mpich2.

If executed inside a PBS job, this allows PBS to track all MPICH2 processes so that PBS can perform accounting and
have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard MPICH2's mpirun were used.

2.8.5.5.ii Options Handling

If executed inside a PBS job script, all MPICH2's mpirun options given are passed on to the actual mpirun call with
these exceptions:

-host and -ghost
For specifying the execution host to run on. Not passed on to the actual mpirun call.

-machinefile <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

MPICH2’s mpirun -localonly <num processes>
For specifying number of processes to run locally. Not supported. The user is advised instead to use the equiv-
alent arguments: -np <num processes> -localonly. The reason for this is that the pbsrun wrapper script
cannot handle a variable number of arguments to an option (e.g. "-localonly" has one argument and "-loca-
lonly <num processes>" has two arguments).

-np
If the user does not specify the -np option, no default value is provided by the PBS wrapper scripts. It is up to
the local mpirun to decide what the reasonable default value should be, which is usually 1.
PBS Professional 2022.1 Reference Guide RG-47

Chapter 2 PBS Commands
2.8.5.5.iii Startup/Shutdown

The script takes care of ensuring that the MPD daemons on each of the hosts listed in $PBS_NODEFILE are started. It
also takes care of ensuring that the MPD daemons have been shut down at the end of MPI job execution.

2.8.5.5.iv Wrap/Unwrap

To wrap MPICH2's mpirun script:

pbsrun_wrap [<MPICH2 BIN PATH>]/mpirun pbsrun.mpich2

To unwrap MPICH2's mpirun script:

pbsrun_unwrap pbsrun.mpich2

In the case where MPICH2 uses mpirun.py, run pbsrun_wrap on mpirun.py itself.

2.8.5.6 Intel MPI mpirun: pbsrun.intelmpi

Wrapping Intel MPI, and support for mpdboot, are deprecated.

2.8.5.6.i Syntax

pbsrun.intelmpi [<mpdboot options>] [<mpiexec options>] <executable> [<prog args>] [: [<mpiexec options>]
<executable> [<prog args>]]

- or -

pbsrun.intelmpi [<mpdboot options>] -f <configfile>

where mpdboot options are any options to pass to the mpdboot program, which is automatically called by Intel MPI's
mpirun to start MPDs, and configfile contains command line segments as lines.

The PBS wrapper script to Intel MPI's mpirun is called pbsrun.intelmpi.

If executed inside a PBS job, this allows PBS to track all Intel MPI processes so that PBS can perform accounting and
have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard Intel MPI's mpirun were used.

2.8.5.6.ii Options Handling

If executed inside a PBS job script, all of the options to the PBS interface to Intel MPI's mpirun are passed to the actual
mpirun call with these exceptions:

-host and -ghost
For specifying the execution host to run on. Not passed on to the actual mpirun call.

-machinefile <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

mpdboot options --totalnum=* and --file=*
Ignored and replaced by the number of unique entries in $PBS_NODEFILE and name of $PBS_NODEFILE
respectively.

arguments to mpdboot options --file=* and -f <mpd_hosts_file>
Replaced by $PBS_NODEFILE.

-s
If pbsrun.intelmpi is called inside a PBS job, Intel MPI's mpirun -s argument to mpdboot is not sup-
ported as this closely matches the mpirun option -s <spec> . The user can simply run a separate mpdboot
-s before calling mpirun. A warning message is issued by pbsrun.intelmpi upon encountering a -s
option telling users of the supported form.
RG-48 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-np
If the user does not specify the -np option, no default value is provided by the PBS wrap scripts. It is up to the
local mpirun to decide what the reasonable default value should be, which is usually 1.

2.8.5.6.iii Startup/Shutdown

Intel MPI's mpirun itself takes care of starting/stopping the MPD daemons. pbsrun.intelmpi always passes the
arguments -totalnum=<number of mpds to start> and -file=<mpd_hosts_file> to the actual mpirun, taking its input
from unique entries in $PBS_NODEFILE.

2.8.5.6.iv Wrap/Unwrap

To wrap Intel MPI's mpirun script:

pbsrun_wrap [INTEL_MPI_BIN_PATH]/mpirun pbsrun.intelmpi

To unwrap Intel MPI's mpirun script:

pbsrun_unwrap pbsrun.intelmpi

2.8.5.7 MVAPICH1 mpirun: pbsrun.mvapich1

2.8.5.7.i Syntax

pbsrun.mvapich1 <mpirun options> <executable> <options>

The wrapper is deprecated. The PBS wrapper script to MVAPICH1's mpirun is called pbsrun.mvapich1.

Only one executable can be specified. MVAPICH1 allows the use of InfiniBand.

If executed inside a PBS job, this allows PBS to be aware of all MVAPICH1 ranks and to track their resources, so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpirun were used.

2.8.5.7.ii Options Handling

If executed inside a PBS job script, all mpirun options given are passed on to the actual mpirun call with these excep-
tions:

-map <list>
The map option is ignored.

-exclude <list>
The exclude option is ignored.

-machinefile <file>
The machinefile option is ignored.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used.

2.8.5.7.iii Wrap/Unwrap

To wrap MVAPICH1's mpirun script:

pbsrun_wrap <path-to-actual-mpirun> pbsrun.mvapich1

To unwrap MVAPICH1's mpirun script:

pbsrun_unwrap pbsrun.mvapich1
PBS Professional 2022.1 Reference Guide RG-49

Chapter 2 PBS Commands
2.8.5.8 MVAPICH2 mpiexec: pbsrun.mvapich2

2.8.5.8.i Syntax

pbsrun.mvapich2 <mpiexec args> <executable> <executable's args> [: <mpiexec args> <executable> <executable's
args>]

The PBS wrapper script to MVAPICH2's mpiexec is called pbsrun.mvapich2.

Multiple executables can be specified using the colon notation. MVAPICH2 allows the use of InfiniBand.

If executed inside a PBS job, this allows PBS to be aware of all MVAPICH2 ranks and to track their resources, so that
PBS can perform accounting and have complete job control.

If executed outside of a PBS job, it behaves exactly as if standard mpiexec were used.

2.8.5.8.ii Options Handling

If executed inside a PBS job script, all mpiexec options given are passed on to the actual mpiexec call with these
exceptions:

-host <hostname>
The hostname argument contents are ignored.

-machinefile <file>
The file argument contents are ignored and replaced by the contents of the $PBS_NODEFILE.

2.8.5.8.iii Wrap/Unwrap

To wrap MVAPICH2's mpiexec script:

pbsrun_wrap <path-to-actual-mpiexec> pbsrun.mvapich2

To unwrap MVAPICH2's mpiexec script:

pbsrun_unwrap pbsrun.mvapich2

2.8.6 Requirements

The mpirun being wrapped must be installed and working on all the vnodes in the PBS cluster.

2.8.7 Errors

If pbsrun encounters any option not found in options_to_retain, options_to_ignore, and options_to_transform, it is
flagged as an error.

2.8.8 See Also

The PBS Professional Administrator's Guide, "pbs_attach” on page 56, "pbsrun_wrap” on page 52, "pbsrun_unwrap” on
page 51
RG-50 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.9 pbsrun_unwrap

Unwraps mpirun, reversing pbsrun_wrap

2.9.1 Synopsis

pbsrun_unwrap pbsrun.<mpirun version/flavor>

pbsrun_unwrap --version

2.9.2 Description

The pbsrun_unwrap script is used to reverse the actions of the pbsrun_wrap script.

Use pbsrun_wrap to wrap mpirun.

Using pbsrun_unwrap for Intel MPI is deprecated as of 13.0.

2.9.2.1 Syntax

pbsrun_unwrap pbsrun.<mpirun version/flavor>

For example, running the following:

pbsrun_unwrap pbsrun.ch_gm

causes the following actions:

1. Checks for a link in $PBS_EXEC/lib/MPI/pbsrun.ch_gm.link; If one exists, get the pathname it points to,
for example:

/opt/mpich-gm/bin/mpirun.ch_gm.actual

2. rm $PBS_EXEC/lib/MPI/pbsrun.mpirun.ch_gm.link

3. rm /opt/mpich-gm/bin/mpirun.ch_gm

4. rm $PBS_EXEC/bin/pbsrun.ch_gm

5. mv /opt/mpich-gm/bin/mpirun.ch_gm.actual /opt/mpich-gm/bin/mpirun.ch_gm

2.9.3 Options

--version
The pbsrun_unwrap command returns its PBS version information and exits. This option can only be used
alone.

2.9.4 See Also

The PBS Professional Administrator's Guide,"pbs_attach” on page 56, "pbsrun_wrap” on page 52
PBS Professional 2022.1 Reference Guide RG-51

Chapter 2 PBS Commands
2.10 pbsrun_wrap

General-purpose script for wrapping mpirun in pbsrun

2.10.1 Synopsis

pbsrun_wrap [-s] <path to actual mpirun> pbsrun.<mpirun version/flavor>

pbsrun_wrap --version

2.10.2 Description

The pbsrun_wrap script is used to wrap any of several versions of mpirun in pbsrun. The pbsrun_wrap script
creates a symbolic link with the same path and name as the mpirun being wrapped. This calls pbsrun, which uses
pbs_attach to give MoM control of jobs. The result is transparent to the user; when mpirun is called from inside a
PBS job, PBS can monitor and control the job, but when mpirun is called from outside of a PBS job, it behaves as it
would normally. See "pbs_attach” on page 56.

Use pbsrun_unwrap to reverse the process.

Using pbsrun_wrap for Intel MPI is deprecated as of 13.0.

Available only under Linux.

2.10.2.1 Syntax

pbsrun_wrap [-s] <path to actual mpirun> pbsrun.<mpirun version/flavor>

Any mpirun version/flavor that can be wrapped has an initialization script ending in ".init", found in
$PBS_EXEC/lib/MPI:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.init

The pbsrun_wrap script instantiates the pbsrun wrapper script as pbsrun.<mpirun version/flavor> in
the same directory where pbsrun is located, and sets up the link to actual mpirun call via the symbolic link:

$PBS_EXEC/lib/MPI/pbsrun.<mpirun version/flavor>.link

For example, running:

pbsrun_wrap /opt/mpich-gm/bin/mpirun.ch_gm pbsrun.ch_gm

causes the following actions:

1. Save original mpirun.ch_gm script:
mv /opt/mpich-gm/bin/mpirun.ch_gm /opt/mpich/gm/bin/mpirun.ch_gm.actual

2. Instantiate pbsrun wrapper script as pbsrun.ch_gm:

cp $PBS_EXEC/bin/pbsrun $PBS_EXEC/bin/pbsrun.ch_gm

3. Link "mpirun.ch_gm" to actually call "pbsrun.ch_gm":

ln -s $PBS_EXEC/bin/pbsrun.ch_gm /opt/mpich-gm/bin/mpirun.ch_gm

4. Create a link so that "pbsrun.ch_gm" calls "mpirun.ch_gm.actual":

ln -s /opt/mpich-gm/bin/mpirun.ch_gm.actual $PBS_EXEC/lib/MPI/pbsrun.ch_gm.link
RG-52 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.10.3 Options

-s
Sets the "strict_pbs" options in the various initialization scripts (e.g. pbsrun.bgl.init,
pbsrun.ch_gm.init, etc...) to 1 from the default 0. This means that the mpirun being wrapped by
pbsrun will only be executed if inside a PBS environment. Otherwise, the user gets the error:

Not running under PBS exiting since strict_pbs is enabled; execute only in PBS

--version
The pbsrun_wrap command returns its PBS version information and exits. This option can only be used
alone.

2.10.4 Requirements

The mpirun being wrapped must be installed and working on all the vnodes in the PBS complex.

2.10.5 See Also

The PBS Professional Administrator's Guide, "pbs_attach” on page 56, "pbsrun_unwrap” on page 51
PBS Professional 2022.1 Reference Guide RG-53

Chapter 2 PBS Commands
2.11 pbs_account

For Windows. Manage PBS service account

2.11.1 Synopsis

pbs_account [-a <PBS service account name>] [-c [<password>]] [--ci] [--instid <instance ID>] [-o <output path>]
[-p [<password>]] [--reg <service path>] [-s] [--unreg <service path>]

2.11.2 Description

The pbs_account command is used to manage the PBS service account. It is used to create the account, set or vali-
date the account password, add privileges to the account, and register or unregister the account with the SCM.

2.11.2.1 Permissions

This command can be run by administrators only.

2.11.2.2 Platforms

This command is available on Windows only.

2.11.2.3 Caveats

Using pbs_account --unreg and pbs_account --reg stops and restarts MoM, which can kill jobs.

2.11.3 Options

-a <account name>
Specifies service account name.

-c [<password>]
• If specified account does not exist, creates the account with the password.

• If specified account exists, validates password against it.

Gives necessary privileges to the specified account: Create Token Object, Replace Process Level Token,
Log on as a Service, and Act as Part of the Operating System

If password is not specified, user is prompted for password.

--ci
Informational only. Prints actions taken by pbs_account while creating PBS service account when opera-
tions are performed.

--instid <instance ID>
Specifies the instance ID when registering or unregistering multiple instances of a service. Example:

pbs_account --reg "C:\Program Files (x86)\PBS Pro_2\exec\sbin\pbs_mom" --instid 2 -a <username>
-p <password>

pbs_account --unreg "C:\Program Files (x86)\PBS Pro_2\exec\sbin\pbs_mom" --instid 2

-o <output path>
Prints stdout and stderr messages in specified output path.
RG-54 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-p [<password >]
Updates the PBS service account password. If no password is specified, the user is prompted for a password.

--reg <path to service>
Registers the PBS service with the SCM, instructing it to run the services under the PBS service account. path
to service must be in double quotes. Restarts MoM.

-s
Adds necessary privileges to the PBS service account. Grants the "Create Token Object", "Replace Process
Level Token", "Log On as a Service", and "Act as Part of the Operating System" privileges to PBS service
account.

--unreg <path to service>
Unregisters the PBS service with the SCM. path to service must be in double quotes. Stops MoM.

(no options)
Prints name of PBS service account, if it exists. Exit value is 0.

2.11.4 Examples

Example 2-1: To create the PBS service account:

pbs_account -c -s -p <password>

Example 2-2: To change the PBS service account:

pbs_account --reg <service path> -a <PBS service account name>

Example 2-3: To register the MoM service:

pbs_account --reg "\Program Files\PBS\exec\sbin\pbs_mom.exe" -p <password>

2.11.5 Exit Value

Zero
Upon success
PBS Professional 2022.1 Reference Guide RG-55

Chapter 2 PBS Commands
2.12 pbs_attach

Attaches a session ID to a PBS job

2.12.1 Synopsis

Linux

pbs_attach [-j <job ID>] [-m <port number>] -p <PID>

pbs_attach [-j <job ID>] [-m <port number>] [-P] [-s] <cmd> [<arg> ...]

pbs_attach --version

Windows

pbs_attach [-c <path to script>] [-j <job ID>] [-m <port number>] -p <PID>

pbs_attach [-c <path to script>] [-j <job ID>] [-m <port number>] [-P] [-s] <cmd> [<arg> ...]

pbs_attach --version

2.12.2 Description

The pbs_attach command associates the processes in a session with a PBS job by attaching the session ID to the job.
This allows PBS MoM to monitor and control those processes.

MoM uses process IDs to determine session IDs, which are put into MoM's task list (attached to the job.) All process IDs
in a session are then associated with the job.

When a command cmd is given as an operand, the pbs_attach process becomes the parent process of cmd, and the
session ID of pbs_attach is attached to the job.

2.12.3 Options to pbs_attach

-c <path to script>
Windows only. Specified command is invoked using a new command shell. In order to spawn and attach
built-in DOS commands such as set or echo, it is necessary to open the task using a cmd shell. The new
command shell, cmd.exe, is attached as a task to the PBS job. The pbs_attach command spawns a pro-
gram using a new command shell when attaching a batch script, or when invoked with the -c option.

-j <job ID>
The job ID to which the session ID is to be attached. If job ID is not specified, a best effort is made to determine
the job to which to attach the session.

-m <port number>
The port at which to contact MoM. Default: value of $PBS_MANAGER_SERVICE_PORT from
pbs.conf.

-p <PID>
Process ID whose session ID is to be attached to the job. Default: process ID of pbs_attach. Cannot be
used with the -P or -s options or the cmd operand.

-P
Attach sessions of both pbs_attach and the parent of pbs_attach to job. When used with -s option, the
sessions of the new fork()ed pbs_attach and its parent, which is pbs_attach, are attached to the job.
Cannot be used with the -p or -s options or the cmd operand.
RG-56 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-s
Starts a new session and attaches it to the job; pbs_attach calls fork(), then the child pbs_attach first
calls setsid() and then calls tm_attach to attach the new session to the job. The session ID of the new
pbs_attach is attached to the job.

--version
The pbs_attach command returns its PBS version information and exits. This option can only be used
alone.

2.12.4 Operands

cmd
Name of command whose process ID is to be associated with the job.

2.12.5 Exit Status

0
Success

1
Any error following successful command line processing. A message is printed to standard error.

If cmd is specified, pbs_attach waits for cmd to exit, then exits with the exit value of cmd.

If cmd is not specified, pbs_attach exits after attaching the session ID(s) to the job.

2.12.6 See Also

The PBS Professional Administrator's Guide, "pbs_mom” on page 71, "pbs_tmrsh” on page 123, "TM Library", on page
95 of the PBS Professional Programmer’s Guide
PBS Professional 2022.1 Reference Guide RG-57

Chapter 2 PBS Commands
2.13 pbs_comm

Starts the PBS communication daemon

2.13.1 Synopsis

pbs_comm [-N] [-r <other routers>] [-t <number of threads>]

pbs_comm --version

2.13.2 Description

The PBS communication daemon, pbs_comm, handles communication between daemons, except for scheduler-server
and server-server communication, which uses TCP. The server, scheduler(s), and MoMs are connected by one or more
pbs_comm daemons.

See “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Available on Linux only.

2.13.3 Options to pbs_comm

-N
Runs the communication daemon in standalone mode.

-r <other routers>
List of other pbs_comm daemons to which this pbs_comm must connect. This is equivalent to the pbs.conf
variable PBS_COMM_ROUTERS. The command line overrides the variable. Format:

<hostname>[:<port number>][,<hostname>[:<port number>]]

-t <number of threads>
Number of threads the pbs_comm daemon uses. This is equivalent to the pbs.conf variable
PBS_COMM_THREADS. The command line overrides the variable. Format:

Integer

--version
Prints the PBS version information and exits. This option can only be used alone.

2.13.4 Configuration Parameters

PBS_LEAF_ROUTERS
Parameter in /etc/pbs.conf. Tells an endpoint where to find its communication daemon.

You can tell each endpoint which communication daemon it should talk to. Specifying the port is optional.

Format: PBS_LEAF_ROUTERS=<hostname>[:<port number>][,<hostname>[:<port number>]]

PBS_COMM_ROUTERS
Parameter in /etc/pbs.conf. Tells a pbs_comm where to find its fellow communication daemons.

When you add a communication daemon, you must tell it about the other pbs_comms in the complex. When
you inform communication daemons about each other, you only tell one of each pair about the other. Do not tell
both about each other. We recommend that an easy way to do this is to tell each new pbs_comm about each
existing pbs_comm, and leave it at that.
RG-58 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Format: PBS_COMM_ROUTERS=<hostname>[:<port number>][,<hostname>[:<port number>]]

PBS_COMM_THREADS
Parameter in /etc/pbs.conf. Tells pbs_comm how many threads to start.

By default, each pbs_comm process starts four threads. You can configure the number of threads that each
pbs_comm uses. Usually, you want no more threads than the number of processors on the host.

Maximum allowed value: 100

Format: Integer

Example:

PBS_COMM_THREADS=8

PBS_COMM_LOG_EVENTS
Parameter in /etc/pbs.conf. Tells pbs_comm which log mask to use.

By default, pbs_comm produces few log messages. You can choose more logging, usually for troubleshooting.
See “Logging and Errors with TPP” on page 54 in the PBS Professional Installation & Upgrade Guide for log-
ging details.

Format: Integer

Default: 511

Example:

PBS_COMM_LOG_EVENTS=<log level>

PBS_LEAF_NAME
Parameter in /etc/pbs.conf. Tells endpoint what name to use for network. The value does not include a
port, since that is usually set by the daemon.

By default, the name of the endpoint's host is the hostname of the machine. You can set the name where an end-
point runs. This is useful when you have multiple networks configured, and you want PBS to use a particular
network.

The server only queries for the canonicalized address of the MoM host, unless you let it know via the Mom
attribute; if you have set PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure you set the Mom
attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not affect how pbs_comm works.

Format: String

Example:

PBS_LEAF_NAME=host1

PBS_START_COMM
Parameter in /etc/pbs.conf. Tells PBS init script whether to start a pbs_comm on this host if one is
installed. When set to 1, pbs_comm is started.

Just as with the other PBS daemons, you can specify whether each host should start pbs_comm.

Format: Boolean

Default: 0

Example:

PBS_START_COMM=1

2.13.5 Communication Daemon Logfiles

The pbs_comm daemon creates its log files under $PBS_HOME/comm_logs. This directory is automatically created by the
PBS installer.
PBS Professional 2022.1 Reference Guide RG-59

Chapter 2 PBS Commands
In a failover configuration, this directory is in the shared PBS_HOME, and is used by the pbs_comm daemons running on
both the primary and secondary servers. This directory must never be shared across multiple pbs_comm daemons in
any other case.

The log filename format is yyyymmdd (the same as for other PBS daemons).

The log record format is the same as used by other pbs daemons, with the addition of the thread number and the daemon
name in the log record. The log record format is as follows:

<date and time>;<event code>;<daemon name>(<thread number>);<object type>;<object name>;<message>

Example:

03/25/2014 15:13:39;0d86;host1.example.com;TPP;host1.example.com(Thread 2);Connection from leaf
192.168.184.156:19331, tfd=81 down

2.13.6 Signal Handling by Communication Daemon

The pbs_comm daemon handles the following signals:

HUP
Re-reads the value of $PBS_COMM_LOG_EVENTS from pbs.conf.

TERM
The pbs_comm daemon exits.
RG-60 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.14 pbs_dataservice

Start, stop, or check the status of PBS data service

2.14.1 Synopsis

pbs_dataservice [start | stop | status]

2.14.2 Description

The pbs_dataservice command starts, stops or gets the status of the PBS data service.

2.14.2.1 Permission

Root privilege is required to use this command.

2.14.3 Arguments

start
Starts the PBS data service.

stop
Stops the PBS data service.

Can be used only when the PBS server is not running.

status
Displays the status of the PBS data service, as follows:

• Data service running

PBS Data Service running

• Data service not running

PBS Data Service not running

2.14.4 Exit Status

Zero
Success

Non-zero
Failure
PBS Professional 2022.1 Reference Guide RG-61

Chapter 2 PBS Commands
2.15 pbs_ds_password

Sets or changes data service user account or its password

2.15.1 Synopsis

pbs_ds_password [-C <username>] [-r]

2.15.2 Description

You can use this command to change the user account or account password for the data service.

2.15.2.1 Passwords

Blank passwords are not allowed.

If you type in a password, make sure it does not contain restricted characters. The pbs_ds_password command gen-
erates passwords containing the following characters:

0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+

When creating a password manually, do not use \ (backslash) or ‘ (backquote). This can prevent certain commands such
as pbs_server, pbs_ds_password, and printjob from functioning properly, as they rely on connecting to the
database. The format is also described in "PBS Password” on page 357.

2.15.2.2 Permissions

On Linux, root privilege is required to use this command. On Windows, Admin privilege is required.

2.15.2.3 Restrictions

Do not run this command if failover is configured. It is important not to inadvertently start two separate instances of the
data service on two machines, thus potentially corrupting the database. If failover is configured, stop the secondary
server, remove definitions for PBS_PRIMARY and PBS_SECONDARY from pbs.conf on the primary server host,
start PBS, run pbs_ds_password, stop PBS, replace the definitions, and start PBS again.

2.15.3 Options to pbs_ds_password

-C <username>
Changes user account for data service to specified account. Specified user account must already exist.

On Linux-based systems, the specified user account must not be root.

On Windows, the specified user account must match the PBS service account (which can be any user account.)

This option cannot be used while the data service is running.

Can be used with the -r option to automatically generate a password for the new account.

-r
Generates a random password. The data service is updated with the new password.

Can be used with the -C option.

(no options)
Asks the user to enter a new password twice. Entries must match. Updates data service with new password.
RG-62 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.15.4 Exit Status

Zero
Success

Non-zero
Failure
PBS Professional 2022.1 Reference Guide RG-63

Chapter 2 PBS Commands
2.16 pbs_hostn

Reports hostname and network address(es)

2.16.1 Synopsis

pbs_hostn [-v] <hostname>

pbs_hostn --version

2.16.2 Description

The pbs_hostn command takes a hostname, and reports the results of both the gethostbyname(3) and geth-
ostbyaddr(3) system calls. Both forward and reverse lookup of hostname and network addresses need to succeed in
order for PBS to authenticate a host.

Running this command can assist in troubleshooting problems related to incorrect or non-standard network configura-
tion, especially within clusters.

2.16.3 Options

-v
Turns on verbose mode.

--version
The pbs_hostn command returns its PBS version information and exits. This option can only be used alone.

2.16.4 Operands

hostname
The pbs_hostn command accepts a hostname operand either in short name form, or in fully qualified domain
name (FQDN) form.

2.16.5 Standard Error

The pbs_hostn command writes a diagnostic message to standard error for each error occurrence.

2.16.6 Exit Status

Zero
Upon successful processing of all the operands presented to the pbs_hostn command.

Greater than zero
If the pbs_hostn command fails to process any operand.
RG-64 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.17 pbs_idled

Runs PBS daemon that monitors the console and informs pbs_mom of idle time

2.17.1 Linux Synopsis

pbs_idled [-D <display>] [-r <reconnect delay>] [-w <wait time>]

pbs_idled --version

2.17.2 Windows Synopsis

pbs_idled [start | stop]

pbs_idled --version

2.17.3 Linux Description

On Linux, the pbs_idled program monitors an X windows display and communicates the idle time of the display back
to PBS. If the mouse is moved or a key is touched, PBS is informed that the vnode is busy.

You should run this program from the system-wide Xsession file, in the background before the window manager is run.
If this program is run outside of the Xsession, it needs to be able to make a connection to the X display. See the xhost
or xauth man pages for a description of X security.

2.17.4 Windows Description

On Windows, pbs_idled reads its polling interval from a file called idle_poll_time which is created by MoM.
The service monitors keyboard, mouse, and console activity, and updates a file called idle_touch when it finds user
activity. The idle_touch file is created by MoM.

2.17.5 Linux Options to pbs_idled

-D <display>
The display to connect to and monitor

-r <reconnect delay>
Time to wait before we try to reconnect to the X display if the previous attempt was unsuccessful

-w <wait time>
Interval between times when the daemon checks for events or pointer movement

--version
The pbs_idled command returns its PBS version information and exits. This option can only be used alone.

2.17.6 Windows Options to pbs_idled

start
Starts the pbs_idled process.
PBS Professional 2022.1 Reference Guide RG-65

Chapter 2 PBS Commands
stop
Stops the pbs_idled process.

--version
The pbs_idled process returns its PBS version information and exits. This option can only be used alone.

2.17.7 See Also

The PBS Professional Administrator's Guide

xhost(1), xauth(1)
RG-66 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.18 pbs_iff

Tests authentication with the server

2.18.1 Usage

pbs_iff [-t] <server host> <server port>

pbs_iff --version

2.18.2 Description

Called from the pbs_connect() IFL API to authenticate a connection with the PBS server. Designed to be called inter-
nally by PBS commands and components, to be used by our IFL layer to talk to the server.

If pbs_iff cannot authenticate, it returns an error message.

2.18.2.1 Required Privilege

Can be run by any user.

It's a setuid root binary so it runs as the user who requests a connection to a server but it becomes root so that it can grab
a privileged port.

2.18.3 Options to pbs_iff

-t
Test mode; means test whether pbs_iff can authenticate with the server

--version
Reports version and exits; can only be used alone

2.18.4 Arguments to pbs_iff

daemon host
Host where server is running

daemon port
Port on which server is listening; default is 15001

2.18.5 Exit Status

Zero
If pbs_iff is able to contact the server at the specified port

Non-zero
If pbs_iff is unable to contact the server at the specified port
PBS Professional 2022.1 Reference Guide RG-67

Chapter 2 PBS Commands
2.19 pbs_interactive

Windows. Register, unregister, or get the version of PBS_INTERACTIVE service

2.19.1 Synopsis

pbs_interactive [R | U]

pbs_interactive --version

2.19.2 Description

The pbs_interactive command registers, unregisters, or gets the version of the Windows PBS_INTERACTIVE
service. The service must be registered manually; the installer does not register it.

On Windows, the PBS_INTERACTIVE service itself monitors logging in and out by users, starts a pbs_idled pro-
cess for each user logging in, and stops the pbs_idled process of each user logging out.

2.19.2.1 Required Privilege

Admin privilege is required to use this command.

2.19.3 Arguments

R
Registers the PBS_INTERACTIVE service.

U
Unregisters the PBS_INTERACTIVE service.

--version
The pbs_interactive command returns its PBS version information and exits. This option can only be
used alone.
RG-68 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.20 pbs_login

Caches encrypted user password for authentication

2.20.1 Usage

pbs_login

pbs_login -m <PBS service account password>

echo <password>| pbs_login -p

2.20.2 Description

The pbs_login command encrypts the password and caches it locally where it can be used by daemons for authoriza-
tion.

Job submitters must run this command at each submission host each time their password changes.

On Windows, the win_postinstall script calls pbs_login to store the PBS service account password so that the
account user can be authenticated by daemons.

2.20.3 Required Privilege

Can be run by any user.

2.20.4 Options to pbs_login

(no options)
Queries user for password.

-m <PBS service account password>
This option is intended to be used only by the PBS service account, which is the account that is used to execute
pbs_mom via the Service Control Manager on Windows. This option is used during installation when invoked
by the win_postinstall script, or by the administrator when the PBS service account password has changed.
Stores PBS service account password in the mom_priv directory.

-p
Caches user password on client host. Intended to be run by job submitter at client host. Allows job submitter to
be authenticated by daemons.
PBS Professional 2022.1 Reference Guide RG-69

Chapter 2 PBS Commands
2.21 pbs_mkdirs

For Windows. Create, or fix the permissions of, the directories and files used by PBS

2.21.1 Synopsis

pbs_mkdirs

pbs_mkdirs [mom]

2.21.2 Description

Runs on Windows only. If the directories and files used by PBS exist, the pbs_mkdirs command fixes their permis-
sions. If the directories and/or files do not exist, the pbs_mkdirs command creates them, with the correct permissions.
The pbs_mkdirs command always examines the following directories and files:

pbs.conf

PBS_EXEC

PBS_HOME/spool

PBS_HOME/undelivered

PBS_HOME/pbs_environment

2.21.2.1 Required Privilege

You must have Administrator privilege to run this command.

2.21.3 Options

mom
The pbs_mkdirs command examines the following additional items:

PBS_HOME/mom_priv

PBS_HOME/mom_logs

(no options)
The pbs_mkdirs command examines all of the files and directories specified for the mom option.

2.21.4 See Also

The PBS Professional Administrator's Guide, "pbs_probe” on page 80
RG-70 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.22 pbs_mom

Runs the PBS job monitoring and execution daemon

2.22.1 Synopsis

pbs_mom [-a <alarm timeout>] [-C <checkpoint directory>] [-c <config file>] [-d <MoM home directory>] [-L
<logfile>] [-M <MoM port>] [-N] [-n <nice value>] [-p|-r] [-R <inter-MoM communication port>] [-S <server
port>] [-s <options>]

pbs_mom --version

2.22.2 Description

The pbs_mom command starts the PBS job monitoring and execution daemon, called MoM.

The standard MoM starts jobs on the execution host, monitors and reports resource usage, enforces resource usage limits,
and notifies the server when the job is finished. The MoM also runs any prologue scripts before the job runs, and runs
any epilogue scripts after the job runs.

The MoM performs any communication with job tasks and with other MoMs. The MoM on the first vnode on which a
job is running manages communication with the MoMs on the remaining vnodes on which the job runs.

The MoM manages one or more vnodes. PBS may treat a host as a set of virtual nodes, in which case one MoM manages
all of the host's vnodes. See "Configuring MoMs and Vnodes" on page 37 in the PBS Professional Administrator’s
Guide.

2.22.2.1 Logging

The MoM's log file is in PBS_HOME/mom_logs. The MoM writes an error message in its log file when it encounters
any error. If it cannot write to its log file, it writes to standard error. The MoM writes events to its log file. The MoM
writes its PBS version and build information to the logfile whenever it starts up or the logfile is rolled to a new file.

2.22.2.2 Required Permission

The executable for pbs_mom is in PBS_EXEC/sbin, and can be run only by root on Linux, and Admin on Windows.

2.22.2.2.i HPE Systems Running Supported Versions of HPE MPI

A PBS job can run across multiple machines that run supported versions of HPE MPI.

PBS can run using HPE's MPI (MPT) over InfiniBand. See the PBS Professional Administrator's Guide.

2.22.2.3 Effect on Jobs of Starting MoM

When MoM is started or restarted, her default behavior is to leave any running processes running, but to tell the PBS
server to requeue the jobs she manages. MoM tracks the process ID of jobs across restarts.

In order to have all jobs killed and requeued, use the -r option when starting or restarting MoM.

In order to leave any running processes running, and not to requeue any jobs, use the -p option when starting or restarting
MoM.
PBS Professional 2022.1 Reference Guide RG-71

Chapter 2 PBS Commands
2.22.3 Options to pbs_mom

-a <alarm timeout>
Number of seconds before alarm timeout. Whenever a resource request is processed, an alarm is set for the
given amount of time. If the request has not completed before alarm timeout, the OS generates an alarm signal
and sends it to MoM.

Format: Integer

Default: 10 seconds

-C <checkpoint directory>
Specifies the path to the directory where MoM creates job-specific subdirectories used to hold each job's restart
files. MoM passes this path to checkpoint and restart scripts. Overrides other checkpoint path specification
methods. Any directory specified with the -C option must be owned, readable, writable, and executable by root
only (rwx,---,---, or 0700), to protect the security of the restart files. See the -d option to pbs_mom and "Spec-
ifying Checkpoint Path" on page 397 in the PBS Professional Administrator’s Guide.

Format: String

Default: PBS_HOME/checkpoint

-c <config file>
MoM will read this alternate default configuration file upon starting. If this is a relative file name it is relative to
PBS_HOME/mom_priv. If the specified file cannot be opened, pbs_mom will abort. See the -d option.

MoM's normal operation, when the -c option is not given, is to attempt to open the default configuration file
PBS_HOME/mom_priv/config. If this file is not present, pbs_mom will log the fact and continue.

-d <MoM home directory>
Specifies the path of the directory to be used in place of PBS_HOME by pbs_mom. The default directory is
given by $PBS_HOME.

Format: String

-L <logfile>
Specifies an absolute path and filename for the log file. The default is a file named for the current date in
PBS_HOME/mom_logs/. See the -d option.

Format: String.

-M <MoM port>
Specifies the port number on which MoM will listen for server requests and instructions. Overrides
PBS_MOM_SERVICE_PORT setting in pbs.conf and environment variable.

Format: Integer port number.

Default: 15002.

-n <nice value>
Specifies the priority for the pbs_mom daemon.

Format: Integer.

-N
Specifies that when starting, MoM should not detach from the current session.

-p
Specifies that when starting, MoM should allow any running jobs to continue running, and not have them
requeued. Cannot be used with the -r option. MoM is not the parent of these jobs.
RG-72 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-r
Specifies that when starting, MoM should requeue any rerunnable jobs and kill any non-rerunnable jobs that she
was tracking, and mark the jobs as terminated. Cannot be used with the -p option. MoM is not the parent of
these jobs.

It is not recommended to use the -r option after a reboot, because process IDs of new, legitimate tasks may
match those MoM was previously tracking. If they match and MoM is started with the -r option, MoM will kill
the new tasks.

-R <inter-MoM communication port>
Specifies the port number on which MoM will listen for pings, resource information requests, communication
from other MoMs, etc. Overrides PBS_MANAGER_SERVICE_PORT setting in pbs.conf and environment
variable.

Format: Integer port number

Default: 15003

-S <server port>
Specifies the port number on which pbs_mom initially contacts the server.

Format: Integer port number

Default: 15001

-s <file options>
If you are running the cgroups hook, make sure that the vnode names in any Version 2 configuration file exactly
match those in the output of pbsnodes -av.

This option lets you add, delete, and display Version 2 configuration files. Run this command at the host you
want to change. The file options are used this way:

-s insert <Version 2 filename> <inputfile>
Reads inputfile and copies it to a Version 2 vnode configuration file with the filename Version 2 filename.
For example, to create a Version 2 file named "Myhost_V2":

pbs_mom -s insert <Myhost_V2> <myhost_v2_input>

If a configuration file with the specified Version 2 filename already exists, the operation fails, and
pbs_mom prints a diagnostic and exits with a nonzero status. Configuration files whose names begin with
the prefix "PBS" are reserved. You cannot add a file whose name begins with "PBS"; pbs_mom will print
a diagnostic message and exit with a nonzero status.

-s remove <Version 2 filename>
Removes the configuration file named Version 2 filename if it exists. Example:

pbs_mom -s remove <Version 2 filename>

If the file does not exist or if you try to remove a file with the reserved "PBS" prefix, the operation fails, and
pbs_mom prints a diagnostic and exits with a nonzero status.

-s show <Version 2 filename>
Prints the contents of the named file to standard output. Example:

pbs_mom -s show <Version 2 filename>

If Version 2 filename does not exist, the operation fails and pbs_mom writes a diagnostic and exits with a
nonzero status.

-s list
MoM lists the PBS-prefixed and site-defined configuration files in the order in which they are executed.
Example:

pbs_mom -s list

WINDOWS:
PBS Professional 2022.1 Reference Guide RG-73

Chapter 2 PBS Commands
Under Windows, use the -N option so that pbs_mom will start up as a standalone program. For example:

pbs_mom -N -s insert <Version 2 filename> <inputfile>

or

pbs_mom -N -s list

--version
The pbs_mom command returns its PBS version information and exits. This option can only be used alone.

2.22.4 Files and Directories

$PBS_HOME/mom_priv

Default directory for default configuration files.

$PBS_HOME/mom_priv/config

MoM's default configuration file.

$PBS_HOME/mom_logs

Default directory for log files written by MoM.

$PBS_HOME/mom_priv/prologue

File containing administrative script to be run before job execution.

$PBS_HOME/mom_priv/epilogue

File containing administrative script to be run after job execution.

2.22.5 Signal Handling

pbs_mom handles the following signals:

SIGHUP
The pbs_mom daemon rereads its configuration files, closes and reopens the log file, and reinitializes resource
structures.

SIGALRM
MoM writes a log file entry. See the -a <alarm timeout> option.

SIGINT
The pbs_mom daemon exits, leaving all running jobs still running. See the -p option.

SIGKILL
This signal is not caught. The pbs_mom daemon exits immediately.

SIGTERM, SIGXCPU, SIGXFSZ, SIGCPULIM, SIGSHUTDN
The pbs_mom daemon terminates all running children and exits.

SIGPIPE, SIGUSR1, SIGUSR2, SIGINFO
These are ignored.

All other signals have their default behavior installed.
RG-74 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.22.6 Exit Status

Zero
Upon success

Greater than zero
• If the pbs_mom daemon fails to start

• If the -s insert option is used with an existing Version 2 filename

• If the administrator attempts to add a script whose name begins with "PBS"

• If the administrator attempts to use the -s remove option on a nonexistent configuration file, or on a con-
figuration file whose name begins with "PBS"

• If the administrator attempts to use the -s show option on a nonexistent script

2.22.7 See Also

The PBS Professional Administrator's Guide
PBS Professional 2022.1 Reference Guide RG-75

Chapter 2 PBS Commands
2.23 pbs_mpihp

Runs an MPI application in a PBS job with HP MPI

2.23.1 Synopsis

pbs_mpihp [-h <hostname>] [-np <number>] [<other HP mpirun options>] <program> [<args>]

pbs_mpihp [<HP mpirun options>] -f <appfile> [-- [<extra args>]]

pbs_mpihp --version

2.23.2 Description

The PBS command pbs_mpihp replaces the standard mpirun command in a PBS HP MPI job, for executing pro-
grams. pbs_mpihp is a front end to the HP MPI version of mpirun.

When pbs_mpihp is invoked from a PBS job, it processes the command line arguments, then calls standard HP
mpirun to actually start the MPI ranks. The ranks created are mapped onto CPUs on the vnodes allocated to the PBS
job. The environment variable MPI_REMSH is set to $PBS_EXEC/bin/pbs_tmrsh. This causes the processes that
are created to become part of the PBS job.

The path to standard HP mpirun is found by checking to see if a link exists with the name
PBS_EXEC/etc/pbs_mpihp. If this link exists, it points to standard HP mpirun. If it does not exist, a call to
mpirun -version is made to determine whether it is HP mpirun. If so, the call is made to "mpirun" without an
absolute path. If HP mpirun cannot be found, an error is output, all temp files are cleaned up and the script exits with
value 127.

If pbs_mpihp is invoked from outside a PBS job, it passes all of its arguments directly to standard HP mpirun without
further processing.

2.23.2.1 Configuration

When HP MPI is wrapped with pbs_mpihp, "rsh" is the default used to start the mpids. If you wish to use "ssh" or
something else, be sure to set the following in $PBS_HOME/pbs_environment:

PBS_RSHCOMMAND=ssh

or put the following in the job script:

export PBS_RSHCOMMAND=<rsh_cmd>

2.23.2.2 Usage

Usage is the same as for HP mpirun.

pbs_mpihp <program> allows one executable to be specified.

pbs_mpihp -f <appfile> uses an appfile to list multiple executables. The format is described in the HP mpirun
man page. If this form is used from inside a PBS job, the file is read to determine what executables are to be run and how
many processes are started for each.

Executing pbs_mpihp with the -client option is not supported under PBS.

2.23.3 Options to pbs_mpihp

All options except the following are passed directly to HP mpirun with no modification.
RG-76 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-client
Not supported.

-f <appfile>
The specified appfile is read by pbs_mpihp.

-h <hostname>
Ignored by pbs_mpihp.

-l <username>
Ignored by pbs_mpihp.

-np <number>
Specifies the number of processes to run on the PBS vnodes.

--version
The pbs_mpihp command returns its PBS version information and exits. This option can only be used alone.

2.23.4 Exit Values

127
If HP mpirun cannot be found

2.23.5 See Also

The PBS Professional Administrator's Guide

mpirun(1)
PBS Professional 2022.1 Reference Guide RG-77

Chapter 2 PBS Commands
2.24 pbs_mpirun

Deprecated. Runs MPI programs under PBS with MPICH

2.24.1 Synopsis

pbs_mpirun [<mpirun options>]

pbs_mpirun --version

2.24.2 Description

The PBS command pbs_mpirun replaces the standard mpirun command in a PBS MPICH job using P4.

On Windows, this command cannot be used to start job processes or track a job's resource usage.

2.24.2.1 Prerequisite

The PATH on remote machines must contain PBS_EXEC/bin.

2.24.2.2 Usage

Usage is the same as for mpirun, except for the -machinefile option. All other options are passed directly to
mpirun.

2.24.3 Options to pbs_mpirun

<mpirun options>
The options to pbs_mpirun are the same as for mpirun, except for the -machinefile option. This is
generated by pbs_mpirun. The user should not attempt to specify -machinefile.

The value for -machinefile is a temporary file created from PBS_NODEFILE in the format:

hostname-1[:number of processors]

hostname-2[:number of processors]

hostname-n[:number of processors]

where if the number of processors is not specified, it is 1. An attempt by the user to specify the -machinefile
option will result in a warning saying "Warning, -machinefile value replaced by PBS".

The default value for the -np option is the number of entries in PBS_NODEFILE.

--version
The pbs_mpirun command returns its PBS version information and exits. This option can only be used
alone.

2.24.4 Environment Variables

pbs_mpirun modifies P4_RSHCOMMAND and PBS_RSHCOMMAND. Users should not edit these.
pbs_mpirun copies the value of P4_RSHCOMMAND into PBS_RSHCOMMAND.
RG-78 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.24.5 See Also

The PBS Professional Administrator's Guide, mpirun(1)
PBS Professional 2022.1 Reference Guide RG-79

Chapter 2 PBS Commands
2.25 pbs_probe

Deprecated. Reports PBS diagnostic information and fixes permission errors

2.25.1 Synopsis

pbs_probe [-f | -v]

pbs_probe --version

2.25.2 Description

The pbs_probe command reports post-installation information useful for PBS diagnostics, and fixes permission
errors.

2.25.2.1 Information Sources

• Information that is supplied on the command line

• The file /etc/pbs.conf

• The file /etc/init.d/pbs

• The values of any of the following environment variables; these may be set in the environment in which
pbs_probe is run: PBS_CONF_FILE, PBS_HOME, PBS_EXEC, PBS_START_SERVER,
PBS_START_MOM, and PBS_START_SCHED

2.25.2.2 Required Privilege

In order to execute pbs_probe, you must have PBS Operator or Manager privilege.

2.25.3 Options to pbs_probe

(no options)
Run in "report" mode. In this mode pbs_probe reports any permission errors detected in PBS infrastructure
files. The command categorizes the errors and writes a list of them by category. Empty categories are not writ-
ten.

-f
Run in "fix" mode. In this mode pbs_probe examines each of the relevant infrastructure files and, where
possible, fixes any permission errors that it detects, and prints a message saying what got changed. If it is
unable to fix a problem, it prints a message saying what was detected.

-v
Run in "verbose" mode. In this mode pbs_probe writes a complete list of the infrastructure files that it
checked.

--version
The pbs_probe command returns its PBS version information and exits. This option can only be used alone.

2.25.4 Standard Error

The pbs_probe command writes a diagnostic message to standard error for each error occurrence.
RG-80 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.25.5 Exit Status

Exit code does not reflect results of probe; it reflects whether or not the program ran.

Zero
When run correctly, whether or not pbs_probe finds any problems or errors

Non-negative
When run incorrectly

2.25.6 See Also

The PBS Professional Administrator's Guide
PBS Professional 2022.1 Reference Guide RG-81

Chapter 2 PBS Commands
2.26 pbs_python

Python interpreter for debugging a hook script from the command line

2.26.1 Synopsis

pbs_python --hook [-e <log event mask>] [-i <event input file>] [-L <log dir>] [-l <log file>] [-o <hook execution
record>] [-r <resourcedef file>] [-s <site data file>] [<Python script>]

pbs_python <standard Python options>

pbs_python --version

2.26.2 Description

The PBS Python interpreter, pbs_python, is a wrapper for Python.

You can use the pbs_python wrapper that is shipped with PBS to debug hooks. Either:

• Use the --hook option to pbs_python to run pbs_python as a wrapper to Python, employing the
pbs_python options. With the --hook option, you cannot use the standard Python options. The rest of this sec-
tion covers how to use pbs_python with the --hook option.

• Do not use the --hook option, so pbs_python runs the Python interpreter, with the standard Python options, and
without access to the pbs_python options.

2.26.2.1 Debugging Hooks

You can get each hook to write out debugging files, and then modify the files and use them as debugging input to
pbs_python. Alternatively, you can write the files yourself.

Debugging files can contain information about the event, about the site, and about what the hook changed. You can use
these as inputs to a hook when debugging.

For a complete description of using pbs_python with debugging files, see "Debugging Hooks" on page 183 in the
PBS Professional Hooks Guide.

2.26.3 Options to pbs_python

--hook
This option is a switch. When you use this option, you can use the PBS Python module (via "import pbs"),
and the other options described here are available. When you use this option, you cannot use the standard
Python options. This option is useful for debugging.

When you do not use this option, you cannot use the other options listed here, but you can use the standard
Python options.

-e <log event mask>
Sets the mask that determines which event types are logged by pbs_python. To see only debug messages, set
the value to 0xd80. To see all messages, set the value to 0xffff. The pbs_python interpreter uses the same
set of mask values that are used for the $logevent <mask> entry in the pbs_mom configuration file. See sec-
tion 2.22, “pbs_mom”, on page 71. Available only when --hook option is used.

-i <event input file>
Text file containing data to populate pbs.event() objects. Each line specifies an attribute value or a resource
value. Syntax of each input line is one of the following:
RG-82 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
<object name>.<attribute name>=<attribute value>
<object name>.<resource list>[<resource name>]=<resource value>
Where

<object name> is a PBS object name which can refer to its sub-objects. Examples: "pbs.event()",
"pbs.event().job", "pbs.event().vnode_list["<vnode name>"]".

Example input file:

pbs.event().hook_name=proto

pbs.event().hook_type=site

pbs.event().type=queuejob

pbs.event().requestor=user1

pbs.event().requestor_host=host1

pbs.event().alarm=40

pbs.event().job.id=72

pbs.event().job.Job_Name=job1

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=6mb

pbs.event().vnode_list["host1"].resources_available["ncpus"] = 5

pbs.event().vnode_list["host1"].resources_available["mem"] = 300gb

Available only when --hook option is used.

-L <log dir>
Directory holding the log file where pbs.logmsg() and pbs.logjobmsg() write their output. Default is current
working directory where pbs_python is executed. Available only when --hook option is used.

-l <log file>
Log file where pbs.logmsg() and pbs.logjobmsg() write their output. Default file name is current date in
yyyymmdd format. Available only when --hook option is used.

-o <hook execution record>
The hook execution record contains the changes made after executing the hook script, such as the attributes and
resources set in any pbs.event() jobs and reservations, whether an action was accepted or rejected, and any
pbs.reject() messages.

Example hook execution record:

pbs.event().job.Job_Name=job2

pbs.event().job.Resource_List[file]=60gb

pbs.event().job.Resource_List[ncpus]=5

pbs.event().job.Resource_List[mem]=20gb

pbs.event().job.Account_Name=account2

pbs.event().reject=True

pbs.event().reject_msg=No way!

Without this option, output goes to stdout. Available only when --hook option is used.

-r <resourcedef file>
File/path name containing a resource definition specifying a custom resource whose Python type is
pbs.resource. Format:

<resource name> type=<typename> [flag=<value>]
Available only when --hook option is used.
PBS Professional 2022.1 Reference Guide RG-83

Chapter 2 PBS Commands
-s <site data file>
The site data file can contain any relevant information about the server, queues, vnodes, and jobs at the server.
This file can be written by a hook or by the administrator.

When the hook writes it, this file contains the values that populate the server, queues, vnodes, reservations, and
jobs, with all attributes and resources for which there are values.

The site data file is named hook_<event type>_<hook name>_<random integer>.data. It can be passed to
pbs_python using the -s <site data file> option.

Available only when --hook option is used.

--version
The pbs_python command prints its version information and exits. This option can only be used alone.

2.26.4 Arguments

<Python script>
The hook script to execute. We recommend importing the PBS Python module at the start of the script:

import pbs

If you do not specify <Python script>, you can perform interactive debugging. If you type the following:

% pbs_python --hook -i hook.input

The interpreter displays a prompt:

>>

You can type your Python lines at the prompt:

>>import pbs

>> e=pbs.event().job

>> print e.id

<job ID>

...
RG-84 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.27 pbs_ralter

Modifies an existing reservation

2.27.1 Summary

Alter an existing advance, standing, or job-specific reservation.

2.27.2 Synopsis

pbs_ralter [-D <duration>] [-E <end time>] [-G <auth group list>] [-I <block time>] [-l select=<select spec>] [-m
<mail points>] [-M <mail list>] [-N <reservation name>] [-R <start time>] [-U <auth user list>] <reservation
ID>

pbs_ralter -Wforce [-D <duration>] [-E <end time>] [-R <start time>] <reservation ID>

pbs_ralter -Wdelete_idle_time=<value>

pbs_ralter --version

2.27.3 Description

You can use the pbs_ralter command to alter an existing reservation, whether it is an individual job-specific,
advance, or maintenance reservation, or the next or current occurrence of a standing reservation. You can change the start
time, end time, duration, events that generate mail, mail recipient list, authorized groups, authorized users, select specifi-
cation, and reservation name.

The PBS Administrator can use the -Wforce option to this command to change the start time, end time, or duration of a
reservation; this option overrides the scheduler's actions.

After the change is requested, the change is either confirmed or denied. On denial of the change, the reservation is not
deleted and is left as is, and the following message appears in the server's log:

Unable to alter reservation <reservation ID>

When a reservation is confirmed, the following message appears in the server's log:

Reservation alter successful for <reservation ID>

To find out whether or not the change was allowed:

• Use the pbs_rstat command to see whether you altered reservation attribute(s)

• Use the interactive option to check for confirmation after the blocking time has run out

• Check the server log for confirmation or denial messages

Before the change is confirmed or denied, the change is unconfirmed, and the reservation state is AL.

Once a reservation change is confirmed, the reservation state is CO or RN.

If the reservation has not started and it cannot be confirmed on the same vnodes, PBS searches for another set of vnodes.

If the reservation is altered, PBS logs a Y accounting record. See "Types of Accounting Log Records" on page 532 in the
PBS Professional Administrator’s Guide.

2.27.3.1 Caveats and Restrictions

You cannot change the start time of a reservation if jobs are running in it.
PBS Professional 2022.1 Reference Guide RG-85

Chapter 2 PBS Commands
If you change the end time of a reservation so that it ends before a job running in the reservation finishes, the job is killed
when the reservation ends.

If you change the select specification, the vnodes where jobs are running remain the same, but all other vnodes may
change.

Do not attempt to alter a maintenance reservation.

Altering a reservation may change how top jobs are able to run, because altering a reservation has the same privilege as
submitting a reservation.

2.27.3.2 Required Privilege

Without the -Wforce option, this command can be used by the reservation owner or the PBS Administrator.

With the -Wforce option, this command can be used only by the PBS Administrator.

2.27.4 Options to pbs_ralter

-D <duration>
Specifies reservation's new duration. This option can be used even when the reservation is running and has jobs
that are submitted to and/or are running in the reservation.

Can be specified with start and/or end time. PBS calculates anything not specified. When specified without
start or end time, PBS keeps previous start time.

If you change the duration to less than the time the reservation has already run, PBS deletes the reservation.

Format: Duration, as seconds or hh:mm:ss

-E <end time>
Specifies reservation's new end time. This option can be used even when the reservation is running and has jobs
that are submitted to and/or are running in the reservation.

Format: Datetime

-G <auth group list>
Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation's
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: no default; group names are unchanged

-I <block time>
(Capital I) Specifies interactive mode. The pbs_ralter command will block, up to block time seconds, while
waiting for the reservation's change request to be confirmed or denied.

The value for block time must be positive. The pbs_ralter command returns either the status "CON-
FIRMED" or the status "DENIED".
RG-86 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Format: Integer

Default: Not interactive

-l select=<select spec>
(Lowercase L) Specifies new select specification for reservation. New specification can shrink the reservation
using a subset of the same chunks requested by the original reservation, or can grow the reservation by specify-
ing more chunks.

If jobs are running in the reservation:

• You cannot release chunks where reservation jobs are running

• Vnodes where jobs are running cannot change, but everything else can.

If no jobs are running, the select specification can be changed completely.

When requesting chunks, make sure each chunk request specifies chunks of a single type.

-m <mail points>
Specifies the set of events that cause mail to be sent to the list of users specified in the -M <mail list>
option.

Format: String

Syntax: Either of:

• Any combination of "a", "b", "c" or "e"

• The single character "n"

Default: No default; if not specified, mail events are unchanged.

-M <mail list>
The list of users to whom mail is sent whenever the reservation transitions to one of the states specified in the
-m <mail points> option.

Format: <username>[@<hostname>][,<username>[@<hostname>]...]

Default: No default; if not specified, user list is unchanged.

-N <reservation name>
Specifies a name for the reservation.

Format: String up to 15 characters in length. It must consist of printable, non-white space characters with the
first character alphabetic.

Default: No default; if not specified, reservation name is unchanged.

Table 2-4: Suboptions to -m Option

Character Meaning

a Notify if reservation is terminated for any reason

b Notify when the reservation period begins

c Notify when the reservation is confirmed

e Notify when the reservation period ends

n Send no mail. Cannot be used with any of a, b, c or e.
PBS Professional 2022.1 Reference Guide RG-87

Chapter 2 PBS Commands
-R <start time>
Specifies reservation's new start time. This option can be used either when the reservation is not running or there
are no jobs are submitted to the reservation. You cannot use this option when a reservation is not empty and has
started running.

The specifications for providing the time are the same as for pbs_rsub:

If the day, DD, is not specified, it defaults to today if the time hhmm is in the future. Otherwise, the day is set to
tomorrow. For example, if you alter a reservation with the specification -R 1110 at 11:15 a.m., it is interpreted
as being for 11:10 a.m. tomorrow. If the month portion, MM, is not specified, it defaults to the current month,
provided that the specified day DD, is in the future. Otherwise, the month is set to next month. Similar rules
apply to the two other optional, left-side components.

Format: Datetime

-U <auth user list>
Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation's
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator's username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]
Default: no default; user list is unchanged

-W<extended options>
This allows you to define other attributes for the reservation or perform other actions.

delete_idle_time=<allowed idle time>
Sets the reservation's delete_idle_time attribute to allowed idle time. Deletes the reservation after the
specified amount of idle time. Applies to each instance of a standing reservation.

If the reservation is running and empty, the existing idle timer is restarted with the new value. If the reser-
vation is not empty, the idle timer uses the new value the next time it starts.

The default value for the delete_idle_time attribute for an ASAP reservation is 10 minutes.

This option cannot be used when changing any other reservation attributes.

Format for allowed idle time is a duration.

To unset the delete_idle_time attribute, set it to an empty string:

pbs_ralter -Wdelete_idle_time=""

force
Enforces changes made to the reservation start time, end time, or duration, regardless of the actions of the
scheduler. Can be used only by the PBS Administrator. Note that with this option you can force PBS to
oversubscribe resources, in which case you (the administrator) may need to manage them yourself. Cannot
be used to change the start time of a reservation in which jobs are running.

--version
The pbs_ralter command returns its PBS version information and exits. This option can only be used
alone.
RG-88 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.27.5 Operands

The pbs_ralter command takes a reservation ID.

For an advance or job-specific reservation this has the form:

R<sequence number>[.<server name>][@<remote server>]

For a standing reservation this has the form:

S<sequence number>[.<server name>][@<remote server>]

For a maintenance reservation this has the form:

M<sequence number>[.<server name>][@<remote server>]

@<remote server> specifies a reservation at a server other than the default server.
PBS Professional 2022.1 Reference Guide RG-89

Chapter 2 PBS Commands
2.28 pbs_rdel

Deletes a PBS reservation

2.28.1 Synopsis

pbs_rdel <reservation ID>[,<reservation ID>...]

pbs_rdel --version

2.28.2 Description

The pbs_rdel command deletes reservations in the order specified.

This command deletes the specified reservations, whether or not they are running, all jobs in the reservations, and the res-
ervation queues.

You can delete an entire standing reservation, but not just one instance of a standing reservation.

2.28.3 Required Privilege

A reservation may be deleted by its owner, a PBS Operator, or a PBS Manager.

2.28.4 Options

--version
The pbs_rdel command returns its PBS version information and exits. This option can only be used alone.

2.28.5 Operands

The pbs_rdel command accepts one or more reservation ID operands.

For an advance or job-specific reservation this has the form:

R<sequence number>[.<server name>][@<remote server>]

For a standing reservation this has the form:

S<sequence number>[.<server name>][@<remote server>]

For a maintenance reservation this has the form:

M<sequence number>[.<server name>][@<remote server>]

@<remote server> specifies a reservation at a server other than the default server.

2.28.6 Exit Status

Zero
Upon success

Greater than zero
Upon failure to process any operand
RG-90 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.28.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "pbs_rsub” on page 96,
"pbs_rstat” on page 94, "Reservation Attributes” on page 303
PBS Professional 2022.1 Reference Guide RG-91

Chapter 2 PBS Commands
2.29 pbs_release_nodes

Releases vnodes assigned to a PBS job

2.29.1 Synopsis

pbs_release_nodes [-j <job ID>] [-k (<number of hosts to keep> | <selection of vnodes to keep>)] <vnode> [<vnode>
[<vnode>] ...]

pbs_release_nodes [-j <job ID>] -a

pbs_release_nodes --version

2.29.2 Description

You can use the pbs_release_nodes command to release no-longer-needed sister hosts or vnodes assigned to a run-
ning job, before the job would normally release them. These vnodes are then available for use by other jobs.

You can specify the names of sister vnodes to be released, or you can release all sister vnodes not on the primary execu-
tion host that are assigned to a running job via the -a option.

PBS can keep the number of sister hosts you specify, or PBS can release all sister vnodes except for the ones you specify
via a select statement.

Can be used on jobs and subjobs, but not on job arrays or ranges of subjobs.

2.29.2.1 Caveats and Restrictions

• You can release only sister hosts or vnodes that are not on the primary execution host. You cannot release vnodes on
the primary execution host.

• The job must be running (in the R state).

• If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed
by a MoM, resources on those vnodes are released.

• You cannot release a partial host. If you try to release some but not all of a host, the job's exec_vnode attribute
shows the new, smaller list of vnodes, but the pbsnodes command will reveal that the host is still allocated to the
job.

• If you specify release of a vnode on which a job process is running, that process is terminated when the vnode is
released.

2.29.2.2 Required Privilege

This command can be run by the job owner, the PBS Manager, Operator, and Administrator, as well as root on Linux and
Admin on Windows.

2.29.3 Options to pbs_release_nodes

-a
Releases all job vnodes not on the primary execution host. Cannot be used with -k option, or with list of vnode
names.

-j <job ID>
Specifies the job ID for the job or subjob whose vnode(s) are to be released.
RG-92 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-k <keep number> | <keep selection>
Use keep number to specify how many sister hosts to keep.

Use keep selection to specify which sister vnodes to keep. The keep selection is a select statement beginning
with "select=" specifying which vnodes to keep.

The primary execution host and its vnodes are not released.

For example, to release all sister hosts except 8:

pbs_release_nodes -k 8

To release all sister vnodes except for 4 of the ones marked with "bigmem":

pbs_release_nodes -k select=4:bigmem=true

Cannot be used with -a option or with vnode list argument.

(no options)
With no options, pbs_release_nodes uses the value of the PBS_JOBID environment variable as the job
ID of the job whose vnodes are to be released.

--version
The pbs_release_nodes command returns its PBS version information and exits. This option can only be
used alone.

2.29.4 Operands for pbs_release_nodes

The pbs_release_nodes command can take as an operand a list of vnodes. Format:

<vnode name> [<vnode name> [<vnode name>] ...]

Cannot be used with the -a option.

2.29.5 Usage

This command can be run at the command line, or called inside a job script, where it can use the value of the
PBS_JOBID environment variable.

You can release any vnode that appears in the job's exec_vnode attribute that is not on the primary execution host. You
can release a particular set of a job's vnodes, or you can release all of a job's non-primary-execution-host vnodes.

To release specific vnodes:

pbs_release_nodes [-j <job ID>] <vnode name> [<vnode name>] ...]

To release all of a job's vnodes that are not on the primary execution host:

pbs_release_nodes [-j <job ID>] -a

To release all except a specified number of vnodes:

pbs_release_nodes -k <number of sister hosts to keep>

To release all vnodes except for those in a select specification:

pbs_release_nodes -k <select specification>
PBS Professional 2022.1 Reference Guide RG-93

Chapter 2 PBS Commands
2.30 pbs_rstat

Shows status of PBS reservations

2.30.1 Synopsis

pbs_rstat [-B] [-f|-F] [-S] [<reservation ID>...]

pbs_rstat --version

2.30.2 Description

The pbs_rstat command shows the status of all reservations at the PBS server. Denied reservations are not dis-
played.

2.30.2.1 Required Privilege

This command can be run by a user with any level of PBS privilege. For full output, users without manager or operator
privilege cannot print custom resources which were created to be invisible to users.

2.30.3 Output

The pbs_rstat command displays output in any of brief, short, or full formats.

See section 6.8, “Reservation Attributes”, on page 303 and section 8.6, “Reservation States”, on page 367.

2.30.4 Options to pbs_rstat

-B
Brief output. Displays each reservation identifier only.

-f, -F
Full output. Displays all reservation attributes that are not set to the default value. Users without manager or
operator privilege cannot print custom resources which were created to be invisible to users.

-S
Short output. Displays a table showing the name, queue, owner, state, start time, duration, and end time of each
reservation.

--version
The pbs_rstat command returns its PBS version information and exits. This option can only be used alone.

(no options)
Short output. Same behavior as -S option.

2.30.5 Operands

The pbs_rstat command accepts one or more reservation ID operands.

Format for an advance or job-specific reservation:

R<sequence number>[.<server name>][@<remote server>]
RG-94 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Format for a standing reservation:

S<sequence number>[.<server name>][@<remote server>]

Format for a maintenance reservation:

M<sequence number>[.<server name>][@<remote server>]

@<remote server> specifies a reservation at a server other than the default server.

2.30.6 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "Reservation Attributes” on page 303
PBS Professional 2022.1 Reference Guide RG-95

Chapter 2 PBS Commands
2.31 pbs_rsub

Creates a PBS reservation

2.31.1 Synopsis

For advance and standing reservations:

pbs_rsub [-D <duration>] [-E <end time>] [-g <group list>] [-G <auth group list>] [-H <auth host list>] [-I <block
time>] [-l <placement>] [-l <resource request>] [-m <mail events>] [-M <mail list>] [-N <reservation name>]
[-q <destination>] [-r <recurrence rule>] [-R <start time>] [-u <user list>] [-U <auth user list>] [-W <attribute
value list>]

For job-specific now reservations:

pbs_rsub [-I <block time>] [-m <mail events>] [-M <mail list>] --job <job ID>

For maintenance reservations:

pbs_rsub [-D <duration>] [-E <end time>] [-g <group list>] [-G <auth group list>] [-H <auth host list>] [-m <mail
events>] [-M <mail list>] [-N <reservation name>] [-q <destination>] [-R <start time>] [-u <user list>] [-U
<auth user list>] --hosts <host list>

For version information:

pbs_rsub --version

2.31.2 Description

The pbs_rsub command is used to create advance, standing, job-specific now, job-specific ASAP, or maintenance res-
ervations. For creating job-specific start reservations, see "qsub” on page 216.

• An advance reservation reserves specific resources for the requested time period.

• A standing reservation reserves specific resources for recurring time periods.

• A job-specific now reservation reserves the resources being used by a specific job in case the job fails and needs to
be re-submitted, allowing it to run again without having to wait to be scheduled. The reservation is created and starts
running when a queued job starts running, or immediately when you use pbs_rsub --job <job ID> on a running
job.

• A job-specific ASAP reservation is created from a queued job via pbs_rsub -Wqmove=<job ID>. The reser-
vation runs as soon as possible, and the job is moved into the reservation. The reservation is created using the same
resources as the job requested.

• A job-specific start reservation is created immediately using a running job's resources, and the job is moved into the
reservation. You create job-specific start reservations using qsub -Wcreate_resv_from_job=true on a
running job or when you qalter a job to set the job's create_resv_from_job attribute to True. See the qsub
command.

• A maintenance reservation reserves the specified hosts for the specified time regardless of other circumstances.

Advance, standing, and job-specific reservations are "job reservations", to distinguish them from maintenance reserva-
tions. When a reservation is created, it has an associated queue.

To get information about a reservation, use the pbs_rstat command.

To delete a reservation, use the pbs_rdel command. Do not use the qdel command.
RG-96 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
The behavior of the pbs_rsub command may be affected by any site hooks. Site hooks can modify the reservation's
attributes.

2.31.2.1 Job Reservations

After an advance or standing reservation is requested, it is either confirmed or denied. A job-specific now reservation is
created when the job is started and confirmed immediately. A job-specific ASAP reservation is scheduled as soon as pos-
sible. Once the reservation has been confirmed, authorized users submit jobs to the reservation's queue via qsub and
qmove.

A confirmed job reservation will accept jobs at any time. The jobs in its queue can run only during the reservation
period. Jobs in a single advance reservation or job-specific reservation can run only during the reservation's time slot,
and jobs in a standing reservation can run only during the time slots of occurrences of the standing reservation.

When an advance reservation ends, all of its jobs are deleted, whether running or queued. When an occurrence of a
standing reservation ends, only its running jobs are deleted; those jobs still in the queue are not deleted.

2.31.2.2 Maintenance Reservations

You can create maintenance reservations using pbs_rsub --hosts <host list>. Maintenance reservations are
designed to make the specified hosts available for the specified amount of time, regardless of what else is happening:

• You can create a maintenance reservation that includes or is made up of vnodes that are down or offline.

• Maintenance reservations ignore the value of a vnode's resv_enable attribute.

• PBS immediately confirms any maintenance reservation.

• Maintenance reservations take precedence over other reservations; if you create a maintenance reservation that over-
laps an advance or standing job reservation, the overlapping vnodes become unavailable to the job reservation, and
the job reservation is in conflict with the maintenance reservation. PBS looks for replacement vnodes; see "Reserva-
tion Fault Tolerance" on page 401 in the PBS Professional Administrator’s Guide.

PBS will not start any new jobs on vnodes overlapping or in a maintenance reservation. However, jobs that were already
running on overlapping vnodes continue to run; you can let them run or requeue them.

You cannot specify place or select for a maintenance reservation; these are created by PBS:

• PBS creates the reservation's placement specification so that hosts are assigned exclusively to the reservation. The
placement specification is always the following:

-lplace=exclhost
• PBS sets the reservation's resv_nodes attribute value so that all CPUs on the reserved hosts are assigned to the

maintenance reservation. The select specification is always the following:

-lselect=host=<host1>:ncpus=<number of CPUs at host1>+host=<host2>:ncpus=<number of CPUs at
host2>+...

Maintenance reservations are prefixed with M. A maintenance reservation ID has the format:

M<sequence number>.<server name>

You cannot create a recurring maintenance reservation.

Creating a maintenance reservation does not trigger a scheduling cycle.

You must have manager or operator privilege to create a maintenance reservation.

2.31.2.3 Requirements

When using pbs_rsub to request a standing, advance, or maintenance reservation, you must specify two of the follow-
ing options: -R, -E, and -D. The resource request -l walltime can be used instead of the -D option.
PBS Professional 2022.1 Reference Guide RG-97

Chapter 2 PBS Commands
If you want to run jobs in a reservation that will request exclusive placement, you must create the reservation with exclu-
sive placement via -l place=excl.

2.31.3 Options to pbs_rsub

-D <duration>
Specifies reservation duration. If the start time and end time are the only times specified, this duration time is
calculated.

Format: Duration

Default: none

-E <end time>
Specifies the reservation end time. If start time and duration are the only times specified, the end time value is
calculated.

Format: Datetime.

Default: none

-g <group_list>
The group list is a comma-separated list of group names. The server uses entries in this list, along with an
ordered set of rules, to associate a group name with the reservation. The reservation creator's primary group is
automatically added to this list.

Format: <group>@<hostname>[,<group>@<hostname> ...]

-G <auth group list>
Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation's
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: No groups are authorized to submit jobs

--hosts <host list>
Space-separated list of hosts to be included in maintenance reservation. PBS creates placement and resource
requests. Placement is always exclhost, and all CPUs of requested hosts are assigned to maintenance reserva-
tion. Cannot be used with the -l <placement>, -l <resource request>, or -I <block time>
options.

-H <auth host list>
Comma-separated list of hosts from which jobs can and cannot be submitted to this reservation. This list
becomes the acl_hosts list for the reservation's queue. More specific entries should be listed before more gen-
eral, because the list is read left-to-right, and the first match determines access. If the reservation creator speci-
fies this list, the creator's host is not automatically added to the list.

See the Authorized_Hosts reservation attribute in section 6.8, “Reservation Attributes”, on page 303.
RG-98 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Format: [+|-]<hostname>[,[+|-]<hostname> ...]

Default: All hosts are authorized to submit jobs

-I <block time>
Specifies interactive mode. The pbs_rsub command will block, up to block time seconds, while waiting for
the reservation request to be confirmed or denied.

If block time is positive, and the reservation isn't confirmed or denied in the specified time, the ID string for the
reservation is returned with the status "UNCONFIRMED".

If block time is negative, and a scheduler doesn't confirm or deny the reservation in the specified time, the reser-
vation is deleted.

Cannot be used with --hosts option. Has no effect when used with --job option.

Format: Integer.

Default: Not interactive.

--job <job ID>
Immediately creates and confirms a job-specific now reservation on the same resources as the job (including
resources inherited by the job), and places the job in the job-specific now reservation queue. Sets the job's
create_resv_from_job attribute to True. Sets the now reservation's reserve_job attribute to the ID of the job
from which the reservation was created, sets the reservation's Reserve_Owner attribute to the value of the
job's Job_Owner attribute, sets the reservation's resv_nodes attribute to the job's exec_vnode attribute, sets
the reservation's resources to match the job's schedselect attribute, and sets the reservation's Resource_List
attribute to the job's Resource_List attribute.

The now reservation's duration and start time are the same as the job's walltime and start time. If the job is peer
scheduled, the now reservation is created in the pulling complex.

Format: job ID

Default: no default

Example:

pbs_rsub --job 1234.myserver

Can be used on running jobs only (jobs in the R state, with substate 42).

Cannot be used with job arrays, jobs already in reservations, or other users' jobs.

-l <placement>
The placement specifies how vnodes are reserved. The place statement can contain the following elements, in
any order:

-l place=[<arrangement>][:[<sharing>]][:[<grouping>]]

where

arrangement
Whether this reservation chunk is willing to share this vnode or host with other chunks from this reserva-
tion. One of free | pack | scatter | vscatter

sharing
Whether this reservation chunk is willing to share this vnode or host with other reservations or jobs. One of
excl | shared | exclhost

grouping
Whether the chunks from this reservation should be placed on vnodes that all have the same value for a
resource. Can have only one instance of group=<resource name>

free
Place reservation on any vnode(s).

pack
PBS Professional 2022.1 Reference Guide RG-99

Chapter 2 PBS Commands
All chunks are taken from one host.

scatter
Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be
taken from the same vnode as another chunk.

vscatter
Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl
Only this reservation uses the vnodes chosen.

shared
This reservation can share the vnodes chosen.

exclhost
The entire host is allocated to the reservation.

group=<resource name>
Chunks are grouped according to the specified resource. All vnodes in the group must have a common
value for resource, which can be either the built-in resource host or a custom vnode-level resource.

Resource name must be a string or a string array.

If you want to run jobs in the reservation that will request exclusive placement, you must create the reservation
with exclusive placement via -l place=excl.

The place statement cannot start with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override reservation placement requests.

See section 6.10, “Vnode Attributes”, on page 320.

Cannot be used with --hosts option.

-l <resource request>
The resource request specifies the resources required for the reservation. These resources are used for the limits
on the queue that is dynamically created for the reservation. The aggregate amount of resources for currently
running jobs from this queue will not exceed these resource limits. Jobs in the queue that request more of a
resource than the queue limit for that resource are not allowed to run. Also, the queue inherits the value of any
resource limit set on the server, and these are used for the job if the reservation request itself is silent about that
resource. A non-privileged user cannot submit a reservation requesting a custom resource which has been cre-
ated to be invisible or read-only for users.

Resources are requested by using the -l option, either in chunks inside of selection statements, or in job-wide
requests using <resource name>=<value> pairs.

Requesting resources in chunks:

-l select=[N:]<chunk>[+[N:]<chunk> ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

Requesting job-wide resources:

-l <resource name>=<value>[,<resource name>=<value> ...]

Default: One chunk containing one CPU.

Cannot be used with --hosts option.
RG-100 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-m <mail events>
Specifies the set of events that cause mail to be sent to the list of users specified in the -M <mail list>
option.

Format: string consisting of one of the following:

• Any combination of "a", "b", "c" or "e"

• The single character "n"

The following table lists the sub-options to the -m option:

 Default: "ac".

-M <mail list>
The list of users to whom mail is sent whenever the reservation transitions to one of the states specified in the -m
<mail events> option.

Format: <username>[@<hostname>][,<username>[@<hostname>]...]

Default: Reservation owner.

-N <reservation name>
Specifies a name for the reservation.

Format: Reservation Name. See "Reservation Name” on page 358.

Default: None.

-q <server>
Specifies the server at which to create the reservation.

Default: Default server

-r <recurrence rule>
Specifies rule for recurrence of standing reservations. Rule must conform to iCalendar syntax, and is specified
using a subset of parameters from RFC 2445.

Valid syntax for recurrence rule takes one of two forms:

FREQ=<freq spec>;COUNT=<count spec>;<interval spec>

or

FREQ=<freq spec>;UNTIL=<until spec>;<interval spec>

where

freq spec
Frequency with which the standing reservation repeats. Valid values are:

WEEKLY|DAILY|HOURLY

Table 2-5: Sub-options to -m Option

Character Meaning

a Notify if the reservation is terminated for whatever reason

b Notify when the reservation period begins

c Notify when the reservation is confirmed

e Notify when the reservation period ends

n Send no mail. Cannot be used with any of a, b, c, or e.
PBS Professional 2022.1 Reference Guide RG-101

Chapter 2 PBS Commands
count spec
The exact number of occurrences. Number up to 4 digits in length.

Format: Integer.

interval spec
Specifies interval. Format is one or both of:

BYDAY=MO|TU|WE|TH|FR|SA|SU

or

BYHOUR=0|1|2|...|23

When using both, separate them with a semicolon.

Elements specified in the recurrence rule override those specified in the arguments to the -R and -E options.
For example, the BYHOUR specification overrides the hourly part of the -R option. For example, -R
0730 -E 0830 ... BYHOUR=9 results in a reservation that starts at 9:30 and runs for 1 hour.

until spec
Occurrences will start up to but not after date and time specified. Format:

<YYYYMMDD>[T<HHMMSS>]

Note that the year-month-day section is separated from the hour-minute-second section by a capital T.

Requirements:

• The recurrence rule must be on one unbroken line and must be enclosed in double quotes.

• A start and end date must be used when specifying a recurrence rule. See the R and E options.

• The PBS_TZID environment variable must be set at the submission host. The format for PBS_TZID is a
timezone location. Examples: America/Los_Angeles, America/Detroit, Europe/Berlin,
Asia/Calcutta. See the PBS Professional User's Guide.

• Spaces are not allowed.

Examples of Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10 occurrences:

pbs_rsub -R 0800 -E 1000 -r "FREQ=DAILY;COUNT=10"

Every weekday from 6am to 6pm until December 10 2008

pbs_rsub -R 0600 -E 1800 -r "FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR;UNTIL=20081210"

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9 occurrences, i.e., for three weeks:

pbs_rsub -R 1500 -E 1700 -r "FREQ=WEEKLY;BYDAY=MO,WE,FR;COUNT=3"

-R <start time>
Specifies reservation starting time. If the reservation's end time and duration are the only times specified, this
start time is calculated.

If the day, DD, is not specified, it defaults to today if the time hhmm is in the future. Otherwise, the day is set to
tomorrow. For example, if you submit a reservation with the specification -R 1110 at 11:15 a.m., it is inter-
preted as being for 11:10am tomorrow. If the month portion, MM, is not specified, it defaults to the current
month, provided that the specified day DD, is in the future. Otherwise, the month is set to next month. Similar
rules apply to the two other optional, left-side components.

Format: Datetime

-u <user list>
Not used. Comma-separated list of user names.

Format: <username>[@<hostname>][,<username>[@<hostname>] ...]

Default: None.
RG-102 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-U <auth user list>
Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation's
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator's username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]
Default: Job owner only.

-W<extended options>
This allows you to define other attributes for the reservation or perform other actions.

delete_idle_time=<allowed idle time>
Deletes the reservation after the specified amount of idle time. Applies to each instance of a standing reser-
vation.

The default value for the delete_idle_time attribute for an ASAP reservation is 10 minutes.

qmove=<job ID> [-I -<timeout>]
Takes as input a queued job, creates a job-specific ASAP reservation for the same resources the job
requests, and moves the job into the reservation's queue. The reservation is scheduled to run as soon as pos-
sible.

When the reservation is created, it inherits its resources from the job, not from the resources requested
through the pbs_rsub command.

You can use the -I option to specify a timeout for the conversion. If you use the qmove option to convert
a job to a reservation, and the reservation is not confirmed within the timeout period, the reservation is
deleted. The default timeout period is 10 seconds. There is no option for this kind of reservation to be
unconfirmed.

To specify the timeout, you must give a negative value for the -I option. For example, to specify a timeout
of 300 seconds:

pbs_rsub -Wqmove=<job ID> -I -300

The default value for the delete_idle_time attribute for an ASAP reservation is 10 minutes.

The -R and -E options to pbs_rsub are disabled when using the qmove=<job ID> option.

Some shells require that you enclose a job array ID in double quotes.

Can be used on queued jobs only.

--version
The pbs_rsub command returns its PBS version information and exits. This option can only be used alone.

2.31.4 Output

The pbs_rsub command returns the reservation identifier.

Format for an advance or job-specific reservation:

R<sequence number>.<server name>

The associated queue's name is the prefix, R<sequence number>.
PBS Professional 2022.1 Reference Guide RG-103

Chapter 2 PBS Commands
Format for a standing reservation:

S<sequence number>.<server name>

The associated queue's name is the prefix, S<sequence number>.

Format for a maintenance reservation:

M<sequence number>.<server name>

2.31.5 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "pbs_rstat” on page 94, "pbs_rdel” on
page 90, "Reservation Attributes” on page 303
RG-104 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.32 pbs_sched

Runs a PBS scheduler

2.32.1 Synopsis

pbs_sched [-a <alarm>] [-c <clientsfile>] [-d <home dir>] [-I <scheduler name>] [-L <logfile>] [-n] [-N] [-p
<output file>] [-t <num threads>]

pbs_sched --version

2.32.2 Description

Runs the default scheduler or a multisched.

2.32.2.1 Required Permission

pbs_sched must be executed with root permission.

2.32.3 Options to pbs_sched

-c <clientsfile>
Add clients to this scheduler's list of known clients. The clientsfile contains single-line entries of the form

$clienthost <hostname>

Each hostname is added to the list of hosts allowed to connect to this scheduler. If clientsfile cannot be opened,
this scheduler aborts. Path can be absolute or relative. If relative, it is relative to PBS_HOME/sched_priv/.

-d <home dir>
The directory in which this scheduler will run.

Default: PBS_HOME/sched_priv.

-I <scheduler name>
Name of scheduler to start. Required when starting a multisched.

-L <logfile>
The absolute path and filename of the log file. This scheduler writes its PBS version and build information to
logfile whenever it starts up or logfile is rolled to a new file.

See the -d option.

Default: This scheduler opens a file named for the current date in the PBS_HOME/sched_log directory.

-n
Tells this scheduler to not restart itself if it receives a sigsegv or a sigbus. A scheduler by default restarts itself
if it receives either of these two signals more than five minutes after starting. A scheduler does not restart itself
if it receives either one within five minutes of starting.

-N
Runs the scheduler in standalone mode.
PBS Professional 2022.1 Reference Guide RG-105

Chapter 2 PBS Commands
-p <output file>
Any output which is written to standard out or standard error is written to output file. The pathname can be
absolute or relative, in which case it is relative to PBS_HOME/sched_priv.

See the -d option.

Default: PBS_HOME/sched_priv/sched_out

-t <num threads>
Specifies number of threads for this scheduler.

Scheduler automatically caps number of threads at the number of cores (or hyperthreads if applicable), regard-
less of value of num threads.

Overrides PBS_SCHED_THREADS environment variable and PBS_SCHED_THREADS parameter in
pbs.conf.

Valid values: >=1

Default: one thread

--version
The pbs_sched command returns its PBS version information and exits. This option can only be used alone.

2.32.4 Signal Handling

All signals are ignored until the end of the cycle. Most signals are handled in the standard UNIX fashion.

SIGHUP
This scheduler closes and reopens its log file and rereads its configuration file if one exists.

SIGALRM, SIGBUS, etc.
Ignored until end of scheduling cycle. This scheduler quits.

SIGINT and SIGTERM
This scheduler closes its log file and shuts down.

All other signals have the default action installed.

2.32.5 Exit Status

Zero
Upon normal termination

2.32.6 See Also

The PBS Professional Administrator's Guide
RG-106 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.33 pbs_server

Starts a PBS batch server

2.33.1 Synopsis

pbs_server [-A <acctfile>] [-a <active>] [-C] [-d <config path>] [-e <mask>] [-F <delay>] [-L <logfile>] [-M
<MoM port>] [-N] [-p <port number>] [-R <MoM RM port>] [-s <replacement string>] [-t <restart type>]

pbs_server --version

2.33.2 Description

The pbs_server command starts a batch server on the local host. Typically, this command is in a local boot file such
as /etc/rc.local. If the batch server is already running, pbs_server exits with an error.

2.33.2.1 Required Permission

To ensure that the pbs_server command is not runnable by the general user community, the server runs only if its real
and effective UID is zero. You must be root.

2.33.3 Options to pbs_server

-A <acctfile>
Specifies an absolute path name for the file to use as the accounting file. If not specified, the file is named for
the current date in the PBS_HOME/server_priv/accounting directory.

-a <value>
When True, the server is in state "active" and the default scheduler is called to schedule jobs. When False, the
server is in state "idle" and the default scheduler is not called to schedule jobs. Sets the server's scheduling
attribute. If this option is not specified, the server uses the previously specified value for the scheduling
attribute.

Format: Boolean

-C
The server starts up, creates the database, and exits. Windows only.

-d <config path>
Specifies the absolute path to the directory containing the server configuration files, PBS_HOME. A host may
have multiple servers. Each server must have a different configuration directory. The default configuration
directory is specified in $PBS_HOME, and is typically /var/spool/pbs.

-e <mask>
Specifies a log event mask to be used when logging. See "log_events" in section 6.6, “Server Attributes”, on
page 281.

-F <delay>
Specifies the number of seconds that the secondary server should wait before taking over when it believes the
primary server is down. If the number of seconds is specified as -1, the secondary will make one attempt to
contact the primary and then become active.

Default: 30 seconds
PBS Professional 2022.1 Reference Guide RG-107

Chapter 2 PBS Commands
-L <logfile>
Specifies the absolute path name for the log file. If not specified, the file is named for the current date in the
PBS_HOME/server_logs directory. PBS_HOME is specified in the $PBS_HOME environment variable or in
/etc/pbs.conf; see the -d option.

-M <MoM port>
Specifies the hostname and/or port number on which the server should connect to MoM. The option argument,
MoM port, uses the syntax:

[<hostname>][:<port number>]
If hostname not specified, the local host is assumed.

If port number is not specified, the default port is assumed.

See the -M option in section 2.22, “pbs_mom”, on page 71.

Default: 15002

-N
Runs the server in standalone mode.

-p <port number>
Specifies the port number on which the server is to listen for batch requests. If multiple servers are running on
a single host, each must have its own unique port number. This option is for testing with multiple batch systems
on a single host.

Format: Integer port number

Default: 15001

-R <MoM RM port>
Specifies the port number on which the server should query the up/down status of MoM. See the -R option in
section 2.22, “pbs_mom”, on page 71.

Default: 15003

-s <replacement string>
Specifies the string to use when replacing spaces in accounting entity names. Only available under Windows.

-t <restart type>
Specifies behavior when the server restarts. The restart type argument is one of the following:

cold
All jobs are purged. Positive confirmation is required before this direction is accepted.

create
The server discards any existing configuration files: server, nodes, queues, and jobs, and initializes config-
uration files to the default values. The default scheduler is idled (scheduling is set to False). Any multi-
scheds are deleted.

hot
All jobs in the Running state are retained in that state. Any job that was requeued into the Queued state
from the Running state when the server last shut down is run immediately, assuming the required resources
are available. This returns the server to the same state as when it went down. After those jobs are restarted,
normal scheduling takes place for all remaining queued jobs. All other jobs are retained in their current
state.

If a job cannot be restarted immediately because of a missing resource, such as a vnode being down, the
server attempts to restart it periodically for up to 5 minutes. After that period, the server will revert to a nor-
mal state, as if warm started, and will no longer attempt to restart any remaining jobs which were running
prior to the shutdown.

updatedb
Updates format of PBS data from the previous format to the data service format.
RG-108 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
warm
All jobs in the Running state are retained in that state. All other jobs are maintained in their current state.
The default scheduler typically chooses new jobs for execution. warm is the default if -t is not specified.

--version
The pbs_server command returns its PBS version information and exits. This option can only be used
alone.

2.33.4 Files

$PBS_HOME/server_priv

Default directory for configuration files.

$PBS_HOME/server_logs

Directory for log files recorded by the server.

2.33.5 Signal Handling for pbs_server

When it receives the following signals, the server performs the following actions:

SIGHUP
The current server log and accounting log are closed and reopened. This allows for the prior log to be renamed
and a new log started from the time of the signal.

SIGTERM
Causes a rapid orderly shutdown of pbs_server, identical to "qterm -t quick".

SIGSHUTDN
On systems where SIGSHUTDN is defined, causes an orderly "quick" shutdown of the server.

SIGPIPE, SIGUSR1, SIGUSR2
These signals are ignored.

All other signals have their default behavior installed.

2.33.6 Diagnostic Messages

The server records a diagnostic message in a log file for any error occurrence. The log files are maintained in the
server_logs directory below the home directory of the server. If the log file cannot be opened, the diagnostic message
is written to the system console. The server writes its PBS version and build information to the logfile whenever it starts
up or the logfile is rolled to a new file.

2.33.7 Stopping the PBS Server

2.33.7.1 Stopping the Server on Linux

Use the qterm command (see section 2.58, “qterm”, on page 236):

qterm

or send a SIGTERM:

kill <server PID>
PBS Professional 2022.1 Reference Guide RG-109

Chapter 2 PBS Commands
2.33.8 Exit Status

Zero
When the server has run in the background and then exits

Greater than zero
If the server daemon fails to begin batch operation

2.33.9 See Also

The PBS Professional Administrator's Guide
RG-110 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.34 pbs_snapshot

Linux only. Captures PBS workload and configuration data

2.34.1 Synopsis

pbs_snapshot -h, --help

pbs_snapshot -o <output directory path> [--accounting-logs=<number of days>] [--additional-hosts=<hostname
list>] [--basic] [--config-only] [--daemon-logs=<number of days>] [-H <server host>] [-l <log level>]
[--map=<file path>] [--obfuscate] [--with-sudo]

pbs_snapshot [--obf-snap <path to snapshot>]

pbs_snapshot --version

2.34.2 Description

You use pbs_snapshot to capture PBS workload and configuration data. This tool is written in Python and uses PTL
libraries, including PBSSnapUtils, to extract the data. You can optionally anonymize the PBS data during or after captur-
ing it. The pbs_snapshot command captures data from all multischeds. The command detects which daemon or dae-
mons are running on the host where it is collecting information, and captures daemon and system data accordingly. If no
PBS daemons are running, the command collects system information. The output tarball contains information about the
host specified via the -H option, or if that is not specified, the local host. If you specify additional hosts, the command
creates a tarball for each additional host and includes it as a sub-tarball in the output.

• To supply information for simulation that you will use to tune your site, capture standard PBS configuration and
node information via the --basic option.

• To supply information to PBS Cloud, capture PBS configuration file information via the --config-only option.

• For debugging your site, capture everything via the default behavior (do not specify --basic or --con-
fig-only).

2.34.2.1 Required Privilege

The pbs_snapshot command allows you to use the sudo infrastructure provided by the PTL framework to capture
root-owned information via --with-sudo. All other information is collected as a normal user. If you need to run
pbs_snapshot as a non-privileged user, and without using the PTL --with-sudo infrastructure, you must be root
if you want root-owned information to be collected.

2.34.2.2 Restrictions

The pbs_snapshot command is not available on Windows.
PBS Professional 2022.1 Reference Guide RG-111

Chapter 2 PBS Commands
2.34.3 Options to pbs_snapshot

--accounting-logs=<number of days>
Specifies number of days of accounting logs to be collected; this count includes the current day.

Value of number of days must be >=0:

• If number of days is 0, no logs are captured.

• If number of days is 1, only the logs for the current day are captured.

Default: pbs_snapshot collects 30 days of accounting logs

--additional-hosts=<hostname list>
Specifies that pbs_snapshot should gather data from the specified list of additional hosts. Launches the
pbs_snapshot command on each specified host, creates a tarball there named <hostname>_snapshot.tgz,
and includes it as a sub-tarball in the output for the main output. If you use the --with-sudo option, each
launched copy uses that option as well.

The command does not query the server when it runs at a non-server host.

The command collects a full snapshot, including the following information:

• Daemon logs, for the number of days of logs being captured, specified via the --daemon-logs=<num-
ber of days> option

• The PBS_HOME/<daemon>_priv directory

• Accounting logs if server daemon runs on host

• System information

Format for hostname list is a comma-separated list of one or more hostnames:

<hostname>[, <hostname> ...]
RG-112 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
--basic
Captures basic PBS configuration and node information only. Captures the following:

Can be combined with other options such as --accounting-logs and --daemon-logs in order to cap-
ture additional information.

We also list the contents in section 2.34.4.2, “Output Contents”, on page 116.

Table 2-6: PBS Configuration Information Captured with --basic Option

Directory or
File

Output File Description of Captured Information

pbs.conf Copy of /etc/pbs.conf on server host

server qstat_Bf.out Output of qstat -Bf

qstat_Qf.out Output of qstat -Qf

server_priv resourcedef Copy of server_priv/resourcedef file

config Copy of server_priv/config file

scheduler qmgr_lsched.out Output of qmgr -c 'list sched'

sched_priv for
each scheduler
instance

sched_priv Copy of each scheduler's sched_priv directory

hook qmgr_lpbshook.out Output of qmgr -c 'list pbshook'

qmgr_ph_default.out Output of qmgr -c 'print hook @default'

mom_priv on
server host only, if
it exists

config on server host
only, if it exists

Copy of mom_priv/config file

node pbsnodes_va.out Output of pbsnodes -va

reservation pbs_rstat_f.out Output of pbs_rstat -f

job qstat_f.out Output of qstat -f

system os_info OS information

pbs_environment Copy of pbs_environment file

pbs_snapshot.log Log of pbs_snapshot execution

ctime Timestamp of when the snapshot was taken
PBS Professional 2022.1 Reference Guide RG-113

Chapter 2 PBS Commands
--config-only
Captures PBS configuration file information only. Captures the following:

Can be combined with other options such as --accounting-logs and --daemon-logs in order to cap-
ture additional information.

We also list the contents in section 2.34.4.2, “Output Contents”, on page 116.

--daemon-logs=<number of days>
Specifies number of days of daemon logs to be collected; this count includes the current day.

Value of number of days must be >=0:

• If number of days is 0, no logs are captured.

• If number of days is 1, only the logs for the current day are captured.

Default: pbs_snapshot collects 5 days of daemon logs

-h, --help
Prints usage and exits.

Table 2-7: PBS Configuration Information Captured with --config-only Option

Directory or
File

Output File Description of Captured Information

pbs.conf Copy of /etc/pbs.conf on server host

server qstat_Bf.out Output of qstat -Bf

qstat_Qf.out Output of qstat -Qf

server_priv resourcedef Copy of server_priv/resourcedef file

config Copy of server_priv/config file

scheduler qmgr_lsched.out Output of qmgr -c 'list sched'

sched_priv for
each scheduler
instance

dedicated_time Copy of dedicated_time file

holidays Copy of holidays file

resource_group Copy of resource_group file

sched_config Copy of sched_config file

hook qmgr_lpbshook.out Output of qmgr -c 'list pbshook'

qmgr_ph_default.out Output of qmgr -c 'print hook @default'

mom_priv only
for server host, if
it exists

config on server host
only, if it exists

Copy of mom_priv/config file

system os_info OS information

pbs_environment Copy of pbs_environment file

pbs_snapshot.log Log of pbs_snapshot execution

ctime Timestamp of when the snapshot was taken
RG-114 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-H <hostname>
Specifies hostname for host whose retrieved data is to be at the top level in the output tarball. If not specified,
pbs_snapshot puts data for the local host at the top level in the output tarball.

-l <log level>
Specifies level at which pbs_snapshot writes its log. The log file is pbs_snapshot.log, in the output
directory path specified using the -o <output directory path> option.

Valid values, from most comprehensive to least: DEBUG2, DEBUG, INFOCLI2, INFOCLI, INFO, WARN-
ING, ERROR, FATAL

Default: INFOCLI2

--map=<file path>
Specifies path for file containing obfuscation map, which is a <key>:<value> pair-mapping of obfuscated data.
Path can be absolute or relative to current working directory.

Default: pbs_snapshot writes its obfuscation map in a file called "obfuscate.map" in the location specified
via the -o <output directory path> option.

Can only be used with the --obfuscate option.

-o <output directory path>
Path to directory where pbs_snapshot writes its output tarball. Required. Path can be absolute or relative to
current working directory.

For example, if you specify "-o /tmp", pbs_snapshot writes "/tmp/snapshot_<timestamp>.tgz".

The output directory path must already exist.

--obfuscate
Obfuscates (anonymizes) or deletes sensitive PBS data being captured by pbs_snapshot.

• Obfuscates the following data: euser, egroup, project, Account_Name, operators, managers,
group_list, Mail_Users, User_List, server_host, acl_groups, acl_users, acl_resv_groups,
acl_resv_users, sched_host, acl_resv_hosts, acl_hosts, Job_Owner, exec_host, Host, Mom,
resources_available.host, resources_available.vnode

• Deletes the following data: Variable_List, Error_Path, Output_Path, mail_from, Mail_Points,
Job_Name, jobdir, Submit_arguments, Shell_Path_List

--obf-snap <path to snapshot>
Obfuscates (anonymizes) or deletes sensitive PBS data already captured in an existing snapshot. Path can be a
snapshot .tar file previously generated by pbs_snapshot, or a directory created by untarring a snapshot.
Obfuscated snapshot is created with the name "<directory or original snapshot>_obf.tgz".

• Obfuscates the following data: euser, egroup, project, Account_Name, operators, managers,
group_list, Mail_Users, User_List, server_host, acl_groups, acl_users, acl_resv_groups,
acl_resv_users, sched_host, acl_resv_hosts, acl_hosts, Job_Owner, exec_host, Host, Mom,
resources_available.host, resources_available.vnode

• Deletes the following data: Variable_List, Error_Path, Output_Path, mail_from, Mail_Points,
Job_Name, jobdir, Submit_arguments, Shell_Path_List

If the snapshot contains snapshots of multiple hosts, each snapshot must be obfuscated individually.

--version
The pbs_snapshot command prints its PBS version information and exits. Can only be used alone.

--with-sudo
Uses the PTL sudo infrastructure in order capture root-owned information via sudo. (Information not owned
by root is captured using normal privilege, not root privilege.) With this option, you do not need to prefix your
pbs_snapshot command with sudo, and you do not need root privilege.
PBS Professional 2022.1 Reference Guide RG-115

Chapter 2 PBS Commands
2.34.4 Output

2.34.4.1 Output Location

You must use the -o <output directory path> option to specify the directory where pbs_snapshot writes
its output. The path can be absolute or relative to current working directory. The output directory must already exist. As
an example, if you specify "-o /tmp", pbs_snapshot writes "/tmp/snapshot_<timestamp>.tgz".

2.34.4.2 Output Contents

The pbs_snapshot command writes the output for the local host and each specified remote host as a tarball. Tarballs
for remote hosts are included in the main tarball.

The command captures JSON output from qstat-f -F json and pbsnodes -av -F json.

The main tarball contains the following directory structure, files, and tarballs, and lists which of those elements appear in
a tarball produced by the --basic and --config-only options:

Table 2-8: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only

server/ qstat_B.out Output of qstat -B

qstat_Bf.out Output of qstat -Bf Yes Yes

qmgr_ps.out Output of qmgr print server

qstat_Q.out Output of qstat -Q

qstat_Qf.out Output of qstat -Qf Yes Yes

qmgr_pr.out Output of qmgr print resource

server_priv/ Copy of the PBS_HOME/server_priv directory.

Core files are captured separately; see core_file_bt/.

resourcedef resourcedef

config

accounting/ Accounting logs from
PBS_HOME/server_priv/accounting/
directory for the number of days specified
via --accounting-logs option

server_logs/ Server logs from the PBS_HOME/server_logs directory for the num-
ber of days specified via --daemon-logs option
RG-116 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
job/ qstat.out Output of qstat

qstat_f.out Output of qstat -f Yes

qstat_f_F_json.out Output of qstat -f -F json

qstat_t.out Output of qstat -t

qstat_tf.out Output of qstat -tf

qstat_x.out Output of qstat -x

qstat_xf.out Output of qstat -xf

qstat_ns.out Output of qstat -ns

qstat_fx_F_dsv.out Output of qstat -fx -F dsv

qstat_f_F_dsv.out Output of qstat -f -F dsv

node/ pbsnodes_va.out Output of pbsnodes -va Yes

pbsnodes_a.out Output of pbsnodes -a

pbsnodes_avSj.out Output of pbsnodes -avSj

pbsnodes_aSj.out Output of pbsnodes -aSj

pbsnodes_avS.out Output of pbsnodes -avS

pbsnodes_aS.out Output of pbsnodes -aS

pbsnodes_aFdsv.out Output of pbsnodes -aF dsv

pbsnodes_avFdsv.out Output of pbsnodes -avF dsv

pbsnodes_avFjson.out Output of pbsnodes -avF json

qmgr_pn_default.out Output of qmgr print node
@default

mom_priv/ Copy of the PBS_HOME/mom_priv directory.

Core files are captured separately; see core_file_bt/.

mom_priv/con
fig, only from
server host

mom_logs/ MoM logs from the PBS_HOME/mom_logs directory for the number
of days specified via --daemon-logs option

comm_logs/ Comm logs from the PBS_HOME/comm_logs directory for the number
of days specified via --daemon-logs option

sched_priv/ Copy of the PBS_HOME/sched_priv directory, with all files.

Core files are not captured; see core_file_bt/.

Yes

sched_logs/ Scheduler logs from the PBS_HOME/sched_log directory. For a
snapshot of a live PBS complex, this is for the number of days spec-
ified via pbs_snapshot --daemon-logs. For a simulation
output snapshot, this is for the time simulated via simsh <path
to snapshot> sim -L.

Table 2-8: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
PBS Professional 2022.1 Reference Guide RG-117

Chapter 2 PBS Commands
sched_priv_<m
ultisched
name>/

Copy of the PBS_HOME/sched_priv_<multisched name> directory,
with all files.

Core files are not captured; see core_file_bt/.

Yes dedicated_ti
me

holidays

resource_gro
up

sched_config

sched_logs_<m
ultisched
name>/

Multisched logs from the PBS_HOME/sched_log_<multisched
name> directory for the number of days specified via --dae-
mon-logs option

reservation/ pbs_rstat_f.out Output of pbs_rstat -f Yes

pbs_rstat.out Output of pbs_rstat

scheduler/ qmgr_lsched.out Output of qmgr list sched Yes Yes

hook/ qmgr_ph_default.out Output of qmgr -c 'print hook
@default'

Yes

qmgr_lpbshook.out Output of qmgr -c 'list
pbshook'

Yes Yes

datastore/ pg_log/ Copy of the PBS_HOME/datas-
tore/pg_log directory for the number of
days specified via --daemon-logs
option

Table 2-8: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
RG-118 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
core_file_bt/ Stack backtrace from core files

sched_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/sched_priv

sched_priv_<multi-
sched name>

Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/sched_priv_<multisched
name>

server_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/server_priv

mom_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/mom_priv

misc/ Files containing the output of thread
apply all backtrace full on
any other core files found inside
PBS_HOME

Table 2-8: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
PBS Professional 2022.1 Reference Guide RG-119

Chapter 2 PBS Commands
2.34.5 Examples

pbs_snapshot -o /tmp

Writes a snapshot to /tmp/snapshot_<timestamp>.tgz that includes 30 days of accounting logs and 5 days of
daemon logs from the server host.

pbs_snapshot --daemon-logs=1 --accounting-logs=1 -o /tmp --obfuscate --map=mapfile.txt

system/ pbs_probe_v.out Output of pbs_probe -v

pbs_hostn_v.out Output of pbs_hostn -v $(host-
name)

pbs_environment Copy of PBS_HOME/pbs_environment file Yes

os_info Information about the OS Yes

process_info List of processes running on the system
when the snapshot was taken. Output of
ps -aux | grep [p]bs on Linux
systems, or tasklist /v on Windows
systems

ps_leaf.out Output of ps -leaf. Linux only.

lsof_pbs.out Output of lsof | grep [p]bs.
Linux only.

etc_hosts Copy of /etc/hosts file. Linux only.

etc_nsswitch_conf Copy of /etc/nsswitch.conf file. Linux
only.

vmstat.out Output of the command vmstat. Linux
only.

df_h.out Output of the command df -h. Linux
only.

dmesg.out Output of the dmesg command. Linux
only.

pbs.conf Copy of the pbs.conf file on the server host Yes Yes

ctime Contains the time in seconds since epoch when the snapshot was
taken

Yes Yes

pbs_snapshot.
log

Log messages written by pbs_snapshot Yes Yes

<remote host-
name>.tgz

Tarball of output from running the pbs_snapshot command at a
remote host

Table 2-8: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
RG-120 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Writes a snapshot to /tmp/snapshot_<timestamp>.tgz that includes 1 day of accounting and daemon logs. Obfuscates
the data and stores the data mapping in the map file named "mapfile.txt".
PBS Professional 2022.1 Reference Guide RG-121

Chapter 2 PBS Commands
2.35 pbs_tclsh

Deprecated. TCL shell with TCL-wrapped PBS API

2.35.1 Synopsis

pbs_tclsh

pbs_tclsh --version

2.35.2 Description

The pbs_tclsh command starts a version of the TCL shell which includes wrapped versions of the PBS external API.
The PBS TCL API is documented in "TCL/tk Interface" on page 105 in the PBS Professional Programmer’s Guide.

The pbs_tclsh command is used to query MoM. For example:

> pbs_tclsh

tclsh> openrm <hostname>

<file descriptor>

tclsh> addreq <file descriptor> "loadave"

tclsh> getreq <file descriptor>

<load average>

tclsh> closereq <file descriptor>

2.35.2.1 Required Permission

Root privilege is required in order to query MoM for dynamic resources. Root privilege is not required in order to query
MoM for built-in resources and site-defined static resources.

2.35.3 Options

--version
The pbs_tclsh command returns its PBS version information and exits. This option can only be used alone.

2.35.4 Standard Error

The pbs_tclsh command writes a diagnostic message to standard error for each error occurrence.

2.35.5 See Also

The PBS Professional Administrator's Guide, the PBS Programmer's Guide, "pbs_wish” on page 127
RG-122 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.36 pbs_tmrsh

TM-enabled replacement for rsh/ssh for use by MPI implementations

2.36.1 Synopsis

pbs_tmrsh <hostname> [-l <username>] [-n] <command> [<args> ...]

pbs_tmrsh --version

2.36.2 Description

The pbs_tmrsh command attempts to emulate an "rsh" connection to the specified host, via underlying calls to the
Task Management (TM) API. The program is intended to be used during MPI integration activities, and not by
end-users.

Running "pbs_tmrsh <hostname> <command>" causes a PBS task to be started on hostname running command.

2.36.2.1 Requirements for Environment Variables

The environment variables used by the two MPI implementations to point to the rsh work-alike (MPI_REMSH in the
case of HP and P4_RSHCOMMAND for MPICH) must be set in the job environment and point to the full path for
pbs_tmrsh.

The file $PBS_HOME/pbs_environment should contain the environment variable PATH in which to search for the
program executable. This applies to both Windows and Linux. It is expected that a full path will be specified for the
command and the PATH variable will not be needed.

2.36.3 Options

-l <username>
Specifies the username under which to execute the task. If used, username must match the username running
the pbs_tmrsh command.

-n
A no-op; provided for MPI implementations that expect to call rsh with the "-n" option.

--version
The pbs_tmrsh command returns its PBS version information and exits. This option can only be used alone.

2.36.4 Operands

command
Specifies command to be run as a PBS task.

hostname
Specifies host on which to run PBS task. The hostname may be specified in IP-dot-address form.

2.36.5 Output and Error

Output and errors are written to the PBS job's output and error files, not to standard output/error.
PBS Professional 2022.1 Reference Guide RG-123

Chapter 2 PBS Commands
The pbs_tmrsh command writes a diagnostic message to the PBS job's error file for each error occurrence.

2.36.6 Exit Status

The pbs_tmrsh program exits with the exit status of the remote command or with 255 if an error occurred. This is
because ssh works this way.

2.36.7 See Also

The PBS Professional Administrator's Guide, "pbs_attach” on page 56, "TM Library Routines", on page 95 of the PBS
Professional Programmer’s Guide
RG-124 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.37 pbs_topologyinfo

Reports topological information

2.37.1 Synopsis

pbs_topologyinfo (-a | --all) [(-l | --license) | (-s | --sockets)]

pbs_topologyinfo (-l | --license) <vnode name> [<vnode name> ...]

pbs_topologyinfo (-s | --sockets) <vnode name> [<vnode name> ...]

pbs_topologyinfo -h | --help

2.37.2 Description

The pbs_topologyinfo command reports topological information for one or more vnodes. This information is used
for licensing purposes. To use the command, you must specify what kind of topological information you want. The
command reports only the requested information.

This command must be run on the server host.

2.37.2.1 Usage

pbs_topologyinfo -al reports number of node licenses needed for all vnodes.

pbs_topologyinfo -l <vnode name> reports number of node licenses needed for vnode name.

pbs_topologyinfo -as reports socket counts for all vnodes that have reported sockets.

pbs_topologyinfo -s <vnode name> reports socket count for vnode vnode name.

2.37.2.2 Prerequisites

Before you use this command, the server and MoMs must be configured so that they can contact each other, and must
have been run.

2.37.2.3 Required Privilege for pbs_topologyinfo

This command can be run only by root or Admin on Windows.

2.37.3 Options for pbs_topologyinfo

-a, --all
Reports requested topological information for all vnodes. When this option is used alone, the command does
not report any information.

-h, --help
Prints usage and exits.

-l, --license [<vnode name(s)>]
Reports number of node licenses required. If you specify vnode name(s), the command reports node licenses
needed for the specified vnode(s) only.
PBS Professional 2022.1 Reference Guide RG-125

Chapter 2 PBS Commands
-s, --sockets [<vnode name(s)>]
Reports derived socket counts. If you specify vnode name(s), the command reports socket count information
for the specified vnode(s) only.

(no options)
Does not report any information.

2.37.4 Errors

If you specify an invalid vnode name, the command prints a message to standard error.

2.37.5 Operands

vnode name [<vnode name> ...]
Name(s) of vnode(s) about which to report.

2.37.6 Exit Status

0
Success

1
Any error following successful command line processing

2.37.7 Standard Error

If an invalid vnode name is specified, a message is printed to standard error.

2.37.8 See Also

The PBS Professional Administrator's Guide
RG-126 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.38 pbs_wish

Deprecated. TK window shell with TCL-wrapped PBS API

2.38.1 Synopsis

pbs_wish

pbs_wish --version

2.38.2 Description

The pbs_wish command is a version of the TK window shell which includes wrapped versions of the PBS external
API. The PBS TCL API is documented in "TCL/tk Interface" on page 105 in the PBS Professional Programmer’s Guide.

2.38.3 Options

--version
The pbs_wish command returns its PBS version information and exits. This option can only be used alone.

2.38.4 Standard Error

The pbs_wish command writes a diagnostic message to standard error for each error occurrence.

2.38.5 See Also

The PBS Professional Administrator's Guide, "pbs_tclsh” on page 122
PBS Professional 2022.1 Reference Guide RG-127

Chapter 2 PBS Commands
2.39 printjob

Prints job information

2.39.1 Synopsis

printjob [-a | -s] <job ID>

printjob [-a] <file path> [<file path>...]

printjob --version

2.39.2 Description

Prints job information. This command is mainly useful for troubleshooting, as during normal operation, the "qstat" com-
mand is the preferred method for displaying job-specific data and attributes. The server and MoM do not have to be run-
ning to execute this command.

2.39.2.1 Usage

For a running job, you can run this command at any host using a job ID, and you can run this command at any execution
host where the job is running using a .JB file path.

For a finished job, if job history is enabled, you can run this command at the server using the job ID.

When querying the server, you must use the job ID, and the data service must be running.

Results will vary depending on whether you use the job ID or a .JB file, and on which execution host you query with a
.JB file.

2.39.2.2 Permissions

In order to execute printjob, you must have root or Windows Administrator privilege.

2.39.3 Options to printjob

(no options>
Prints all job data including job attributes.

-a
Suppresses the printing of job attributes. Cannot be used with -s option.

-s
Prints out the job script only. Can be used at server or primary execution host. Cannot be used with -a option.
Must be used with a job ID.

--version
The printjob command returns its PBS version information and exits. This option can only be used alone.
RG-128 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.39.4 Operands for printjob

file path
The printjob command accepts one or more file path operands at the execution host. Files are found in
PBS_HOME/mom_priv/jobs/ on the primary execution host. File path must include full path to file. Can-
not be used with -s option.

job ID
The printjob command accepts a job ID at the server host. The format is described in "Job ID, Job Identi-
fier” on page 355. Data service must be running.

2.39.5 Standard Error

The printjob command writes a diagnostic message to standard error for each error occurrence.

2.39.6 Exit Status

Zero
Upon successful processing of all operands presented

Greater than zero
If the printjob command fails to process any operand

2.39.7 See Also

The PBS Professional Administrator's Guide, "qstat” on page 200
PBS Professional 2022.1 Reference Guide RG-129

Chapter 2 PBS Commands
2.40 qalter

Alters a PBS job

2.40.1 Synopsis

qalter [-a <date and time>] [-A <account string>] [-c <checkpoint spec>] [-e <error path>] [-h <hold list>] [-j
<join>] [-k <discard>] [-l <resource list>] [-m <mail events>] [-M <user list>] [-N <name>] [-o <output path>]
[-p <priority>] [-P <project>] [-r <y|n>] [-R <remove options>] [-S <path list>] [-u <user list>] [-W
<additional attributes>] <job ID> [<job ID> ...]

qalter --version

2.40.2 Description

The qalter command is used to alter one or more PBS batch jobs. Each of certain job attributes can be modified using
the qalter option for that attribute. You can alter a job or a job array, but not a subjob or range of subjobs.

2.40.2.1 Required Privilege

A non-privileged user can alter their own jobs, whether they are queued or running. An Operator or Manager can alter
any job, whether it is queued or running.

A non-privileged user can only lower resource requests. An Operator or Manager can raise or lower resource requests.

2.40.2.2 Modifying Resources and Job Placement

A Manager or Operator may lower or raise requested resource limits, except for per-process limits such as pcput and
pmem, because these are set when the process starts, and enforced by the kernel. A non-privileged user can only lower
resource requests.

The qalter command cannot be used by a non-privileged user to alter a custom resource which has been created to be
invisible or read-only for users.

If a job is running, the only resources that can be modified are cput, walltime, min_walltime, and max_walltime.

If a job is queued, any resource mentioned in the options to the qalter command can be modified, but requested mod-
ifications must fit within the limits set at the server and queue for the amount of each resource allocated for queued jobs.
If a requested modification does not fit within these limits, the modification is rejected.

A job's resource request must fit within the queue's and server's resource run limits. If a modification to a resource
exceeds the amount of the resource allowed by the queue or server to be used by running jobs, the job is never run.

Requesting resources includes setting limits on resource usage and controlling how the job is placed on vnodes.

See Chapter 5, "List of Built-in Resources", on page 259.

2.40.2.2.i Syntax for Modifying Resources and Job Placement

Resources are modified by using the -l option, either in chunks inside of selection statements, or in job-wide requests
using <resource name>=<value> pairs. The selection statement is of the form:

-l select=[<N>:]<chunk>[+[<N>:]<chunk> ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]
RG-130 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Job-wide <resource name>=<value> requests are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

2.40.2.2.ii The Place Statement

You choose how your chunks are placed using the place statement. The place statement can contain the following
elements, in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where

arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |
pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

free

Place job on any vnode(s).

pack

All chunks are taken from one host.

scatter

Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be taken
from the same vnode as another chunk.

vscatter

Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl

Only this job uses the vnodes chosen.

shared

This job can share the vnodes chosen.

exclhost

The entire host is allocated to the job.

group=<resource name>

Chunks are grouped according to a resource. All vnodes in the group must have a common value for resource,
which can be either the built-in resource host or a custom vnode-level resource. The resource name must be a
string or a string array.

The place statement cannot begin with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override job placement requests. See section 6.10, “Vnode
Attributes”, on page 320.

For more on resources, resource requests, usage limits, and job placement, see "Using PBS Resources" on page 227 in
the PBS Professional Administrator’s Guide and "Allocating Resources & Placing Jobs", on page 51 of the PBS Profes-
sional User’s Guide.
PBS Professional 2022.1 Reference Guide RG-131

Chapter 2 PBS Commands
2.40.2.3 Modifying Attributes

The user alters job attributes via options to the qalter command. Each qalter option changes a job attribute.

The behavior of the qalter command may be affected by any site hooks. Site hooks can modify the job's attributes,
change its routing, etc.

To modify the max_run_subjobs attribute, use qalter -Wmax_run_subjobs=<new value> <job ID>.

2.40.2.4 Caveats and Restrictions for Altering Jobs

• When you lengthen the walltime of a running job, make sure that the new walltime will not interfere with any exist-
ing reservations etc.

• If any of the modifications to a job fails, none of the job's attributes is modified.

• A job that is in the process of provisioning cannot be altered.

2.40.3 Options to qalter

-a <date and time>
Changes the point in time after which the job is eligible for execution. Given in pairs of digits. Sets job's
Execution_Time attribute to date and time.

Format: Datetime

Each portion of the date defaults to the current date, as long as the next-smaller portion is in the future. For
example, if today is the 3rd of the month and the specified day DD is the 5th, the month MM is set to the current
month.

If a specified portion has already passed, the next-larger portion is set to one after the current date. For example,
if the day DD is not specified, but the hour hh is specified to be 10:00 a.m. and the current time is 11:00 a.m., the
day DD is set to tomorrow.

The job's Execution_Time attribute can be altered after the job has begun execution, in which case it will not
take effect until the job is rerun.

-A <account string>
Replaces the accounting string associated with the job. Used for labeling accounting data. Sets job's
Account_Name attribute to account string. This attribute cannot be altered once the job has begun execution.

Format: String

-c <checkpoint spec>
Changes when the job will be checkpointed. Sets job's Checkpoint attribute. An $action script is required to
checkpoint the job. This attribute can be altered after the job has begun execution, in which case the new value
will not take effect until the job is rerun.

The argument checkpoint spec can take one of the following values:

c
Checkpoint at intervals, measured in CPU time, set on job's execution queue. If no interval set at queue, job
is not checkpointed.

c=<minutes of CPU time>
Checkpoint at intervals of specified number of minutes of job CPU time. This value must be greater than
zero. If interval specified is less than that set on job's execution queue, queue's interval is used.

Format: Integer

w
Checkpoint at intervals, measured in walltime, set on job's execution queue. If no interval set at queue, job
is not checkpointed.
RG-132 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
w=<minutes of walltime>
Checkpoint at intervals of the specified number of minutes of job walltime. This value must be greater than
zero. If the interval specified is less that that set on the job's execution queue, the queue's interval is used.

Format: Integer

n
No checkpointing.

s
Checkpoint only when the server is shut down.

u
Unset. Defaults to behavior when interval argument is set to s.

Default: u

Format: String

-e <error path>
Replaces the path to be used for the job's standard error stream. Sets job's Error_Path attribute to error path.
Overridden by -k option.

Format: [<hostname>:]<path>

The error path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the qalter command, where
it is executing on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the qalter command is
executing.

hostname:path
If path is relative, it is taken to be relative to the user's home directory on the host named hostname.

If path is absolute, it is the absolute path on the host named hostname.

If path does not include a filename, the default filename is <job ID>.ER

If the -e option is not specified, PBS writes standard error to the default filename, which has this form:

<job name>.e<sequence number>

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.
PBS Professional 2022.1 Reference Guide RG-133

Chapter 2 PBS Commands
-h <hold list>
Updates the job's hold list. Adds hold list to the job's Hold_Types attribute. The hold list is a string of one or
more characters. The following table shows the holds and the privilege required to set each:

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

-j <join>
Changes whether and how to join the job's standard error and standard output streams. Sets job's Join_Path
attribute to join.

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

Default: n; not merged

The join argument can take the following values:

-k <discard>
Specifies whether and which of the standard output and standard error streams is left behind on the execution
host, or written to their final destination. Sets the job's Keep_Files attribute to discard.

k {e | o | eo | oe | n}
For the e, o, eo, oe, or n suboptions, overrides -o and -e options.

Table 2-9: Hold Types

Hold Type Meaning Who Can Set

u User Job owner, Operator, Manager, administrator, root

o Other Operator, Manager, administrator, root

s System Manager, administrator, root, PBS (dependency)

n None Job owner, Operator, Manager, administrator, root

p Bad password Administrator, root

Table 2-10: Join Path Options

Value Meaning

oe Standard error and standard output are merged into standard output.

eo Standard error and standard output are merged into standard error.

n Standard error and standard output are not merged.
RG-134 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
kd {e | o | eo | oe}
When used with the -d suboption, specifies that output and/or error files are written directly to the final des-
tination. Requires -o <output path> and/or -e <error path>.

Default: n; neither is retained, and files are not written directly to final destinations.

In the case where output and/or error is retained on the execution host in a job-specific staging and execution
directory created by PBS, these files are deleted when PBS deletes the directory.

The discard argument can take the following values:

-l <resource list>
Allows the user to change requested resources and job placement. Sets job's Resource_list attribute to resource
list. Uses resource request syntax. Requesting a resource places a limit on its usage. Users without manager or
operator privilege cannot alter a custom resource which was created to be invisible or read-only for users. For
syntax, see section 2.40.2.2.i, “Syntax for Modifying Resources and Job Placement”, on page 130.

If a requested modification to a resource would exceed the server's or the job queue's limits, the resource request
is rejected. Which resources can be altered is system-dependent.

If the job was submitted with an explicit "-l select=", vnode-level resources must be qaltered using the "-l
select=" form. In this case a vnode-level resource resource cannot be qaltered with the "-l <resource
name>" form.

The place statement cannot begin with a colon.

Examples:

1. Submit the job:

% qsub -l select=1:ncpus=2:mem=512mb jobscript

Job's ID is 230

2. qalter the job using "-l <resource name>" form:

% qalter -l ncpus=4 230

Error reported by qalter:

qalter: Resource must only appear in "select" specification when select is used: ncpus 230

3. qalter the job using the "-l select=" form:

% qalter -l select=1:ncpus=4:mem=512mb 230

Table 2-11: Sub-options to discard Option

Suboption Meaning

e The standard error stream is retained on the execution host, in the job's staging and execu-
tion directory. The filename is <job name>.e<sequence number>

o The standard output stream is retained on the execution host, in the job's staging and execu-
tion directory. The filename is <job name>.o<sequence number>

eo, oe Both standard output and standard error streams are retained on the execution host, in the
job's staging and execution directory.

d<e and/or o> Output and/or error are written directly to their final destination. Overrides action of leav-
ing files on execution host. Requires -o <output path> and/or -e <error
path>.

n Neither stream is retained.
PBS Professional 2022.1 Reference Guide RG-135

Chapter 2 PBS Commands
No error reported by qalter:

%

For more on resource requests, usage limits and job placement, see "Allocating Resources & Placing Jobs", on
page 51 of the PBS Professional User’s Guide.

-m <mail events>
Changes the set of conditions under which mail about the job is sent. Sets job's Mail_Points attribute to mail
events. The mail events argument can be one of the following:

• The single character "n"

• Any combination of "a", "b", and "e", with optional "j"

The following table lists the sub-options to the -m option:

Can be used with job arrays but not subjobs.

Format: String

Syntax: n | [j](one or more of a, b, e)

Example: -m ja

Default value: "a"

-M <user list>
Alters list of users to whom mail about the job is sent. Sets job's Mail_Users attribute to user list.

Format: <username>[@<hostname>][,<username>[@<hostname>],...]

Default: Job owner.

-N <name>
Renames the job. Sets job's Job_Name attribute to name.

Format: Job Name. See "Job Name, Job Array Name” on page 355.

Default: if a script is used to submit the job, the job's name is the name of the script. If no script is used, the
job's name is "STDIN".

-o <output path>
Alters path to be used for the job's standard output stream. Sets job's Output_Path attribute to output path.
Overridden by -k option.

Format: [<hostname>:]<path>

The output path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the command, where it is exe-
cuting on the current host.

Table 2-12: Sub-options to m Option

Suboption Meaning

n No mail is sent.

a Mail is sent when the job is aborted by PBS.

b Mail is sent when the job begins execution.

e Mail is sent when the job terminates.

j Mail is sent for subjobs. Must be combined with one or more of a, b, or e options
RG-136 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
If path is absolute, it is taken to be an absolute path on the current host where the command is executing.

<hostname>:<path>
If path is relative, it is taken to be relative to the user's home directory on the host named hostname.

If path is absolute, it is the absolute path on the host named hostname.

If path does not include a filename, the default filename is:

<job ID>.OU

If the -o option is not specified, PBS writes standard output to the default filename, which has this form:

<job name>.o<sequence number>

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

-p <priority>
Alters priority of the job. Sets job's Priority attribute to priority.

This attribute can be altered after the job has begun execution, in which case the new value will not take effect
until the job is rerun.

Format: Host-dependent integer

Range: [-1024, +1023] inclusive

Default: zero

-P <project>
Specifies a project for the job. Sets job's project attribute to specified value.

Format: Project Name; see "Project Name” on page 357

Default: "_pbs_project_default"

-r <y|n>
Changes whether the job is rerunnable. Sets job's Rerunable attribute to the argument. Does not affect how job
is handled when the job is unable to begin execution.

See "qrerun” on page 181.

Format: Single character, "y" or "n".

y
Job is rerunnable.

n
Job is not rerunnable.

Default: "y".

Interactive jobs are not rerunnable. Job arrays are always rerunnable.
PBS Professional 2022.1 Reference Guide RG-137

Chapter 2 PBS Commands
-R <remove options>
Changes whether standard output and/or standard error files are automatically removed upon job completion.

Sets the job's Remove_Files attribute to remove options. Overrides default path names for these streams.
Overrides -o and -e options.

This attribute cannot be altered once the job has begun execution.

Default: unset; neither is removed

The remove options argument can take the following values:

-S <path list>
Specifies the interpreter or shell path for the job script. Sets job's Shell_Path_List attribute to path list.

The path list argument is the full path to the interpreter or shell including the executable name.

Only one path may be specified without a hostname. Only one path may be specified per named host. The path
selected is the one whose hostname is that of the server on which the job resides.

This attribute can be altered after the job has begun execution, but in this case the new value will not take effect
until the job is rerun.

Format:

<path>[@<hostname>][,<path>@<hostname> ...]
If the path contains spaces, it must be quoted. For example:

qsub -S "C:Program Files\PBS Pro\bin\pbs_python.exe" <script name>

Default: user's login shell on execution node

Example of using bash via a directive:

#PBS -S /bin/bash@mars,/usr/bin/bash@jupiter

Example of running a Python script from the command line on Linux:

qsub -S $PBS_EXEC/bin/pbs_python <script name>

Example of running a Python script from the command line on Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

-u <user list>
Alters list of usernames. Job will run under a username from this list. Sets job's User_List attribute to user list.

Only one username may be specified without a hostname. Only one username may be specified per named host.
The server on which the job resides will select first the username whose hostname is the same as the server
name. Failing that, the next selection will be the username with no specified hostname. The usernames on the
server and execution hosts must be the same. The job owner must have authorization to run as the specified
user.

This attribute cannot be altered once the job has begun execution.

Table 2-13: discard Argument Values

Option Meaning

e The standard error stream is removed (deleted) upon job completion

o The standard output stream is removed (deleted) upon job completion

eo, oe Both standard output and standard error streams are removed (deleted) upon job completion

unset Neither stream is removed
RG-138 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Format: <username>[@<hostname>][,<username>@<hostname> ...]

Default: Job owner (username on submit host)

-W <additional attributes>
Each sub-option to the -W option allows you to change a specific job attribute.

Format: -W <attribute name> = <attribute value>[,<attribute name>=<attribute value>...]

If white space occurs within the additional attributes argument, or the equal sign ("=") occurs within an
attribute value string, that argument or string must be enclosed in single or double quotes. PBS supports setting
the following attributes via the -W option:

depend=<dependency list>
Defines dependencies between this and other jobs. Sets the job's depend attribute to dependency list. The
dependency list has the form:

<type>:<arg list>[,<type>:<arg list> ...]

where except for the on type, the <arg list> is one or more PBS job IDs in the form:

<job ID>[:<job ID> ...]

The types and their argument lists can be:

after: <arg list>
This job may be scheduled for execution at any point after all jobs in arg list have started execution.

afterok: <arg list>
This job may be scheduled for execution only after all jobs in arg list have terminated with no errors.
See section 2.40.6.1, “Warning About Exit Status with csh”, on page 142.

afternotok: <arg list>
This job may be scheduled for execution only after all jobs in arg list have terminated with errors. See
section 2.40.6.1, “Warning About Exit Status with csh”, on page 142.

afterany: <arg list>
This job may be scheduled for execution after all jobs in arg list have terminated, with or without
errors. This job will not run if a job in the arg list was deleted without ever having been run.

before: <arg list>
Jobs in arg list may begin execution once this job has begun execution.

beforeok: <arg list>
Jobs in arg list may begin execution once this job terminates without errors. See section 2.40.6.1,
“Warning About Exit Status with csh”, on page 142.

beforenotok: <arg list>
If this job terminates execution with errors, jobs in arg list may begin. See section 2.40.6.1, “Warning
About Exit Status with csh”, on page 142.

beforeany: <arg list>
Jobs in arg list may begin execution once this job terminates execution, with or without errors.

on: <count>
This job may be scheduled for execution after count dependencies on other jobs have been satisfied.
This type is used in conjunction with one of the before types listed. count is an integer greater than 0.

runone:<job ID>
Puts the current job and the job with job ID in a set of jobs out of which PBS will eventually run just
one. To add a job to a set, specify the job ID of another job already in the set.

Restrictions:

Job IDs in the arg list of before types must have been submitted with a type of on.
PBS Professional 2022.1 Reference Guide RG-139

Chapter 2 PBS Commands
To use the before types, the user must have the authority to alter the jobs in arg list. Otherwise, the depen-
dency is rejected and the new job aborted.

Error processing of the existence, state, or condition of the job on which the newly-submitted job depends
is performed after the job is queued. If an error is detected, the new job is deleted by the server. Mail is
sent to the job submitter stating the error.

Dependency examples:

qalter -W depend = afterok:123.host1.domain.com /tmp/script

qalter -W depend= before:234.host1.com:235.host1.com /tmp/script

group_list=<group list>
Alters list of group names. Job will run under a group name from this list. Sets job's group_List attribute to
group list.

Only one group name may be specified without a hostname. Only one group name may be specified per
named host. The server on which the job resides will select first the group name whose hostname is the
same as the server name. Failing that, the next selection is the group name with no specified hostname.
The group names on the server and execution hosts must be the same.

Format: <group>[@<hostname>][,<group>@<hostname> ...]

Default: no default

release_nodes_on_stageout=<value>
When set to True, all of the job's vnodes not on the primary execution host are released when stageout
begins.

When cgroups is enabled and this is used with some but not all vnodes from one MoM, resources on those
vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job's stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

Format: Boolean

Default: False

run_count=<count>
Sets the number of times the server thinks it has run the job. Sets the job's run_count attribute to count.
Can be altered while job is running. Job is held when the value of this attribute goes over 20.

Format: Integer greater than or equal to zero

sandbox=<sandbox spec>
Changes which directory PBS uses for the job's staging and execution. Sets job's sandbox attribute to the
value of sandbox spec.

Format: String

Allowed values for sandbox spec:

PRIVATE
PBS creates a job-specific directory for staging and execution.

HOME or unset
PBS uses the user's home directory for staging and execution.

stagein=<path list>
stageout=<path list>

Changes files or directories to be staged in before execution or staged out after execution is complete. Sets
the job's stagein and stageout attributes to the specified path lists. On completion of the job, all staged-in
and staged-out files and directories are removed from the execution host(s). A path list has the form:

<filespec>[,<filespec>]
RG-140 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
where filespec is

<execution path>@<hostname>:<storage path>
regardless of the direction of the copy. The execution path is the name of the file or directory on the pri-
mary execution host. It can be relative to the staging and execution directory on the execution host, or it
can be an absolute path.

The "@" character separates execution path from storage path.

The storage path is the path on hostname. The name can be relative to the staging and execution directory
on the primary execution host, or it can be an absolute path.

If path list has more than one filespec, i.e. it contains commas, it must be enclosed in double quotes.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

umask=<mask value>
Alters the umask with which the job is started. Controls umask of job's standard output and standard error.
Sets job's umask attribute to mask value.

Format: one to four digits; typically two

The following example allows group and world read of the job's output and error:

-W umask=33

Default: system default

--version
The qalter command returns its PBS version information and exits. This option can only be used alone.

2.40.4 Operands

The qalter command accepts a job ID list as its operand. The job ID list is a space-separated list of one or more job
IDs for normal jobs or array jobs.

Subjobs and ranges of subjobs are not alterable.

Job IDs have the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array ID in double quotes.

2.40.5 Standard Error

The qalter command writes a diagnostic message to standard error for each error occurrence.

2.40.6 Exit Status

Zero
Upon successful processing of input

Greater than zero
Upon failure
PBS Professional 2022.1 Reference Guide RG-141

Chapter 2 PBS Commands
2.40.6.1 Warning About Exit Status with csh

If a job is run in csh and a .logout file exists in the home directory in which the job executes, the exit status of the job
is that of the .logout script, not the job script. This may impact any inter-job dependencies.

2.40.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "Job Attributes” on page 327, Chapter
5, "List of Built-in Resources", on page 259
RG-142 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.41 qdel

Deletes PBS jobs

2.41.1 Synopsis

qdel [-x] [-Wforce| -Wsuppress_email=<N>] <job ID> [<job ID> ...]

qdel --version

2.41.2 Description

The qdel command deletes jobs in the order given, whether they are at the local server or at a remote server.

2.41.2.1 Usage

The qdel command is used without options to delete queued, running, held, or suspended jobs, while the -x option
gives it the additional capacity to delete finished or moved jobs. With the -x option, this command can be used on fin-
ished and moved jobs, in addition to queued, running, held, or suspended jobs.

When this command is used without the -x option, if job history is enabled, the deleted job's history is retained. The -x
option is used to additionally remove the history of the job being deleted.

If someone other than the job's owner deletes the job, mail is sent to the job's owner, or to a list of mail recipients if spec-
ified during qsub. See "qsub” on page 216.

If the job is in the process of provisioning, it can be deleted only by using the -W force option.

2.41.2.2 How Behavior of qdel Command Can Be Affected

The server's default_qdel_arguments attribute may affect the behavior of the qdel command. This attribute is settable
by the administrator via the qmgr command. The attribute may be set to "-Wsuppress_email=<N>". The server
attribute is overridden by command-line arguments. See section 6.6, “Server Attributes”, on page 281.

2.41.2.3 Sequence of Events

1. The job's running processes are killed.

2. The epilogue runs.

3. Files that were staged in are staged out. This includes standard out (.o) and standard error (.e) files.

4. Files that were staged in or out are deleted.

5. The job's temp directory is removed.

6. The job is removed from the MoM(s) and the server.

2.41.2.4 Required Privilege

A PBS job may be deleted by its owner, an Operator, or the administrator. The MoM deletes a PBS job by sending a
SIGTERM signal, then, if there are remaining processes, a SIGKILL signal.
PBS Professional 2022.1 Reference Guide RG-143

Chapter 2 PBS Commands
2.41.3 Options to qdel

(no options)
Can delete queued, running, held, or suspended jobs. Does not delete job history for specified job(s).

-W force
Deletes the job whether or not the job's execution host is reachable. Deletes the job whether or not the job is in
the process of provisioning. Cannot be used with the -Wsuppress_email option.

If the server can contact the MoM, this option is ignored; the server allows the job to be deleted normally. If the
server cannot contact the MoM or the job is in the E state, the server deletes its information about the job.

-Wsuppress_email=<N>
Sets limit on number of emails sent when deleting multiple jobs or subjobs.

• If N >= 1 and N or more job IDs are given, N emails are sent.

• If N >=1 and less than N job identifiers are given, the number of emails is the same as the number of jobs.

• If N = 0, this option is ignored.

• If N = -1, no mail is sent.

Note that there is no space between "W" and "suppress_email".

The N argument is an integer.

Cannot be used with -Wforce option.

-x
Can delete running, queued, suspended, held, finished, or moved jobs. Deletes job history for the specified
job(s).

--version
The qdel command returns its PBS version information and exits. This option can only be used alone.

2.41.4 Operands

The qdel command accepts one or more space-separated job ID operands. These operands can be job identifiers, job
array identifiers, subjob identifiers, or subjob range identifiers.

Job IDs have the form:

<sequence number>[.<server name>][@<server name>]

Job arrays have the form:

<sequence number>[][.<server name>][@<server name>]

Subjobs have the form:

<sequence number>[<index>][.<server name>][@<server name>]

Ranges of subjobs have the form:

<sequence number>[<first>-<last>][.<server name>][@<server name>]

Job array identifiers must be enclosed in double quotes for some shells.

2.41.5 Standard Error

The qdel command writes a diagnostic message to standard error for each error occurrence.
RG-144 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.41.6 Exit Status

Zero
Upon successful processing of input

Greater than zero
Upon error

2.41.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
PBS Professional 2022.1 Reference Guide RG-145

Chapter 2 PBS Commands
2.42 qdisable

Prevents a queue from accepting jobs

2.42.1 Synopsis

qdisable <destination> [<destination> ...]

qdisable --version

2.42.2 Description

The qdisable command prevents a queue from accepting batch jobs. Sets the value of the queue's enabled attribute
to False. If the command is accepted, the queue no longer accepts Queue Job requests. Jobs already in the queue con-
tinue to be processed. You can use this to drain a queue of jobs.

2.42.2.1 Required Permission

In order to execute qdisable, the user must have PBS Operator or Manager privilege.

2.42.3 Options

--version
The qdisable command returns its PBS version information and exits. This option can only be used alone.

2.42.4 Operands

The qdisable command accepts one or more space-separated destination operands. The operands take any of the fol-
lowing forms:

<queue name>

Prevents specified queue at default server from accepting jobs.

@<server name>

Prevents all queues at specified server from accepting jobs.

<queue name>@<server name>

Prevents specified queue at specified server from accepting jobs.

To prevent all queues at the default server from accepting jobs, use the qmgr command:

Qmgr: set queue @default enabled=false

2.42.5 Standard Error

The qdisable command writes a diagnostic message to standard error for each error occurrence.
RG-146 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.42.6 Exit Status

Zero
Upon successful processing of all the operands

Greater than zero
If the qdisable command fails to process any operand

2.42.7 See Also

The PBS Professional Administrator's Guide, "qmgr” on page 152, "qenable” on page 148
PBS Professional 2022.1 Reference Guide RG-147

Chapter 2 PBS Commands
2.43 qenable

Allows a queue to accept jobs

2.43.1 Synopsis

qenable <destination> [<destination> ...]

qenable --version

2.43.2 Description

The qenable command allows a queue to accept batch jobs. Sets the value of the queue's enabled attribute to True.
If the command is accepted, the destination accepts Queue Job requests.

2.43.2.1 Required Privilege

In order to execute qenable, the user must have PBS Operator or Manager privilege.

2.43.3 Options

--version
The qenable command returns its PBS version information and exits. This option can only be used alone.

2.43.4 Operands

The qenable command accepts one or more space-separated destination operands. The operands take any of the fol-
lowing forms:

<queue name>

Allows specified queue at default server to accept jobs.

@<server name>

Allows all queues at specified server to accept jobs.

<queue name>@<server name>

Allows specified queue at specified server to accept jobs.

To allow all queues at the default server to accept jobs, use the qmgr command:

Qmgr: set queue @default enabled=true

2.43.5 Standard Error

The qenable command writes a diagnostic message to standard error for each error occurrence.

2.43.6 Exit Status

Zero
Upon successful processing of all the operands
RG-148 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Greater than zero
If the qenable command fails to process any operand

2.43.7 See Also

The PBS Professional Administrator's Guide, "qmgr” on page 152, "qdisable” on page 146
PBS Professional 2022.1 Reference Guide RG-149

Chapter 2 PBS Commands
2.44 qhold

Holds PBS batch jobs

2.44.1 Synopsis

qhold [-h <hold list>] <job ID> [<job ID> ...]

qhold --version

2.44.2 Description

Places one or more holds on a job. A job that has a hold is not eligible for execution. Can be used on jobs and job arrays,
but not on subjobs or ranges of subjobs.

If a job identified by job ID is in the queued, held, or waiting states, all that occurs is that the hold type is added to the
job. The job is then put into the held state if it resides in an execution queue.

If the job is running, the result of the qhold command depends upon whether the job can be checkpointed. The job can
be checkpointed if the OS supports checkpointing, or if the application being checkpointed supports checkpointing. See
the PBS Professional Administrator's Guide. If the job can be checkpointed, the following happens:

• The job is checkpointed and its execution is interrupted.

• The resources assigned to the job are released.

• The job is placed in the held state in the execution queue.

• The job's Hold_Types attribute is set to u for user hold.

If checkpoint / restart is not supported, qhold simply sets the job's Hold_Types attribute to u. The job continues to exe-
cute.

A job's dependency places a system hold on the job. When the dependency is satisfied, the system hold is removed. If
the administrator sets a system hold on a job with a dependency, when the dependency is satisfied, the job becomes eli-
gible for execution.

If the job is in the process of provisioning, it cannot be held.

A hold on a job can be released by the PBS Administrator, root, a Manager, an Operator, or the job owner, when the job
reaches the time set in its Execution_Time attribute, or when a dependency clears. See "qrls” on page 183.

2.44.2.1 Effect of Privilege on Behavior

The following table shows the holds and the privilege required to set each:

Table 2-14: Hold Types

Hold Type Meaning Who Can Set

u User Job owner, Operator, Manager, PBS Administrator, root

o Other Operator, Manager, PBS Administrator, root

s System Manager, PBS Administrator, root, PBS (dependency)

n No hold Job owner, Operator, Manager, PBS Administrator, root

p Bad password PBS Administrator, root
RG-150 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.44.3 Options to qhold

(no options)
Same as -h u. Applies the user hold to the specified job(s).

-h <hold list>
Types of holds to be placed on the job(s).

The hold list argument is a string consisting of one or more of the letters "u", "o", or "s" in any combination, or
one of the letters "n" or "p".

--version
The qhold command returns its PBS version information and exits. This option can only be used alone.

2.44.4 Operands

The qhold command can be used on jobs and job arrays, but not on subjobs or ranges of subjobs. The qhold com-
mand accepts one or more job IDs in the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.44.5 Standard Error

The qhold command writes a diagnostic message to standard error for each error occurrence.

2.44.6 Exit Status

Zero
Upon successful processing of all operands

Greater than zero
If the qhold command fails to process any operand

2.44.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "qrls” on page 183
PBS Professional 2022.1 Reference Guide RG-151

Chapter 2 PBS Commands
2.45 qmgr

Administrator's command interface for managing PBS

2.45.1 Synopsis

At shell command line:

qmgr -c '<directive> [-a] [-e] [-n] [-z]'

qmgr -c 'help [<help option>]'

qmgr <return>

qmgr --version

In qmgr session:

<directive> [-a] [-e] [-n] [-z]

help <help option>

2.45.2 Description

The PBS manager command, qmgr, provides a command-line interface to parts of PBS. The qmgr command is used to
create or delete queues, vnodes, resources, and hooks, to set or change vnode, queue, hook, server, or scheduler attributes
and resources, and to view information about hooks, queues, vnodes, resource definitions, the server, and schedulers.

For a list of quick summaries of information about syntax, commands, attributes, operators, names, and values, type
"help" or "?" at the qmgr prompt. See section 2.45.11, “Printing Usage Information”, on page 173.

2.45.2.1 Modes of Operation

• When you type qmgr -c '<directive>', qmgr performs its task and then exits.

• When you type qmgr <return>, qmgr starts a session and presents you with its command line prompt. The qmgr
command then reads directives etc. from standard input; see section 2.45.4.1, “Directive Syntax”, on page 154. You
can edit the command line; see section 2.45.2.4, “Reusing and Editing the qmgr Command Line”, on page 153.

For a qmgr prompt, type:

qmgr <return>

You will see the qmgr prompt:

Qmgr:

2.45.2.2 Required Privilege

The qmgr command requires different levels of privilege depending on the operation to be performed.

All users can list or print attributes except for hook attributes.

PBS Operator or Manager privilege is required in order to set or change vnode, queue, server, or scheduler attributes.
PBS Manager privilege is required in order to create or delete queues, vnodes, and resources.

Under Linux, root privilege is required in order to create hooks, or operate on hooks or the job_sort_formula server
attribute. Under Windows, this must be done from the installation account.

For domained environments, the installation account must be a local account that is a member of the local Administrators
group on the local computer.
RG-152 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Users without manager or operator privilege cannot view custom resources or resource definitions which were created to
be invisible to users.

2.45.2.3 When To Run qmgr At Server Host

Run the qmgr command at the server host when operating on hooks or on the job_sort_formula server attribute.

2.45.2.4 Reusing and Editing the qmgr Command Line

You can reuse or edit qmgr command lines. The qmgr command maintains a history of commands entered, up to a
maximum of 500. You can use the 'history' command to see a numbered list of commands, and the !<n> command
to execute the line whose number is n. You must not put any spaces between the bang ("!") and the number. For exam-
ple, to execute the 123rd command, type the following:

!123

You can see the last m commands by typing 'history m'. For example, to see the last 6 commands, type the following:

history 6

You can use the up and down arrows to navigate through the command history list, and the left and right arrows to navi-
gate within a command line. Within a command line, you can use emacs commands to move forward and backward,
and delete characters.

You can edit the qmgr command line using the backspace and delete keys, and you can insert characters anywhere in a
command line.

History is maintained across qmgr sessions, so that if you start qmgr, then exit, then restart it, you can reuse your com-
mands from the previous session. If you exit qmgr and then restart it, the command lines are renumbered.

If you enter the same command line more than once in a row, only one occurrence is recorded in the history. If you enter
the same command line multiple times, but intersperse other command lines after each line, each occurrence is recorded.

Each user's history is unique to that user on that host.

In the case where an account runs concurrent sessions, the most recent logout of a session overwrites history from previ-
ous logouts. For example, if two people are both logged in as root and using qmgr, the second person to log out over-
writes the history file.

2.45.2.4.i The qmgr History File

The qmgr command stores and retrieves its history. First, it tries to write its history in the
${HOME}/.pbs_qmgr_history file. If this file or directory location is not writable, the command stores its history
in $PBS_HOME/spool/.pbs_qmgr_history_<user name>. If this file is also not writable, the following hap-
pens:

• The qmgr command prints error messages once at qmgr startup

• The qmgr command cannot provide history across qmgr sessions
PBS Professional 2022.1 Reference Guide RG-153

Chapter 2 PBS Commands
2.45.3 Options to qmgr

The following table lists the options to qmgr:

2.45.4 Directives

A qmgr directive is a command together with the object(s) to be operated on, the attribute(s) belonging to the object that
is to be changed, the operator, and the value(s) the attribute(s) will take. In the case of resources, you can set the type
and/or flag(s).

2.45.4.1 Directive Syntax

A directive is terminated by a newline or a semicolon (";"). Multiple directives may be entered on a single line. A direc-
tive may extend across lines by escaping the newline with a backslash ("\").

Comments begin with the "#" character and continue to the end of the line. Comments and blank lines are ignored by
qmgr.

2.45.4.1.i Server, Scheduler, Queue, Vnode Directives

Syntax for operating on servers, schedulers, queues, and vnodes:

<command> <object type> [<object name(s)>] [<attribute> <operator> <value>[,<attribute> <operator>
<value>,...]]

For information about attributes, see Chapter 6, "Attributes", on page 277.

2.45.4.1.ii Resource Directives

Syntax for operating on resources:

<command> <resource name> [<resource name> ...] [type = <type>][,flag = <flag(s)>]

For information about resources, see "Using PBS Resources" on page 227 in the PBS Professional Administrator’s Guide
and Chapter 5, "List of Built-in Resources", on page 259.

Table 2-15: qmgr Options

Option Action

<return> Starts a qmgr session and presents user with qmgr prompt

-a Aborts qmgr on any syntax errors or any requests rejected by a server.

-c '<direc-
tive>'

Executes a single command (directive) and exit qmgr. The directive must be enclosed in sin-
gle or double quote marks, for example:

qmgr -c "print server"

-c 'help [<help
option>]'

Prints out usage information. See "Printing Usage Information” on page 173

-e Echoes all commands to standard output

-n No commands are executed; syntax checking only is performed

-z No errors are written to standard error

--version The qmgr command returns its PBS version information and exits. This option can only be
used alone
RG-154 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.45.4.1.iii Hook-only Directives

The directives here apply only to hooks. Other directives apply to all objects such as queues, resources, hooks, etc.

Syntax for importing and exporting site-defined hooks:

"import hook <hook name> application/x-python <content-encoding> (<input file> | -)"

"export hook <hook name> <content-type> <content-encoding>" > [<output file>]

Syntax for importing site-defined hook configuration file:

"import hook <hook name> application/x-config <content-encoding> (<input file> | -)"

Syntax for importing built-in hook configuration file:

"import pbshook <hook name> application/x-config <content-encoding> (<input file> | -)"

2.45.4.2 Using Directives

You can use a directive from the shell command line or from within the qmgr session.

• To use a directive from the command line, enclose the command and its arguments in single or double quotes.

qmgr -c '<command> <command arguments>'

For example, to have qmgr print server information and exit:

qmgr -c "print server"

• To use a directive from within the qmgr session, first start qmgr:
qmgr <return>

The qmgr session presents a qmgr prompt:

Qmgr:

At the qmgr prompt, enter the directive (a command and its arguments). For example, to enter the same "print
server" directive:

Qmgr: print server

2.45.4.3 Commands Used in Directives

Commands can be abbreviated to their minimum unambiguous form. Commands apply to all target objects unless
explicitly limited. The following table lists the commands, briefly tells what they do, and gives a link to a full descrip-
tion:

Table 2-16: qmgr Commands Used in Directives

Command
Abbr

.
Effect Description

active a Specifies active objects See section 2.45.6.1, “Making Objects Active”, on page 159

create c Creates object See section 2.45.6.2, “Creating Objects (Server, Scheduler,
Vnode, Queue, Hook)”, on page 160

delete d Deletes object See section 2.45.6.3, “Deleting Objects”, on page 160

exit Exits (quits) the qmgr ses-
sion

export e Exports hook or hook con-
figuration file

See section 2.45.10.6, “Exporting Hooks”, on page 172 and sec-
tion 2.45.10.5.ii, “Exporting Configuration Files”, on page 171
PBS Professional 2022.1 Reference Guide RG-155

Chapter 2 PBS Commands
2.45.5 Arguments to Directive Commands

2.45.5.1 Object Arguments to Directive Commands

The qmgr command can operate on objects (servers, schedulers, queues, vnodes, resources, hooks, and built-in hooks).
Each of these can be abbreviated inside a directive. The following table lists the objects and their abbreviations:

help or ? h, ? Prints usage to stdout See section 2.45.11, “Printing Usage Information”, on page 173

import i Imports hook or configura-
tion file

See section 2.45.10.4, “Importing Hooks”, on page 170 or section
2.45.10.5.i, “Importing Configuration Files”, on page 171

list l Lists object attributes and
their values

See section 2.45.8.1, “Listing Objects and Their Attributes”, on
page 167

print p Prints creation and config-
uration commands

See section 2.45.8.3, “Printing Creation and Configuration Com-
mands”, on page 169

quit q Quits (exits) the qmgr ses-
sion

set s Sets value of attribute See section 2.45.7.1, “Setting Attribute and Resource Values”, on
page 161

unset u Unsets value of attribute See section 2.45.7.2, “Unsetting Attribute and Resource Values”,
on page 162

Table 2-17: qmgr Objects

Object
Name

Abbr. Object Can Be Created/Deleted By: Can Be Modified By:

server s server No one (created at installation) Administrator, Operator, Manager

sched sc default scheduler No one (created at installation) Administrator, Operator, Manager

multisched Administrator, Manager Administrator, Operator, Manager

queue q queue Administrator, Operator, Manager Administrator, Operator, Manager

node n vnode Administrator, Operator, Manager Administrator, Operator, Manager

resource r resource Administrator, Manager Administrator, Manager

hook h hook Linux: root

Windows: installation account

Linux: root

Windows: installation account

pbshook p built-in hook No one (created at installation) Linux: root

Windows: installation account

Table 2-16: qmgr Commands Used in Directives

Command
Abbr

.
Effect Description
RG-156 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.45.5.1.i Specifying Active Server

The qmgr command operates on objects (queues, vnodes, etc.) at the active server. There is always at least one active
server; the default server is the active server unless other servers have been made active. The default server is the server
managing the host where the qmgr command runs, meaning it is the server specified in that host's pbs.conf file.
Server names have the following format:

<hostname>[:<port number>]

where hostname is the fully-qualified domain name of the host on which the server is running and port number is the port
number to which to connect. If port number is not specified, the default port number, 15001, is used.

• To specify the default server:

@default
• To specify a named server:

@<server name>
• To specify all active servers:

@active

2.45.5.1.ii Using Lists of Object Names

In a qmgr directive, object name(s) is a list of one or more names of specific objects. The administrator specifies the
name of an object when creating the object. The name list is in the form:

<object name>[@<server>][,<object name>[@<server>] ...]

where server is replaced in the directive with "default", "active", or the name of the server. The name list must conform
to the following:

• There must be no space between the object name and the @ sign.

• Name lists must not contain white space between entries.

• All objects in a list must be of the same type.

• Node attributes cannot be used as vnode names.

2.45.5.1.iii Specifying Object Type and Name

You can specify objects in the following ways:

• To act on the active objects of the named type, at the active server:

<object type>

For example, to list all active vnodes, along with their attributes, at the active server:

Qmgr: list node

• To act on the active objects of the named type, at a specified server:

<object type> @<server name> (note space before @ sign)

For example, to list all active vnodes at the default server, along with their attributes:

Qmgr: list node @default

For example, to print out all queues at the default server, along with their attributes:

qmgr -c "print queue @default"

• To act on a specific named object:

<object type> <object name>

For example, to list Node1 and its attributes:

Qmgr: list node Node1
PBS Professional 2022.1 Reference Guide RG-157

Chapter 2 PBS Commands
To list queues workq, slowq, and fastq at the active server:

Qmgr: list queue workq,slowq,fastq

• To act on the named object at the specified server:

<object type> <object name>@<server name>

For example, to list Node1 at the default server, along with the attributes of Node1:

Qmgr: list node Node1@default

To list queues Queue1 at the default server, Queue2 at Server2, and Queue3 at the active server:

Qmgr: list queue Queue1@default,Queue2@Server2,Queue3@active

2.45.5.2 Operators in Directive Commands

In a qmgr directive, operator is the operation to be performed with the attribute and its value. Operators are listed here:

Example 2-4: Set routing destination for queue Queue1 to be Dest1:

Qmgr: set queue route_destinations = Dest1

Example 2-5: Add new routing destination for queue Queue1:

Qmgr: set queue route_destinations += Dest2

Example 2-6: Remove new routing destination for queue Queue1:

Qmgr: set queue route_destinations -= Dest2

When setting numerical resource values, you can use only the equal sign ("=").

2.45.5.3 Windows Requirements For Directive Arguments

Under Windows, use double quotes when specifying arguments to qmgr. For example:

Qmgr: import hook hook1 application/x-python default "\Documents and
Settings\pbsuser1\hook1.py"

or

qmgr -c 'import hook hook1 application/x-python default "\Documents and Set-
tings\pbsuser1\hook1.py"'

Table 2-18: Operators in Directive Commands

Operator Effect

= Sets the value of the attribute or resource. If the attribute or resource has an existing value, the current
value is replaced with the new value.

+= Increases the current value of the attribute or resource by the amount in the new value. When used for a
string array, adds the new value as another string after a comma.

-= Decreases the current value of the attribute or resource by the specified amount. When used for a string
array, removes the first matching string.
RG-158 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.45.6 Operating on Objects (Server, Scheduler, Vnode, Queue,

Hook)

2.45.6.1 Making Objects Active

Making objects active is a way to set up a list of objects, all of the same type, on which you can then use a single com-
mand. For example, if you are going to set the same attribute to the same value on several vnodes, you can make all of
the target vnodes active before using a single command to set the attribute value, instead of having to give the command
once for each vnode. You can make any type of object active except for resources or hooks.

When an object is active, it is acted upon when you specify its type but do not specify names. When you specify any
object names in a directive, active objects are not operated on unless they are named in the directive.

You can specify a list of active objects for each type of object. You can have active objects of multiple types at the same
time. The active objects of one type have no effect on whether objects of another type are active.

Objects are active only until the qmgr command is exited, so this feature can be used only at the qmgr prompt.

Each time you make any objects active at a given server, that list of objects replaces any active objects of the same kind
at that server. For example, if you have four queues at a particular server, and you make Q1 and Q2 active, then later
make Q3 and Q4 active, the result is that Q3 and Q4 are the only active queues.

You can make different objects be active at different servers simultaneously. For example, you can set vnodes N1 and N2
at the default server, and vnodes N3 and N4 at server Server2 to be active at the same time.

To make all objects inactive, quit qmgr. When you quit qmgr, any object that was active is no longer active.

2.45.6.1.i Using the active Command

• To make the named object(s) of the specified type active:

active <object type> [<object name>[,<object name> ...]]

Example: To make queue Queue1 active:

Qmgr: active queue Queue1

Example: To make queues Queue1 and Queue2 at the active server be active, then enable them:

Qmgr: active queue Queue1,Queue2
Qmgr: set queue enabled=True

Example: To make queue Queue1 at the default server and queue Queue2 at Server2 be active:

Qmgr: active queue Queue1@default,Queue2@Server2

Example: To make vnodes N1, N2, N3, and N4 active, and then give them all the same value for their max_running
attribute:

Qmgr: active node N1,N2,N3,N4
Qmgr: set node max_running = 2

• To make all object(s) of the specified type at the specified server active:

active <object type> @<server name> (note space before @ sign)

Example: To make all queues at the default server active:

Qmgr: active queue @default

Example: To make all vnodes at server Server2 active:

Qmgr: active node @Server2

• To report which objects of the specified type are active:

active <object type>

The qmgr command prints a list of names of active objects of the specified type to stdout.
PBS Professional 2022.1 Reference Guide RG-159

Chapter 2 PBS Commands
2.45.6.2 Creating Objects (Server, Scheduler, Vnode, Queue, Hook)

• To create one new object of the specified type for each name, and give it the specified name:

create <object type> <object name>[,<object name> ...] [[<attribute> = <value>] [,<attribute> = <value>] ...]

Can be used only with multischeds, queues, vnodes, resources, and hooks. Cannot be used with built-in hooks.

For example, to create a multisched named multisched_1 at the active server:

Qmgr: create sched multisched_1

For example, to create a queue named Q1 at the active server:

Qmgr: create queue Q1

For example, to create a vnode named N1 and a vnode named N2:

Qmgr: create node N1,N2

For example, to create queue Queue1 at the default server and queue Queue2 at Server2:

Qmgr: create queue Queue1@default,Queue2@Server2

For example, to create vnodes named N1, N2, N3, and N4 at the active server, and to set their Mom attribute to
Host1 and their max_running attribute to 1:

Qmgr: create node N1,N2,N3,N4 Mom=Host1, max_running = 1

To create a host-level consumable string resource named "foo" that can be read and set by execution hooks:

Qmgr: qmgr -c "create resource foo type=string,flag=mnh"

All objects of the same type at a server must have unique names. For example, each queue at server Server1 must have a
unique name. Objects at one server can have the same name as objects at another server.

You can create multiple objects of the same type with a single command. You cannot create multiple types of objects in
a single command.

To create multiple resources of the same type and flag, separate each resource name with a comma:

qmgr -c "create resource <resource>[,<resource> ...] type=<type>,flag=<flag(s)>"

2.45.6.2.i Examples of Creating Objects

Example 2-7: Create queue:

create queue fast priority=10,queue_type=e,enabled = true,max_running=0

Example 2-8: Create queue, set resources:

create queue little

set queue little resources_max.mem=8mw,resources_max.cput=10

2.45.6.3 Deleting Objects

• To delete the named object(s):

delete <object type> <object name>[,<object name> ...]

When you delete more than one object, do not put a space after a comma.

Can be used only with queues, vnodes, resources, and hooks. Cannot be used with built-in hooks.

For example, to delete queue Q1 at the active server:

Qmgr: delete queue Q1

For example, to delete vnodes N1 and N2 at the active server:

Qmgr: delete node N1,N2
RG-160 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
For example, to delete queue Queue1 at the default server and queue Queue2 at Server2:

Qmgr: delete queue Queue1@default,Queue2@Server2

For example, to delete resource "foo" at the active server:

Qmgr: delete resource foo

• To delete the active objects of the specified type:

delete <object type>

For example, to delete the active queues:

Qmgr: delete queue

• To delete the active objects of the specified type at the specified server:

delete <object type> @<server name>

For example, to delete the active queues at server Server2:

Qmgr: delete queue @Server2

You can delete multiple objects of the same type with a single command. You cannot delete multiple types of objects in
a single command. To delete multiple resources, separate the resource names with commas.

For example:

Qmgr: delete resource r1,r2

You cannot delete a resource that is requested by a job or reservation, or that is set on a server, queue, or vnode.

2.45.7 Operating on Attributes and Resources

You can specify attributes and resources for named objects or for all objects of a type.

2.45.7.1 Setting Attribute and Resource Values

• To set the value of the specified attribute(s) for the named object(s):

set <object type> <object name>[,<object name> ...] <attribute> = <value> [,<attribute> = <value> ...]

Each specified attribute is set for each named object, so if you specify three attributes and two objects, both objects
get all three attributes set.

• To set the attribute value for all active objects when there are active objects of the type specified:

set <object type> <attribute> = <value>
• To set the attribute value for all active objects at the specified server when there are active objects of the type speci-

fied:

set <object type> @<server name> <attribute> = <value>

For example, to set the amount of memory on a vnode:

Qmgr: set node Vnode1 resources_available.mem = 2mb

If the attribute is one which describes a set of resources such as resources_available, resources_default,
resources_max, resources_used, etc., the attribute is specified in the form:

<attribute name>.<resource name>

You can have spaces between attribute=value pairs.
PBS Professional 2022.1 Reference Guide RG-161

Chapter 2 PBS Commands
2.45.7.1.i Examples of Setting Attribute Values

Example 2-9: Increase limit on queue:

set queue fast max_running +=2

Example 2-10: Set software resource on mynode:

set node mynode resources_available.software = "myapp=/tmp/foo"

Example 2-11: Set limit on queue:

set queue Queue1 max_running = 10

Example 2-12: Set vnode offline:

set node Node1 state = "offline"

2.45.7.2 Unsetting Attribute and Resource Values

You can use the qmgr command to unset attributes of any object, except for the type attribute of a built-in hook.

• To unset the value of the specified attributes of the named object(s):

unset <object type> <object name>[,<object name> ...] <attribute>[,<attribute>...]
• To unset the value of specified attributes of active objects:

unset <object type> <attribute>[,<attribute>...]
• To unset the value of specified attributes of the named object:

unset <object type> <object name> <attribute>[,<attribute>...]
• To unset the value of specified attributes of the named object:

unset <object type> @<server name> <attribute>[,<attribute>...]

2.45.7.2.i Example of Unsetting Attribute Value

Example 2-13: Unset limit on queue

unset queue fast max_running

2.45.7.3 Caveats and Restrictions for Setting Attribute and Resource

Values

• If the value includes whitespace, commas or other special characters, such as the # character, the value string must
be enclosed in single or double quotes. For example:
Qmgr: set node Vnode1 comment="Node will be taken offline Friday at 1:00 for memory

upgrade."

• You can set or unset attribute values for only one type of object in each command.

• You can use the qmgr command to set attributes of any object, except for the type attribute of a built-in hook.

• You can have spaces between attribute names.

• Attribute and resource values must conform to the format for the attribute or resource type. Each attribute's type is
listed in Chapter 6, "Attributes", on page 277. Each format is described in Chapter 7, "Formats", on page 353.

• Most of a vnode's attributes may be set using qmgr. However, some must be set on the individual execution host in
Version 2 vnode configuration files, NOT by using qmgr. See "Configuring Vnodes" on page 45 in the PBS Profes-
sional Administrator’s Guide.

2.45.7.4 Setting Custom Resource Type

You can use the qmgr command to set or unset the type for custom resources.
RG-162 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Resource types can be the following; see section 7.2, “Resource Formats”, on page 359:

string

boolean

string_array

long

size

float

• To set a custom resource type:

set resource <resource name> type = <type>

Sets the type of the named resource to the specified type. For example:

Qmgr: qmgr -c "set resource foo type=string_array"

2.45.7.5 Setting Custom Resource Level and Consumability

When you define a custom resource, you specify whether it is server-level or host-level, and whether it is consumable or
not by setting resource accumulation flags via qmgr. A consumable resource is tracked, or accumulated, in the server,
queue or vnode resources_assigned attribute. The resource accumulation flags determine where the value of
resources_assigned.<resource name> is incremented.

2.45.7.5.i Allowable Values for Resource Accumulation Flags

The value of <resource flags>, which is the resource accumulation flag for a resource can be one of the following:

Table 2-19: Resource Accumulation Flags

Flag Meaning

(no flags) Indicates a queue-level or server-level resource that is not consumable.

fh The amount is consumable at the host level for only the first vnode allocated to the job (vnode with first
task.) Must be consumable or time-based. Cannot be used with Boolean or string resources. .

This flag specifies that the resource is accumulated at the first vnode, meaning that the value of
resources_assigned.<resource> is incremented only at the first vnode when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.
PBS Professional 2022.1 Reference Guide RG-163

Chapter 2 PBS Commands
2.45.7.5.ii When to Use Accumulation Flags

The following table shows when to use accumulation flags.

2.45.7.5.iii Example of Resource Accumulation Flags

When defining a static consumable host-level resource, such as a node-locked application license, you would use the "n"
and "h" flags.

When defining a dynamic resource such as a floating license, you would use no flags.

h Indicates a host-level resource. Used alone, means that the resource is not consumable. Required for any
resource that will be used inside a select statement. This flag selects hardware. This flag indicates that the
resource must be requested inside of a select statement.

Example: for a Boolean resource named "green":

Qmgr: create resource green type=boolean, flag=h

nh The amount is consumable at the host level, for all vnodes assigned to the job. Must be consumable or
time-based. Cannot be used with Boolean or string resources.

This flag specifies that the resource is accumulated at the vnode level, meaning that the value of
resources_assigned.<resource> is incremented at relevant vnodes when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.

q The amount is consumable at the queue and server level. When a job is assigned one unit of a resource
with this flag, the resources_assigned.<resource> attribute at the server and any queue is incre-
mented by one. Must be consumable or time-based.

This flag specifies that the resource is accumulated at the queue and server level, meaning that the value
of resources_assigned.<resource> is incremented at each queue and at the server when a job is allo-
cated this resource. When a reservation starts, allocated resources are added to the server's
resources_assigned attribute.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.

Table 2-20: When to Use Accumulation Flags

Resource
Category

Server Queue Host

Static, consumable flag = q flag = q flag = nh or fh

Static, not consumable flag = (none of h, n, q or f) flag = (none of h, n, q or f) flag = h

Dynamic server_dyn_res line in
sched_config,

flag = (none of h, n, q or f)

(cannot be used) Tracked using an
exechost_periodic hook

flag = h

Table 2-19: Resource Accumulation Flags

Flag Meaning
RG-164 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.45.7.5.iv Resource Accumulation Flag Restrictions and Caveats

Numeric dynamic resources cannot have the q or n flags set. This would cause these resources to be under-used. These
resources are tracked automatically by the scheduler.

2.45.7.6 Setting Custom Resource Visibility

When you define a custom resource, you can specify whether unprivileged users have permission to view or request the
resource, and whether users can qalter a request for that resource. This is done by setting a resource permission flag
via qmgr.

2.45.7.6.i Allowable Values for Resource Permission Flags

The permission flag for a resource can be one of the following:

2.45.7.6.ii Effect of Resource Permission Flags

• PBS Operators and Managers can view and request a resource, and qalter a resource request for that resource,
regardless of the i and r flags.

• Users, operators and managers cannot submit a job which requests a restricted resource. Any job requesting a
restricted resource will be rejected. If a manager needs to run a job which has a restricted resource with a different
value from the default value, the manager must submit the job without requesting the resource, then qalter the
resource value.

• While users cannot request these resources, their jobs can inherit default resources from
resources_default.<resource name> and default_chunk.<resource name>.

If a user tries to request a resource or modify a resource request which has a resource permission flag, they will get
an error message from the command and the request will be rejected. For example, if they try to qalter a job's
resource request, they will see an error message similar to the following:

"qalter: Cannot set attribute, read only or insufficient permission Resource_List.hps 173.mars"

2.45.7.6.iii Resource Permission Flag Restrictions and Caveats

• You can specify only one of the i or r flags per resource. If both are specified, the resource is treated as if only the i
flag were specified, and an error message is logged at the default log level and printed to standard error.

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag whether that resource was requested
by the user or came from default_qsub_arguments.

• The behavior of several command-line interfaces is dependent on resource permission flags. These interfaces are
those which view or request resources or modify resource requests:

Table 2-21: Resource Permission Flags

Flag Meaning

(no flag) Users can view and request the resource, and qalter a resource request for this resource.

i "Invisible". Users cannot view or request the resource. Users cannot qalter a resource request for this
resource.

r "Read only". Users can view the resource, but cannot request it or qalter a resource request for this
resource.
PBS Professional 2022.1 Reference Guide RG-165

Chapter 2 PBS Commands
pbsnodes

Users cannot view restricted host-level custom resources.

pbs_rstat

Users cannot view restricted reservation resources.

pbs_rsub

Users cannot request restricted custom resources for reservations.

qalter

Users cannot alter a restricted resource.

qmgr

Users cannot print or list a restricted resource.

qselect

Users cannot specify restricted resources via -l Resource_List.

qsub

Users cannot request a restricted resource.

qstat

Users cannot view a restricted resource.

2.45.7.7 Specifying Whether Custom Resource is Cached at MoM

You can make it faster for execution hooks to read custom job resources. Execution hooks cannot read custom job
resources via the event, only via the server. However, you can cache a copy of a custom job resource at the MoMs for
faster local reading by execution hooks, by setting the m flag for the resource. The job resources that can be cached are
found in the following job attributes:

exec_vnode
Resource_List
resources_used

To create a resource with the m flag set, include the flag. For example, to create two host-level consumable resources r1
and r2 of type long that will be cached at MoMs:

qmgr -c "create resource r1,r2 type=long,flag=mnh"

To unset this flag for r1:

qmgr -c "set resource r1 flag=nh"

You can combine this flag with any other resource flag. Job resources created in an exechost_startup hook have the m
flag set automatically.

2.45.7.7.i Caveats for Caching Custom Job Resources

Large numbers of job resources that are cached at MoMs can slow things down. If you don't need execution hooks to be
able to read a custom job resource often, don't cache the resource at the MoMs.

2.45.7.7.ii Examples of Defining Custom Resources and Setting Flags via qmgr

To set the type for a resource:

set resource <resource name> type = <type>
RG-166 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
For example:

qmgr -c "set resource foo type=string_array"

To set the flags for a resource:

set resource <resource name> flag=<flag(s)>

For example:

qmgr -c "set resource foo flag=nh"

To set the type and flags for a resource:

set resource <resource name> type=<type>, flag=<flag(s)>

For example:

qmgr -c "set resource foo type=long,flag=nhi"

You can set multiple resources by separating the names with commas. For example:

qmgr -c "set resource r1, r2 type=long"

You cannot set the nh, fh, or q flag for a resource of type string, string_array, or Boolean.

You cannot set both the n and the f flags on one resource.

You cannot have the n or f flags without the h flag.

You cannot set both the i and r flags on one resource.

You cannot unset the type for a resource.

You cannot set the type for a resource that is requested by a current or history job or reservation, or set on a server, queue,
or vnode.

You cannot set the flag(s) to h, nh, fh, or q for a resource that is currently requested by a current or history job or reser-
vation.

You cannot unset the flag(s) for a resource that is currently requested by a current or history job or a reservation, or set on
any server, queue, or vnode.

You cannot alter a built-in resource.

You can unset custom resource flags, but not their type.

2.45.8 Viewing Object, Attribute, and Resource Information

2.45.8.1 Listing Objects and Their Attributes

You can use the qmgr command to list attributes of any object, including attributes at their default values.

• To list the attributes, with associated values, of the named object(s):

list <object type> <object name>[,<object name> ...]
• To list values of the specified attributes of the named object:

list <object type> <object name> <attribute name>[, <attribute name>]...
• To list attributes, with associated values, of active objects of the specified type at the active server:

list <object type>
• To list all objects of the specified type at the specified server, with their attributes and the values associated with the

attributes:

list <object type> @<server name>
• To list attributes of the active server:
PBS Professional 2022.1 Reference Guide RG-167

Chapter 2 PBS Commands
list server

 If no server other than the default server has been made active, lists attributes of the default server (it is the active
server).

• To list attributes of the specified server:

list server <server name>
• To list attributes of all schedulers:

list sched
• To list attributes of the specified scheduler:

list sched <scheduler name>
• To list all hooks, along with their attributes:

list hook
• To list attributes of the specified hook:

list hook <hook name>

2.45.8.1.i Examples of Listing Objects and Their Attributes

Example 2-14: List serverA's schedulers' attributes:

list sched @serverA

Example 2-15: List attributes for default server's scheduler(s):

l sched @default

Example 2-16: List PBS version for default server's scheduler(s):

l sched @default pbs_version

Example 2-17: List queues at a specified server:

list queue @server1

2.45.8.2 Listing Resource Definitions

You can use the qmgr list and print commands to list resource definitions showing resource name, type, and
flag(s).

• To list the name, type, and flag(s) of the named resource(s):

list resource <resource name>[,<resource name> ...]

or

print resource <resource name>[,<resource name> ...]
• To list name, type, and flag(s) of custom resources only:

list resource

or

print resource

or

print server (note that this also prints information for the active server)
• To list all custom resources at the specified server, with their names, types, and flags:

list resource @<server name>

or

print resource @<server name>
RG-168 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
When used by a non-privileged user, qmgr prints only resource definitions for resources that are visible to non-privi-
leged users (those that do not have the i flag set).

2.45.8.3 Printing Creation and Configuration Commands

For printing the creation commands for any object except for a built-in hook.

• To print out the commands to create the named object(s) and set their attributes to their current values:

print <object type> <object name>[,<object name> ...]

where object name follows the name rules in section 2.45.5.1.ii, “Using Lists of Object Names”, on page 157.

• To print out the commands to create the named object and set its attributes to their current values:

print <object type> <object name> [<attribute name>[, <attribute name>]...]

where object name follows the name rules in section 2.45.5.1.ii, “Using Lists of Object Names”, on page 157.

• To print out the commands to create and configure the active objects of the named type:

print <object type>
• To print out the commands to create and configure all of the objects of the specified type at the specified server:

print <object type> @<server name>
• To print out the commands to create each queue, set the attributes of each queue to their current values, and set the

attributes of the server to their current values:

print server
This is used for the server and queues, but not hooks.

Prints information for the active server. If there is no active server, prints information for the default server.

• To print out the creation commands for all schedulers:

print sched
• To print out the creation commands for the specified scheduler:

print sched <scheduler name>

2.45.8.4 Caveats for Viewing Information

Some attributes whose values are unset do not appear in the output of the qmgr command.

Definitions for built-in resources do not appear in the output of the qmgr command.

When a non-privileged user prints resource definitions, qmgr prints only resource definitions for resources that are visi-
ble to non-privileged users (those that do not have the i flag set).

2.45.9 Saving and Re-creating Server and Queue Information

To save and recreate server and queue configuration, print the configuration information to a file, then read it back in
later. For example, to save your configuration:

qmgr -c "print server" > savedsettings

or

Qmgr: print server > savedsettings

When re-creating queue and server configuration, read the commands back into qmgr. For example:

qmgr < savedsettings
PBS Professional 2022.1 Reference Guide RG-169

Chapter 2 PBS Commands
2.45.10 Operating on Hooks

2.45.10.1 Creating Hooks

• To create a hook:

Qmgr: create hook <hook name>

For example:

Qmgr: create hook my_hook

2.45.10.2 Deleting Hooks

• To delete a hook:

Qmgr: delete hook <hook name>

For example:

Qmgr: delete hook my_hook

2.45.10.3 Setting and Unsetting Hook Attributes

• To set a hook attribute:

Qmgr: set hook <hook name> <attribute> = <value>
• To unset a hook attribute:

Qmgr: unset hook <hook name> <attribute>

Example 2-18: Unset hook1's alarm attribute, causing hook1's alarm to revert to its default value of 30 seconds:

Qmgr: unset hook hook1 alarm

2.45.10.4 Importing Hooks

For importing the contents of a site-defined hook. Cannot be used with built-in hooks.

To import a hook, you import the contents of a hook script into the hook. You must specify a filename that is locally
accessible to qmgr and the PBS server.

Format for importing a site-defined hook:

import hook <hook name> application/x-python <content encoding> {<input file> | -}

This uses the contents of input file or stdin (-) as the contents of hook hook name.

• The input file or stdin (-) data must have a format of content type and must be encoded with content encoding.

• The allowed values for content encoding are "default" (7bit) and "base64".

• If the source of input is stdin (-) and content encoding is "default", qmgr expects the input data to be terminated
by EOF.

• If the source of input is stdin (-) and content encoding is "base64", qmgr expects input data to be terminated by a
blank line.

• input file must be locally accessible to both qmgr and the requested batch server.

• A relative path input file is relative to the directory where qmgr was executed.

• If a hook already has a content script, that is overwritten by this import call.

• If the name in input file contains spaces as are used in Windows filenames, input file must be quoted.

There is no restriction on the size of the hook script.
RG-170 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.45.10.4.i Examples of Importing Hooks

Example 2-19: Given a Python script in ASCII text file "hello.py", use its contents as the script contents of hook1:

#cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

qmgr -c 'import hook hook1 application/x-python default hello.py'

Example 2-20: Given a base64-encoded file "hello.py.b64", qmgr unencodes the file's contents, and then makes
this the script contents of hook1:

cat hello.py.b64

cHJpbnQgImhlbGxvLCB3b3JsZCIK

qmgr -c 'import hook hook1 application/x-python base64 hello.py.b64'

Example 2-21: To create a provisioning hook called Provision_Hook, and import the ASCII hook script called
"master_provision.py" located in /root/data/:

Qmgr: create hook Provision_Hook
Qmgr: import hook Provision_Hook application/x-python default

/root/data/master_provision.py

2.45.10.5 Importing and Exporting Hook Configuration Files

2.45.10.5.i Importing Configuration Files

For importing the contents of a site-defined or built-in hook configuration file. To import a hook configuration file, you
import the contents of a file to a hook. You must specify a filename that is locally accessible to qmgr and the PBS
server.

Format for importing a site-defined hook configuration file:

import hook <hook name> application/x-config <content encoding> {<config file>|-}

Format for importing a built-in hook configuration file:

import pbshook <hook name> application/x-config <content encoding> {<config file>|-}

This uses the contents of config file or stdin (-) as the contents of the configuration file for hook hook name.

• The config file or stdin (-) data must have a format of content-type and must be encoded with content encoding.

• The allowed values for content encoding are "default" (7bit) and "base64".

• If the source of input is stdin (-) and content encoding is "default", qmgr expects the input data to be terminated
by EOF.

• If the source of input is stdin (-) and content encoding is "base64", qmgr expects input data to be terminated by a
blank line.

• config file must be locally accessible to both qmgr and the requested batch server.

• A relative path config file is relative to the directory where qmgr was executed.

• If a hook already has a configuration file, that file is overwritten by this import call.

• If the name in config file contains spaces as are used in Windows filenames, input file must be quoted.

There is no restriction on the size of the hook configuration file.

2.45.10.5.ii Exporting Configuration Files

Format for exporting a site-defined hook configuration file:

qmgr -c "export hook <hook name> application/x-config default" > {<config file>|-}
PBS Professional 2022.1 Reference Guide RG-171

Chapter 2 PBS Commands
Format for exporting a built-in hook configuration file:

qmgr -c "export pbshook <hook name> application/x-config default" > {<config file>|-}

2.45.10.5.iii Hook Configuration File Format

PBS supports several file formats for configuration files. The format of the file is specified in its suffix. Formats can be
any of the following:

• .ini

• .json

• .py (Python)

• .txt (generic, no special format)

• .xml

• No suffix: treat the input file as if it is a .txt file

• The dash (-) symbol: configuration file content is taken from STDIN. The content is treated as if it is a .txt file.

Example 2-22: To import a configuration file in .json format:

qmgr -c "import hook my_hook application/x-config default my_input_file.json"

2.45.10.6 Exporting Hooks

For exporting the contents of a site-defined hook. Cannot be used with built-in hooks.

Format for exporting a hook:

qmgr -c "export hook <hook name> <content type> <content encoding>" > [<output file>]

This dumps the script contents of hook hook name into output file, or stdout if output file is not specified.

• The resulting output file or stdout data is of content type and content encoding.

• The only content type currently supported is "application/x-python".

• The allowed values for content encoding are "default" (7bit) and "base64".

• output file must be a path that can be created by qmgr.

• Any relative path output file is relative to the directory where qmgr was executed.

• If output file already exists it is overwritten. If PBS is unable to overwrite the file due to ownership or permission
problems, an error message is displayed in stderr.

• If the output file name contains spaces like the ones used in Windows file names, output file must be enclosed in
quotes.

2.45.10.6.i Examples of Exporting Hooks

Example 2-23: Dump hook1's script contents directly into a file "hello.py.out":

qmgr -c "export hook hook1 application/x-python default" > hello.py

cat hello.py

import pbs

pbs.event().job.comment="Hello, world"

Example 2-24: To< dump the script contents of a hook 'hook1' into a file in "\My Hooks\hook1.py":

qmgr -c "export hook hook1 application/x-python default" > "\My Hooks\hook1.py"

2.45.10.7 Printing Hook Information

• To print out the commands to create and configure all hooks, including their configuration files:
RG-172 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
print hook
• To print out the commands to create and configure the specified hook, including its configuration file:

print hook <hook name>

2.45.10.8 Saving and Re-creating Hook Information

You can save creation and configuration information for all hooks. For example:

qmgr -c "print hook" > hook.qmgr

You can re-create all hooks and their configuration files. For example:

qmgr < hook.qmgr

2.45.10.9 Restrictions on Built-in Hooks

You cannot do the following with built-in hooks:

• Import a built-in hook

• Export a built-in hook

• Print creation commands for a built-in hook

• Create a built-in hook

• Delete a built-in hook

• Set the type attribute for a built-in hook

2.45.11 Printing Usage Information

You use the help command or a question mark ("?") to invoke the qmgr built-in help function. You can request usage
information for any of the qmgr commands, and for topics including attributes, operators, names, and values.

• To print out usage information for the specified command or topic:

Qmgr: help [<command or topic>]

or

Qmgr: ? [<command or topic>]

For example, to print usage information for the set command:

qmgr

Qmgr: help set

Syntax: set object [name][,name...] attribute[.resource] OP value

2.45.12 Standard Input

When you start a qmgr session, the qmgr command reads standard input for directives until it reaches end-of-file, or it
reads the exit or quit command.

2.45.13 Standard Output

When you start a qmgr session, and standard output is connected to a terminal, qmgr writes a command prompt to stan-
dard output.

If you specify the -e option, qmgr echoes the directives it reads from standard input to standard output.
PBS Professional 2022.1 Reference Guide RG-173

Chapter 2 PBS Commands
2.45.14 Standard Error

If you do not specify the -z option, the qmgr command writes a diagnostic message to standard error for each error
occurrence.

2.45.15 Exit Status

0
Success

1
Error in parsing

2
Error in execution

3
Error connecting to server

4
Error making object active

5
Memory allocation error

2.45.16 See Also

The PBS Professional Administrator's Guide, Chapter 6, "Attributes", on page 277, Chapter 5, "List of Built-in
Resources", on page 259
RG-174 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.46 qmove

Moves a PBS job from one queue to another

2.46.1 Synopsis

qmove <destination> <job ID> [<job ID> ...]

qmove --version

2.46.2 Description

Moves a job from one queue to another.

The behavior of the qmove command may be affected by any site hooks. Site hooks can modify the job's attributes,
change its routing, etc.

2.46.2.1 Restrictions

The qmove command can be used on job arrays, but not on subjobs or ranges of subjobs.

Job arrays can only be moved from one server to another if they are in the 'Q', 'H', or 'W' states, and only if there are no
running subjobs. The state of the job array is preserved, and the job array will run to completion on the new server.

A job in the Running, Transiting, or Exiting state cannot be moved.

A job in the process of provisioning cannot be moved.

2.46.2.2 Effect of Privilege on Behavior

An unprivileged user can use the qmove command to move a job only when the move would not violate queue restric-
tions. A privileged user (root, Manager, Operator) can use the qmove command to move a job under some circum-
stances where an unprivileged user cannot. The following restrictions apply only to unprivileged users:

• The queue must be enabled

• Moving the job into the queue must not exceed the queue's limits for jobs or resources

• If the job is an array job, the size of the job array must not exceed the queue's max_array_size

• The queue cannot have its from_route_only attribute set to True (accepting jobs only from routing queues)

2.46.3 Options

--version
The qmove command returns its PBS version information and exits. This option can only be used alone.

2.46.4 Operands

destination
Where job(s) are to end up. First operand. Syntax:

<queue name>
Moves the job(s) into the specified queue at the job's current server.

@<server name>
PBS Professional 2022.1 Reference Guide RG-175

Chapter 2 PBS Commands
Moves the job(s) into the default queue at specified server.

<queue name>@<server name>
Moves the job(s) into the specified queue at the specified server.

See Chapter 7, "Formats", on page 353 for destination identifier formats.

job ID
Job(s) and/or job array(s) to be moved to the new destination . The qmove command accepts one or more job
ID operands of the form:

<sequence number>[.<server name>][@<server name>]
<sequence number>[][.<server name>][@<server name>]
Note that some shells require that you enclose a job array identifier in double quotes.

2.46.5 Standard Error

The qmove command writes a diagnostic messages to standard error for each error occurrence.

2.46.6 Exit Status

Zero
Upon successful processing of all the operands presented to the qmove command.

Greater than zero
If the qmove command fails to process any operand.

2.46.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
RG-176 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.47 qmsg

Writes message string into one or more job output files

2.47.1 Synopsis

qmsg [-E] [-O] <message string> <job ID> [<job ID> ...]

qmsg --version

2.47.2 Description

Writes a message string into one or more output files of the job. Typically this is done to leave an informative message in
the output of the job. Also called "sending a message to a job".

The qmsg command writes messages into the files of jobs by sending a Message Job batch request to the batch server
that owns the job. The qmsg command does not directly write the message into the files of the job.

The qmsg command can be used on jobs and subjobs, but not on job arrays or ranges of subjobs.

2.47.3 Options

-E
The message is written to the standard error of each job.

-O
The message is written to the standard output of each job.

--version
The qmsg command returns its PBS version information and exits. This option can only be used alone.

(no options)
The message is written to the standard error of each job.

2.47.4 Operands

message string
The message to be written. String. First operand. If the string contains blanks, the string must be quoted. If the
final character of the string is not a newline, a newline character is added when written to the job's file.

job ID
The job(s) to receive the message string. This operand follows the message string operand. Can be a job or sub-
job. Cannot be a job array or range of subjobs. The qmsg command accepts one or more job ID operands.

Format for job:

<sequence number>[.<server name>][@<server name>]
Format for subjob. Note that a subjob has square brackets around its index number:

<sequence number>[<index>][.<server name>][@<server name>]

2.47.5 Standard Error

The qmsg command writes a diagnostic message to standard error for each error occurrence.
PBS Professional 2022.1 Reference Guide RG-177

Chapter 2 PBS Commands
2.47.6 Exit Status

Zero
Upon successful processing of all the operands presented to the qmsg command.

Greater than zero
If the qmsg command fails to process any operand.

2.47.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
RG-178 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.48 qorder

Swaps queue positions of two PBS jobs

2.48.1 Synopsis

qorder <job ID> <job ID>

qorder --version

2.48.2 Description

Exchanges positions in queue(s) of two jobs, whether in the same or different queue(s).

No attribute of either job, e.g. priority, is changed. The impact of interchanging the order within or between queues is
dependent on local job scheduling policy; contact your systems administrator.

2.48.2.1 Restrictions

• A job in the running state cannot be reordered.

• The qorder command can be used on job arrays, but not on subjobs or ranges of subjobs.

• The two jobs must be located at the same server.

2.48.2.2 Effect of Privilege on Behavior

For an unprivileged user to reorder jobs, both jobs must be owned by the user. A privileged user (Manager, Operator) can
reorder any jobs.

2.48.3 Options

--version
The qorder command returns its PBS version information and exits. This option can only be used alone.

2.48.4 Operands

Both operands are job IDs which specify the jobs to be exchanged. The qorder command accepts two job ID operands
of the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

If you specify the server for both jobs, they must be at the same server.

Note that some shells require that you enclose a job array identifier in double quotes.

2.48.5 Standard Error

The qorder command writes diagnostic messages to standard error for each error occurrence.
PBS Professional 2022.1 Reference Guide RG-179

Chapter 2 PBS Commands
2.48.6 Exit Status

Zero
Upon successful processing of all the operands presented to the qorder command

Greater than zero
If the qorder command fails to process any operand

2.48.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
RG-180 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.49 qrerun

Requeues a PBS job

2.49.1 Synopsis

qrerun [-W force] <job ID> [<job ID> ...]

qrerun --version

2.49.2 Description

If possible, kills the specified job(s), then requeues each job in the execution queue from which it was run.

The qrerun command can be used on jobs, job arrays, subjobs, and ranges of subjobs. If you give a job array identifier
as an argument, the job array is returned to its initial state at submission time, or to its altered state if it has been qaltered.
All of that job array's subjobs are requeued, which includes those that are currently running, and those that are completed
and deleted. If a you give a subjob or range as an argument, those subjobs are requeued.

2.49.2.1 Restrictions

If a job is marked as not rerunnable, qrerun neither kills nor requeues the job. See the -r option for the qsub and
qalter commands, and the Rerunable job attribute.

The qrerun command cannot requeue a job or subjob which is not running, is held, or is suspended.

2.49.2.2 Required Privilege

PBS Manager or Operator privilege is required to use this command.

2.49.3 Options

-W force
The job is to be requeued even if the vnode on which the job is executing is unreachable, or if the job's substate
is provisioning.

--version
The qrerun command returns its PBS version information and exits. This option can only be used alone.

2.49.4 Operands

The qrerun command accepts one or more job ID operands of the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

<sequence number>[<index>][.<server name>][@<server name>]

<sequence number>[<index start>-<index end>][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.
PBS Professional 2022.1 Reference Guide RG-181

Chapter 2 PBS Commands
2.49.5 Standard Error

The qrerun command writes a diagnostic message to standard error for each error occurrence.

2.49.6 Exit Status

Zero
Upon successful processing of all operands

Greater than zero
Upon failure to process any operand

2.49.7 See Also

PBS Professional Administrator's Guide, PBS Professional User's Guide
RG-182 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.50 qrls

Releases holds on PBS jobs

2.50.1 Synopsis

qrls [-h <hold list>] <job ID> [<job ID> ...]

qrls --version

2.50.2 Description

The qrls command directly releases or removes holds on batch jobs or job arrays, and indirectly on subjobs with a Sys-
tem hold. You cannot use the command with a specified range of subjobs. If you use qrls on a job array which has a
System hold because it has one or more subjobs with a System hold, the System hold is removed from the subjobs, then
from the job array.

A job may have one or more types of holds which make the job ineligible for execution.

When you qrls a job whose Execution_Time attribute is not set to a time in the future, the job changes to the queued
state. If Execution_Time is in the future, the job changes to the waiting state.

Holds can be set by the owner, an Operator, or Manager, when a job has a dependency, or when a job has its
Execution_Time attribute set to a time in the future. See "qhold” on page 150.

2.50.2.1 Effect of Privilege on Behavior

The following table shows the holds and the privilege required to release each:

If you try to release a hold for which the you do not have privilege, the entire request is rejected, and no holds are
released.

2.50.3 Options

(no options)
Defaults to -h u, removing user hold.

-h <hold list>
Types of hold to be released for the jobs. The hold list option argument is a string consisting of one or more of
the letters u, o, or s in any combination, or one of the letters n or p.

Table 2-22: Hold Types

Hold Type Meaning Privilege Required to Release

u User Job owner, Operator, Manager, PBS Administrator, root

o Other Operator, Manager, administrator, root

s System Manager, administrator, root, PBS (dependency)

n No hold Job owner, Operator, Manager, administrator, root

p Bad password Administrator, root
PBS Professional 2022.1 Reference Guide RG-183

Chapter 2 PBS Commands
--version
The qrls command returns its PBS version information and exits. This option can only be used alone.

2.50.4 Operands

The qrls command can be used directly on jobs and job arrays, but indirectly on subjobs, and cannot be used on ranges
of subjobs. The qrls command accepts one or more job ID operands of the form:

<sequence number>[.<server name>][@<server name>]

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.50.5 Standard Error

The qrls command writes a diagnostic message to standard error for each error occurrence.

2.50.6 Exit Status

Zero
Upon successful processing of all the operands presented to the qrls command

Greater than zero
If the qrls command fails to process any operand

2.50.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "qhold” on page 150
RG-184 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.51 qrun

Runs a PBS job immediately

2.51.1 Synopsis

qrun [-a] [-H <vnode specification>] <job ID> [<job ID> ...]

qrun [-a] [-H -] <job ID> [<job ID> ...]

qrun --version

2.51.2 Description

Forces a job to run, regardless of scheduling position or resource requirements.

The qrun command can be used on jobs, subjobs, or ranges of subjobs, but not on job arrays. When it is used on a range
of subjobs, the non-running subjobs in that range are run.

When preemption is enabled, a scheduler preempts other jobs in order to run this job. Running a job via qrun gives the
job higher preemption priority than any of the priorities defined in the preempt_prio scheduler parameter. See "Using
Preemption" on page 179 in the PBS Professional Administrator’s Guide.

2.51.2.1 Required Privilege

In order to execute qrun, you must have PBS Operator or Manager privilege.

2.51.2.2 Caveats for qrun

• The job is run without respect for limits, primetime, or dedicated time.

• If you use a -H <vnode specification> option to run a job, but specify insufficient vnodes or resources, the
job may not run correctly. Avoid using this option unless you are sure.

• If you don't use the -H option, the job must be in the Queued state and reside in an execution queue.

• If you do use the -H option, the job must be in the Queued or Suspended state and reside in an execution queue.

• The qrun command cannot be used on a job that is in the process of provisioning.

• If you use the -H option, all schedulers are bypassed, and partition boundaries are ignored.

• If you use qrun on a subjob, PBS will try to run the subjob regardless of whether the job has hit the limit specified
in max_run_subjobs.

2.51.3 Options to qrun

-a
The qrun command exits before the job actually starts execution.
PBS Professional 2022.1 Reference Guide RG-185

Chapter 2 PBS Commands
(no -H option)
The job is run immediately regardless of scheduling policy as long as the following are true:

• The queue in which the job resides is an execution queue.

• Either the resources required by the job are available, or preemption is enabled and the required resources
can be made available by preempting jobs that are running.

The qrun command by itself, with no -H option, overrides the following:

• Limits on resource usage by users, groups, and projects

• Limits on the number of jobs that can be run at a vnode

• Boundaries between primetime and non-primetime, specified in backfill_prime

• Whether the job is in a primetime queue: you can run a job in a primetime slot even when it's not prime-
time, or vice versa. Primetime boundaries are not honored.

• Dedicated time: you can run a job in a dedicated time slot, even if it's not in a dedicated time queue, and
vice versa. However, dedicated time boundaries are still honored.

The qrun command by itself, with no -H option, does not override the following:

• Server and queue resource usage limits

(with -H option)
Do NOT use this option unless you know exactly what you are doing.

With the -H option, all scheduling policies are bypassed and the job is run directly. The job is run immediately
on the named or previously-assigned vnodes, regardless of current usage on those vnodes or which scheduler
manages those vnodes, with the exception of vnode state. The job is not run and the qrun request is rejected if
any named vnode is down, already allocated exclusively, or would need to be allocated exclusively and another
job is already running on the vnode. The job is run if the vnode is offline.

The -H option runs jobs that are queued or suspended.

If the qrun -H command is used on a job that requests an AOE, and that AOE is not instantiated on those
vnodes, the vnodes are provisioned with the AOE.

If the job requests an AOE, and that AOE is not available on the specified vnodes, the job is held.

-H <vnode specification without resources>
The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)

PBS applies one requested chunk from the job's selection directive in round-robin fashion to each vchunk in
the list. Each vchunk must be sufficient to run the job's corresponding chunk, otherwise the job may not
execute correctly.
RG-186 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-H <vnode specification with resources>
The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

PBS creates a new selection directive from the vnode specification with resources, using it instead of the
original specification from the user. Any single resource specification results in the job's original selection
directive being ignored. Each vchunk must be sufficient to run the job's corresponding chunk, otherwise the
job may not execute correctly.

If the job being run requests -l place=exclhost, take extra care to satisfy the exclhost request.
Make sure that if any vnodes are from a multi-vnoded host, all vnodes from that host are allocated. Other-
wise those vnodes can be allocated to other jobs.

-H -
Runs the job on the set of resources to which it is already assigned. You can run a job on the set of
resources already assigned to the job, without having to list the resources, by using the - (dash) argument to
the -H option.

--version
The qrun command returns its PBS version information and exits. This option can only be used alone.

2.51.4 Operands

Job ID
The qrun command accepts a list of job IDs, of the form:

<sequence number>[.<server name>][@<server name>]
<sequence number>[<index>][.<server name>][@<server name>]
<sequence number>[<index start>-<index end>][.<server name>][@<server name>]
Note that some shells require that you enclose a job array identifier in double quotes.
PBS Professional 2022.1 Reference Guide RG-187

Chapter 2 PBS Commands
vnode specification
The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)

The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

A vnode name is the name of the vnode, not the name of the host.

2.51.5 Standard Error

The qrun command writes a diagnostic message to standard error for each error occurrence.

2.51.6 Exit Status

Zero
On success

Greater than zero
If the qrun command fails to process any operand

2.51.7 See Also

The PBS Professional Administrator's Guide
RG-188 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.52 qselect

Selects specified PBS jobs

2.52.1 Synopsis

qselect [-a [<op>] <date and time>] [-A <account string>] [-c [<op>] <interval>] [-h <hold list>] [-H] [-J] [-l
<resource list>] [-N <name>] [-p [<op>] <priority>] [-P <project>] [-q <destination>] [-r <rerun>] [-s
<states>] [-t <time option> [<comparison>] <specified time>] [-T] [-u <user list>] [-x]

qselect --version

2.52.2 Description

The qselect command lists those jobs that meet the specified selection criteria. You can compare certain job attribute
values to specified values using a comparison operator shown as op in the option description.

You can select jobs, job arrays, or subjobs. You can select jobs from one server per call to the command.

Each option acts as a filter restricting which jobs are listed.

You can select jobs according to the values of some of the resources in the Resource_List job attribute. You can also
select jobs according the selection directive (although because this is a string, you can only check for equality or inequal-
ity.)

Jobs that are finished or moved are listed only when the -x or -H options are used. Otherwise, job selection is limited to
queued and running jobs.

2.52.2.1 Comparison Operations

You can select jobs by comparing the values of certain job attributes to values you specify. The following table lists the
comparison operations you can use:

For example, to select jobs whose Priority attribute has a value greater than 5:

qselect -p.gt.5

Where an optional comparison is not specified, the comparison operation defaults to .eq, meaning PBS checks whether
the value of the attribute is equal to the option argument.

Table 2-23: Comparison Operations

Operation Type of Comparison

.eq. The value of the job attribute is equal to the value of the option argument.

.ne. The value of the job attribute is not equal to the value of the option argument.

.ge. The value of the job attribute is greater than or equal to the value of the option argument.

.gt. The value of the job attribute is greater than the value of the option argument.

.le. The value of the job attribute is less than or equal to the value of the option argument.

.lt. The value of the job attribute is less than the value of the option argument.
PBS Professional 2022.1 Reference Guide RG-189

Chapter 2 PBS Commands
2.52.2.2 Required Permissions

When selecting jobs according to resource values, users without operator or manager privilege cannot specify custom
resources which were created to be invisible to unprivileged users.

2.52.3 Options to qselect

(no options)
Lists all jobs at the server which the user is authorized to list (query status of).

-a [<op>] <date and time>
Deprecated. Restricts selection to those jobs whose Execution_Time attribute qualifies when compared to the
date and time argument. You can select a range of execution times by using this option twice, to compare to a
minimum time and a maximum time.

The date and time argument has the format:

[[CC]YY]MMDDhhmm[.SS]
where MM is the two digits for the month, DD is the day of the month, hh is the hour, mm is the minute, and the
optional SS is the seconds. CC is the century and YY the year.

-A <account string>
Restricts selection to jobs whose Account_Name attribute matches the specified account string .

-c [<op>] <interval>
Restricts selection to jobs whose Checkpoint interval attribute meets the comparison criteria.

The interval argument can take one of the following values:

c

c=<minutes>

n

s

w

w=<minutes>

We give the range of interval values for the Checkpoint attribute the following ordered relationship:

n > s > c=<minutes> > c > u
(Information about w and w=<minutes> is not available.)

For an interval value of "u", only ".eq." and ".ne." are valid.
RG-190 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-h <hold list>
Restricts the selection of jobs to those with a specific set of hold types. The holds in the Hold_Types job
attribute must be the same as those in the hold list argument, but can be in a different order.

The hold list argument is a string consisting of the single letter n, or one or more of the letters u, o, p, or s in
any combination. If letters are duplicated, they are treated as if they occurred once. The letters represent the
hold types:

-H
Restricts selection to finished and moved jobs.

-J
Limits selection to job arrays only.

-l <resource list>
Restricts selection of jobs to those with specified resource amounts. Resource must be job-wide, or be mem,
ncpus, or vmem.

The resource list is in the following format:

<resource name> <op> <value>[,<resource name> <op> <value> ...]

You must specify op, and you can use any of the comparison operators.

Because resource specifications for chunks using the select statement, and placement using the place statement,
are stored as strings, the only useful operators for these are .eq. and .ne.

Unprivileged users cannot specify custom resources which were created to be invisible to unprivileged users.

-N <name>
Restricts selection of jobs to those with the specified value for the Job_Name attribute.

-p [<op>]<priority>
Restricts selection of jobs to those with the specified Priority value(s).

-P <project>
Restricts selection of jobs to those matching the specified value for the project attribute.

Format: Project Name; see "Project Name” on page 357

-q <destination>
Restricts selection to those jobs at the specified destination.

The destination may take of one of the following forms:

<queue name>

Restricts selection to the specified queue at the default server.

@<server name>

Table 2-24: Hold Types

Letter Hold Type

n None

u User

o Other

p Bad password

s System
PBS Professional 2022.1 Reference Guide RG-191

Chapter 2 PBS Commands
Restricts selection to the specified server.

<queue name>@<server name>

Restricts selection to the specified queue at the specified server.

If the -q option is not specified, jobs are selected from the default server.

-r <rerun>
Restricts selection of jobs to those with the specified value for the Rerunable attribute . The option argument
rerun must be a single character, either y or n .

-s <states>
Restricts job selection to those whose job_state attribute has the specified value(s).

The states argument is a character string consisting of any combination of these characters: B, E, F, H, M, Q,
R, S, T, U, W, and X. (A repeated character is accepted, but no additional meaning is assigned to it.)

Jobs in any of the specified states are selected.

Job arrays are never in states R, S, T, or U. Subjobs may be in those states.

Table 2-25: Job States

State Meaning

B Job array has started execution

E The Exiting state

F The Finished state

H The Held state

M The Moved state

Q The Queued state

R The Running state

S The Suspended state

T The Transiting state

U Job suspended due to workstation user activity

W The Waiting state

X The eXited state. Subjobs only
RG-192 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-t <time option> [<op>] <specified time>
Jobs are selected according to one of their time-based attributes. The time option specifies which time-based
attribute is tested. You give the specified time in datetime format. See Chapter 7, "Formats", on page 353.

The time option is one of the following:

To bracket a time period, use the -t option twice. For example, to select jobs using stime between noon and 3
p.m.:

qselect -ts.gt.09251200 -ts.lt.09251500

-T
Limits selection to jobs and subjobs.

Table 2-26: Sub-options to the -t Option

Time
Option

Time Attribute Option Format(s) Attribute Description

a Execution_Time Timestamp

Use datetime format to specify.

Time at which the job is eligible
for execution.

c ctime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time at which the job was created.

e etime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time when job became eligible to
run, i.e. was enqueued in an exe-
cution queue and was in the "Q"
state. Reset when a job moves
queues, or is held then released.
Not affected by qaltering.

g eligible_time Use duration format to specify. Amount of eligible time job
accrued waiting to run.

m mtime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time that the job was last modified,
changed state, or changed locations.

q qtime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time that the job entered the current
queue.

s stime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch

Time the job started. Updated when
job is restarted. .

t estimated.start_time Use datetime format to specify.
Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Job's estimated start time.
PBS Professional 2022.1 Reference Guide RG-193

Chapter 2 PBS Commands
-u <user list>
Restricts selection to jobs owned by the specified usernames.

Syntax of user list:

<username>[@<hostname>][,<username>[@<hostname>],...]

Selects jobs which are owned by the listed users at the corresponding hosts. Hostnames may be wildcarded on
the left end, e.g. "*.nasa.gov". A username without a "@<hostname>" is equivalent to "<username>@*",
meaning that it is valid at any host.

-x
Selects finished and moved jobs in addition to queued and running jobs.

--version
The qselect command returns its PBS version information and exits. This option can only be used alone.

2.52.4 Standard Output

PBS writes a list of the selected job IDs to standard output. Each job ID is separated by white space. A job ID can repre-
sent a job, a job array, or a subjob. Each job ID has one of the forms:

<sequence number>.<server name>[@<server name>]

<sequence number>[].<server name>[@<server name>]

<sequence number>[<index>].<server name>[@<server name>]

@<server name> identifies the server which currently owns the job.

2.52.5 Standard Error

The qselect command writes a diagnostic message to standard error for each error occurrence.

2.52.6 Exit Status

Zero
Upon successful processing of all options presented to the qselect command

Greater than zero
If the qselect command fails to process any option

2.52.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, section 6.11, “Job Attributes”, on page
327, Chapter 5, "List of Built-in Resources", on page 259
RG-194 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.53 qsig

Send signal to PBS job

2.53.1 Synopsis

qsig [-s <signal>] <job ID> [<job ID> ...]

qsig --version

2.53.2 Description

The qsig command sends a signal to all the processes of the specified job(s). The qsig command sends a Signal Job
batch request to the server which owns the job.

The qsig command can be used for jobs, job arrays, subjobs, and ranges of subjobs. If it is used on a range of subjobs,
the running subjobs in the range are signaled.

Not all signal names are recognized by qsig; if using a signal name does not work, try issuing the signal number
instead.

2.53.2.1 Using admin-suspend and admin-resume

If you have a vnode requiring maintenance while remaining powered up, where you don't want jobs running during the
maintenance, you can use the special signals admin-suspend and admin-resume to suspend and resume the jobs on the
vnode. When you use admin-suspend on a vnode's job(s), the vnode goes into the maintenance state, and its sched-
uler does not schedule jobs on it. You must separately admin-suspend each job on the vnode. When its last
admin-suspended job is admin-resumed, a vnode leaves the maintenance state.

2.53.2.2 Restrictions

The request to signal a job is rejected if:

• The user is not authorized to signal the job

• The job is not in the running or suspended state

• The requested signal is not supported by the system upon which the job is executing

• The job is in the process of provisioning

• You attempt to use admin-resume on a job that was suspended

• You attempt to use resume on a job that was admin-suspended

2.53.2.3 Required Privilege

Manager or Operator privilege is required to use the admin-suspend, admin-resume, suspend, or resume signals.
Unprivileged users can use other signals.

2.53.3 Options to qsig

(no options)
PBS sends SIGTERM to the job.
PBS Professional 2022.1 Reference Guide RG-195

Chapter 2 PBS Commands
-s <signal>
PBS sends signal signal to the job.

--version
The qsig command returns its PBS version information and exits. This option can only be used alone.

2.53.3.1 Signals

You can send standard signals to a job, or the special signals described below. The signal argument can be in any of the
following formats:

• A signal name, e.g. SIGKILL

• A signal name without the SIG prefix, e.g. KILL

• An unsigned signal number, e.g. 9

The signal name SIGNULL is allowed; in this case the server sends the signal 0 to the job, which has no effect.

2.53.3.1.i Special Signals

The following special signals are all lower-case, and have no associated signal number:

admin-suspend
Suspends a job and puts its vnodes into the maintenance state. The job is put into the S state and its processes
are suspended. When suspended, a job is not executing and is not charged for walltime.

Syntax: qsig -s admin-suspend <job ID>

admin-resume
Resumes a job that was suspended using the admin-suspend signal, without waiting for its scheduler. Cannot
be used on jobs that were suspended with the suspend signal. When the last admin-suspended job has been
admin-resumed, the vnode leaves the maintenance state.

 Syntax: qsig -s admin-resume <job ID>

suspend
Suspends specified job(s). Job goes into suspended (S) state. When suspended, a job is not executing and is
not charged for walltime.

resume
Marks specified job(s) for resumption by its scheduler when there are sufficient resources. If you use qsig -s
resume on a job that was suspended using qsig -s suspend, the job is resumed when there are sufficient
resources. Cannot be used on jobs that were suspended with the admin_suspend signal.

2.53.4 Operands

The qsig command accepts one or more job ID operands. For a job, this has the form:

<sequence number>[.<server name>][@<server name>]

For a job array, job ID takes this form:

<sequence number>[][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.53.5 Standard Error

The qsig command writes a diagnostic message to standard error for each error occurrence.
RG-196 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.53.6 Exit Status

Zero
Upon successful processing of all the operands presented to the qsig command

Greater than zero
If the qsig command fails to process any operand

2.53.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
PBS Professional 2022.1 Reference Guide RG-197

Chapter 2 PBS Commands
2.54 qstart

Turns on scheduling or routing for the jobs in a PBS queue

2.54.1 Synopsis

qstart <destination> [<destination> ...]

qstart --version

2.54.2 Description

If destination is an execution queue, the qstart command allows a PBS scheduler to schedule jobs residing in the spec-
ified queue. If destination is a routing queue, the server can begin routing jobs from that queue. Sets the value of the
queue's started attribute to True.

2.54.2.1 Required Privilege

In order to execute qstart, you must have PBS Operator or Manager privilege.

2.54.3 Options

--version
The qstart command returns its PBS version information and exits. This option can only be used alone.

2.54.4 Operands

The qstart command accepts one or more space-separated destination operands. The operands take one of three
forms:

<queue name>

Starts scheduling or routing from the specified queue.

@<server name>

Starts scheduling or routing from all queues at the specified server.

<queue name>@<server name>

Starts scheduling or routing from the specified queue at the specified server.

To start scheduling at all queues at the default server, use the qmgr command:

Qmgr: set queue @default started=true

2.54.5 Standard Error

The qstart command writes a diagnostic message to standard error for each error occurrence.
RG-198 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.54.6 Exit Status

Zero
Upon successful processing of all the operands presented to the qstart command

Greater than zero
If the qstart command fails to process any operand

2.54.7 See Also

The PBS Professional Administrator's Guide, "qmgr” on page 152, "qstop” on page 214
PBS Professional 2022.1 Reference Guide RG-199

Chapter 2 PBS Commands
2.55 qstat

Displays status of PBS jobs, queues, or servers

2.55.1 Synopsis

2.55.1.1 Displaying Job Status

Default format:

qstat [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

Long format:

qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID list> | <destination>] ...]

Alternate format:

qstat [-a | -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1]] [-s [-1]] [-t] [-T] [-u <user list>] [-w] [[<job ID> | <destination>]
...]

2.55.1.2 Displaying Queue Status

Default format:

qstat -Q [<destination> ...]

Long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

Alternate format:

qstat -q [-G | -M] [<destination> ...]

2.55.1.3 Displaying Server Status

Default format:

qstat -B [<server name> ...]

Long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server name> ...]

2.55.1.4 Displaying Version Information

qstat --version

2.55.2 Description

The qstat command displays the status of jobs, queues, or servers, writing the status information to standard output.

When displaying job status information, the qstat command displays status information about all specified jobs, job
arrays, and subjobs. You can specify jobs by ID, or by destination, for example all jobs at a specified queue or server.
RG-200 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.55.2.1 Display Formats

You can use particular options to display status information in a default format, an alternate format, or a long format.
Default and alternate formats display all status information for a job, queue, or server with one line per object, in col-
umns. Long formats display status information showing all attributes, one attribute to a line.

2.55.2.2 Displaying Information for Finished and Moved Jobs

You can display status information for finished and moved jobs by using the -x and -H options.

If your job has been moved to another server through peer scheduling, give the job ID as an argument to qstat. If you
do not specify the job ID, your job will not appear to exist. For example, your job 123.ServerA is moved to ServerB. In
this case, you can use:

qstat 123

or

qstat 123.ServerA

Specifying the full job name, including the server, avoids the possibility that qstat will report on a job named 123.Ser-
verB that was moved to ServerA.

To list all jobs at ServerB, you can use:

qstat @ServerB

2.55.2.3 Displaying Truncated Data

When the number of characters required would exceed the space available, qstat truncates the output and puts an aster-
isk ("*") in the last position. For example, in default job display format, there are three characters allowed for the num-
ber of cores. If the actual output were 1234, the value displayed would be 12* instead.

2.55.2.4 Required Privilege

Users without Manager or Operator privilege cannot view resources or attributes that are invisible to unprivileged users.

2.55.3 Displaying Job Status

2.55.3.1 Job Status in Default Format

Triggers: no options, or any of the -J, -p, -t, or -x options.

The qstat command displays job status in default format when you specify no options, or any of the -J, -p, -t, or -x
options. Jobs are displayed one to a line, with these column headers:

Job id Name User Time Use S Queue

-------- ---------- --------- -------- - -----
PBS Professional 2022.1 Reference Guide RG-201

Chapter 2 PBS Commands
Description of columns:

Table 2-27: Description of Default Job Status Columns

Column Width without -w
Width

with -w
Description

Job ID 17 (22 when
max_job_sequence_id
> 10 million

30 Job ID assigned by PBS

Name 16 15 Job name specified by submitter

User 16 15 Username of job owner

Time Use

or

Percent
Complete

8 8 The CPU time used by the job. Before the application has actually
started running, for example during stage-in, this field is "0". At
the point where the application starts accumulating cput, this field
changes to "00:00:00". After that, every time the MoM polls for
resource usage, the field is updated.

The MoM on each execution host polls for the usage of all pro-
cesses on her host belonging to the job. Usage is summed. The
polling interval is short when a job first starts running and length-
ens to a maximum of 2 minutes. See "Configuring MoM Polling
Cycle" on page 38 in the PBS Professional Administrator’s Guide.

If you specify -p, the Time Use column is replaced with the per-
centage completed for the job. For a job array this is the percent-
age of subjobs completed. For a normal job, it is the percentage of
allocated CPU time used.

S 1 1 The job's state. See section 8.1, “Job States”, on page 361

B Array job has at least one subjob running

E Job is exiting after having run

F Job is finished

H Job is held

M Job was moved to another server

Q Job is queued

R Job is running

S Job is suspended

T Job is being moved to new location

U Cycle-harvesting job is suspended due to keyboard
activity

W Job is waiting for its submitter-assigned start time to be
reached

X Subjob has completed execution or has been deleted

Queue 16 15 The queue in which the job resides
RG-202 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.55.3.2 Job Status in Long Format

Trigger: the -f option.

If you specify the -f (full) option, full job status information for each job is displayed in this order:

• The job ID

• Each job attribute, one to a line

• The job's submission arguments

• The job's executable, in JSDL format

• The executable's argument list, in JSDL format

The job attributes are listed as <name> = <value> pairs. This includes the exec_host and exec_vnode strings. The full
output can be very large.

The exec_host string has this format:

<host1>/<T1>*<P1>[+<host2>/<T2>*<P2>+...]

where

T1 is the task slot number (the index) of the job on host1.

P1 is the number of processors allocated to the job from host1. The number of processors allocated does not appear if it
is 1.

The exec_vnode string has the format:

(<vnode1>:ncpus=<N1>:mem=<M1>)[+(<vnode2>:ncpus=<N2>:mem=<M2>)+...]

where

N1 is the number of CPUs allocated to that job on vnode1.

M1 is the amount of memory allocated to that job on vnode1.

2.55.3.3 Job Status in Alternate Format

Triggers: any of the -a, -i, -G, -H, -M, -n, -r, -s, -T, or -u <user list> options.

The qstat command displays job status in alternate format if you specify any of the -a, -i, -G, -H, -M, -n,
-r, -s, -T, or -u <user list> options. Jobs are displayed one to a line. If jobs are running and the -n option is
specified, or if jobs are finished or moved and the -H and -n options are specified, there is a second line for the
exec_host string.

2.55.3.3.i Job Status Alternate Format Output Columns

Alternate format job status output contains the following columns:

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------ -------- ----- ------- ------ --- --- ------ ----- - ----
PBS Professional 2022.1 Reference Guide RG-203

Chapter 2 PBS Commands
Description of columns:

2.55.3.4 Grouping Jobs and Sorting by ID

Trigger: the -E option.

You can use the -E option to sort and group jobs in the output of qstat. The -E option groups jobs by server and dis-
plays each group by ascending ID. This option also improves qstat performance. The following table shows how the
-E option affects the behavior of qstat:

Table 2-28: Description of Alternate Format Job Status Columns

Column Width without -w
Width

with -w
Description

Job ID 15 (20 when
max_job_sequence_id
> 10 million)

30 The job ID assigned by PBS

Username 8 15 Username of job owner

Queue 8 15 Queue in which the job resides

Jobname 10 15 Job name specified by submitter

SessID 6 8 Session ID. Appears only if the job is running

NDS 3 4 Number of chunks or vnodes requested by the job

TSK 3 5 Number of CPUs requested by the job

Req'd Memory 6 6 Amount of memory requested by the job

Req'd Time 5 5 If CPU time is requested, shows CPU time. Otherwise,
shows walltime

S 1 1 The job's state; see "States” on page 361 for states

Elap Time

or

Est Start Time

5 5 If CPU time is requested, shows CPU time. Otherwise,
shows walltime.

If you use the -P option, displays estimated start time for
queued jobs, replacing the Elap Time field with the Est
Start Time field.

Table 2-29: How -E Option Affects qstat Output

How qstat is Used Result Without -E Result With -E

qstat (no job ID specified) Queries the default server and displays
result

No change in behavior; same as with-
out -E option

qstat <list of job IDs
from single server>

Displays results in the order specified Displays results in ascending ID order

qstat <job IDs at multiple
servers>

Displays results in the order they are
specified

Groups jobs by server. Displays each
group in ascending order
RG-204 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.55.4 Displaying Queue Status

2.55.4.1 Queue Status in Default Format

Trigger: the -Q option by itself.

The qstat command displays queue status in default format if the only option is -Q. Queue status is displayed one
queue to a line, with these column headers:

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type

----------- ---- ---- ---- --- ---- ---- ---- ---- ---- ---- ----

Description of columns:

2.55.4.2 Queue Status in Long Format

Trigger: the -Q and -f options together.

If you specify the -f (full) option with the -q option, full queue status information for each queue is displayed starting
with the queue name, followed by each attribute, one to a line, as <name> = <value> pairs.

2.55.4.2.i Queue Status: Alternate Format

Triggers: any of the -q, -G, or -M options.

 The qstat command displays queue status in the alternate format if you specify any of the -q, -G, or -M options. Queue
status is displayed one queue to a line, and the lowest line contains totals for some columns.

These are the alternate format queue status column headers:

Queue Memory CPU Time Walltime Node Run Que Lm State

------- ------ -------- -------- ---- --- --- -- -----

Table 2-30: Description of Default Queue Status Columns

Column Description

Queue Queue name

Max Maximum number of jobs allowed to run concurrently in this queue

Tot Total number of jobs in the queue

Ena Whether the queue is enabled or disabled

Str Whether the queue is started or stopped

Que Number of queued jobs

Run Number of running jobs

Hld Number of held jobs

Wat Number of waiting jobs

Trn Number of jobs being moved (transiting)

Ext Number of exiting jobs

Type Type of queue: execution or routing
PBS Professional 2022.1 Reference Guide RG-205

Chapter 2 PBS Commands
Description of columns:

2.55.5 Displaying Server Status

2.55.5.1 Server Status in Default Format:

Trigger: the -B option.

The qstat command displays server status if the only option given is -B.

Column headers for default server status output:

Server Max Tot Que Run Hld Wat Trn Ext Status

-------- ----- ----- ----- ----- ----- ----- ----- ----- ------

Description of columns:

Table 2-31: Description of Queue Alternate Status Columns

Column Description

Queue Queue name

Memory Maximum amount of memory that can be requested by a job in this queue

CPU Time Maximum amount of CPU time that can be requested by a job in this queue

Walltime Maximum amount of walltime that can be requested by a job in this queue

Node Maximum number of vnodes that can be requested by a job in this queue

Run Number of running and suspended jobs. Lowest row is total number of running and suspended
jobs in all the queues shown

Que Number of queued, waiting, and held jobs. Lowest row is total number of queued, waiting, and
held jobs in all the queues shown

Lm Maximum number of jobs allowed to run concurrently in this queue

State State of this queue: E (enabled) or D (disabled), and R (running) or S (stopped)

Table 2-32: Description of Server Status Default Display Columns

Column Description

Server Name of server

Max Maximum number of jobs allowed to be running concurrently on the server

Tot Total number of jobs currently managed by the server

Que Number of queued jobs

Run Number of running jobs

Hld Number of held jobs

Wat Number of waiting jobs
RG-206 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.55.5.2 Server Status in Long Format

Trigger: the -f option.

If you specify the -f (full) option, displays full server status information starting with the server name, followed by each
server attribute, one to a line, as <name> = <value> pairs. Includes PBS version information.

2.55.6 Options to qstat

2.55.6.1 Generic Job Status Options

-E
Groups jobs by server and displays jobs sorted by ascending ID. When qstat is presented with a list of jobs,
jobs are grouped by server and each group is displayed by ascending ID. This option also improves qstat per-
formance. See section 2.55.3.4, “Grouping Jobs and Sorting by ID”, on page 204.

2.55.6.2 Default Job Status Options

The following options cause job status information to be displayed in default format:

-J
Displays status information for job arrays (not subjobs). When used with the -t option, displays status informa-
tion for subjobs only.

-t
Displays status information for jobs, job arrays, and subjobs. When used with -J option, displays status infor-
mation for subjobs only.

-p
The Time Use column is replaced with the percentage completed for the job. For a job array this is the percent-
age of subjobs completed. For a normal job, it is the percentage of allocated CPU time used.

-x
Displays status information for finished and moved jobs in addition to queued and running jobs.

2.55.6.3 Alternate Job Status Options

The following options cause job status information to be displayed in alternate format:

-a
All queued and running jobs are displayed. If a destination is specified, information for all jobs at that destina-
tion is displayed. If a job ID is specified, information about that job is displayed. When using this option with
the -n or -s options, always specify this option before the -n or -s options, otherwise they will not take effect.

Trn Number of transiting jobs

Ext Number of exiting jobs

Status Status of the server

Table 2-32: Description of Server Status Default Display Columns

Column Description
PBS Professional 2022.1 Reference Guide RG-207

Chapter 2 PBS Commands
-H
Without a job identifier, displays information for all finished or moved jobs. If a job ID is given, displays infor-
mation for that job regardless of its state. If a destination is specified, displays information for finished or
moved jobs, or specified job(s), at destination.

-i
If a destination is given, information for queued, held or waiting jobs at that destination is displayed. If a job ID
is given, information about that job is displayed regardless of its state.

-n
The exec_host string is listed on the line below the basic information. If the -1 option is given, the exec_host
string is listed on the end of the same line. If using the -a option with this option, always specify the -n option
after -a, otherwise the -n option does not take effect.

-r
If a destination is given, information for running or suspended jobs at that destination is displayed. If a job ID
is given, information about that job is displayed regardless of its state.

-s
Any comment added by the administrator or scheduler is shown on the line below the basic information. If the
-1 option is given, the comment string is listed on the end of the same line. If using the -a option with this
option, always specify the -s option after -a, otherwise the -s option does not take effect.
RG-208 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-T
Displays estimated start time for queued jobs, replacing the Elap Time field with the Est Start Time field.
Jobs with earlier estimated start times are displayed before those with later estimated start times.

Running jobs are displayed before other jobs. Running jobs are sorted by their stime attribute (start time).

Queued jobs whose estimated start times are unset (estimated.start_time = unset) are displayed after those
with estimated start times, with the unset value shown as a double dash ("--"). Queued jobs with estimated start
times in the past are treated as if their estimated start times are unset.

If a job's estimated start time cannot be calculated, the start time is shown as a question mark ("?").

Time displayed is local to the qstat command. Current week begins on Sunday.

The following table shows the format for the Est Start Time field when the -w option is not used:

The following table shows the format for the Est Start Time field when the -w option is used:

When used with the -f option, prints the full timezone-qualified start time.

Estimated start time information can be made unavailable to unprivileged users; in this case, the estimated start
time appears to be unset.

-u <user list>
If a destination is given, status for jobs at that destination owned by users in user list is displayed. If a job ID is
given, status information for that job is displayed regardless of the job's ownership.

Format: <username>[@<hostname>][, <username>[@<hostname>], ...] in comma-separated list.

Hostnames may be wildcarded, but not domain names. When no hostname is specified, username is for any
host.

Table 2-33: Format for Estimated Start Time Field without -w Option

Format Job Estimated Start Time Example

<HH>:<MM> Today 15:34

<2-letter weekday> <HH> Within 7 days, but after today We 15

<3-letter month name> This calendar year, but after this week Feb

<YYYY> Less than or equal to 5 years from today, after this year 2018

>5yrs More than 5 years from today >5yrs

Table 2-34: Format for Estimated Start Time Field with -w Option

Format Job Estimated Start Time Example

Today <HH>:<MM> Today Today 13:34

<Day> <HH>:<MM> This week, but after today Wed 15:34

<Day> <Month> <Daynum>
<HH>:<MM>

This year, but after this week Wed Feb 10 15:34

<Day> <Month> <Daynum>
<YYYY> <HH>:<MM>

After this year Wed Feb 10 2011 15:34
PBS Professional 2022.1 Reference Guide RG-209

Chapter 2 PBS Commands
-w
Can be used with job status in default and alternate formats. Allows display of wider fields up to 120 characters.
See section 2.55.3.1, “Job Status in Default Format”, on page 201 and section 2.55.3.3, “Job Status in Alternate
Format”, on page 203 for column widths.

This option is different from the -w option used with the -f long-format option.

-1 (hyphen one)
Reformats qstat output to a single line. Can be used only in conjunction with the -n and/or -s options.

2.55.6.4 Queue Status Options

-Q
Displays queue status in default format. Operands must be destinations.

-q
Displays queue status in alternate format. Operands must be destinations.

2.55.6.5 Server Status Options

-B
Display server status. Operands must be names of servers.

2.55.6.6 Job, Queue, and Server Status Options

-f [-w]
Full display for long format. Job, subjob, queue, or server attributes displayed one to a line.

JSON output:

PBS reports resources_used values for resources that are created or set in a hook as JSON strings in the
output of qstat -f.

If MoM returns a JSON object (a Python dictionary), PBS reports the value as a string in single quotes:

resources_used.<resource_name> = '{ <MoM JSON item value>, <MoM JSON item value>, <MoM JSON item
value>, ..}'

Example: MoM returns { "a":1, "b":2, "c":1,"d": 4} for resources_used.foo_str. We get:

resources_used.foo_str='{"a": 1, "b": 2, "c":1,"d": 4}'

If MoM returns a value that is not a valid JSON object, the value is reported verbatim.

Example: MoM returns "hello" for resources_used.foo_str. We get:

resources_used.foo_str="hello"
Optional -w prints each attribute on one unbroken line. Feed characters are converted:

• Newline is converted to backslash concatenated with "n", resulting in "\n"

• Form feed is converted to backslash concatenated with "f", resulting in "\f"

This -w is independent of the -w job output option used with default and alternate formats.
RG-210 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-F dsv [-D <delimiter>]
Prints output in delimiter-separated value format. The default delimiter is a pipe ("|"). You can specify a char-
acter or a string delimiter using the -D argument to the -F dsv option. For example, to use a comma as the
delimiter:

qstat -f -F dsv -D,

If the delimiter itself appears in a value, it is escaped:

• On Linux, the delimiter is escaped with a backslash ("\").

• On Windows, the delimiter is escaped with a caret ("^").

Feed characters are converted:

• Newline is converted to backslash concatenated with "n", resulting in "\n"

• Form feed is converted to backslash concatenated with "f", resulting in "\f"

A newline separates each job from the next. Using newline as the delimiter leads to undefined behavior.

Example of getting output in delimiter-separated value format:

qstat -f -Fdsv

Job Id: 1.vbox|Job_Name = STDIN|Job_Owner = root@vbox|job_state = Q|queue = workq|server =
vbox|Checkpoint = u|ctime = Fri Nov 11 17:57:05 2016|Error_Path = ...

-F json
Prints output in JSON format (http://www.json.org/).

Attribute output is preceded by timestamp, PBS version, and PBS server hostname.

Example:

qstat -f -F json

{

"timestamp":1479277336,

"pbs_version":"14.1",

"pbs_server":"vbox",

"Jobs":{

"1.vbox":{

"Job_Name":"STDIN",

"Job_Owner":"root@vbox",

"job_state":"Q",

...

-G
Shows size in gigabytes. Triggers alternate format.

-M
Shows size in megawords. A word is considered to be 8 bytes. Triggers alternate format.

2.55.6.7 Version Information

--version
The qstat command returns its PBS version information and exits. This option can only be used alone.
PBS Professional 2022.1 Reference Guide RG-211

http://www.json.org/

Chapter 2 PBS Commands
2.55.7 Operands

2.55.7.1 Job Identifier Operands

The job ID is assigned by PBS at submission. Job IDs are used only with job status requests. Status information for
specified job(s) is displayed.

Input formats:

Job ID:
<sequence number>[.<server name>][@<server name>]

Job array ID:
<sequence number>[][.<server name>][@<server name>]

Subjob ID:
<sequence number>[<index>][.<server name>][@<server name>]

Range of subjobs:
<sequence number>[<index start>-<index end>][.<server name>][@<server name>]
Note that some shells require that you enclose a job array identifier in double quotes.

You can use a list of jobs generated as the output of the qselect command as the input to the qstat command. For
example, to get a detailed listing of running jobs:

qstat -f $(qselect -s R)

2.55.7.2 Destination Operands

Name of queue, name of server, or name of queue at a specific server. Formats:

<queue name>
Specifies name of queue for job or queue display.

• When displaying job status, PBS displays status for all jobs in the specified queue at the default server.

• When displaying queue status, PBS displays status for the specified queue at the default server.

<queue name>@<server name>
Specifies name of queue at server for job or queue display.

• When displaying job status, PBS displays status for all jobs in the specified queue at the specified server.

• When displaying queue status, PBS displays status for the specified queue at the specified server.

@<server name>
Specifies server name for job or queue display.

• When displaying job status, PBS displays status for all jobs at all queues at the specified server.

• When displaying queue status, PBS displays status for all queues at the specified server.

<server name>
Specifies server name for server display.

• When displaying server status (with the -B option) PBS displays status for the specified server.

2.55.8 Standard Error

The qstat command writes a diagnostic message to standard error for each error occurrence.
RG-212 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.55.9 Exit Status

Zero
Upon successful processing of all operands

Greater than zero
If any operands could not be processed

2.55.10 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "Attributes” on page 277
PBS Professional 2022.1 Reference Guide RG-213

Chapter 2 PBS Commands
2.56 qstop

Prevents PBS jobs in the specified queue from being scheduled or routed

2.56.1 Synopsis

qstop <destination> [<destination> ...]

qstop --version

2.56.2 Description

If destination is an execution queue, the qstop command stops a scheduler from scheduling jobs residing in destination.
If destination is a routing queue, the server stops routing jobs from that queue. Sets the value of the queue's started
attribute to False.

2.56.2.1 Required Privilege

You must have PBS Operator or Manager privilege to run this command.

2.56.3 Options

--version
The qstop command returns its PBS version information and exits. This option can only be used alone

2.56.4 Operands

The qstop command accepts one or more space-separated destination operands. The operands take one of three forms:

<queue name>

Stops scheduling or routing from the specified queue.

@<server name>

Stops scheduling or routing from all queues at the specified server.

<queue name>@<server name>

Stops scheduling or routing from the specified queue at the specified server.

To stop scheduling at all queues at the default server, use the qmgr command:

Qmgr: set queue @default started=false

2.56.5 Standard Error

The qstop command writes a diagnostic message to standard error for each error occurrence.

2.56.6 Exit Status

Zero
Upon successful processing of all operands presented to the qstop command
RG-214 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
Greater than zero
If the qstop command fails to process any operand

2.56.7 See Also

The PBS Professional Administrator's Guide, "qmgr” on page 152, "qstart” on page 198
PBS Professional 2022.1 Reference Guide RG-215

Chapter 2 PBS Commands
2.57 qsub

Submits a job to PBS

2.57.1 Synopsis

qsub [-a <date and time>] [-A <account string>] [-c <checkpoint spec>] [-C <directive prefix>] [-e <path>] [-f] [-h]
[-I [-G [-- <GUI application/script>]] | [-X]] [-j <join>] [-J <range> [%<max subjobs]] [-k <discard>] [-l
<resource list>] [-m <mail events>] [-M <user list>] [-N <name>] [-o <path>] [-p <priority>] [-P <project>]
[-q <destination>] [-r <y | n>] [-R <remove options>] [-S <path list>] [-u <user list>] [-v <variable list>] [-V]
[-W <additional attributes>] [-z] [- | <script> | -- <executable> [<arguments to executable>]]

qsub --version

2.57.2 Description

You use the qsub command to submit a batch job to PBS. Submitting a PBS job specifies a task, requests resources, and
sets job attributes.

The qsub command can read from a job script, from standard input, or from the command line.

• To use a job script:

qsub [<options>] <job script containing directives and executable>
qsub [<options>] <directives> <job script containing other directives and executable>

• To submit from the command line:

qsub [<options>] <directives> -- <executable> <arguments to executable>
• To submit from standard input:

qsub <return>
<directives>
<executable>
<CTRL-D>

When the user has submitted the job, PBS returns the job identifier for that job. For a job, this is of the form:

<sequence number>.<server name>

For an array job, this is of the form:

<sequence number>[].<server name>

During execution, jobs can be interactive or non-interactive. Interactive jobs are not rerunnable, and if they are blocking,
you cannot use their exit status.

Jobs are run as the user and group who submitted the job.

2.57.2.1 Background Process

By default, on the first invocation, qsub spawns a background process to manage communication with the PBS server.
Later invocations of qsub attempt to communicate with this background process. Under certain circumstances, calls to
qsub when it uses the background process can result in communication problems. You can prevent qsub from spawn-
ing a background process by using the -f option, although this can degrade performance.
RG-216 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.57.2.2 Where PBS Puts Job Files

By default, PBS copies the stdout and stderr files from the job back to the current working directory where the
qsub command is executed. However, you can specify the output paths using the -o and -e options. You can also spec-
ify which and whether these files should be kept on the execution host via the -k option, or deleted, using the -R option.

See the -k, -o, -e, and -R options, and "Managing Output and Error Files", on page 42 of the PBS Professional User’s
Guide.

2.57.2.3 Submitting Jobs By Using Job Scripts

To submit a PBS job by using a script, you specify a job script on the command line:

qsub [<options>] <script name>

For example:

qsub myscript.sh

Job scripts are run as the user and group who submitted the job. Job scripts can be written in Python, Linux shells such
as csh and sh, the Windows command batch language, Perl, etc.

A PBS job script consists of the following:

• Optional shell specification

• Any PBS directives

• The user's tasks: programs, commands, or applications

• Optional comments

Under Windows, comments can contain only ASCII characters. See the PBS Professional User's Guide.

2.57.2.3.i Using Shells and Interpreters

By default, PBS uses your login shell to run your script. You can optionally specify a different shell or interpreter to run
your script:

• Via the -S option to qsub:

qsub -S <path to shell> <script name>

For example:

qsub -S /bin/bash myscript.sh

• You can specify a different interpreter in the first line of your script. For example:
cat myscript.sh

#!/bin/bash

#PBS -N MyHelloJob

echo "Hello"

2.57.2.3.ii Python Job Scripts

You can use the same Python script under Linux or under Windows, if the script is written to be portable. PBS includes a
Python package, allowing Python job scripts to run; you do not need to install Python. You can include PBS directives in
a Python job script as you would in a Linux shell script. Python job scripts can access Win32 APIs, including the follow-
ing modules:

Win32api

Win32con
PBS Professional 2022.1 Reference Guide RG-217

Chapter 2 PBS Commands
Pywintypes

Example 2-25: We have a Python job script that includes PBS directives:

cat myjob.py

#!/usr/bin/python

#PBS -l select=1:ncpus=3:mem=1gb

#PBS -N HelloJob

print "Hello"

As long as the first line of the script is "#!/usr/bin/python" or similar, you don't need to to anything special to run a
Python script:

qsub <script name>

For example:

qsub myscript.py

To run a Python job script under Windows, use the path to the pbs_python executable on the execution host:

qsub -S <pbs_python path on execution host> <script name>

For example:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

If the script pathname contains spaces, it must be quoted, for example:

qsub -S "C:\Program Files\PBS\bin\pbs_python.exe" <script name>

2.57.2.3.iii Linux Shell Job Scripts

Example 2-26: We have a Linux job script named "weatherscript" for a job named "Weather1" which runs the executable
"weathersim" on Linux:

#!/bin/sh

#PBS -N Weather1

#PBS -l walltime=1:00:00

/usr/local/weathersim

To submit the job, the user types:

qsub weatherscript <return>

2.57.2.3.iv Windows Command Job Scripts

Example 2-27: We have a script named "weather.exe" for a job named "Weather1" which runs under Windows:

#PBS -N Weather1

#PBS -l walltime=1:00:00

weathersim.exe

To submit the job, the user types:

qsub weather.exe <return>

In Windows, if you use notepad to create a job script, the last line does not automatically get newline-terminated. Be
sure to put one explicitly, otherwise, PBS job will get the following error message:

More?

when the Windows command interpreter tries to execute that last line.
RG-218 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.57.2.4 Submitting Jobs From Standard Input

To submit a PBS job by typing job specifications at the command line, you type:

qsub [<options>] [-] <return>

then type any directives, then any tasks, followed by:

• Linux: CTRL-D on a line by itself

• Windows: CTRL-Z <return>

to terminate the input.

The qsub command behaves the same both with and without the dash operand.

For example, on Linux:

qsub <return>

#PBS -N StdInJob

#PBS -l walltime=1:00:00

sleep 100

<CTRL-D>

2.57.2.5 Submitting Job Directly by Specifying Executable on

Command Line

To submit a job directly, you specify the executable on the command line:

qsub [<options>] -- <executable> [<arguments to executable>] <return>

When you run qsub this way, it runs the executable directly. It does not start a shell, so no shell initialization scripts are
run, and execution paths and other environment variables are not set. There is not an easy way to run your command in a
different directory. You should make sure that environment variables are set correctly, and you will usually have to spec-
ify the full path to the command.

On Linux, specify the full path to the executable.

Example 2-28: To run myprog with the arguments a and b:

qsub -- myprog a b <return>

Example 2-29: To run myprog with the arguments a and b, naming the job "JobA":

qsub -N JobA -- myprog a b <return>

Example 2-30: To run myprog on a Linux system with the arguments a and b, naming the job "JobA":

qsub -N JobA -- <path to myprog>/myprog a b <return>

2.57.2.6 Requesting Resources and Placing Jobs

Requesting resources includes setting limits on resource usage and controlling how the job is placed on vnodes.

Resources are requested by using the -l option, either in job-wide requests using <resource name>=<value> pairs, or in
chunks inside of selection statements. See Chapter 5, "List of Built-in Resources", on page 259.

Job-wide <resource name>=<value> requests are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

The selection statement is of the form:

-l select=[<N>:]<chunk>[+[<N>:]<chunk> ...]
PBS Professional 2022.1 Reference Guide RG-219

Chapter 2 PBS Commands
where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

You choose how your chunks are placed using the place statement. The place statement can contain the following ele-
ments, in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where

arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |
pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

free

Place job on any vnode(s).

pack

All chunks are taken from one host.

scatter

Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be taken
from the same vnode as another chunk.

vscatter

Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl

Only this job uses the vnodes chosen.

shared

This job can share the vnodes chosen.

exclhost

The entire host is allocated to the job.

group=<resource name>

Chunks are grouped according to a resource. All vnodes in the group must have a common value for resource,
which can be either the built-in resource host or a custom vnode-level resource.

resource name must be a string or a string array.

The place statement cannot begin with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override job placement requests. See section 6.10, “Vnode Attributes”,
on page 320.

For more on resources, resource requests, usage limits, and job placement, see "Using PBS Resources" on page 227 in
the PBS Professional Administrator’s Guide and "Allocating Resources & Placing Jobs", on page 51 of the PBS Profes-
sional User’s Guide.
RG-220 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.57.2.6.i Caveats for Requesting Resources

Do not mix old-style resource or vnode specifications with the new select and place statements. Do not use one in a job
script and the other on the command line. Mixing the two will result in an error.

You cannot submit a job requesting a custom resource which has been created to be invisible or read-only for unprivi-
leged users, regardless of your privilege. A Manager or Operator can use the qalter command to change a job's
request for this kind of custom resource.

2.57.2.7 Setting Attributes

The job submitter sets job attributes by giving options to the qsub command or by using PBS directives. Most qsub
options set a job attribute, and have a corresponding PBS directive with the same syntax as the option. Attributes set via
command-line options take precedence over those set using PBS directives. See the PBS Professional User's Guide, or
section 6.11, “Job Attributes”, on page 327.

2.57.2.8 Running Your Job on First Available Resources

You may want to run a job on whichever resources become available first, even if the job could run on other sets of
resources. You may want to start a flexible job as soon as possible on a smaller set of resources rather than waiting
longer for a larger set of resources, or you may prefer certain resources but be able to use others (for example, you might
prefer a specific processor, but still be able to run on another if that is all that's available).

If you submit a set of jobs where each job has a "runone" dependency on the others, PBS runs only one of the jobs in the
"runone set". PBS automatically groups the jobs into a runone set. The jobs in a runone set can run different scripts.

When any of the jobs in the set starts, PBS applies a system hold to the others. The hold on the other jobs is released
when the running job is requeued:

• Via qrerun

• When node fail requeue is triggered

The other jobs in the set are deleted:

• When a job ends, regardless of its exit status

• When the running job is deleted

To identify a job as a member of the set, give it a "runone" dependency on the previously-submitted member of the set.
For example, we have three jobs, each of which runs on different resources. To submit these three jobs as a runone set:

qsub -lselect=200:ncpus=16 -lwalltime=1:00:00 myscript.sh

10.myserver

qsub -lselect=100:ncpus=16 -lwalltime=2:00:00 -Wdepend=runone:10 myscript.sh

11.myserver

qsub -lselect=50:ncpus=16 -lwalltime=4:00:00 -Wdepend=runone:10 myscript.sh

12.myserver

2.57.2.9 Changing qsub Behavior

The behavior of the qsub command may be affected by the server's default_qsub_arguments attribute. This attribute
can set the default for any job attribute. The default_qsub_arguments server attribute is settable by the administrator,
and is overridden by command-line arguments and script directives. See section 6.6, “Server Attributes”, on page 281.

The behavior of the qsub command may also be affected by any site hooks. Site hooks can modify the job's attributes,
change its routing, etc.
PBS Professional 2022.1 Reference Guide RG-221

Chapter 2 PBS Commands
2.57.3 Options to qsub

-a <date and time>
Point in time after which the job is eligible for execution. Given in pairs of digits. Sets job's Execution_Time
attribute to date and time.

Format: datetime, expressed as [[[[CC]YY]MM]DD]hhmm[.SS]

where CC is the century, YY is the year, MM is the month, DD is the day of the month, hh is the hour, mm is the
minute, and SS is the seconds.

Each portion of the date defaults to the current date, as long as the next-smaller portion is in the future. For
example, if today is the 3rd of the month and the specified day DD is the 5th, the month MM is set to the current
month.

If a specified portion has already passed, the next-larger portion is set to one after the current date. For example,
if the day DD is not specified, but the hour hh is specified to be 10:00 a.m. and the current time is 11:00 a.m.,
the day DD is set to tomorrow.

-A <account string>
Accounting string associated with the job. Used for labeling accounting data. Sets job's Account_Name
attribute to account string.

Format: String

-c <checkpoint spec>
Determines when the job will be checkpointed. Sets job's Checkpoint attribute to checkpoint spec. An $action
script is required to checkpoint the job.

See "Using Checkpointing", on page 115 of the PBS Professional User’s Guide.

The argument checkpoint spec can take one of the following values:

c
Checkpoint at intervals, measured in CPU time, set on job's execution queue. If there is no interval set at
the queue, the job is not checkpointed

c=<minutes of CPU time>
Checkpoint at intervals of specified number of minutes of job CPU time. This value must be greater than
zero. If the interval specified is less than that set on the job's execution queue, the queue's interval is used.

Format: Integer

w
Checkpoint at intervals, measured in walltime, set on job's execution queue. If there is no interval set at the
queue, the job is not checkpointed.

w=<minutes of walltime>
Checkpoint at intervals of the specified number of minutes of job walltime. This value must be greater
than zero. If the interval specified is less than that set on the job's execution queue, the queue's interval is
used.

Format: Integer

n
No checkpointing.

s
Checkpoint only when the server is shut down.

u
Unset. Defaults to behavior when interval argument is set to s.

Default: u

Format: String
RG-222 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-C <directive prefix>
Defines the prefix identifying a PBS directive. Default prefix is "#PBS".

If the directive prefix argument is a null string, qsub does not scan the script file for directives. Overrides the
PBS_DPREFIX environment variable and the default. The string "PBS_DPREFIX" cannot be used as a PBS
directive. Length limit: 4096 characters.

-e <path>
Path to be used for the job's standard error stream. Sets job's Error_Path attribute to path. The path argument
is of the form:

[<hostname>:]<path>
The path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the qsub command, where it
is executing on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the qsub command is exe-
cuting.

hostname:path
If path is relative, it is taken to be relative to the user's home directory on the host named hostname.

If path is absolute, it is an absolute path on the host named hostname.

If path does not include a filename, the default filename has the form <job ID>.ER

If the -e option is not specified, PBS copies the standard error to the current working directory where the qsub
command was executed, and writes standard error to the default filename, which has this form:

<job name>.e<sequence number>
If you use a UNC path for output or error files, the hostname is optional. If you use a non-UNC path, the host-
name is required.

This option is overridden by the -k option.

-f
Prevents qsub from spawning a background process. By default, qsub spawns a background process to man-
age communication with the PBS server. When this option is specified, the qsub process connects directly to
the server and no background process is created.

NOTE: Use of this option degrades performance of qsub when calls to qsub are made in rapid succession.

-G [<path to GUI application or script>]
Starts a GUI session. When no application or script is provided, starts a GUI-enabled interactive shell. When
an application or script is provided, starts the GUI application or script. Use full path to application or script
unless the path is part of the user's PATH environment variable on the execution host. When submission and
execution hosts are different, this uses a remote viewer.

Session is terminated when remote viewer, GUI application, or interactive shell is terminated, or when job is
deleted.

Can be used only with interactive jobs (the -I option).

Available only under Windows.

-h
Applies a User hold to the job. Sets the job's Hold_Types attribute to "u".
PBS Professional 2022.1 Reference Guide RG-223

Chapter 2 PBS Commands
-I
Job is to be run interactively. Sets job's interactive attribute to True. The job is queued and scheduled as any
PBS batch job, but when executed, the standard input, output, and error streams of the job are connected to the
terminal session in which qsub is running. If a job script is given, only its directives are processed. When the
job begins execution, all input to the job is taken from the terminal session. See the PBS Professional User's
Guide for additional information on interactive jobs.

Interactive jobs are not rerunnable.

Job arrays cannot be interactive.

When used with -Wblock=true, no exit status is returned.

-j <join>
Specifies whether and how to join the job's standard error and standard output streams. Sets job's Join_Path
attribute to join.

Default: n; not merged

The join argument can take the following values:

-J <range> [%<max subjobs>]
Makes this job an array job. Sets job's array attribute to True.

Use the range argument to specify the indices of the subjobs of the array. range is specified in the form X-Y[:Z]
where X is the first index, Y is the upper bound on the indices, and Z is the stepping factor. For example, 2-7:2
will produce indices of 2, 4, and 6. If Z is not specified, it is taken to be 1. Indices must be greater than or equal
to zero.

Use the optional %max subjobs argument to set a limit on the number of subjobs that can be running at one time.
This sets the value of the max_run_subjobs job attribute to the specified maximum.

Job arrays are always rerunnable.

-k <discard>
Specifies whether and which of the standard output and standard error streams is left behind on the execution
host, or written to their final destination. Sets the job's Keep_Files attribute to discard.

k {e | o | eo | oe | n}
For the e, o, eo, oe, or n suboptions, overrides -o <output path> and -e <error path> options.

Table 2-35: Sub-options to -j Option

Suboption Meaning

oe Standard error and standard output are merged into standard output.

eo Standard error and standard output are merged into standard error.

n Standard error and standard output are not merged.
RG-224 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
kd {e | o | eo | oe}
When used with the -d suboption, specifies that output and/or error files are written directly to the final des-
tination. Requires e and/or o sub-options.

Default: n; neither is retained, and files are not written directly to final destinations.

In the case where output and/or error is retained on the execution host in a job-specific staging and execution
directory created by PBS, these files are deleted when PBS deletes the directory.

The discard argument can take the following values:

-l <resource list>
Allows the user to request resources and specify job placement. Sets job's Resource_list attribute to resource
list. Requesting a resource places a limit on its usage.

For how to request resources and place jobs, see section 2.57.2.6, “Requesting Resources and Placing Jobs”, on
page 219.

Table 2-36: Sub-options to discard Option

Suboption Meaning

e The standard error stream is retained on the execution host, in the job's staging and execu-
tion directory. The filename is <job name>.e<sequence number>

o The standard output stream is retained on the execution host, in the job's staging and execu-
tion directory. The filename is <job name>.o<sequence number>

eo, oe Both standard output and standard error streams are retained on the execution host, in the
job's staging and execution directory.

d<e and/or o> Output and/or error are written directly to their final destination. Overrides action of leav-
ing files on execution host. Requires e and/or o sub-options.

n Neither stream is retained.
PBS Professional 2022.1 Reference Guide RG-225

Chapter 2 PBS Commands
-m <mail events>
Specifies the set of conditions under which mail about the job is sent. Sets job's Mail_Points attribute to mail
events. The mail events argument can be one of the following:

• The single character "n"

• Any combination of "a", "b", and "e", with optional "j"

The following table lists the sub-options to the -m option:

Format: String

Syntax: n | [j](one or more of a, b, e)

Example: -m ja

Default value: "a"

-M <user list>
List of users to whom mail about the job is sent. Sets job's Mail_Users attribute to user list.

The user list argument has the form:

<username>[@<hostname>][,<username>[@<hostname>],...]
Default: Job owner

-N <name>
Sets job's Job_Name attribute and name to name.

Format: Job Name; see "Job Name, Job Array Name” on page 355

Default: if a script is used to submit the job, the job's name is the name of the script. If no script is used, the
job's name is "STDIN".

-o <path>
Path to be used for the job's standard output stream. Sets job's Output_Path attribute to path. The path argu-
ment has the form:

[<hostname>:]<path>
The path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the qsub command, where it
is executing on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the qsub command is exe-
cuting.

hostname:path
If path is relative, it is taken to be relative to the user's home directory on the host named hostname.

Table 2-37: Sub-options to m Option

Suboption Meaning

n No mail is sent.

a Mail is sent when the job is aborted by PBS.

b Mail is sent when the job begins execution.

e Mail is sent when the job terminates.

j Mail is sent for subjobs. Must be combined with one or more of a, b, or e options
RG-226 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
If path is absolute, it is an absolute path on the host named hostname.

If path does not include a filename, the default filename has the form <job ID>.OU

If the -o option is not specified, PBS copies the standard output to the current working directory where the
qsub command was executed, and writes standard output to the default filename, which has this form:

<job name>.o<sequence number>
If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

This option is overridden by the -k option.

-p <priority>
Priority of the job. Sets job's Priority attribute to priority.

Format: Host-dependent integer

Range: [-1024, +1023] inclusive

Default: Zero

-P <project>
Specifies a project for the job. Sets job's project attribute to project.

Format: Project Name; see "Project Name” on page 357

Default value: "_pbs_project_default".

-q <destination>
Where the job is sent upon submission.

Specifies a queue, a server, or a queue at a server. The destination argument can have one of these formats:

<queue name>
Job is submitted to the specified queue at the default server.

@<server name>
Job is submitted to the default queue at the specified server.

<queue name>@<server name>
Job is submitted to the specified queue at the specified server.

Default: Default queue at default server

-r <y|n>
Declares whether the job is rerunnable. Sets job's Rerunable attribute to the argument value. Does not affect
how the job is handled in the case where the job was unable to begin execution.

Format: Single character, "y" or "n"

Default: "y"

Interactive jobs are not rerunnable. Job arrays are always rerunnable. See "qrerun” on page 181.

Table 2-38: Sub-options to r Option

Suboption Meaning

y Job is rerunnable.

n Job is not rerunnable.
PBS Professional 2022.1 Reference Guide RG-227

Chapter 2 PBS Commands
-R <remove options>
Specifies whether standard output and/or standard error files are automatically removed (deleted) upon job com-
pletion.

Sets the job's Remove_Files attribute to remove options. Overrides default path names for these streams.
Overrides -o and -e options.

This attribute cannot be altered once the job has begun execution.

Default: Unset; neither is removed

The remove options argument can take the following values:

-S <path list>
Specifies the interpreter or shell path for the job script. Sets job's Shell_Path_List attribute to path list.

The path list argument is the full path to the interpreter or shell including the executable name.

Only one path may be specified without a hostname. Only one path may be specified per named host. The path
selected is the one whose hostname is that of the server on which the job resides.

Format: <path>[@<hostname>][,<path>@<hostname> ...]

Default: User's login shell on execution host

Example of using bash via a directive:

#PBS -S /bin/bash@mars,/usr/bin/bash@jupiter

Example of running a Python script from the command line on Linux:

qsub -S $PBS_EXEC/bin/pbs_python <script name>

Example of running a Python script from the command line on Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

-u <user list>
List of usernames. Job is run under a username from this list. Sets job's User_List attribute to user list.

Only one username may be specified without a hostname. Only one username may be specified per named host.
The server on which the job resides will select first the username whose hostname is the same as the server
name. Failing that, the next selection is the username with no specified hostname. The usernames on the server
and execution hosts must be the same. The job owner must have authorization to run as the specified user.

Format of user list: <username>[@<hostname>][,<username>@<hostname> ...]

Default: Job owner (username on submission host)

Table 2-39: discard Argument Values

Option Meaning

e The standard error stream is removed (deleted) upon job completion

o The standard output stream is removed (deleted) upon job completion

eo, oe Both standard output and standard error streams are removed (deleted) upon job completion

unset Neither stream is removed.
RG-228 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-v <variable list>
Specifies environment variables and shell functions to be exported to the job. This is the list of environment
variables that are added to those already automatically exported. These variables exist in the user's environment
from which qsub is run. The job's Variable_List attribute is appended with the variables in variable list and
their values. See section 2.57.7, “Environment Variables”, on page 233.

Format: comma-separated list of strings in the form:

<variable>
or

<variable>=<value>
If a <variable>=<value> pair contains any commas, the value must be enclosed in single or double quotes, and
the <variable>=<value> pair must be enclosed in the kind of quotes not used to enclose the value. For exam-
ple:

qsub -v "var1='A,B,C,D'" job.sh

qsub -v "a=10,var2='A,B',c=20,d='Hello world'" job.sh

Default: No environment variables are added to job's variable list.

-V
All environment variables and shell functions in the user's environment where qsub is run are exported to the
job. The job's Variable_List attribute is appended with all of these environment variables and their values.

-W <additional attributes>
The -W option allows specification of some job attributes. Some job attributes must be specified using this
option. Those attributes are listed below. Format:

-W <attribute name>=<value>[,<attribute name>=<value>...]
If white space occurs within the additional attributes argument, or the equal sign "=" occurs within a value
string, it must be enclosed with single quotes or double quotes.

The following attributes can be set using the -W option only:

block=true
The qsub command waits for the job to terminate, then returns the job's exit value. Sets job's block
attribute to True. When used with X11 forwarding or interactive jobs, no exit value is returned. See sec-
tion 2.57.8, “Exit Status”, on page 234.

create_resv_from_job=<value>
When this job starts, immediately creates and confirms a job-specific start reservation on the same
resources as the job (including resources inherited by the job), and places the job in the job-specific reserva-
tion queue. Sets the job's create_resv_from_job attribute to True. Sets the job-specific reservation's
reserve_job attribute to the ID of the job from which the reservation was created. The new reservation's
duration and start time are the same as the job's walltime and start time. If the job is peer scheduled, the
job-specific reservation is created in the pulling complex.

Format: Boolean

Example:

qsub -Wcreate_resv_from_job=1 myscript.sh

Cannot be used with job arrays or jobs being submitted into a reservation.
PBS Professional 2022.1 Reference Guide RG-229

Chapter 2 PBS Commands
depend=<dependency list>
Defines dependencies between this and other jobs. Sets the job's depend attribute to dependency list. The
dependency list has the form:

<type>:<arg list>[,<type>:<arg list> ...]
where except for the on type, the arg list is one or more PBS job IDs, and has the form:

<job ID>[:<job ID> ...]
The type can be:

after: <arg list>
This job may be scheduled for execution at any point after all jobs in arg list have started execution.

afterok: <arg list>
This job may be scheduled for execution only after all jobs in arg list have terminated with no errors.
See section 2.57.8.1, “Warning About Exit Status with csh”, on page 235.

afternotok: <arg list>
This job may be scheduled for execution only after all jobs in arg list have terminated with errors. See
section 2.57.8.1, “Warning About Exit Status with csh”, on page 235.

afterany: <arg list>
This job may be scheduled for execution after all jobs in arg list have finished execution, with any exit
status (with or without errors.) This job will not run if a job in the arg list was deleted without ever hav-
ing been run.

before: <arg list>
Jobs in arg list may begin execution once this job has begun execution.

It is uncommon for users to specify a before condition. Rather, PBS adds before dependencies auto-
matically to the targets of after dependencies.

beforeok: <arg list>
Jobs in arg list may begin execution once this job terminates without errors. See section 2.57.8.1,
“Warning About Exit Status with csh”, on page 235.

beforenotok: <arg list>
If this job terminates execution with errors, jobs in arg list may begin. See section 2.57.8.1, “Warning
About Exit Status with csh”, on page 235.

beforeany: <arg list>
Jobs in arg list may begin execution once this job terminates execution, with or without errors.

on: <count>
This job may be scheduled for execution after count dependencies on other jobs have been satisfied.
This type is used in conjunction with one of the before types listed. count is an integer greater than 0.

runone:<job ID>
Puts the current job and the job with job ID in a set of jobs out of which PBS will eventually run just
one. To add a job to a set, specify the job ID of another job already in the set.

Job IDs in the arg list of before types must have been submitted with a type of on.

To use the before types, the user must have the authority to alter the jobs in arg list. Otherwise, the depen-
dency is rejected and the new job aborted.

Error processing of the existence, state, or condition of the job on which the newly submitted job is per-
formed after the job is queued. If an error is detected, the new job is deleted by the server. Mail is sent to
the job submitter stating the error.

Dependency example:

qsub -W depend=afterok:123.host1.domain.com /tmp/script
RG-230 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
In this example, we save the output (the job ID) from the first qsub into the shell variable "jobid" so
that we can supply it to the depend option on the second job:

jobid=̀ qsub first_step.sh̀

qsub -W depend=afterok:$jobid second_step.sh

group_list=<group list>
List of group names. Job is run under a group name from this list. Sets job's group_list attribute to group
list.

Only one group name may be specified without a hostname. Only one group name may be specified per
named host. The server on which the job resides will select first the group name whose hostname is the
same as the server name. Failing that, the next selection is the group name with no specified hostname.
The group names on the server and execution hosts must be the same. The job submitter's primary group is
automatically added to the list.

Under Windows, the primary group is the first group found for the user by PBS when it queries the
accounts database.

Format of group list: <group name>[@<hostname>][,<group name>@<hostname> ...]

Default: Login group name of job owner

pwd
pwd=’’
pwd=""

These forms prompt the user for a password. A space between W and pwd is optional. Spaces between the
quotes are optional. Examples:

qsub ... -Wpwd <return>

qsub ... -W pwd='' <return>

qsub ... -W pwd=" " <return>

Available on supported Linux platforms only.

release_nodes_on_stageout=<value>
When set to True, all of the job's vnodes not on the primary execution host are released when stageout
begins.

When cgroups is enabled and this is used with some but not all vnodes from one MoM, resources on those
vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job's stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

Format: Boolean

Default: False

 run_count=<value>
Sets the number of times the server thinks it has run the job. Sets the value of the job's run_count attribute
to value.

Format: Integer greater than or equal to zero

sandbox=<sandbox spec>
Determines which directory PBS uses for the job's staging and execution. Sets job's sandbox attribute to
the value of sandbox spec.

Allowed values for sandbox spec:

PRIVATE
PBS creates a job-specific directory for staging and execution.

HOME or unset
PBS uses the user's home directory for staging and execution.

Format: String
PBS Professional 2022.1 Reference Guide RG-231

Chapter 2 PBS Commands
stagein=<path list>
stageout=<path list>

Specifies files or directories to be staged in before execution or staged out after execution is complete. Sets
the job's stagein and stageout attributes to the specified path lists. On completion of the job, all staged-in
and staged-out files and directories are removed from the execution host(s). The path list has the form:

<file spec>[,<file spec>]
where <file spec> is

<execution path>@<hostname>:<storage path>
regardless of the direction of the copy. The name execution path is the name of the file or directory on the
primary execution host. It can be relative to the staging and execution directory on the execution host, or it
can be an absolute path.

The "@" character separates execution path from storage path.

The storage path is the path on hostname. The storage path can be absolute, or it can be relative to the
user's home directory on hostname.

If path list has more than one file spec, i.e. it contains commas, it must be enclosed in double quotes.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

umask=<mask value>
The umask with which the job is started. Sets job's umask attribute to mask value. Controls umask of job's
standard output and standard error.

The following example allows group and world read of the job's output and error:

-W umask=33

Format: octal; one to four digits; typically two

Default: system default

-X
Allows user to receive X output from interactive job.

DISPLAY variable in submission environment must be set to desired display.

Can be used only with interactive jobs: must be used with one of the following:

-I

-W interactive=true (deprecated)
Cannot be used with -v DISPLAY.

When used with -Wblock=true, no exit status is returned.

Can be used with -V option.

Not available under Windows.

-z
Job identifier is not written to standard output.

--version
The qsub command returns its PBS version information and exits. This option can only be used alone.

2.57.4 Operands

The qsub command accepts as operands one of the following:

(no operands)
Same as with a dash. Any PBS directives and user tasks are read from the command line.
RG-232 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
<script>
Path to script. Can be absolute or relative to current directory where qsub is run. The script must be the last
argument to qsub.

-
When you use a dash, any PBS directives and user tasks are read from the command line.

-- <executable> [<arguments to executable>]
A single executable (preceded by two dashes) and its arguments

The executable, and any arguments to the executable, are given on the qsub command line. The executable is
preceded by two dashes, "--".

All qsub options must come before the "--".

If a script or executable is specified, it must be the last argument to qsub. The arguments to an executable must
follow the name of the executable.

When you run qsub this way, it runs the executable directly. It does not start a shell, so no shell initialization
scripts are run, and execution paths and other environment variables are not set. You should make sure that
environment variables are set correctly.

2.57.5 Standard Output

Job ID for submitted job
If the job is successfully created

(No output)
If the -z option is set

2.57.6 Standard Error

The qsub command writes a diagnostic message to standard error for each error occurrence.

2.57.7 Environment Variables

The qsub command uses the following environment variables:

PBS_DEFAULT
Name of default server.

PBS_DPREFIX
Prefix string which identifies PBS directives.

Environment variables beginning with "PBS_O_" are created by qsub. PBS automatically exports the following envi-
ronment variables to the job, and includes them in the job's Variable_List attribute:

PBS_ENVIRONMENT
Set to PBS_BATCH for a batch job. Set to PBS_INTERACTIVE for an interactive job.

PBS_JOBDIR
Pathname of job's staging and execution directory on the primary execution host.

PBS_JOBID
Job identifier given by PBS when the job is submitted.

PBS_JOBNAME
Job name specified by submitter.
PBS Professional 2022.1 Reference Guide RG-233

Chapter 2 PBS Commands
PBS_NODEFILE
Name of file containing the list of vnodes assigned to the job when the job runs.

PBS_O_HOME
User's home directory. Value of HOME taken from user's submission environment.

PBS_O_HOST
Name of submit host. Value taken from user's submission environment.

PBS_O_LANG
Value of LANG taken from user's submission environment.

PBS_O_LOGNAME
User's login name. Value of LOGNAME taken from user's submission environment.

PBS_O_MAIL
Value of MAIL taken from user's submission environment.

PBS_O_PATH
User's PATH. Value of PATH taken from user's submission environment.

PBS_O_QUEUE
Name of the queue to which the job was submitted. Value is taken from job submission, otherwise default
queue.

PBS_O_SHELL
Value of SHELL taken from user's submission environment.

PBS_O_SYSTEM
Operating system, from uname -s, on submit host. Value taken from user's submission environment.

PBS_O_TZ
Timezone. Value taken from user's submission environment.

PBS_O_WORKDIR
Absolute path to directory where qsub is run. Value taken from user's submission environment.

PBS_QUEUE
Name of the queue from which the job is executed.

PBS_TMPDIR
Pathname of scratch directory for PBS components. Set when PBS assigns it.

2.57.8 Exit Status

For non-blocking jobs:

Zero
Upon successful processing of input

Greater than zero
Upon failure of qsub

For blocking jobs:

Exit value of job
When job runs successfully

3
If the job is deleted without being run
RG-234 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.57.8.1 Warning About Exit Status with csh

If a job is run in csh and a .logout file exists in the user's home directory on the host where the job executes, the exit sta-
tus of the job is that of the .logout script, not the job script. This may impact any inter-job dependencies.

2.57.9 See Also

"Submitting a PBS Job", on page 11 of the PBS Professional User’s Guide, "Job Attributes” on page 327, "Resources
Built Into PBS” on page 265, and "Requesting Resources", on page 53 of the PBS Professional User’s Guide.
PBS Professional 2022.1 Reference Guide RG-235

Chapter 2 PBS Commands
2.58 qterm

Terminates one or both PBS servers, and optionally terminates scheduler(s) and/or MoMs

2.58.1 Synopsis

qterm [-f | -F | -i] [-m] [-s] [-t <type>] [<server name>[<server name> ...]]

qterm --version

2.58.2 Description

The qterm command terminates a PBS batch server.

Once the server is terminating, no new jobs are accepted by the server, and no jobs are allowed to begin execution. The
impact on running jobs depends on the way the server is shut down.

The qterm command does not exit until the server has completed its shutdown procedure.

If the complex is configured for failover, and the primary server is shut down, the normal behavior for the secondary
server is to become active. The qterm command provides options to manage the behavior of the secondary server; it
can be shut down, forced to remain idle, or shut down in place of the primary server.

2.58.2.1 Required Privilege

In order to run the qterm command, you must have PBS Operator or Manager privilege.

2.58.3 Options to qterm

(no options)
The qterm command defaults to qterm -t quick.

-f
If the complex is configured for failover, shuts down both the primary and secondary servers.

Without the -f option, qterm shuts down the primary server and makes the secondary server active.

The -f option cannot be used with the -i or -F options.

-F
If the complex is configured for failover, shuts down only the secondary server, leaving the primary server
active.

The -F option cannot be used with the -f or -i options.

-i
If the complex is configured for failover, leaves the secondary server idle when the primary server is shut down.

The -i option cannot be used with the -f or -F options.

-m
Shuts down the primary server and all MoMs (pbs_mom). This option does not cause jobs or subjobs to be
killed. Jobs are left running subject to other options to the qterm command.

-s
Shuts down the primary server and the scheduler (pbs_sched).
RG-236 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-t <type>
immediate

Shuts down the primary server. Immediately stops all running jobs. Any running jobs that can be check-
pointed are checkpointed, terminated, and requeued. Jobs that cannot be checkpointed are terminated and
requeued if they are rerunnable, otherwise they are killed.

If any job cannot be terminated, for example the server cannot contact the MoM of a running job, the server
continues to execute and the job is listed as running. The server can be terminated by a second qterm -t
immediate command.

While terminating, the server is in the Terminating state.

delay
Shuts down the primary server. The server waits to terminate until all non-checkpointable, non-rerunnable
jobs are finished executing. Any running jobs that can be checkpointed are checkpointed, terminated, and
requeued. Jobs that cannot be checkpointed are terminated and requeued if they are rerunnable, otherwise
they are allowed to continue to run.

While terminating, the server is in the Terminating-Delayed state.

quick
Shuts down the primary server. Running jobs and subjobs are left running.

This is the default behavior when no options are given to the qterm command.

While terminating, the server is in the Terminating state.

--version
The qterm command returns its PBS version information and exits. This option can only be used alone.

2.58.4 Operands

You optionally specify the list of servers to shut down using [<server name>[<server name> ...]].

If you do not specify any servers, the qterm command shuts down the default server.

2.58.4.1 Standard Error

The qterm command writes a diagnostic message to standard error for each error occurrence.

2.58.4.2 Exit Status

Zero
Upon successful processing of all operands presented to the qterm command

Greater than zero
If the qterm command fails to process any operand

2.58.4.3 See Also

The PBS Professional Administrator's Guide, "pbs_server” on page 107, "pbs_sched” on page 105, "pbs_mom” on
page 71
PBS Professional 2022.1 Reference Guide RG-237

Chapter 2 PBS Commands
2.59 tracejob

Extracts and prints log messages for a PBS job

2.59.1 Synopsis

tracejob [-a] [-c <count>] [-f <filter>] [-l] [-m] [-n <days>] [-p <path>] [-s] [-v] [-w <cols>] [-z] <job ID>

tracejob --version

2.59.2 Description

The tracejob command extracts log messages for a given job ID and prints them in chronological order.

The tracejob command extracts information from server, default scheduler, accounting, and MoM logs. Server logs
contain information such as when a job was queued or modified. Scheduler logs contain clues as to why a job is not run-
ning. Accounting logs contain accounting records for when a job was queued, started, ended, or deleted. MoM logs con-
tain information about what happened to a job while it was running.

To get MoM log messages for a job, tracejob must be run on the machine on which the job ran. If the job ran on mul-
tiple hosts, you must run tracejob on each of those hosts.

Some log messages appear many times. In order to make the output of tracejob more readable, messages that appear
over a certain number of times (see option -c below) are restricted to only the most recent message.

2.59.3 Using tracejob on Job Arrays

If tracejob is run on a job array, the information returned is about the job array itself, and not its subjobs. Job arrays
do not have associated MoM log messages. If tracejob is run on a subjob, the same types of log messages are avail-
able as for a job. Certain log messages that occur for a regular job will not occur for a subjob.

2.59.4 Required Privilege

All users have access to server, scheduler, and MoM information. Only Administrator or root can access accounting
information.

2.59.5 Options to tracejob

-a
Do not report accounting information.

-c <count>
Set excessive message limit to count. If a message is logged at least count times, only the most recent message
is printed.

The default for count is 15.
RG-238 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
-f <filter>
Do not include log events of type filter. The -f option can be used more than once on the command line. The
following table shows each filter with its hex value and category:

-l
Do not report scheduler information.

-m
Do not report MoM information.

-n <days>
Report information from up to days days in the past.

Default number of days: 1 = today

-p <path>
Use path as path to PBS_HOME on machine being queried.

-s
Do not report server information.

-w <cols>
Width of current terminal. If cols is not specified, tracejob queries OS to get terminal width. If OS doesn't
return anything, defaults to 80.

-v
Verbose. Report more of tracejob's errors than default.

-z
Suppresses printing of duplicate messages.

--version
The tracejob command returns its PBS version information and exits. This option can only be used alone.

Table 2-40: tracejob Filters

Filter Hex Value Message Category

error 0x0001 Internal errors

system 0x0002 System errors

admin 0x0004 Administrative events

job 0x0008 Job-related events

job_usage 0x0010 Job accounting info

security 0x0020 Security violations

sched 0x0040 Scheduler events

debug 0x0080 Common debug messages

debug2 0x0100 Uncommon debug messages

resv 0x0200 Reservation debug messages

debug3 0x0400 Less common than debug2

debug4 0x0800 Less common than debug3
PBS Professional 2022.1 Reference Guide RG-239

Chapter 2 PBS Commands
2.59.6 Operands

The tracejob command accepts one job ID operand.

For a job, this has the form:

<sequence number>[.<server name>][@<server name>]

For a job array, the form is:

<sequence number>[][.<server name>][@<server name>]

For a subjob, the form is:

<sequence number>[<index>][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

2.59.7 Exit Status

Zero
Upon successful processing of all options

Greater than zero
If tracejob is unable to process any options

2.59.8 See Also

The PBS Professional Administrator's Guide
RG-240 PBS Professional 2022.1 Reference Guide

PBS Commands Chapter 2
2.60 win_postinstall.py

For Windows. Configures PBS MoM or client

2.60.1 Synopsis

<PBS_EXEC>\etc\python win_postinstall.py -u <PBS service account> -p <PBS service account password> -t
<installation type> -s <server name> [-c <path to scp command>]

2.60.2 Description

The win_postinstall.py command configures the PBS MoM and commands. It performs post-installation steps
such as validating the PBS service account username and password, installing the Visual C++ redistributable binary, and
creating the pbs.conf file in the PBS destination folder.

For an "execution" type of installation, it creates PBS_HOME, and registers and starts the PBS_MOM service.

When you use this command during an "execution" type installation of PBS, the command automatically un-registers
any old PBS MoM.

Available on Windows only.

2.60.2.1 Required Privilege

You must have Administrator privilege to run this command.

2.60.3 Options to win_postinstall.py

-c, --scp-path <path to scp command>
Specifies path to scp command.

-p, --passwd <PBS service account password>
Specifies password for PBS service account.

-s, --server <server name>
Specifies the hostname on which the PBS server will run; required when the installation type is one of "execu-
tion" or "client".

-t, --type <installation type>
Specifies type of installation. Type can be one of "execution" or "client".

-u, --user <PBS service account>
Specifies PBS service account. When you specify the PBS service account, whether or not you are on a domain
machine, include only the username, not the domain. For example, if the full username on a domain machine is
<domain>\<username>, pass only <username> as an argument.
PBS Professional 2022.1 Reference Guide RG-241

Chapter 2 PBS Commands
RG-242 PBS Professional 2022.1 Reference Guide

3

MoM Parameters

This chapter describes the configuration files used by MoM and lists the MoM configuration parameters that are found in
the Version 1 MoM configuration file, PBS_HOME/mom_priv/config. See "About MoMs" on page 37 in the PBS
Professional Administrator’s Guide.

3.1 Syntax of MoM Configuration File

The Version 1 MoM configuration file contains parameter settings for the MoM on the local host.

Version 1 configuration files list local resources and initialization values for MoM. Local resources are either static,
listed by name and value, or externally-provided, listed by name and command path. Local static resources are for use
only by the scheduler for MoM's partition. They do not appear in a pbsnodes -a query. See the -c option to the
pbs_mom command. Do not change the syntax of the Version 1 configuration file.

Each configuration item is listed on a single line, with its parts separated by white space. Comments begin with a hash-
mark ("#").

3.1.1 Windows Notes

If the argument to a MoM option is a pathname containing a space, enclose it in double quotes as in the following:

hostn !"\Program Files\PBS\exec\bin\hostn" host

When you edit any PBS configuration file, make sure that you put a newline at the end of the file. The Notepad applica-
tion does not automatically add a newline at the end of a file; you must explicitly add the newline.
PBS Professional 2022.1 Reference Guide RG-243

Chapter 3 MoM Parameters
3.2 Contents of MoM Configuration File

3.2.1 Replacing Actions

$action <default action> <timeout> <new action>

Replaces the default action for an event with the site-specified new action. timeout is the time allowed for new
action to run. new action is the site-supplied script that replaces default action. This is the complete list of val-
ues for default action:

3.2.2 MoM Parameters

$checkpoint_path <path>
MoM passes this parameter to the checkpoint and restart scripts. This path can be absolute or relative to
PBS_HOME/mom_priv. Overrides default. Overridden by path specified in the pbs_mom -C option and by
PBS_CHECKPOINT_PATH environment variable. See "Specifying Checkpoint Path" on page 397 in the PBS
Professional Administrator’s Guide.

$clienthost <hostname>
hostname is added to the list of hosts which are allowed to connect to MoM as long as they are using a privi-
leged port. For example, this allows the hosts "fred" and "wilma" to connect to MoM:

$clienthost fred

$clienthost wilma

The following hostnames are added to $clienthost automatically: the server, the localhost, and if configured, the
secondary server. The server sends each MoM a list of the hosts in the nodes file, and these are added internally
to $clienthost. None of these hostnames need to be listed in the configuration file.

Two hostnames are always allowed to connect to pbs_mom, "localhost" and the name returned to MoM by
the system call gethostname(). These hostnames do not need to be added to the MoM configuration file.

The hosts listed as "clienthosts" make up a "sisterhood" of machines. Any one of the sisterhood will accept con-
nections from within the sisterhood. The sisterhood must all use the same port number.

Table 3-1: How $action is Used

default action Result

checkpoint Run new action in place of the periodic job checkpoint, after which the
job continues to run.

checkpoint_abort Run new action to checkpoint the job, after which the job must be ter-
minated by the script.

multinodebusy <timeout>
requeue

Used with cycle harvesting and multi-vnode jobs. Changes default
behavior when a vnode becomes busy. Instead of allowing the job to
run, the job is requeued. Timeout is ignored. The only new action is
requeue.

restart Runs new action in place of restart.

terminate Runs new action in place of SIGTERM or SIGKILL when MoM ter-
minates a job.
RG-244 PBS Professional 2022.1 Reference Guide

MoM Parameters Chapter 3
$cputmult <factor>
This sets a factor used to adjust CPU time used by each job. This allows adjustment of time charged and limits
enforced where jobs run on a system with different CPU performance. If MoM's system is faster than the refer-
ence system, set factor to a decimal value greater than 1.0. For example:

$cputmult 1.5

If MoM's system is slower, set factor to a value between 1.0 and 0.0. For example:

$cputmult 0.75

$dce_refresh_delta <delta>
Obsolete (2020.1)

Defines the number of seconds between successive refreshings of a job's DCE login context. For example:

$dce_refresh_delta 18000

$enforce <limit>
MoM will enforce the given limit. Some limits have associated values. Syntax:

$enforce <variable name> <value>
$enforce mem

MoM will enforce each job's memory limit.

$enforce cpuaverage
MoM will enforce ncpus when the average CPU usage over a job's lifetime usage is greater than the job's
limit.

$enforce average_trialperiod <seconds>
Modifies cpuaverage. Minimum number of seconds of job walltime before enforcement begins.

Format: Integer

Default: 120

$enforce average_percent_over <percentage>
Modifies cpuaverage. Gives percentage by which a job may exceed its ncpus limit.

Format: Integer

Default: 50

$enforce average_cpufactor <factor>
Modifies cpuaverage. The ncpus limit is multiplied by factor to produce actual limit.

Format: Float

Default: 1.025

$enforce cpuburst
MoM will enforce the ncpus limit when CPU burst usage exceeds the job's limit.

$enforce delta_percent_over <percentage>
Modifies cpuburst. Gives percentage over limit to be allowed.

Format: Integer

Default: 50

$enforce delta_cpufactor <factor>
Modifies cpuburst. The ncpus limit is multiplied by factor to produce actual limit.

Format: Float

Default: 1.5

$enforce delta_weightup <factor>
Modifies cpuburst. Weighting factor for smoothing burst usage when average is increasing.

Format: Float

Default: 0.4
PBS Professional 2022.1 Reference Guide RG-245

Chapter 3 MoM Parameters
$enforce delta_weightdown <factor>
Modifies cpuburst. Weighting factor for smoothing burst usage when average is decreasing.

Format: Float

Default: 0.4

$ideal_load <load>
Defines the load below which the vnode is not considered to be busy. Used with the $max_load directive.

Example:

$ideal_load 1.8

Format: Float

No default

$jobdir_root <stage directory root | PBS_USER_HOME> [shared]
Directory under which PBS creates job-specific staging and execution directories when a job's sandbox
attribute is set to PRIVATE and this attribute is set to an existing directory. If $jobdir_root is unset, the root
directory for the job-specific staging and execution directory defaults to each job owner's home directory. If
stage directory root does not exist when MoM starts up, MoM will abort. If stage directory root does not exist
when MoM tries to run a job, MoM will kill the job. Path must be owned by root, and permissions must be
1777. On Windows, this directory should have Full Control Permission for the local Administrators group.

When you set $jobdir_root to a shared (e.g. NFS) directory, tell MoM it is shared by setting the shared direc-
tive after the directory name:

$jobdir_root <directory name> shared
If the user home directory is shared, tell MoM it is shared:

$jobdir_root PBS_USER_HOME shared
Otherwise sister MoMs can prematurely delete files and directories when nodes are released. This is because
when sister nodes are released, those sister MoMs would normally clean up their own files upon release, but this
could cause problems in a shared directory. So if $jobdir_root or submitter home directories are shared, you
need to tell the sister MoMs not to do the cleanup, and let the primary execution host MoM clean up when the
job is finished.

To tell PBS to create job staging and execution directories created under /r/shared, so that each job gets
/r/shared/<job-specific directory>, put the following line in MoM's configuration file:

$jobdir_root /r/shared

To tell PBS to use /scratch when it is a shared directory:

$jobdir_root /r/shared shared

To tell PBS to use shared submitter home directories:

$jobdir_root PBS_USER_HOME shared

To tell PBS to use non-shared submitter home directories, leave the $jobdir_root parameter blank.
RG-246 PBS Professional 2022.1 Reference Guide

MoM Parameters Chapter 3
$job_launch_delay
When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the pri-
mary MoM can wait to start the job (running the job script or executable) for up to a configured number of sec-
onds. During this time, execjob_prologue hooks can finish and the primary MoM can check for
communication problems with sister MoMs. You configure the number of seconds for the primary MoM to wait
for hooks via the job_launch_delay configuration parameter in MoM's config file:

$job_launch_delay <number of seconds to wait>

Default: the sum of the values of the alarm attributes of any enabled execjob_prologue hooks. If there are no
enabled execjob_prologue hooks, the default value is 30 seconds. For example, if there are two enabled
execjob_prologue hooks, one with alarm = 30 and one with alarm = 60, the default value of MoM's
job_launch_delay is 90 seconds.

After all the execjob_prologue hooks have finished, or MoM has waited for the value of the
job_launch_delay parameter, she starts the job.

$kbd_idle <idle wait> <min use> <poll interval>
Declares that the vnode will be used for batch jobs during periods when the keyboard and mouse are not in use.

idle wait
Time, in seconds, that the workstation keyboard and mouse must be idle before being considered available
for batch jobs.

Must be set to non-zero value for cycle harvesting to be enabled.

Format: Integer

No default

min use
Time, in seconds, during which the workstation keyboard or mouse must continue to be in use before the
workstation is determined to be unavailable for batch jobs.

Format: Integer

Default: 10

poll interval
Interval, in seconds, at which MoM checks for keyboard and mouse activity.

Format: Integer

Default: 1

Example:

$kbd_idle 1800 10 5

$logevent <mask>
Sets the mask that determines which event types are logged by pbs_mom. To include all debug events, use
0xffffffff. See "Log Levels" on page 429 in the PBS Professional Administrator’s Guide.

Default: 975

$max_check_poll <seconds>
Maximum time between polling cycles, in seconds. See "Configuring MoM Polling Cycle" on page 38 in the
PBS Professional Administrator’s Guide. Minimum recommended value: 30 seconds.

Minimum value: 1 second

Default: 120 seconds

Format: Integer
PBS Professional 2022.1 Reference Guide RG-247

Chapter 3 MoM Parameters
$max_load <load> [suspend]
Defines the load above which the vnode is considered to be busy. Used with the $ideal_load directive. No
new jobs are started on a busy vnode.

The optional suspend directive tells PBS to suspend jobs running on the vnode if the load average exceeds the
$max_load number, regardless of the source of the load (PBS and/or logged-in users). Without this directive,
PBS will not suspend jobs due to load.

We recommend setting load to a value that is slightly higher than the number of CPUs, for example .25 +
ncpus.

Example:

$max_load 3.5

Format: Float

Default: number of CPUs on machine

$max_poll_downtime <downtime>
When mother superior detects that a sister mom has lost connectivity (e.g. MoM went down or the network is
having problems) it waits downtime seconds for the sister to reconnect before it gives up and kills the job.

Format: Integer

Default: five minutes

memreserved <megabytes>
Deprecated. The amount of per-vnode memory reserved for system overhead. This much memory is deducted
from the value of resources_available.mem for each vnode managed by this MoM.

For example,

memreserved 16

Default: 0MB

$min_check_poll <seconds>
Minimum time between polling cycles, in seconds. Must be greater than zero and less than $max_check_poll.
See "Configuring MoM Polling Cycle" on page 38 in the PBS Professional Administrator’s Guide. Minimum
recommended value: 10 seconds.

Format: Integer

Minimum value: 1 second

Default: 10 seconds

$prologalarm <timeout>
Defines the maximum number of seconds the prologue and epilogue may run before timing out.

Example:

$prologalarm 30

Format: Integer

Default: 30 seconds

$reject_root_scripts { True | False}
When set to True, MoM won't acquire any new hook scripts, and MoM won't run job scripts that would execute
as root or Admin. However, MoM will run previously-acquired hooks that run as root.

Format: Boolean

Default: False
RG-248 PBS Professional 2022.1 Reference Guide

MoM Parameters Chapter 3
$restart_background {True | False}
Controls how MoM runs a restart script after checkpointing a job. When this option is set to True, MoM forks a
child which runs the restart script. The child returns when all restarts for all the local tasks of the job are done.
MoM does not block on the restart. When this option is set to False, MoM runs the restart script and waits for
the result.

Format: Boolean

Default: False

$restart_transmogrify {True | False}
Controls how MoM runs a restart script after checkpointing a job.

When this option is set to True, MoM runs the restart script, replacing the session ID of the original task's top
process with the session ID of the script.

When this option is set to False, MoM runs the restart script and waits for the result. The restart script must
restore the original session ID for all the processes of each task so that MoM can continue to track the job.

When this option is set to False and the restart uses an external command, the configuration parameter
restart_background is ignored and treated as if it were set to True, preventing MoM from blocking on the
restart.

Format: Boolean

Default: False

$restrict_user {True | False}
Controls whether users not submitting jobs have access to this machine. If value is True, restrictions are
applied.

See $restrict_user_exceptions and $restrict_user_maxsysid.

Not supported on Windows.

Format: Boolean

Default: False

$restrict_user_exceptions <user list>
Comma-separated list of users who are exempt from access restrictions applied by $restrict_user. Leading
spaces within each entry are allowed. Maximum of 10 names.

$restrict_user_maxsysid <value>
Any user with a numeric user ID less than or equal to value is exempt from restrictions applied by
$restrict_user.

If $restrict_user is True and no value exists for $restrict_user_maxsysid, PBS looks in /etc/login.defs,
if it exists, for the value. Otherwise the default is used.

Format: Integer

Default: 999

$restricted <hostname>
The hostname is added to the list of hosts which are allowed to connect to MoM without being required to use a
privileged port. Queries from the hosts in the restricted list are only allowed access to information internal to
this host, such as load average, memory available, etc. They may not run shell commands.

Hostnames can be wildcarded. For example, to allow queries from any host from the domain "xyz.com":

$restricted *.xyz.com
PBS Professional 2022.1 Reference Guide RG-249

Chapter 3 MoM Parameters
$sister_join_job_alarm
When the primary MoM gets a job whose tolerate_node_failures attribute is set to all or job_start, the pri-
mary MoM can wait to start the job for up to a configured number of seconds if the sister MoMs do not immedi-
ately acknowledge joining the job. This gives the sister MoMs more time to join the job. You configure the
number of seconds for the primary MoM to wait for sister MoMs via the sister_join_job_alarm configuration
parameter in MoM's config file:

$sister_join_job_alarm <number of seconds to wait>

Default: the sum of the values of the alarm attributes of any enabled execjob_begin hooks. If there are no
enabled execjob_begin hooks, the default value is 30 seconds. For example, if there are two enabled
execjob_begin hooks, one with alarm = 30 and one with alarm = 20, the default value of MoM's
sister_join_job_alarm is 50 seconds.

After all the sister MoMs have joined the job, or MoM has waited for the value of the $sister_join_job_alarm
parameter, she starts the job.

$suspendsig <suspend signal> [resume signal]
Alternate signal suspend signal is used to suspend jobs instead of SIGSTOP. Optional resume signal is used to
resume jobs instead of SIGCONT.

$tmpdir <directory>
Location where each job's scratch directory will be created.

PBS creates a temporary directory for use by the job, not by PBS. PBS creates the directory before the job is
run and removes the directory and its contents when the job is finished. It is scratch space for use by the job.
Permission must be 1777 on Linux, writable by Everyone on Windows.

Example:

$tmpdir /memfs

Default on Linux: /var/tmp

Default on Windows: value of the TMP environment variable

$usecp <hostname:source directory> <destination directory>
MoM uses /bin/cp to deliver output files when the destination is a network mounted file system, or when the
source and destination are both on the local host, or when the source directory can be replaced with the destina-
tion directory on hostname. Both source directory and destination directory are absolute pathnames of directo-
ries, not files.

Overrides PBS_RCP and PBS_SCP.

Use trailing slashes on both the source and destination. For example:

$usecp HostA:/users/work/myproj/ /sharedwork/proj_results/

$wallmult <factor>
Each job's walltime usage is multiplied by factor. For example:

$wallmult 1.5
RG-250 PBS Professional 2022.1 Reference Guide

4

Scheduler Parameters

This chapter lists scheduler configuration parameters. These parameters are found in each scheduler's configuration file,
PBS_HOME/sched_priv/sched_config.

4.1 Format of Scheduler Configuration File

4.1.1 Parameters with Separate Primetime and

Non-primetime Specification

If a scheduler parameter can be specified separately for primetime and non-primetime, the format for the parameter is the
following:

name: value [prime | non_prime | all | none]

• The name field cannot contain any whitespace.

• The value field may contain whitespace if the string is double-quoted. value can be: True | False | <number> |
<string>. "True" and "False" are not case-sensitive.

• The third field allows you to specify that the setting is to apply during primetime, non-primetime, all the time, or
none of the time. A blank third field is equivalent to "all" which means that it applies to both primetime and
non-primetime.

Acceptable values: "all", "ALL", "none", "NONE", "prime", "PRIME", "non_prime", "NON_PRIME"

4.1.2 Parameters without Separate Primetime and

Non-primetime Specification

If a scheduler parameter cannot be specified separately for primetime and non-primetime, the format for the parameter is
the same as the above, except that there is no third field.

4.1.3 Format Details

• Each entry must be a single, unbroken line.

• Entries must be quoted if they contain whitespace.

• Any line starting with a "#" is a comment, and is ignored.
PBS Professional 2022.1 Reference Guide RG-251

Chapter 4 Scheduler Parameters
4.2 Configuration Parameters

backfill
Deprecated. Use the backfill_depth queue/server attribute instead. Toggle that controls whether PBS uses
backfilling. If this is set to True, this scheduler attempts to schedule smaller jobs around higher-priority jobs
when using strict_ordering, as long as running the smaller jobs won't change the start time of the jobs they were
scheduled around. This scheduler chooses jobs in the standard order, so other high-priority jobs will be consid-
ered first in the set to fit around the highest-priority job.

Format: Boolean

Default: True all

backfill_prime
This scheduler will not run jobs which would overlap the boundary between primetime and non-primetime.
This assures that jobs restricted to running in either primetime or non-primetime can start as soon as the time
boundary happens.

See also prime_spill, prime_exempt_anytime_queues.

Format: Boolean

Default: False all

by_queue
If set to True, all jobs that can be run from the highest-priority queue are run, then any jobs that can be run from
the next queue are run, and so on. Queues are ordered highest-priority first. If by_queue is set to False, all
jobs are treated as if they are in one large queue. The by_queue parameter is overridden by the round_robin
parameter when round_robin is set to True.

See "Examining Jobs Queue by Queue" on page 112 in the PBS Professional Administrator’s Guide.

Format: Boolean

Default: True all

dedicated_prefix
Queue names with this prefix are treated as dedicated queues, meaning jobs in that queue are considered for
execution only when the system is in dedicated time as specified in the configuration file
PBS_HOME/sched_priv/dedicated_time.

See "Dedicated Time" on page 127 in the PBS Professional Administrator’s Guide.

Format: String

Default: ded

fair_share
Enables the fairshare algorithm, and turns on usage collecting. Jobs will be selected based on a function of their
recent usage and priority (shares). Not a prime option.

See "Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.

Format: Boolean

Default: False all

fairshare_decay_factor
Decay multiplier for fairshare usage reduction. Each decay period, the usage is multiplied by this value. Valid
values: between 0 and 1, not inclusive. Not a prime option.

Format: Float

Default: 0.5
RG-252 PBS Professional 2022.1 Reference Guide

Scheduler Parameters Chapter 4
fairshare_decay_time
Time between fairshare usage decay operations. Not a prime option.

Format: Duration

Default: 24:00:00

fairshare_entity
Specifies the entity for which fairshare usage data will be collected. Can be one of "euser", "egroup",
"Account_Name", "queue", or "egroup:euser". Not a prime option.

Format: String

Default: euser

fairshare_enforce_no_shares
If this option is set to True, jobs whose entity has zero shares will never run. When False, jobs whose entity has
zero shares can run jobs only when no other entities have jobs that are available to run. Requires fair_share
parameter to be enabled. Not a prime option.

Format: Boolean

Default: True

fairshare_usage_res
Specifies the mathematical formula to use in fairshare calculations. Is composed of PBS resources as well as
mathematical operators that are standard Python operators and/or those in the Python math module. When
using a PBS resource, if resources_used.<resource name> exists, that value is used. Otherwise, the value is
taken from Resource_List.<resource name>. Not a prime option.

See "Tracking Resource Usage" on page 142 in the PBS Professional Administrator’s Guide.

Format: String

Default: "cput"

half_life
Deprecated (as of 13.0).

The half-life for fairshare usage; after the amount of time specified, the fairshare usage is halved. Requires that
fair_share parameter be enabled. Not a prime option.

See "Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.

Format: Duration

Default: 24:00:00

job_sort_key
Specifies how jobs should be sorted. job_sort_key can be used to sort using either (a) resources or (b) special
case sorting routines. Multiple job_sort_key entries can be used, one to a line, in which case the first entry will
be the primary sort key, the second will be used to sort equivalent items from the first sort, etc. This attribute is
overridden by the job_sort_formula attribute. If both are set, job_sort_key is ignored and an error message is
printed.

Syntax:

job_sort_key: "<resource name> HIGH|LOW"

job_sort_key: "fairshare_perc HIGH|LOW"

job_sort_key: "job_priority HIGH|LOW"

Options: One of the following is required.

HIGH
Specifies descending sort.
PBS Professional 2022.1 Reference Guide RG-253

Chapter 4 Scheduler Parameters
LOW
Specifies ascending sort.

There are three special case sorting routines, which can be used instead of resource name:

The following example illustrates how to sort jobs so that those with high CPU count come first:

job_sort_key: "ncpus HIGH" all

The following example shows how to sort jobs so that those with lower memory come first:

job_sort_key: "mem LOW" prime

Format: Quoted string

Default: Not enforced

load_balancing
Removed (2022.1).

load_balancing_rr
Removed.

log_filter
Obsolete. See “log_events” on page 298 of the PBS Professional Reference Guide.

mom_resources

Removed as of 2022.1.0.

node_sort_key
Defines sorting on resource or priority values on vnodes. Resource must be numerical, for example, long or
float. Up to 20 node_sort_key entries can be used, in which case the first entry will be the primary sort key, the
second will be used to sort equivalent items from the first sort, etc.

Syntax:

node_sort_key: <resource name> | sort_priority <HIGH | LOW>
node_sort_key: <resource name> <HIGH | LOW> <total | assigned | unused>
where

total
Use the resources_available value. This is the default setting when sorting on a resource.

Table 4-1: Special Sorting in job_sort_key

Special Sort Description

fairshare_perc HIGH Sort based on how much fairshare percentage the entity deserves, based on the
values in the resource_group file. If user A has more priority than user B,
all of user A's jobs will always be run first. Past history is not used. For cal-
culation, see "Computing Target Usage for Each Vertex (fairshare_perc)" on
page 144 in the PBS Professional Administrator’s Guide.

This should only be used if entity share (strict priority) sorting is needed. See
"Sorting Jobs by Entity Shares (Was Strict Priority)" on page 132 in the PBS
Professional Administrator’s Guide

Incompatible with fair_share scheduling parameter being True.

job_priority HIGH|LOW Sort jobs by the job priority attribute regardless of job owner.

sort_priority HIGH|LOW Deprecated. See job_priority above.
RG-254 PBS Professional 2022.1 Reference Guide

Scheduler Parameters Chapter 4
assigned
Use the resources_assigned value.

unused
Use the value given by resources_available - resources_assigned.

sort_priority
Sort vnodes by the value of the vnode priority attribute.

When sorting on a resource, the default third field is "total".

See "Sorting Vnodes on a Key" on page 223 in the PBS Professional Administrator’s Guide.

Format: String

Default: node_sort_key: "sort_priority HIGH all"

nonprimetime_prefix
Queue names which start with this prefix are treated as non-primetime queues. Jobs in these queues run only
during non-primetime. Primetime and non-primetime are defined in the holidays file.

See "Using Primetime and Holidays" on page 189 in the PBS Professional Administrator’s Guide.

Format: String

Default: np_

peer_queue
Defines the mapping of a pulling queue to a furnishing queue for peer scheduling. Maximum number is 50 peer
queues per scheduler.

 See "Peer Scheduling" on page 163 in the PBS Professional Administrator’s Guide.

Format: String

Default: Unset

preemptive_sched
Enables job preemption.

See preempt_order and "Using Preemption" on page 179 in the PBS Professional Administrator’s Guide for
details.

Format: String

Default: True all

preempt_order
No longer available. Use the preempt_sort scheduler attribute. See “preempt_order” on page 299..

preempt_prio
No longer available. Use the preempt_sort scheduler attribute. See “preempt_prio” on page 300..

preempt_queue_prio
No longer available. Use the preempt_sort scheduler attribute. See “preempt_queue_prio” on page 300..

preempt_sort
No longer available. Use the preempt_sort scheduler attribute. See “preempt_sort” on page 300..

primetime_prefix
Queue names starting with this prefix are treated as primetime queues. Jobs in these queues run only during
primetime. Primetime and non-primetime are defined in the holidays file.

See "Using Primetime and Holidays" on page 189 in the PBS Professional Administrator’s Guide.

Format: String

Default: p_
PBS Professional 2022.1 Reference Guide RG-255

Chapter 4 Scheduler Parameters
prime_exempt_anytime_queues
Determines whether anytime queues are controlled by backfill_prime.

If set to True, jobs in an anytime queue are not prevented from running across a primetime/non-primetime or
non-primetime/primetime boundary.

If set to False, the jobs in an anytime queue may not cross this boundary, except for the amount specified by
their prime_spill setting.

See also backfill_prime, prime_spill.

Format: Boolean

Default: False

prime_spill
Specifies the amount of time a job can spill over from non-primetime into primetime or from primetime into
non-primetime. This option can be separately specified for primetime and non-primetime. This option is only
meaningful if backfill_prime is True.

See also backfill_prime, prime_exempt_anytime_queues.

For example, non-primetime jobs can spill into primetime by 1 hour:

prime_spill: 1:00:00 prime

For example, jobs in either prime/non-prime can spill into the other by 1 hour:

prime_spill: 1:00:00 all

Format: Duration

Default: 00:00:00

provision_policy
Specifies how vnodes are selected for provisioning. Can be set by Manager only; readable by all. Can be set to
one of the following:

avoid_provision
PBS first tries to satisfy the job's request from free vnodes that already have the requested AOE instanti-
ated. PBS uses node_sort_key to sort these vnodes.

If PBS cannot satisfy the job's request using vnodes that already have the requested AOE instantiated, PBS
uses the server's node_sort_key to select the free vnodes that must be provisioned in order to run the job,
choosing from any free vnodes, regardless of which AOE is instantiated on them.

Of the selected vnodes, PBS provisions any that do not have the requested AOE instantiated on them.

aggressive_provision
PBS selects vnodes to be provisioned without considering which AOE is currently instantiated.

PBS uses the server's node_sort_key to select the vnodes on which to run the job, choosing from any free
vnodes, regardless of which AOE is instantiated on them. Of the selected vnodes, PBS provisions any that
do not have the requested AOE instantiated on them.

Format: String

Default: aggressive_provision
RG-256 PBS Professional 2022.1 Reference Guide

Scheduler Parameters Chapter 4
resources
Specifies those resources which are not to be over-allocated, or if Boolean are to be honored, when scheduling
jobs. Vnode-level Boolean resources are automatically honored and do not need to be listed here. Limits are set
by setting resources_available.<resource name> on vnodes, queues, and the server. A scheduler considers
numeric (integer or float) items as consumable resources and ensures that no more are assigned than are avail-
able (e.g. ncpus or mem). Any string resources are compared using string comparisons. If "host" is not added
to the resources line, when the user submits a job requesting a specific vnode in the following syntax:

qsub -l select=host=vnodeName

the job will run on any host.

Format: String

Default: ncpus, mem, arch, host, vnode, aoe

resource_unset_infinite
Resources in this list are treated as infinite if they are unset. Cannot be set differently for primetime and
non-primetime.

Example:

resource_unset_infinite: "vmem, foo_licenses"

Format: Comma-delimited list of resources

Default: Empty list

round_robin
If set to True, this scheduler considers one job from the first queue, then one job from the second queue, and so
on in a circular fashion. The queues are ordered with the highest-priority queue first. Each scheduling cycle
starts with the same highest-priority queue, which will therefore get preferential treatment.

If there are groups of queues with the same priority, and this parameter is set to True, this scheduler round-rob-
ins through each group of queues before moving to the next group.

If round_robin is set to False, this scheduler considers jobs according to the setting of the by_queue parame-
ter.

When True, overrides the by_queue parameter.

Format: Boolean

Default: False all

server_dyn_res
Directs this scheduler to replace the server's resources_available values with new values returned by a
site-specific external script or program.

 See "Creating Server Dynamic Resource Scripts" on page 263 in the PBS Professional Administrator’s Guide
for details of how to use this parameter.

Default timeout for server dynamic resource scripts is 30 seconds. You can configure this in the scheduler
server_dyn_res_alarm attribute.

Format: String

Default: Unset

smp_cluster_dist
Deprecated (12.2). Specifies how single-host jobs should be distributed to all hosts of the complex.

Options:

pack
Keep putting jobs onto one host until it is full and then move on to the next.
PBS Professional 2022.1 Reference Guide RG-257

Chapter 4 Scheduler Parameters
round_robin
Put one job on each vnode in turn before cycling back to the first one.

See "SMP Cluster Distribution" on page 216 in the PBS Professional Administrator’s Guide and "Using Load
Balancing" on page 158 in the PBS Professional Administrator’s Guide.

Format: String

Default: pack all

strict_fifo
Deprecated. Use strict_ordering.

strict_ordering
Specifies that jobs must be run in the order determined by whatever sorting parameters are being used. This
means that a job cannot be skipped due to resources required not being available. If a job due to run next cannot
run, no job will run, unless backfilling is used, in which case jobs can be backfilled around the job that is due to
run next.

See "FIFO with Strict Ordering" on page 150 in the PBS Professional Administrator’s Guide.

Example line in PBS_HOME/sched_priv/sched_config:

strict_ordering: True ALL

Format: Boolean

Default: False all

unknown_shares
The number of shares for the unknown group. These shares determine the portion of a resource to be allotted
to that group via fairshare. Requires fair_share to be enabled.

See "Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.

Format: Integer

Default: The unknown group gets 0 shares
RG-258 PBS Professional 2022.1 Reference Guide

5

PBS Pro RG-259

 Resources

This chap Resources" on page 227 in the PBS Profes-
sional Ad

5.1

Data type

Boo

N

V

Dura

A

o

M

Floa

F

Lon

L

fessional 2022.1 Reference Guide

List of Built-in

ter lists all of the built-in PBS resources. For information on setting, viewing, and using resources, see "Using PBS
ministrator’s Guide.

Resource Data Types

s for resources are described in section 7.2, “Resource Formats”, on page 359.

lean

ame of Boolean resource is a string.

alues:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0

tion

 period of time, expressed either as

An integer whose units are seconds
r

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[[HH]HH:]MM:]SS[.milliseconds]
illiseconds are rounded to the nearest second.

t

loating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

g

ong integer. Allowable values: 0-9 [[0-9] ...], and + and -

Chap

RG Professional 2022.1 Reference Guide

S

S

S

ter 5 List of Built-in Resources

-260 PBS

<queue name>@<server name>

ize

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

tring

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

tring Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

Table 5-1: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes

Chap

RG Professional 2022.1 Reference Guide

5.2

You c lue in the server, queue, or vnode
resou rted reservations.

You c icitly requested by the job. See "Resources
Requ

The f

L

serve

sche

queu

MoM

job

reser

acco
ter 5 List of Built-in Resources

-261 PBS

Viewing Resource Information

an see attribute values of resources for the server, queues, and vnodes using the qmgr or pbsnodes commands. The va
rces_assigned attribute is the amount explicitly requested by running and exiting jobs and, at the server and vnodes, sta

an see job attribute values using the qstat command. The value in the job's Resource_List attribute is the amount expl
ested by Job" on page 241 in the PBS Professional Administrator’s Guide.

ollowing table summarizes how to find resource information:

Table 5-2: How to View Resource Information

ocation Item to View Command

r default_chunk, default_qsub_arguments,
resources_available, resources_assigned,
resources_default

qmgr, qstat, pbsnodes

duler sched_config file Favorite editor or viewer

es default_chunk, resources_available, resources_assigned,
resources_default

qmgr, qstat

 and vnodes resources_available, sharing, pcpus, resources_assigned qmgr, pbsnodes

mom_config file Favorite editor or viewer

Resource_List qstat

vation Resource_List pbs_rstat -f

unting resources_assigned entry in accounting log Favorite editor or viewer

Chap

RG Professional 2022.1 Reference Guide

Every ements of PBS:

5.3

Reso l Administrator’s Guide.

reso

reso

reso

Res
ter 5 List of Built-in Resources

-262 PBS

 consumable resource, for example mem, can appear in four PBS attributes. These attributes are used in the following el

Resource Flags

urce flags are described and listed in "Specifying Resource Level and Consumability" on page 255 in the PBS Professiona

Table 5-3: Values Associated with Consumable Resources

Attribute Vnode Queue Server Accounting Log Job Scheduler

urces_available Yes Yes Yes Yes

urces_assigned Yes Yes Yes Yes

urces_used Yes Yes Yes

ource_List Yes Yes

Chap

RG Professional 2022.1 Reference Guide

5.4

Reso

Amo
able
(serv

Amo
cate
ing a
vnod

Amo
by th

Amo
reso
job t
requ

Amo
reso
each
that
the r
ter 5 List of Built-in Resources

-263 PBS

Attributes where Resources Are Tracked

urces are tracked in the following attributes:

Table 5-4: Attributes Where Resources Are Tracked

Resource Being
Tracked

Attribute Name

Server and
Queue

Vnode Job Reservation

unt of each resource avail-
 for use at the object
er, queue, vnode)

resources_available
.<resource name>

resources_available.
<resource name>

unt of each resource allo-
d to jobs running and exit-
t the object (server, queue,
e)

resources_assigned
.<resource name>

resources_assigned
.<resource name>

unt of each resource used
e job

resources_used
.<resource
name>

unt of each job-wide
urce that is assigned to any
hat does not explicitly
est the resource

resources_default.<
resource name>

unt of each host-level
urce that is assigned to
 chunk of any job where
does not explicitly request
esource

default_chunk.<reso
urce name>

Chap

RG Professional 2022.1 Reference Guide

5.5

In the

N

D

F

List
the o

List
Each
the v
take
cons
from

List
alloc
chun
vatio
ter 5 List of Built-in Resources

-264 PBS

Resource Table Format

 following tables, the columns contain the following information:

ame
The name of the resource

escription
A description of the resource's function

ormat
The resource's format

of resources requested by
bject (job or reservation)

Resource_List.
<resource
name>

Resource_List
.<resource
name>

of chunks for the job.
 chunk shows the name of
node from which it is

n along with the host-level,
umable resources allocated
 that vnode.

exec_vnode

of vnodes and resources
ated to them to satisfy the
ks requested for this reser-
n or occurrence

resv_nodes

Table 5-4: Attributes Where Resources Are Tracked

Resource Being
Tracked

Attribute Name

Server and
Queue

Vnode Job Reservation

Chap

RG Professional 2022.1 Reference Guide

S

C

V

V

D

P

P

5.6

Nam
D

Default
 Value Python Type Platform

aoe
Li
En
at
A
re
Ea
A

efault str
ter 5 List of Built-in Resources

-265 PBS

cope
Some resources are either:

• Job-wide and can be requested only outside of a select statement

• Host-level and can be requested only inside of a select statement

onsumable
A resource is consumable if use of this resource by a job reduces the amount available to other jobs

al/Opt
If the resource can take only specific values or options, each is listed here

alue/Option Description
If the resource can take only specific values or options, the behavior of each value or option is described here

efault Value
The resource's default value, if any

ython Type
The resource's Python type

latform
Platform where available

Resources Built Into PBS

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

st of AOEs (Application Operating
vironments) that can be instanti-

ed on this vnode. Case-sensitive.
n AOE is the environment that
sults from provisioning a vnode.
ch job can request at most one

OE. Cannot be set on server's host.

string array Host-level No Allowable
values are
site-depen-
dent.

No d

Chap

RG Professional 2022.1 Reference Guide

arch
Sy
tu
ar
vn
on
Th
re
M
ad

efault str Linux
Linux
with
cpusets
CLE
Windows

cput
A
fo
Es

efault pbs.dura-
tion

ener
Th
PB

efault

eoe
St
ro
W
re
th
W
R
m
re
A
lin

urces_availabl
e: unset

ource_List.eoe:
efault

str

exec
Th
jo
Th
at
es
C
fo

efault str

Nam
D

Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-266 PBS

stem architecture. One architec-
re can be defined for a vnode. One
chitecture can be requested per
ode. Allowable values and effect
 job placement are site-dependent.
e resources_available.arch

source is the value reported by
oM unless explicitly set by the
ministrator.

String Host-level No linux Linux No d
linux_cpuse
t

Linux with cpusets

XT CLE
windows Windows

mount of CPU time used by the job
r all processes on all vnodes.
tablishes a job-wide resource limit.

Duration Job-wide No No d

gy
e energy used by a job. Set by
S.

Float. Units: kWh Yes No d

ands for "Energy Operational Envi-
nment".
hen set on a vnode in
sources_available.eoe, contains
e list of available power profiles.
hen set for a job in
esource_List.eoe, can contain at
ost one power profile. (A job can
quest only one power profile.)
utomatically added to resources:
e in sched_config.

string array No For
reso
e.eo
For
Res
no d

_vnode
e vnodes that PBS estimates this

b will use.
is is not the job's exec_vnode

tribute. This appears only in job's
timated attribute.

annot be requested for a job; used
r reporting only. Read-only.

String No d

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2022.1 Reference Guide

file
Si
cr
A
ty

efault pbs.size

hbm
H
on
X

efault pbs.size Xeon Phi
KNL

host
N
de

matically set to
hort form of the
name in the Mom
ute.

str

max
M
sh
tim
m
fo
m
m
fie
re
re
jo

ars pbs.dura-
tion

mem
A
w
jo
A
ty

efault pbs.size

Nam
D

Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-267 PBS

ze of any single file that may be
eated by the job.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Job-wide No d

em
igh-bandwidth memory. Available
ly on some architectures such as

eon Phi (deprecated) KNL.

Size Host-level Yes Values must be
greater than or
equal to zero.

No d

ame of execution host. Site-depen-
nt.

String Host-level Auto
the s
host
attrib

_walltime
aximum walltime allowed for a
rink-to-fit job. Job's actual wall-
e is between max_walltime and

in_walltime. PBS sets walltime
r a shrink-to-fit job. If
ax_walltime is specified,
in_walltime must also be speci-
d. Cannot be used for
sources_min or
sources_max. Cannot be set on
b arrays or reservations.

Duration Job-wide No Must be
greater than
or equal to
min_walltim
e.

5 ye

mount of physical memory i.e.
orkingset allocated to the job, either
b-wide or host-level.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Either
job-wide
or
host-level.
Can be
requested
only
inside of a
select
statement.

Yes No d

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2022.1 Reference Guide

min_
M
sh
m
sh
se
Jo
m
C
or
on

efault pbs.dura-
tion

mpip
N
ch
ch
Th
PB
va
re
ch
na
th

pus >0: 1
rwise: 0

int

Nam
D

Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-268 PBS

walltime
inimum walltime allowed for a
rink-to-fit job. When
in_walltime is specified, job is a
rink-to-fit job. If this attribute is
t, PBS sets the job's walltime.
b's actual walltime is between
ax_walltime and min_walltime.
annot be used for resources_min
 resources_max. Cannot be set
 job arrays or reservations.

Duration Job-wide No Must be less
than or equal
to
max_wallti
me.

No d

rocs
umber of MPI processes for this
unk. Cannot use sum from
unks as job-wide limit.
e number of lines in
S_NODEFILE is the sum of the
lues of mpiprocs for all chunks
quested by the job. For each
unk with mpiprocs=P, the host
me for that chunk is written to
e PBS_NODEFILE P times.

Integer Host-level If nc
Othe

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2022.1 Reference Guide

nchu
N
be
sta
sta
4:
va
4,
Th
na
on
be
ex
te
Th
th
se
qu
de
Th
se
an

int

ncpu
N

efault int

nice
N
ru

efault int

node
D
re
di
re
R

int

node
D
re

efault

Nam
D

Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-269 PBS

nk
umber of chunks requested
tween plus symbols in a select
tement. For example, if the select
tement is -lselect
ncpus=2+12:ncpus=8, the

lue of nchunk for the first part is
 and for the second part it is 12.
e nchunk resource cannot be
med in a select statement; it can
ly be specified by placing a num-
r before the colon, as in the above
ample. When the number is omit-
d, nchunk is 1.
is resource can be used to specify

e default number of chunks at the
rver or queue. Example: set
eue myqueue
fault_chunk.nchunk=2
is resource cannot be used in

rver and queue resources_min
d resources_max.

Integer No 1

s
umber of processors.

Integer Host-level Yes No d

ice value with which the job is to be
n. Host-dependent.

Integer Job-wide No d

ct
eprecated. Number of chunks in
source request from selection
rective, or number of hosts
quested from node specification.
ead-only.

Integer Job-wide 1

s
eprecated. Number of hosts
quested.

Integer No d

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2022.1 Reference Guide

omp
N
ch
C
jo
Fo
th
an
se
Fo
is
tio

e of ncpus int

pcpu
A
an
lis

efault pbs.dura-
tion

pme
A
in
of
re
A
ty

efault pbs.size

Nam
D

Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-270 PBS

threads
umber of OpenMP threads for this
unk.

annot use sum from chunks as
b-wide limit.
r the MPI process with rank 0,

e environment variables NCPUS
d OMP_NUM_THREADS are
t to the value of ompthreads.
r other MPI processes, behavior

 dependent on MPI implementa-
n.

Integer Host-level No Valu

t
mount of CPU time allocated to
y single process in the job. Estab-
hes a per-process resource limit.

Duration Job-wide No No d

m
mount of physical memory (work-
gset) for use by any single process
 the job. Establishes a per-process
source limit.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Job-wide No No d

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2022.1 Reference Guide

pree
Li
re
qu

efault str

pvm
A
an
lis
A
ty

efault pbs.size

site
A

efault str

softw
Si

efault pbs.soft-
ware

Nam
D

Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-271 PBS

mpt_targets
st of resources and/or queues. Jobs
questing those resources or in those
eues are preemption targets.

string array
Syntax:
preempt_targets="Queu
e=<queue
name>[,Queue=<queue
name>],Resource_List.<
resource>=
<value>[,Resource_List.
<resource>= <value>]
"
or
preempt_targets=None
Keywords "queue" and
"none" are case-insensi-
tive. You can list multi-
ple comma-separated
targets.

Job-wide No No d

em
mount of virtual memory for use by
y single process in the job. Estab-
hes a per-process resource limit.
 scheduler rounds all resources of
pe size up to the nearest kb.

Size Job-wide No No d

rbitrary string resource.
String Job-wide No No d

are
te-specific software specification.

String Job-wide Allowable
values and
effect on job
placement
are
site-depen-
dent.

No d

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2022.1 Reference Guide

soft_
So
w
un
ki
A
its
on

efault pbs.dura-
tion

start
Th
C
fo
A
at

efault int

vme
A
al
Es
lim
A
ty

efault pbs.size

vnod
N
w
Se
of
G

efault str

vnty
Th

efault str all

wallt
A
lis
A
w
tra

ars pbs.dura-
tion

Nam
D

Default
 Value Python Type Platform
ter 5 List of Built-in Resources

-272 PBS

walltime
ft limit on walltime. Similar to

alltime, but cannot be requested by
privileged users, and job is not
lled if it exceeds its soft_walltime.
 job's soft_walltime cannot exceed
 walltime. Can be set by Manager
ly.

Duration No d

_time
e estimated start time for this job.

annot be requested for a job; used
r reporting only.
ppears only in job's estimated
tribute. Read-only.

Integer No d

m
mount of virtual memory for use by
l concurrent processes in the job.
tablishes a per-chunk resource
it.

 scheduler rounds all resources of
pe size up to the nearest kb.

Size Host-level Yes No d

e
ame of virtual node (vnode) on
hich to execute. Site-dependent.
e “Vnode Attributes” on page 320
 the PBS Professional Reference
uide.

String Host-level No d

pe
e type of the vnode.

string array Host-level No No d

ime
mount of wall-clock time. Estab-
hes a job-wide resource limit.
ctual elapsed time may differ from
alltime during Daylight Savings
nsitions.

Duration Job-wide No 5 ye

Resources
e

escription
Format Scope Consu

mable Val / Opt Value/Option
Description

Chap

RG Professional 2022.1 Reference Guide
ter 5 List of Built-in Resources

-273 PBS

Chap

RG Professional 2022.1 Reference Guide
ter 5 List of Built-in Resources

-274 PBS

PBS RG-275

Chapter 5
 Professional 2022.1 Reference Guide

List of Built-in Resources

Chap

RG Professional 2022.1 Reference Guide
ter 5 List of Built-in Resources

-276 PBS

6

PBS Pro RG-277

Attributes

This chap orted attributes of jobs are listed in section
6.11, “Job

6.1

• When order to make the change.

• When

6.2

You set m age 42 in the PBS Professional Administra-
tor’s Guid ributes can be set at submission via the qsub
command

The follow

To set the

qmgr

Qmgr
fessional 2022.1 Reference Guide

ter lists all of the supported PBS attributes. Attributes are listed by the PBS object they modify. For example, all supp
 Attributes”, on page 327. Attributes are case-sensitive.

Attribute Behavior

 you set the value of most attributes, the change takes place immediately. You do not need to restart any daemons in

 an attribute is unset, it behaves as if it is at its default value.

How To Set Attributes

ost attributes via the qmgr command. You can set vnode attributes during vnode creation (see "Creating Vnodes" on p
e), or afterward (see "Configuring Vnodes" on page 45 in the PBS Professional Administrator’s Guide). Many job att
.

ing are the instructions for setting most attributes.

 value of a non-string_array attribute, use the qmgr command, either from the command line or within qmgr:

-c "set <object> <attribute> = <value>"

: set <object> <attribute> = <value>

Chap

RG Professional 2022.1 Reference Guide

To se

q

q

q

q

Q
Q
Q
Q

To un

q

Q

where

For e

Q

See “

6.3

If you

q

q

ter 6 Attributes

-278 PBS

t or change the value of a string_array attribute, use the qmgr command, either from the command line or within qmgr:

mgr -c "set <object> <attribute> = <value>"

mgr -c 'set <object> <attribute> = "<value,value>"'

mgr -c 'set <object> <attribute> += <value>'

mgr -c 'set <object> <attribute> -= <value>'

mgr: set <object> <attribute> = <value>
mgr: set <object> <attribute> = '<value,value>'
mgr: set <object> <attribute> += <value>
mgr: set <object> <attribute> -= <value>

set the value of an attribute:

mgr -c "unset <object> <attribute>"

mgr: unset <object> <attribute>

 <object> is one of server, queue, hook, node, or sched.

xample, to set resources_max.walltime at the server to be 24 hours:

mgr: set server resources_max.walltime = 24:00:00

qmgr” on page 152.

Viewing Attribute Values

 want to view attribute values, the following commands are helpful:

stat; see section 2.55, “qstat”, on page 200

mgr; see section 2.45, “qmgr”, on page 152

PBS RG-279

Chapter 6

p

• T
q

Q

• T
q

Q

• T
q

• T
Q

• T
Q

• T
Q

• T
p

6.4

In the

N

D

F

V

 Professional 2022.1 Reference Guide

Attributes

bs_rstat; see section 2.30, “pbs_rstat”, on page 94

o see server attributes, use one of the following:
stat -B -f

mgr: list server

o see queue attributes, use one of the following:
stat -Q -f <queue name>

mgr: list queue <queue name>

o see job attributes:
stat -f <job ID>

o see hook attributes:
mgr: list hook <hook name>

o see scheduler attributes:
mgr: list sched

o see vnode attributes:
mgr: list node <node name>

o see reservation attributes:
bs_rstat -F

Attribute Table Format

 following tables, the columns contain the following information:

ame
The name of the attribute

escription
A description of the attribute's function

ormat
The attribute's format

al/Opt
If the attribute can take only specific values or options, each is listed here

Chap

RG Professional 2022.1 Reference Guide

V

D

P

U

6.5

• T Other features, such as has_key(), are not
a

• D
ter 6 Attributes

-280 PBS

alue/Option Description
If the attribute can take only specific values or options, the behavior of each value or option is described here

efault Value, Def Val
The attribute's default value, if any

ython Type
The attribute's Python type

ser, Oper, Mgr
Indicates the actions allowed for unprivileged users, Operators, and Managers

The following table shows the operations allowed and their symbols:

Caveats

he Python types listed as Python dictionaries support a restricted set of operations. They can reference values by index.
vailable.

o not use qmgr to set attributes for reservation queues.

Table 6-1: User, Operator, Manager Actions

Symbol Explanation

r Entity can read attribute

w Entity can directly set or alter attribute

s Entity can set but not alter attribute

a Entity can alter but not set attribute

i Entity can indirectly set attribute

- Entity cannot set or alter attribute, whether directly or indirectly

PBS RG-281

Chapter 6

6.6

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr

acl_
Sp
co

False; all
hosts allowed
access

bool r r r,
w

acl_
Sp
al
as

False bool r r r,
w

acl_
Li
of
al
Th
of
m

No default pbs.acl r r r,
w

acl_
Sp
va
se

False; all
groups
allowed
access

bool r r r,
w

acl_
Li
at
th
ho
lis

pbs.acl r r r,
w

acl_
Sp
tio
at

False; access
allowed from
all hosts

bool r r r,
w

 Professional 2022.1 Reference Guide

Attributes

Server Attributes

Server Attributes
e

escription
Format Val / Opt Value/Option Description

host_enable
ecifies whether the server obeys the host access
ntrol list in the acl_hosts server attribute.

Boolean. When this attribute is True, the
server limits host access according
to the access control list.

host_moms_enable
ecifies whether all MoMs are automatically

lowed to contact the server with the same privilege
 hosts listed in the acl_hosts server attribute.

Boolean True All MoMs are automatically
allowed to contact the server with
the same privilege as hosts listed in
the acl_hosts server attribute.

False MoMs are not automatically
allowed to contact the server with
the same privilege as hosts listed in
the acl_hosts server attribute.

hosts
st of hosts from which services can be requested
 this server. Requests from the server host are
ways honored whether or not that host is in the list.
is list contains the fully qualified domain names

 the hosts. List is evaluated left-to-right; first
atch in list is used.

String. Syntax:
"[+|-]<host-
name>.<domain>[,
...]"

resv_group_enable
ecifies whether the server obeys the group reser-
tion access control list in the acl_resv_groups
rver attribute.

Boolean When this attribute is True, the
server limits group access accord-
ing to the access control list.

resv_groups
st of groups allowed or denied permission to cre-
e reservations in this PBS complex. The groups in
e list are groups on the server host, not submission
sts. List is evaluated left-to-right; first match in
t is used.

String. Syntax:
"[+|-]<group
name>[, ...]"

resv_host_enable
ecifies whether the server obeys the host reserva-
n access control list in the acl_resv_hosts server

tribute.

Boolean When this attribute is True, the
server limits host access according
to the access control list.

Chap

RG Professional 2022.1 Reference Guide

acl_
Li
in
fu
ev

No default pbs.acl r r r,
w

acl_
Sp
al
ac
at

False; all
users are
allowed to
create reserva-
tions

bool r r r,
w

acl_
Li
re
le

No default pbs.acl r r r,
w

acl_
Li
ru
ow
be
re
lis
C
se

No default; no
root jobs
allowed

pbs.acl r r r

acl_
Sp
al
th

False; all
users have
access

bool r r r,
w

acl_
Li
co
le

No default pbs.acl r r r,
w

back
Sp
jo
ba
R

 Unset. When
unset, backfill
depth is 1

int r r,
w

r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-282 PBS

resv_hosts
st of hosts from which reservations can be created
 this PBS complex. This list is made up of the
lly-qualified domain names of the hosts. List is
aluated left-to-right; first match in list is used.

String.
Syntax:
"[+|-]<host-
name>.<domain>[,
...]"

resv_user_enable
ecifies whether the server limits which users are

lowed to create reservations, according to the
cess control list in the acl_resv_users server
tribute.

Boolean When this attribute is True, the
server limits user reservation cre-
ation according to the access con-
trol list.

resv_users
st of users allowed or denied permission to create
servations in this PBS complex. List is evaluated
ft-to-right; first match in list is used.

String.
Syntax:"[+|-]<user-
name>[@<host-
name>][, ...]"

roots
st of users with root privilege who can submit and
n jobs in this PBS complex. For any job whose
ner is root or Administrator, the job owner must

 listed in this access control list, or the job is
jected. List is evaluated left-to-right; first match in
t is used.
an be set or altered by root only, and only at the
rver host.

String.
Syntax:"[+|-]<user-
name>[@<host-
name>][, ...]"

user_enable
ecifies whether the server limits which users are

lowed to run commands at the server, according to
e control list in the acl_users server attribute.

Boolean When this attribute is True, the
server limits user access according
to the access control list.

users
st of users allowed or denied permission to run
mmands at this server. List is evaluated
ft-to-right; first match in list is used.

String.
Syntax:"[+|-]<user-
name>[@<host-
name>][, ...]"

fill_depth
ecifies backfilling behavior. Sets the number of

bs that are to be backfilled around. Overridden by
ckfill_depth queue attribute.

ecommendation: set this to less than 100.

Integer.
Must be >=0

>=0 PBS backfills around the specified
number of jobs.

Unset Backfill depth is set to 1.

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-283

Chapter 6

com
In
ot

No default str r r,
w

r,
w

defa
Th
ch
sp
pr
re
fie

No default pbs.pbs_resour
ce
Syntax:
default_chunk["
<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

defa
N

- - -

defa
A
to
rid
gi

No default pbs.args r r,
w

r,
w

defa
A
qs
co
at
at
rid
to
de
co

No default pbs.args r r,
w

r,
w

defa
Th
re
se

workq pbs.queue r r,
w

r,
w

eligib
En
el

False bool r r r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

ment
formational text. Can be set by a scheduler or
her privileged client.

String of any form

ult_chunk
e list of resources which will be inserted into each
unk of a job's select specification if the corre-
onding resource is not specified by the user. This
ovides a means for a site to be sure a given
source is properly accounted for even if not speci-
d by the user.

String. Syntax:
default_chunk.<reso
urce
name>=<value>,def
ault_chunk.<resourc
e name>=<value>,
...

ult_node
o longer used.
ult_qdel_arguments
rgument to qdel command. Automatically added
 all qdel commands. See qdel(1B). Over-
es standard defaults. Overridden by arguments

ven on the command line.

String. Syntax:
"-Wsuppress_mail=
<N>"

ult_qsub_arguments
rguments that are automatically added to the
ub command. Any valid arguments to qsub

mmand, such as job attributes. Setting a job
tribute via default_qsub_arguments sets that
tribute for each job which does not explicitly over-
e it. See qsub(1B). Settable by the administra-

r via the qmgr command. Overrides standard
faults. Overridden by arguments given on the
mmand line and in script directives.

String. Syntax:
"<option> <value>
<option> <value>",
e.g. "-r y -N MyJob"
To add to existing:
Qmgr: s s
default_qsub_argu
ments +="<option>
<value>"

ult_queue
e name of the default target queue. Used for

quests that do not specify a queue name. Must be
t to an existing queue.

Queue name

le_time_enable
ables accruing job wait time in the job's

igible_time attribute.

Boolean True Job can accrue wait time
False Job cannot accrue wait time

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

est_
O

flatu
U
al
as
m
al
su
If
re
sa

.

False; autho-
rization is
required

bool r r r,
w

FLic
O

job_
Th

Two weeks pbs.duration r r r,
w

job_
En
at

False bool r r r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-284 PBS

start_time_freq
bsolete. No longer used.
id
sed for authorization allowing users to submit and
ter jobs. Specifies whether user names are treated
 being the same across the PBS server and all sub-
ission hosts in the PBS complex. Can be used to
low users without accounts at the server host to
bmit jobs.
UserA has an account at the server host, PBS
quires that UserA@<server host> is the
me as UserA@<execution host>.

Boolean True PBS assumes that
UserA@<submithost> is same
user as UserA@<server name>
Jobs that run under the name of the
job owner do not need authoriza-
tion.
A job submitted under a different
username, by using the u option to
the qsub command, requires
authorization.
Entries in .rhosts or
hosts.equiv are not checked, so
even if UserA@host1 has an entry
for UserB@host2, UserB@host2
cannot operate on UserA@host1's
jobs.
User without account on server can
submit jobs.

False PBS does not assume that
UserA@<submission host> is
the same user as UserA@<server
host>.
Jobs that run under the name of the
job owner need authorization.
Users must have accounts on the
server host to submit jobs.

enses
bsolete. No longer used.
history_duration
e length of time PBS will keep each job's history.

Duration

history_enable
ables job history management. Setting this

tribute to True enables job history management.

Boolean

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-285

Chapter 6

job_
Th
in
M
al

45 seconds pbs.duration r r,
w

r,
w

job_
Fo
th
at
th
th
co
is
hi

Unset pbs.job_sort_fo
rmula

r r r,
w

jobs
Li

100MB pbs.size r r r,
w

licen
Th
el
Av

 Avail_Global
:0
Avail_Local:
0 Used:0
High_Use:0

pbs.license_co
unt

r r r

log_
Th

511 int r r,
w

r,
w

mail
Pa
sh

SENDMAIL_
CMD macro

str r r r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

requeue_timeout
e amount of time that can be taken while requeue-

g a job.
inimum allowed value: 1 second. Maximum
lowed value: 3 hours.

Duration

sort_formula
rmula for computing job priorities. Described in

e PBS Professional Administrator's Guide. If the
tribute job_sort_formula is set, all schedulers use
e formula in it to compute job priorities. When
is scheduler sorts jobs according to the formula, it
mputes a priority for each job, where that priority
the value produced by the formula. Jobs with a
gher value get higher priority.

String. Syntax:
mathematical for-
mula; can be made
up of expressions,
where expressions
contain terms which
are added, sub-
tracted, multiplied, or
divided, and which
can contain parenthe-
ses, exponents, unary
plus and minus, the
ternary operator, and
Python math module
functions.

cript_max_size
mit on the size of any job script.

size
Units default to bytes

se_count
e license_count attribute contains the following

ements with their values: Avail_Global,
ail_Local, Used, High_Use.

String.
Syntax:
Avail_Global:<value
>
Avail_Local:<value
> Used:<value>
High_Use:<value>

Avail_Global The number of licenses available at
ALM license server (checked in.)

Avail_Local The number of licenses kept by
PBS (checked out.)

Used The number of licenses currently in
use.

High_Use The highest number of licenses
ever checked out and used by the
current instance of the PBS server.

events
e types of events the server logs.

Integer representa-
tion of bit string

er
th to mailer to be used by PBS. This mailer
ould function similarly to sendmail.

String

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

mail
Th
se
fa

"adm" str r r r,
w

man
Li

Root on the
server host

pbs.acl r r r,
w

max
Th
ar

10000 int r r,
w

r,
w

max
Th
nu
be
un

5 int r r r,
w

max
O
at
re
PB

No default pbs.pbs_resour
ce
Syntax:
max_group_res[
"<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-286 PBS

_from
e username from which server-generated mail is

nt to users. Mail is sent to this address upon
ilover.

String

agers
st of PBS Managers.

String. Syntax:
"<user-
name>@<host-
name>.<subdomain
>.<domain>[,<user
name>@<host-
name>.<subdo-
main>.<domain>
...]". The host,
sub-domain, or
domain name may be
wildcarded with an
asterisk (*).

_array_size
e maximum number of subjobs allowed in any

ray job.

Integer

_concurrent_provision
e max_concurrent_provision attribute is the
mber of vnodes allowed to be in the process of
ing provisioned. Cannot be set to zero. When
set, default value is used.

Integer >0

_group_res
ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single group may consume in this
S complex.

String. Syntax:
max_group_res.<res
ource
name>=<value>

Any PBS
resource, e.g.
"ncpus",
"mem",
"pmem"

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-287

Chapter 6

max
O
at
th
If
th
pr
th

None pbs.pbs_resour
ce
Syntax:
max_group_res_
soft["<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max
O
at
th
th

No default int r r,
w

r,
w

max
O
at
th
co
nu
pr
th

No default int r r,
w

r,
w

max
M
jo
M
is
A
be

9999999 int r r r,
w

max
Li
al
C
C

No default str r r,
w

r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

_group_res_soft
ld limit attribute. Incompatible with new limit
tributes. The soft limit for the specified resource
at any single group may consume in this complex.
a group is consuming more than this amount of
e specified resource, their jobs are eligible to be
eempted by jobs from groups who are not over
eir soft limit.

String. Syntax:
max_group_res_soft.
<resource
name>=<value>

Any PBS
resource, e.g.
"ncpus",
"mem",
"pmem", etc.

_group_run
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by
e users in one group allowed to be running within
is complex at one time.

Integer

_group_run_soft
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by
e users in one group allowed to be running in this
mplex at one time. If a group has more than this
mber of jobs running, their jobs are eligible to be
eempted by jobs from groups who are not over
eir soft limit.

Integer

_job_sequence_id
aximum value of sequence number in a job ID,
b array ID, or reservation ID.
inimum allowed is 9999999. Maximum allowed
999999999999.
fter specified maximum for sequence number has
en reached, job IDs start again at 0.

Integer

_queued
mit attribute. The maximum number of jobs
lowed to be queued or running in the complex.
an be specified for projects, users, groups, or all.
annot be used with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

max
Li
fie
or
pr
ol

No default pbs.pbs_resour
ce
Syntax:
max_queued_res
["<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max
Li
al
ifi
us

No default str r r,
w

r,
w

max
Li
fie
in
gr
at

No default pbs.pbs_resour
ce
Syntax:
max_run_res["<
resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max
Li
ifi
ni
us
at

No default pbs.pbs_resour
ce
Syntax:
max_run_res_sof
t["<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-288 PBS

_queued_res
mit attribute. The maximum amount of the speci-
d resource allowed to be allocated to jobs queued
 running in the complex. Can be specified for
ojects, users, groups, or all. Cannot be used with
d limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.
Syntax:
max_queued_res.<re
source name> =
"<.limit>"

_run
mit attribute. The maximum number of jobs
lowed to be running in the complex. Can be spec-
ed for projects, users, groups, or all. Cannot be
ed with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

_run_res
mit attribute. The maximum amount of the speci-
d resource allowed to be allocated to jobs running

 the complex. Can be specified for projects, users,
oups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353
Syntax:
max_run_res.<resou
rce name> =
"<.limit>"

_run_res_soft
mit attribute. Soft limit on the amount of the spec-
ed resource allowed to be allocated to jobs run-
ng in the complex. Can be specified for projects,
ers, groups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353
max_run_res_soft.<r
esource name> =
"<.limit>"

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-289

Chapter 6

max
Li
al
ifi
us

No default str r r,
w

r,
w

max
O
at
co

No default int r r,
w

r,
w

max
O
at
re
th

No default pbs.pbs_resour
ce
Syntax:
max_user_res["
<resource
name>"]=
<value> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max
O
at
fie
w
th
ar
ar

No default pbs.pbs_resour
ce
Syntax:
max_user_res_s
oft["<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

max
O
at
a
pl

No default int r r,
w

r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

_run_soft
mit attribute. Soft limit on the number of jobs
lowed to be running in the complex. Can be spec-
ed for projects, users, groups, or all. Cannot be
ed with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

_running
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs in this
mplex allowed to be running at any given time.

Integer

_user_res
ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single user may consume within
is complex.

String. Syntax:
max_user_res.<reso
urce
name>=<value>

Any PBS
resource, e.g.
"ncpus",
"mem",
"pmem", etc.

_user_res_soft
ld limit attribute. Incompatible with new limit
tributes. The soft limit on the amount of the speci-
d resource that any single user may consume

ithin this complex. If a user is consuming more
an this amount of the specified resource, their jobs
e eligible to be preempted by jobs from users who
e not over their soft limit.

String. Syntax:
max_user_res_soft.<
resource
name>=<value>

Any valid
PBS resource,
e.g. "ncpus",
"mem",
"pmem", etc

_user_run
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by
single user allowed to be running within this com-
ex at one time.

Integer

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

max
O
at
ow
ni
m
el
no

No default int r r,
w

r,
w

node
C
re
ho
co
de
R

310 int r r,
w

r,
w

node
Sp
no
se

False bool r r,
w

r,
w

node
Sp
(n
no
no

Unset pbs.node_grou
p_key

r r,
w

r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-290 PBS

_user_run_soft
ld limit attribute. Incompatible with new limit
tributes. The soft limit on the number of jobs
ned by a single user that are allowed to be run-

ng within this complex at one time. If a user has
ore than this number of jobs running, their jobs are
igible to be preempted by jobs from users who are
t over their soft limit.

Integer

_fail_requeue
ontrols whether running jobs are automatically
queued or are deleted when the primary execution
st fails. Number of seconds to wait after losing
ntact with Mother Superior before requeueing or
leting jobs.

everts to default value when server is restarted.

Integer.
Units: Seconds.

<0 Behaves as if set to 1.
0 Jobs are not requeued; they are left

in the Running state until the exe-
cution host is recovered.

>0 When the host has been down for
the specified number of seconds,
jobs are requeued if they are
marked as rerunnable, or are
deleted.

Unset Behaves as if set to default value of
310.

_group_enable
ecifies whether placement sets (which includes
de grouping) are enabled. See node_group_key
rver attribute.

Boolean When set to True, placement sets
are enabled.

_group_key
ecifies the resources to use for placement sets
ode grouping). Overridden by queue's
de_group_key attribute. See
de_group_enable server attribute.

String_array
When specifying
multiple resources,
separate them with
commas and enclose
the value in double
quotes.

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-291

Chapter 6

oper
Li

No default pbs.acl r r r,
w

pbs_
D

- - - - -

pbs_
Lo

No default str r r r,
w

pbs_
Th
w
gi

31536000
seconds (1
year).

pbs.duration r r r,
w

pbs_
M
an
in
be
tim

Maximum
value for an
integer

int r r r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

ators
st of PBS Operators.

String. Syntax:
<user-
name>@<host-
name>.<subdomain
>.<domain
name>[,<user-
name>@<host-
name>.<subdomain
>.<domain name>
...]. The host, subdo-
main, or domain
name may be wild-
carded with an aster-
isk (*).

license_file_location
eprecated. Do not use.

- - -

license_info
cation of license server(s).

String. Syntax:
One or more port
number and host-
name combinations:
<port1>@<host1>[
:<port2>@<host2>:
...:<portN>@<host
N>] where host1,
host2, ... hostN can
be IP addresses.
Delimiter between
items is colon (":").

license_linger_time
e number of seconds to keep an unused license,

hen the number of licenses is above the value
ven by pbs_license_min.

Integer.
Units: seconds.

license_max
aximum number of licenses to be checked out at
y time, i.e maximum number of licenses to keep
 the PBS local license pool. Sets a cap on the num-
r of nodes or sockets that can be licensed at one
e.

Integer

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

pbs_
M
ne
lic
is
ou
If

0 int r r r,
w

pbs_
Th

No default pbs.version r r r

pow
R
to

False bool r r r,
w

pyth
Th
be
nu
py
Py

100 int r r r,
w

pyth
Th
be
nu
py
Py

1000 int r r r,
w

pyth
Th
pr
ei
(s
ex
cr
be

30 pbs.duration r r r,
w

quer
C
se
us

- On installa-
tion: True
After being
unset: False

bool r r r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-292 PBS

license_min
inimum number of nodes or sockets to perma-
ntly keep licensed, i.e. the minimum number of
enses to keep in the PBS local license pool. This
the minimum number of licenses to keep checked
t.
unset, PBS automatically sets the value to 0.

Integer

version
e version of PBS for this server.

String

er_provisioning
eflects use of power profiles via PBS. Set by PBS
 True when PBS_power hook is enabled.

Boolean True Power provisioning is enabled.
False Power provisioning is disabled.

on_restart_max_hooks
e maximum number of hooks to be serviced
fore the Python interpreter is restarted. If this
mber is exceeded, and the time limit set in
thon_restart_min_interval has elapsed, the
thon interpreter is restarted.

Integer

on_restart_max_objects
e maximum number of objects to be created
fore the Python interpreter is restarted. If this
mber is exceeded, and the time limit set in
thon_restart_min_interval has elapsed, the
thon interpreter is restarted.

Integer

on_restart_min_interval
e minimum time interval before the Python inter-

eter is restarted. If this interval has elapsed, and
ther the maximum number of hooks to be serviced
et in python_restart_max_hooks) has been
ceeded or the maximum number of objects to be
eated (set in python_restart_max_objects) has
en exceeded, the Python interpreter is restarted.

Integer.
Units: Seconds
or
[[HH:]MM:]SS
(duration)

y_other_jobs
ontrols whether unprivileged users are allowed to
lect or query the status of jobs owned by other
ers.

Boolean When this attribute is True, unpriv
ileged users can query or select
other users' jobs.

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-293

Chapter 6

queu
Li
al
fie
us

No default str r r,
w

r,
w

queu
Li
fie
in
gr
at

No default pbs.pbs_resour
ce
Syntax:
queued_jobs_thr
eshold_res["<re
source
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

rese
O

rese
D
be
to
ch
af
th

7200 (2
hours)

int - - r,
w

rese
Th
de
fir
be
tio
ne
gr

600 (10 min-
utes)

int r r r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

ed_jobs_threshold
mit attribute. The maximum number of jobs
lowed to be queued in the complex. Can be speci-
d for projects, users, groups, or all. Cannot be
ed with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

ed_jobs_threshold_res
mit attribute. The maximum amount of the speci-
d resource allowed to be allocated to jobs queued

 the complex. Can be specified for projects, users,
oups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.
queued_jobs_thresho
ld_res.<resource
name> = "<.limit>"

rve_retry_cutoff
bsolete. No longer used.
rve_retry_init
eprecated. The amount of time after a reservation
comes degraded that PBS waits before attempting
 reconfirm the reservation. When this value is
anged, only reservations that become degraded
ter the change use the new value. Must be greater
an zero.

Integer.
Units: Seconds

rve_retry_time
e amount of time after a reservation becomes
graded that PBS waits before attempting to recon-
m the reservation, as well as amount of time
tween attempts to reconfirm degraded reserva-
ns. When this value is changed, PBS uses the
w value for any subsequent attempts. Must be
eater than zero.

Integer.
Units: Seconds

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

reso
Th
ru
ea
R
tio

No default pbs.pbs_resour
ce
Syntax:
resources_assign
ed["<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r r

reso
Th
de
se

No default pbs.pbs_resour
ce
Syntax:
resources_availa
ble["<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

reso
N

- - -

reso
Th
se
do
de
Th
re
co
Fo
de

No limit pbs.pbs_resour
ce
Syntax:
resources_defaul
t["<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-294 PBS

urces_assigned
e total of each type of resource allocated to jobs

nning and exiting in this complex, plus the total of
ch type of resource allocated to any reservation.
eservation resources are added when the reserva-
n starts.

String. Syntax:
resources_assigned.
<resource
name>=<value>[,re
sources_assigned.<r
esource
name>=<value>,...]

urces_available
e list of available resources and their values
fined on the server. Each resource is listed on a
parate line.

String. Syntax:
resources_available.
<resource
name>=<value>

urces_cost
o longer used.
urces_default
e list of default job-wide resource values that are

t as limits for jobs in this complex when a) the job
es not specify a limit, and b) there is no queue
fault.
e value for a string array, e.g.
sources_default.<string array resource>, can
ntain only one string.
r host-level resources, see the
fault_chunk.<resource name> server attribute.

String
Syntax:
resources_default.<r
esource
name>=<value>[,
...]

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-295

Chapter 6

reso
Th
re
is
qu
fu
co

No limit pbs.pbs_resour
ce
Syntax:
resources_max["
<resource
name>"]=<valu
e> where
resource name is
any built-in or
custom resource

r r,
w

r,
w

restr
C
be
co

unset Python list r r r,
w

resv
Sp
va

True bool r r r,
w

resv
Th
cl
R
th
in

Unset;
behaves as if
zero

int r r,
w

r,
w

rpp_
Th

1024 int r r r,
w

rpp_
M
th

64 int r r r,
w

rpp_
In
w
m
fir

10 int r r r,
w

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

urces_max
e maximum amount of each resource that can be

quested by any single job in this complex, if there
not a resources_max value defined for the
eue at which the job is targeted. This attribute
nctions as a gating value for jobs entering the PBS
mplex.

String
Syntax:
resources_max.<reso
urce
name>=<value>[,
...]

ict_res_to_release_on_suspend
omma-separated list of consumable resources to
 released when jobs are suspended. If unset, all
nsumable resources are released on suspension.

String_array
Syntax: comma-sep-
arated list

_enable
ecifies whether or not advance and standing reser-
tions can be created in this complex.

Boolean When set to True, new reservations
can be created. When changed
from True to False, new reserva-
tions cannot be created, but existing
reservations are honored.

_post_processing_time
e amount of time allowed for reservations to

ean up after running jobs.
eservation duration and end time are extended by
is amount of time. Jobs are not allowed to run dur-
g the cleanup period.

Duration

highwater
e maximum number of messages.

Integer Greater than
or equal to
one

max_pkt_check
aximum number of TPP messages processed by
e main server thread per iteration.

Integer

retry
 a fault-tolerant setup (multiple pbs_comms),
hen the first pbs_comm fails partway through a
essage, this is number of times TPP tries to use the
st pbs_comm.

Integer Greater than
or equal to
zero

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

sche
Th

10 minutes
(600 sec-
onds)

pbs.duration r r,
w

r,
w

sche
En
op
sp
pb

False if never
set via
pbs_serve
r command.

bool r r,
w

r,
w

serv
Th
ru
If
to
th
sh

No default str r r r

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-296 PBS

duler_iteration
e time between scheduling iterations.

Integer.
Units: Seconds.

duling
ables scheduling of jobs. Specified by value of -a
tion to pbs_server command. If -a is not
ecified, value is taken from previous invocation of
s_server.

Boolean When this attribute is set to True,
scheduling is enabled.

er_host
e name of the host on which the active server is

nning.
the secondary server takes over, this attribute is set
 the name of the secondary server's host. When
e primary server takes control again, this attribute
ows the name of the primary server's host.

String. Syntax:
<host-
name>.<domain
name>
If the server is listen-
ing to a non-standard
port, the port num-
ber is appended, with
a colon, to the host-
name: <host-
name>.<domain
name>:<port num-
ber>

Server Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-297

Chapter 6

serv
Th

No default Server state con-
stant
pbs.SV_STATE
_ACTIVE

r r r

Server state con-
stant
pbs.SV_STATE
_HOT

Server state con-
stant
pbs.SV_STATE
_IDLE
Server state con-
stant
pbs.SV_STATE
_ACTIVE
Server state con-
stant
pbs.SV_STATE
_SHUTIMM or
pbs.SV_STATE
_SHUTSIG
Server state con-
stant
pbs.SV_STATE
_SHUTDEL

sing
R

state
Li
pl

No default pbs.state_coun
t

r r r

syste
N

- - -

total
Th
jo
in

No default int r r r

Nam
D

Default
 Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

er_state
e current state of the server:

String Active The server is running. The sched-
uler is not in a scheduling cycle.

Hot_Start The server will run first any jobs
that were running when it was shut
down.

Idle The server is running. The default
scheduler's scheduling attribute is
False.

Scheduling The server is running. The sched-
uler is in a scheduling cycle.

Terminating The server is terminating. No addi-
tional jobs will be run.

Terminating
_Delayed

Server is terminating in delayed
mode. No new jobs will be run.
server will shut down after all run-
ning jobs are finished.

le_signon_password_enable
emoved. (2020.1)
_count
st of the number of jobs in each state in the com-
ex. Suspended jobs are counted as running.

String. Syntax:
transiting=<value>,
queued=<value>, ...

m_cost
o longer used.
_jobs
e total number of jobs in the complex. If the

b_history_enable attribute is set to True, this
cludes jobs that are finished, deleted, and moved.

Integer

Server Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

6.7

Nam
D ption Default

Value
Pyth
on

Type U
se

r
O

pe
r

M
gr

com
Fo
at
at
do
sta

No default None r r r,
w

do_n
Sp
w

g placement
ets are
occupied
r the place-

e job can't fit
 it won't run.

False None r r,
w

r,
w

o place the
 All existing
f the job fits
 the job waits
ailable. If
 set, occupied
ould fit, the
ent sets, run-
 satisfy the

job_
Lo
or
sc

No default None - r r,
w

log_
Ty

767 None r r,
w

r,
w

only
Sp

 from vnodes
unset.

False None r r,
w

r,
w

m vnodes
unset.
ter 6 Attributes

-298 PBS

Scheduler Attributes

Scheduler Attributes
e

escription Format Val / Opt Value/Option Descri

ment
r certain scheduler errors, PBS sets the scheduler's comment

tribute to specific error messages. You can use the comment
tribute to notify another administrator of something, but PBS
es overwrite the value of comment under certain circum-
nces.

String

ot_span_psets
ecifies whether or not this scheduler requires the job to fit

ithin one existing placement set.

Boolean True The job must fit in one existin
set. All existing placement s
checked. If the job fits in an
placement set, the job waits fo
ment set to be available. If th
within a single placement set,

False This scheduler first attempts t
job in a single placement set.
placement sets are checked. I
in an occupied placement set,
for the placement set to be av
there is no existing placement
or empty, into which the job c
job runs regardless of placem
ning on whichever vnodes can
job's resource request.

sort_formula_threshold
wer bound for calculated priority for job. If job priority is at

 below this value, the job is not eligible to run in the current
heduler cycle.

Float

events
pes of events logged by this scheduler.

Integer
represen-
tation of
bit string

_explicit_psets
ecifies whether placement sets are created for unset resources.

Boolean True Placement sets are not created
whose value for a resource is

False Placement sets are created fro
whose value for a resource is

PBS RG-299

Chapter 6

opt_
Se
ity

unset;
behaves
like low

None r r r,
wpeedup

 speedup
eedup

parti
N
be

"None" None r r r,
w

pbs_
Th

No default None - r r

pree
D
ul
pe
be
U
of
Fo
em

Fo
tim
th
tim
50

Fo
on
on

"SCR" r r r,
w

Nam
D ption Default

Value
Pyth
on

Type U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

backfill_fuzzy
ts the trade-off between scheduling cycle speed and granular-
 of estimated start time calculation.

String off Finest granularity, no speedup
low Fairly fine granularity, some s
medium Medium granularity, medium
high Coarse granularity, greatest sp

tion
ame of partition for which this scheduler is to run jobs. Cannot
 set on default scheduler.

String

version
e version of PBS for this scheduler.

String

mpt_order
efines the order of preemption methods which this sched-
er uses on jobs. This order can change depending on the
rcentage of time remaining on the job. The ordering can
 any combination of S, C, R, and D.

sage: an ordering (SCR) optionally followed by a percentage
 time remaining and another ordering.
r example, PBS should first attempt to use suspension to pre-
pt a job, and if that is unsuccessful, requeue the job:
preempt_order: "SR"

r example, if the job has between 100% and 81% of requested
e remaining, first try to suspend the job, then try checkpoint,

en requeue. If the job has between 80% and 51% of requested
e remaining, attempt suspend, then checkpoint. Between

% and 0% time remaining, just attempt to suspend the job:
preempt_order: "SCR 80 SC 50 S"

r each job percentage, each method can be used only
ce. Note that in the example above, the S method appears
ly once per percentage.

String, as
a quoted
list

C Checkpoint job
D Delete job
R Requeue job
S Suspend job

Scheduler Attributes
e

escription Format Val / Opt Value/Option Descri

Chap

RG Professional 2022.1 Reference Guide

pree
Sp
le
pr
w
at
no
Fo
jo
th

Fo
sh

pt other jobs.
oes not

.

"express_
queue,
normal_jo
bs"

None r r r,
w

 exceeds its

ue soft limits
er soft limits
ich a job falls
 specified

pree
Sp
cl
by

150 None r r r,
w

pree
Sp
Se
Pr

 with most min_time
_since_st
art

None r r r,
w

sche
Ti
se
th
ve

600 None r r r,
w

sche
En
at
ul

For default
scheduler:
True
For multi-
scheds:
False

None r r r,
w

Nam
D ption Default

Value
Pyth
on

Type U
se

r
O

pe
r

M
gr
ter 6 Attributes

-300 PBS

mpt_prio
ecifies the ordering of priority for different preemption

vels. Two or more job types may be combined at the same
iority level with a plus sign ("+") between them, using no
hitespace. Comma-separated preemption levels are evalu-
ed left to right, with higher priority to the left. Any level
t specified in the preempt_prio list is ignored.
r example, express jobs have the highest priority, then normal

bs, and jobs whose entities are over their fairshare limit are
ird highest:
preempt_prio: "express_queue, normal_jobs,

fairshare"

r example, express jobs whose entities are also over their fair-
are limit are lower priority than normal jobs:
preempt_prio: "normal_jobs,

express_queue+fairshare"

string_arr
ay, as
quoted
list

express_queue Jobs in express queues preem
See preempt_queue_prio. D
require by_queue to be True

fairshare When the entity owning a job
fairshare limit.

queue_softlimits Jobs which are over their que
server_softlimits Jobs which are over their serv
normal_jobs The preemption level into wh

if it does not fit into any other
level.

mpt_queue_prio
ecifies the minimum queue priority required for a queue to be

assified as an express queue. Express queues do not require
_queue to be True.

Integer

mpt_sort
ecifies how jobs most eligible for preemption are sorted.
e "Sorting Within Preemption Level" on page 186 in the PBS
ofessional Administrator’s Guide.

String min_time_since_
start

First job preempted will be that
recent start time

duler_iteration
me in seconds between scheduling iterations. If you set the
rver's scheduler_iteration attribute, that value is assigned to
e default scheduler's scheduler_iteration attribute, and vice
rsa.

Integer.
Units:
Seconds

duling
ables scheduling of jobs. If you set the server's scheduling

tribute, that value is assigned to the default scheduler's sched-
ing attribute, and vice versa.

Boolean

Scheduler Attributes
e

escription Format Val / Opt Value/Option Descri

PBS RG-301

Chapter 6

sche
Th
al

20:00 (20
minutes)

None r r,
w

r,
w

sche
Th
D
na

Server’s
host

None - r r

sche
D
sh
w
al

$PBS_H
OME/sch
ed_logs_
<sched-
uler
name>

None r r r,
w

sche
C
jo

False None r r r,
w

sche
D
re
be
PB

$PBS_H
OME/sch
ed_priv_<
sched-
uler
name>

None r r r,
w

serv
Sp
sc
th
re

30 sec-
onds

None r r r,
w

ny
wed to run

state
St

For default
scheduler:
idle
For multi-
sched:
down

None r r r
aiting for a
ed
 a scheduling

Nam
D ption Default

Value
Pyth
on

Type U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

d_cycle_length
is scheduler's maximum cycle length. Overwritten by the -a

arm option to pbs_sched command.

Duration

d_host
e hostname of the machine on which this scheduler runs.

efault value for default scheduler is set by server to server host-
me. For a multisched, must be set by administrator.

String

d_log
irectory where this scheduler writes its logs. Permissions
ould be 755. Must be owned by root. Cannot be shared
ith another scheduler. For default scheduler, directory is
ways PBS_HOME/sched_log. Settable for multischeds.

String

d_preempt_enforce_resumption
ontrols whether this scheduler treats preempted jobs as top
bs. When True, preempted jobs are treated as top jobs.

Boolean

d_priv
irectory where this scheduler keeps fairshare usage,
source_group, holidays, and sched_config files. Must
 owned by root. For default scheduler, directory is always
S_HOME/sched_priv. Settable for multischeds.

String

er_dyn_res_alarm
ecifies how long this scheduler allows any server_dyn_res
ript to run. If the script times out, the script is terminated and
e scheduler uses zero as the value that would have been
turned by the script.

Integer 0 (zero) No time limit is enforced for
server_dyn_res scripts

>0 (greater than
zero)

Value is number of seconds a
server_dyn_res script is allo

ate of this scheduler. Set by server.
String down Scheduler is not running

idle Scheduler is running and is w
scheduling cycle to be trigger

scheduling Scheduler is running and is in
cycle

Scheduler Attributes
e

escription Format Val / Opt Value/Option Descri

Chap

RG Professional 2022.1 Reference Guide

throu
A
jo
fin
A
se
in

ly and faster.
plex is in

True None r r,
w

r,
w

hronously

Nam
D ption Default

Value
Pyth
on

Type U
se

r
O

pe
r

M
gr
ter 6 Attributes

-302 PBS

ghput_mode
llows scheduler to run faster; it doesn't have to wait for each
b to be accepted, and doesn't wait for execjob_begin hooks to
ish.

lso allows jobs that were changed via qalter,
rver_dyn_res scripts, or peering to run in the same schedul-

g cycle where they were changed.

Boolean True Scheduler runs asynchronous
Only available when PBS com
TPP mode.

False Scheduler does not run async

Scheduler Attributes
e

escription Format Val / Opt Value/Option Descri

PBS RG-303

Chapter 6

6.8

Nam
D

Python Type

U
se

r
O

pe
r

M
gr

Acco
N

- - -

Auth
Li
no
tio
in
se
Li
fir
lis
qu
Se
pb

cl r,
w

r,
w

r,
w

Auth
Th
jo
te
ev
m
us
qu
Se
pb

cl r,
w

r,
w

r,
w

 Professional 2022.1 Reference Guide

Attributes

Reservation Attributes

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

unt_Name
o longer used.
orized_Groups
st of groups who can or can-
t submit jobs to this reserva-
n. Group names are

terpreted relative to the
rver, not the submission host.
st is evaluated left-to-right;
st match in list is used. This
t is used to set the reservation
eue's acl_groups attribute.
e the G option to the
s_rsub command.

String. Syntax:
[+|-]<group name> [,
[+|-]<group name> ...]
where '-' means "deny"
and '+' means "allow".

No
default.
(Jobs
can be
submit-
ted by
all
groups)

pbs.a

orized_Hosts
e list of hosts from which

bs can and cannot be submit-
d to this reservation. List is
aluated left-to-right; first
atch in list is used. This list is
ed to set the reservation
eue's acl_hosts attribute.
e the H option to the
s_rsub command.

String. Syntax:
[+|-]<hostname> [,
[+|-]<hostname> ...]
where '-' means "deny"
and '+' means "allow".
Hostnames may be wild-
carded using an asterisk,
according to the follow-
ing rules:

A hostname can contain
at most one asterisk
The asterisk must be the
leftmost label

Examples:
*.test.example.com
*.example.com
*.com

No
default.
(Jobs
can be
submit-
ted
from all
hosts)

pbs.a

Chap

RG Professional 2022.1 Reference Guide

Auth
Th
ca
er
le
is
th
ac
op
m

cl r,
w

r,
w

r,
w

ctim
Ti
re

r r r

dele
A
ca
A
sta

uration r,
w

r,
w

r,
w

Nam
D

Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-304 PBS

orized_Users
e list of users who can or
nnot submit jobs to this res-
vation. List is evaluated
ft-to-right; first match in list
used. This list is used to set
e reservation queue's
l_users attribute. See the U
tion to the pbs_rsub com-
and.

String. Syntax:
[+|-]<user-
name>[@<host-
name>.<domain>] [,
[+|-]<user-
name>[@<host-
name>.<domain>] ...]
where '-' means "deny"
and '+' means "allow".
Hostnames may be wild-
carded using an asterisk,
according to the follow-
ing rules:

A hostname can contain
at most one asterisk
The asterisk must be the
leftmost label in the
hostname

Examples:
*.test.example.com
*.example.com
*.com

Reser-
vation
owner
only

pbs.a

e
mestamp; time at which the
servation was created.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

No
default

int

te_idle_time
mount of time a reservation
n sit idle before it is deleted.
pplies to each instance of a
nding reservation.

Duration. Syntax: either
integer seconds or
HHHH:MM:SS

None
except
for
ASAP
reserva-
tions:
10
min-
utes

pbs.d

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-305

Chapter 6

grou
N

- - -

hash
N

- - -

inter
N
pb
bl
m
tio
bl
pb

r,
w

r,
w

r,
w

Mail
Se
m
is
fie
at
ma
pb

ail_points r,
w

r,
w

r,
w

Mail
Th
is
ev
M
M
pb

ser_list r,
w

r,
w

r,
w

Nam
D

Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

p_list
o longer used.
name

o longer used.
active
umber of seconds that the
s_rsub command will

ock while waiting for confir-
ation or denial of the reserva-
n. See the -I
ock_time option to the
s_rsub command.

Integer Less than zero The reservation is
automatically
deleted if it cannot
be confirmed in the
time specified.

Zero int

Zero or greater than zero The reservation is
not automatically
deleted if it cannot
be confirmed in the
time specified.

_Points
ts the list of events for which
ail is sent by the server. Mail
sent to the list of users speci-
d in the Mail_Users

tribute. See the m
il_points option to the
s_rsub command.

String consisting of 1)
one or more of the letters
"a", "b", "c", "e", or 2)
the string "n". Cannot use
"n" with any other letter

a Notify when reser-
vation is terminated

 "ac" pbs.m

b Notify when reser-
vation period begins

c Notify when reser-
vation is confirmed

e Notify when reser-
vation period ends

n Do not send mail.
Cannot be used with
other letters.

_Users
e set of users to whom mail
sent for the reservation
ents specified in the
ail_Points attribute. See the
mail_list option to the
s_rsub command.

String. Syntax: <user-
name>@<host-
name>[,<username>@<
hostname>, ...]

Reser-
vation
owner
only

pbs.u

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

Chap

RG Professional 2022.1 Reference Guide

mtim
Ti
re

r r r

Prior
N

- - -

queu
N
Jo
be
ar

ueue r r r

rese
Th
sta

r,
w

r,
w

r,
w

rese
R
on
tio
oc

uration r,
w

r,
w

r,
w

rese
Th
ad
so
in

r,
w

r,
w

r,
w

rese
Th

r r r

Nam
D

Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-306 PBS

e
mestamp: the time that the
servation was last modified.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

int

ity
o longer used.
e

ame of the reservation queue.
bs that are to use resources
longing to this reservation
e submitted to this queue.

String. Format for an
advance or job-specific
reservation: R<sequence
number>
Format for a standing res-
ervation: S<sequence
number>

pbs.q

rve_count
e count of occurrences in a
nding reservation.

Integer int

rve_duration
eservation duration in sec-
ds. For a standing reserva-
n, this is the duration for one
currence.

Integer pbs.d

rve_end
e date and time when an
vance reservation or the
onest occurrence of a stand-
g reservation ends.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

int

rve_ID
e reservation identifier.

String. For an advance
or job-specific reserva-
tion: string of the form
R<sequence num-
ber>.<server name>
For a standing reserva-
tion: string of the form
S<sequence num-
ber>.<server name>

str

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-307

Chapter 6

rese
Th
re

r r r

rese
If
ci
sh
w
at

r r r

Rese
Th
er
sp
th

r,
w

r,
w

r,
w

Rese
Th
sio
at

r r r

rese
If
de
th
fir

r r r

Nam
D

Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

rve_index
e index of the soonest occur-

nce of a standing reservation.

Integer int

rve_job
this reservation is a job-spe-
fic start or now reservation,
ows the ID of the job from
hich the reservation was cre-
ed.

String No
default

str

rve_Name
e name assigned to the res-

vation during creation, if
ecified. See the N option to
e pbs_rsub command.

String. Syntax: up to 236
characters. First charac-
ter is alphabetic

No
default

str

rve_Owner
e login name on the submis-
n host of the user who cre-

ed the reservation.

String. Syntax: <user-
name>@<hostname>

Login
name of
creator

str

rve_retry
this reservation becomes
graded, this is the next time
at PBS will attempt to recon-
m this reservation.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

No
default

int

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

Chap

RG Professional 2022.1 Reference Guide

rese
Th
re
re
th

r,
s

r,
w

r,
w

rese
Th
re
va
be

r,
w

r,
w

r,
w

Nam
D

Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-308 PBS

rve_rrule
e rule that describes the

currence pattern of a standing
servation. See the r option to
e pbs_rsub command.

String. Syntax: either of
two forms:
"FREQ= <freq_spec>;
COUNT=
<count_spec>;
<interval_spec>"
or
"FREQ= <freq_spec>;
UNTIL= <until_spec>;
<interval_spec>"

freq_spec Frequency with
which the standing
reservation repeats.
Valid values are:
WEEKLY|DAILY|H
OURLY

No
default

str

count_spec The exact number of
occurrences. Num-
ber up to 4 digits in
length. Format: inte-
ger.

No
default

interval_spec Specifies interval.
Format is one or
both of: BYDAY =
MO|TU|WE|TH|FR
|SA|SU or
BYHOUR =
0|1|2|...|23

No
default

until_spec Occurrences will
start up to but not
after date and time
specified.
Format: YYYYM-
MDD[THHMMSS]
Year-month-day part
and
hour-minute-second
part separated by a
capital T.

No
default

rve_start
e date and time when the

servation period for the reser-
tion or soonest occurrence
gins.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

No
default

int

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-309

Chapter 6

rese
Th

vation state constant:
ESV_STATE_NONE

r r r

vation state constant:
ESV_STATE_UNCONFIRMED

vation state constant:
ESV_STATE_CONFIRMED

vation state constant:
ESV_STATE_WAIT

vation state constant:
ESV_STATE_TIME_TO_RUN

vation state constant:
ESV_STATE_RUNNING

vation state constant:
ESV_STATE_FINISHED

vation state constant:
ESV_STATE_BEING_DELETE

vation state constant:
ESV_STATE_DELETED

vation state constant:
ESV_STATE_DELETING_JOB

vation state constant:
ESV_STATE_DEGRADED

rese
Th
or
us

r r r

rese
N

- - -

Nam
D

Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

rve_state
e state of the reservation.

String NO RESV_NONE No reservation yet. No
default

Reser
pbs.R

UN
RESV_UNCONFIRMED

Reservation request
is awaiting confir-
mation.

Reser
pbs.R

CO
RESV_CONFIRMED

Resv. confirmed. All
occurrences of
standing resv. con-
firmed.

Reser
pbs.R

WT RESV_WAIT Unused. Reser
pbs.R

TR
RESV_TIME_TO_RUN

Start of the reserva-
tion period.

Reser
pbs.R

RN RESV_RUNNING Resv. period has
started; reservation
is running.

Reser
pbs.R

FN RESV_FINISHED End of the reserva-
tion period.

Reser
pbs.R

BD
RESV_BEING_DELETE
D

Reservation is being
deleted.

Reser
pbs.R
D

DE RESV_DELETED Reservation has
been deleted.

Reser
pbs.R

DJ
RESV_DELETING_JOB
S

Jobs belonging to
the reservation are
being deleted

Reser
pbs.R
S

DG DEGRADED Reservation is
degraded.

Reser
pbs.R

rve_substate
e substate of the reservation

 occurrence. The substate is
ed internally by PBS.

Integer No
default

int

rve_type
o longer used.

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

Chap

RG Professional 2022.1 Reference Guide

Reso
Th
to
in
ag
fie

bs_resource
x: Resource_List["<resource
>"]=<value> where resource
 is any built-in or custom resource

r,
w

r,
w

r,
w

resv
Th
re
sa
th
Fo
va

xec_vnode r r r

serv
N

erver r r r

User
N

- - -

Varia
N

- - -

Nam
D

Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-310 PBS

urce_List
e list of resources allocated

 the reservation. Jobs running
 the reservation cannot use in
gregate more than the speci-
d amount of a resource.

String. Syntax:
Resource_List.<resource
name>=<value>[,
Resource_List.<resource
name>=<value>, ...]

No
default

pbs.p
Synta
name
name

_nodes
e list of each vnode and the

sources allocated from it to
tisfy the chunks requested for
is reservation or occurrence.
r a maintenance reservation,
lue is set by PBS.

String. Syntax: (<vnode
name>:<resource
name>=<value>[:<reso
urce
name>=<value>]...)
[+(<vnode
name>:<resource
name>=<value>[:<reso
urce
name>=<value>])+...]

No
default

pbs.e

er
ame of server.

String No
default

pbs.s

_List
o longer used.
ble_List

ot used

Reservation Attributes
e

escription
Format Val / Opt Value/Option

Description Def Val

PBS RG-311

Chapter 6

6.9

In the

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr

acl_
C
ac
at

False;
all
groups
allowed
access

bool r r,
w

r,
w

acl_
Li
qu
ho
fir

No
default

pbs.acl r r,
w

r,
w

acl_
C
ac
at

False;
all hosts
allowed
access.

bool r r,
w

r,
w

acl_
Li
qu
us

No
default

pbs.acl r r,
w

r,
w

acl_
C
ac
at

False;
all users
allowed
access

bool r r,
w

r,
w

acl_
Li
is

No
default

pbs.acl r r,
w

r,
w

alt_r
N

- - -

back
Sp
nu
qu
R

Unset.
When
unset,
backfill
depth is
1

int r,
w

r,
w

r,
w

 Professional 2022.1 Reference Guide

Attributes

Queue Attributes

 following table, Queue Type indicates the type of queue to which the attribute applies: R (routing), E (execution):

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

group_enable
ontrols whether group access to the queue obeys the
cess control list defined in the acl_groups queue
tribute.

Boolean R, E When set to True,
group access to the
queue is limited
according to the group
access control list.

groups
st of groups which are allowed or denied access to this
eue. The groups in the list are groups on the server
st, not submitting hosts. List is evaluated left-to-right;
st match in list is used.

String. Syntax:
[+|-] <group name>[,
...]

R, E

host_enable
ontrols whether host access to the queue obeys the
cess control list defined in the acl_hosts queue
tribute.

Boolean R, E When set to True, host
access to the queue is
limited according to the
host access control list.

hosts
st of hosts from which jobs may be submitted to this
eue. List is evaluated left-to-right; first match in list is
ed.

String. Syntax:
[+|-]<hostname>[. ...]

R, E

user_enable
ontrols whether user access to the queue obeys the
cess control list defined in the acl_users queue
tribute.

Boolean R, E When set to True, user
access to the queue is
limited according to the
user access control list.

users
st of users allowed or denied access to this queue. List
evaluated left-to-right; first match in list is used.

String. Syntax:
[+|-]<username>
[@<hostname>][, ...]

R, E

outer
o longer used.
fill_depth
ecifies backfilling behavior for this queue. Sets the
mber of jobs that are to be backfilled around in this
eue. Overrides backfill_depth server attribute.

ecommendation: set this to less than 100.

Integer.
Must be >=0.

E >=0 PBS backfills around
the specified number of
jobs.

Unset Backfill depth is set to
1

Chap

RG Professional 2022.1 Reference Guide

chec
M
al
a
va
m

No
default

pbs.duration r r,
w

r,
w

defa
Th
ch
re
m
ac

No
default

pbs.pbs_resource
Syntax:
default_chunk["<reso
urce
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

enab
Sp

False bool r r,
w

r,
w

from
Sp
in

 False bool r r r,
w

hasn
D
w
Se

False;
no
vnodes
are asso-
ciated
with this
queue

bool r r r,
i

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-312 PBS

kpoint_min
inimum number of minutes of CPU time or walltime
lowed between checkpoints of a job. If a user specifies
time less than this value, this value is used instead. The
lue given in checkpoint_min is used for both CPU
inutes and walltime minutes.

Integer E

ult_chunk
e list of resources which will be inserted into each
unk of a job's select specification if the corresponding
source is not specified by the user. This provides a
eans for a site to be sure a given resource is properly
counted for even if not specified by the user.

String. Syntax:
default_chunk.<resour
ce name>=<value>[,
default_chunk.<resour
ce name>=<value>,
...]

E

led
ecifies whether this queue accepts new jobs.

Boolean R, E True This queue is enabled.
This queue accepts new
jobs; new jobs can be
enqueued.

False This queue does not
accept new jobs.

_route_only
ecifies whether this queue accepts jobs only from rout-

g queues, or from both execution and routing queues.

Boolean R, E True This queue accepts jobs
only from routing
queues.

False This queue accepts jobs
from both execution
and routing queues as
well as directly from
submitter.

odes
eprecated. Indicates whether vnodes are associated
ith this queue.
t by PBS.

Boolean E This attribute is set to
True if there are
vnodes associated with
this queue.

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-313

Chapter 6

kill_d
Th
SI
ru

10 sec-
onds

pbs.duration r r,
w

r,
w

max
Th
ar

No
default

int r r,
w

r,
w

max
O
at
re
pl

No
default

pbs.pbs_resource
Syntax:
max_group_res["<res
ource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
O
at
re
pl
th
em
lim

No
default

pbs.pbs_resource
Syntax:
max_group_res_soft[
"<resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
O
at
in
qu

No
default

int r r,
w

r,
w

max
O
at
in
qu
of
jo

No
default

int r r,
w

r,
w

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

elay
e time delay between sending SIGTERM and
GKILL when a qdel command is issued against a
nning job.

Integer. Units: Sec-
onds. Must be greater
than or equal to zero.

E

_array_size
e maximum number of subjobs that are allowed in an

ray job.

Integer R, E

_group_res
ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single group may consume in a com-
ex.

String. Syntax:
max_group_res.<resou
rce name>=<value>
Example: set queue
workq
max_group_res.ncpus
=6

E Any PBS
resource,
e.g.
"ncpus",
"mem",
"pmem",
etc.

_group_res_soft
ld limit attribute. Incompatible with new limit
tributes. The soft limit on the amount of the specified
source that any single group may consume in a com-
ex. If a group is consuming more than this amount of
e specified resource, their jobs are eligible to be pre-
pted by jobs from groups who are not over their soft
it.

String. Syntax:
max_group_res_soft.<r
esource
name>=<value>
Example: set queue
workq
max_group_res_soft.
ncpus=3

E Any valid
PBS
resource,
e.g.
"ncpus",
"mem",
"pmem",
etc.

_group_run
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by users
 a single group that are allowed to be running from this
eue at one time.

Integer E

_group_run_soft
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by users
 a single group that are allowed to be running from this
eue at one time. If a group has more than this number
 jobs running, their jobs are eligible to be preempted by
bs from groups who are not over their soft limit.

Integer E

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2022.1 Reference Guide

max
O
at
re

No
default
(no
limit)

int r r,
w

r,
w

max
Li
be
fie
w

No
default

pbs.pbs_resource
Syntax:
max_queued["<resou
rce
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
Li
re
ni
us
at

No
default

pbs.pbs_resource
Syntax:
max_queued_res["<r
esource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
Li
to
pr
lim

No
default

pbs.pbs_resource
Syntax:
max_run["<resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
Li
re
qu
al

No
default

pbs.pbs_resource
Syntax:
max_run_res["<resou
rce
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-314 PBS

_queuable
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs allowed to
side in this queue at any given time.

Integer R, E

_queued
mit attribute. The maximum number of jobs allowed to
 queued in or running from this queue. Can be speci-
d for projects, users, groups, or all. Cannot be used

ith old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353

R, E

_queued_res
mit attribute. The maximum amount of the specified
source allowed to be allocated to jobs queued in or run-
ng from this queue. Can be specified for projects,
ers, groups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353
Syntax:
max_queued_res.<reso
urce name>=<value>

R, E

_run
mit attribute. The maximum number of jobs allowed
 be running from this queue. Can be specified for
ojects, users, groups, or all. Cannot be used with old
it attributes.

Format: Limit specifi-
cation. See Chapter 7,
"Formats", on page 353

E

_run_res
mit attribute. The maximum amount of the specified
source allowed to be allocated to jobs running from this
eue. Can be specified for projects, users, groups, or

l. Cannot be used with old limit attributes.

Format: Limit specifi-
cation. See Chapter 7,
"Formats", on page
353.
Syntax:
max_run_res.<resourc
e name>=<value>

E

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-315

Chapter 6

max
Li
re
qu
al

No
default

pbs.pbs_resource
Syntax:
max_run_res_soft["<
resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
Li
to
pr
lim

No
default

pbs.pbs_resource
Syntax:
max_run_soft["<reso
urce
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
O
at
be
ro
to

No
default

int r r,
w

r,
w

max
O
at
re

No
default

pbs.pbs_resource
Syntax:
max_user_res["<reso
urce
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

max
O
at
re
co
re
fro

No
default

pbs.pbs_resource
Syntax:
max_user_res_soft["
<resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

_run_res_soft
mit attribute. Soft limit on the amount of the specified
source allowed to be allocated to jobs running from this
eue. Can be specified for projects, users, groups, or

l. Cannot be used with old limit attributes.

Format: Limit specifi-
cation. See Chapter 7,
"Formats", on page
353.
Syntax:
max_run_res_soft.<res
ource
name>=<value>

E

_run_soft
mit attribute. Soft limit on the number of jobs allowed
 be running from this queue. Can be specified for
ojects, users, groups, or all. Cannot be used with old
it attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

E

_running
ld limit attribute. Incompatible with new limit
tributes.For an execution queue, this is the largest num-
r of jobs allowed to be running at any given time. For a
uting queue, this is the largest number of jobs allowed
 be transiting from this queue at any given time.

Integer R, E

_user_res
ld limit attribute. Incompatible with new limit
tributes. The maximum amount of the specified
source that any single user may consume.

String. Syntax:
max_user_res.<resourc
e name>=<value>
Example: set queue
workq
max_user_res.ncpus=
6

E any PBS
resource,
e.g.
"ncpus",
"mem",
"pmem",
etc

_user_res_soft
ld limit attribute. Incompatible with new limit
tributes. The soft limit on the amount of the specified
source that any single user may consume. If a user is
nsuming more than this amount of the specified
source, their jobs are eligible to be preempted by jobs
m users who are not over their soft limit.

String. Syntax:
max_user_res_soft.<re
source
name>=<value>
Example: set queue
workq
max_user_res_soft.n
cpus=3

E any valid
PBS
resource,
e.g.
"ncpus",
"mem",
"pmem",
etc

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2022.1 Reference Guide

max
O
at
sin
at

No
default

int r r,
w

r,
w

max
O
at
an
qu
jo
jo

No
default

int r r,
w

r,
w

node
Sp
gr
at
st

No
default

pbs.node_group_ke
y

r r,
w

r,
w

parti
N
no
be

No
default

str r r r,
w

Prior
Th
th
qu
C
U
no

No
default

int r r,
w

r,
w

queu
Li
be
us
at

No
default

pbs.pbs_resource
Syntax:
queued_jobs_threshol
d["<resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-316 PBS

_user_run
ld limit attribute. Incompatible with new limit
tributes. The maximum number of jobs owned by a
gle user that are allowed to be running from this queue

 one time.

Integer E

_user_run_soft
ld limit attribute. Incompatible with new limit
tributes. The soft limit on the number of jobs owned by
y single user that are allowed to be running from this
eue at one time. If a user has more than this number of
bs running, their jobs are eligible to be preempted by
bs from users who are not over their soft limit.

Integer E

_group_key
ecifies the resources to use for placement sets (node
ouping). Overrides server's node_group_key
tribute. Specified resources must be of type
ring_array.

String_array. Syntax:
Comma-separated list
of resource names.
When specifying multi-
ple resources, enclose
value in double quotes.

R, E

tion
ame of partition to which this queue is assigned. Can-
t be set for routing queue. An execution queue cannot
 changed to a routing queue while this attribute is set.

String E

ity
e priority of this queue compared to other queues of

e same type in this PBS complex. Priority can define a
eue as an express queue. See preempt_queue_prio in

hapter 4, "Scheduler Parameters", on page 251.
sed for execution queues only; the value of Priority has
 meaning for routing queues.

Integer E Valid val-
ues:
-1024 to
1023

ed_jobs_threshold
mit attribute. The maximum number of jobs allowed to
 queued in this queue. Can be specified for projects,
ers, groups, or all. Cannot be used with old limit
tributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.

R, E

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-317

Chapter 6

queu
Li
re
qu
al

No
default

pbs.pbs_resource
Syntax:
queued_jobs_threshol
d_res["<resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

queu
Th
se

No
default

PBS queue type con-
stant:
pbs.QUEUETYPE_
EXECUTION

r r,
w

r,
w

PBS queue type con-
stant:
pbs.QUEUETYPE_
ROUTE

requ
O
Sp
to
be

unset str r r r,
w

requ
O
Sp
sp
fo

.

False bool r r r,
w

reso
Th
an

No
default

pbs.pbs_resource
Syntax:
resources_assigned["
<resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r r

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

ed_jobs_threshold_res
mit attribute. The maximum amount of the specified
source allowed to be allocated to jobs queued in this
eue. Can be specified for projects, users, groups, or

l. Cannot be used with old limit attributes.

Limit specification.
See Chapter 7, "For-
mats", on page 353.
Syntax:
"queued_jobs_threshol
d_res.<resource
name>=<value>"

R, E

e_type
e type of this queue. This attribute must be explicitly

t at queue creation.

String R, E "e",
"execu-
tion

Execution queue

"r",
"route"

Routing queue

ire_cred
bsolete (2020.1)
ecifies the credential type required. All jobs submitted

 the named queue without the specified credential will
 rejected.

String R, E krb5
dce

ire_cred_enable
bsolete (2020.1)
ecifies whether the credential authentication method
ecified in the require_cred queue attribute is required
r this queue.

Boolean R, E When set to True, the
credential authentica-
tion method is required

urces_assigned
e total for each kind of resource allocated to running
d exiting jobs in this queue.

String. Syntax:
resources_assigned.<r
esource
name>=<value><new
line>resources_assign
ed.<resource
name>=<value><new
line>...

E

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2022.1 Reference Guide

reso
Th
ni
us
th

No
default

pbs.pbs_resource
Syntax:
resources_available["
<resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

reso
Th
fo
no
de
is
re
th

No
default

pbs.pbs_resource
Syntax:
resources_default["<
resource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

reso
Th
re
su

No
default;
infinite
usage

pbs.pbs_resource
Syntax:
resources_max["<res
ource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

reso
Th
re

No
default;
zero
usage

pbs.pbs_resource
Syntax:
resources_min["<res
ource
name>"]=<value>
where resource name
is any built-in or cus-
tom resource

r r,
w

r,
w

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
ter 6 Attributes

-318 PBS

urces_available
e list of resources and amounts available to jobs run-

ng in this queue. The sum of the resource of each type
ed by all jobs running from this queue cannot exceed
e total amount listed here.

String. Syntax:
resources_available.<r
esource
name>=<value><new
line>
resources_available.<r
esource
name>=<value><new
line>...

E

urces_default
e list of default resource values which are set as limits

r a job residing in this queue and for which the job did
t specify a limit. If not set, the default limit for a job is
termined by the first of the following attributes which
set: server's resources_default, queue's
sources_max, server's resources_max. If none of
ese is set, the job gets unlimited resource usage.

String. Syntax:
resources_default.<res
ource
name>=<value>,
resources_default.<res
ource_name>=<value
>, ...

R, E

urces_max
e maximum amount of each resource that can be

quested by a single job in this queue. This queue value
persedes any server wide maximum limit.

String. Syntax:
resources_max.<resour
ce name>=<value>,
resources_max.<resour
ce name>=<value>, ...

R, E

urces_min
e minimum amount of each resource that can be

quested by a single job in this queue.

String. Syntax:
resources_max.<resour
ce_name>=<value>,
resources_max.<resour
ce name>=<value>, ...

R, E

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

PBS RG-319

Chapter 6

route
Th
M

No
default

pbs.route_destinati
ons

r r r,
w

route
Sp
fro

False bool r r,
w

r,
w

route
Th
in
tim

Unset;
infinite

pbs.duration r r,
w

r,
w

route
Ti
th

30 sec-
onds

pbs.duration r r,
w

r,
w

route
Sp
va

 False bool r r,
w

r,
w

start
If
th
ro

 False bool r r,
w

r,
w

state
Th
qu

No
default

pbs.state_count r r r

total
Th

No
default

int r r r

Nam
D

Default
Value Python Type

U
se

r
O

pe
r

M
gr
 Professional 2022.1 Reference Guide

Attributes

_destinations
e list of destinations to which jobs may be routed.
ust be set to at least one valid destination.

String. Syntax:
comma-separated
strings:
<queue name>
[@<server host>
[:port]]
Example: Q1,
Q2@remote,
Q3@remote:15501

R

_held_jobs
ecifies whether jobs in the held state can be routed
m this queue.

Boolean R When True, jobs with a
hold can be routed from
this queue.

_lifetime
e maximum time a job is allowed to reside in this rout-

g queue. If a job cannot be routed in this amount of
e, the job is aborted.

Integer.
Units: Seconds

R >0 Jobs can reside for
specified number of
seconds

0 Infinite
unset Infinite

_retry_time
me delay between routing retries. Typically used when
e network between servers is down.

Integer.
Units: Seconds

R

_waiting_jobs
ecifies whether jobs whose Execution_Time attribute
lue is in the future can be routed from this queue.

Boolean R When True, jobs with a
future
Execution_Time
attribute can be routed
from this queue.

ed
this is an execution queue, specifies whether jobs in
is queue can be scheduled for execution, or if this is a
uting queue, whether jobs can be routed.

Boolean R, E When True, jobs in this
queue can run or be
routed

_count
e number of jobs in each state currently residing in this
eue.

String. Syntax: tran-
siting=<value>, exit-
ing=<value>, ...

R, E

_jobs
e number of jobs currently residing in this queue.

Integer R, E

Queue Attributes
e

escription
Format Queue

Type
Value or
Option

Value or Option
Description

Chap

RG Professional 2022.1 Reference Guide

6.1

Nam
D

Def Val Python Type U
sr

O
pr

M
gr

com
In
at
str
re
ex
at
no
do
th
se

No
default

str r r r,
w

curre
Th
vn
se

Unset str r r r,
w

curre
C
W
at

Unset str r r r,
w

in_m
Sp
m
no

int r,
w

jobs
Li

str r r r

last_
R
no

No
default

int r r,
w

r,
w

ter 6 Attributes

-320 PBS

0 Vnode Attributes

Vnode Attributes
e

escription
Format Val / Opt Value/Option Description

ment
formation about this vnode. This
tribute may be set by the manager to any
ing to inform users of any information
lating to the node. If this attribute is not
plicitly set, the PBS server will use the
tribute to pass information about the
de status, specifically why the node is
wn. If the attribute is explicitly set by
e manager, it will not be modified by the
rver.

String
Limit: 80 charac-
ters

nt_aoe
e AOE currently instantiated on this
ode. Case-sensitive. Cannot be set on
rver's host.

String

nt_eoe
urrent value of eoe on this vnode.
e do not recommend setting this
tribute manually.

String

ultivnode_host
ecifies whether a vnode is part of a

ulti-vnoded host. Used internally. Do
t set.

Integer Unset Not part of a multi-vnode host
1 Part of a multi-vnode host

st of jobs running on this vnode.
String. Syntax:
<processor num-
ber>/<job ID>,
...

state_change_time
ecords the most recent time that this
de changed state.

Timestamp.
Printed by
qstat in
human-readable
Date format.
Output in hooks
as seconds since
epoch.

PBS RG-321

Chapter 6

last_
R
no
re
Se
w
ni

Time of
vnode
creation
or node
reboot.

int r r,
w

r,
w

licen
In
Se

Unset str r r r

licen
N
vn

Unset int r r r

lictyp
N

none - - -

main
Li
vn
ad
se

No
default

str - - r

Mom
H
ho
ca
un
at
C
qm
se
on
th

Value of
vnode
resource
(vnode
name)

str r r r,
w

nam
Th

No
default

str r r r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

used_time
ecords the most recent time that this
de finished being used for a job or
servation.
t at creation or reboot time. Updated

hen node is released early from a run-
ng job. Reset when node is ramped up.

Timestamp.
Printed by
qstat in
human-readable
Date format.
Output in hooks
as seconds since
epoch.

se
dicates whether this vnode is licensed.
t by PBS.

Character l This vnode is licensed.

se_info
umber of licenses assigned to this
ode. Set by PBS.

Integer

e
o longer used.
tenance_jobs
st of jobs that were running on this
ode, but have been suspended via the
min-suspend signal to qsig. Set by

rver.

String_array

ostname where server queries for MoM
st. By default the server queries the
nonicalized name of the MoM host,
less you set this attribute when you cre-

e the vnode.
an be explicitly set by Manager only via
gr, and only at vnode creation. The

rver can set this to the FQDN of the host
 which MoM runs, if the vnode name is
e same as the hostname.

String .

e
e name of this vnode.

String

Vnode Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

no_m
C
th
th

ne False bool r r r,
w

ntyp
Th

PBS pbs.ND_PBS r r r

parti
N
as
m

No
default

str r r,
w

r,
w

pbs_
Th

No
default

str r r r

pcpu
D
Th
vn
av
pl
ha

Number
of CPUs
on star-
tup

int r r r

pnam
Th
m
so

No
default

str r r r,
w

Port
Po
te
an

15002 int - r,
w

r,
w

pow
En
by

False bool r r r,
w

pow
Sp
to
in
fil

False bool r r r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-322 PBS

ultinode_jobs
ontrols whether jobs which request more
an one chunk are allowed to execute on
is vnode. Used for cycle harvesting.

Boolean When set to True, jobs requesting more than o
chunk are not allowed to execute on this vnode

e
e type of this vnode.

String PBS Normal vnode

tion
ame of partition to which this vnode is
signed. A vnode can be assigned to at
ost one partition.

String

version
e version of PBS for this MoM

String

s
eprecated.
e number of physical CPUs on this
ode. This is set to the number of CPUs
ailable when MoM starts. For a multi-
e-vnode MoM, only the parent vnode
s pcpus.

Integer

es
e list of resources being used for place-

ent sets. Not used for scheduling; advi-
ry only.

String. Syntax:
comma-sepa-
rated list of
resource names.

rt number on which MoM daemon lis-
ns. Can be explicitly set only via qmgr,
d only at vnode creation.

Integer

eroff_eligible
ables powering this vnode up and down
 PBS.

Boolean True PBS can power this vnode on and off.
False PBS cannot power this vnode on and off.

er_provisioning
ecifies whether this node is eligible

 have its power managed by PBS,
cluding whether it can use power pro-
es.

Boolean True Power provisioning is enabled at this vnode.
False Power provisioning is disabled at this vnode.

Vnode Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-323

Chapter 6

Prior
Th
ot

No
default

int r r,
w

r,
w

prov
C
sio

False bool r r r,
w

queu
D
vn
as
ca
A
vn
vn
in

node. No
default

pbs.queue r r r,
w

iated

reso
Th
ca
sta

No
default

pbs.pbs_resou
rce
Syntax:
resources_assig
ned['<resource
name>'] = <
val>
where resource
name is any
built-in or cus-
tom resource

r r r

reso
Th
av
se
th
re
is

No
default

pbs.pbs_resou
rce
Syntax:
resources_avail
able['<resource
name>'] = <
val>
where resource
name is any
built-in or cus-
tom resource

r r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

ity
e priority of this vnode compared with

her vnodes.

Integer [-1024,
+1023] inclu-
sive

ision_enable
ontrols whether this vnode can be provi-
ned. Cannot be set on server's host.

Boolean True This vnode may be provisioned.
False This vnode may not be provisioned.

e
eprecated. The queue with which this
ode is associated. Each vnode can be
sociated with at most 1 queue. Queues
n be associated with multiple vnodes.
ny jobs in a queue that has associated
odes can run only on those vnodes. If a
ode has an associated queue, only jobs
 that queue can run on that vnode.

String <name of
queue>

Only jobs in specified queue may run on this v

Unset Any job in any queue that does not have assoc
vnodes can run on this vnode.

urces_assigned
e total amount of each resource allo-
ted to running and exiting jobs and
rted reservations on this vnode.

String. Syntax:
resources_assign
ed.<resource
name>=<value>
[,resources_assig
ned.<resource
name>=<value>

urces_available
e list of resources and the amounts
ailable on this vnode. If not explicitly
t, the amount shown is that reported by
e pbs_mom running on this vnode. If a
source value is explicitly set, that value
retained across restarts.

String. Syntax:
resources_availa
ble.<resource
name>=<value>
,
resources_availa
ble.<resource
name> =
<value>, ...

Vnode Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

resv
Li
pe

No
default

str r r r

resv
C
fo
R
ha

eserva-
this

True bool r r r,
w

shar
Sp
tim
th
ho
(2
ar
th
us
of
bi
jo
lo

default
_share
d

pbs.ND_DEFA
ULT_SHARED

r r,
w

r,
w

pbs.ND_DEFA
ULT_EXCL

's shar- pbs.ND_DEFA
ULT_EXCLHOS
T
pbs.ND_IGNOR
E_EXCL
pbs.ND_FORC
E_EXCL

s of the pbs.ND_FORC
E_EXCLHOST

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-324 PBS

st of advance and standing reservations
nding on this vnode.

String.
Comma-sepa-
rated list of reser-
vation IDs.
Syntax:
<reservation
ID>[, <reserva-
tion ID>, ...]

_enable
ontrols whether the vnode can be used
r advance and standing reservations.
eservations are incompatible with cycle
rvesting.

Boolean When set to True, this vnode can be used for r
tions. Existing reservations are honored when
attribute is changed from True to False.

ing
ecifies whether more than one job at a
e can use the resources of the vnode or

e vnode's host. Either (1) the vnode or
st is allocated exclusively to one job, or
) the vnode's or host's unused resources
e available to other jobs. Can be set in
e cgroups hook's configuration file or by
ing pbs_mom -s insert. Behavior
 a vnode or host is determined by a com-
nation of the sharing attribute and a
b's placement directive, defined as fol-
ws:

String. Exam-
ple: vnodename:
shar-
ing=force_excl

default_share
d

Defaults to shared

default_excl Defaults to exclusive

default_exclh
ost

Entire host is assigned to the job unless the job
ing request specifies otherwise

ignore_excl Overrides any job place=excl setting

force_excl Overrides any job place=shared setting

force_exclhos
t

The entire host is assigned to the job, regardles
job's sharing request

Unset Defaults to shared

Vnode Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-325

Chapter 6

Nam
D

Def Val Python Type U
sr

O
pr

M
gr

=exclhost
on place
on place
on place
on place
sive
sive

e

 Professional 2022.1 Reference Guide

Attributes

Behavior of vnode:

Vnode Attributes
e

escription
Format Val / Opt Value/Option Description

Value of sharing
Placement Request (-lplace=)

Vnode Host
not specified place=shared place=excl place=exclhost place!

not set shared shared exclusive exclusive depends
default_shared shared shared exclusive exclusive depends
default_excl exclusive shared exclusive exclusive depends
default_exclhost exclusive shared exclusive exclusive depends
ignore_excl shared shared shared shared not exclu
force_excl exclusive exclusive exclusive exclusive not exclu
force_exclhost exclusive exclusive exclusive exclusive exclusiv

Chap

RG Professional 2022.1 Reference Guide

state
Sh

llowed No
default

int r r r

ver. r r r

(s). r r r

an r r r

b at the r r r

 com- r r,
w

r,
w

ned r r r

se of
ne

r r r

s no
h free,

r r r

node.
node
m.

r r r

de. r r r
t
annot

r r r

topo
C
in
on

Unset str - - -

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-326 PBS

ows or sets the state of the vnode.
String.
Comma-sepa-
rated list of one
or more states:
<state>[,
<state>, ...]

busy Vnode is reporting load average greater than a
max. Can combine with offline.

down Node is not responding to queries from the ser
Cannot be combined with free, provisioning

free Vnode is up and capable of accepting new job
Cannot be combined with other states.

job-busy All CPUs on the vnode are allocated to jobs. C
combine with: offline, resv_exclusive.

job-exclusive Entire vnode is exclusively allocated to one jo
job's request. Can combine with offline,
resv_exclusive

offline Jobs are not to be assigned to this vnode. Can
bine: busy, job-busy, job-exclusive,
resv_exclusive.

provisioning Vnode is being provisioned. Cannot be combi
with any other states.

resv-exclusive Running reservation has requested exclusive u
vnode. Can combine with job-exclusive, offli

stale Vnode was previously reported to server, but i
longer reported to server. Cannot combine wit
provisioning

state-unknow
n

The server has never been able to contact the v
Either MoM is not running on the vnode, the v
hardware is down, or there is a network proble

unresolvable The server cannot resolve the name of the vno
wait-provi-
sioning

Vnode needs to be provisioned, but can't: limi
reached for concurrent provisioning vnodes. C
be combined with other states. See
max_concurrent_provision.

logy_info
ontains information intended to be used
 hooks. Visible in and usable by hooks
ly.

XML string

Vnode Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-327

Chapter 6

6.1

Nam
D

Def Val Python Type U
sr

O
pr

M
gr

Acco
St
be

No default str r,
w

r,
w

r,
w

acco
A
da

No default str r r r

accr
In
ac

2
(eligible_ti
me)

int - - r

alt_id
Fo
fic
th
re
se
ac
O

No default str r r r
 Professional 2022.1 Reference Guide

Attributes

1 Job Attributes

Job Attributes
e

escription
Format Val / Opt Value/Option Description

unt_Name
ring used for accounting purposes. Can
 used for fairshare.

String. Can contain
any character.

unting_id
ccounting ID for tracking accounting
ta not produced by PBS.

String

ue_type
dicates what kind of time the job is
cruing.

Integer 0 (initial_
time)

Job is accruing initial time. Can occur
when job is blocked by a runjob hook.

1
(ineligible_ti
me)

Job is accruing ineligible time. Occurs
when job or owner has hit limit.

2 (eligible_
time)

Job is accruing eligible time. Occurs
when job is blocked on resources.

3 (run_time) Job is accruing run time. Occurs when
job is running.

r a few systems, the session ID is insuf-
ient to track which processes belong to

e job. Where a different identifier is
quired, it is recorded in this attribute. If
t, it is also recorded in the end-of-job
counting record.
n Windows, holds PBS home directory.

String. May contain
white spaces.

Chap

RG Professional 2022.1 Reference Guide

argu
Jo
jo
[<

No default str r,
w

r,
w

r,
w

array
In

False bool r,
s

r r

array
A
su

No default str r r r

array
A
su

No default int r r r

array
A
of

No default str r r r

array
A
in
tim

No default pbs.range r,
s

r r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-328 PBS

ment_list
b executable's argument list. Shown if
b is submitted with "-- <executable>
argument list>]"

JSDL-encoded string.
<jsdl-hpcpa:Argu-
ment> <1st arg>
</jsdl-hpcpa:Argu-
ment>
<jsdl-hpcpa:Argu-
ment> <2nd arg>
</jsdl-hpcpa:Argu-
ment>
<jsdl-hpcpa:Argu-
ment> <nth arg>
</jsdl-hpcpa:Argu-
ment>
Example: if arguments
are "A B":
<jsdl-hpcpa:Argu
ment>A</jsdl-hpc
pa:Argument>
<jsdl-hpcpa:Argu
ment>B</jsdl-hpc
pa:Argument>

dicates whether this is a job array.
Boolean Set to True if this is an array job.

_id
pplies only to subjobs. Array identifier of
bjob.

String

_index
pplies only to subjobs. Index number of
bjob.

String

_indices_remaining
pplies only to job arrays. List of indices
 subjobs still queued.

String. Range or list of
ranges, e.g. 500,
552, 596-1000.

_indices_submitted
pplies only to job arrays. Complete list of
dices of subjobs given at submission

e.

String. Given as range,
e.g. 1-100

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-329

Chapter 6

array
A
su

No default pbs.state_count r r r

bloc
Sp
jo
th
Fo
in
Tr

False int r,
s

r r

Che
D
po
ch

u pbs.checkpoint r,

w
r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

_state_count
pplies only to job arrays. Lists number of
bjobs in each state.

String

k
ecifies whether qsub will wait for the

b to complete and return the exit value of
e job.
r X11 forwarding jobs, and jobs with

teractive and/or block attributes set to
ue, the job's exit status is not returned.

Boolean

ckpoint
etermines when the job will be check-
inted. An $action script is required to
eckpoint the job.

String c Checkpoint at intervals, measured in
CPU time, set on job's execution queue.
If no interval set at queue, job is not
checkpointed.

c = <minutes
of CPU time>

Checkpoint at intervals of specified
number of minutes of job CPU time.
This value must be > 0. If interval spec-
ified is less than that set on job's execu-
tion queue, queue's interval is used.
Format: Integer

w Checkpoint at intervals, measured in
walltime, set on job's execution queue.
If no interval set at queue, job is not
checkpointed.

w = <min-
utes of wall-
time>

Checkpoint at intervals of the specified
number of minutes of job walltime. This
value must be greater than zero. If the
interval specified is less that that set on
job's execution queue, the queue's inter-
val is used.
Format: Integer

n No checkpointing.
s Checkpoint only when the server is shut

down.
u Unset. Defaults to behavior when inter-

val argument is set to s.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

com
C

No default str r r,
w

r,
w

crea
W
an
tio
(in
an
va
cr
Se
re
fro
Th
tim
sta
jo
pu

False bool r,
w

r,
w

r,
w.

ctim
Ti
at

No default int r r r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-330 PBS

ment
omment about job. Informational only.

String

te_resv_from_job
hen this job is run, immediately creates
d confirms a job-specific start reserva-
n on the same resources as the job
cluding resources inherited by the job),
d places the job in the job-specific reser-
tion's queue. Sets the job's
eate_resv_from_job attribute to True.
ts the job-specific reservation's
serve_job attribute to the ID of the job
m which the reservation was created.
e new reservation's duration and start
e are the same as the job's walltime and
rt time. If the job is peer scheduled, the

b-specific reservation is created in the
lling complex.

Boolean False Does not create a reservation.
True Creates the job-specific start reservation

e
mestamp; time at which the job was cre-
ed.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-331

Chapter 6

depe
Sp
N

.
No default;
no depen-
dencies

pbs.depend r,
w

r,
w

r,
w

egro
If
th
be

No default str - - r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

nd
ecifies inter-job dependencies.

o limit on number of dependencies.

String. Syntax:
<type>:<job
ID>[:<job ID>
...],[<type>:<job
ID>[:<job ID> ...] ...]
Must be enclosed in
double quotes if it con-
tains commas. Exam-
ple:
"before:123:456"

after:<job ID
list>

This job may run at any point after all
jobs in job ID list have started execution

afterok:<job
ID list>

This job may run only after all jobs in
job ID list have terminated with no
errors.

afterno-
tok:<job ID
list>

This job may run only after all jobs in
job ID list have terminated with errors.

after-
any:<job ID
list>

This job can run after all jobs in job ID
list have finished execution, with or
without errors. This job will not run if a
job in the job ID list was deleted without
ever having been run.

before:<job
ID list>

Jobs in job ID list may start once this job
has started.

befor-
eok:<job ID
list>

Jobs in job ID list may start once this job
terminates without errors.

beforeno-
tok:<job ID
list>

If this job terminates execution with
errors, jobs in job ID list may begin.

before-
any:<job ID
list>

Jobs in job ID list may begin execution
once this job terminates execution, with
or without errors.

on:<count> This job may run after count dependen-
cies on other jobs have been satisfied.
This type is used with one of the before
types listed. Count is an integer greater
than 0.

up
the job is queued, this attribute is set to
e group name under which the job is to
 run.

String

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

eligib
Th
ha
in
in
en
jo
qs

Zero pbs.duration r r,
w

r,
w

Erro
Th
th
qs

Default path
is current
working
directory
where qsub
is run.
If the output
path is speci-
fied, but
does not
include a
filename, the
default file-
name is <job
ID>.ER. If
the path
name is not
specified,
the default
filename is
<job
name>.e<s
equence
number>.

str r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-332 PBS

le_time
e amount of wall clock wait time a job
s accrued while the job is blocked wait-
g for resources. For a job currently accru-
g eligible_time, if we were to add
ough of the right type of resources, the
b would start immediately. Viewable via
tat -f.

Duration

r_Path
e final path name for the file containing

e job's standard error stream. See the
ub and qalter commands.

String. Syntax:
[<hostname>:]<path>

<relative
path>

Path is relative to the current working
directory of command executing on cur-
rent host.

<absolute
path>

Path is absolute path on current host
where command is executing.

<host-
name>:<rela-
tive path>

Path is relative to user's home directory
on specified host.

<host-
name>:<abs
olute path>

Path is absolute path on named host.

No path Path is current working directory where
qsub is executed.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-333

Chapter 6

estim
Li
U
st
in
ov

Unset pbs.pbs_resourc
e
Syntax: esti-
mated. [<resource
name>]=<value>
.
exec_vnode is a
pbs.exec_vnode
.
soft_walltime is a
duration.
start_time is an
int.

r r,
w

r,
w

 Unset r r r,
w

Unset r r,
w

r,
w

etim
Ti
to
qu
w
re

No default int r r r

euse
If
th
ru

No default str - - r

exec
JS
Sh
cu

No default str r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

ated
st of estimated values for job.
sed to report job's exec_vnode,
art_time, and soft_walltime. Can be set
 a hook or via qalter, but PBS will
erwrite the values.

Syntax: esti-
mated.<resource
name>=<value>, esti-
mated.<resource
name>=<value>.
exec_vnode is a string.
soft_walltime is a dura-
tion. start_time is
printed by qstat in
human-readable Date
format; start_time is
output in hooks as sec-
onds since epoch.

exec_vnode The estimated vnodes used by this job.

soft_walltime The estimated soft walltime for this job.
Calculated when a job exceeds its
soft_walltime resource.

start_time The estimated start time for this job.

e
mestamp; time when job became eligible
 run, i.e. was enqueued in an execution
eue and was in the "Q" state. Reset

hen a job moves queues, or is held then
leased. Not affected by qaltering.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

r
the job is queued, this attribute is set to
e user name under which the job is to be
n.

String

utable
DL-encoded listing of job's executable.
own if job is submitted with "-- <exe-
table> [<arg list>]".

JSDL-encoded string.
<jsdl-hpcpa:Execut-
able> <name of execut-
able>
Example: if the execut-
able is ping:
<jsdl-hpcpa:Exe-
cut-
able>ping</jsdl-
hpcpa:Execut-
able>

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

Exec
Ti
ex
qu
C
m
al

Unset; no
delay

int r,
w

r,
w

r,
w

exec
If
of
cu

No default pbs.exec_host r r,
i

r,
i

exec
Li
sh
w
co
vn
vn
If
re
jo
If
of
in
a

No default pbs.exec_vnode r r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-334 PBS

ution_Time
mestamp; time after which the job may
ecute. Before this time, the job remains
eued in the (W)ait state.

an be set when stage-in fails and PBS
oves job start time out 30 minutes to
low user to fix problem.

Datetime. See Chapter
7, "Formats", on page
353.

_host
the job is running, this is set to the name
 the host or hosts on which the job is exe-
ting.

String. Syntax: <host-
name>/N[*C][+...],
where N is task slot
number starting at 0, on
that host, and C is the
number of CPUs allo-
cated to the job. *C
does not appear if its
value is 1.

_vnode
st of chunks for the job. Each chunk
ows the name of the vnode(s) from
hich it is taken, along with the host-level,
nsumable resources allocated from that
ode, and any AOE provisioned on this
ode for this job.
a vnode is allocated to the job but no
sources from the vnode are used by the
b, the vnode name appears alone.
a chunk is split across vnodes, the name
 each vnode and its resources appear
side one pair of parentheses, joined with
plus ("+") sign.

Each chunk is enclosed
in parentheses. Chunks
are connected by plus
signs. Example: For a
job which requested
two chunks satisfied by
resources from three
vnodes, exec_vnode is:
(vnodeA:ncpus=N:
mem=X)+
(nodeB:ncpus=P:m
em=Y+
nodeC:mem=Z).
For a job which
requested one chunk
and exclusive use of a
2-vnode host, where the
chunk was satisfied by
resources from one
vnode, exec_vnode is
(vnodeA:ncpus=N:mem=
X)+(vnodeB).

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-335

Chapter 6

Exit_
Ex
fu
jo
ha

No default int r r r

forw
C

No default str r r r

forw
C
te
m

No default int r r r

grou
A
th
a
fro
or
1.
as
th
2.
as
3.
un

No default pbs.group_list r,
w

r,
w

r,
w

hash
N

- - -

Hold
Th
jo
sc
th
de

n pbs.hold_types r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

status
it status of job. Set to zero for success-

l execution. If any subjob of an array
b has non-zero exit status, the array job
s non-zero exit status.

Integer

ard_x11_cookie
ontains the X authorization cookie.

String

ard_x11_port
ontains the number of the port being lis-
ned to by the port forwarder on the sub-
ission host.

Integer

p_list
 list of group names used to determine
e group under which the job runs. When
job runs, the server selects a group name
m the list according to the following

dered set of rules:
 Select the group name for which the
sociated host name matches the name of
e server host.
 Select the group name which has no
sociated host name.
 Use the login group for the user name
der which the job will be run.

String. Syntax:
<group
name>[@<host-
name>] [,<group
name>[@<host-
name>]...]
Must be enclosed in
double quotes if it con-
tains commas.

name
o longer used.
_Types
e set of holds currently applied to the

b. If the set is not null, the job will not be
heduled for execution and is said to be in
e held state. The held state takes prece-
nce over the wait state.

String, made up of the
letters 'n', 'o', 'p', 's', 'u'

n No hold
o Other hold
p Bad password
s System hold
u User hold

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

inter
Sp
C
us
W
at
re
Fo
tu
C
Jo

False int r,
w

r r

jobd
Pa
di
Ei
D
V

No default str r r r

Job_
Th
qs

Base name
of job script,
or STDIN

str r,
w

r,
w

r,
w

Job_
Th
th

No default str r r r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-336 PBS

active
ecifies whether the job is interactive.

an be set, but not altered, by unprivileged
er.
hen both this attribute and the block
tribute are True, no exit status is
turned.
r X11 forwarding jobs, the job's exit sta-

s is not returned.
annot be set using a PBS directive.
b arrays cannot be interactive.

Boolean Set to True if this is an interactive job.

ir
th of the job's staging and execution
rectory on the primary execution host.
ther user's home, or private sandbox.
epends on value of sandbox attribute.
iewable via qstat -f.

String

Name
e job name. See the qalter and
ub commands.

String up to 236 char-
acters, first character
must be alphabetic or
numeric

Owner
e login name on the submitting host of

e user who submitted the batch job.

String. Syntax:
<Username>@<sub-
mission host>

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-337

Chapter 6

job_
Th

No default pbs.JOB_STAT
E_BEGUN

r,
i

r,
i

r,
i

pbs.JOB_STAT
E_EXITING

pbs.JOB_STAT
E_FINISHED

pbs.JOB_STAT
E_HELD
pbs.JOB_STAT
E_MOVED
pbs.JOB_STAT
E_QUEUED

pbs.JOB_STAT
E_RUNNING
pbs.JOB_STAT
E_SUSPEND

pbs.JOB_STAT
E_TRANSIT

pbs.JOB_STAT
E_SUSPEND_U
SERACTIVE

 pbs.JOB_STAT
E_WAITING

pbs.JOB_STAT
E_EXPIRED

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

state
e state of the job.

Character B (Begun) Job arrays only. Job array has begun
execution.

E (Exiting) The job has finished, with or without
errors, and PBS is cleaning up post-exe-
cution.

F (Finished) Job is finished. Job has completed exe-
cution, job failed during execution, or
job was deleted.

H (Held) The job is held.

M (Moved) The job has been moved to another
server.

Q (Queued) The job resides in an execution or rout-
ing queue pending execution or routing.
It is not in held or waiting state.

R (Running) The job is in an execution queue and is
running.

S (Sus-
pended)

The job was executing and has been sus-
pended. The job does not use CPU
cycles or walltime.

T (Transit-
ing)

The job is being routed or moved to a
new destination.

U (User sus-
pended)

The job was running on a workstation
configured for cycle harvesting and the
keyboard/mouse is currently busy. The
job is suspended until the workstation
has been idle for a configured amount of
time.

W (Waiting) The Execution_Time attribute contains
a time in the future. Can be set when
stage-in fails and PBS moves job start
time out 30 minutes to allow user to fix
problem.

X (Expired) Subjobs only. Subjob is finished
(expired.)

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

Join
Sp
an
m
th

n pbs.join_path r,

w
r,
w

r,
w

Keep
Sp
an
on
an
ex
re
K
an

n pbs.keep_files r,
w

r,
w

r,
w

Mail
Sp
se

a pbs.mail_points r,
w

r,
w

r,
w

Mail
Th
th
th

Job owner
only

pbs.email_list r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-338 PBS

_Path
ecifies whether the job's standard error
d standard output streams are to be
erged and placed in the file specified in
e Output_Path job attribute.

String
One of "oe", "eo", or
"n".

eo Standard output and standard error are
merged, intermixed, into a single stream,
which becomes standard error.

oe Standard output and standard error are
merged, intermixed, into a single stream,
which becomes standard output.

n Standard output and standard error are
not merged.

_Files
ecifies whether the standard output
d/or standard error streams are retained
 the execution host in the job's staging
d execution directory after the job has
ecuted. Otherwise these files are
turned to the submission host.
eep_Files overrides the Output_Path
d Error_Path attributes.

String
One of "o", "e", "oe",
"eo", or "n".

o The standard output stream is retained.
The filename is:
<job name>.o<sequence number>

e The standard error stream is retained.
The filename is:
<job name>.e<sequence number>

eo, oe Both standard output and standard error
streams are retained.

d Output and error are written directly to
their final destination

n Neither stream is retained. Files are
returned to submission host.

_Points
ecifies state changes for which the
rver sends mail about the job.

String
Can be any of "a", "b",
"e", with optional "j",
or "n".

a Mail is sent when job is aborted
b Mail is sent at beginning of job
e Mail is sent at end of job
j Mail is sent for subjobs. Must be com-

bined with one or more of a, b, and e
options

n No mail is sent. Cannot be combined
with other options.

_Users
e set of users to whom mail is sent when

e job makes state changes specified in
e Mail_Points job attribute.

String
Syntax: "<user-
name>@<host-
name>[,<username>
@<hostname>]" Must
be enclosed in double
quotes if it contains
commas.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-339

Chapter 6

max
Se
th
C
[%
-W
va
Su
ag

No default int r,
w

r,
w

r,
w

mtim
Ti
m
tio

No default int r r r

no_s
N

- - -

obitt
Ti

No default int r r r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

_run_subjobs
ts a limit on the number of subjobs
at can be running at one time.
an be set using qsub -J <range>
<max subjobs>] or qalter
max_run_subjobs=<new
lue> <job ID>.
spended subjobs are not counted
ainst this limit.

Integer

e
mestamp; the time that the job was last
odified, changed state, or changed loca-
ns.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

tdio_sockets
ot used.
ime
me when job or subjob obit was sent

Integer
Seconds since epoch

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

Outp
Th
th
qs

Default path
is current
working
directory
where qsub
is run.
If the output
path is speci-
fied, but
does not
include a
filename, the
default file-
name is <job
ID>.OU. If
the path
name is not
specified,
the default
filename is
<job
name>.o<se
quence num-
ber>.

str r,
w

r,
w

r,
w

pcap
Po
at
se
Se

Unset int r,
w

r,
w

r,
w

pcap
Po
C
se
ca

Unset int r,
w

r,
w

r,
w

pgov
Po
se
p-
tio
at

Unset str r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-340 PBS

ut_Path
e final path name for the file containing

e job's standard output stream. See the
ub and qalter commands.

String. Syntax:
[<hostname>:]<path>

<relative
path>

Path is relative to the current working
directory of command executing on cur-
rent host.

<absolute
path>

Path is absolute path on current host
where command is executing.

<host-
name>:<rela-
tive path>

Path is relative to user's home directory
on specified host.

<host-
name>:<abs
olute path>

Path is absolute path on named host.

No path Path is current working directory where
qsub is executed.

_accelerator
wer attribute. Power cap for an acceler-

or. Corresponds to Cray capmc
t_power_cap --accel setting.
e capmc documentation.

Integer
Units: Watts

_node
wer attribute. Power cap for a node.

orresponds to Cray capmc
t_power_cap --node setting. See
pmc documentation.

Integer
Units: Watts

wer attribute. Cray ALPS reservation
tting for CPU throttling corresponding to
governor. See BASIL 1.4 documenta-
n. We do not recommend using this

tribute.

String

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-341

Chapter 6

Prior
Th
va

Unset int r,
w

r,
w

r,
w

proje
Th
jo
pr

_pbs_proje
ct_default

str r,
w

r,
w

r,
w

psta
Po
se
to
tio

Unset str r,
w

r,
w

r,
w

qtim
Ti
th

No default int r r r

queu
Th
cu

No default pbs.queue r r r

queu
A
w
PB

No default int - - r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

ity
e scheduling priority for the job. Higher
lue indicates greater priority.

Integer. Syntax:
[+|-]nnnn

[-1024,
+1023] inclu-
sive

ct
e job's project. A project is a way to tag

bs. Each job can belong to at most one
oject.

String. Can contain
any characters except
for the following:
Slash ("/"), left bracket
("["), right bracket
("]"), double quote
("""), semicolon (";"),
colon (":"), vertical
bar ("|"), left angle
bracket ("<"), right
angle bracket (">"),
plus ("+"), comma (","),
question mark ("?"),
and asterisk ("*").

te
wer attribute. Cray ALPS reservation
tting for CPU frequency corresponding
 p-state. See BASIL 1.4 documenta-
n.

String
Units: Hertz

e
mestamp; the time that the job entered
e current queue.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

e
e name of the queue in which the job
rrently resides.

String

e_rank
 number indicating the job's position
ithin its queue. Only used internally by
S.

Integer

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

queu
Th
re

No default pbs.QTYPE_EX
ECUTION

- - r

pbs.QTYPE_RO
UTE

relea
C
w
W
w
M
ar
un
Th
fo
at

False bool r,
w

r,
w

r,
w

Rem
Sp
sta
re

Unset str r,
w

r,
w

r,
w

Reru
Sp
D
jo
"A
12
Jo
an

y bool r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-342 PBS

e_type
e type of queue in which the job is cur-

ntly residing.

Character E Execution queue

R Routing queue

se_nodes_on_stageout
ontrols whether job vnodes are released
hen stageout begins.
hen cgroups is enabled and this is used
ith some but not all vnodes from one
oM, resources on those vnodes that
e part of a cgroup are not released
til the entire cgroup is released.
e job's stageout attribute must be set

r the release_nodes_on_stageout
tribute to take effect.

Boolean True All of the job's vnodes not on the pri-
mary execution host are released when
stageout begins

False Job's vnodes are released when the job
finishes and MoM cleans up the job

ove_Files
ecifies whether standard output and/or
ndard error files are automatically

moved upon job completion.

String e Standard error is removed upon job com-
pletion

o Standard output is removed upon job
completion

eo Standard output and standard error are
removed upon job completion

oe Standard output and standard error are
removed upon job completion

unset Neither is removed
nable
ecifies whether the job can be rerun.

oes not affect how a job is treated if the
b could not begin execution. See
llowing Your Job to be Re-run", on page
0 of the PBS Professional User’s Guide.
b arrays are required to be rerunnable
d are rerunnable by default.

Character y The job can be rerun.
n Once the job starts running, it can never

be rerun.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-343

Chapter 6

Reso
Th
Li
str
de
va
re
m
de
Se
R

No default pbs.pbs_resourc
e
Syntax:
Resource_List["<
resource
name>"]=<value
> where resource
name is any
built-in or custom
resource

r,
w

r,
w

r,
w

reso
Li
th
pe
re
se

No default str r r r

reso
Su
re
w
on
re
se

No default pbs.pbs_resourc
e

-- r r

reso
Th
jo

No default pbs.pbs_resourc
e
Syntax:
resources_used
["<resource
name>"]=
<value> where
resource name is
any built-in or
custom resource

r r r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

urce_List
e list of resources required by the job.
st is a set of <resource name>=<value>
ings. The meaning of name and value is
pendent upon defined resources. Each
lue establishes the limit of usage of that
source. If not set, the value for a resource
ay be determined by a queue or server
fault established by the administrator.
e Chapter 5, "List of Built-in

esources", on page 259.

String. Syntax:
Resource_List.<resourc
e name>=<value>],
Resource_List.<resourc
e name>=<value>, ...]

urces_released
sted by vnode, consumable resources
at were released when the job was sus-
nded. Populated only when
strict_res_to_release_on_suspend
rver attribute is set. Set by server.

String. Syntax:
(<vnode>:<resource
name>=<value>:<res
ource
name>=<value>:...)+(
<vnode>:<resource
name>=<value>:...)

urce_released_list
m of each consumable resource

quested by the job that was released
hen the job was suspended. Populated
ly when
strict_res_to_release_on_suspend
rver attribute is set. Set by server.

String. Syntax:
resource_released_list.
<resource
name>=<value>,resou
rce_released_list.<reso
urce name>=<value>,
...

urces_used
e amount of each resource used by the

b.

String. Syntax: List of
resources_used.<resou
rce
name>=<value>,resou
rces_used.<resource
name>=<value> pairs.
Example:
resources_used.mem=2
mb

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

run_
Th
jo
Th
Jo
hi
en
C

Zero int - r,
w

r,
w

run_
U
in

int -- -- r

sand
Sp
sta
U
bo
Se
op

Unset str r,
w

r,
w

r,
w

sche
Th
jo
re

No default pbs.select - - r

sche
 N

- - -

secu
C
te
of
su
re
se
re

Unset str r r r

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-344 PBS

count
e number of times the server thinks the

b or subjob has been executed.
e run_count attribute starts at zero.

b is held after 21 tries. When a subjob
ts the run_count limit, it and its par-
t job array get a System hold.

an be set via qsub, qalter, or a hook.

Integer.
Must be greater than or
equal to zero.

version
sed internally by PBS to track the
stance of the job.

Integer

box
ecifies whether PBS creates job-specific
ging and execution directories.

ser-settable via qsub -Wsand-
x=<value> or via a PBS directive.
e the $jobdir_root MoM configuration
tion.

String PRIVATE PBS creates job-specific staging and
execution directories under the directory
specified in the $jobdir_root MoM con-
figuration option or under the submitter's
home directory.

HOME or
unset

PBS uses the job owner's home directory
for staging and execution.

dselect
e union of the select specification of the

b, and the queue and server defaults for
sources in a chunk.

String

d_hint
o longer used.
rity_context
ontains security context of job submit-
r. Set by PBS to the security context
 the job submitter at the time of job
bmission. If not present when a
quest is submitted, an error occurs, a
rver message is logged, and the
quest is rejected.

String in SELinux for-
mat

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-345

Chapter 6

serv
Th
m
se
na
m
or
ne

No default pbs.server r r r

sess
If
sio

No default int r r r

Shel
O
gr

User's login
shell on exe-
cution host

pbs.path_list r,
w

r,
w

r,
w

stag
Th
ex

No default pbs.staging_list r,
w

r,
w

r,
w

stag
Th
ex

No default pbs.staging_list r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

er
e name of the server which is currently

anaging the job. When the secondary
rver is running during failover, shows the
me of the primary server. After a job is
oved to another server, either via qmove
 peer scheduling, shows the name of the
w server.

String

ion_id
the job is running, this is set to the ses-
n ID of the first executing task.

l_Path_List
ne or more absolute paths to the pro-
am(s) to process the job's script file.

String. Syntax:
"<path>[@<host-
name>][,<path>[@<h
ostname>]...]" Must
be enclosed in double
quotes if it contains
commas.

ein
e list of files to be staged in prior to job
ecution.

String. Syntax: "<exe-
cution path>@<stor-
age host>:<storage
path>[, <execution
path>@<storage
host>:<storage path>,
...]"
Must be enclosed in
double quotes if it con-
tains commas.

eout
e list of files to be staged out after job
ecution.

String. Syntax: "<exe-
cution path>@<stor-
age host>:<storage
path>[, <execution
path>@<storage
host>:<storage path>,
...]"
 Must be enclosed in
double quotes if it con-
tains commas.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

Stag
St
th
to
pl
su
S
Av

No default int r r r

stim
Ti
cu

No default int r r r

Subm
Jo
qs
jo

No default str r,
w

r,
w

r,
w

subs
Th
us

No default int r r r

sw_i
N

- - -

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-346 PBS

eout_status
atus of stageout. If stageout succeeded,
is is set to 1. If stageout failed, this is set
 0. Available only for finished jobs. Dis-
ayed only if set. If stageout fails for any
bjob of an array job, the value of
tageout_status is zero for the array job.
ailable only for finished jobs.

Integer

e
mestamp; time when the job started exe-
tion. Changes when job is restarted.

Timestamp.
Printed by qstat in
human-readable Date
format.
Output in hooks as sec-
onds since epoch.

it_arguments
b submission arguments given on the
ub command line. Available for all

bs.

String

tate
e substate of the job. The substate is
ed internally by PBS.

Integer

ndex
o longer used.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-347

Chapter 6

toler
Sp
vn
on
N

None str r,
s

r,
s

r,
s

topjo
A
in

Unset,
behaves like
False

bool - - r,
w

uma
Th
va
at
um
tio

system
default

int r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
 Professional 2022.1 Reference Guide

Attributes

ate_node_failures
ecifies whether job can have extra
odes allocated, and whether for startup
ly or for the life of the job.

ot supported on Cray.

String none, unset No extra vnodes are allocated to the job.
job_start Extra vnodes are allocated only long

enough to start the job successfully.

Tolerate vnode failures that occur only
during job start, just before executing the
job's top level shell or executable or any
execjob_launch hooks.

Failures tolerated are those such as an
assigned sister MoM failing to join the
job and communication errors between
MoMs.

all Extra vnodes are allocated for the life of
the job.

Tolerate all node failures resulting from
communication problems, such as poll-
ing problems, between the primary MoM
and the sister MoMs assigned to the job

Tolerate failures due to rejections from
execjob_begin or execjob_prologue
hooks run at sister MoMs.

b_ineligible
llows administrators to mark this job as
eligible to be a top job.

Boolean True This job is not eligible to be a top job.
False This job is eligible to be a top job.

sk
e initial umask of the job is set to the
lue of this attribute when the job is cre-
ed. The umask may be changed by
ask commands in the shell initializa-
n files such as .profile or .cshrc.

Decimal integer

Job Attributes
e

escription
Format Val / Opt Value/Option Description

Chap

RG Professional 2022.1 Reference Guide

User
Th
na
ho
W
se
to
1.
w
th
2.
ci
3.
na

Value of
Job_Owner
job attribute

pbs.user_list r,
w

r,
w

r,
w

Varia
Li
jo
qs

No default pbs.pbs_resourc
e
Syntax:
Variable_List["<v
ariable
name>"]=<value
>

r,
w

r,
w

r,
w

Nam
D

Def Val Python Type U
sr

O
pr

M
gr
ter 6 Attributes

-348 PBS

_List
e list of users which determines the user
me under which the job is run on a given
st. No length limit.
hen a job is to be executed, the server
lects a user name from the list according
 the following ordered set of rules:
 Select the user name from the list for
hich the associated host name matches
e name of the server.
 Select the user name which has no asso-
ated host name; the wild card name.
 Use the value of Job_Owner as the user
me.

String. Syntax:
"<username>@<host-
name> [,<user-
name>@<hostname>..
.]" Must be enclosed in
double quotes if it con-
tains commas. May be
up to 256 characters in
length.

ble_List
st of environment variables set in the
b's execution environment. See the
ub(1B) command.

String. Syntax:
"<variable
name>=<value>
[,<variable
name>=<value>...]"
Must be enclosed in
double quotes if it con-
tains commas.

Job Attributes
e

escription
Format Val / Opt Value/Option Description

PBS RG-349

Chapter 6

6.1

An un

Hook

Nam
D

tion Default
Value

Python
Type U

sr
O

pr
M

gr

alarm
Sp
to

30

debu
Sp
de
PB
PB
ar
na
"P
th

when it runs. False
ng files when it

enab
D
tri

 occurs. True
g event occurs.
 Professional 2022.1 Reference Guide

Attributes

2 Hook Attributes

set hook attribute takes the default value for that attribute.

 attributes can be set by root or the Admin at the local server only.

Hook Attributes
e

escription
Format Val / Opt Value/Option Descrip

ecifies the number of seconds to allow a hook
 run before the hook times out.

Integer.
Must be
greater than
zero.

g
ecifies whether or not the hook produces
bugging files under
S_HOME/server_priv/hooks/tmp or
S_HOME/mom_priv/hooks/tmp. Files

e named hook_<hook event>_<hook
me>_<unique ID>.in, .data, and .out. See
roducing Files for Debugging" on page 183 in
e PBS Professional Hooks Guide.

Boolean True The hook leaves debugging files
False The hook does not leave debuggi

runs.

led
etermines whether or not a hook is run when its
ggering event occurs.

Boolean True Hook runs when triggering event
False Hook does not run when triggerin

Chap

RG Professional 2022.1 Reference Guide

even
Li
at
Th
an

""
mean-
ing
hook is
not
trig-
gered

str

ves execution
ated
firmed
dified
s

b
cess
ser's program
rologue hooks,
ch() runs
uspending a job
job

lly or is killed
 up
execution hosts
r receives

Nam
D

tion Default
Value

Python
Type U

sr
O

pr
M

gr
ter 6 Attributes

-350 PBS

t
st of events that trigger the hook. Can be oper-
ed on with the "=", "+=", and "-=" operators.
e provision event cannot be combined with
y other events.

String_arra
y

"queuejob" Triggered before job is queued
"postqueuejob" Triggered after job is queued
"modifyjob" Triggered when job is modified
"movejob" Triggered when job is moved
"runjob" Triggered when job is run
"jobobit" Triggered when job or subjob lea
"resvsub" Triggered when reservation is cre
"resv_confirm" Triggered when reservation is con
"modifyresv" Triggered when reservation is mo
"resv_begin Triggered when reservation begin
"resv_end" Triggered when reservation ends
"management" Triggered by qmgr operations
"modifyvnode" Triggered by vnode state change
"periodic" Triggered periodically at server
"provision" Hook is master provisioning hook
"execjob_begin" Triggered when MoM receives jo
"execjob_prologue" Triggered just before first job pro
"execjob_launch" Triggered just before executing u
"execjob_attach" Triggered before any execjob_p

on each vnode where pbs_atta
execjob_postsuspend Triggered just after successfully s
execjob_preresume Triggered just before resuming a
"execjob_preterm" Triggered just before job is killed
"execjob_epilogue" Triggered after job runs successfu
"execjob_end" Triggered just after job is cleaned
"exechost_periodic" Triggered at periodic interval on
"exechost_startup" Triggered when MoM starts up o

SIGHUP (Linux)
"" Hook is not triggered

Hook Attributes
e

escription
Format Val / Opt Value/Option Descrip

PBS RG-351

Chapter 6

fail_a
Sp
du
in
m
be
be
"o
"c
"s
If
re
Se
fa
Pr
ul
PB

"none"
n, offlines the
cuting the

ogue,
begin hooks.
clears vnodes
nodes" fail

rtup hooks.
n, restarts
 for
ologue hooks.

freq
N
ex

ers 120

orde
In
ho
w
hi
D
ex

1

type
Th
C

site

user
Sp

pbsad-
min

Nam
D

tion Default
Value

Python
Type U

sr
O

pr
M

gr
 Professional 2022.1 Reference Guide

Attributes

ction
ecifies the action to be taken when hook fails
e to alarm call or unhandled exception, or to an
ternal error such as not enough disk space or
emory. Can also specify a subsequent action to
 taken when hook runs successfully. Value can
 either "none" or one or more of
ffline_vnodes",
lear_vnodes_upon_recovery", and
cheduler_restart_cycle".
this attribute is set to multiple values, scheduler
start happens last.
e "Offlining and Clearing Vnodes Using the
il_action Hook Attribute" on page 72 in the PBS
ofessional Hooks Guide and "Restarting Sched-
er Cycle After Hook Failure" on page 69 in the
S Professional Hooks Guide.

String_arra
y

"none" No action is taken.
"offline_vnodes" After unsuccessful hook executio

vnodes managed by the MoM exe
hook.
Only available for execjob_prol
exechost_startup and execjob_

"clear_vnodes_upon_r
ecovery"

After successful hook execution,
previously offlined via "offline_v
action.
Only available for exechost_sta

"scheduler_restart_cycl
e"

After unsuccessful hook executio
scheduling cycle. Only available
execjob_begin and execjob_pr

umber of seconds between periodic or
echost_periodic triggers.

Integer Number of seconds between trigg

r
dicates relative order of hook execution, for
oks of the same type sharing a trigger. Hooks

ith lower order values execute before those with
gher values.
oes not apply to periodic or
echost_periodic hooks.

Integer Range:
built-in hooks: [-1000,
2000]
site hooks: [1,1000]

e type of the hook.
annot be set for a built-in hook.

String pbs Hook is built in
site Hook is custom (site-defined)

ecifies who executes the hook.
String pbsadmin Hook runs as root

pbsuser Hook runs as owner of job

Hook Attributes
e

escription
Format Val / Opt Value/Option Descrip

Chap

RG Professional 2022.1 Reference Guide
ter 6 Attributes

-352 PBS

7

Formats

This chapter describes the formats used in PBS Professional.

7.1 Non-resource Formats

Accounting Log Entry

logfile-date-time;record-type;id-string;message-text
where

logfile-date-time
Date and time stamp in the format:

mm/dd/yyyy hh:mm:ss
record-type

A single character indicating the type of record

id-string
The job or reservation identifier

message-text
Format: blank-separated keyword=value fields.

Message text is ASCII text.

Content depends on the record type.

Attribute Name

PBS NAME. Cannot be used for a vnode name.

Date

<Day of week> <Name of month> <Day of month> <HH:MM:SS> <YYYY>
PBS Professional 2022.1 Reference Guide RG-353

Chapter 7 Formats
Datetime

A datetime is

[[[[CC]YY]MM]DD]hhmm[.SS]

where

When setting the value, each portion of the date defaults to the current date, as long as the next-smaller portion
is in the future. For example, if today is the 3rd of the month and the specified day DD is the 5th, the month MM
will be set to the current month.

If a specified portion has already passed, the next-larger portion will be set to one after the current date. For
example, if the day DD is not specified, but the hour hh is specified to be 10:00 a.m. and the current time is
11:00 a.m., the day DD will be set to tomorrow.

Destination Identifier

String used to specify a particular destination. The identifier may be specified in one of three forms:

<queue name>@<server name>
<queue name>
@<server name>

where <queue name> is an ASCII character string of up to 15 characters.

Valid characters are alphanumerics, the hyphen and the underscore. The string must begin with a letter.

Hostname

String of the form

<machine name>.<domain name>
where domain name is a hierarchical, dot-separated list of subdomains.

A hostname cannot contain the following:

• A dot ("."), other than as a subdomain separator

• The commercial at sign, "@", as this is often used to separate a file from the host in a remote file name

• To prevent confusion with port numbers, a hostname cannot contain a colon (":")

The maximum length of a hostname supported by PBS is 255.

Job Array ID, Job Array Identifier

The identifier returned upon success when submitting a job array.

Job array identifiers are a sequence number followed by square brackets:

Table 7-1: Datetime Symbols

Symbol Meaning

CC Century

YY Year

MM Month

DD Day of month

hh Hour

mm Minute

SS Second
RG-354 PBS Professional 2022.1 Reference Guide

Formats Chapter 7
<sequence number>[][.<server name>][@<server name>]
Example:

1234[]

Note that some shells require that you enclose a job array ID in double quotes.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job array IDs start again at 0.

Job Array Range

<sequence number>[<first>-<last>][.<server name>][@<server name>]
first and last are the first and last indices of the subjobs.

Job ID, Job Identifier

When a job is successfully submitted to PBS, PBS returns a unique identifier for the job. Format:

<sequence number>[.<server>][@<new server>]
The <server> portion indicates the name of the original server where the job was submitted.

The @<new server> portion indicates the current location of the job if it is not at the original server.

The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, job IDs start again at 0.

Job Name, Job Array Name

A job name or job array name can be at most 230 characters. It must consist only of alphabetic, numeric, plus
sign ("+"), dash or minus or hyphen ("-"), underscore ("_"), and dot or period (".") characters.

Default: if a script is used to submit the job, the job's name is the name of the script. If no script is used, the
job's name is "STDIN".
PBS Professional 2022.1 Reference Guide RG-355

Chapter 7 Formats
Limit Specification

<limit specification>=<limit value>[, <limit specification>=<limit value>, ...]

where limit specification is:

• The limit specification can contain spaces anywhere except after the colon (":").

• If there are comma-separated limit specifications, the entire string must be enclosed in double quotes.

• A username, group name, or project name containing spaces must be enclosed in quotes.

• If a username, group name, or project name is quoted using double quotes, and the entire string requires
quotes, the outer enclosing quotes must be single quotes. Similarly, if the inner quotes are single quotes,
the outer quotes must be double quotes.

• PBS_ALL is a keyword which indicates that this limit applies to the usage total.

• PBS_GENERIC is a keyword which indicates that this limit applies to generic users, groups, or projects.

• When removing a limit, the limit value does not need to be specified.

• PBS_ALL and PBS_GENERIC are case-sensitive.

Format for setting a limit attribute:

set server <limit attribute> = "<limit specification>=<limit value>[, <limit specification>=<limit
value>], ..."

set queue <queue name> <limit attribute> = "<limit specification>=<limit value>[, <limit specifica-
tion>=<limit value>], ..."

For example, to set the max_queued limit on QueueA to 5 for total usage, and to limit user bill to 3:

Qmgr: s q QueueA max_queued = "[o:PBS_ALL=5], [u:bill =3]"

Examples of setting, adding, and removing:

Qmgr: set server max_run="[u:PBS_GENERIC=2], [g:group1=10], [o:PBS_ALL = 100]"

Qmgr: set server max_run+="[u:user1=3], [g:PBS_GENERIC=8]"

Qmgr: set server max_run-="[u:user2], [g:group3]"

Qmgr: set server max_run_res.ncpus="[u:PBS_GENERIC=2], [g:group1=8], [o:PBS_ALL = 64]"

See "How to Set Limits at Server and Queues" on page 292 in the PBS Professional Administrator’s Guide.

Event logfile-date-time

Date and time stamp in the format:

Table 7-2: Limit Specification Syntax

Limit Specification Limit

o:PBS_ALL Overall limit

u:PBS_GENERIC Generic users

u:<username> An individual user

g:PBS_GENERIC Generic groups

g:<group name> An individual group

p:PBS_GENERIC Generic projects

p:<project name> An individual project
RG-356 PBS Professional 2022.1 Reference Guide

Formats Chapter 7
mm/dd/yyyy hh:mm:ss[.xxxxxx]
If microsecond logging is enabled, microseconds are logged using the .xxxxxx portion. Microseconds may be
preceded by zeroes. Microsecond logging is controlled per host via the PBS_LOG_HIGHRES_TIMESTAMP
configuration parameter or environment variable.

pathname

All printable characters except for ampersand ("&")

PBS NAME

"PBS NAME" is a generic term, used to describe various PBS entities. For example, attribute names are PBS
NAMEs.

Must start with an alphabetic character, and may contain only the following: alpha-numeric, underscore ("_"), or
dash ("-").

Do not use PBS keywords as PBS NAMEs.

PBS Password

The pbs_ds_password command generates passwords containing the following characters:

0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()_+

When creating a password manually, do not use \ (backslash) or ‘ (backquote). This can prevent certain com-
mands such as pbs_server, pbs_ds_password, and printjob from functioning properly, as they rely
on connecting to the database.

Project Name

A project name can contain any characters except for the following: slash ("/"), left bracket ("["), right bracket
("]"), double quote ("""), semicolon (";"), colon (":"), vertical bar ("|"), left angle bracket ("<"), right angle
bracket (">"), plus ("+"), comma (","), question mark ("?"), and asterisk ("*").

Default value: "_pbs_project_default".

Queue ID, Queue Identifier

To specify a queue at the default server:

<queue name>
To specify all queues at a server:

@<server name>
To specify a queue at a specific server:

<queue name>@<server name>

Queue Name

PBS NAME up to 15 characters in length

Reservation ID, Reservation Identifier

Format for an advance reservation:

R<sequence number>[.<server name>][@<server name>]
Format for a standing reservation:

S<sequence number>[.<server name>][@<server name>]
Format for a maintenance reservation:

M<sequence number>[.<server name>][@<server name>]
The largest value that sequence number can be is set in the max_job_sequence_id server attribute. This
attribute defaults to 9999999. Minimum value for this attribute is 9999999, and maximum is
999999999999. After maximum for sequence number has been reached, reservation IDs start again at 0.
PBS Professional 2022.1 Reference Guide RG-357

Chapter 7 Formats
Reservation Name

Same as Job Name. See "Job Name, Job Array Name” on page 355.

Resource Name

PBS NAME up to 64 characters in length

Resource names are case-sensitive.

Subjob Identifier

Subjob identifiers are a sequence number followed by square brackets enclosing the subjob's index:

<sequence number>[<index>][.<server name>][@<server name>]
Example:

1234[99]

Timestamp

Output format varies depending on context:

• Printed by qstat in human-readable Date format

• Output in hooks as seconds since epoch

Username

Linux username:

String up to 256 characters in length. PBS supports usernames containing any printable, non-whitespace char-
acter except the at sign ("@"). Your platform may place additional limitations on usernames.

Windows username:

Must conform to the POSIX-1 standard for portability:

• The username must contain only alphanumeric characters, dot (.), underscore (_), and/or hyphen "-".

• The hyphen must not be the first letter of the username.

• If "@" appears in the username, it will assumed to be in the context of a Windows domain account: user-
name@domainname.

An exception to the above rule is the space character, which is allowed. If a space character appears in a user-
name string, it will be displayed quoted and must be specified in a quoted manner.

Vnode Name

Hostname, IP address, or other legal string, according to the following:

• For the parent vnode, the vnode name must conform to legal name for a host; see Hostname

• For other vnodes, the vnode name can be alphanumeric and any of these:

- (dash)

_ (underscore)

@ (at sign)

[(left bracket)

] (right bracket)

(hash)

^ (caret)

/ (slash)

\ (backslash)
RG-358 PBS Professional 2022.1 Reference Guide

Formats Chapter 7
. (period)

• Cannot be the same as an attribute name

• Vnode names are case-insensitive

7.2 Resource Formats

Boolean

Name of Boolean resource is a string.

Values:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0

Duration

A period of time, expressed either as

An integer whose units are seconds
or

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[[HH]HH:]MM:]SS[.milliseconds]
Milliseconds are rounded to the nearest second.

Float

Floating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

Long

Long integer. Allowable values: 0-9 [[0-9] ...], and + and -
PBS Professional 2022.1 Reference Guide RG-359

Chapter 7 Formats
<queue name>@<server name>

Size

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

String

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

String Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

Table 7-3: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes
RG-360 PBS Professional 2022.1 Reference Guide

8

States

This chapter lists and describes the states in PBS Professional.

8.1 Job States

Job states are abbreviated to one character.

8.1.1 Job Substates

Job substates are numeric:

Table 8-1: Job States

State Numeric Description

B 7 Job arrays only: job array is begun, meaning that at least one subjob has started

E 5 Job is exiting after having run

F 9 Job is finished. Job has completed execution, job failed during execution, or job was deleted.

H 2 Job is held. A job is put into a held state by the server or by a user or administrator. A job
stays in a held state until it is released by a user or administrator.

M 8 Job was moved to another server

Q 1 Job is queued, eligible to run or be routed

R 4 Job is running

S 400 Job is suspended by scheduler. A job is put into the suspended state when a higher priority job
needs the resources.

T 0 Job is in transition to or from a server

U 410 Job is suspended due to workstation becoming busy

W 3 Job is waiting for its requested execution time to be reached, or job is delayed due to stagein
failure.

X 6 Subjobs only; subjob is finished (expired.)

Table 8-2: Job Substates

Substate
Number

Substate Description

00 Transit in, prior to waiting for commit

01 Transit in, waiting for commit

02 transiting job outbound, not ready to commit
PBS Professional 2022.1 Reference Guide RG-361

Chapter 8 States
03 transiting outbound, ready to commit

10 Job queued and ready for scheduling

11 job queued, has files to stage in

13 Job waiting on sync start ready

14 job staging in files before waiting

15 job staging in files before running

16 job stage in complete

20 job held - user or operator

21 job held waiting on sync regist

22 job held - waiting on dependency

30 Job waiting until user-specified execution time

37 job held - file stage in failed

41 job sent to MoM to run

42 Running

43 Suspended by Operator or Manager

45 Suspended by scheduler

50 Server received job obit

51 Staging out stdout/err and other files

52 Deleting stdout/err files and staged-in files

53 MoM releasing resources

54 Job is being aborted by server

56 (Set by MoM) Mother Superior telling sisters to kill everything

57 (Set by MoM) job epilogue running

58 (Set by MoM) job obit notice sent

59 Waiting for site-defined job termination action script

60 Job to be rerun, MoM sending stdout/stderr back to server

61 Job to be rerun, staging out files

62 Job to be rerun, deleting files

63 Job to be rerun, freeing resources

69 subjob is gone

70 Array job has begun

71 Job is waiting for vnode(s) to be provisioned with requested AOE.

Table 8-2: Job Substates

Substate
Number

Substate Description
RG-362 PBS Professional 2022.1 Reference Guide

States Chapter 8
8.2 Job Array States

Job array states map closely to job states except for the 'B' state. The 'B' state applies to job arrays and indicates that at
least one subjob has left the queued state and is running or has run, but not all subjobs have run. Job arrays will never be
in the 'R', 'S' or 'U' states.

8.3 Subjob States

Subjobs can be in one of six states, listed here.

72 Waiting to join job

91 Job is terminated

92 Job is finished

93 Job failed

94 Job was moved

153 (Set by MoM) Mother Superior waiting for delete ACK from sisters

Table 8-3: Job Array States

State Numeric Indication

B 7 The job array has started

E 5 All subjobs are finished and the server is cleaning up the job array

F 9 The job array is finished

H 2 The job array is held

Q 1 The job array is queued, or has been qrerun

T 0 The job array is in transit between servers

W 3 The job array is waiting for its execution time to be reached, or job array was delayed due to
stagein failure

Table 8-4: Subjob States

State Numeric Indication

E 5 Ending

F 9 Finished

Q 1 Queued

R 4 Running

Table 8-2: Job Substates

Substate
Number

Substate Description
PBS Professional 2022.1 Reference Guide RG-363

Chapter 8 States
8.4 Server States

The state of the server is shown in the server_state server attribute. Possible values are shown in the following table:

S None; sub-
state of Run-
ning

Suspended

U None; sub-
state of Run-
ning

Suspended by keyboard activity

X 6 Expired or deleted; subjob has completed execution or been deleted

Table 8-5: Server States

State Description

Hot_Start The server has been started so that it will run first any jobs that were running when the
server was shut down.

Python type: pbs.SV_STATE_HOT

Idle The server is running. The scheduler is between scheduling cycles.

Python type: pbs.SV_STATE_IDLE

Scheduling The server is running. The scheduler is in a scheduling cycle.

Python type: pbs.SV_STATE_ACTIVE

Terminating The server is terminating.

Python type: pbs.SV_STATE_SHUTIMM or pbs.SV_STATE_SHUTSIG

Terminating_Delayed The server is terminating in delayed mode. No new jobs will be run, and the server will shut
down when the last running job finishes.

Python type: pbs.SV_STATE_SHUTDEL

Table 8-4: Subjob States

State Numeric Indication
RG-364 PBS Professional 2022.1 Reference Guide

States Chapter 8
8.5 Vnode States

If a vnode's state attribute is unset, that is equivalent to the state being free. A vnode's state is shown in its state
attribute, which can take on zero or more of the values listed here. Some vnode state values can be set simultaneously.
Values are:

Table 8-6: Vnode States

State Name
Set
By

Description

 Can
Combine

With these
States

busy Server Node is up and has load average greater than max_load, or is showing
keyboard or mouse activity. When the loadave is above max_load, that
node is marked busy. A scheduler won't place jobs on a node marked
busy. When the loadave drops below ideal_load, or when the mouse and
keyboard have not shown any activity for a specified amount of time, the
busy mark is removed. Consult your OS documentation to determine val-
ues that make sense.

offline

maintenance

down Server Node is not usable. Existing communication lost between server and
MoM.

maintenance

Cannot be set
with free

free Server Node is up and has available CPU(s). Server will mark a vnode "free" on
first successful ping after vnode was "down".

None

job-busy Server Node is up and all CPUs are allocated to jobs. offline

resv-exclusive

job-exclusive Server Node is up and has been allocated exclusively to a single job. offline

resv-exclusive

maintenance Server A vnode enters the maintenance state when any of its jobs is suspended
with the admin-suspend signal. Other jobs running on this vnode con-
tinue to run; each job must be admin-suspended. The vnode leaves the
maintenance state when the last job is resumed with the admin-resume
signal. A scheduler does not start or resume jobs on a node in the mainte-
nance state.

Any reservations on vnodes in the maintenance state are marked
degraded. PBS searches for alternate vnodes for those reservations.

down

offline

offline Man-
ager

Opera-
tor

Node is not usable. Jobs running on this vnode will continue to run. Used
by Manager/Operator to mark a vnode not to be used for jobs.

busy

job-busy

job-exclusive

resv-exclusive

powered-off Indicates that this vnode was powered off by PBS via power provisioning.
This tells the scheduler that it can schedule jobs on this vnode; in that case
PBS powers the vnode back up.

powering-down Indicates that this vnode is in the process of being powered down by PBS
via power provisioning.
PBS Professional 2022.1 Reference Guide RG-365

Chapter 8 States
powering-on Indicates that this vnode is in the process of being powered up by PBS via
power provisioning.

provisioning Server A vnode is in the provisioning state while it is in the process of being pro-
visioned. No jobs are run on vnodes in the provisioning state.

Cannot be set
with any other
states

resv-exclusive Server Reservation has requested exclusive use of vnode, and reservation is run-
ning.

job-exclusive,
offline

sleep Server Indicates that this vnode was ramped down or powered off via PBS power
management. This tells the scheduler that it can schedule jobs on this
vnode; in that case PBS powers the vnode back up.

stale Server MoM managing vnode is not reporting any information about this vnode,
but was reporting it previously. Server can still communicate with MoM.

A vnode becomes stale when:

1. A vnode is defined in the server

2. MoM starts or restarts and reports a set of vnodes according to her con-
figuration

3. A vnode which existed in the server earlier is not in the set being
reported now by MoM

4. That vnode is marked "stale"

Cannot be set
with free

state-unknown,
down

Server Node is not usable. Since server's latest start, no communication with this
vnode. May be network or hardware problem, or no MoM on vnode.

unresolvable Server Server cannot resolve name of vnode

wait-provision-
ing

Server There is a limit on the maximum number of vnodes that can be in the pro-
visioning state. This limit is specified in the server's
max_concurrent_provision attribute. If a vnode is to be provisioned, but
cannot because the number of concurrently provisioning vnodes has
reached the specified maximum, the vnode goes into the wait-provision-
ing state. No jobs are run on vnodes in the wait-provisioning state.

Cannot be set
with any other
states

Table 8-6: Vnode States

State Name
Set
By

Description

 Can
Combine

With these
States
RG-366 PBS Professional 2022.1 Reference Guide

States Chapter 8
8.6 Reservation States

The following table shows the list of possible states for a reservation. The states that you will usually see are CO, UN,
BD, and RN, although a reservation usually remains unconfirmed for too short a time to see that state.

Table 8-7: Reservation States

Numeric Code State Description

0 NO RESV_NONE No reservation yet

1 UN RESV_UNCONFIRMED Reservation not confirmed

2 CO RESV_CONFIRMED Reservation confirmed

3 WT RESV_WAIT Unused

4 TR RESV_TIME_TO_RUN Transitory state; reservation's start time has arrived

5 RN RESV_RUNNING Time period from reservation's start time to end time is being
traversed

6 FN RESV_FINISHED Transitory state; reservation's end time has arrived and reser-
vation will be deleted

7 BD RESV_BEING_DELETED Transitory state; reservation is being deleted

8 DE RESV_DELETED Transitory state; reservation has been deleted

9 DJ RESV_DELETING_JOBS Jobs remaining after reservation's end time being deleted

10 DG RESV_DEGRADED Vnode(s) allocated to reservation unavailable

11 AL RESV_BEING_ALTERED Transitory state; reservation is being altered

12 IC RESV_IN_CONFLICT This reservation conflicts with a maintenance reservation
PBS Professional 2022.1 Reference Guide RG-367

Chapter 8 States
8.6.1 Degraded Reservation Substates

The following table shows states and substates for degraded reservations:

Table 8-8: Degraded Reservation States and Substates

Occurrence
Type

Reservation Time Is Now Reservation Time in Future

State Substate State Substate

Advance and
job-specific res-
ervation: run-
ning

RESV_RUNNING RESV_DEGRADED RESV_DEGRADED RESV_DEGRADED

Advance and
job-specific res-
ervation: con-
flicts with
maintenance
reservation

RESV_DEGRADED RESV_IN_CONFLICT RESV_DEGRADED RESV_IN_CONFLICT

Standing reser-
vation soonest
occurrence: run-
ning

RESV_RUNNING RESV_DEGRADED RESV_DEGRADED RESV_DEGRADED

Standing reser-
vation soonest
occurrence: con-
flicts with main-
tenance
reservation

RESV_DEGRADED RESV_IN_CONFLICT RESV_DEGRADED RESV_IN_CONFLICT

Standing reser-
vation
non-soonest
occurrence only:
conflicts with
maintenance
reservation

N/A N/A RESV_CONFIRMED RESV_DEGRADED

N/A N/A RESV_RUNNING RESV_RUNNING
RG-368 PBS Professional 2022.1 Reference Guide

9

The PBS Configuration File

9.1 Format of Configuration File

Each line in the /etc/pbs.conf file gives a value for one parameter, or is a comment, or is blank. The order of the ele-
ments is not important.

9.1.1 Specifying Parameters

When you specify a parameter value, do not include any spaces in the line. Format for specifying a parameter value:

<parameter>=<value>

For example, to specify a value for PBS_START_MOM on the local host:

PBS_START_MOM=1

9.1.2 Comment Lines in Configuration File

You can comment out lines you are not using. Precede a comment with the hashmark ("#"). For example:

#This is a comment line

9.2 Contents of Configuration File

The /etc/pbs.conf file contains configuration parameters for PBS. The following table describes the parameters you
can use in the pbs.conf configuration file:

Table 9-1: Parameters in pbs.conf

Parameter Description

PBS_AUTH_METHOD Specifies default authentication method and library to be used by PBS.
Used only at authenticating client. Case-insensitive.

Default value: resvport

To use MUNGE, set to munge

PBS_BATCH_SERVICE_PORT Port on which server listens. Default: 15001

PBS_BATCH_SERVICE_PORT_DIS DIS port on which server listens.

PBS_COMM_LOG_EVENTS Communication daemon log mask. Default: 511

PBS_COMM_ROUTERS Tells a pbs_comm the location of the other pbs_comms.

PBS_COMM_THREADS Number of threads for communication daemon.
PBS Professional 2022.1 Reference Guide RG-369

Chapter 9 The PBS Configuration File
PBS_CORE_LIMIT Limit on corefile size for PBS daemons. Can be set to an integer num-
ber of bytes or to the string "unlimited". If unset, core file size limit is
inherited from the shell environment.

PBS_CP Specifies command for MoM to use for local copy

PBS_DAEMON_SERVICE_USER Username under which scheduler(s) run. Default: root

PBS_DATA_SERVICE_PORT Used to specify non-default port for connecting to data service. Default:
15007

PBS_ENCRYPT_METHOD Specifies method and library for encrypting and decrypting data in cli-
ent-server communication. Used only at authentication client side.
Case-insensitive.

To use TLS encryption in client-server communication, set this parame-
ter to tls.

No default; if this is not set, PBS does not encrypt or decrypt data.

PBS_ENVIRONMENT Location of pbs_environment file.

PBS_EXEC Location of PBS bin and sbin directories.

PBS_HOME Location of PBS working directories.

PBS_LEAF_NAME Tells endpoint what hostname to use for network.

The value does not include a port, since that is usually set by the dae-
mon.

By default, the name of the endpoint's host is the hostname of the
machine. You can set the name where an endpoint runs. This is useful
when you have multiple networks configured, and you want PBS to use
a particular network.

The server only queries for the canonicalized address of the MoM host,
unless you let it know via the Mom attribute; if you have set
PBS_LEAF_NAME in /etc/pbs.conf to something else, make sure
you set the Mom attribute at vnode creation.

TPP internally resolves the name to a set of IP addresses, so you do not
affect how pbs_comm works.

PBS_LEAF_ROUTERS Location of endpoint's pbs_comm daemon(s).

PBS_LOCALLOG=<value> Enables logging to local PBS log files. Valid values:

0: no local logging

1: local logging enabled

Only available when using syslog.

PBS_LOG_HIGHRES_TIMESTAMP Controls whether daemons on this host log timestamps in microseconds.

Default timestamp log format is HH:MM:SS. With microsecond log-
ging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when using syslog.

Overridden by environment variable of the same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

Table 9-1: Parameters in pbs.conf

Parameter Description
RG-370 PBS Professional 2022.1 Reference Guide

The PBS Configuration File Chapter 9
PBS_MAIL_HOST_NAME Used in addressing mail regarding jobs and reservations that is sent to
users specified in a job or reservation's Mail_Users attribute.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (":"). For how this is used in email address, see section
2.2.3, “Specifying Mail Delivery Domain”, on page 22.

PBS_MANAGER_SERVICE_PORT Port on which MoM listens. Default: 15003

PBS_MOM_HOME Location of MoM working directories.

PBS_MOM_NODE_NAME Name that MoM should use for parent vnode, and if they exist, child
vnodes. If this is not set, MoM defaults to using the non-canonicalized
hostname returned by gethostname().

If you use the IP address for a vnode name, set PBS_MOM_NODE_NAME=<IP
address> in pbs.conf on the execution host.

Dots are not allowed in this parameter unless they are part of an IP
address.

PBS_MOM_SERVICE_PORT Port on which MoM listens. Default: 15002

PBS_OUTPUT_HOST_NAME Host to which all job standard output and standard error are delivered.
If specified in pbs.conf on a job submission host, the value of
PBS_OUTPUT_HOST_NAME is used in the host portion of the job's
Output_Path and Error_Path attributes. If the job submitter does not
specify paths for standard output and standard error, the current working
directory for the qsub command is used, and the value of
PBS_OUTPUT_HOST_NAME is appended after an at sign ("@"). If
the job submitter specifies only a file path for standard output and stan-
dard error, the value of PBS_OUTPUT_HOST_NAME is appended
after an at sign ("@"). If the job submitter specifies paths for standard
output and standard error that include host names, the specified paths
are used.

Optional. If specified, must be a fully qualified domain name. Cannot
contain a colon (":"). See "Delivering Output and Error Files" on page
60 in the PBS Professional Administrator’s Guide.

PBS_PRIMARY Hostname of primary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the primary server host, make sure
that PBS_PRIMARY matches PBS_LEAF_NAME on the correspond-
ing host. If you do not set PBS_LEAF_NAME on the server host,
make sure that PBS_PRIMARY matches the hostname of the server
host.

PBS_RCP Location of rcp command if rcp is used.

PBS_REMOTE_VIEWER Specifies remote viewer client.

If not specified, PBS uses native Remote Desktop client for remote
viewer.

Set on submission host(s).

Supported on Windows only.

Table 9-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2022.1 Reference Guide RG-371

Chapter 9 The PBS Configuration File
PBS_SCHED_THREADS Maximum number of scheduler threads. Scheduler automatically caps
number of threads at the number of cores (or hyperthreads if applicable),
regardless of value of this variable.

Overridden by pbs_sched -t option and
PBS_SCHED_THREADS environment variable.

Default: 1

PBS_SCP Location of scp command if scp is used; setting this parameter causes
PBS to first try scp rather than rcp for file transport.

PBS_SECONDARY Hostname of secondary server. Used only for failover configuration.
Overrides PBS_SERVER_HOST_NAME.

If you set PBS_LEAF_NAME on the secondary server host, make sure
that PBS_SECONDARY matches PBS_LEAF_NAME on the corre-
sponding host. If you do not set PBS_LEAF_NAME on the server
host, make sure that PBS_SECONDARY matches the hostname of the
server host.

PBS_SERVER Hostname of host running the server. Cannot be longer than 255 charac-
ters. If the short name of the server host resolves to the correct IP
address, you can use the short name for the value of the PBS_SERVER
entry in pbs.conf. If only the FQDN of the server host resolves to the
correct IP address, you must use the FQDN for the value of
PBS_SERVER.

Overridden by PBS_SERVER_HOST_NAME and PBS_PRIMARY.

PBS_SERVER_HOST_NAME The FQDN of the server host. Used by clients to contact server. Over-
ridden by PBS_PRIMARY and PBS_SECONDARY failover parame-
ters. Overrides PBS_SERVER parameter. Optional. If specified, must
be a fully qualified domain name. Cannot contain a colon (":"). See
"Contacting the Server" on page 60 in the PBS Professional Administra-
tor’s Guide.

PBS_START_COMM Set this to 1 if a communication daemon is to run on this host.

PBS_START_MOM Default is 0. Set this to 1 if a MoM is to run on this host.

PBS_START_SCHED Deprecated. Set this to 1 if default scheduler is to run on this host.
Overridden by scheduler's scheduling attribute.

PBS_START_SERVER Set this to 1 if server is to run on this host.

PBS_SUPPORTED_AUTH_METHODS Specifies supported authentication methods for client-server communi-
cation. Used by authenticating server (PBS server, scheduler, MoM, or
comm); ignored at client. Case-insensitive.

If this parameter is set, PBS accepts only the methods listed.

Format: comma-separated list of authentication methods.

Default value: resvport

Example: munge,GSS

Table 9-1: Parameters in pbs.conf

Parameter Description
RG-372 PBS Professional 2022.1 Reference Guide

The PBS Configuration File Chapter 9
PBS_SYSLOG=<value> Controls use of syslog facility under which the entries are logged.

Valid values:

0: no syslogging

1: logged via LOG_DAEMON facility

2: logged via LOG_LOCAL0 facility

3: logged via LOG_LOCAL1 facility

...

9: logged via LOG_LOCAL7 facility

PBS_SYSLOGSEVR=<value> Filters syslog messages by severity. Valid values:

0: only LOG_EMERG messages are logged

1: messages up to LOG_ALERT are logged

...

7: messages up to LOG_DEBUG are logged

PBS_TMPDIR Location of temporary files/directories used by PBS components.

Table 9-1: Parameters in pbs.conf

Parameter Description
PBS Professional 2022.1 Reference Guide RG-373

Chapter 9 The PBS Configuration File
RG-374 PBS Professional 2022.1 Reference Guide

10

Log Levels

10.1 Log Levels

PBS allows specification of the types of events that are logged for each daemon. Each type of log event has a different
log level. All daemons use the same log level for the same type of event.

The following table lists the log level for each type of event.

Table 10-1: PBS Events and Log Levels

Name Decimal Hex Event Description

PBSEVENT_ERROR 1 0x0001 Internal PBS errors

PBSEVENT_SYSTEM 2 0x0002 System (OS) errors, such as malloc failure

PBSEVENT_ADMIN 4 0x0004 Administrator-controlled events, such as changing queue
attributes

PBSEVENT_JOB 8 0x0008 Job related events, e.g. submitted, ran, deleted

PBSEVENT_JOB_USAGE 16 0x0010 Job resource usage

PBSEVENT_SECURITY 32 0x0020 Security related events

PBSEVENT_SCHED 64 0x0040 When the scheduler was called and why

PBSEVENT_DEBUG 128 0x0080 Common debug messages

PBSEVENT_DEBUG2 256 0x0100 Debug event class 2

PBSEVENT_RESV 512 0x0200 Reservation-related messages

PBSEVENT_DEBUG3 1024 0x0400 Debug event class 3. Debug messages rarer than event class 2.

PBSEVENT_DEBUG4 2048 0x0800 Debug event class 4. Limit-related messages.
PBS Professional 2022.1 Reference Guide RG-375

Chapter 10 Log Levels
RG-376 PBS Professional 2022.1 Reference Guide

11

Job Exit Status

11.1 Job Exit Status

The exit status of a job may fall in one of three ranges, listed in the following table:

The exit status of jobs is recorded in the PBS server logs and the accounting logs.

Negative exit status indicates that the job could not be executed. Negative exit values are listed in the table below:

Table 11-1: Job Exit Status Ranges

Exit Status
Range

Reason Description

X < 0 The job could not be executed See Table 11-2, “Job Exit Codes,” on page 377

0 <=X < 128 Exit value of shell or top pro-
cess

This is the exit value of the top process in the job, typically the
shell. This may be the exit value of the last command executed in
the shell or the .logout script if the user has such a script (csh).

The exit status of an interactive job is always recorded as 0 (zero),
regardless of the actual exit status.

X >=128 Job was killed with a signal This means the job was killed with a signal. The signal is given by
X modulo 128 (or 256). For example an exit value of 137 means the
job's top process was killed with signal 9 (137 % 128 = 9).

The exit status values greater than 128 (or 256) indicate which sig-
nal killed the job. Depending on the system, values greater than 128
(or on some systems 256; see wait(2) or waitpid(2) for more
information), are the value of the signal that killed the job.

To interpret (or "decode") the signal contained in the exit status
value, subtract the base value from the exit status. For example, if a
job had an exit status of 143, that indicates the job was killed via a
SIGTERM (e.g. 143 - 128 = 15, signal 15 is SIGTERM). See the
kill(1) manual page for a mapping of signal numbers to signal
name on your operating system.

Table 11-2: Job Exit Codes

Exit
Code

Name Description

 0 JOB_EXEC_OK Job execution was successful

-1 JOB_EXEC_FAIL1 Job execution failed, before files, no retry

-2 JOB_EXEC_FAIL2 Job execution failed, after files, no retry
PBS Professional 2022.1 Reference Guide RG-377

Chapter 11 Job Exit Status
-3 JOB_EXEC_RETRY Job execution failed, do retry

-4 JOB_EXEC_INITABT Job aborted on MoM initialization

-5 JOB_EXEC_INITRST Job aborted on MoM initialization, checkpoint, no migrate

-6 JOB_EXEC_INITRMG Job aborted on MoM initialization, checkpoint, ok migrate

-7 JOB_EXEC_BADRESRT Job restart failed

-10 JOB_EXEC_FAILUID Invalid UID/GID for job

-11 JOB_EXEC_RERUN Job was rerun

-12 JOB_EXEC_CHKP Job was checkpointed and killed

-13 JOB_EXEC_FAIL_PASSWORD Job failed due to a bad password

-14 JOB_EXEC_RERUN_

ON_SIS_FAIL

Job was requeued (if rerunnable) or deleted (if not) due to a
communication failure between the primary execution host
MoM and a Sister

-15 JOB_EXEC_QUERST Requeue job for restart from checkpoint

-16 JOB_EXEC_FAILHOOK_RERUN Job execution failed due to hook rejection; requeue for later
retry

-17 JOB_EXEC_FAILHOOK_DELETE Job execution failed due to hook rejection; delete the job at end

-18 JOB_EXEC_HOOK_RERUN A hook requested for job to be requeued

-19 JOB_EXEC_HOOK_DELETE A hook requested for job to be deleted

-20 JOB_EXEC_RERUN_MS_FAIL Job requeued because server couldn't contact the primary execu-
tion host MoM

Table 11-2: Job Exit Codes

Exit
Code

Name Description
RG-378 PBS Professional 2022.1 Reference Guide

12

Example Configurations

This chapter shows some configuration-specific scenarios which will hopefully clarify any configuration questions. Sev-
eral configuration models are discussed, followed by several examples of specific features.

Single Vnode System

Single Vnode System with Separate PBS server

Multi-vnode complex

Multi-level Route Queues (including group ACLs)

Multiple User ACLs

For each of these possible configuration models, the following information is provided:

General description for the configuration model

Type of system for which the model is well suited

Contents of server nodes file

Any required server configuration

Any required MoM configuration

Any required scheduler configuration

12.1 Single Vnode System

Running PBS on a single vnode/host as a standalone system is the least configuration. This model is most applicable to
sites who have a single large server system. In this model, all PBS components run on the same host, which is the same
host on which jobs will be executed. The following illustration shows how communication works when PBS is on a sin-
gle host in TPP mode. For more on TPP mode, see Chapter 4, "Communication", on page 45.

Figure 12-1:PBS daemons on a single execution host

 All PBS components on a single host

Scheduler

MoM

ServerJobs

Commands
Kernel

Communication

Job
processes
PBS Professional 2022.1 Reference Guide RG-379

Chapter 12 Example Configurations
For this example, let's assume we have a 32-CPU server machine named "mars". We want users to log into mars and jobs
will be run via PBS on mars.

In this configuration, the server's default nodes file (which should contain the name of the host on which the server was
installed) is sufficient. Our example nodes file would contain only one entry: mars

The default MoM and scheduler config files, as well as the default queue/Server limits are also sufficient in order to
run jobs. No changes are required from the default configuration, however, you may wish to customize PBS to your site.

12.2 Separate Server and Execution Host

A variation on the model presented above would be to provide a "front-end" system that ran the PBS server, scheduler,
and communication daemons, and from which users submitted their jobs. Only the MoM would run on our execution
server, mars. This model is recommended when the user load would otherwise interfere with the computational load on
the server. The following illustration shows how communication works when the PBS server and scheduler are on a
front-end system and MoM is on a separate host, in TPP mode. For more on TPP mode, see Chapter 4, "Communica-
tion", on page 45.

Figure 12-2:PBS daemons on single execution system with front end

In this case, the PBS server_priv/nodes file would contain the name of our execution server mars, but this may not
be what was written to the file during installation, depending on which options were selected. It is possible the hostname
of the machine on which the server was installed was added to the file, in which case you would need to use qmgr(1B)
to manipulate the contents to contain one vnode: mars. If the default scheduling policy, based on available CPUs and
memory, meets your requirements, no changes are required in either the MoM or scheduler configuration files.

However, if you wish the execution host (mars) to be scheduled based on load average, the following changes are
needed. Edit MoM's mom_priv/config file so that it contains the target and maximum load averages:

$ideal_load 30

$max_load 32

12.3 Multiple Execution Hosts

The multi-vnode complex model is a very common configuration for PBS. In this model, there is typically a front-end
system as we saw in the previous example, with a number of back-end execution hosts. The PBS server, scheduler, and
communication daemons are typically run on the front-end system, and a MoM is run on each of the execution hosts, as
shown in the diagram to the right.

In this model, the server's nodes file will need to contain the list of all the vnodes in the complex.

Scheduler

MoM
Server

Jobs

Kernel

Single execution host

Commands

Front-end system

Communication

Job processes
RG-380 PBS Professional 2022.1 Reference Guide

Example Configurations Chapter 12
The following diagram illustrates an eight-host complex in TPP mode.

Figure 12-3:Typical PBS daemon locations for multiple execution hosts

This diagram illustrates a multi-vnode complex TPP configuration wherein the server and scheduler daemons communi-
cate with the MoMs on the execution hosts via the communication daemon. Jobs are submitted to the server, scheduled
for execution by the partition scheduler, and then transferred to a MoM when it's time to be run. MoM periodically sends
status information back to the server, and answers resource requests from the scheduler.

12.4 Multi-level Route Queues

There are times when a site may wish to create a series of route queues in order to filter jobs, based on specific resources,
or possibly to different destinations. For this example, consider a site that has two large server systems, and a Linux clus-
ter. The Administrator wants to configure route queues such that everyone submits jobs to a single queue, but the jobs get
routed based on (1) requested architecture and (2) individual group IDs. In other words, users request the architecture
they want, and PBS finds the right queue for them. Only groups "math", "chemistry", and "physics" are permitted to use
either server systems; while anyone can use the cluster. Lastly, the jobs coming into the cluster should be divided into
three separate queues for long, short, and normal jobs. But the "long" queue was created for the astronomy department,
so only members of that group should be permitted into that queue. Given these requirements, let's look at how we would
set up such a collection of route queues. (Note that this is only one way to accomplish this task. There are various other
ways too.)

Scheduler

MoM

Server
Jobs

 PBS
Commands

Execution Host

MoM

 Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

Communication
PBS Professional 2022.1 Reference Guide RG-381

Chapter 12 Example Configurations
First we create a queue to which everyone will submit their jobs. Let's call it "submit". It will need to be a route queue
with three destinations, as shown:

Qmgr: create queue submit
Qmgr: set queue submit queue_type = Route
Qmgr: set queue submit route_destinations = server_1
Qmgr: set queue submit route_destinations += server_2
Qmgr: set queue submit route_destinations += cluster
Qmgr: set queue submit enabled = True
Qmgr: set queue submit started = True

Now we need to create the destination queues. (Notice in the above example, we have already decided what to call the
three destinations: server_1, server_2, cluster.) First we create the server_1 queue, complete with a group
ACL, and a specific architecture limit.

Qmgr: create queue server_1
Qmgr: set queue server_1 queue_type = Execution
Qmgr: set queue server_1 from_route_only = True
Qmgr: set queue server_1 resources_max.arch = linux
Qmgr: set queue server_1 resources_min.arch = linux
Qmgr: set queue server_1 acl_group_enable = True
Qmgr: set queue server_1 acl_groups = math
Qmgr: set queue server_1 acl_groups += chemistry
Qmgr: set queue server_1 acl_groups += physics
Qmgr: set queue server_1 enabled = True
Qmgr: set queue server_1 started = True

Next we create the queues for server_2 and cluster. Note that the server_2 queue is very similar to the
server_1 queue, only the architecture differs. Also notice that the cluster queue is another route queue, with multi-
ple destinations.

Qmgr: create queue server_2
Qmgr: set queue server_2 queue_type = Execution
Qmgr: set queue server_2 from_route_only = True
Qmgr: set queue server_2 resources_max.arch = sv2
Qmgr: set queue server_2 resources_min.arch = sv2
Qmgr: set queue server_2 acl_group_enable = True
Qmgr: set queue server_2 acl_groups = math
Qmgr: set queue server_2 acl_groups += chemistry
Qmgr: set queue server_2 acl_groups += physics
Qmgr: set queue server_2 enabled = True
Qmgr: set queue server_2 started = True
Qmgr: create queue cluster
Qmgr: set queue cluster queue_type = Route
Qmgr: set queue cluster from_route_only = True
Qmgr: set queue cluster resources_max.arch = linux
Qmgr: set queue cluster resources_min.arch = linux
Qmgr: set queue cluster route_destinations = long
Qmgr: set queue cluster route_destinations += short
Qmgr: set queue cluster route_destinations += medium
Qmgr: set queue cluster enabled = True
Qmgr: set queue cluster started = True
RG-382 PBS Professional 2022.1 Reference Guide

Example Configurations Chapter 12
In the cluster queue above, you will notice the particular order of the three destination queues (long, short, medium).
PBS will attempt to route a job into the destination queues in the order specified. Thus, we want PBS to first try the long
queue (which will have an ACL on it), then the short queue (with its short time limits). Thus any jobs that had not been
routed into any other queues (server or cluster) will end up in the medium cluster queue. Now to create the remaining
queues.

Qmgr: create queue long
Qmgr: set queue long queue_type = Execution
Qmgr: set queue long from_route_only = True
Qmgr: set queue long resources_max.cput = 20:00:00
Qmgr: set queue long resources_max.walltime = 20:00:00
Qmgr: set queue long resources_min.cput = 02:00:00
Qmgr: set queue long resources_min.walltime = 03:00:00
Qmgr: set queue long acl_group_enable = True
Qmgr: set queue long acl_groups = astronomy
Qmgr: set queue long enabled = True
Qmgr: set queue long started = True

Qmgr: create queue short
Qmgr: set queue short queue_type = Execution
Qmgr: set queue short from_route_only = True
Qmgr: set queue short resources_max.cput = 01:00:00
Qmgr: set queue short resources_max.walltime = 01:00:00
Qmgr: set queue short enabled = True
Qmgr: set queue short started = True
Qmgr: create queue medium
Qmgr: set queue medium queue_type = Execution
Qmgr: set queue medium from_route_only = True
Qmgr: set queue medium enabled = True
Qmgr: set queue medium started = True
Qmgr: set server default_queue = submit

Notice that the long and short queues have time limits specified. This will ensure that jobs of certain sizes will enter
(or be prevented from entering) these queues. The last queue, medium, has no limits, thus it will be able to accept any
job that is not routed into any other queue.

Lastly, note the last line in the example above, which specified that the default queue is the new submit queue. This
way users will simply submit their jobs with the resource and architecture requests, without specifying a queue, and PBS
will route the job into the correct location. For example, if a user submitted a job with the following syntax, the job
would be routed into the server_2 queue:

qsub -l select=arch=sv2:ncpus=4 testjob

12.5 External Software License Management

PBS Professional can be configured to schedule jobs based on externally-controlled licensed software. A detailed exam-
ple is provided in "Example of Floating, Externally-managed License with Features" on page 272 in the PBS Profes-
sional Administrator’s Guide.
PBS Professional 2022.1 Reference Guide RG-383

Chapter 12 Example Configurations
12.6 Multiple User ACL Example

A site may have a need to restrict individual users to particular queues. In the previous example we set up queues with
group-based ACLs, in this example we show user-based ACLs. Say a site has two different groups of users, and wants to
limit them to two separate queues (perhaps with different resource limits). The following example illustrates this.

Qmgr: create queue structure
Qmgr: set queue structure queue_type = Execution
Qmgr: set queue structure acl_user_enable = True
Qmgr: set queue structure acl_users = curly
Qmgr: set queue structure acl_users += jerry
Qmgr: set queue structure acl_users += larry
Qmgr: set queue structure acl_users += moe
Qmgr: set queue structure acl_users += tom
Qmgr: set queue structure resources_max.nodes = 48
Qmgr: set queue structure enabled = True
Qmgr: set queue structure started = True

Qmgr: create queue engine
Qmgr: set queue engine queue_type = Execution
Qmgr: set queue engine acl_user_enable = True
Qmgr: set queue engine acl_users = bill
Qmgr: set queue engine acl_users += bobby
Qmgr: set queue engine acl_users += chris
Qmgr: set queue engine acl_users += jim
Qmgr: set queue engine acl_users += mike
Qmgr: set queue engine acl_users += rob
Qmgr: set queue engine acl_users += scott
Qmgr: set queue engine resources_max.nodes = 12
Qmgr: set queue engine resources_max.walltime=04:00:00
Qmgr: set queue engine enabled = True
Qmgr: set queue engine started = True
RG-384 PBS Professional 2022.1 Reference Guide

13

Run Limit Error Messages

This chapter lists the error messages generated when limits are exceeded. See "Managing Resource Usage By Users,
Groups, and Projects, at Server & Queues" on page 283 in the PBS Professional Administrator’s Guide.

13.1 Run Limit Error Messages

When a job would exceed a limit by running, the job's comment field is set to one of the following messages. The fol-
lowing table shows the limit attribute, where the limit is applied, to whom the limit is applied, and the message.

Table 13-1: Job Run Limit Error Messages

Attribute
Where

Applied
To What Applied Message

max_run queue o: PBS_ALL Not Running: Queue <queue name> job limit has been
reached.

max_run server o: PBS_ALL Not Running: Server job limit has been reached.

max_run server p:PBS_GENERIC Not Running: Project has reached server running limit.

max_run queue p:PBS_GENERIC Not Running: Project has reached queue<queue-name>'s run-
ning limit.

max_run server p:<project name> Not Running: Server job limit reached for project <project
name>

max_run queue p:<project name> Not Running: Queue <queue-name> job limit reached for
project <project name>

max_run queue g: PBS_GENERIC Not Running: Group has reached queue <queue name> run-
ning limit.

max_run server g: PBS_GENERIC Not Running: Group has reached server running limit.

max_run queue u: PBS_GENERIC Not Running: User has reached queue <queue name> running
job limit.

max_run server u: PBS_GENERIC Not Running: User has reached server running job limit.

max_run queue g:<group name> Queue <queue name> job limit reached for group <G>

max_run server g:<group name> Server job limit reached for group <G>

max_run queue u:<user name> Queue <queue name> job limit reached for user <U>

max_run server u:<user name> Server job limit reached for user <U>

max_run_res queue o: PBS_ALL Queue <queue name> job limit reached on resource <resource
name>

max_run_res server o: PBS_ALL Server job limit reached on resource <resource name>
PBS Professional 2022.1 Reference Guide RG-385

Chapter 13 Run Limit Error Messages
max_run_res queue p:PBS_GENERIC Not Running: Queue <queue name> per-project limit reached
on resource <resource name>

max_run_res server p:PBS_GENERIC Not Running: Server per-project limit reached on resource
<resource name>

max_run_res server p:<project name> Not Running: would exceed project <project_name>'s limit on
resource <resource name> in complex

max_run_res queue p:<project name> Not Running: would exceed project <project_name>'s limit on
resource <resource name> in queue <queue-name>

max_run_res queue g: PBS_GENERIC Queue <queue name> per-group limit reached on resource
<resource name>

max_run_res server g: PBS_GENERIC Server per-group limit reached on resource <resource name>

max_run_res queue u: PBS_GENERIC Queue <queue name> per-user limit reached on resource
<resource name>

max_run_res server u: PBS_GENERIC Server per-user limit reached on resource <resource name>

max_run_res queue g:<group name> would exceed group <G>'s limit on resource <resource name>
in queue <queue name>

max_run_res server g:<group name> would exceed group <G>'s limit on resource <resource name>
in complex

max_run_res queue u:<user name> would exceed user <U>'s limit on resource <resource name> in
queue <queue name>

max_run_res server u:<user name> would exceed user <U>'s limit on resource <resource name> in
complex

Table 13-1: Job Run Limit Error Messages

Attribute
Where

Applied
To What Applied Message
RG-386 PBS Professional 2022.1 Reference Guide

14

Error Codes

The following table lists all the PBS error codes, their textual names, and a description of each.

Table 14-1: Error Codes

Error Name
Error
Code

Description

PBSE_NONE 0 No error

PBSE_UNKJOBID 15001 Unknown Job Identifier

PBSE_NOATTR 15002 Undefined Attribute

PBSE_ATTRRO 15003 Attempt to set READ ONLY attribute

PBSE_IVALREQ 15004 Invalid request

PBSE_UNKREQ 15005 Unknown batch request

PBSE_TOOMANY 15006 Too many submit retries

PBSE_PERM 15007 No permission

PBSE_BADHOST 15008 Access from host not allowed

PBSE_JOBEXIST 15009 Job already exists

PBSE_SYSTEM 15010 System error occurred

PBSE_INTERNAL 15011 Internal server error occurred

PBSE_REGROUTE 15012 Parent job of dependent in route queue

PBSE_UNKSIG 15013 Unknown signal name

PBSE_BADATVAL 15014 Bad attribute value

PBSE_MODATRRUN 15015 Cannot modify attribute in run state

PBSE_BADSTATE 15016 Request invalid for job state

PBSE_UNKQUE 15018 Unknown queue name

PBSE_BADCRED 15019 Invalid Credential in request

PBSE_EXPIRED 15020 Expired Credential in request

PBSE_QUNOENB 15021 Queue not enabled

PBSE_QACESS 15022 No access permission for queue
PBS Professional 2022.1 Reference Guide RG-387

Chapter 14 Error Codes
PBSE_BADUSER 15023 Missing userID, username, or GID. Returned under follow-
ing conditions:

1. User does not have a password entry (getpwnam() returns
null).

2. User's UID is zero and root isn't allowed to run jobs
(acl_roots).

3. PBS_O_HOST is not set in the job.

PBSE_HOPCOUNT 15024 Max hop count exceeded

PBSE_QUEEXIST 15025 Queue already exists

PBSE_ATTRTYPE 15026 Incompatible queue attribute type

PBSE_OBJBUSY 15027 Object Busy

PBSE_QUENBIG 15028 Queue name too long

PBSE_NOSUP 15029 Feature/function not supported

PBSE_QUENOEN 15030 Can't enable queue, lacking definition

PBSE_PROTOCOL 15031 Protocol (ASN.1) error. Message is distorted or truncated.

PBSE_BADATLST 15032 Bad attribute list structure

PBSE_NOCONNECTS 15033 No free connections

PBSE_NOSERVER 15034 No server to connect to

PBSE_UNKRESC 15035 Unknown resource

PBSE_EXCQRESC 15036 Job exceeds Queue resource limits

PBSE_QUENODFLT 15037 No Default Queue Defined

PBSE_NORERUN 15038 Job Not Rerunnable

PBSE_ROUTEREJ 15039 Route rejected by all destinations

PBSE_ROUTEEXPD 15040 Time in Route Queue Expired

PBSE_MOMREJECT 15041 Request to MoM failed

PBSE_BADSCRIPT 15042 (qsub) Cannot access script file

PBSE_STAGEIN 15043 Stage In of files failed

PBSE_RESCUNAV 15044 Resources temporarily unavailable

PBSE_BADGRP 15045 Bad Group specified

PBSE_MAXQUED 15046 Max number of jobs in queue

PBSE_CKPBSY 15047 Checkpoint Busy, may be retries

PBSE_EXLIMIT 15048 Limit exceeds allowable

PBSE_BADACCT 15049 Bad Account attribute value

PBSE_ALRDYEXIT 15050 Job already in exit state

Table 14-1: Error Codes

Error Name
Error
Code

Description
RG-388 PBS Professional 2022.1 Reference Guide

Error Codes Chapter 14
PBSE_NOCOPYFILE 15051 Job files not copied

PBSE_CLEANEDOUT 15052 Unknown job id after clean init

PBSE_NOSYNCMSTR 15053 No Master in Sync Set

PBSE_BADDEPEND 15054 Invalid dependency

PBSE_DUPLIST 15055 Duplicate entry in List

PBSE_DISPROTO 15056 Bad DIS based Request Protocol

PBSE_EXECTHERE (Obsolete) 15057 Cannot execute there

(Obsolete; no longer used.)

PBSE_SISREJECT 15058 Sister rejected

PBSE_SISCOMM 15059 Sister could not communicate

PBSE_SVRDOWN 15060 Request rejected -server shutting down

PBSE_CKPSHORT 15061 Not all tasks could checkpoint

PBSE_UNKNODE 15062 Named vnode is not in the list

PBSE_UNKNODEATR 15063 Vnode attribute not recognized

PBSE_NONODES 15064 Server has no vnode list

PBSE_NODENBIG 15065 Node name is too big

PBSE_NODEEXIST 15066 Node name already exists

PBSE_BADNDATVAL 15067 Bad vnode attribute value

PBSE_MUTUALEX 15068 State values are mutually exclusive

PBSE_GMODERR 15069 Error(s) during global mod of vnodes

PBSE_NORELYMOM 15070 Could not contact MoM

PBSE_REV_NO_WALLTIME 15075 Reservation lacks walltime

Reserved 15076 Not used.

PBSE_TOOLATE 15077 Reservation submitted with a start time that has already
passed

PBSE_IRESVE 15078 Internal reservation system error

PBSE_UNKRESVTYPE 15079 Unknown reservation type

PBSE_RESVEXIST 15080 Reservation already exists

PBSE_resvFail 15081 Reservation failed

PBSE_genBatchReq 15082 Batch request generation failed

PBSE_mgrBatchReq 15083 qmgr batch request failed

PBSE_UNKRESVID 15084 Unknown reservation ID

PBSE_delProgress 15085 Delete already in progress

Table 14-1: Error Codes

Error Name
Error
Code

Description
PBS Professional 2022.1 Reference Guide RG-389

Chapter 14 Error Codes
PBSE_BADTSPEC 15086 Bad time specification(s)

PBSE_RESVMSG 15087 So reply_text can return a msg

PBSE_BADNODESPEC 15089 Node(s) specification error

PBSE_LICENSEINV 15091 License is invalid

PBSE_RESVAUTH_H 15092 Host not authorized to make AR

PBSE_RESVAUTH_G 15093 Group not authorized to make AR

PBSE_RESVAUTH_U 15094 User not authorized to make AR

PBSE_R_UID 15095 Bad effective UID for reservation

PBSE_R_GID 15096 Bad effective GID for reservation

PBSE_IBMSPSWITCH 15097 IBM SP Switch error

PBSE_NOSCHEDULER 15099 Unable to contact scheduler

PBSE_RESCNOTSTR 15100 Resource is not of type string

PBSE_MaxArraySize 15107 max array size exceeded

PBSE_INVALSELECTRESC 15108 resource invalid in select spec

PBSE_INVALJOBRESC 15109 invalid job resource

PBSE_INVALNODEPLACE 15110 node invalid w/place|select

PBSE_PLACENOSELECT 15111 cannot have place w/o select

PBSE_INDIRECTHOP 15112 too many indirect resource levels

PBSE_INDIRECTBT 15113 target resource undefined

PBSE_NGBLUEGENE 15114 No node_group_enable on BlueGene

PBSE_NODESTALE 15115 Cannot change state of stale vnode

PBSE_DUPRESC 15116 cannot dupe resource within a chunk

PBSE_CONNFULL 15117 server connection table full

PBSE_LICENSE_MIN_BADVAL 15118 bad value for pbs_license_min

PBSE_LICENSE_MAX_BADVAL 15119 bad value for pbs_license_max

PBSE_LICENSE_LINGER_BADVAL 15120 bad value for pbs_license_linger_time

PBSE_LICENSE_BAD_ACTION 15122 Not allowed action with licensing

PBSE_BAD_FORMULA 15123 invalid sort formula

PBSE_BAD_FORMULA_KW 15124 invalid keyword in formula

PBSE_BAD_FORMULA_TYPE 15125 invalid resource type in formula

PBSE_BAD_RRULE_YEARLY 15126 reservation duration exceeds 1 year

PBSE_BAD_RRULE_MONTHLY 15127 reservation duration exceeds 1 month

Table 14-1: Error Codes

Error Name
Error
Code

Description
RG-390 PBS Professional 2022.1 Reference Guide

Error Codes Chapter 14
PBSE_BAD_RRULE_WEEKLY 15128 reservation duration exceeds 1 week

PBSE_BAD_RRULE_DAILY 15129 reservation duration exceeds 1 day

PBSE_BAD_RRULE_HOURLY 15130 reservation duration exceeds 1 hour

PBSE_BAD_RRULE_MINUTELY 15131 reservation duration exceeds 1 minute

PBSE_BAD_RRULE_SECONDLY 15132 reservation duration exceeds 1 second

PBSE_BAD_RRULE_SYNTAX 15133 invalid recurrence rule syntax

PBSE_BAD_RRULE_SYNTAX2 15134 invalid recurrence rule syntax

PBSE_BAD_ICAL_TZ 15135 Undefined timezone info directory

PBSE_HOOKERROR 15136 error encountered related to hooks

PBSE_NEEDQUET 15137 need queue type set

PBSE_ETEERROR 15138 not allowed to alter attribute when eligible_time_enable is
off

PBSE_HISTJOBID 15139 History job ID

PBSE_JOBHISTNOTSET 15140 job_history_enable not SET

PBSE_MIXENTLIMS 15141 mixing old and new limit enforcement

PBSE_HEADERROR 15145 Server host not allowed to be provisioned

PBSE_NODEPROV_NOACTION 15146 While provisioning, provisioning attributes can't be modified

PBSE_NODEPROV 15147 State of provisioning vnode can't be changed

PBSE_NODEPROV_NODEL 15148 Vnode can't be deleted while provisioning

PBSE_NODE_BAD_CURRENT_AOE 15149 Attempt to set an AOE that is not in
resources_available.aoe

PBSE_NOTLOCALNODE 15150 Non-local node not allowed in Personal Mode (not used)

PBSE_MOM_INCOMPLETE_HOOK 15167 Execution hooks not fully transferred to a particular MoM

PBSE_MOM_REJECT_ROOT_SCRIPTS 15168 A MoM has rejected a request to copy a hook-related file, or
a job script to be executed by root

PBSE_HOOK_REJECT 15169 A MoM received a reject result from a mom hook

PBSE_HOOK_REJECT_RERUNJOB 15170 Hook rejection requiring a job to be rerun

PBSE_HOOK_REJECT_DELETEJOB 15171 Hook rejection requiring a job to be deleted

PBSE_JOBNBIG 15173 Submitted job or reservation name is too long

15178 Cannot alter start time of running, non-empty reservation

15179 Cannot alter current or next occurrence of a standing reserva-
tion so that it interferes with a later occurrence

Resource monitor specific error codes

PBSE_RMUNKNOWN 15201 Resource unknown

Table 14-1: Error Codes

Error Name
Error
Code

Description
PBS Professional 2022.1 Reference Guide RG-391

Chapter 14 Error Codes
PBSE_RMBADPARAM 15202 Parameter could not be used

PBSE_RMNOPARAM 15203 A needed parameter did not exist

PBSE_RMEXIST 15204 Something specified didn't exist

PBSE_RMSYSTEM 15205 A system error occurred

PBSE_RMPART 15206 Only part of reservation made

PBSE_SSIGNON_BAD_TRANSITION2 15207 bad attempt: false to true

PBSE_TRYAGAIN 15208 Try the request again later

PBSE_ALPSRELERR 15209 PBS is unable to release the ALPS reservation

PBSE_NOTARRAY_ATTR 15231 Attempt to set max_run_subjobs for a non-array job

Table 14-1: Error Codes

Error Name
Error
Code

Description
RG-392 PBS Professional 2022.1 Reference Guide

15

Request Codes

When reading the PBS event logfiles, you may see messages of the form "Type 19 request received from PBS_Server...".
These "type codes" correspond to different PBS batch requests. The following table lists all the PBS type codes and the
corresponding request of each.

Table 15-1: Request Codes

Numeric Value Name

0 PBS_BATCH_Connect

1 PBS_BATCH_QueueJob

2 UNUSED

3 PBS_BATCH_jobscript

4 PBS_BATCH_RdytoCommit

5 PBS_BATCH_Commit

6 PBS_BATCH_DeleteJob

7 PBS_BATCH_HoldJob

8 PBS_BATCH_LocateJob

9 PBS_BATCH_Manager

10 PBS_BATCH_MessJob

11 PBS_BATCH_ModifyJob

12 PBS_BATCH_MoveJob

13 PBS_BATCH_ReleaseJob

14 PBS_BATCH_Rerun

15 PBS_BATCH_RunJob

16 PBS_BATCH_SelectJobs

17 PBS_BATCH_Shutdown

18 PBS_BATCH_SignalJob

19 PBS_BATCH_StatusJob

20 PBS_BATCH_StatusQue

21 PBS_BATCH_StatusSvr

22 PBS_BATCH_TrackJob

23 PBS_BATCH_AsyrunJob

24 PBS_BATCH_Rescq

25 PBS_BATCH_ReserveResc
PBS Professional 2022.1 Reference Guide RG-393

Chapter 15 Request Codes
26 PBS_BATCH_ReleaseResc

27 PBS_BATCH_FailOver

48 PBS_BATCH_StageIn

49 PBS_BATCH_AuthenUser

50 PBS_BATCH_OrderJob

51 PBS_BATCH_SelStat

52 PBS_BATCH_RegistDep

54 PBS_BATCH_CopyFiles

55 PBS_BATCH_DelFiles

56 PBS_BATCH_JobObit

57 PBS_BATCH_MvJobFile

58 PBS_BATCH_StatusNode

59 PBS_BATCH_Disconnect

60 UNUSED

61 UNUSED

62 PBS_BATCH_JobCred

63 PBS_BATCH_CopyFiles_Cred

64 PBS_BATCH_DelFiles_Cred

65 PBS_BATCH_GSS_Context

66 UNUSED

67 UNUSED

68 UNUSED

69 UNUSED

70 PBS_BATCH_SubmitResv

71 PBS_BATCH_StatusResv

72 PBS_BATCH_DeleteResv

73 PBS_BATCH_UserCred

74 PBS_BATCH_UserMigrate

75 PBS_BATCH_ConfirmResv

80 PBS_BATCH_DefSchReply

81 PBS_BATCH_StatusSched

82 PBS_BATCH_StatusRsc

83 PBS_BATCH_StatusHook

Table 15-1: Request Codes

Numeric Value Name
RG-394 PBS Professional 2022.1 Reference Guide

Request Codes Chapter 15
84 PBS_BATCH_PySpawn

85 PBS_BATCH_CopyHookFile

86 PBS_BATCH_DelHookFile

87 PBS_BATCH_MomRestart

88 PBS_BATCH_AuthExternal

89 PBS_BATCH_HookPeriodic

90 PBS_BATCH_RelnodesJob

91 PBS_BATCH_ModifyResv

92 PBS_BATCH_ResvOccurEnd

93 PBS_BATCH_PreemptJobs

94 PBS_BATCH_Cred

95 PBS_BATCH_Authenticate

96 PBS_BATCH_ModifyJob_Async

98 PBS_BATCH_RegisterSched

99 PBS_BATCH_ModifyVnode

Table 15-1: Request Codes

Numeric Value Name
PBS Professional 2022.1 Reference Guide RG-395

Chapter 15 Request Codes
RG-396 PBS Professional 2022.1 Reference Guide

16

PBS Environment Variables

The following table lists the PBS environment variables:

Table 16-1: PBS Environment Variables

Variable Origin Meaning

CONTAINER_IMAGE Job submitter Name of container image in which job is to run

NCPUS Number of threads, defaulting to number of CPUs, on the
vnode

NEC_PROCESS_DIST Job submitter For NEC SX-Aurora TSUBASA. Specifies process dis-
tribution. See "Specifying Process Distribution", on page
208 of the PBS Professional User’s Guide.

OMP_NUM_THREADS Same as NCPUS.

PBS_ARRAY_ID Server Identifier for job arrays. Consists of sequence number.

PBS_ARRAY_INDEX Server Index number of subjob in job array.

PBS_CONF_FILE Path to pbs.conf

PBS_CONTAINER_ARGS Job submitter Arguments to pass to container engine. Multiple argu-
ments are separated with a semicolon. When using this
environment variable, the -env and --entrypoint
arguments to docker run are not supported. To pass
environment variables directly to PBS, use qsub -v.

PBS_DEFAULT Name of default PBS server

PBS_DATA_SERVICE_USER Admin, during installa-
tion

Account used by data service.

PBS_ENVIRONMENT Indicates job type: PBS_BATCH or
PBS_INTERACTIVE

PBS_JOBCOOKIE Unique identifier for inter-MoM job-based communica-
tion.

PBS_JOBDIR Pathname of job-specific staging and execution directory

PBS_JOBID Server The job identifier assigned to the job or job array by the
batch system.

PBS_JOBNAME User The job name supplied by the user.

PBS_LICENSE_INFO Admin Location of license server
PBS Professional 2022.1 Reference Guide RG-397

Chapter 16 PBS Environment Variables
PBS_LOG_HIGHRES_TIMEST
AMP

Controls whether daemons on this host log timestamps in
microseconds.

Default timestamp log format is HH:MM:SS. With
microsecond logging, format is HH:MM:SS:XXXXXX.

Does not affect accounting log. Not applicable when
using syslog.

Overrides configuration parameter in pbs.conf of the
same name.

Valid values: 0, 1. Default: 0 (no microsecond logging)

PBS_MOMPORT Port number on which this job's MoMs will communi-
cate.

PBS_NODEFILE The filename containing a list of vnodes assigned to the
job.

PBS_NODENUM Index into $PBS_NODEFILE. Starts at zero.

PBS_O_HOME Submission environment Value of HOME from submission environment.

PBS_O_HOST Submission environ-
ment; set by PBS

The host name on which the qsub command was exe-
cuted.

PBS_O_LANG Submission environment Value of LANG from submission environment

PBS_O_LOGNAME Submission environment Value of LOGNAME from submission environment

PBS_O_MAIL Submission environment Value of MAIL from submission environment

PBS_O_PATH Submission environment Value of PATH from submission environment

PBS_O_QUEUE Submission environment The original queue name to which the job was submitted.

PBS_O_SHELL Submission environment Value of SHELL from submission environment

PBS_O_SYSTEM Submission environment The operating system name where qsub was executed.

PBS_O_TZ Submission environment Value of TZ from submission environment

PBS_O_WORKDIR Submission environment The absolute path of directory where qsub was exe-
cuted.

PBS_QUEUE The name of the queue from which the job is executed.

PBS_SCHED_THREADS Maximum number of scheduler threads. Scheduler auto-
matically caps number of threads at the number of cores
(or hyperthreads if applicable), regardless of value of this
variable.

Overridden by pbs_sched -t option. Overrides
PBS_SCHED_THREADS parameter in pbs.conf.

Default: 1

PBS_SERVER Submission environment The name of the default PBS server.

PBS_SID Session ID

Table 16-1: PBS Environment Variables

Variable Origin Meaning
RG-398 PBS Professional 2022.1 Reference Guide

PBS Environment Variables Chapter 16
PBS_TASKNUM The task (process) number for the job on this vnode.

PBS_TMPDIR Root of temporary directories/files for PBS components.

TMPDIR The job-specific temporary directory for this job.

Table 16-1: PBS Environment Variables

Variable Origin Meaning
PBS Professional 2022.1 Reference Guide RG-399

Chapter 16 PBS Environment Variables
RG-400 PBS Professional 2022.1 Reference Guide

17

File Listing

The following table lists all the PBS files and directories; owner and permissions are specific to Linux systems.

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size

/opt/pbs/default/etc/pbs_bootcheck.py root -rw-r--r-- 4111

/var/tmp/pbs_bootcheck.py root -rw-r--r-- 4111

/var/tmp/pbs_boot_check

See "Discovering Last Reboot Time of Server" on page 438 in the PBS
Professional Administrator’s Guide.

root -rw-r--r-- 188

PBS_EXEC/ root drwxr-xr-x 4096

PBS_EXEC/bin root drwxr-xr-x 4096

PBS_EXEC/bin/pbsdsh root -rwxr-xr-x 111837

PBS_EXEC/bin/pbsnodes root -rwxr-xr-x 153004

PBS_EXEC/bin/pbs_dataservice root -rwx------

PBS_EXEC/bin/pbs_hostn root -rwxr-xr-x 35493

PBS_EXEC/bin/pbs_rdel root -rwxr-xr-x 151973

PBS_EXEC/bin/pbs_rstat root -rwxr-xr-x 156884

PBS_EXEC/bin/pbs_rsub root -rwxr-xr-x 167446

PBS_EXEC/bin/pbs_tclsh root -rwxr-xr-x 857552

PBS_EXEC/bin/pbs_wish root -rwxr-xr-x 1592236

PBS_EXEC/bin/printjob root -rwxr-xr-x 42667

PBS_EXEC/bin/qalter root -rwxr-xr-x 210723

PBS_EXEC/bin/qdel root -rwxr-xr-x 164949

PBS_EXEC/bin/qdisable root -rwxr-xr-x 139559

PBS_EXEC/bin/qenable root -rwxr-xr-x 139558

PBS_EXEC/bin/qhold root -rwxr-xr-x 165368

PBS_EXEC/bin/qmgr root -rwxr-xr-x 202526

PBS_EXEC/bin/qmove root -rwxr-xr-x 160932

PBS_EXEC/bin/qmsg root -rwxr-xr-x 160408

PBS_EXEC/bin/qorder root -rwxr-xr-x 146393

PBS_EXEC/bin/qrerun root -rwxr-xr-x 157228
PBS Professional 2022.1 Reference Guide RG-401

Chapter 17 File Listing
PBS_EXEC/bin/qrls root -rwxr-xr-x 165361

PBS_EXEC/bin/qrun root -rwxr-xr-x 160978

PBS_EXEC/bin/qselect root -rwxr-xr-x 163266

PBS_EXEC/bin/qsig root -rwxr-xr-x 160083

PBS_EXEC/bin/qstart root -rwxr-xr-x 139589

PBS_EXEC/bin/qstat root -rwxr-xr-x 207532

PBS_EXEC/bin/qstop root -rwxr-xr-x 139584

PBS_EXEC/bin/qsub root -rwxr-xr-x 275460

PBS_EXEC/bin/qterm root -rwxr-xr-x 132188

PBS_EXEC/bin/tracejob root -rwxr-xr-x 64730

PBS_EXEC/etc root drwxr-xr-x 4096

PBS_EXEC/etc/modulefile root -rw-r--r-- 749

PBS_EXEC/etc/pbs_db_schema.sql root -rw-r--r-- 10522

PBS_EXEC/etc/pbs_dedicated root -rw-r--r-- 557

PBS_EXEC/etc/pbs_holidays root -rw-r--r-- 2612

PBS_EXEC/etc/pbs_holidays.<year> root -rw-r--r-- 2643

PBS_EXEC/etc/pbs_resource_group root -rw-r--r-- 657

PBS_EXEC/etc/pbs_sched_config root -r--r--r-- 9791

PBS_EXEC/include root drwxr-xr-x 4096

PBS_EXEC/include/pbs_error.h root -r--r--r-- 7543

PBS_EXEC/include/pbs_ifl.h root -r--r--r-- 17424

PBS_EXEC/include/rm.h root -r--r--r-- 740

PBS_EXEC/include/tm.h root -r--r--r-- 2518

PBS_EXEC/include/tm_.h root -r--r--r-- 2236

PBS_EXEC/lib root drwxr-xr-x 4096

PBS_EXEC/lib/libattr.a root -rw-r--r-- 390274

PBS_EXEC/lib/liblog.a root -rw-r--r-- 101230

PBS_EXEC/lib/libnet.a root -rw-r--r-- 145968

PBS_EXEC/lib/libpbs.a root -rw-r--r-- 1815486

PBS_EXEC/lib/libsite.a root -rw-r--r-- 132906

PBS_EXEC/lib/MPI root drwxr-xr-x 4096

PBS_EXEC/lib/MPI/pbsrun.ch_gm.init.in root -rw-r--r-- 9924

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-402 PBS Professional 2022.1 Reference Guide

File Listing Chapter 17
PBS_EXEC/lib/MPI/pbsrun.ch_mx.init.in root -rw-r--r-- 9731

PBS_EXEC/lib/MPI/pbsrun.gm_mpd.init.in root -rw-r--r-- 10767

PBS_EXEC/lib/MPI/pbsrun.intelmpi.init.in root -rw-r--r-- 10634

PBS_EXEC/lib/MPI/pbsrun.mpich2.init.in root -rw-r--r-- 10694

PBS_EXEC/lib/MPI/pbsrun.mx_mpd.init.in root -rw-r--r-- 10770

PBS_EXEC/lib/MPI/sgiMPI.awk root -rw-r--r-- 6564

PBS_EXEC/lib/pbs_sched.a root -rw-r--r-- 822026

PBS_EXEC/lib/pm root drwxr--r-- 4096

PBS_EXEC/lib/pm/PBS.pm root -rw-r--r-- 3908

PBS_EXEC/libexec/au-nodeupdate.pl root -rw-r--r--

PBS_EXEC/libexec/install_db root -rwx------ 10506

PBS_EXEC/libexec/pbs_habitat root -rwx------ 10059

PBS_EXEC/libexec/pbs_init.d root -rwx------ 25568

PBS_EXEC/libexec/pbs_postinstall root -rwx------ 29104

PBS_EXEC/share/man root drwxr-xr-x 4096

PBS_EXEC/share/man/man1 root drwxr-xr-x 4096

PBS_EXEC/share/man/man1/pbs.1B root -rw-r--r-- 5376

PBS_EXEC/share/man/man1/pbsdsh.1B root -rw-r--r-- 2978

PBS_EXEC/share/man/man1/pbs_ralter.1B root -rw-r--r--

PBS_EXEC/share/man/man1/pbs_rdel.1B root -rw-r--r-- 2342

PBS_EXEC/share/man/man1/pbs_rstat.1B root -rw-r--r-- 2682

PBS_EXEC/share/man/man1/pbs_rsub.1B root -rw-r--r-- 9143

PBS_EXEC/share/man/man1/qalter.1B root -rw-r--r-- 21569

PBS_EXEC/share/man/man1/qdel.1B root -rw-r--r-- 3363

PBS_EXEC/share/man/man1/qhold.1B root -rw-r--r-- 4323

PBS_EXEC/share/man/man1/qmove.1B root -rw-r--r-- 3343

PBS_EXEC/share/man/man1/qmsg.1B root -rw-r--r-- 3244

PBS_EXEC/share/man/man1/qorder.1B root -rw-r--r-- 3028

PBS_EXEC/share/man/man1/qrerun.1B root -rw-r--r-- 2965

PBS_EXEC/share/man/man1/qrls.1B root -rw-r--r-- 3927

PBS_EXEC/share/man/man1/qselect.1B root -rw-r--r-- 12690

PBS_EXEC/share/man/man1/qsig.1B root -rw-r--r-- 3817

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
PBS Professional 2022.1 Reference Guide RG-403

Chapter 17 File Listing
PBS_EXEC/share/man/man1/qstat.1B root -rw-r--r-- 15274

PBS_EXEC/share/man/man1/qsub.1B root -rw-r--r-- 36435

PBS_EXEC/share/man/man3 root drwxr-xr-x 4096

PBS_EXEC/share/man/man3/pbs_alterjob.3B root -rw-r--r-- 5475

PBS_EXEC/share/man/man3/pbs_connect.3B root -rw-r--r-- 3493

PBS_EXEC/share/man/man3/pbs_default.3B root -rw-r--r-- 2150

PBS_EXEC/share/man/man3/pbs_deljob.3B root -rw-r--r-- 3081

PBS_EXEC/share/man/man3/pbs_disconnect.3B root -rw-r--r-- 1985

PBS_EXEC/share/man/man3/pbs_geterrmsg.3B root -rw-r--r-- 2473

PBS_EXEC/share/man/man3/pbs_holdjob.3B root -rw-r--r-- 3006

PBS_EXEC/share/man/man3/pbs_manager.3B root -rw-r--r-- 4337

PBS_EXEC/share/man/man3/pbs_movejob.3B root -rw-r--r-- 3220

PBS_EXEC/share/man/man3/pbs_msgjob.3B root -rw-r--r-- 2912

PBS_EXEC/share/man/man3/pbs_orderjob.3B root -rw-r--r-- 2526

PBS_EXEC/share/man/man3/pbs_rerunjob.3B root -rw-r--r-- 2531

PBS_EXEC/share/man/man3/pbs_rlsjob.3B root -rw-r--r-- 3043

PBS_EXEC/share/man/man3/pbs_runjob.3B root -rw-r--r-- 3484

PBS_EXEC/share/man/man3/pbs_selectjob.3B root -rw-r--r-- 7717

PBS_EXEC/share/man/man3/pbs_sigjob.3B root -rw-r--r-- 3108

PBS_EXEC/share/man/man3/pbs_statjob.3B root -rw-r--r-- 4618

PBS_EXEC/share/man/man3/pbs_statnode.3B root -rw-r--r-- 3925

PBS_EXEC/share/man/man3/pbs_statque.3B root -rw-r--r-- 4009

PBS_EXEC/share/man/man3/pbs_statserver.3B root -rw-r--r-- 3674

PBS_EXEC/share/man/man3/pbs_submit.3B root -rw-r--r-- 6320

PBS_EXEC/share/man/man3/pbs_submitresv.3B root -rw-r--r-- 3878

PBS_EXEC/share/man/man3/pbs_terminate.3B root -rw-r--r-- 3322

PBS_EXEC/share/man/man3/tm.3B root -rw-r--r-- 11062

PBS_EXEC/share/man/man7 root drwxr-xr-x 4096

PBS_EXEC/share/man/man7/pbs_job_attributes.7B root -rw-r--r-- 15920

PBS_EXEC/share/man/man7/pbs_node_attributes.7B root -rw-r--r-- 7973

PBS_EXEC/share/man/man7/pbs_queue_attributes.7B root -rw-r--r-- 11062

PBS_EXEC/share/man/man7/pbs_resources.7B root -rw-r--r-- 22124

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-404 PBS Professional 2022.1 Reference Guide

File Listing Chapter 17
PBS_EXEC/share/man/man7/pbs_resv_attributes.7B root -rw-r--r-- 11662

PBS_EXEC/share/man/man7/pbs_server_attributes.7B root -rw-r--r-- 14327

PBS_EXEC/share/man/man8 root drwxr-xr-x 4096

PBS_EXEC/share/man/man8/mpiexec.8B root -rw-r--r-- 4701

PBS_EXEC/share/man/man8/pbs-report.8B root -rw-r--r-- 19221

PBS_EXEC/share/man/man8/pbsfs.8B root -rw-r--r-- 3703

PBS_EXEC/share/man/man8/pbsnodes.8B root -rw-r--r-- 3441

PBS_EXEC/share/man/man8/pbsrun.8B root -rw-r--r-- 20937

PBS_EXEC/share/man/man8/pbsrun_unwrap.8B root -rw-r--r-- 2554

PBS_EXEC/share/man/man8/pbsrun_wrap.8B root -rw-r--r-- 3855

PBS_EXEC/share/man/man8/pbs_attach.8B root -rw-r--r-- 3790

PBS_EXEC/share/man/man8/pbs_hostn.8B root -rw-r--r-- 2781

PBS_EXEC/share/man/man8/pbs_idled.8B root -rw-r--r-- 2628

PBS_EXEC/share/man/man8/pbs_mom.8B root -rw-r--r-- 23496

PBS_EXEC/share/man/man8/pbs_mpihp.8B root -rw-r--r-- 4120

PBS_EXEC/share/man/man8/pbs_mpirun.8B root -rw-r--r-- 3130

PBS_EXEC/share/man/man8/pbs_probe.8B root -rw-r--r-- 3344

PBS_EXEC/share/man/man8/pbs_sched_cc.8B root -rw-r--r-- 6731

PBS_EXEC/share/man/man8/pbs_server.8B root -rw-r--r-- 7914

PBS_EXEC/share/man/man8/pbs_tclsh.8B root -rw-r--r-- 2475

PBS_EXEC/share/man/man8/pbs_tmrsh.8B root -rw-r--r-- 3556

PBS_EXEC/share/man/man8/pbs_wish.8B root -rw-r--r-- 2123

PBS_EXEC/share/man/man8/printjob.8B root -rw-r--r-- 2823

PBS_EXEC/share/man/man8/qdisable.8B root -rw-r--r-- 3104

PBS_EXEC/share/man/man8/qenable.8B root -rw-r--r-- 2937

PBS_EXEC/share/man/man8/qmgr.8B root -rw-r--r-- 7282

PBS_EXEC/share/man/man8/qrun.8B root -rw-r--r-- 2850

PBS_EXEC/share/man/man8/qstart.8B root -rw-r--r-- 2966

PBS_EXEC/share/man/man8/qstop.8B root -rw-r--r-- 2963

PBS_EXEC/share/man/man8/qterm.8B root -rw-r--r-- 4839

PBS_EXEC/share/man/man8/tracejob.8B root -rw-r--r-- 4664

PBS_EXEC/pgsql root -rwxr-xr-x

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
PBS Professional 2022.1 Reference Guide RG-405

Chapter 17 File Listing
PBS_EXEC/sbin root drwxr-xr-x 4096

PBS_EXEC/sbin/pbs-report root -rwxr-xr-x 68296

PBS_EXEC/sbin/pbsfs root -rwxr-xr-x 663707

PBS_EXEC/sbin/pbs_demux root -rwxr-xr-x 38688

PBS_EXEC/sbin/pbs_idled root -rwxr-xr-x 99373

PBS_EXEC/sbin/pbs_iff root -rwsr-xr-x 133142

PBS_EXEC/sbin/pbs_mom root -rwx------ 839326

PBS_EXEC/sbin/pbs_probe root -rwsr-xr-x 83108

PBS_EXEC/sbin/pbs_rcp root -rwsr-xr-x 75274

PBS_EXEC/sbin/pbs_sched root -rwx------ 705478

PBS_EXEC/sbin/pbs_server root -rwx------ 1133650

PBS_EXEC/tcltk root drwxr-xr-x 4096

PBS_EXEC/tcltk/bin root drwxr-xr-x 4096

PBS_EXEC/tcltk/bin/tclsh8.3 root -rw-r--r-- 552763

PBS_EXEC/tcltk/bin/wish8.3 root -rw-r--r-- 1262257

PBS_EXEC/tcltk/include root drwxr-xr-x 4096

PBS_EXEC/tcltk/include/tcl.h root -rw-r--r-- 57222

PBS_EXEC/tcltk/include/tclDecls.h root -rw-r--r-- 123947

PBS_EXEC/tcltk/include/tk.h root -rw-r--r-- 47420

PBS_EXEC/tcltk/include/tkDecls.h root -rw-r--r-- 80181

PBS_EXEC/tcltk/lib root drwxr-xr-x 4096

PBS_EXEC/tcltk/lib/libtcl8.3.a root -rw-r--r-- 777558

PBS_EXEC/tcltk/lib/libtclstub8.3.a root -rw-r--r-- 1832

PBS_EXEC/tcltk/lib/libtk8.3.a root -rw-r--r-- 1021024

PBS_EXEC/tcltk/lib/libtkstub8.3.a root -rw-r--r-- 3302

PBS_EXEC/tcltk/lib/tcl8.3 root drwxr-xr-x 4096

PBS_EXEC/tcltk/lib/tclConfig.sh root -rw-r--r-- 7076

PBS_EXEC/tcltk/lib/tk8.3 root drwxr-xr-x 4096

PBS_EXEC/tcltk/lib/tkConfig.sh root -rw-r--r-- 3822

PBS_EXEC/tcltk/license.terms root -rw-r--r-- 2233

PBS_HOME root drwxr-xr-x 4096

PBS_HOME/aux root drwxr-xr-x 4096

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-406 PBS Professional 2022.1 Reference Guide

File Listing Chapter 17
PBS_HOME/checkpoint root drwx------ 4096

PBS_HOME/datastore data ser-
vice
account

-rwx------

PBS_HOME/mom_logs root drwxr-xr-x 4096

PBS_HOME/mom_priv root drwxr-x--x 4096

PBS_HOME/mom_priv/config root -rw-r--r-- 18

PBS_HOME/mom_priv/jobs root drwxr-x--x 4096

PBS_HOME/mom_priv/mom.lock root -rw-r--r-- 4

PBS_HOME/pbs_environment root -rw-r--r-- 0

PBS_HOME/sched_log root drwxr-xr-x 4096

PBS_HOME/sched_priv root drwxr-x--- 4096

PBS_HOME/sched_priv/dedicated_time root -rw-r--r-- 557

PBS_HOME/sched_priv/holidays root -rw-r--r-- 1228

PBS_HOME/sched_priv/resource_group root -rw-r--r-- 0

PBS_HOME/sched_priv/sched.lock root -rw-r--r-- 4

PBS_HOME/sched_priv/sched_config root -rw-r--r-- 6370

PBS_HOME/sched_priv/sched_out root -rw-r--r-- 0

PBS_HOME/server_logs root drwxr-xr-x 4096

PBS_HOME/server_priv root drwxr-x--- 4096

PBS_HOME/server_priv/accounting root drwxr-xr-x 4096

PBS_HOME/server_priv/acl_groups root drwxr-x--- 4096

PBS_HOME/server_priv/acl_hosts root drwxr-x--- 4096

PBS_HOME/server_priv/acl_svr root drwxr-x--- 4096

PBS_HOME/server_priv/acl_svr/managers root -rw------- 13

PBS_HOME/server_priv/acl_users root drwxr-x--- 4096

PBS_HOME/server_priv/config

PBS_HOME/server_priv/db_user

PBS_HOME/server_priv/db_password

PBS_HOME/server_priv/hooks

PBS_HOME/server_priv/jobs root drwxr-x--- 4096

PBS_HOME/server_priv/license_file root -rw-r--r-- 34

PBS_HOME/server_priv/nodes

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
PBS Professional 2022.1 Reference Guide RG-407

Chapter 17 File Listing
PBS_HOME/server_priv/queues/newqueue root -rw------- 303

PBS_HOME/server_priv/queues/workq root -rw------- 303

PBS_HOME/server_priv/resourcedef root

PBS_HOME/server_priv/server.lock root -rw------- 4

PBS_HOME/server_priv/svrlive root -rw-------

PBS_HOME/server_priv/tracking root -rw------- 0

PBS_HOME/spool root drwxrwxrwt 4096

PBS_HOME/undelivered root drwxrwxrwt 4096

Table 17-1: File Listing

Directory / File Owner Permission
Average

Size
RG-408 PBS Professional 2022.1 Reference Guide

18

Introduction to PBS

18.1 Acknowledgements

PBS Professional is the enhanced commercial version of the PBS software originally developed for NASA. The NASA
version had a number of corporate and individual contributors over the years, for which the PBS developers and PBS
community is most grateful. Below we provide formal legal acknowledgements to corporate and government entities,
then special thanks to individuals.

The NASA version of PBS contained software developed by NASA Ames Research Center, Lawrence Livermore
National Laboratory, and MRJ Technology Solutions. In addition, it included software developed by the NetBSD Foun-
dation, Inc., and its contributors as well as software developed by the University of California, Berkeley and its contribu-
tors.

Other contributors to the NASA version of PBS include Bruce Kelly and Clark Streeter of NERSC; Kent Crispin and
Terry Heidelberg of LLNL; John Kochmar and Rob Pennington of Pittsburgh Supercomputing Center; and Dirk Grun-
wald of University of Colorado, Boulder. The ports of PBS to the Cray T3e and the IBM SP SMP were funded by DoD
USAERDC; the port of PBS to the Cray SV1 was funded by DoD MSIC.

No list of acknowledgements for PBS would possibly be complete without special recognition of the first two beta test
sites. Thomas Milliman of the Space Sciences Center of the University of New Hampshire was the first beta tester.
Wendy Lin of Purdue University was the second beta tester and holds the honor of submitting more problem reports than
anyone else outside of NASA.
PBS Professional 2022.1 Reference Guide RG-409

Chapter 18 Introduction to PBS
RG-410 PBS Professional 2022.1 Reference Guide

Index

$action RG-244
$checkpoint_path RG-244
$clienthost RG-244
$cputmult RG-245
$dce_refresh_delta RG-245
$enforce RG-245
$job_launch_delay RG-247
$jobdir_root RG-246
$logevent RG-247
$max_check_poll RG-247
$max_load RG-248
$max_poll_downtime RG-248
$min_check_poll RG-248
$prologalarm RG-248
$reject_root_scripts RG-248
$restart_background RG-249
$restart_transmogrify RG-249
$restrict_user RG-249
$restrict_user_exceptions RG-249
$restrict_user_maxsysid RG-249
$restricted RG-249
$sister_join_job_alarm RG-250
$suspendsig RG-250
$tmpdir RG-250
$usecp RG-250
$wallmult RG-250

A
accept an action RG-1
access

by group RG-7
by user RG-20
from host RG-8
to a queue RG-1
to a reservation RG-1
to the server RG-1

access control list RG-1
account string RG-1
Account_Name

job attribute RG-327
accounting

account string RG-1
accounting log entry

format RG-353
accounting_id

job attribute RG-327

accrue_type
job attribute RG-327

ACL RG-1, RG-379, RG-382, RG-383, RG-384
acl_group_enable

queue attribute RG-311
acl_groups

queue attribute RG-311
acl_host_enable RG-281

queue attribute RG-311
acl_host_moms_enable RG-281
acl_hosts

queue attribute RG-311
server attribute RG-281

acl_resv_group_enable
server attribute RG-281

acl_resv_groups
server attribute RG-281

acl_resv_host_enable
server attribute RG-281

acl_resv_hosts
server attribute RG-282

acl_resv_user_enable
server attribute RG-282

acl_resv_users
server attribute RG-282

acl_roots
server attribute RG-282

acl_user_enable
queue attribute RG-311
server attribute RG-282

acl_users
queue attribute RG-311
server attribute RG-282

action RG-1
accept RG-1
reject RG-16

active (failover) RG-1
Active Directory RG-1
Admin RG-1
administrator RG-2
Administrators RG-2
advance reservation RG-2, RG-390
aggressive_provision RG-256
alarm

hook attribute RG-349
ALM license server RG-2
alt_id
PBS Professional 2022.1 Reference Guide RG-411

Index
job attribute RG-327
Ames Research Center RG-409
AOE RG-2
aoe RG-265
API RG-2
application checkpoint RG-2
application operating environment RG-2
arch RG-266
argument_list

job attribute RG-328
array

job attribute RG-328
array job RG-2, RG-9
array_id

job attribute RG-328
array_index

job attribute RG-328
array_indices_remaining

job attribute RG-328
array_indices_submitted

job attribute RG-328
array_state_count

job attribute RG-329
ASAP reservation RG-2, RG-10
attribute

definition RG-2
log_events RG-298
rerunnable RG-16

attribute name
format RG-353

Authorized_Groups
reservation attribute RG-303

Authorized_Hosts
reservation attribute RG-303

Authorized_Users
reservation attribute RG-304

avoid_provision RG-256

B
backfill RG-252
backfill_depth

queue attribute RG-311
server attribute RG-282

backfill_prime RG-252
backfilling RG-2
batch job RG-9
batch processing RG-3
block

job attribute RG-329
Boolean

format RG-259, RG-359
borrowing vnode RG-3
built-in hook RG-3

built-in resource RG-3
busy RG-365
by_queue RG-252

C
Checkpoint

job attribute RG-329
checkpoint RG-244, RG-388, RG-407

restart RG-16
restart file RG-17
restart script RG-17

checkpoint and abort RG-3
checkpoint and restart RG-3
checkpoint/restart RG-3
checkpoint_abort RG-3, RG-244
checkpoint_min

queue attribute RG-312
child vnode RG-3
chunk RG-3
chunk set RG-3
chunk-level resource RG-3
cluster RG-4
comm RG-4
commands RG-4
comment

job attribute RG-330
scheduler attribute RG-298
server attribute RG-283
vnode attribute RG-320

communication daemon RG-4
complex RG-4

Linux-Windows RG-11
mixed-mode RG-12
Windows-Linux RG-20

configuration file
version 1 RG-20
version 2 RG-20

consumable resource RG-4
CPU RG-4
cput RG-266
creating a hook RG-4
ctime

job attribute RG-330
reservation attribute RG-304

current_aoe
vnode attribute RG-320

current_eoe RG-320
custom resource RG-4

D
data service account RG-4
data service management account RG-4
date
RG-412 PBS Professional 2022.1 Reference Guide

Index
format RG-353
datetime

format RG-354
debug

hook attribute RG-349
dedicated_prefix RG-252
default server RG-5
default_chunk

queue attribute RG-312
server attribute RG-283

default_qdel_arguments
server attribute RG-283

default_qsub_arguments
server attribute RG-283

default_queue
server attribute RG-283

degraded reservation RG-16
delegation RG-5
delete_idle_time RG-304
depend

job attribute RG-331
destination

definition RG-5
destination identifier RG-5

format RG-354
destination queue RG-5
destination server RG-5
directive RG-6
directory

staging and execution RG-19
DIS RG-369
do_not_span_psets

scheduler attribute RG-298
Domain Admin Account RG-6
Domain Admins RG-6
Domain User Account RG-6
Domain Users RG-6
down RG-365

E
egroup

job attribute RG-331
eligible_time

job attribute RG-332
eligible_time_enable

server attribute RG-283
enabled

hook attribute RG-349
queue attribute RG-312

endpoint RG-6
energy RG-266
Enterprise Admins RG-6
entity RG-6

entity share RG-6
environment variables RG-397
eoe RG-266
error codes RG-387
Error_Path

job attribute RG-332
est_start_time_freq

server attribute RG-284
estimated

job attribute RG-333
etime

job attribute RG-333
euser

job attribute RG-333
event RG-6

hook attribute RG-350
exec_host

job attribute RG-334
exec_vnode RG-266

job attribute RG-334
executable

job attribute RG-333
execution event hooks RG-6
execution host RG-6
execution queue RG-6
Execution_Time

job attribute RG-334
Exit_status

job attribute RG-335
express_queue RG-300

F
fail_action

hook attribute RG-351
failover RG-6

idle RG-8
primary scheduler RG-15
primary server RG-15
secondary scheduler RG-17
secondary server RG-17

failure action RG-7
fair_share RG-252
fairshare RG-7, RG-300
fairshare_decay_factor RG-252
fairshare_decay_time RG-253
fairshare_enforce_no_shares RG-253
fairshare_entity RG-253
fairshare_perc RG-254
fairshare_usage_res RG-253
file RG-267

stage in RG-18
stage out RG-18
vnodedefs RG-20
PBS Professional 2022.1 Reference Guide RG-413

Index
file staging RG-7
files

nodes RG-380
finished jobs RG-7
flatuid

server attribute RG-284
FLicenses

server attribute RG-284
float

format RG-259, RG-359
floating license RG-7
format

accounting log entry RG-353
attribute name RG-353
Boolean RG-259, RG-359
date RG-353
datetime RG-354
destination identifier RG-354
float RG-259, RG-359
host name RG-354
job array identifier RG-354
job array name RG-355
job array range RG-355
job identifier RG-355, RG-357
job name RG-355
limit specification RG-356
logfile-date-time RG-356
pathname RG-357
PBS NAME RG-357
PBS password RG-357
project name RG-357
queue identifier RG-357
queue name RG-357
reservation name RG-358
size RG-260, RG-360
string resource value RG-260, RG-360
string_array RG-260, RG-360
subjob identifier RG-358
username RG-358

Windows RG-358
vnode name RG-358

forward_x11_cookie
job attribute RG-335

forward_x11_port
job attribute RG-335

free RG-365
freq

hook attribute RG-351
from_route_only

queue attribute RG-312
furnishing queue RG-7

G
group RG-7

access RG-7
ID (GID) RG-7

group limit RG-8
group_list

job attribute RG-335

H
half_life RG-253
hasnodes

queue attribute RG-312
hbmem RG-267
history jobs RG-8
hold RG-8
Hold_Types

job attribute RG-335
hook RG-8

creating RG-4
importing RG-8
provisioning RG-15

hooks
execution event RG-6
non-job event RG-12
pre-execution event RG-15
reject action RG-16

host RG-8, RG-267
access RG-8

host name
format RG-354

hostname RG-8
Hot_Start

server state RG-364
HTT RG-8

I
Idle

server state RG-364
idle (failover) RG-8
importing a hook RG-8
in_multivnode_host

vnode attribute RG-320
index

subjob RG-19
indirect resource RG-8
InfiniBand RG-49, RG-50
installation account RG-9
instance RG-13
interactive

job attribute RG-336
reservation attribute RG-305

interactive job RG-9
RG-414 PBS Professional 2022.1 Reference Guide

Index
J
job

attribute RG-16
batch RG-9
identifier RG-9
interactive RG-9
kill RG-11
owner RG-13
rerunnable RG-16
route RG-17
shrink-to-fit RG-18
state RG-10
states RG-361
substates RG-361

job array RG-9
identifier RG-9
range RG-9
subjob RG-19
subjob index RG-19

job array identifier
format RG-354

job array name RG-10
format RG-355

job array range
format RG-355

job ID RG-9
job identifier

format RG-355, RG-357
job name RG-10

format RG-355
Job Submission Description Language RG-10
job_history_duration

server attribute RG-284
job_history_enable

server attribute RG-284
Job_Name

job attribute RG-336
Job_Owner

job attribute RG-336
job_priority RG-254
job_requeue_timeout

server attribute RG-285
job_sort_formula

server attribute RG-285
job_sort_formula_threshold

scheduler attribute RG-298
job_sort_key RG-253
job_state

job attribute RG-337
job-busy RG-365
jobdir

job attribute RG-336
job-exclusive RG-365
jobs

moved RG-12
vnode attribute RG-320

jobscript_max_size
server attribute RG-285

job-specific ASAP reservation RG-2, RG-10
job-specific now reservation RG-10, RG-12
job-specific reservation RG-10
Job-specific start reservation RG-10
job-specific start reservation RG-19
job-wide resource RG-10
Join_Path

job attribute RG-338
JSDL RG-10

K
Keep_Files

job attribute RG-338
kill job RG-11
kill_delay

queue attribute RG-313

L
last_state_change_time RG-320
last_used_time RG-321
leaf RG-11
license

external RG-383
vnode attribute RG-321

license server RG-11
ALM RG-2

license server configuration
redundant RG-16

License Server List Configuration RG-11
license_info

vnode attribute RG-321
limit RG-11

generic group limit RG-7
generic project limit RG-7
generic user limit RG-7
group limit RG-8
individual group limit RG-8
individual project limit RG-9
individual user limit RG-9
overall RG-13
project RG-15
user limit RG-20

limit specification
format RG-356

Linux-Windows complex RG-11
load balance RG-11
load_balancing RG-254
load_balancing_rr RG-254
log_events
PBS Professional 2022.1 Reference Guide RG-415

Index
scheduler attribute RG-298
server attribute RG-285

log_filter RG-254
logfile-date-time

format RG-356

M
mail_from

server attribute RG-286
Mail_Points

job attribute RG-338
reservation attribute RG-305

Mail_Users
job attribute RG-338
reservation attribute RG-305

mailer RG-285
maintenance RG-365
maintenance_jobs RG-321
Manager RG-11
managers

server attribute RG-286
managing vnode RG-11
master provisioning script RG-11
master script RG-11
max_array_size

queue attribute RG-313
server attribute RG-286

max_concurrent_provision
server attribute RG-286

max_group_res
queue attribute RG-313

max_group_res_soft
queue attribute RG-313

max_group_run
queue attribute RG-313

max_group_run_soft
queue attribute RG-313

max_job_sequence_id RG-287
max_queuable

queue attribute RG-314
max_queued

queue attribute RG-314
max_queued_res

queue attribute RG-314
max_run

queue attribute RG-314
max_run_res

queue attribute RG-314
max_run_res_soft

queue attribute RG-315
max_run_soft

queue attribute RG-315
max_run_subjobs RG-339

max_running
queue attribute RG-315

max_user_res
queue attribute RG-315

max_user_res_soft
queue attribute RG-315

max_user_run
queue attribute RG-316

max_user_run_soft
queue attribute RG-316

max_walltime RG-267
mem RG-267
memory-only vnode RG-11
memreserved RG-248
min_walltime RG-268
mixed-mode complex RG-12
MoM RG-12

subordinate RG-19
Mom

vnode attribute RG-321
mom_resources RG-254
monitoring RG-12
Mother Superior RG-12
moved jobs RG-12
mpiexec RG-27
mpiprocs RG-268
MRJ Technology Solutions RG-409
mtime

job attribute RG-339
reservation attribute RG-306

multinodebusy RG-244
multi-vnode complex RG-380

N
name

vnode attribute RG-321
NASA

and PBS RG-409
nchunk RG-269
NCPUS RG-397
ncpus RG-269
nice RG-269
no_multinode_jobs

vnode attribute RG-322
no_stdio_sockets

job attribute RG-339
node

definition RG-13
node_group_key

queue attribute RG-316
server attribute RG-290

node_sort_key RG-254
nodect RG-269
RG-416 PBS Professional 2022.1 Reference Guide

Index
nodes RG-269
non-consumable resource RG-12
non-job event hooks RG-12
non-primetime RG-15
nonprimetime_prefix RG-255
normal_jobs RG-300
now reservation RG-10, RG-12
ntype

vnode attribute RG-322

O
obittime RG-339
object RG-12
occurrence of a standing reservation RG-13
offline RG-365
OMP_NUM_THREADS RG-397
ompthreads RG-270
only_explicit_psets

scheduler attribute RG-298
Operator RG-13
operators

server attribute RG-291
opt_backfill_fuzzy

scheduler attribute RG-299
order

hook attribute RG-351
Output_Path

job attribute RG-340
overall limit RG-13
owner RG-13

P
parameter RG-13
parent vnode RG-13
partition RG-316, RG-322

scheduler attribute RG-299
pathname

format RG-357
PBS RG-398
pbs RG-29, RG-92
PBS Administrator RG-14
PBS entity RG-6, RG-13
pbs module RG-13
PBS NAME

format RG-357
PBS object RG-12, RG-14
PBS password

format RG-357
PBS Professional RG-14
pbs_account RG-54
PBS_ARRAY_ID RG-397
PBS_ARRAY_INDEX RG-397
pbs_attach RG-56

PBS_AUTH_METHOD RG-369
PBS_BATCH_SERVICE_PORT RG-369
PBS_BATCH_SERVICE_PORT_DIS RG-369
pbs_comm RG-4, RG-58
PBS_COMM_LOG_EVENTS RG-369
PBS_COMM_ROUTERS RG-369
PBS_COMM_THREADS RG-369
PBS_CONF_FILE RG-397
PBS_CONF_SYSLOG RG-373
PBS_CONF_SYSLOGSEVR RG-373
PBS_CORE_LIMIT RG-370
PBS_CP RG-370
PBS_DAEMON_SERVICE_USER RG-370
PBS_DATA_SERVICE_PORT RG-370
pbs_dataservice RG-61
pbs_ds_password RG-62
PBS_ENCRYPT_METHOD RG-370
PBS_ENVIRONMENT RG-370, RG-397
PBS_EXEC RG-14, RG-370
PBS_HOME RG-14, RG-370
pbs_hostn RG-64
pbs_idled RG-65
pbs_iff RG-67
pbs_interactive RG-68
PBS_JOBCOOKIE RG-397
PBS_JOBID RG-397
PBS_JOBNAME RG-397
PBS_LEAF_NAME RG-370
PBS_LEAF_ROUTERS RG-370
pbs_license_info

server attribute RG-291
pbs_license_linger_time

server attribute RG-291
pbs_license_max

server attribute RG-291
pbs_license_min

server attribute RG-292
PBS_LOCALLOG RG-370
PBS_LOG_HIGHRES_TIMESTAMP RG-370, RG-398
pbs_login RG-69
PBS_MAIL_HOST_NAME RG-371
PBS_MANAGER_SERVICE_PORT RG-371
pbs_mkdirs RG-70
pbs_mom RG-71
PBS_MOM_HOME RG-371
PBS_MOM_NODE_NAME RG-371
PBS_MOM_SERVICE_PORT RG-371
PBS_MOMPORT RG-398
pbs_mpihp RG-76
pbs_mpirun RG-78
PBS_NODENUM RG-398
PBS_O_HOME RG-398
PBS_O_HOST RG-398
PBS_O_LANG RG-398
PBS Professional 2022.1 Reference Guide RG-417

Index
PBS_O_LOGNAME RG-398
PBS_O_MAIL RG-398
PBS_O_PATH RG-398
PBS_O_QUEUE RG-398
PBS_O_SHELL RG-398
PBS_O_SYSTEM RG-398
PBS_O_TZ RG-398
PBS_O_WORKDIR RG-398
PBS_OUTPUT_HOST_NAME RG-371
PBS_PRIMARY RG-371
pbs_probe RG-80
pbs_python RG-82
PBS_QUEUE RG-398
pbs_ralter RG-85
PBS_RCP RG-371
pbs_rdel RG-90
pbs_release_nodes RG-92
PBS_REMOTE_VIEWER RG-371
pbs_rstat RG-94
pbs_rsub RG-96
pbs_sched RG-105
PBS_SCHED_THREADS RG-372
PBS_SCP RG-372
PBS_SECONDARY RG-372
PBS_SERVER RG-372, RG-398
pbs_server RG-107
PBS_SERVER_HOST_NAME RG-372
PBS_SID RG-398
pbs_snapshot RG-111
PBS_START_COMM RG-372
PBS_START_MOM RG-372
PBS_START_SCHED RG-372
PBS_START_SERVER RG-372
PBS_SUPPORTED_AUTH_METHODS RG-372
PBS_TASKNUM RG-399
pbs_tclsh RG-122
PBS_TMPDIR RG-373, RG-399
pbs_tmrsh RG-123
pbs_version

scheduler attribute RG-299
server attribute RG-292
vnode attribute RG-322

pbs_wish RG-125, RG-127
pbsadmin RG-14
pbsdsh RG-30
pbsfs RG-32
pbshook RG-13
pbsnodes RG-36
pbsrun RG-41
pbsrun_unwrap RG-51
pbsrun_wrap RG-52
pcap_accelerator RG-340
pcap_node RG-340
pcpus

vnode attribute RG-322
pcput RG-270
peer scheduling RG-14
pgov RG-340
p-governor RG-340
placement pool RG-14
placement set RG-14
placement set series RG-14
pmem RG-270
pnames

vnode attribute RG-322
policy RG-14

scheduling RG-17
Port

vnode attribute RG-322
POSIX RG-14
power_provisioning

server attribute RG-292
vnode attribute RG-322

poweroff_eligible
vnode attribute RG-322

preempt RG-15
preempt_order RG-255
preempt_prio RG-255
preempt_queue_prio RG-255
preempt_sort RG-255
preempt_targets RG-271
preemption

level RG-15
method RG-15
target RG-15

preemptive_sched RG-255
pre-execution event hooks RG-15
primary execution host RG-15
primary scheduler RG-15
primary server RG-15, RG-371
prime_spill RG-256
primetime RG-15
primetime_prefix RG-255
printjob RG-128
Priority

job attribute RG-341
queue attribute RG-316
vnode attribute RG-323

project RG-15
job attribute RG-341

project limit RG-15
project name

format RG-357
provision RG-15
provision_enable

vnode attribute RG-323
provision_policy RG-256
provisioned vnode RG-15
RG-418 PBS Professional 2022.1 Reference Guide

Index
provisioning RG-366
hook RG-15

provisioning tool RG-16
pstate RG-341
pulling queue RG-16
pvmem RG-271
python_restart_max_hooks

server attribute RG-292
python_restart_max_objects

server attribute RG-292
python_restart_min_interval

server attribute RG-292

Q
qalter RG-130
qdel RG-143
qdisable RG-146
qenable RG-148
qhold RG-150
qmgr RG-152, RG-380
qmove RG-175
qmsg RG-177
qorder RG-179
qrerun RG-181
qrls RG-183
qrun RG-185
qselect RG-189, RG-195
qsig RG-195
qstart RG-198
qstat RG-200
qstop RG-214
qsub RG-216
qterm RG-236
qtime

job attribute RG-341
query_other_jobs

server attribute RG-292
queue

access to a RG-1
definition RG-16
execution RG-6
furnishing RG-7
job attribute RG-341
pulling RG-16
reservation attribute RG-306
routing RG-17
vnode attribute RG-323

queue identifier
format RG-357

queue name
format RG-357

queue_rank
job attribute RG-341

queue_softlimits RG-300
queue_type

job attribute RG-342
queue attribute RG-317

queued_jobs_threshold
queue attribute RG-316

queued_jobs_threshold_res
queue attribute RG-317
server attribute RG-293

queuing RG-16

R
rcp RG-371
redundant license server configuration RG-16
reject an action RG-16
release_nodes_on_stageout RG-342
requeue RG-16
require_cred

queue attribute RG-317
require_cred_enable

queue attribute RG-317
Rerunable

job attribute RG-342
reservation

access to a RG-1
advance RG-2
ASAP RG-2, RG-10
degradation RG-16
degraded RG-5
instance RG-13
job-specific RG-10

ASAP RG-2, RG-10
now RG-10, RG-12
start RG-10, RG-19

now RG-10, RG-12
occurrence RG-13
soonest occurrence RG-18
standing RG-19

instance RG-13
soonest occurrence RG-18

start RG-10
reservation degradation RG-16
reservation ID RG-16
reservation identifier RG-16
reservation name

format RG-358
reserve_count

reservation attribute RG-306
reserve_duration

reservation attribute RG-306
reserve_end

reservation attribute RG-306
reserve_ID
PBS Professional 2022.1 Reference Guide RG-419

Index
reservation attribute RG-306
reserve_index

reservation attribute RG-307
reserve_job RG-307
Reserve_Name

reservation attribute RG-307
Reserve_Owner

reservation attribute RG-307
reserve_retry

reservation attribute RG-307
reserve_retry_cutoff

server attribute RG-293
reserve_retry_init

server attribute RG-293
reserve_retry_time

server attribute RG-293
reserve_rrule

reservation attribute RG-308
reserve_start

reservation attribute RG-308
reserve_state

reservation attribute RG-309
reserve_substate

reservation attribute RG-309
resource RG-16

built-in RG-3
consumable RG-4
custom RG-4
indirect RG-8
job-wide RG-10
non-consumable RG-12
shared RG-18

Resource_List
job attribute RG-343
reservation attribute RG-310

Resource_List.eoe RG-266
resource_unset_infinite RG-257
resources RG-257
resources_assigned

queue attribute RG-317
server attribute RG-294
vnode attribute RG-323

resources_available
queue attribute RG-318
server attribute RG-294
vnode attribute RG-323

resources_available.eoe RG-266
resources_default

queue attribute RG-318
server attribute RG-294

resources_max
queue attribute RG-318
server attribute RG-295

resources_min

queue attribute RG-318
resources_released RG-343
resources_released_list RG-343
resources_used

job attribute RG-343
restart RG-16, RG-244
restart file RG-17
restart script RG-17
restrict_res_to_release_on_suspend RG-295
resv

vnode attribute RG-324
RESV_BEING_DELETED RG-367
RESV_CONFIRMED RG-367
RESV_DEGRADED RG-367
RESV_DELETED RG-367
RESV_DELETING_JOBS RG-367
resv_enable

vnode attribute RG-324
RESV_FINISHED RG-367
RESV_IN_CONFLICT RG-367
resv_nodes

reservation attribute RG-310
RESV_NONE RG-367
resv_post_processing_time

server attribute RG-295
RESV_RUNNING RG-367
RESV_TIME_TO_RUN RG-367
RESV_UNCONFIRMED RG-367
RESV_WAIT RG-367
resv-exclusive RG-366
round_robin RG-257
route RG-17
route queue RG-379, RG-381
route_destinations

queue attribute RG-319
route_held_jobs

queue attribute RG-319
route_lifetime

queue attribute RG-319
route_retry_time

queue attribute RG-319
route_waiting_jobs

queue attribute RG-319
routing queue RG-17
rpp_highwater

server attribute RG-295
rpp_max_pkt_check RG-295
rpp_retry

server attribute RG-295
run_count RG-140, RG-231

job attribute RG-344
run_version

job attribute RG-344
RG-420 PBS Professional 2022.1 Reference Guide

Index
S
sandbox RG-231

job attribute RG-344
sched_cycle_length

scheduler attribute RG-301
sched_host

scheduler attribute RG-301
sched_log

scheduler attribute RG-301
sched_preempt_enforce_resumption

scheduler attribute RG-301
sched_priv

scheduler attribute RG-301
schedselect

job attribute RG-344
scheduler RG-17
scheduler_iteration

scheduler attribute RG-300
server attribute RG-296

Scheduling
server state RG-364

scheduling
policy RG-14, RG-17
scheduler attribute RG-300
server attribute RG-296

scheduling jobs RG-17
Schema Admins RG-17
scp RG-372
secondary scheduler RG-17
secondary server RG-17, RG-372
sequence number RG-17
server RG-18

access to the RG-1
default RG-5
job attribute RG-345
name RG-18
primary RG-371
reservation attribute RG-310
secondary RG-372

server_dyn_res RG-257
server_dyn_res_alarm RG-301
server_softlimits RG-300
server_state

server attribute RG-297
session_id

job attribute RG-345
set_power_cap RG-340
shared resource RG-18
sharing

vnode attribute RG-324
Shell_Path_List

job attribute RG-345
shrink-to-fit job RG-18
single_signon_password_enable

server attribute RG-297
sister RG-18
sisterhood RG-18
site RG-271

definition RG-18
size

format RG-260, RG-360
smp_cluster_dist RG-257
snapshot checkpoint RG-18
soft_walltime RG-272
software RG-271
soonest occurrence RG-18
sort_priority RG-254
stage

in RG-18
out RG-18

stagein
job attribute RG-345

stageout
job attribute RG-345

Stageout_status
job attribute RG-346

staging and execution directory RG-19
stale RG-366
standing reservation RG-19
start reservation RG-10, RG-19
start_time RG-272
started

queue attribute RG-319
state RG-19

scheduler attribute RG-301
server

Hot_Start RG-364
Idle RG-364
Scheduling RG-364
Terminating RG-364
Terminating_Delayed RG-364

vnode attribute RG-326
state_count

queue attribute RG-319
server attribute RG-297

state-unknown, down RG-366
stime

job attribute RG-346
strict ordering RG-19
strict_fifo RG-258
strict_ordering RG-258
string resource value

format RG-260, RG-360
string_array

format RG-260, RG-360
subject RG-19
subjob RG-19
subjob identifier
PBS Professional 2022.1 Reference Guide RG-421

Index
format RG-358
subjob index RG-19
Submit_arguments

job attribute RG-346
subordinate MoM RG-19
substate

job attribute RG-346
sw_index

job attribute RG-346

T
task RG-19
task placement RG-19
terminate RG-244
Terminating

server state RG-364
Terminating_Delayed

server state RG-364
three-server configuration RG-19
throughput_mode

scheduler attribute RG-302
time-sharing RG-379, RG-380
TMPDIR RG-399
tolerate_node_failures RG-347
topjob_ineligible

job attribute RG-347
topology_info

vnode attribute RG-326
total_jobs

queue attribute RG-319
server attribute RG-297

TPP RG-20
tracejob RG-238
type

hook attribute RG-351

U
UID RG-20
umask

job attribute RG-347
unknown_shares RG-258
user

access RG-20
definition RG-20
hook attribute RG-351
ID RG-20

user limit RG-20
User_List

job attribute RG-348
username

format RG-358
Windows

format RG-358

V
Variable_List

job attribute RG-348
vchunk RG-20
version 1 configuration file RG-20
version 2 configuration file RG-20
vmem RG-272
vnode RG-20, RG-272

borrowing RG-3
managing RG-11
memory-only RG-11

vnode name
format RG-358

vnodedefs file RG-20
vntype RG-272
vp RG-20

W
wait-provisioning RG-366
walltime RG-272
win_postinstall.py RG-241
Windows

mixed-mode complex RG-12
Windows-Linux complex RG-20
RG-422 PBS Professional 2022.1 Reference Guide

Altair®

PBS Professional®

2022.1

User’s Guide

Altair PBS Professional 2022.1

User's Guide

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation ix

1 Getting Started with PBS 1
1.1 Why Use PBS? . 1
1.2 PBS Tasks and Components . 1
1.3 Interfaces to PBS . 3
1.4 Setting Up Your Environment . 4

2 Submitting a PBS Job 11
2.1 Introduction to the PBS Job. 11
2.2 The PBS Job Script . 14
2.3 Submitting a PBS Job . 19
2.4 Job Submission Recommendations and Advice . 23
2.5 Job Submission Options . 24
2.6 PBS Jobs on Cray HPE Cray System Management . 31
2.7 Job Submission Caveats. 31

3 Job Input & Output Files 33
3.1 Introduction to Job File I/O in PBS . 33
3.2 Input/Output File Staging. 33
3.3 Managing Output and Error Files . 42

4 Allocating Resources & Placing Jobs 51
4.1 What is a Vnode? . 51
4.2 PBS Resources . 51
4.3 Requesting Resources . 53
4.4 How Resources are Allocated to Jobs . 61
4.5 Limits on Resource Usage . 63
4.6 Viewing Resources . 65
4.7 Specifying Job Placement . 66
4.8 Backward Compatibility . 72

5 Multiprocessor Jobs 79
5.1 Submitting Multiprocessor Jobs . 79
5.2 Using MPI with PBS . 83
5.3 Using PVM with PBS. 103
5.4 Using OpenMP with PBS . 104
5.5 Hybrid MPI-OpenMP Jobs. 106
PBS Professional 2022.1 User’s Guide UG-v

Contents
6 Controlling How Your Job Runs 109
6.1 Using Job Exit Status . 109
6.2 Using Job Dependencies . 109
6.3 Adjusting Job Running Time . 112
6.4 Using Checkpointing . 115
6.5 Holding and Releasing Jobs . 117
6.6 Allowing Your Job to be Re-run. 120
6.7 Controlling Number of Times Job is Re-run . 121
6.8 Deferring Execution. 121
6.9 Setting Priority for Your Job . 122
6.10 Making qsub Wait Until Job Ends. 122
6.11 Running Your Job Interactively . 123
6.12 Using Environment Variables . 128
6.13 Specifying Which Jobs to Preempt . 129
6.14 Releasing Unneeded Vnodes from Your Job . 129
6.15 Running Your Job in a Container . 132
6.16 Allowing Your Job to Tolerate Vnode Failures . 135

7 Reserving Resources 137
7.1 Glossary . 137
7.2 Quick Explanation of Reservations for Jobs . 138
7.3 Prerequisites for Reserving Resources. 138
7.4 Advance and Standing Reservations . 138
7.5 Job-specific Reservations . 142
7.6 Getting Confirmation of a Reservation . 144
7.7 Modifying Reservations . 144
7.8 Deleting Reservations . 146
7.9 Viewing the Status of a Reservation . 146
7.10 Submitting a Job to a Reservation . 149
7.11 Reservation Caveats and Errors . 150

8 Job Arrays 153
8.1 Advantages of Job Arrays . 153
8.2 Glossary . 153
8.3 Description of Job Arrays . 153
8.4 Submitting a Job Array . 156
8.5 Viewing Status of a Job Array . 161
8.6 Using PBS Commands with Job Arrays . 164
8.7 Job Array Caveats. 166

9 Working with PBS Jobs 167
9.1 Using Job History . 167
9.2 Modifying Job Attributes . 168
9.3 Deleting Jobs. 170
9.4 Sending Messages to Jobs . 171
9.5 Sending Signals to Jobs . 172
9.6 Changing Order of Jobs . 172
9.7 Moving Jobs Between Queues . 173
UG-vi PBS Professional 2022.1 User’s Guide

Contents
10 Checking Job & System Status 175
10.1 Selecting Jobs to Examine . 175
10.2 Examining Jobs . 181
10.3 Checking Server Status. 188
10.4 Checking Queue Status . 189
10.5 Checking License Availability . 191

11 Running Jobs in the Cloud 193
11.1 Introduction . 193
11.2 Running Your Job in the Cloud . 193
11.3 Sample Job Scripts for Cloud Jobs . 195

12 Using Budgets 197
12.1 Budgets Commands . 197
12.2 Submitting Jobs with Budgets . 197
12.3 Tutorials. 201

13 Submitting Jobs to NEC SX-Aurora TSUBASA 205
13.1 Vnodes for NEC SX-Aurora TSUBASA. 205
13.2 Terminology. 205
13.3 Resources for SX-Aurora TSUBASA . 206
13.4 Running Your Job on NEC SX-Aurora TSUBASA . 206
13.5 Job Accounting on NEC SX-Aurora TSUBASA. 213
13.6 Environment Variables for NEC MPI . 213

14 Using MLS with PBS Professional 215
14.1 About SELinux PBS Professional . 215
14.2 Requirement for Submitting Jobs . 215
14.3 Viewing and Operating on Jobs . 215
14.4 Credentials of Deleted Jobs . 215
14.5 Caveats . 216
14.6 Errors and Logging . 216
14.7 SELinux Documentation . 217

15 Using Provisioning 219
15.1 Definitions . 219
15.2 How Provisioning Works . 219
15.3 Requirements and Restrictions . 220
15.4 Using Provisioning. 222
15.5 Caveats and Errors . 223

16 Using Accounting 225
16.1 Using Accounting . 225

Index 227
PBS Professional 2022.1 User’s Guide UG-vii

Contents
UG-viii PBS Professional 2022.1 User’s Guide

1

Getting Started with PBS

1.1 Why Use PBS?

PBS frees you from the mechanics of getting your work done; you don't need to shepherd each job to the right machine,
get input and output copied back and forth, or wait until a particular machine is available. You need only specify require-
ments for the tasks you want executed, and hand the tasks off to PBS. PBS holds each task until a slot opens up, then
takes care of copying input files to the execution directory, executing the task, and returning the output to you.

PBS keeps track of which hardware is available, and all waiting and running tasks. PBS matches the requirements of
each of your tasks to the right hardware and time slot, and makes sure that tasks are run according to the site's policy.
PBS also maximizes usage and throughput.

1.2 PBS Tasks and Components

1.2.1 PBS Tasks

PBS is a distributed workload management system. PBS manages and monitors the computational workload for one or
more computers. PBS does the following:

Queuing jobs

PBS collects jobs (work or tasks) to be run on one or more computers. Users submit jobs to PBS, where they are
queued up until PBS is ready to run them.

Scheduling jobs

PBS selects which jobs to run, and when and where to run them, according to the resources requested by the job,
and the policy specified by the site administrator. PBS allows the administrator to prioritize jobs and allocate
resources in a wide variety of ways, to maximize efficiency and/or throughput.

Monitoring jobs

PBS tracks system resources, enforces usage policy, and reports usage. PBS tracks job completion, ensuring
that jobs run despite system outages.

Returning Output

PBS returns job output to the location you specify. See Chapter 3, "Job Input & Output Files", on page 33.
PBS Professional 2022.1 User’s Guide UG-1

Chapter 1 Getting Started with PBS
1.2.2 PBS Components and Process

PBS consists of a set of commands and system daemons/services for running jobs:

Figure 1-1: Jobs are submitted to the PBS server. The scheduler chooses where and when to run the
jobs, and the server sends the jobs to MoM. PBS commands communicate with the server.

The server and scheduler daemons run on the server host. A machine that executes jobs is called an execution host. Each
execution host runs a MoM daemon. The server host can run a MoM daemon. One server manages any number of MoM
daemons. Communication between daemons is handled by communication daemons. Commands can be run from the
server host, execution hosts, and command-only client hosts. The server/scheduler/communication host, the execution
hosts, and the client hosts are called a PBS complex.

Commands

PBS provides a set of commands that you can use to submit, monitor, alter, and delete jobs. The PBS com-
mands can be installed on any supported platform, with or without the other PBS components.

Some PBS commands or command options can be run by any PBS user, while some require elevated privilege.

Job

A PBS job is a task, in the form of a shell script, cmd batch file, Python script, etc. describing the commands
and/or applications you want to run. You hand your task off to PBS, where it becomes a PBS job.

Server

The PBS server manages jobs for the PBS complex. PBS commands talk to the PBS server, jobs are submitted
to the server, and the server queues the jobs and sends them to execution hosts.

Scheduler

The scheduler runs jobs according to the policy specified by the site administrator. The scheduler matches each
job's requirements with available resources, and prioritizes jobs and allocates resources according to policy.

MoM

A MoM manages jobs once they are sent to its execution host. One MoM manages the jobs on each execution
host. The MoM stages files in, runs any prologue, starts each job, monitors the job, stages files out and returns
output to the job submitter, runs any epilogue, and cleans up after the job. The MoM can also run any execution
host hooks.

MoM creates a new session that is as identical to your login session as is possible. For example, under Linux, if
the job submitter's login shell is csh, then MoM creates a session in which .login is run as well as .cshrc.

MoM is a reverse-engineered acronym that stands for Machine-oriented Mini-server.

Batch
 JobsJobs

Kernel

PBS
Commands

Server

Scheduler

MoM
UG-2 PBS Professional 2022.1 User’s Guide

Getting Started with PBS Chapter 1
Communication daemon

The communication daemon, pbs_comm, handles communication between the other PBS daemons.

1.3 Interfaces to PBS

PBS provides a command-line interface, and Altair offers a web-based front end to PBS called Access, which is a sepa-
rate product. This document describes the PBS command-line interface. For information on Access, see
www.altair.com.

1.3.1 PBS Commands

PBS provides a set of commands that allow you to submit, monitor, and manage your jobs. Some PBS commands can be
used by any PBS user; some can be used only by administrators, and some have different behavior depending on the role
of the person invoking them. In this document, we describe the commands that can be used by any PBS user. For a com-
plete description of all commands and their requirements, see “List of Commands” on page 22 of the PBS Professional
Reference Guide.

Table 1-1: PBS Commands

Command Action

mpiexec Runs MPI programs under PBS on Linux

pbsdsh Distributes tasks to vnodes under PBS

pbsnodes Queries PBS host or vnode status, marks hosts free or offline, changes the comment for a
host, or outputs vnode information

pbs_attach Attaches a session ID to a PBS job

pbs_hostn Reports hostname and network address(es)

pbs_login Caches encrypted user password for authentication

pbs_mpihp Runs an MPI application in a PBS job with HP MPI

pbs_mpirun Runs MPI programs under PBS with MPICH

pbs_python Python interpreter for debugging a hook script from the command line

pbs_ralter Modifies an existing advance, standing, or job-specific reservation

pbs_rdel Deletes a PBS advance, standing, or job-specific reservation

pbs_release_nodes Releases sister hosts or vnodes assigned to a PBS job

pbs_rstat Shows status of PBS advance, standing, or job-specific reservations

pbs_rsub Creates a PBS advance, standing, or job-specific reservation

pbs_tclsh Deprecated. TCL shell with TCL-wrapped PBS API

pbs_tmrsh TM-enabled replacement for rsh/ssh for use by MPI implementations

pbs_wish Deprecated. TK window shell with TCL-wrapped PBS API

qalter Alters a PBS job

qdel Deletes PBS jobs
PBS Professional 2022.1 User’s Guide UG-3

Chapter 1 Getting Started with PBS
1.4 Setting Up Your Environment

1.4.1 Prerequisites for Account

Your account must have the following characteristics for PBS to work correctly:

• Account must have access to all PBS hosts

• Account must have valid username and group on all execution hosts and on the server

• Account must be able to transfer files between hosts using the file transfer mechanism chosen by the administrator.
This is described in section 9.7, "Setting File Transfer Mechanism", on page 441 of the PBS Professional Adminis-
trator’s Guide.

• The time zone environment variable must be set correctly in order to use advance and standing reservations. See
section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

• Username must be 256 characters or less in length.

• Your environment must be correctly configured:

• For Linux, see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

• For Windows, see section 1.4.3, “Setting Up Your Windows Environment”, on page 6.

• Account must have correct user authorization to run jobs.

• For Linux, see section 1.4.2.7, “User Authorization Under Linux”, on page 6.

• For Windows, see section 1.4.3.4, “User Authorization under Windows”, on page 7

qhold Holds PBS batch jobs

qmgr Administrator's command interface for managing PBS

qmove Moves a PBS job from one queue to another

qmsg Writes message string into one or more job output files

qorder Swaps queue positions of two PBS jobs

qrls Releases holds on PBS jobs

qsig Selects specified PBS jobs

qsig Sends signal to PBS job

qstat Displays status of PBS jobs, queues, or servers

qsub Submits a job to PBS

Table 1-1: PBS Commands

Command Action
UG-4 PBS Professional 2022.1 User’s Guide

Getting Started with PBS Chapter 1
1.4.2 Setting Up Your Linux Environment

1.4.2.1 Set Paths to PBS Commands

PBS commands reside in a directory pointed to by $PBS_EXEC/bin. This path may change from one installation of PBS
to the next, so use the variable instead of the absolute path. The location of $PBS_EXEC is given in /etc/pbs.conf.
Make it easy to use PBS commands by doing the following:

1. In your .login file, source /etc/pbs.conf:

If you are using bash or sh, do the following:

% . /etc/pbs.conf

If you are using csh, do the following:

%source /etc/pbs.conf

2. Add the path to PBS commands to your PATH environment variable. Use $PBS_EXEC, not the absolute path. For
example, where MY_PATH is your existing set of paths:

setenv PATH ${MY_PATH}:$PBS_EXEC/bin/

1.4.2.2 Set Paths to PBS Man Pages

Add the path to the PBS man pages to your MANPATH environment variable:

setenv MANPATH /usr/man:/usr/local/man:$PBS_EXEC/share/man/

1.4.2.3 Make Login and Logout Files Behave Properly for Jobs

By default, PBS runs your jobs under your login, meaning that your login and logout files are sourced for each job. If
your .cshrc, .login, .profile, or .logout contains commands that attempt to set terminal characteristics or pro-
duce output, such as by writing to stdout, jobs may not run. Make sure that any such command in these files is skipped
when the file is run inside a PBS job. PBS sets the PBS_ENVIRONMENT environment variable inside jobs. Test for
the PBS_ENVIRONMENT environment variable and run commands only when it is not set. For example, in a .login
file:

if (! $?PBS_ENVIRONMENT) then

do terminal settings here

run command with output here

endif

1.4.2.4 Capture Correct Job Exit Status

When a PBS job runs, the exit status of the last command executed in the job is reported by the job's shell to PBS as the
exit status of the job. The exit status of the job is important for job dependencies and job chaining. Under Linux, the last
command executed might not be the last command in your job, if you have a .logout on the execution host. In that
case, the last command executed is from the .logout and not from your job. To prevent this, preserve the job's exit sta-
tus in your .logout file by saving it at the top, then doing an explicit exit at the end, as shown below:

set EXITVAL = $status

previous contents of .logout here

exit $EXITVAL

Under Windows, you do not need to take special steps to preserve the job's exit status.
PBS Professional 2022.1 User’s Guide UG-5

Chapter 1 Getting Started with PBS
1.4.2.5 Avoid Background Processes Inside Jobs

Make sure that your login file doesn't run processes in the background when invoked inside a PBS job. If your login file
contains a command that runs in the background inside a PBS job, persistent processes can cause trouble.

1.4.2.6 Provide bash Functions to Jobs

If your jobs need to have exported bash functions available to them, you can put these functions in your .profile or
.login on the execution host(s). You can also use qsub -V or qsub -v <function name> to forward the func-
tion at job submission. Just make sure that you don't have a function with the same name as an environment variable if
you use -v or -V. See section 6.12.4, “Forwarding Exported Shell Functions”, on page 129.

1.4.2.7 User Authorization Under Linux

The server's flatuid attribute determines whether it assumes that identical usernames mean identical users. If True, it
assumes that if User1 exists on both the submission host and the server host, then User1 can run jobs on that server. If
not True, the server calls ruserok() which uses /etc/hosts.equiv or .rhosts to authorize User1 to run as
User1. In this case, the username you specify with the -u option must have a .rhosts file on the server host listing the
job owner, meaning that User1 at the server must have a .rhosts file listing User1.

Example 1-1: Our user is UserA on the submission host, but is userB at the server. In order to submit jobs as UserA and
run jobs as UserB, UserB must have a .rhosts file on the server host that lists UserA

Note that if different names are listed via the -u option, then they are checked regardless of the value of flatuid.

Using hosts.equiv is not recommended.

1.4.2.8 Submitting Linux Jobs from Linux Clients

If the authentication method at a Linux client host has been set to pwd, set it to munge before you submit a Linux job.
For example:

export PBS_AUTH_METHOD=munge; qsub -lselect=1:arch=linux -- sleep 100

1.4.3 Setting Up Your Windows Environment

1.4.3.1 HOMEDIR for Windows Users

PBS starts jobs in the job owner's home directory, which is pointed to by HOMEDIR.

If you have not been explicitly assigned a home directory, PBS uses a Windows-assigned default as the base location for
your default home directory, and starts jobs there. Windows assigns the following default home path:

[PROFILE_PATH]\My Documents\PBS Pro

Table 1-2: Linux User ID and flatuid

Value of
flatuid

Submission Host Username vs. Server Host Username

User1 Same as User1 User1 Different from UserA

True Server assumes user has permission to run job Server checks whether User1 can run job as UserA

False/unset Server checks whether User1 can run job as
User1

Server checks whether User1 can run job as UserA
UG-6 PBS Professional 2022.1 User’s Guide

Getting Started with PBS Chapter 1
For example, if userA has not been assigned a home directory, the default home directory is the following:

\Documents and Settings\userA\My Documents\PBS Pro

Windows can return one PROFILE_PATH in one of the following forms:

\Documents and Settings\username

\Documents and Settings\username.local-hostname

\Documents and Settings\username.local-hostname.00N

where N is a number

\Documents and Settings\username.domain-name

1.4.3.2 Requirements for Windows Username

• The username must contain only alphanumeric characters, dot (.), underscore (_), and/or hyphen "-".

• The hyphen must not be the first letter of the username.

• If "@" appears in the username, then it is assumed to be in the context of a Windows domain account: user-
name@domainname.

• The space character is allowed. If a space character appears in a username string, then the string is displayed in
quotes, and must be specified in quotes.

1.4.3.3 Requirements for Windows User Account

Your Windows user account must be a normal user account. You cannot submit jobs from a SYSTEM account.

1.4.3.4 User Authorization under Windows

PBS runs your jobs under your account. When your job runs on a remote execution host, it needs to be able to log in and
transfer files using your account. If your system administrator has not set up access using hosts.equiv, you can set
up access using .rhosts files. A .rhosts file on the server allows you to submit jobs from a remote machine to the
server.

Set up the .rhosts file in your PROFILE_PATH, in your home directory, on the PBS server host and on each execution
host. For example:

\Documents and Settings\username\.rhosts

Format of .rhosts file:

hostname username

Be sure the .rhosts file is owned by you or an administrator-type group, and has write access granted only to you or an
administrator or group.

Add all PBS hosts to your .rhosts file:

Host1 user1

Host2 user1

Host3 user1

Make sure that you list all the names by which a host may be known. For instance, if Host4 is known as "Host4",
"Host4.<subdomain>", or "Host4.<subdomain>.<domain>" you should list all three in the .rhosts file:

Host4 user1

Host4.subdomain user1

Host4.subdomain.domain user1
PBS Professional 2022.1 User’s Guide UG-7

Chapter 1 Getting Started with PBS
If your username contains white space, quote it in the .rhosts file:

Host4.subdomain.domain "Bob Jones"

Example 1-2: The following entry in user user1's .rhosts file on the server permits user user1 to run jobs submitted
from the workstation wks031:

wks031 user1

To allow user1's output files from a job that runs on execution host Host1 to be returned to user1 automatically by
PBS, user1 adds an entry to the .rhosts file on the workstation naming the execution host Host1:

Host1 user1

1.4.3.5 Set up Paths

If you will use a mapped drive for submitting jobs, staging files in and out, or for output and error files, you must map
that drive with a local system account. We recommend using UNC paths. If you do not use a local system account, file
transfer behavior is undefined. To map a drive with global access using a local system account, use the psExec utility
from SysInternals:

<path to psexec binary> -s net use <mapped drive letter>: <UNC path to map>

For example:

psexec -s net use Z: \\examplehost\mapping_directory\mydirectory

To unmap a mapped drive:

<path to psexec binary> -s net use /delete <mapped drive letter>

For example:

psexec -s net use /delete Z:

PBS requires that your username be consistent across a server and its execution hosts, but not across a submission host
and a server. You may have access to more than one server, and may have a different username on each server. You can
change the user ID for a job; see section 2.5.4, “Specifying Job Username”, on page 28.

1.4.3.6 Password for Job Submission Authentication

Run the pbs_login command whenever your password changes. The new password is used for any job that is not
already running.

1.4.3.6.i Setting Password at Windows Clients

Run the pbs_login command once for each Windows submission host, so that you can submit jobs and run PBS client
commands.

echo <password>| pbs_login -p

Test whether you can run client commands:

qstat -Bf

The new password is used for any job that is not already running.

1.4.3.6.ii Setting Password at Linux Clients

Run the pbs_login command at any Linux client host where you want to submit a Windows job. Set
PBS_AUTH_METHOD to pwd:

export PBS_AUTH_METHOD=pwd; pbs_login
UG-8 PBS Professional 2022.1 User’s Guide

Getting Started with PBS Chapter 1
1.4.3.7 Authentication for Client Commands

You can run all client commands except qsub using either pwd or munge as the authentication method, so you don't
need to make any changes for commands such as qstat, etc.

1.4.4 Setting Time Zone for Submission Host

Make sure that the environment variable PBS_TZID is set correctly at your submission host. Set this environment vari-
able to a timezone location known to PBS Professional. You can get the appropriate zone location from the PBS server
host.

On Linux, use the tzselect command if it is available, or get the zone location from
/usr/share/zoneinfo/zone.tab.

On all other platforms, use the list of libical supported zoneinfo locations available under
$PBS_EXEC/lib/ical/zoneinfo/zones.tab.

The format for PBS_TZID is a timezone location, rather than a timezone POSIX abbreviation. Examples of values for
PBS_TZID are:

America/Los_Angeles

America/Detroit

Europe/Berlin

Asia/Calcutta
PBS Professional 2022.1 User’s Guide UG-9

Chapter 1 Getting Started with PBS
UG-10 PBS Professional 2022.1 User’s Guide

2

Submitting a PBS Job

2.1 Introduction to the PBS Job

To use PBS, you create a batch job, usually just called a job, which you then hand off, or submit, to PBS. A batch job is a
set of commands and/or applications you want to run on one or more execution machines, contained in a file or typed at
the command line. You can include instructions which specify the characteristics such as job name and resource require-
ments such as memory, CPU time, etc., that your job needs. The job file can be a shell script under Linux, a cmd batch
file under Windows, a Python script, a Perl script, etc.

For example, here is a simple PBS batch job file which requests one hour of time, 400MB of memory, 4 CPUs, and runs
my_application:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l mem=400mb,ncpus=4

./my_application

To submit the job to PBS, you use the qsub command, and give the job script as an argument to qsub. For example, to
submit the script named "my_script":

qsub my_script

We will go into the details of job script creation in section 2.2, “The PBS Job Script”, on page 14, and job submission in
section 2.3, “Submitting a PBS Job”, on page 19.
PBS Professional 2022.1 User’s Guide UG-11

Chapter 2 Submitting a PBS Job
2.1.1 Lifecycle of a PBS Job, Briefly

Your PBS job has the following lifecycle:

1. You write a job script

2. You submit the job to PBS

3. PBS accepts the job and returns a job ID to you

4. The PBS scheduler finds the right place and time to run your job, and sends your job to the selected execution host(s)

5. Application licenses are checked out

6. On each execution host, if specified, PBS creates a job-specific staging and execution directory

7. PBS sets PBS_JOBDIR and the job's jobdir attribute to the path of the job's staging and execution directory.

8. On each execution host allocated to the job, PBS creates a temporary scratch directory.

9. PBS sets the TMPDIR environment variable to the pathname of the temporary directory.

10. If any errors occur during directory creation or the setting of variables, the job is requeued.

11. Input files or directories are copied to the primary execution host

• If it exists, the prologue runs on the primary execution host, with its current working directory set to
PBS_HOME/mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

12. The job is run as you on the primary execution host.

13. The job's associated tasks are run as you on the execution host(s).

14. If it exists, the epilogue runs on the primary execution host, with its current working directory set to the path of the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

15. Output files or directories are copied to specified locations

16. Temporary files and directories are cleaned up

17. Application licenses are returned to pool

For more detail about the lifecycle of a job, see section 3.2.8, “Detailed Description of Job Lifecycle”, on page 39.

2.1.2 Where and How Your PBS Job Runs

Your PBS jobs run on hosts that the administrator has designated to PBS as execution hosts. The PBS scheduler chooses
one or more execution hosts that have the resources that your job requires.

PBS runs your jobs under your user account. This means that your login and logout files are executed for each job, and
some of your environment goes with the job. It's important to make sure that your login and logout files don't interfere
with your jobs; see section 1.4.2, “Setting Up Your Linux Environment”, on page 5.

2.1.3 The Job Identifier

After you submit a job, PBS returns a job identifier. Format for a job:

<sequence number>.<server name>

Format for a job array:

<sequence number>[].<server name>.<domain>
UG-12 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
You'll need the job identifier for any actions involving the job, such as checking job status, modifying the job, tracking
the job, or deleting the job.

The limit for the largest possible job ID defaults to the 7-digit number 9,999,999, but your administrator may have set it
to a larger value. After the largest job ID has been assigned, PBS starts assigning job IDs again at zero.

2.1.4 Shell Script(s) for Your Job

When PBS runs your job, PBS starts the top shell that you specify for the job. The top shell defaults to your login shell
on the execution host, but you can set another using the job's Shell_Path_List attribute. See section 2.3.3.1, “Specifying
the Top Shell for Your Job”, on page 19.

Under Linux, if you do not specify a shell inside the job script, PBS defaults to using /bin/sh. If you specify a differ-
ent shell inside the job script, the top shell spawns that shell to run the script; see section 2.3.3.2, “Specifying Job Script
Shell or Interpreter”, on page 20.

Under Windows, the job shell is the same as the top shell.

2.1.5 Scratch Space for Jobs

When PBS runs your job, it creates a temporary scratch directory for the job on each execution host. Your administrator
can specify a root for the temporary directory on each execution host using the $tmpdir MoM parameter.

PBS removes the directory when the job is finished. The location of the temporary directory is set by PBS; you should
not set TMPDIR.

Your job script can access the scratch space. For example:

Linux:

cd $TMPDIR

Windows:

cd %TMPDIR%

For scratch space for MPI jobs, see section 5.2.3, “Caveats for Using MPIs”, on page 86.

2.1.5.1 Temporary Scratch Space Location Under Linux

If your administrator has not specified a temporary directory, the root of the temporary directory is /var/tmp. PBS sets
the TMPDIR environment variable to the full path to the temporary scratch directory.

2.1.5.2 Temporary Scratch Space Location Under Windows

Under Windows, PBS creates the temporary directory and sets TMP to the value of the Windows %TMPDIR% environ-
ment variable. If your administrator has not specified a temporary directory, PBS creates the temporary directory under
either \winnt\temp or \windows\temp.

2.1.6 Types of Jobs

PBS allows you to submit standard batch jobs or interactive jobs. The difference is that while the interactive job runs,
you have an interactive session running, giving you interactive access to job processes. There is no interactive access to
a standard batch job. We cover interactive jobs in section 6.11, “Running Your Job Interactively”, on page 123.
PBS Professional 2022.1 User’s Guide UG-13

Chapter 2 Submitting a PBS Job
2.1.7 Job Input and Output Files

You can tell PBS to copy files or directories from any accessible location to the execution host, and to copy output files
and directories from the execution host wherever you want. We describe how to do this in Chapter 3, "Job Input & Out-
put Files", on page 33.

2.2 The PBS Job Script

2.2.1 Overview of a Job Script

A PBS job script consists of:

• An optional shell specification

• PBS directives

• Job tasks (programs or commands)

2.2.2 Types of Job Scripts

PBS allows you to use any of the following for job scripts:

• A Python, Perl, or other script that can run under Windows or Linux

• A shell script that runs under Linux

• Windows command or PowerShell batch script under Windows

2.2.2.1 Linux Shell Scripts

Since the job file can be a shell script, the first line of a shell script job file specifies which shell to use to execute the
script. Your login shell is the default, but you can change this. This first line can be omitted if it is acceptable for the job
file to be interpreted using the login shell. We recommend that you always specify the shell.

2.2.2.2 Python Job Scripts

PBS allows you to submit jobs using Python scripts under Windows or Linux. PBS includes a Python package, allowing
Python job scripts to run; you do not need to install Python. To run a Python job script:

Linux:

qsub <script name>

Windows:

qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

If the path contains any spaces, it must be quoted, for example:

qsub -S "%PBS_EXEC%\bin\pbs_python.exe" <python job script>

You can include PBS directives in a Python job script as you would in a Linux shell script. For example:

% cat myjob.py

#!/usr/bin/python

#PBS -l select=1:ncpus=3:mem=1gb

#PBS -N HelloJob

print "Hello"
UG-14 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
Python job scripts can access Win32 APIs, including the following modules:

• Win32api

• Win32con

• Pywintypes

2.2.2.2.i Debugging Python Job Scripts

You can run Python interactively, outside of PBS, to debug a Python job script. You use the Python interpreter to test
parts of your script.

Under Linux, use the -i option to the pbs_python command, for example:

/opt/pbs/bin/pbs_python -i <return>

Under Windows, the -i option is not necessary, but can be used. For example, either of the following will work:

C:\Program Files\PBS\exec\bin\pbs_python.exe <return>

C:\Program Files\PBS\exec\bin\pbs_python.exe -i <return>

When the Python interpreter runs, it presents you with its own prompt. For example:

% /opt/pbs/bin/pbs_python -i <return>

>> print "hello"

hello

2.2.2.2.ii Python Windows Caveats

• If you have Python natively installed, and you need to use the win32api, make sure that you import pywintypes
before win32api, otherwise you will get an error. Do the following:
cmd> pbs_python

>> import pywintypes

>> import win32api

• Make sure you specify Windows as the architecture when you submit a Windows job. When you create a selection
statement that describes the resources your job needs, include the architecture for each chunk. We describe selection
statements in Chapter 4, "Allocating Resources & Placing Jobs", on page 51. For example:
#PBS -l select=ncpus=2:mem=1gb:arch=windows

Note that "windows" is case-sensitive here.

2.2.2.3 Windows Job Scripts

The Windows script can be a .exe or .bat file, or a Python or Perl script.

2.2.2.3.i Requirements for Windows Command Scripts

• Make sure you specify Windows as the architecture when you submit a Windows job. When you create a selection
statement that describes the resources your job needs, include the architecture for each chunk. We describe selection
statements in Chapter 4, "Allocating Resources & Placing Jobs", on page 51. For example:
#PBS -l select=ncpus=2:mem=1gb:arch=windows

Note that "windows" is case-sensitive here.

• Under Windows, comments in the job script must be in ASCII characters.

• Any .bat files that are to be executed within a PBS job script have to be prefixed with "call" as in:
@echo off

call E:\step1.bat

call E:\step2.bat
PBS Professional 2022.1 User’s Guide UG-15

Chapter 2 Submitting a PBS Job
Without the "call", only the first .bat file gets executed and it doesn't return control to the calling interpreter.

For example, an old job script that contains:

@echo off

E:\step1.bat

E:\step2.bat

should now be:

@echo off

call E:\step1.bat

call E:\step2.bat

2.2.2.3.ii Windows Advice and Caveats

• In Windows, if you use notepad to create a job script, the last line is not automatically newline-terminated. Be sure
to add one explicitly, otherwise, PBS job will get the following error message:
More?

when the Windows command interpreter tries to execute that last line.

• Drive mapping commands are typically put in the job script.

• Do not use xcopy inside a job script. Use copy, robocopy, or pbs_rcp instead. The xcopy command some-
times expects input from the user. Because of this, it must be assigned an input handle. Since PBS does not create the
job process with an input handle assigned, xcopy can fail or behave abnormally if used inside a PBS job script.

• PBS jobs submitted from cygwin execute under the native cmd environment, and not under cygwin.

2.2.3 Setting Job Characteristics

2.2.3.1 Job Attributes

PBS represents the characteristics of a job as attributes. For example, the name of a job is an attribute of that job, stored
in the value of the job's Job_Name attribute. Some job attributes can be set by you, some can be set only by adminis-
trators, and some are set only by PBS. For a complete list of PBS job attributes, see “Job Attributes” on page 327 of the
PBS Professional Reference Guide. Job attributes are case-insensitive.

2.2.3.2 Job Resources

PBS represents the things that a job might use as resources. For example, the number of CPUs and the amount of mem-
ory on an execution host are resources. PBS comes with a set of built-in resources, and your PBS administrator can
define resources. You can see a list of all built-in PBS resources in Chapter 5, "List of Built-in Resources", on page 259.
Resources are case-insensitive.

2.2.3.3 Setting Job Attributes

You can set job attributes and request resources using the following equivalent methods:

• Using specific options to the qsub command at the command line; for example, -e <path> to set the error path.

• Using PBS directives in the job script; for example, #PBS -WError_Path=<path> to set the error path.

These methods have the same functionality. If you give conflicting options to qsub, the last option specified overrides
any others. Options to the qsub command override PBS directives, which override defaults. Some job attributes and
resources have default values; your administrator can set default values for some attributes and resources.

After the job is submitted, you can use the qalter command to change the job's characteristics.
UG-16 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
2.2.3.4 Using PBS Directives

You can use PBS directives to set the values of job attributes. A directive has the directive prefix as the first
non-whitespace characters. The default for the prefix is #PBS.

Put all your PBS directives at the top of the script file, above any commands. Any directive after an executable line in the
script is ignored. For example, if your script contains "@echo", put that line below all PBS directives.

2.2.3.4.i Changing the Directive Prefix

By default, the text string "#PBS" is used by PBS to determine which lines in the job file are PBS directives. The leading
"#" symbol was chosen because it is a comment delimiter to all shell scripting languages in common use on Linux sys-
tems. Because directives look like comments, the scripting language ignores them.

Under Windows, however, the command interpreter does not recognize the '#' symbol as a comment, and will generate a
benign, non-fatal warning when it encounters each "#PBS" string. While it does not cause a problem for the batch job, it
can be annoying or disconcerting to you. If you use Windows, you may wish to specify a different PBS directive, via
either the PBS_DPREFIX environment variable, or the "-C" option to qsub. The qsub option overrides the environ-
ment variable. For example, we can direct PBS to use the string "REM PBS" instead of "#PBS" and use this directive
string in our job script:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb:arch=windows

REM PBS -j oe

date /t

.\my_application

date /t

Given the above job script, we can submit it to PBS in one of two ways:

set PBS_DPREFIX=REM PBS

qsub my_job_script

or

qsub -C "REM PBS" my_job_script

2.2.3.4.ii Caveats and Restrictions for PBS Directives

• You cannot use PBS_DPREFIX as the directive prefix.

• The limit on the length of a directive string is 4096 characters.

2.2.4 Job Tasks

These can be programs or commands. This is where you can specify an application to be run.

2.2.5 Job Script Names

We recommended that you avoid using special characters in job script names. If you must use them, on Linux you must
escape them using the backslash ("\") character.
PBS Professional 2022.1 User’s Guide UG-17

Chapter 2 Submitting a PBS Job
2.2.5.1 How PBS Parses a Job Script

PBS parses a job script in two parts. First, the qsub command scans the script looking for directives, and stops at the
first executable line it finds. This means that if you want qsub to use a directive, it must be above any executable lines.
Any directive below the first executable line is ignored. The first executable line is the first line that is not a directive,
whose first non-whitespace character is not "#", and is not blank. For information on directives, see section 2.2.3.4,
“Using PBS Directives”, on page 17.

Second, lines in the script are processed by the job shell. PBS pipes the name of the job script file as input to the top
shell, and the top shell executes the job shell, which runs the script. You can specify which shell is the top shell; see sec-
tion 2.3.3.1, “Specifying the Top Shell for Your Job”, on page 19, and, under Linux, which shell you want to run the
script in the first executable line of the script; see section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page
20.

2.2.5.1.i Comparison Between Equivalent Linux and Windows Job Scripts

The following Linux and Windows job scripts produce the same results.

Linux:

#!/bin/sh

#PBS -l walltime=1:00:00

#PBS -l select=mem=400mb

#PBS -j oe

date

./my_application

date

Windows:

REM PBS -l walltime=1:00:00

REM PBS -l select=mem=400mb:arch=windows

REM PBS -j oe

date /t

my_application

date /t

The first line in the Windows script does not contain a path to a shell because you cannot specify the path to the shell or
interpreter inside a Windows job script. See section 2.3.3.2, “Specifying Job Script Shell or Interpreter”, on page 20.

The remaining lines of both files are almost identical. The primary differences are in file and directory path specifica-
tions, such as the use of drive letters, and slash vs. backslash as the path separator.

The lines beginning with "#PBS" and "REM PBS" are PBS directives. PBS reads down the job script until it finds the
first line that is not a valid PBS directive, then stops. From there on, the lines in the script are read by the job shell or
interpreter. In this case, PBS sees lines 6-8 as commands to be run by the job shell.

In our examples above, the "-l <resource>=<value>" lines request specific resources. Here, we request 1 hour of
wall-clock time as a job-wide request, and 400 megabytes (MB) of memory in a chunk. If this is a Windows job, we add
":arch=windows" to the chunk description. We will cover requesting resources in Chapter 4, "Allocating Resources &
Placing Jobs", on page 51.

The "-j oe" line requests that PBS join the stdout and stderr output streams of the job into a single stream. We
will cover merging output in "Merging Output and Error Files” on page 45.

The last three lines are the command lines for executing the programs we wish to run. You can specify as many programs,
tasks, or job steps as you need.
UG-18 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
2.3 Submitting a PBS Job

2.3.1 Prerequisites for Submitting Jobs

Before you submit any jobs, set your environment appropriately. Follow the instructions in section 1.4, “Setting Up Your
Environment”, on page 4.

2.3.2 Ways to Submit a PBS Job

You can use the qsub command to submit a normal or interactive job to PBS:

• You can call qsub with a job script; see section 2.3.3, “Submitting a Job Using a Script”, on page 19

• You can call qsub with an executable and its arguments; see section 2.3.4, “Submitting Jobs by Specifying Execut-
able on Command Line”, on page 22

• You can call qsub and give keyboard input; see section 2.3.5, “Submitting Jobs Using Keyboard Input”, on page 22

You can use an Altair front-end product to submit and monitor jobs; go to www.pbsworks.com.

2.3.3 Submitting a Job Using a Script

You submit a job to PBS using the qsub command. For details on qsub, see “qsub” on page 216 of the PBS Profes-
sional Reference Guide. To submit a PBS job, type the following:

• Linux shell script:
qsub <name of shell script>

• Linux Python or Perl script:
qsub <name of Python or Perl job script>

• Windows command script:
qsub <name of job script>

• Windows Python script:
qsub -S %PBS_EXEC%\bin\pbs_python.exe <name of python job script>

If the path contains any spaces, it must be quoted, for example:

qsub -S "%PBS_EXEC%\bin\pbs_python.exe" <name of python job script>

2.3.3.1 Specifying the Top Shell for Your Job

You can can specify the path and name of the shell to use as the top shell for your job. The rules for specifying the top
shell are different for Linux and Windows; do not skip the following subsections numbered 2.3.3.1.i and 2.3.3.1.ii.

The Shell_Path_List job attribute specifies the top shell; the default is your login shell on the execution host. You can
set this attribute using the the following:

• The "-S <path list>" option to qsub

• The #PBS -WShell_Path_List=<path list> PBS directive

The option argument path list has this form:

<path>[@<hostname>][,<path>[@<hostname>],...]

You must supply a path list if you attempt to set Shell_Path_List, otherwise, you will get an error. You can specify only
one path for any host you name. You can specify only one path that doesn't have a corresponding host name.
PBS Professional 2022.1 User’s Guide UG-19

Chapter 2 Submitting a PBS Job
PBS chooses the path whose host name matches the name of the execution host. If no matching host is found, then PBS
chooses the path specified without a host, if one exists.

2.3.3.1.i Specifying Job Top Shell Under Linux

On Linux, the job's top shell is the one MoM starts when she starts your job, and the job shell is the shell or interpreter
that runs your job script commands.

Under Linux, you can use any shell such as csh or sh, by specifying qsub -S <path>. You cannot use Perl or
Python as your top shell.

Example 2-1: Using bash:

qsub -S /bin/bash <script name>

2.3.3.1.ii Specifying Job Top Shell Under Windows

On Windows, the job shell is the same as the top shell.

Under Windows, you can specify a shell or an interpreter such as Perl or Python, and if your job script is Perl or Python,
you must specify the language using an option to qsub; you cannot specify it in the job script.

Example 2-2: Running a Python script on Windows:

qsub -S "C:\Program Files\PBS\exec\bin\pbs_python.exe" <script name>

2.3.3.1.iii Caveats for Specifying Job Top Shell

If you specify a relative path for the top shell, the full path must be available in your PATH environment variable on the
execution host(s). We recommend specifying the full path.

2.3.3.2 Specifying Job Script Shell or Interpreter

2.3.3.2.i Specifying Job Script Shell or Interpreter Under Linux

If you don't specify a shell for the job script, it defaults to /bin/sh. You can use any shell, and you can use an inter-
preter such as Perl or Python.

You specify the shell or interpreter in the first line of your job script. The top shell spawns the specified process, and this
process runs the job script. For example, to use /bin/sh to run the script, use the following as the first line in your job
script:

#!/bin/sh

To use Perl or Python to run your script, use the path to Perl or Python as the first line in your script:

#!/usr/bin/perl

or

#!/usr/bin/python

2.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

Under Windows, the job shell or interpreter is the same as the top shell or interpreter. You can specify the top/job shell or
interpreter, but not a separate job shell or interpreter. To use a non-default shell or interpreter, you must specify it using
an option to qsub:

qsub -S <path to shell or interpreter> <script name>

2.3.3.3 Examples of Submitting Jobs Using Scripts

Example 2-3: Our job script is named "myjob". We can submit it by typing:

qsub myjob
UG-20 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
and then PBS returns the job ID:

16387.exampleserver.exampledomain

Example 2-4: The following is the contents of the script named "myjob". In it, we name the job "testjob", and run a pro-
gram called "myprogram":

#!/bin/sh

#PBS -N testjob

./myprogram

Example 2-5: The simplest way to submit a job is to give the script name as the argument to qsub, and hit return:

qsub <job script> <return>

If the script contains the following:

#!/bin/sh

./myapplication

you have simply told PBS to run myapplication.

2.3.3.4 Passing Arguments to Jobs

If you need to pass arguments to a job script, you can do the following:

• Use environment variables in your script, and pass values for the environment variables using -v or -V.

For example, to use myinfile as the input to a.out, your job script contains the following:

#PBS -N myjobname

a.out < $INFILE

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile <job script>

For example, to use myinfile and mydata as the input to a.out, your job script contains the following:

#PBS -N myjobname

cat $INFILE $INDATA | a.out

You can then use the -V option:

qsub -v INFILE=/tmp/myinfile, INDATA=/tmp/mydata <job script>

You can export the environment variable first:

export INFILE=/tmp/myinfile

qsub -V <job script>

• Use a here document. For example:
qsub [option] [option] ... <return>

#PBS <directive>

./jobscript.sh arg1 <^d>

152.examplehost

If you need to pass arguments to a job, you can do any of the following:

• Pipe a shell command to qsub.

For example, to directly pass myinfile and mydata as the input to a.out, type the following, or make them into
a shell script:

echo "a.out myinfile mydata" | qsub -l select=...
PBS Professional 2022.1 User’s Guide UG-21

Chapter 2 Submitting a PBS Job
For example:

echo "jobscript.sh -a arg1 -b arg2" | qsub -l select=...

For example, to use an environment variable to pass myinfile as the input to a.out, type the following, or make
them into a shell script:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

echo "a.out $INFILE $INDATA" | qsub

• Use qsub --<executable> <arguments to executable>. See section 2.3.4, “Submitting Jobs by
Specifying Executable on Command Line”, on page 22.

2.3.4 Submitting Jobs by Specifying Executable on

Command Line

You can run a PBS job by specifying an executable and its arguments instead of a job script. When you run qsub this
way, it runs the executable directly. It does not start a shell, so no shell initialization scripts are run, and execution paths
and other environment variables are not set. There is not an easy way to run your command in a different directory. You
should make sure that environment variables are set correctly, and you will usually have to specify the full path to the
command.

To submit a job directly, you specify the executable on the command line:

qsub [<options>] -- <executable> [<arguments to executable>] <return>

For example, to run myprog with the arguments a and b:

qsub -- myprog a b <return>

To run myprog with the arguments a and b, naming the job JobA,

qsub -N JobA -- myprog a b <return>

To use environment variables you define earlier:

export INFILE=/tmp/myinfile

export INDATA=/tmp/mydata

qsub -- a.out $INFILE $INDATA

2.3.5 Submitting Jobs Using Keyboard Input

You can specify that qsub read input from the keyboard. If you run the qsub command, with the resource requests on
the command line, and then press "enter" without naming a job file, PBS will read input from the keyboard. (This is often
referred to as a "here document".) You can direct qsub to stop reading input and submit the job by typing on a line by
itself a control-d (Linux) or control-z, then "enter" (Windows). You get the same behavior with and without a
dash operand.

Note that, under Linux, if you enter a control-c while qsub is reading input, qsub will terminate the process and
the job will not be submitted. Under Windows, however, often the control-c sequence will, depending on the com-
mand prompt used, cause qsub to submit the job to PBS. In such case, a control-break sequence will usually ter-
minate the qsub command.

qsub [<options>] [-] <return>

[<directives>]

[<tasks>]

ctrl-D
UG-22 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
2.3.6 Submitting Windows Jobs

Your PBS complex may have all Windows execution and client (submission) hosts, or it may have some Linux and some
Windows execution and client hosts. If your complex has some of each execution host, make sure that Windows jobs
land on Windows execution hosts, whether you are submitting from Linux or Windows clients.

2.3.6.1 Submitting Windows Jobs from Windows Clients

• If you have not already, run the pbs_login command at each submission host, initially and once for each password
change:

echo <password>| pbs_login -p

• When you submit a Windows job from a Windows client, make sure you request a Windows execution host.
Request the arch resource set to "windows":

qsub -lselect=1:arch=windows

Note that "windows" is case-sensitive here.

2.3.6.2 Submitting Windows Jobs from Linux Clients

• If you have not already, run the pbs_login command at any Linux client host where you want to submit a Win-
dows job. Set PBS_AUTH_METHOD to pwd:

export PBS_AUTH_METHOD=pwd; pbs_login

• In order to submit a Windows job from a Linux client, specify that the architecture is Windows. The "arch=win-
dows" is case-sensitive. For example:

export PBS_AUTH_METHOD=pwd; qsub -lselect=1:arch=windows -- pbs-sleep 100

2.3.6.3 Submitting Windows and Linux Jobs from Linux Clients

You can submit both Windows and Linux jobs from a Linux client, but you do need to set your authentication method
correctly for each kind of job. For example, you can submit a Linux job using MUNGE authentication, then set your
authentication method to pwd and submit a Windows job:

export PBS_AUTH_METHOD=munge; qsub -lselect=1:arch=linux -- pbs-sleep 100

export PBS_AUTH_METHOD=pwd; pbs_login

qsub -lselect=1:arch=windows -- pbs-sleep 100

To override the value of the PBS_AUTH_METHOD configuration parameter, set the authentication method in the
PBS_AUTH_METHOD environment variable. You can set this in your profile.

2.4 Job Submission Recommendations and Advice

2.4.1 Trapping Signals in Script

You can trap signals in your job script. For example, you can trap preemption and suspension signals.

If you want to trap the signal in your job script, the signal may need to be trapped by all of the job's shells, depending on
the signal.
PBS Professional 2022.1 User’s Guide UG-23

Chapter 2 Submitting a PBS Job
The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful things such as write out sta-
tus.

Example 2-6: Ignore the listed signals:

trap "" 1 2 3 15

Example 2-7: Call the function "goodbye" for the listed signals:

trap goodbye 1 2 3 15

2.5 Job Submission Options

The table below lists the options to the qsub command, and points to an explanation of each:

Table 2-1: Options to the qsub Command

Option Function and Page Reference

-A <account_string> "Specifying Accounting String” on page 29

-a <date_time> "Deferring Execution” on page 121

-C "<directive prefix>" "Changing the Directive Prefix” on page 17

-c <interval> "Using Checkpointing” on page 115

-e <path> "Paths for Output and Error Files” on page 44

-f "Running qsub in the Foreground” on page 31

-G "Submitting Interactive GUI Jobs on Windows” on page 127

-h "Holding and Releasing Jobs” on page 117

-I "Running Your Job Interactively” on page 123

-J X-Y[:Z] "Submitting a Job Array” on page 156

-j <join> "Merging Output and Error Files” on page 45

-k <keep> "Keeping Output and Error Files on Execution Host” on page 46

-l <resource list> "Requesting Resources” on page 53

-M <user list> "Setting Email Recipient List” on page 27

-m <mail options> "Specifying Email Notification” on page 25

-N <name> "Specifying Job Name” on page 27

-o <path> "Paths for Output and Error Files” on page 44

-p <priority> "Setting Priority for Your Job” on page 122

-P <project> "Specifying a Project for a Job” on page 27

-q <destination> "Specifying Server and/or Queue” on page 29

-r <value> "Allowing Your Job to be Re-run” on page 120

-R <remove options> "Avoiding Creation of stdout and/or stderr” on page 45

-S <path list> "Specifying the Top Shell for Your Job” on page 19

-u <user list> "Specifying Job Username” on page 28
UG-24 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
2.5.1 Specifying Email Notification

For each job, PBS can send mail to designated recipients when that job or subjob reaches specific points in its lifecycle.
There are points in the life of the job where PBS always sends email, and there are points where you can choose to
receive email; see the table below for a list.

-V "Exporting All Environment Variables” on page 128

-v <variable list> "Exporting Specific Environment Variables” on page 128

-W <attribute>=<value> "Setting Job Attributes” on page 16

-W block=true "Making qsub Wait Until Job Ends” on page 122

-W create_resv_from_job=<value> "Job-specific Start Reservations” on page 142

-W depend=<list> "Using Job Dependencies” on page 109

-W group_list=<list> "Specifying Job Group ID” on page 28

-W pwd Prompts you for a password

-W
release_nodes_on_stageout=<value>

"Releasing Unneeded Vnodes from Your Job” on page 129

-W run_count=<value> "Controlling Number of Times Job is Re-run” on page 121

-W sandbox=<value> "Staging and Execution Directory: User Home vs. Job-specific”
on page 33

-W stagein=<list> "Input/Output File Staging” on page 33

-W stageout=<list> "Input/Output File Staging” on page 33

-W umask=<value> "Changing Linux Job umask” on page 47

-X "Receiving X Output from Interactive Linux Jobs” on page 126

-z "Suppressing Printing Job Identifier to stdout” on page 31

--version Displays PBS version information.

Table 2-2: Points in Job/Reservation Lifecycle when PBS Sends Mail

Point in Lifecycle Always Sent or Optional?

Job cannot be routed, either because the job makes
too many routing hops or because all destinations
reject it

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m aj is specified.

Job is deleted by job owner Optional; depends on qdel -Wsuppress_email

Job is deleted by someone other than job owner Always

Job or subjob is aborted by PBS:

Job or subjob cannot be executed because of bad
user/group account, bad checkpoint/restart file, sys-
tem error, bad resource request, or bad dependency

Optional. Mail is sent when -m a is specified.

For subjobs, mail is sent when -m aj is specified.

Table 2-1: Options to the qsub Command

Option Function and Page Reference
PBS Professional 2022.1 User’s Guide UG-25

Chapter 2 Submitting a PBS Job
PBS always sends you mail when your job or subjob is deleted. For job arrays, PBS sends one email per subjob.

You can restrict the number of job-related emails PBS sends when you delete jobs or subjobs; see section 2.5.1.3,
“Restricting Number of Job Deletion Emails”, on page 27.

2.5.1.1 Specifying Job Lifecycle Email Points

The set of points where PBS sends mail is specified in the Mail_Points job attribute. When you use the -j suboption
with one or more of the other sub-options, PBS sends mail for each subjob; without this suboption, PBS sends mail only
for jobs and parent array jobs. You can set the Mail_Points attribute using the following methods:

• The -m <mail points> option to qsub

• The -m <mail points> option to qalter

• The #PBS -WMail_Points=<mail points> PBS directive

The mail points argument is a string which consists of either:

• The single character "n"

• One or more of the characters "a", "b", and "e" with optional "j".

The following table lists the sub-options to the -m option:

Example 2-8: PBS sends mail when the job is aborted or ends:

qsub -m ae my_job

#PBS -m ae

Job is held by PBS with bad password hold Always

Job begins execution Optional

Job ends execution Optional

Stagein fails Always

All file stageout attempts fail Always

Reservation is confirmed or denied Always

Table 2-3: Sub-options to m Option

Suboption Meaning

n Do not send mail

a Send mail when job or subjob is aborted by batch system. This is the default

b Send mail when job or subjob begins execution

Example:

Begun execution

e Send mail when job or subjob ends execution

j Send mail for subjobs. Must be combined with one or more of a, b, or e sub-options.

Table 2-2: Points in Job/Reservation Lifecycle when PBS Sends Mail

Point in Lifecycle Always Sent or Optional?
UG-26 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
2.5.1.2 Setting Email Recipient List

The list of recipients to whom PBS sends mail is specified in the Mail_Users job attribute. You can set the Mail_Users
attribute using the following methods:

• The -M <mail recipients> option to qsub

• The #PBS -WMail_Users=<mail recipients> PBS directive

The mail recipients argument is a list of usernames with optional hostnames in this format:

<username>[@<hostname>][,<username>[@<hostname>],...]

For example:

qsub -M user1@mydomain.com my_job

When you set this option for a job array, PBS sets the option for each subjob, and sends mail for each subjob.

2.5.1.3 Restricting Number of Job Deletion Emails

By default, when you delete a job or subjob, PBS sends you email. You can use qdel
-Wsuppress_email=<limit> to restrict the number of emails sent to you each time you use qdel. This option
behaves as follows:

limit >=1
You receive at most limit emails.

limit = 0
PBS ignores this option.

limit =-1
You receive no emails.

2.5.2 Specifying Job Name

If you submit a job using a script without specifying a name for the job, the name of the job defaults to the name of the
script. If you submit a job without using a script and without specifying a name for the job, the job name is STDIN.

You can specify the name of a job using the following methods:

• Using qsub -N <job name>

• Using #PBS -N <job name>

• Using #PBS -WJob_Name=<job name>

For example:

qsub -N myName my_job

#PBS -N myName

#PBS -WJob_Name=my_job

The job name can be up to 236 characters in length, and must consist of printable, non-whitespace characters. The first
character must be alphabetic, numeric, hyphen, underscore, or plus sign.

2.5.3 Specifying a Project for a Job

In PBS, a project is a way to organize jobs independently of users and groups. You can use a project as a tag to group a
set of jobs. Each job can be a member of up to one project.
PBS Professional 2022.1 User’s Guide UG-27

Chapter 2 Submitting a PBS Job
Projects are not tied to users or groups. One user or group may run jobs in more than one project. For example, user Bob
runs JobA in ProjectA and JobB in ProjectB. User Bill runs JobC in ProjectA. User Tom runs JobD in ProjectB. Bob
and Tom are in Group1, and Bill is in Group2.

A job's project attribute specifies the job's project. See “project” on page 341 of the PBS Professional Reference Guide.
You can set the job's project attribute in the following ways:

• At submission using qsub -P <project name>

• After submission, via qalter -P <project name>; see “qalter” on page 130 of the PBS Professional Refer-
ence Guide

2.5.4 Specifying Job Username

By default PBS runs your job under the username with which you log in. You may need to run your job under a different
username depending on which PBS server runs the job. You can specify a list of usernames under which the job can run.
All but one of the entries in the list must specify the PBS server hostname as well, so that PBS can choose which user-
name to use by looking at the hostname. You can include one entry in the list that does not specify a hostname; PBS uses
this in the case where the job was sent to a server that is not in your list.

The list of usernames is stored in the User_List job attribute. The value of this attribute defaults to the username under
which you logged in. There is no limit to the length of the attribute.

List entries are in the following format:

<username>@<hostname>[,<username>@<hostname> ...][,<username>]

You can set the value of User_List at submission time by using qsub -u <username> or later via qalter -u
<username> .

Example 2-9: Our user is UserS on the submission host HostS, UserA on server ServerA, and UserB on server ServerB,
and is UserC everywhere else. Note that this user must be UserA on all ExecutionA and UserB on all ExecutionB
machines. Then our user can use "qsub -u UserA@ServerA,UserB@ServerB,UserC" for the job. The job
owner will always be UserS. On Linux, UserA, UserB, and UserC must each have .rhosts files at their servers
that list UserS.

2.5.4.1 Caveats for Changing Job Username

• Wherever your job runs, you must have permission to run the job under the specified username:

• For Linux, see section 1.4.2.7, “User Authorization Under Linux”, on page 6.

• For Windows, see section 1.4.3.4, “User Authorization under Windows”, on page 7.

• Usernames are limited to 256 characters.

2.5.5 Specifying Job Group ID

Your username can belong to more than one group, but each PBS job is only associated with one of those groups. By
default, the job runs under the primary group. The job's group is specified in the group_list job attribute. You can
change the group under which your job runs on the execution host either on the command line or by using a PBS direc-
tive:

qsub -W group_list=<group list>

#PBS group_list=<group list>

For example:

qsub -W group_list=grpA,grpB@jupiter my_job
UG-28 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
The <group list> argument has the following form:

<group>[@<hostname>][,<group>[@<hostname>],...]

You can specify only one group name per host.

You can specify only one group without a corresponding host; that group name is used for execution on any host not
named in the argument list.

The group_list defaults to the primary group of the username under which the job runs.

2.5.5.1 Group Names Under Windows

Under Windows, the primary group is the first group found for the username by PBS when querying the accounts data-
base.

Under Windows, the default group assigned is determined by what the Windows API NetUserGetLocalGroup() and
NetUserGetGroup() return as first entry. PBS checks the former output (the local groups) and returns the first group it
finds. If the former call does not return any value, then it proceeds to the latter call (the Global groups). If PBS does not
find any output on the latter call, it uses the default "Everyone".

We do not recommend depending on always getting "Users" in this case. Sometimes you may submit a job without the
–Wgroup_list option, and get a default group of "None" assigned to your job.

2.5.6 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the Account_Name job attribute. This
attribute has no default value. You can set the value of Account_Name at the command line or in a PBS directive:

qsub -A <accounting string>

#PBS Account_Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

2.5.7 Specifying Server and/or Queue

By default, PBS provides a default server and a default queue, so that jobs submitted without a server or queue specifica-
tion end up in the default queue at the default server.
PBS Professional 2022.1 User’s Guide UG-29

Chapter 2 Submitting a PBS Job
If your administrator has configured the PBS server with more than one queue, and has configured those queues to accept
jobs from you, you can submit your job to a non-default queue.

• If you will submit jobs mainly to one non-default server, set the PBS_SERVER environment variable to the name
of your preferred server. Once this environment variable is set to your preferred server, you don't need to specify
that server when you submit a job to it.

• If you will submit jobs mostly to the default server, and just want to submit this one to a specific queue at a
non-default server:

• Use qsub -q <queue name>@<server name>

• Use #PBS -q <queue name>@<server name>

• If you will submit jobs mostly to the default server, and just want to submit this one to the default queue at a
non-default server:

• Use qsub -q @<server name>

• Use #PBS -q @<server name>

• You can submit your job to a non-default queue at the default server, or the server given in the PBS_SERVER envi-
ronment variable if it is defined:

• Use qsub -q <queue name>

• Use #PBS -q <queue name>

If the PBS server has no default queue and you submit a job without specifying a queue, the qsub command will com-
plain.

PBS or your administrator may move your job from one queue to another. You can see which queue has your job using
qstat [job ID]. The job's queue attribute contains the name of the queue where the job resides.

Examples:

qsub -q queue my_job

qsub -q @server my_job

#PBS -q queue1

qsub -q queue1@myserver my_job

qsub -q queue1@myserver.mydomain.com my_job

2.5.7.1 Using or Avoiding Dedicated Time

Dedicated time is one or more specific time periods defined by the administrator. These are not repeating time periods.
Each one is individually defined.

During dedicated time, the only jobs PBS starts are those in special dedicated time queues. PBS schedules non-dedicated
jobs so that they will not run over into dedicated time. Jobs in dedicated time queues are also scheduled so that they will
not run over into non-dedicated time. PBS will attempt to backfill around the dedicated-non-dedicated time borders.

PBS uses walltime to schedule within and around dedicated time. If a job is submitted without a walltime to a non-dedi-
cated-time queue, it will not be started until all dedicated time periods are over. If a job is submitted to a dedicated-time
queue without a walltime, it will never run.

To submit a job to be run during dedicated time, use the -q <queue name> option to qsub and give the name of the
dedicated-time queue you wish to use as the queue name. Queues are created by the administrator; see your administra-
tor for queue name(s).
UG-30 PBS Professional 2022.1 User’s Guide

Submitting a PBS Job Chapter 2
2.5.8 Suppressing Printing Job Identifier to stdout

To suppress printing the job identifier to standard output, use the -z option to qsub. You can use it at the command line
or in a PBS directive:

qsub -z my_job

#PBS -z

There is no associated job attribute for this option.

2.5.9 Running qsub in the Foreground

Normally, qsub runs in the background. You can run it in the foreground by using the -f option. By default, qsub
attempts to communicate with a background qsub daemon that may have been instantiated from an earlier invocation.
This background daemon can be holding onto an authenticated server connection, speeding up performance.

This option can be helpful when you are submitting a very short job which submits another job, or when you are running
codes written in-house for Windows.

2.6 PBS Jobs on Cray HPE Cray System

Management

Submitting a PBS job on an HPE Cray System Management system is exactly like submitting a job on a standard Linux
machine.

2.7 Job Submission Caveats

2.7.1 Caveats for Mixed Linux-Windows Operation

• You cannot submit a Linux job from a Windows client

• In order to submit a Windows job, specify that the architecture is Windows. For example:
export PBS_AUTH_METHOD=pwd; qsub -lselect=1:arch=windows -- pbs-sleep 100
PBS Professional 2022.1 User’s Guide UG-31

Chapter 2 Submitting a PBS Job
UG-32 PBS Professional 2022.1 User’s Guide

3

Job Input & Output Files

3.1 Introduction to Job File I/O in PBS

PBS allows you to manage input files, output files, standard output, and standard error. PBS has two mechanisms for
handling job files; you use staging for input and output files, and you select whether stdout and/or stderr are copied
back using the Keep_Files job attribute.

3.2 Input/Output File Staging

File staging is a way to specify which input files should be copied onto the execution host before the job starts, and which
output files should be copied off the execution host when it finishes.

3.2.1 Staging and Execution Directory: User Home vs.

Job-specific

A job's staging and execution directory is the directory to which input files are staged, and from which output files are
staged. It is also the current working directory for the job script, for tasks started via the pbs_tm() API, and for the
epilogue. This directory is either your home directory or a job-specific directory created by PBS just for this job.

PBS can create temporary directories specific to each job to be used as job staging and execution directories. If each job
has its own directories, you avoid filename collisions. PBS creates these either under your home directory or under some
other location depending on how the execution host is configured.

If you use job-specific staging and execution directories, you don't need to have a home directory on each execution host,
as long as those hosts are configured properly.

This table lists the differences between using your home directory for staging and execution and using a job-specific
staging and execution directory created by PBS.

Table 3-1: Differences Between User Home and Job-specific Directory for Staging
and Execution

Question Regarding Action,
Requirement, or Setting

User Home Directory
Job-specific

Directory

Does PBS have to create a job-specific staging and
execution directory?

No Yes if not in home direc-
tory

User's home directory must exist on execution
host(s)?

Yes No

Standard out and standard error automatically deleted
when qsub -k option is used?

No Yes
PBS Professional 2022.1 User’s Guide UG-33

Chapter 3 Job Input & Output Files
3.2.2 Using Job-specific Staging and Execution Directories

3.2.2.1 Setting the Job Staging and Execution Directory

Whether or not PBS creates job-specific staging and execution directories for a job is controlled by the job's sandbox
attribute:

• If the job's sandbox attribute is set to PRIVATE, PBS creates a staging and execution directory for each job.

• If the job's sandbox attribute is set to HOME or is unset, PBS does not create job-specific staging and execution
directories. Instead PBS uses your home directory.

You can set the sandbox attribute via qsub, or through a PBS directive. For example:

qsub -Wsandbox=PRIVATE

The job's sandbox attribute cannot be altered while the job is executing.

3.2.2.2 Where to Find the Staging and Execution Directory

PBS sets the job's jobdir attribute to the pathname of the job's staging and execution directory on the primary host. You
can view this attribute by using qstat -f, only while the job is executing. The value of jobdir is not retained if a job
is rerun; it is undefined whether jobdir is visible or not when the job is not executing. This is a read-only attribute.

PBS sets the environment variable PBS_JOBDIR to the pathname of the staging and execution directory on the primary
execution host. PBS_JOBDIR is added to the job script process, any job tasks, and the prologue and epilogue.

When are staged-out files are deleted? Successfully staged-out files are
deleted; others go to "undelivered"

Only after all are suc-
cessfully staged out

Staging and execution directory deleted after job fin-
ishes?

No Yes

What is job's sandbox attribute set to? HOME or not set PRIVATE

Table 3-1: Differences Between User Home and Job-specific Directory for Staging
and Execution

Question Regarding Action,
Requirement, or Setting

User Home Directory
Job-specific

Directory
UG-34 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
3.2.3 Attributes and Environment Variables Affecting

Staging

The following attributes and environment variables affect staging and execution.

Table 3-2: Attributes and Environment Variables Affecting Staging

Job’s Attribute or
Environment

Variable
Effect

sandbox attribute Determines whether PBS uses user's home directory or creates job-specific directory for
staging and execution. When set to PRIVATE, PBS creates job-specific directories. If
value is HOME or is unset, PBS uses the user's home directory for staging and execu-
tion. User-settable per job via qsub -W or through a PBS directive.

stagein attribute Sets list of files or directories to be staged in. User-settable per job via qsub -W. For-
mat:

execution_path@storage_host:storage_path

The execution_path is the path to the staging and execution directory. On stagein,
storage_path is the path where the input files normally reside.

stageout attribute Sets list of files or directories to be staged out. User-settable per job via qsub -W. For-
mat:

execution_path@storage_host:storage_path

The execution_path is the path to the staging and execution directory. On stageout,
storage_path is the path where output files will end up.

Keep_Files attribute Determines whether output and/or error files remain on execution host. User-settable per
job via qsub -k or through a PBS directive. If the Keep_Files attribute is set to o
and/or e (output and/or error files remain in the staging and execution directory) and the
job's sandbox attribute is set to PRIVATE, standard out and/or error files are removed
when the staging and execution directory is removed at job end along with its contents. If
direct write for files is specified via the -d suboption to the -k argument, files are not
removed. See section 3.3.5, “Keeping Output and Error Files on Execution Host”, on
page 46.

jobdir attribute Set to pathname of staging and execution directory on primary execution host. Read-only;
viewable via qstat -f.

Remove_Files attribute Specifies whether standard output and/or standard error files are automatically removed
(deleted) upon job completion.

PBS_JOBDIR environ-
ment variable

Set to pathname of staging and execution directory on primary execution host. Added to
environments of job script process, pbs_tm job tasks, and prologue and epilogue.

TMPDIR environment
variable

Location of job-specific scratch directory.
PBS Professional 2022.1 User’s Guide UG-35

Chapter 3 Job Input & Output Files
3.2.4 Specifying Files To Be Staged In or Staged Out

You can specify files to be staged in before the job runs and staged out after the job runs by setting the job's stagein and
stageout attributes. You can use options to qsub, or directives in the job script:

qsub -Wstagein=<execution path>@<input file storage host>:<input file storage path>[,...] -Wstageout=<execution
path>@<output file storage host>:<output file storage path>[,...]

#PBS -W stagein=<execution path>@<input file storage host>:<input file storage path>[,...]

#PBS -W stageout=<execution path>@<output file storage host>:<output file storage path>[,...]

The name execution path is the name of the file in the job's staging and execution directory (on the execution host). The
execution path can be relative to the job's staging and execution directory, or it can be an absolute path.

The '@' character separates the execution specification from the storage specification.

The name storage path is the file name on the host specified by storage host. For stagein, this is the location where the
input files come from. For stageout, this is where the output files end up when the job is done. You must specify a host-
name. The path can be absolute, or it can be relative to your home directory on the machine named storage host.

For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.

The following example shows how to use a directive to stagein a file named grid.dat located in the directory
/u/user1 on the host called serverA. The staged-in file is copied to the staging and execution directory and given the
name data1. Since execution path is evaluated relative to the staging and execution directory, it is not necessary to
specify a full pathname for data1.

#PBS -W stagein=data1@serverA:/u/user1/grid.dat ...

To use the qsub option to stage in the file residing on myhost, in /Users/myhome/mydata/data1, calling it
input_data1 in the staging and execution directory:

qsub -W stagein=input_data1@myhost:/Users/myhome/mydata/data1

To stage more than one file or directory, use a comma-separated list of paths, and enclose the list in double quotes. For
example, to stage two files data1 and data2 in:

qsub -W stagein="input1@hostA:/myhome/data1,input2@hostA:/myhome/data1"

3.2.5 Caveats and Requirements for Staging

3.2.5.1 Linux: Staging and Special Characters

If you need to use special characters, such as parentheses, in your file or directory names, enclose that part of the path in
an extra layer of quotes. Syntax:

-W stageout="<execution path> @<storage host>:'<storage path>'"

Example:

-W stageout="myoutfile@myhost:'/home/user1/outfile(1234)'"
UG-36 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
3.2.5.2 Windows: Staging and Special Characters or Paths

3.2.5.2.i Special Characters

Under Windows, if your path contains special characters such as spaces, backslashes (\), colons (:), or drive letter specifi-
cations, enclose the staging specification in double quotes. For example, to stage the grid.dat file on drive D at hostB to
the execution file named "dat1" on drive C:

qsub -W stagein="dat1@hostB:D\Documents and Settings\grid.dat"

3.2.5.2.ii Using UNC Paths

If you use a UNC path to stage in or out, the hostname is optional. If you use a non-UNC path, the hostname is required.

3.2.5.3 Path Names for Staging

• It is advisable to use an absolute pathname for the storage path. Remember that the path to your home directory
may be different on each machine, and that when using sandbox = PRIVATE, you may or may not need to have
a home directory on all execution machines.

• Always use a relative pathname for execution path when the job's staging and execution directory is created by PBS,
meaning when using a job-specific staging and execution directory, do not use an absolute path in execution path.

3.2.5.4 Required Permissions

You must have read permission for any files or directories that you will stage in, and write permission for any files or
directories that you will stage out.

3.2.5.5 Warning About Ampersand

You cannot use the ampersand ("&") in any staging path. Staging will fail.

3.2.5.6 Interactive Jobs and File I/O

When an interactive job finishes, staged files may not have been copied back yet.

3.2.5.7 Copying Directories Into and Out Of the Staging and

Execution Directory

You can stage directories into and out of the staging and execution directory the same way you stage files. The storage
path and execution path for both stagein and stageout can be a directory. If you stagein or stageout a directory, PBS cop-
ies that directory along with all of its files and subdirectories. At the end of the job, the directory, including all files and
subdirectories, is deleted. This can create a problem if multiple jobs are using the same directory, but you can avoid this
by having PBS create job-specific staging and execution directories; to do so, set sandbox=PRIVATE for your jobs.
PBS Professional 2022.1 User’s Guide UG-37

Chapter 3 Job Input & Output Files
3.2.5.8 Wildcards In File Staging

You can use wildcards when staging files and directories, according to the following rules.

• The asterisk "*" matches one or more characters.

• The question mark "?" matches a single character.

• All other characters match only themselves.

• Wildcards inside of quote marks are expanded.

• Wildcards cannot be used to match Linux files that begin with period "." or Windows files that have the "SYSTEM"
or "HIDDEN" attributes.

• When using the qsub command line on Linux, you must prevent the shell from expanding wildcards. For some
shells, you can enclose the pathnames in double quotes. For some shells, you can use a backslash before the wild-
card.

• Wildcards can only be used in the source side of a staging specification. This means they can be used in the storage
path specification for stagein, and in the execution path specification for stageout.

• When staging using wildcards, the destination must be a directory. If the destination is not a directory, the result is
undefined. So for example, when staging out all .out files, you must specify a directory for storage path.

• Wildcards can only be used in the final path component, i.e. the basename.

• When wildcards are used during stagein, PBS will not automatically delete staged files at job end if PBS did not cre-
ate a job-specific staging and execution directory. If PBS created the staging and execution directory, that directory
and all its contents are deleted at job end.

3.2.6 Examples of File Staging

Example 3-1: Stage out all files from the execution directory to a specific directory:

Linux

-W stageout=*@myworkstation:/user/project1/case1

Windows

-W stageout=*@mypc:E:\project1\case1

Example 3-2: Stage out specific types of result files and disregard the scratch and other temporary files after the job ter-
minates. The result files that are interesting for this example end in '.dat':

Linux

-W stageout=*.dat@myworkstation:project3/data

Windows

-W stageout=*.dat@mypc:C:\project\data

Example 3-3: Stage in all files from an application data directory to a subdirectory:

Linux

-W stagein=jobarea@myworkstation:crashtest1/*

Windows

-W stagein=jobarea@mypc:E:\crashtest1*

Example 3-4: Stage in data from files and directories matching "wing*":

Linux

-W stagein=.@myworkstation:848/wing*
UG-38 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
Windows

-W stagein=.@mypc:E:\flowcalc\wing*

Example 3-5: Stage in .bat and .dat files to job area:

Linux:

-W stagein=jobarea@myworkstation:/users/me/crash1.?at

Windows:

-W stagein=jobarea@myworkstation:C:\me\crash1.?at

3.2.6.1 Example of Using Job-specific Staging and Execution

Directories

In this example, you want the file "jay.fem" to be delivered to the job-specific staging and execution directory given in
PBS_JOBDIR, by being copied from the host "submithost". The job script is executed in PBS_JOBDIR and "jay.out"
is staged out from PBS_JOBDIR to your home directory on the submission host (i.e., "storage host"):

qsub -Wsandbox=PRIVATE -Wstagein=jay.fem@submithost:jay.fem -Wstageout=jay.out@submithost:jay.out

3.2.7 Summary of the Job Lifecycle

This is a summary of the steps performed by PBS. The steps are not necessarily performed in this order.

• On each execution host, if specified, PBS creates a job-specific staging and execution directory.

• PBS sets PBS_JOBDIR and the job's jobdir attribute to the path of the job's staging and execution directory.

• On each execution host allocated to the job, PBS creates a temporary scratch directory.

• PBS sets the TMPDIR environment variable to the pathname of the temporary scratch directory.

• If any errors occur during directory creation or the setting of variables, the job is requeued.

• PBS stages in any files or directories.

• The prologue is run on the primary execution host, with its current working directory set to PBS_HOME/mom_priv,
and with PBS_JOBDIR and TMPDIR set in its environment.

• The job is run as you on the primary execution host.

• The job's associated tasks are run as you on the execution host(s).

• The epilogue is run on the primary execution host, with its current working directory set to the path of the job's stag-
ing and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

• PBS stages out any files or directories.

• PBS removes standard error and/or standard output according to the value of the job's Remove_Files attribute.

• PBS removes any staged files or directories.

• If PBS created them, PBS removes any job-specific staging and execution directories and their contents, and all
TMPDIRs and their contents.

• PBS writes the final job accounting record and purges any job information from the server's database.

3.2.8 Detailed Description of Job Lifecycle

3.2.8.1 Creation of TMPDIR

For each host allocated to the job, PBS creates a job-specific temporary scratch directory for the job. If the temporary
scratch directory cannot be created, the job is aborted.
PBS Professional 2022.1 User’s Guide UG-39

Chapter 3 Job Input & Output Files
3.2.8.2 Choice of Staging and Execution Directories

If the job's sandbox attribute is set to PRIVATE, PBS creates job-specific staging and execution directories for the job.
If the job's sandbox attribute is set to HOME, or is unset, PBS uses your home directory for staging and execution.

3.2.8.2.i Job-specific Staging and Execution Directories

If the staging and execution directory cannot be created the job is aborted. If PBS fails to create a staging and execution
directory, see the system administrator.

You should not depend on any particular naming scheme for the new directories that PBS creates for staging and execu-
tion.

3.2.8.2.ii User Home Directory as Staging and Execution Directory

You must have a home directory on each execution host. The absence of your home directory is an error and causes the
job to be aborted.

3.2.8.3 Setting Environment Variables and Attributes

PBS sets PBS_JOBDIR and the job's jobdir attribute to the pathname of the staging and execution directory on the pri-
mary execution host. The TMPDIR environment variable is set to the pathname of the job-specific temporary scratch
directory.

3.2.8.4 Staging Files Into Staging and Execution Directories

PBS stages files in to the primary execution host. PBS evaluates execution path and storage path relative to
the staging and execution directory given in PBS_JOBDIR, whether this directory is your home directory or a job-spe-
cific directory created by PBS. PBS copies the specified files and/or directories to the job's staging and execution direc-
tory.

3.2.8.5 Running the Prologue

The MoM's prologue is run on the primary host as root, with the current working directory set to
PBS_HOME/mom_priv, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.6 Job Execution

PBS runs the job script on the primary host as you. PBS also runs any tasks created by the job as you. The job script and
tasks are executed with their current working directory set to the job's staging and execution directory, and with
PBS_JOBDIR and TMPDIR set in their environment.

3.2.8.7 Standard Out and Standard Error

The job's stdout and stderr files are created directly in the job's staging and execution directory on the primary exe-
cution host, unless you specify that files should be written directly to their final destination via the -d sub-option to the -k
option.

3.2.8.7.i Job-specific Staging and Execution Directories

If you set sandbox to PRIVATE, and you specified the qsub -k option, the stdout and stderr files are not auto-
matically copied out of the staging and execution directory at job end; they will be deleted when the directory is automat-
ically removed. Note that if you specified that files should be written directly to their final destination via the -d
sub-option to the -k option, they are not created in the staging and execution directory in the first place.
UG-40 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
3.2.8.7.ii User Home Directory as Staging and Execution Directory

If you set sandbox to HOME or left it unset, and you specified the -k option to qsub, standard out and/or standard error
files are retained on the primary execution host instead of being returned to the submission host, and are not deleted after
job end.

3.2.8.8 Running the Epilogue

PBS runs the epilogue on the primary host as root. The epilogue is executed with its current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.

3.2.8.9 Staging Files Out and Removing Execution Directory

When PBS stages files out, it evaluates execution path and storage path relative to PBS_JOBDIR. Files that
cannot be staged out are saved in PBS_HOME/undelivered.

3.2.8.9.i Job-specific Staging and Execution Directories

If PBS created job-specific staging and execution directories for the job, it cleans them up at the end of the job; it
removes the staging and execution directory and all of its contents, on all execution hosts.

3.2.8.10 Removing TMPDIRs and Files

PBS removes all TMPDIRs, along with their contents. If Remove_Files specifies output and/or error files, these files
are removed.

3.2.9 Staging with Job Arrays

File staging is supported for job arrays. See “File Staging for Job Arrays” on page 157.

3.2.10 Stagein and Stageout Failure

3.2.10.1 File Stagein Failure

When stagein fails, the job is placed in a 30-minute wait to allow you time to fix the problem. Typically this is a missing
file or a network outage. Email is sent to the job owner when the problem is detected. Once the problem has been
resolved, the job owner or a PBS Operator may remove the wait by resetting the time after which the job is eligible to be
run via the -a option to qalter. The server will update the job's comment with information about why the job was put
in the wait state. When the job is eligible to run, it may run on different vnodes.

3.2.10.2 File Stageout Failure

When stageout encounters an error, there are three retries. PBS waits 1 second and tries again, then waits 11 seconds and
tries a third time, then finally waits another 21 seconds and tries a fourth time. Email is sent to the job owner if all
attempts fail. Files that cannot be staged out are saved in PBS_HOME/undelivered. See section 3.3.8.1, “Non-deliv-
ery of Output”, on page 48.
PBS Professional 2022.1 User’s Guide UG-41

Chapter 3 Job Input & Output Files
3.3 Managing Output and Error Files

3.3.1 Default Behavior For Output and Error Files

By default, PBS copies the standard output (stdout) and standard error (stderr) files back to $PBS_O_WORKDIR
on the submission host when a job finishes. When qsub is run, it sets $PBS_O_WORKDIR to the current working
directory where the qsub command is executed. This means that if you want your job's stdout and stderr files to be
delivered to your submission directory, you do not need to do anything.

The following options to the qsub command control where stdout and stderr are created and whether and where
they are copied when the job is finished:

sandbox
By default, PBS runs the job script in the owner's home directory. If sandbox is set to PRIVATE, PBS creates
a job-specific staging and execution directory, and runs the job script there. See section 3.2.2.1, “Setting the Job
Staging and Execution Directory”, on page 34.

k
k {e | o | eo | oe | n}

When used with the -e, -o, -eo, -oe, and -n suboptions, specifies whether and which of stdout and
stderr is retained in the job's execution directory. When set, this option overrides -o <output path>
and -e <error path>. See section 3.3.5, “Keeping Output and Error Files on Execution Host”, on
page 46.

kd {e | o | eo | oe}
When used with the -d suboption, specifies that output and/or error files are written directly to the final des-
tination. Requires e and/or o suboptions. See section 3.3.6, “Writing Files Directly to Final Destination”,
on page 47.

o
Specifies destination for stdout. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 44.

e
Specifies destination for stderr. Overridden by k when k is set. See section 3.3.2, “Paths for Output and
Error Files”, on page 44.

R
Specifies whether standard output and/or standard error are deleted upon job completion. See section 3.3.3,
“Avoiding Creation of stdout and/or stderr”, on page 45.
UG-42 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
The following table shows how these options control creation and copying of stdout and stderr:

• You can specify a path for stdout and/or stderr: see section 3.3.2, “Paths for Output and Error Files”, on page
44.

• You can merge stdout and stderr: see section 3.3.4, “Merging Output and Error Files”, on page 45.

• You can prevent creation of stdout and/or stderr: see section 3.3.3, “Avoiding Creation of stdout and/or stderr”,
on page 45.

• You can choose whether to retain stdout and/or stderr on the execution host: see section 3.3.5, “Keeping Output
and Error Files on Execution Host”, on page 46.

• You can specify that output and/or error files are written directly to the final destination. See section 3.3.6, “Writing
Files Directly to Final Destination”, on page 47.

• You can specify that output and/or error files are deleted when the job finishes. See section 3.3.3, “Avoiding Cre-
ation of stdout and/or stderr”, on page 45.

Table 3-3: How k, sandbox, o, and e Options to qsub Affect stdout and stderr

sandbox
-k

(o, e,
eo, oe)

-e, -o -R -k d
Where stdout,

stderr Are Created
Where stdout, stderr Are

Copied

HOME or
unset

unset unset unset unset PBS_HOME/spool PBS_O_WORKDIR, which is job
submission directory

HOME or
unset

unset <path> unset unset PBS_HOME/spool Destination specified in -o <path>
and/or -e <path>

HOME or
unset

e, o,
eo, oe

unset unset unset Job submitter's home direc-
tory on execution host

Not copied; left in submitter's home
directory on execution host, and not
deleted

HOME or
unset

e, o,
eo, oe

<path> unset unset Job submitter's home direc-
tory on execution host

Not copied; left in submitter's home
directory on execution host, and not
deleted

PRIVATE unset unset unset unset Job-specific execution
directory created by PBS

PBS_O_WORKDIR, which is job
submission directory

PRIVATE unset <path> unset unset Job-specific execution
directory created by PBS

Destination specified in -o <path>
and/or -e <path>

PRIVATE e, o,
eo, oe

unset unset unset Job-specific execution
directory created by PBS

Not copied; left in job-specific execu-
tion directory; deleted when job-spe-
cific execution directory is deleted

PRIVATE e, o,
eo, oe

<path> unset unset Job-specific execution
directory created by PBS

Not copied; left in job-specific execu-
tion directory; deleted when job-spe-
cific execution directory is deleted

any any any -R e/o any Deleted regardless of where
created

Does not exist, so not copied

any any any unset -k d <o
and/or
e>

Final destination specified
in -o <output path>
and/or -e <error
path>, if MoM can reach it

Does not exist, so not copied
PBS Professional 2022.1 User’s Guide UG-43

Chapter 3 Job Input & Output Files
3.3.2 Paths for Output and Error Files

3.3.2.1 Default Paths for Output and Error Files

By default, PBS names the output and error files for your job using the job name and the job's sequence number. The
output file name is specified in the Output_Path job attribute, and the error file name is specified in the Error_Path job
attribute.

The default output filename has this format:

<job name>.o<sequence number>

The default error filename has this format:

<job name>.e<sequence number>

The job name, if not specified, defaults to the script name. For example, if the job ID is 1234.exampleserver and
the script name is "myscript", the error file is named myscript.e1234. If you specify a name for your job, the
script name is replaced with the job name. For example, if you name your job "fixgamma", the output file is named
fixgamma.o1234.

For details on naming your job, see section 2.5.2, “Specifying Job Name”, on page 27.

3.3.2.2 Specifying Paths

You can specify the path and name for the output and error files for each job, by setting the value for the Output_Path
and Error_Path job attributes. You can set these attributes using the following methods:

• Use the -o <output path> and -e <error path> options to qsub

• Use #PBS Output_Path=<path> and #PBS Error_Path=<path> directives in the job script

The path argument has the following form:

[<hostname>:]<pathname>

where hostname is the name of a host and pathname is the path name on that host.

You can specify relative or absolute paths. If you specify only a file name, it is assumed to be relative to your home direc-
tory. Do not use variables in the path.

The following examples show how you can specify paths:

#PBS -o /u/user1/myOutputFile

#PBS -e /u/user1/myErrorFile

qsub -o myOutputFile my_job

qsub -o /u/user1/myOutputFile my_job

qsub -o myWorkstation:/u/user1/myOutputFile my_job

qsub -e myErrorFile my_job

qsub -e /u/user1/myErrorFile my_job

qsub -e myWorkstation:/u/user1/myErrorFile my_job
UG-44 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
3.3.2.3 Specifying Paths from Windows Hosts

3.3.2.3.i Using Special Characters in Paths

If you submit your job from a Windows host, you may end up using special characters such as spaces, backslashes ("\"),
and colons (":") for specifying pathnames, and you may need drive letter specifications. The following examples are
allowed:

qsub -o \temp\my_out job.scr

qsub -e "myhost:e:\Documents and Settings\user\Desktop\output"

The error output of the example job is to be copied onto the e: drive on myhost using the path "\Documents and
Settings\user\Desktop\output".

3.3.2.3.ii Using UNC Paths

If you use a UNC path for output or error files, the hostname is optional. If you use a non-UNC path, the hostname is
required.

3.3.2.4 Caveats for Paths

Enclose arguments to qsub in quotes if the arguments contain spaces.

3.3.3 Avoiding Creation of stdout and/or stderr

For each job, PBS always creates the job's output and error files. The location where files are created is listed in
Table 3-3, “How k, sandbox, o, and e Options to qsub Affect stdout and stderr,” on page 43.

If you do not want stdout and/or stderr, you can do either of the following:

• Specify that PBS deletes the file(s) when the job finishes, using the -R option to qsub or qalter. The -R option
takes o, e, eo, or oe as sub-options. For example, to have PBS delete the error file:
qsub -R e job.sh

• Redirect them to /dev/null within the job script. For example, to redirect stdout and stderr to /dev/null:
exec >&/dev/null 1>&2

• Standard output and standard error are normally written to a location such as /var/spool, then copied to their final
location. To avoid creating these files at all, and to avoid copying them, use direct write to send them to /dev/null:
qsub -koed -o /dev/null -e /dev/null

Your administrator must also set up the MoM's configuration file to support this.

3.3.4 Merging Output and Error Files

By default, PBS creates separate standard output and standard error files for each job. You can specify that stdout and
stderr are to be joined by setting the job's Join_Path attribute. The default for the attribute is n, meaning that no join-
ing takes place. You can set the attribute using the following methods:

• Use qsub -j <joining option>

• Use #PBS Join_Path=<joining option>

You can specify one of the following joining options:

oe
Standard output and standard error are merged, intermixed, into a single stream, which becomes standard out-
put.
PBS Professional 2022.1 User’s Guide UG-45

Chapter 3 Job Input & Output Files
eo
Standard output and standard error are merged, intermixed, into a single stream, which becomes standard error.

n
Standard output and standard error are not merged.

For example, to merge standard output and standard error for my_job into standard output:

qsub -j oe my_job

#PBS -j oe

3.3.5 Keeping Output and Error Files on Execution Host

By default, PBS copies stdout and stderr to the job's submission directory. You can specify that PBS keeps std-
out, stderr, or both in the job's execution directory on the execution host. This behavior is controlled by the job's
Keep_Files attribute. You can set this attribute to one of the following values:

e
PBS keeps stderr in the job's staging and execution directory on the primary execution host.

o
PBS keeps stdout in the job's staging and execution directory on the primary execution host.

eo, oe
PBS keeps both standard output and standard error on the primary execution host, in the job's staging and execu-
tion directory.

n
PBS does not keep either file on the execution host.

d
PBS writes both stdout and stderr to their final destinations. Requires -o <output path> and/or -e
<error path> options. See section 3.3.6, “Writing Files Directly to Final Destination”, on page 47.

The default value for Keep_Files is "n".

You can set the value of the Keep_Files job attribute using the following methods:

• Use qsub -k <discard option>

• Use #PBS Keep_Files=<discard option>

For example, you can use either of the following to keep both standard output and standard error on the execution host:

qsub -k oe my_job

#PBS -k oe

3.3.5.1 Caveats for Keeping Files on Execution Host

• When a job finishes, if PBS created a job-specific staging and execution directory, PBS deletes the job-specific stag-
ing and execution directory, and all files in that directory. If you specified that stdout and/or stderr should be
kept on the execution host, any files you specified are deleted as well.

• The qsub -k option overrides the -o and -e options. For example, if you specify qsub -k o -o <path>,
stdout is kept on the execution host, and is not copied to the path you specified.
UG-46 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
3.3.6 Writing Files Directly to Final Destination

If the MoM on the primary execution host can reach the final destination, she can write the job's standard output and
standard error files to that destination. To be reachable, the final destination host and path must either be on the execu-
tion host, or be mapped from the primary execution host via the $usecp directive in the MoM configuration file. To
specify that standard output and/or standard error should be written directly to their final destinations, use the d
sub-option to the -k option to qsub or qalter. Indicate which files to write via the e and/or o suboptions.

For example, to directly write both output and error to their final destinations:

qsub -koed -o <output path> -e <error path> job.sh

To directly write output to its final destination, and let error go through normal spooling and staging:

qsub -kod -o <output path> job.sh

3.3.7 Changing Linux Job umask

On Linux, whenever your job stages or copies files or directories to the execution host, or writes stdout or stderr on
the execution host, MoM uses umask to determine the permissions for the file or directory. If you do not specify a value
for umask, MoM uses the system default. You can specify a value using the following methods:

• Use qsub -W umask=<value>

• Use #PBS umask=<value>

This does not apply when your job script creates files or directories.

In the following example, we set umask to 022, to have files created with write permission for owner only. The desired
permissions are -rw-r--r--.

qsub -W umask=022 my_job

#PBS -W umask=022

3.3.7.1 Caveats

This feature does not apply to Windows.

3.3.8 Troubleshooting File Delivery

File delivery is handled by MoM on the execution host. For a description of how file delivery works, see "Setting File
Transfer Mechanism" on page 441 in the PBS Professional Administrator’s Guide.

For troubleshooting file delivery, see "Troubleshooting File Transfer" on page 446 in the PBS Professional Administra-
tor’s Guide.
PBS Professional 2022.1 User’s Guide UG-47

Chapter 3 Job Input & Output Files
3.3.8.1 Non-delivery of Output

If the output of a job cannot be delivered to you, it is saved in a special directory named PBS_HOME/undelivered and
mail is sent to you. The typical causes of non-delivery are:

1. The destination host is not trusted and you do not have a .rhosts file.

2. An improper path was specified.

3. A directory in the specified destination path is not writable.

4. Your .cshrc on the destination host generates output when executed.

5. The path specified by PBS_SCP in pbs.conf is incorrect.

6. The PBS_HOME/spool directory on the execution host does not have the correct permissions. This directory must
have mode 1777 drwxrwxrwxt (on Linux) or "Full Control" for "Everyone" (on Windows).

3.3.9 Caveats for Output and Error Files

3.3.9.1 Retaining Files on Execution Host

When PBS creates a job-specific staging and execution directory and you use the -k option to qsub or you specify o
and/or e in the Keep_Files attribute, the files you requested kept on the execution host are deleted when the job-specific
staging and execution directory is deleted at the end of the job.

3.3.9.2 Standard Output and Error Appended When Job is Rerun

If your job runs and writes to stdout or stderr, and then is rerun, meaning that another job with the same name is run,
PBS appends the stdout of the second run to that of the first, and appends the stderr of the second run to that of the
first.

3.3.9.3 Windows Mapped Drives and PBS

In Windows, when you map a drive, it is mapped locally to your session. The mapped drive cannot be seen by other pro-
cesses outside of your session. A drive mapped on one session cannot be un-mapped in another session even if the user
is the same. This has implications for running jobs under PBS. Specifically if you map a drive, chdir to it, and submit a
job from that location, the vnode that executes the job may not be able to deliver the files back to the same location from
which you issued qsub. The workaround is to tell PBS to deliver the files to a local, non-mapped, directory. Use the
"-o" or "-e" options to qsub to specify the directory location for the job output and error files. For details see section
3.3.2, “Paths for Output and Error Files”, on page 44.

3.3.9.4 Harmless csh Error Message

If your login shell is csh the following message may appear in the standard output of a job:

Warning: no access to tty, thus no job control in this shell

This message is produced by many csh versions when the shell determines that its input is not a terminal. Short of mod-
ifying csh, there is no way to eliminate the message. Fortunately, it is just an informative message and has no effect on
the job.

3.3.9.5 Interactive Jobs and File I/O

When an interactive job finishes, stdout and/or stderr may not have been copied back yet.
UG-48 PBS Professional 2022.1 User’s Guide

Job Input & Output Files Chapter 3
3.3.9.6 Write Permissions Required

• You must have write permission for any directory where you will copy stdout or stderr.

• Root must be able to write in PBS_HOME/spool.
PBS Professional 2022.1 User’s Guide UG-49

Chapter 3 Job Input & Output Files
UG-50 PBS Professional 2022.1 User’s Guide

4

Allocating Resources & Placing

Jobs

4.1 What is a Vnode?

A virtual node, or vnode, is an abstract object representing a set of resources which form a usable part of a machine. This
could be an entire host, or a nodeboard or a blade. A single host can be made up of multiple vnodes.

A host is any computer. Execution hosts used to be called nodes, and are still often called nodes outside of the PBS doc-
umentation. PBS views hosts as being composed of one or more vnodes.

PBS manages and schedules each vnode independently. Jobs run on one or more vnodes. Each vnode has its own set of
attributes; see “Vnode Attributes” on page 320 of the PBS Professional Reference Guide.

4.1.1 Deprecated Vnode Types

All vnodes are treated alike, and are treated the same as what were once called "time-shared nodes". The types
"time-shared" and "cluster" are deprecated. The :ts suffix is deprecated. It is silently ignored, and not preserved during
rewrite.

The vnode attribute ntype was only used to distinguish between PBS and Globus vnodes. Globus can still send jobs to
PBS, but PBS no longer supports sending jobs to Globus. The ntype attribute is read-only.

4.2 PBS Resources

4.2.1 Introduction to PBS Resources

In this section, "Introduction to PBS Resources", we will briefly cover the basics of PBS resources. For a thorough dis-
cussion, see "Using PBS Resources" on page 227 in the PBS Professional Administrator’s Guide, especially sections 5.4
and 5.5. For a complete description of each PBS resource, see Chapter 5, "List of Built-in Resources", on page 259.

PBS resources represent things such as CPUs, memory, application licenses, switches, scratch space, and time. They can
also represent whether or not something is true, for example, whether a machine is dedicated to a particular project.

PBS provides a set of built-in resources, and allows the administrator to define additional custom resources. Custom
resources are used for application licenses, scratch space, etc., and are defined by the administrator. Custom resources
are used the same way built-in resources are used. PBS supplies the following types of resources:

Boolean

Name of Boolean resource is a string.

Values:

TRUE, True, true, T, t, Y, y, 1

FALSE, False, false, F, f, N, n, 0
PBS Professional 2022.1 User’s Guide UG-51

Chapter 4 Allocating Resources & Placing Jobs
Duration

A period of time, expressed either as

An integer whose units are seconds
or

[[hours:]minutes:]seconds[.milliseconds]
in the form:

[[[HH]HH:]MM:]SS[.milliseconds]
Milliseconds are rounded to the nearest second.

Float

Floating point. Allowable values: [+-] 0-9 [[0-9] ...][.][[0-9] ...]

Long

Long integer. Allowable values: 0-9 [[0-9] ...], and + and -

<queue name>@<server name>

Size

Number of bytes or words. The size of a word is 64 bits.

Format: <integer>[<suffix>]

where suffix can be one of the following:

Default: bytes

Note that a scheduler rounds all resources of type size up to the nearest kb.

String

Any character, including the space character.

Only one of the two types of quote characters, " or ', may appear in any given value.

Values:[_a-zA-Z0-9][[-_a-zA-Z0-9 ! " # $ % ´ () * + , - . / : ; < = > ? @ [\] ^ _ ' { | } ~] ...]

String resource values are case-sensitive. No limit on length.

Table 4-1: Size in Bytes

Suffix Meaning Size

b or w Bytes or words 1

kb or kw Kilobytes or kilowords 2 to the 10th, or 1024

mb or mw Megabytes or megawords 2 to the 20th, or 1,048,576

gb or gw Gigabytes or gigawords 2 to the 30th, or 1,073,741,824

tb or tw Terabytes or terawords 2 to the 40th, or 1024 gigabytes

pb or pw Petabytes or petawords 2 to the 50th, or 1,048,576 gigabytes
UG-52 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
String Array

Comma-separated list of strings.

Strings in string_array may not contain commas. No limit on length.

Python type is str.

A string array resource with one value works exactly like a string resource.

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide for a listing of built-in resources.

For some systems, PBS creates specific custom resources.

The administrator can specify which resources are available at the server, each queue, and each vnode. Resources
defined at the queue or server level apply to an entire job. Resources defined at the vnode level apply only to the part of
the job running on that vnode.

Jobs can request resources. The scheduler matches requested resources with available resources, according to rules
defined by the administrator. PBS always places jobs where it finds the resources requested by the job. PBS will not
place a job where that job would use more resources than PBS thinks are available. For example, if you have two jobs,
each requesting 1 CPU, and you have one vnode with 1 CPU, PBS will run only one job at a time on the vnode.

PBS can enforce limits on resource usage by jobs; see section 4.5, “Limits on Resource Usage”, on page 63.

4.2.2 Glossary

Chunk

A set of resources allocated as a unit to a job. Specified inside a selection directive. All parts of a chunk come
from the same host. In a typical MPI (Message-Passing Interface) job, there is one chunk per MPI process.

Chunk-level resource, host-level resource

A resource that is available at the host level, for example, CPUs or memory. Chunk resources are requested
inside of a selection statement. The resources of a chunk are to be applied to the portion of the job running in
that chunk.

Chunk resources are requested inside a select statement.

Job-wide resource, server resource, queue resource

A job-wide resource, also called a server-level or queue-level resource, is a resource that is available to the
entire job at the server or queue.

A job-wide resource is available to be consumed or matched at the server or queue if you set the server or queue
resources_available.<resource name> attribute to the available or matching value. For example, you can
define a custom resource called FloatingLicenses and set the server's resources_available.FloatingLi-
censes attribute to the number of available floating licenses.

Examples of job-wide resources are shared scratch space, application licenses, or walltime.

A job can request a job-wide resource for the entire job, but not for individual chunks.

4.3 Requesting Resources

Your job can request resources that apply to the entire job, or resources that apply to job chunks. For example, if your
entire job needs an application license, your job can request one job-wide license. However, if one job process needs two
CPUs and another needs 8 CPUs, your job can request two chunks, one with two CPUs and one with eight CPUs. Your
job cannot request the same resource in a job-wide request and a chunk-level request.
PBS Professional 2022.1 User’s Guide UG-53

Chapter 4 Allocating Resources & Placing Jobs
PBS supplies resources such as walltime that can be used only as job-wide resources, and other resources, such as ncpus
and mem, that can be used only as chunk resources. A resource is either job-wide or chunk-level, but not both. The
description of each resource tells you which way to use the resource; see “List of Built-in Resources” on page 259 of the
PBS Professional Reference Guide.

We will cover the details of requesting resources in section 4.3.2, “Requesting Job-wide Resources”, on page 54 and sec-
tion 4.3.3, “Requesting Resources in Chunks”, on page 55.

4.3.1 Quick Summary of Requesting Resources

Job-wide resources are requested in <resource neme>=<value> pairs. You can request job-wide resources using any of
the following:

• The qsub -l <resource name>=<value> option

You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives

Chunk resources are requested in chunk specifications in a select statement. You can request chunk resources using any
of the following:

• The qsub -l select=[N:][<chunk specification>][+[N:]<chunk specification>] option

• A #PBS -l select=[N:][<chunk specification>][+[N:]<chunk specification>] directive

Format for requesting both job-wide and chunk resources:

qsub ... (non-resource portion of job)
-l <resource>=<value> (this is the job-wide request)
-l select=<chunk>[+<chunk>] (this is the selection statement)

PBS supplies several commands that you can use to request resources or alter resource requests:

• The qsub command (both via command-line and in PBS directives)

• The pbs_rsub command (via command-line only)

• The qalter command (via command-line only)

4.3.2 Requesting Job-wide Resources

Your job can request resources that apply to the entire job in job-wide resource requests. A job-wide resource is
designed to be used by the entire job, and is available at the server or a queue, but not at the host level. Job-wide
resources are used for requesting floating application licenses or other resources not tied to specific vnodes, such as cput
and walltime.

Job-wide resources are requested outside of a selection statement, in this form:

-l <resource name>=<value>[,<resource name>=<value> ...]

A resource request "outside of a selection statement" means that the resource request comes after "-l", but not after
"-lselect=". In other words, you cannot request a job-wide resource in chunks.

For example, to request one hour of walltime for a job:

-l walltime=1:00:00

You can request job-wide resources using any of the following:

• The qsub -l <resource name>=<value> option
UG-54 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
You can request multiple resources, using either format:

-l <resource>=<value>,<resource>=<value>

-l <resource>=<value> -l <resource>=<value>

• One or more #PBS -l <resource name>=<value> directives

4.3.3 Requesting Resources in Chunks

A chunk specifies the value of each resource in a set of resources which are to be allocated as a unit to a job. It is the
smallest set of resources to be allocated to a job. All of a chunk is taken from a single host. One chunk may be broken
across vnodes, but all participating vnodes must be from the same host.

Your job can request chunk resources, which are resources that apply to the host-level parts of the job. Host-level
resources can only be requested as part of a chunk. Server or queue resources cannot be requested as part of a chunk. A
chunk resource is used by the part of the job running on that chunk, and is available at the host level. Chunks are used for
requesting host-related resources such as CPUs, memory, and architecture.

Chunk resources are requested inside a select statement. A select statement has this form:

-l select=[N:]<chunk>[+[N:]<chunk> ...]

Now, we'll explain the details. A single chunk is requested using this form:

-l select=<resource name>=<value>[:<resource name>=<value>...]

For example, one chunk might have 2 CPUs and 4GB of memory:

-l select=ncpus=2:mem=4gb

To request multiples of a chunk, prefix the chunk specification by the number of chunks:

-l select=[<number of chunks>]<chunk specification>

For example, to request six of the previous chunk:

-l select=6:ncpus=2:mem=4gb

If you don't specify N, the number of chunks, it is taken to be 1.

To request different chunks, concatenate the chunks using the plus sign ("+"):

-l select=[<number of chunks>]<chunk specification>+[<number of chunks>]<chunk specification>

For example, to request two sets of chunks where one set of 6 chunks has 2 CPUs per chunk, and one set of 3 chunks has
8 CPUs per chunk, and both sets have 4GB of memory per chunk:

-l select=6:ncpus=2:mem=4gb+3:ncpus=8:mem=4GB

No spaces are allowed between chunks.

You must specify all your chunks in a single select statement.

You can request chunk resources using any of the following:

• The qsub -l select=[N:][<chunk specification>][+[N:]<chunk specification>] option

• A #PBS -l select=[N:][<chunk specification>][+[N:]<chunk specification>] directive
PBS Professional 2022.1 User’s Guide UG-55

Chapter 4 Allocating Resources & Placing Jobs
4.3.4 Requesting Boolean Resources

A resource request can specify whether a Boolean resource should be True or False.

Example 4-1: Some vnodes have green=True and some have red=True, and you want to request two vnodes, each with
one CPU, all green and no red:

-l select=2:green=true:red=false:ncpus=1

Example 4-2: This job script snippet has a job-wide request for walltime and a chunk request for CPUs and memory
where the Boolean resource HasMyApp is True:

#PBS -l walltime=1:00:00

#PBS -l select=ncpus=4:mem=400mb:HasMyApp=true

Keep in mind the difference between requesting a vnode-level boolean and a job-wide boolean:

qsub -l select=1:green=True

requests a vnode with green set to True. However,

qsub -l green=True

requests green set to True on the server and/or queue.

4.3.5 Requesting Application Licenses

Application licenses are managed as resources defined by your PBS administrator. PBS doesn't actually check out the
licenses; the application being run inside the job's session does that.

4.3.5.1 Requesting Floating Application Licenses

A site-wide floating license is typically configured as a server-level, job-wide resource.

To request a job-wide application license called AppF, use:

qsub -l AppF=<number of licenses> <other qsub arguments>

If only certain hosts can run the application, they will typically have a host-level Boolean resource set to True.

The job-wide resource AppF is a numerical resource indicating the number of licenses available at the site. The
host-level Boolean resource haveAppF indicates whether a given host can run the application. To request the applica-
tion license and the vnodes on which to run the application:

qsub -l AppF=<number of licenses> <other qsub arguments>

 -l select=haveAppF=True

PBS queries the license server to find out how many floating licenses are available at the beginning of each scheduling
cycle. PBS doesn't actually check out the licenses, the application being run inside the job's session does that.

4.3.5.2 Requesting Node-locked Application Licenses

Node-locked application licenses are available at the vnode(s) that are licensed for the application. These are host-level
(chunk) resources that are requested inside of a select statement.

4.3.5.2.i Requesting Per-host Node-locked Application Licenses

Per-host node-locked application licenses are typically configured as a Boolean resource that indicates whether or not the
required license is available at that host.
UG-56 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
When requesting Boolean-valued per-host node-locked licenses, request one per host. Format:

qsub -l select=<Boolean resource name>=true:<rest of chunk specification>

Example 4-3: The Boolean resource runsAppA specifies whether this vnode has the necessary license. To request a host
with a per-host node-locked license for AppA in one chunk:

qsub -l select=1:runsAppA=1 <job script>

4.3.5.2.ii Requesting Per-use Node-locked Application Licenses

Per-use node-locked application licenses are typically configured as a consumable numeric resource so that the host(s)
that run the application have the number of licenses that can be used at one time.

When requesting numerical per-use node-locked licenses, request the required number of licenses for each host:

qsub -l select=<consumable resource name>=<required amount>:<rest of chunk specification>

Example 4-4: The consumable resource named AppB indicates the number of available per-use application licenses on a
host. To request a host with a per-use node-locked license for AppB, where you'll run one instance of AppB on two
CPUs in one chunk:

qsub -l select=1:ncpus=2:AppB=1

4.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

Per-CPU node-locked licenses are typically arranged so that the host has one license for each licensed CPU. The PBS
administrator configures a consumable numerical resource indicating the number of available licenses.

You must request one license for each CPU. When requesting numerical per-use node-locked licenses, request the
required number of licenses for each host:

qsub -l select=<per-CPU resource name>=<required amount>:<rest of chunk specification>

Example 4-5: The numerical consumable resource named AppC indicates the number of available per-CPU licenses. To
request a host with two per-CPU node-locked licenses for AppC, where you'll run a job using two CPUs in one
chunk:

qsub -l select=1:ncpus=2:AppC=2

4.3.6 Requesting Scratch Space

Scratch space on a machine is configured as a host-level dynamic resource. Ask your administrator for the name of the
scratch space resource.

When requesting scratch space, include the resource in your chunk request:

-l select=<scratch resource name>=<amount of scratch needed>:<rest of chunk specification>

Example 4-6: Your administrator has named the scratch resource "dynscratch". To request 10MB of scratch space in
one chunk:

-l select=1:ncpus=N:dynscratch=10MB

4.3.7 Requesting GPUs

Your PBS job can request GPUs. How you request GPUs depends on whether PBS uses cgroups to manage GPUs; check
with your administrator.
PBS Professional 2022.1 User’s Guide UG-57

Chapter 4 Allocating Resources & Placing Jobs
4.3.7.1 Requesting GPUs Managed via Cgroups

Recommended: On Linux only, PBS can be configured to use cgroups to fence GPUs off, so that when your job requests
GPUs it automatically gets exclusive use of its GPUs. You don't have to request exclusivity. When PBS uses cgroups to
manage GPUs, you request the number of GPUs you want via the ngpus resource:

qsub -l select=ngpus=<value>:<rest of chunk specification>

When GPUs are managed via cgroups, jobs requesting memory will use that amount both for physical memory and for
swap. For example, a job that requests 20GB and uses 16GB but reads a 50GB file can only swap 4GB at a time. So if a
job requires 32GB of application memory but also requires 5GB of private file cache to perform adequately, then it needs
to request 37GB.

4.3.7.2 Requesting GPUs Not Managed via Cgroups

On Windows or Linux, when PBS is not using cgroups to manage GPUs, your administrator can configure PBS to sup-
port any of the following:

• ("Basic GPU scheduling") Job uses non-specific GPUs and exclusive use of a node

• ("Advanced GPU scheduling") Job uses non-specific GPUs and shared use of a node

• ("Advanced GPU scheduling") Job uses specific GPUs and either shared or exclusive use of a node

4.3.7.2.i Binding to GPUs

PBS Professional allocates GPUs, but does not bind jobs to any particular GPU; the application itself, or the CUDA
library, is responsible for the actual binding.

4.3.7.2.ii Requesting Non-specific GPUs and Exclusive Use of Node

When your site uses "basic GPU scheduling", if your job needs GPUs, but does not require specific GPUs, and can
request exclusive use of GPU nodes, you can request GPUs the same way you request CPUs.

Your administrator can set up a resource to represent the GPUs on a node. We recommend that the GPU resource is
called ngpus.

When requesting GPUs in this manner, your job should request exclusive use of the node to prevent other jobs being
scheduled on its GPUs.

qsub -l select=ngpus=<value>:<rest of chunk specification> -lplace=excl

Example 4-7: To submit the job named "my_gpu_job", requesting one node with two GPUs and one CPU, and exclu-
sive use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=excl my_gpu_job

It is up to the application or CUDA to bind the GPUs to the application processes.

4.3.7.2.iii Requesting Non-specific GPUs and Shared Use of Node

When your site uses "advanced GPU scheduling", your administrator can configure PBS to allow your job to use
non-specific GPUs on a node while sharing GPU nodes. In this case, your administrator puts each GPU in its own
vnode.

Your administrator can configure a resource to represent GPUs. We recommend that the GPU resource is called ngpus.

Your administrator can configure each GPU vnode so it has a resource containing the device number of the GPU. We
recommend that this resource is called gpu_id.

Example 4-8: To submit the job named "my_gpu_job", requesting two GPUs and one CPU, and shared use of the node:

qsub -lselect=1:ncpus=1:ngpus=2 -lplace=shared my_gpu_job
UG-58 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
When a job is submitted requesting any GPU, the PBS scheduler looks for a vnode with an available GPU and assigns
that vnode to the job. Since there is a one-to-one correspondence between GPUs and vnodes, the job can determine the
gpu_id of that vnode. Finally, the application can use the appropriate CUDA call to bind the process to the allocated
GPU.

4.3.7.2.iv Requesting Specific GPUs

When your site uses "advanced GPU scheduling", your job can request one or more specific GPUs. This allows you to
run applications on the GPUs for which the applications are written.

Your administrator can set up a resource to allow jobs to request specific GPUs. We recommend that the GPU resource
is called gpu_id.

When you request specific GPUs, specify the GPU that you want for each chunk:

qsub -l select=gpu_id=<GPU ID>:<rest of chunk specification>

Example 4-9: To request 4 vnodes, each with GPU with ID 0:

qsub -lselect=4:ncpus=1:ngpus=1:gpu_id=gpu0 my_gpu_job

When a job is submitted requesting specific GPUs, the PBS scheduler assigns the vnode with the resource containing that
gpu_id to the job. The application can use the appropriate CUDA call to bind the process to the allocated GPU.

4.3.7.3 Viewing GPU Information for Nodes

You can find the number of GPUs available and assigned on execution hosts via the pbsnodes command. See section
4.6, “Viewing Resources”, on page 65.

4.3.8 Caveats and Restrictions on Requesting Resources

4.3.8.1 Caveats and Restrictions for Specifying Resource Values

• Resource values which contain commas, quotes, plus signs, equal signs, colons, or parentheses must be quoted to
PBS. The string must be enclosed in quotes so that the command (e.g. qsub, qalter) will parse it correctly.

• When specifying resources via the command line, any quoted strings must be escaped or enclosed in another set of
quotes. This second set of quotes must be different from the first set, meaning that double quotes must be enclosed
in single quotes, and vice versa.

• If a string resource value contains spaces or shell metacharacters, enclose the string in quotes, or otherwise escape
the space and metacharacters. Be sure to use the correct quotes for your shell and the behavior you want.

4.3.8.2 Warning About NOT Requesting walltime

If your job does not request a walltime, and there is no default for walltime, your job is treated as if it had requested a
very, very long walltime. Translation: the scheduler will have a hard time finding a time slot for your job. Remember,
the administrator may schedule dedicated time for the entire PBS complex once a year, for upgrading, etc. In this case,
your job will never run. We recommend requesting a reasonable walltime for your job.

4.3.8.3 Caveats for Jobs Requesting Undefined Resources

If you submit a job that requests a job-wide or host-level resource that is undefined, the job is not rejected at submission;
instead, it is aborted upon being enqueued in an execution queue, if the resources are still undefined. This preserves
backward compatibility.
PBS Professional 2022.1 User’s Guide UG-59

Chapter 4 Allocating Resources & Placing Jobs
4.3.8.4 Matching Resource Requests with Unset Resources

When job resource requests are being matched with available resources, a numerical resource that is unset on a host is
treated as if it were zero, and an unset string cannot satisfy a request. An unset Boolean resource is treated as if it were
set to "False". An unset resource at the server or queue is treated as if it were infinite.

4.3.8.5 Caveat for Invisible or Unrequestable Resources

Your administrator may define custom resources which restricted, so that they are invisible, or are visible but unrequest-
able. Custom resources which were created to be invisible or unrequestable cannot be requested or altered. The follow-
ing is a list of the commands normally used to view or request resources or modify resource requests, and their
limitations for restricted resources:

pbsnodes

Job submitters cannot view restricted host-level custom resources.

pbs_rstat

Job submitters cannot view restricted reservation resources.

pbs_rsub

Job submitters cannot request restricted custom resources for reservations.

qalter

Job submitters cannot alter a restricted resource.

qmgr

Job submitters cannot print or list a restricted resource.

qselect

Job submitters cannot specify restricted resources via -l Resource_List.

qsub

Job submitters cannot request a restricted resource.

qstat

Job submitters cannot view a restricted resource.

4.3.8.6 Warning About Requesting Tiny Amounts of Memory

The smallest unit of memory you can request is 1KB. If you request 400 bytes, you get 1KB. If you request 1400 bytes,
you get 2KB.

4.3.8.7 Maximum Length of Job Submission Command Line

The maximum length of a command line in PBS is 4095 characters. When you submit a job using the command line,
your select and place statements, and the rest of your command line, must fit within 4095 characters.

4.3.8.8 Only One select Statement Per Job

You can include at most one select statement per job submission.

4.3.8.9 The software Resource is Job-wide

The built-in resource "software" is not a vnode-level resource. See “Resources Built Into PBS” on page 265 of the PBS
Professional Reference Guide.
UG-60 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.3.8.10 Do Not Mix Old and New Syntax

Do not mix old and new syntax when requesting resources. See section 4.8, “Backward Compatibility”, on page 72 for a
description of old syntax.

4.4 How Resources are Allocated to Jobs

Resources are allocated to your job when the job explicitly requests them, and when PBS applies defaults.

Jobs explicitly request resources either at the vnode level in chunks defined in a selection statement, or in job-wide
resource requests. We will cover requesting resources in section 4.3.3, “Requesting Resources in Chunks”, on page 55
and section 4.3.2, “Requesting Job-wide Resources”, on page 54.

The administrator can set default resources at the server and at queues, so that a job that does not request a resource at
submission time ends up being allocated the default value for that resource. We will cover default resources in section
4.4.1, “Applying Default Resources”, on page 61.

The administrator can also specify default arguments for qsub so that jobs automatically request certain resources.
Resource values explicitly requested by your job override any qsub defaults. See “qsub” on page 216 of the PBS Pro-
fessional Reference Guide.

4.4.1 Applying Default Resources

PBS applies resource defaults only where the job has not explicitly requested a value for a resource.

Job-wide and per-chunk resources are applied, with the following order of precedence, via the following:

1. Resources that are explicitly requested via -l <resource>=<value> and -l select=<chunk>

2. Default qsub arguments

3. The queue's default_chunk.<resource>

4. The server's default_chunk.<resource>

5. The queue's resources_default.<resource>

6. The server's resources_default.<resource>

7. The queue's resources_max.<resource>

8. The server's resources_max.<resource>

4.4.1.1 Applying Job-wide Default Resources

The explicit job-wide resource request is checked first against default qsub arguments, then against queue resource
defaults, then against server resource defaults. Any default job-wide resources not already in the job's resource request
are added. PBS applies job-wide default resources defined in the following places, in this order:

• Via qsub: The server's default_qsub_arguments attribute can include any requestable job-wide resources.

• Via the queue: Each queue's resources_default attribute defines each queue-level job-wide resource default in
resources_default.<resource>.

• Via the server: The server's resources_default attribute defines each server-level job-wide resource default in
resources_default.<resource>.
PBS Professional 2022.1 User’s Guide UG-61

Chapter 4 Allocating Resources & Placing Jobs
4.4.1.2 Applying Per-chunk Default Resources

For each chunk in the job's selection statement, first qsub defaults are applied, then queue chunk defaults are applied,
then server chunk defaults are applied. If the chunk request does not include a resource listed in the defaults, the default
is added. PBS applies default chunk resources in the following order:

• Via qsub: The server's default_qsub_arguments attribute can include any requestable chunk resources.

• Via the queue: Each queue's default_chunk attribute defines each queue-level chunk resource default in
default_chunk.<resource>.

• Via the server: The server's default_chunk attribute defines each server-level chunk resource default in
default_chunk.<resource>.

Example 4-10: Applying chunk defaults: if the queue in which the job is enqueued has the following defaults defined:

default_chunk.ncpus=1

default_chunk.mem=2gb

A job submitted with this selection statement:

select=2:ncpus=4+1:mem=9gb

The job has this specification after the default_chunk elements are applied:

select=2:ncpus=4:mem=2gb+1:ncpus=1:mem=9gb.

In this example, mem=2gb and ncpus=1 are inherited from default_chunk.

4.4.1.3 Caveat for Moving Jobs From One Queue to Another

If the job is moved from the current queue to a new queue, any default resources in the job's resource list that were con-
tributed by the current queue are removed. This includes a select specification and place directive generated by the rules
for conversion from the old syntax. If a job's resource is unset (undefined) and there exists a default value at the new
queue or server, that default value is applied to the job's resource list. If either select or place is missing from the job's
new resource list, it will be automatically generated, using any newly inherited default values.

Given the following set of queue and server default values:

Server

resources_default.ncpus=1

Queue QA

resources_default.ncpus=2

default_chunk.mem=2gb

Queue QB

default_chunk.mem=1gb

no default for ncpus

The following examples illustrate the equivalent select specification for jobs submitted into queue QA and then moved to
(or submitted directly to) queue QB:

qsub -l ncpus=1 -lmem=4gb

In QA: select=1:ncpus=1:mem=4gb

No defaults need be applied

In QB: select=1:ncpus=1:mem=4gb

No defaults need be applied

qsub -l ncpus=1

In QA: select=1:ncpus=1:mem=2gb
UG-62 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
Picks up 2gb from queue default chunk and 1 ncpus from qsub

In QB: select=1:ncpus=1:mem=1gb

Picks up 1gb from queue default chunk and 1 ncpus from qsub

qsub -lmem=4gb

In QA: select=1:ncpus=2:mem=4gb

Picks up 2 ncpus from queue level job-wide resource default and 4gb mem from qsub

In QB: select=1:ncpus=1:mem=4gb

Picks up 1 ncpus from server level job-wide default and 4gb mem from qsub

qsub -lnodes=4

In QA: select=4:ncpus=1:mem=2gb

Picks up a queue level default memory chunk of 2gb. (This is not 4:ncpus=2 because in prior versions,
"nodes=x" implied 1 CPU per node unless otherwise explicitly stated.)

In QB: select=4:ncpus=1:mem=1gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is
not inherited from the server default.)

qsub -l mem=16gb -lnodes=4

In QA: select=4:ncpus=1:mem=4gb

(This is not 4:ncpus=2 because in prior versions, "nodes=x" implied 1 CPU per node unless otherwise
explicitly stated.)

In QB: select=4:ncpus=1:mem=4gb

(In prior versions, "nodes=x" implied 1 CPU per node unless otherwise explicitly stated, so the ncpus=1 is
not inherited from the server default.)

4.5 Limits on Resource Usage

Jobs are assigned limits on the amount of resources they can use. These limits apply to how much the whole job can use
(job-wide limit) and to how much the job can use at each host (host limit). Limits are applied only to resources the job
requests or inherits.

Your administrator can configure PBS to enforce limits on mem and ncpus, but the other limits are always enforced.

If you want to make sure that your job does not exceed a given amount of some resource, request that amount of the
resource.

4.5.1 Enforceable Resource Limits

Limits can be enforced on the following resources:

Table 4-2: Enforceable Resource Limits

Resource Name Where Specified Where Enforced Always Enforced?

cput Host Host Always

mem Host Host Optional

ncpus Host Host Optional
PBS Professional 2022.1 User’s Guide UG-63

Chapter 4 Allocating Resources & Placing Jobs
4.5.2 Origins of Resource Limits

Limits are derived from both requested resources and applied default resources. Resource limits are derived in the order
shown in section 4.4.1, “Applying Default Resources”, on page 61.

4.5.3 Job-wide Resource Limits

Job-wide resource limits set a limit for per-job resource usage. Job resource limits are derived from job-wide resources
and from totals of per-chunk consumable resources. Limits are derived from explicitly requested resources and default
resources.

Job-wide resource limits that are derived from from sums of all chunks override those that are derived from job-wide
resources.

Example 4-11: Job-wide limits are derived from sums of chunks. With the following chunk request:

qsub -lselect=2:ncpus=3:mem=4gb:arch=linux

The following job-wide limits are derived:

ncpus=6

mem=8gb

4.5.4 Per-chunk Resource Limits

Each chunk's per-chunk limits determine how much of any resource can be used at that host. PBS sums the chunk limits
at each host, and uses that sum as the limit at that resource. Per-chunk resource usage limits are the amount of per-chunk
resources allocated to the job, both from explicit requests and from defaults.

4.5.4.1 Effects of Limits

If a running job exceeds its limit for walltime, the job is terminated.

If any of the job's processes exceed the limit for pcput, pmem, or pvmem, the job is terminated.

If any of the host limits for mem, ncpus, cput, or vmem is exceeded, the job is terminated. These are host-level limits,
so if for example your job has two chunks on one host, and the processes on one chunk exceed one of these limits, but the
processes on the other are under the chunk limit, the job can continue to run as long as the total used for both chunks is
less than the host limit.

pcput Job-wide Per-process Always

pmem Job-wide Per-process Always

pvmem Job-wide Per-process Always

vmem Host Host Always

walltime Job-wide Job-wide Always

Table 4-2: Enforceable Resource Limits

Resource Name Where Specified Where Enforced Always Enforced?
UG-64 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.5.5 Examples of Memory Limits

Your administrator may choose to enforce memory limits. If this is the case, the memory used by the entire job cannot
exceed the amount in Resource_List.mem, and the memory used at any host cannot exceed the sum of the chunks on
that host. For the following examples, assume the following:

The queue has these settings:

resources_default.mem=200mb

default_chunk.mem=100mb

Example 4-12: A job requesting -l select=2:ncpus=1:mem=345mb uses 345mb from each of two vnodes and has
a job-wide limit of 690mb (2 * 345). The job's Resource_List.mem shows 690mb.

Example 4-13: A job requesting -l select=2:ncpus=2 takes 100mb via default_chunk from each vnode and has a
job-wide limit of 200mb (2 * 100mb). The job's Resource_List.mem shows 200mb.

Example 4-14: A job requesting -l ncpus=2 takes 200mb (inherited from resources_default and used to create the
select specification) from one vnode and has a job-wide limit of 200mb. The job's Resource_List.mem shows
200mb.

Example 4-15: A job requesting -lnodes=2 inherits 200mb from resources_default.mem which becomes the
job-wide limit. The memory is taken from the two vnodes, half (100mb) from each. The generated select specifica-
tion is 2:ncpus=1:mem=100mb. The job's Resource_List.mem shows 200mb.

4.6 Viewing Resources

You can look at the resources on the server, queue, and vnodes. You can also see what resources are allocated to and used
by your job.

4.6.1 Viewing Server, Queue, and Vnode Resources

To see server resources:

qstat - Bf

To see queue resources:

qstat -Qf

To see vnode resources, use any of the following:

qmgr -c "list node <vnode name> <attribute name>"

pbsnodes -av

pbsnodes [<host list>]

Look at the following attributes:

resources_available.<resource name>
(Server, queue, vnode) Total amount of the resource available at the server, queue, or vnode; does not take into
account how much of the resource is in use.

resources_default.<resource name>
(Server, queue) Default value for job-wide resource. This amount is allocated to job if job does not request this
resource. Queue setting overrides server setting.

resources_max.<resource name>
(Server, queue) Maximum amount that a single job can request. Queue setting overrides server setting.
PBS Professional 2022.1 User’s Guide UG-65

Chapter 4 Allocating Resources & Placing Jobs
resources_min.<resource name>
(Queue) Minimum amount that a single job can request.

resources_assigned.<resource name>
(Server, queue, vnode) Total amount of the resource that has been allocated to running and exiting jobs and res-
ervations at the server, queue, or vnode.

4.6.2 Viewing Job Resources

To see the resources allocated to or used by your job:

qstat -f

Look at the following job attributes:

Resource_List.<resource name>
The amount of the resource that has been allocated to the job, including defaults.

resources_used.<resource name>
The amount of the resource used by the job.

4.6.2.1 Resources Shown in Resource_List Job Attribute

When your job requests a job-wide resource or any of certain built-in host-level resources, the value requested is stored
in the job's Resource_List attribute, as Resource_List.<resource name>=<value>. When you request a built-in
host-level resource inside multiple chunks, the value in Resource_List is the sum over all of the chunks for that
resource. For a list of the resources that can appear in Resource_List, see section 5.9.2, "Resources Requested by Job",
on page 241 of the PBS Professional Administrator’s Guide.

If your administrator has defined default values for any of those resources, and your job has inherited any defaults, those
defaults control the value shown in the Resource_List attribute.

4.7 Specifying Job Placement

You can specify how your job should be placed on vnodes. You can choose to place each chunk on a different host, or a
different vnode, or your job can use chunks that are all on one host. You can specify that all of the job's chunks should
share a value for some resource.

Your job can request exclusive use of each vnode, or shared use with other jobs. Your job can request exclusive use of its
hosts.

We will cover the basics of specifying job placement in the following sections. For details on placing chunks for an MPI
job, see "Submitting Multiprocessor Jobs".

4.7.1 Using the place Statement

You use the place statement to specify how the job's chunks are placed.

The place statement can contain the following elements in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where
UG-66 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |
pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

and where

The place statement may be not be used without the select statement.

The place statement may not begin with a colon.

4.7.1.1 Specifying Arrangement of Chunks

To place your job's chunks wherever they fit:

-l place=free

To place all of the job's chunks on a single host:

-l place=pack

To place each chunk on its own host:

-l place=scatter

To place each chunk on its own vnode:

-l place=vscatter

Table 4-3: Placement Modifiers

Modifier Meaning

free Place job on any vnode(s)

pack All chunks will be taken from one host

scatter Only one chunk is taken from any host

vscatter Only one chunk is taken from any vnode.

Each chunk must fit on a vnode.

excl Only this job uses the vnodes chosen

exclhost The entire host is allocated to this job

shared This job can share the vnodes chosen

group=<resource> Chunks will be placed on vnodes according to a resource shared by those vnodes. This
resource must be a string or string array. All vnodes in the group must have a common value
for the resource.
PBS Professional 2022.1 User’s Guide UG-67

Chapter 4 Allocating Resources & Placing Jobs
4.7.1.1.i Caveats and Restrictions for Arrangement

• For all arrangements except vscatter, chunks cannot be split across hosts, but they can be split across vnodes on the
same host. If a job does not request vscatter for its arrangement, any chunk can be broken across vnodes. This
means that one chunk could be taken from more than one vnode.

• If the job requests vscatter for its arrangement, no chunk can be larger than a vnode, and no chunk can be split
across vnodes. This behavior is different from other values for arrangement, where chunks can be split across
vnodes.

4.7.1.2 Specifying Shared or Exclusive Use of Vnodes

Each vnode can be allocated exclusively to one job, or its resources can be shared among jobs. Hosts can also be allo-
cated exclusively to one job, or shared among jobs.

How vnodes are allocated to jobs is determined by a combination of the vnode's sharing attribute and the job's resource
request. The possible values for the vnode sharing attribute, and how they interact with a job's placement request, are
described in “sharing” on page 324 of the PBS Professional Reference Guide. The following table expands on this:

If a vnode is allocated exclusively to a job, all of its resources are assigned to the job. The state of the vnode becomes
job-exclusive. No other job can use the vnode.

If a host is to be allocated exclusively to one job, all of the host must be used: if any vnode from a host has its sharing
attribute set to either default_exclhost or force_exclhost, all vnodes on that host must have the same value for the shar-
ing attribute.

If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive placement
via -l place=excl.

To see the value for a vnode's sharing attribute, you can do either of the following:

• Use qmgr:
Qmgr: list node <vnode name> sharing

• Use pbsnodes:
pbsnodes -av

Table 4-4: How Vnode sharing Attribute Affects Vnode Allocation

Value of Vnode
sharing Attribute

Effect on Allocation

not set The job's arrangement request determines how vnodes are allocated to the job. If there is no
specification, vnodes are shared.

default_share Vnodes are shared unless the job explicitly requests exclusive use of the vnodes.

default_excl Vnodes are allocated exclusively to the job unless the job explicitly requests shared alloca-
tion.

default_exclhost All vnodes from this host are allocated exclusively to the job, unless the job explicitly
requests shared allocation.

ignore_excl Vnodes are shared, regardless of the job's request.

force_excl Vnodes are allocated exclusively to the job, regardless of the job's request.

force_exclhost All vnodes from this host are allocated exclusively to the job, regardless of the job's request.
UG-68 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.7.1.3 Grouping on a Resource

You can specify that all of the chunks for your job should run on vnodes that have the same value for a selected resource.

To group your job's chunks this way, use the following format:

-l place=group=<resource name>

where resource name is a string or string array.

The value of the resource can be one or more strings at each vnode, but there must be one string that is the same for each
vnode. For example, if the resource is router, the value can be "r1i0,r1" at one vnode, and "r1i1,r1" at another vnode,
and these vnodes can be grouped because they share the string "r1".

Using the method of grouping on a resource, you cannot specify what the value of the resource should be, only that all
vnodes have the same value. If you need the resource to have a specific value, specify that value in the description of the
chunks.

4.7.1.3.i Grouping vs. Placement Sets

Your administrator may define placement sets for your site. A placement set is a group of vnodes that share a value for a
resource. By default, placement sets attempt to group vnodes that are "close to" each other. If your job doesn't request a
specific placement, and placement sets are defined, your job may automatically run in a placement set. See "Placement
Sets" on page 167 in the PBS Professional Administrator’s Guide.

If your job requests grouping by a resource, using place=group=resource, the chunks are placed as requested and place-
ment sets are ignored.

If your job requests grouping but no group contains the required number of vnodes, grouping is ignored.

4.7.2 How the Job Gets its Place Statement

If the administrator has defined default values for arrangement, sharing, and grouping, each job inherits these unless it
explicitly requests at least one. That means that if your job requests arrangement, but not sharing or grouping, it will not
inherit values for sharing or grouping. For example, the administrator sets a default of
place=pack:exclhost:group=host. Job A requests place=free, but doesn't specify sharing or grouping, so
Job A does not inherit sharing or grouping. Job B does not request any placement, so it inherits all three.

The place statement can be specified, in order of precedence, via:

1. Explicit placement request in qalter

2. Explicit placement request in qsub

3. Explicit placement request in PBS job script directives

4. Default qsub place statement

5. Queue default placement rules

6. Server default placement rules

7. Built-in default conversion and placement rules
PBS Professional 2022.1 User’s Guide UG-69

Chapter 4 Allocating Resources & Placing Jobs
4.7.3 Caveats and Restrictions for Specifying Placement

• The place specification cannot be used without the select specification. In other words, you can only specify place-
ment when you have specified chunks.

• A select specification cannot be used with a nodes specification.

• A select specification cannot be used with old-style resource requests such as -lncpus, -lmem, -lvmem, -larch,
-lhost.

• When using place=group=<resource>, the resource must be a string or string array.

• Do not mix old and new syntax when requesting placement. See section 4.8, “Backward Compatibility”, on page 72
for a description of old syntax.

• If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive place-
ment via -l place=excl.

4.7.4 Examples of Specifying Placement

Unless otherwise specified, the vnodes allocated to the job will be allocated as shared or exclusive based on the setting of
the vnode's sharing attribute. Each of the following shows how you would use -l select= and -l place=.

1. A job that will fit in a single host but not in any of the vnodes, packed into the fewest vnodes:
-l select=1:ncpus=10:mem=20gb

-l place=pack

In earlier versions, this would have been:

-lncpus=10,mem=20gb

2. Request four chunks, each with 1 CPU and 4GB of memory taken from anywhere.

-l select=4:ncpus=1:mem=4GB

-l place=free

3. Allocate 4 chunks, each with 1 CPU and 2GB of memory from between
UG-70 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
 one and four vnodes which have an arch of "linux".

-l select=4:ncpus=1:mem=2GB:arch=linux -l place=free

4. Allocate four chunks on 1 to 4 vnodes where each vnode must have 1 CPU, 3GB of memory and 1 node-locked dyna
license available for each chunk.

-l select=4:dyna=1:ncpus=1:mem=3GB -l place=free

5. Allocate four chunks on 1 to 4 vnodes, and 4 floating dyna licenses. This assumes "dyna" is specified as a server
dynamic resource.

-l dyna=4 -l select=4:ncpus=1:mem=3GB -l place=free

6. This selects exactly 4 vnodes where the arch is linux, and each vnode will be on a separate host. Each vnode will
have 1 CPU and 2GB of memory allocated to the job.

-lselect=4:mem=2GB:ncpus=1:arch=linux -lplace=scatter

7. This will allocate 3 chunks, each with 1 CPU and 10GB of memory. This will also reserve 100mb of scratch space if
scratch is to be accounted . Scratch is assumed to be on a file system common to all hosts. The value of "place"
depends on the default which is "place=free".

-l scratch=100mb -l select=3:ncpus=1:mem=10GB

8. This will allocate 2 CPUs and 50GB of memory on a host named zooland. The value of "place" depends on the
default which defaults to "place=free":

-l select=1:ncpus=2:mem=50gb:host=zooland

9. This will allocate 1 CPU and 6GB of memory and one host-locked swlicense from each of two hosts:

-l select=2:ncpus=1:mem=6gb:swlicense=1

-lplace=scatter

10. Request free placement of 10 CPUs across hosts:

-l select=10:ncpus=1

-l place=free

11. Here is an odd-sized job that will fit on a single HPE system, but not on any one node-board. We request an odd
number of CPUs that are not shared, so they must be "rounded up":

-l select=1:ncpus=3:mem=6gb

-l place=pack:excl

12. Here is an odd-sized job that will fit on a single HPE system, but not on any one node-board. We are asking for
small number of CPUs but a large amount of memory:

-l select=1:ncpus=1:mem=25gb

-l place=pack:excl

13. Here is a job that may be run across multiple HPE systems, packed into the fewest vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=free

14. Submit a job that must be run across multiple HPE systems, packed into the fewest vnodes:

-l select=2:ncpus=10:mem=12gb

-l place=scatter

15. Request free placement across nodeboards within a single host:

-l select=1:ncpus=10:mem=10gb
PBS Professional 2022.1 User’s Guide UG-71

Chapter 4 Allocating Resources & Placing Jobs
-l place=group=host

16. Request free placement across vnodes on multiple HPE systems:

-l select=10:ncpus=1:mem=1gb

-l place=free

17. Here is a small job that uses a shared cpuset:

-l select=1:ncpus=1:mem=512kb

-l place=pack:shared

18. Request a special resource available on a limited set of nodeboards, such as a graphics card:

-l select= 1:ncpus=2:mem=2gb:graphics=True + 1:ncpus=20:mem=20gb:graphics=False

-l place=pack:excl

19. Align SMP jobs on c-brick boundaries:

-l select=1:ncpus=4:mem=6gb

-l place=pack:group=cbrick

20. Align a large job within one router, if it fits within a router:

-l select=1:ncpus=100:mem=200gb

-l place=pack:group=router

21. Fit large jobs that do not fit within a single router into as few available routers as possible. Here, RES is the resource
used for node grouping:

-l select=1:ncpus=300:mem=300gb

-l place=pack:group=<RES>

22. To submit an MPI job, specify one chunk per MPI task. For a 10-way MPI job with 2gb of memory per MPI task:

-l select=10:ncpus=1:mem=2gb

23. To submit a non-MPI job (including a 1-CPU job or an OpenMP or shared memory) job, use a single chunk. For a
2-CPU job requiring 10gb of memory:

-l select=1:ncpus=2:mem=10gb

4.8 Backward Compatibility

4.8.1 Old-style Resource Specifications

Old versions of PBS allowed job submitters to ask for resources outside of a select statement, using "-lre-
source=value", where those resources must now be requested in chunks, inside a select statement. This old style of
resource request was called a "resource specification". Resource specification syntax is deprecated.

For backward compatibility, any resource specification is converted to select and place statements, and any defaults are
applied.

4.8.2 Old-style Node Specifications

In early versions of PBS, job submitters used "-l nodes=..." in what was called a "node specification" to specify
where the job should run. The syntax for a "node specification" is deprecated.
UG-72 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
For backward compatibility, a legal node specification or resource specification is converted into select and place direc-
tives; we show how in following sections.

4.8.3 Conversion of Old Style to New

4.8.3.1 Conversion of Resource Specifications

If your job has an old-style resource specification, PBS creates a select specification requesting 1 chunk containing the
resources specified by the job and server and/or queue default resources. Resource specification format:

-l<resource>=<value>[:<resource>=<value> ...]

The resource specification is converted to:

-lselect=1[:<resource>=<value> ...]

-lplace=pack

with one instance of resource=value for each of the following vnode-level resources in the resource request:

built-in resources: ncpus | mem | vmem | arch | host

site-defined vnode-level resources

For example, a job submitted with

qsub -l ncpus=4:mem=123mb:arch=linux

gets the following select statement:

select=1:ncpus=4:mem=123mb:arch=linux

4.8.3.2 Conversion of Node Specifications

If your job requests a node specification, PBS creates a select and place specification, according to the following rules.

Old node specification format:

-lnodes=[N:<spec list> | <spec list>]

[[+N:<spec list> | +<spec list>] ...]

[#<suffix> ...][-lncpus=Z]

where:

spec list has syntax: <spec>[:<spec> ...]

spec is any of: hostname | property | ncpus=X | cpp=X | ppn=P

suffix is any of: property | excl | shared

N and P are positive integers

X and Z are non-negative integers

The node specification is converted into select and place statements as follows:

Each spec list is converted into one chunk, so that N:<spec list> is converted into N chunks.

If spec is hostname :

The chunk will include host=hostname

If spec matches any vnode's resources_available.<hostname> value:

The chunk will include host=hostname

If spec is property :
PBS Professional 2022.1 User’s Guide UG-73

Chapter 4 Allocating Resources & Placing Jobs
The chunk will include <property>=true

Property must be a site-defined vnode-level boolean resource.

If spec is ncpus=X or cpp=X :

The chunk will include ncpus=X

If no spec is ncpus=X and no spec is cpp=X :

The chunk will include ncpus=P

If spec is ppn=P :

The chunk will include mpiprocs=P

If the nodespec is

-lnodes=N:ppn=P

It is converted to

-lselect=N:ncpus=P:mpiprocs=P

Example:

-lnodes=4:ppn=2

is converted into

-lselect=4:ncpus=2:mpiprocs=2

If -lncpus=Z is specified and no spec contains ncpus=X and no spec is cpp=X :

Every chunk will include ncpus=W, where W is Z divided by the total number of chunks. (Note: W must be an inte-
ger; Z must be evenly divisible by the number of chunks.)

If property is a suffix :

All chunks will include property=true

If excl is a suffix :

The placement directive will be -lplace=scatter:excl

If shared is a suffix :

The placement directive will be -lplace=scatter:shared

If neither excl nor shared is a suffix :

The placement directive will be -lplace=scatter

Example:

-lnodes=3:green:ncpus=2:ppn=2+2:red

is converted to:

-l select=3:green=true:ncpus=4:mpiprocs=2+ 2:red=true:ncpus=1

-l place=scatter

4.8.3.3 Examples of Converting Old Syntax to New

1. Request CPUs and memory on a single host using old syntax:
-l ncpus=5,mem=10gb
UG-74 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
is converted into the equivalent:

-l select=1:ncpus=5:mem=10gb

-l place=pack

2. Request CPUs and memory on a named host along with custom resources including a floating license using old syn-
tax:

-l ncpus=1,mem=5mb,host=sunny,opti=1,arch=arch1

is converted to the equivalent:

-l select=1:ncpus=1:mem=5gb:host=sunny:arch=arch1

-l place=pack

-l opti=1

3. Request one host with a certain property using old syntax:

-lnodes=1:property

is converted to the equivalent:

-l select=1:ncpus=1:property=True

-l place=scatter

4. Request 2 CPUs on each of four hosts with a given property using old syntax:

-lnodes=4:property:ncpus=2

is converted to the equivalent:

-l select=4: ncpus=2:property=True -l place=scatter

5. Request 1 CPU on each of 14 hosts asking for certain software, licenses and a job limit amount of memory using old
syntax:

-lnodes=14:mpi-fluent:ncpus=1 -lfluent=1,fluent-all=1, fluent-par=13

-l mem=280mb

is converted to the equivalent:

-l select=14:ncpus=1:mem=20mb:mpi_fluent=True

-l place=scatter

-l fluent=1,fluent-all=1,fluent-par=13

6. Requesting licenses using old syntax:

-lnodes=3:dyna-mpi-Linux:ncpus=2 -ldyna=6,mem=100mb, software=dyna

is converted to the equivalent:

-l select=3:ncpus=2:mem=33mb: dyna-mpi-Linux=True

-l place=scatter

-l software=dyna

-l dyna=6

7. Requesting licenses using old syntax:

 -l ncpus=2,app_lic=6,mem=200mb -l software=app
PBS Professional 2022.1 User’s Guide UG-75

Chapter 4 Allocating Resources & Placing Jobs
is converted to the equivalent:

-l select=1:ncpus=2:mem=200mb

-l place=pack

-l software=app

-l app_lic=6

8. Additional example using old syntax:

-lnodes=1:fserver+15:noserver

is converted to the equivalent:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:noserver=True

-l place=scatter

but could also be more easily specified with something like:

-l select=1:ncpus=1:fserver=True + 15:ncpus=1:fserver=False

-l place=scatter

9. Allocate 4 vnodes, each with 6 CPUs with 3 MPI processes per vnode, with each vnode on a separate host. The
memory allocated would be one-fourth of the memory specified by the queue or server default if one existed. This
results in a different placement of the job from version 5.4:

-lnodes=4:ppn=3:ncpus=2

is converted to:

-l select=4:ncpus=6:mpiprocs=3 -l place=scatter

10. Allocate 4 vnodes, from 4 separate hosts, with the property blue. The amount of memory allocated from each vnode
is 2560MB (= 10GB / 4) rather than 10GB from each vnode.

-lnodes=4:blue:ncpus=2 -l mem=10GB

is converted to:

-l select=4:blue=True:ncpus=2:mem=2560mb -lplace=scatter

4.8.4 Caveats for Using Old Syntax

4.8.4.1 Changes in Behavior

Most jobs submitted with "-lnodes" will continue to work as expected. These jobs will be automatically converted to
the new syntax. However, job tasks may execute in an unexpected order, because vnodes may be assigned in a different
order. Jobs submitted with old syntax that ran successfully on versions of PBS Professional prior to 8.0 can fail because
a limit that was per-chunk is now job-wide.

Example 4-16: A job submitted using -lnodes=X -lmem=M that fails because the mem limit is now job-wide. If the
following conditions are true:

• PBS Professional 9.0 or later using standard MPICH

• The job is submitted with qsub -lnodes=5 -lmem=10GB

• The master process of this job tries to use more than 2GB

The job is killed, where in <= 7.0 the master process could use 10GB before being killed. 10GB is now a job-wide
limit, divided up into a 2GB limit per chunk.
UG-76 PBS Professional 2022.1 User’s Guide

Allocating Resources & Placing Jobs Chapter 4
4.8.4.2 Do Not Mix Old and New Styles

Do not mix old style resource or node specifications ("-l<resource>=<value>" or "-lnodes") with select and
place statements ("-lselect=" or "-lplace="). Do not use both in the command line. Do not use both in the job
script. Do not use one in a job script and the other on the command line. This will result in an error.

4.8.4.3 Resource Request Conversion Dependent on Where

Resources are Defined

A job's resource request is converted from old-style to new according to various rules, one of which is that the conversion
is dependent upon where resources are defined. For example: The boolean resource "Red" is defined on the server, and
the boolean resource "Blue" is defined at the host level. A job requests "qsub -l Blue=true". This looks like an
old-style resource request, and PBS checks to see where Blue is defined. Since Blue is defined at the host level, the
request is converted into "-l select=1:Blue=true". However, if a job requests "qsub -l Red=true", while
this looks like an old-style resource request, PBS does not convert it to a chunk request because Red is defined at the
server.

4.8.4.4 Properties are Deprecated

The syntax for requesting properties is deprecated. Your administrator has replaced properties with Booleans.

4.8.4.5 Replace cpp with ncpus

Specifying "cpp" is part of the old syntax, and should be replaced with "ncpus".

4.8.4.6 Environment Variables Set During Conversion

When a node specification is converted into a select statement, the job has the environment variables NCPUS and
OMP_NUM_THREADS set to the old value of ncpus in the first piece of the old node specification. This may produce
incompatibilities with prior versions when a complex node specification using different values of ncpus and ppn in dif-
ferent pieces is converted.

4.8.4.7 Old -l nodes Syntax Incompatible with Cgroups

The cgroups hook does not transform old "-lnodes" syntax into the new select and place directives. If you need to use the
old syntax on hosts managed by the cgroups hook, your site can use a queuejob hook to do that for you, or you can
explicitly specify mem, vmem, and cgswap for jobs.
PBS Professional 2022.1 User’s Guide UG-77

Chapter 4 Allocating Resources & Placing Jobs
UG-78 PBS Professional 2022.1 User’s Guide

5

Multiprocessor Jobs

5.1 Submitting Multiprocessor Jobs

Before you read this chapter, please read Chapter 4, "Allocating Resources & Placing Jobs", on page 51.

5.1.1 Assigning the Chunks You Want

PBS assigns chunks to job processes in the order in which the chunks appear in the select statement. PBS takes the first
chunk from the primary execution host; this is where the top task of the job runs.

Example 5-1: You want three chunks, where the first has two CPUs and 20 GB of memory, the second has four CPUs
and 100 GB of memory, and the third has one CPU and five GB of memory:

-lselect=1:ncpus=2:mem=20gb+ncpus=4:mem=100gb+mem=5gb

5.1.1.1 Specifying Primary Execution Host

The job's primary execution host is the host that supplies the vnode to satisfy the first chunk requested by the job.

5.1.1.2 Request Most Specific Chunks First

Chunk requests are interpreted from left to right. The more specific the chunk, the earlier it should be in the order. For
example, if you require a specific host for chunk A, but chunk B is not host-specific, request Chunk A first.

5.1.2 The Job Node File

For each job, PBS creates a job-specific "host file" or "node file", which is a text file containing the name(s) of the host(s)
containing the vnode(s) allocated to that job. The file is set on all execution hosts assigned to the job.

5.1.2.1 Node File Format and Contents

The node file contains a list of host names, one per line. The name of the host is the value in resources_available.host
of the allocated vnode(s). The order in which hosts appear in the PBS node file is the order in which chunks are specified
in the selection directive.

The node file contains one line per MPI process with the name of the host on which that process should execute. The
number of MPI processes for a job, and the contents of the node file, are controlled by the value of the resource
mpiprocs. mpiprocs is the number of MPI processes per chunk, and defaults to 1 where the chunk contains CPUs, 0
otherwise.
PBS Professional 2022.1 User’s Guide UG-79

Chapter 5 Multiprocessor Jobs
For each chunk requesting mpiprocs=M, the name of the host from which that chunk is allocated is written in the node
file M times. Therefore the number of lines in the node file is the sum of requested mpiprocs for all chunks requested by
the job.

Example 5-2: Two MPI processes run on HostA and one MPI process runs on HostB. The node file looks like this:

HostA

HostA

HostB

5.1.2.2 Name and Location of Node File

The file is created each execution host assigned to the job, in PBS_HOME/aux/JOB_ID, where JOB_ID is the job iden-
tifier for that job.

The full path and name for the node file is set in the job's environment, in the environment variable PBS_NODEFILE.

5.1.2.3 Node File for Old-style Requests

For jobs which request resources using the old -lnodes=nodespec format, the host for each vnode allocated to the job is
listed N times, where N is the number of MPI ranks on the vnode. The number of MPI ranks is specified via the ppn
resource.

Example 5-3: Request four vnodes, each with two MPI processes, where each process has three threads, and each thread
has a CPU:

qsub -lnodes=4:ncpus=3:ppn=2

This results in each of the four hosts being written twice, in the order in which the vnodes are assigned to the job.

5.1.2.4 Using and Modifying the Node File

You can use $PBS_NODEFILE in your job script.

You can modify the node file. You can remove entries or sort the entries.

5.1.2.5 Node File Caveats

Do not add entries for new hosts; PBS may terminate processes on those hosts because PBS does not expect the pro-
cesses to be running there. Adding entries on the same host may cause the job to be terminated because it is using more
CPUs than it requested.

5.1.2.6 Viewing Execution Hosts

You can see which host is the primary execution host: the primary execution host is the first host listed in the job's node
file.

5.1.3 Specifying Number of MPI Processes Per Chunk

How you request chunks matters. First, the number of MPI processes per chunk defaults to 1 for chunks with CPUs, and
0 for chunks without CPUs, unless you specify this value using the mpiprocs resource. Second, you can specify
whether MPI processes share CPUs. For example, requesting one chunk with four CPUs and four MPI processes is not
the same as requesting four chunks each with one CPU and one MPI process. In the first case, all four MPI processes are
sharing all four CPUs. In the second case, each process gets its own CPU.
UG-80 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
You request the number of MPI processes you want for each chunk using the mpiprocs resource. For example, to
request two MPI processes for each of four chunks, where each chunk has two CPUs:

-lselect=4:ncpus=2:mpiprocs=2

If you don't explicitly request a value for the mpiprocs resource, it defaults to 1 for each chunk requesting CPUs, and 0
for chunks not requesting CPUs.

Example 5-4: To request one chunk with two MPI processes and one chunk with one MPI process, where both chunks
have two CPUs:

-lselect=ncpus=2:mpiprocs=2+ncpus=2

Example 5-5: A request for three vnodes, each with one MPI process:

qsub -l select=3:ncpus=2

This results in the following node file:

<hostname for 1st vnode>

<hostname for 2nd vnode>

<hostname for 3rd vnode>

Example 5-6: If you want to run two MPI processes on each of three hosts and have the MPI processes share a single
processor on each host, request the following:

-lselect=3:ncpus=1:mpiprocs=2

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Example 5-7: If you want three chunks, each with two CPUs and running two MPI processes, use:

-l select=3:ncpus=2:mpiprocs=2...

The node file then contains the following list:

hostname for VnodeA

hostname for VnodeA

hostname for VnodeB

hostname for VnodeB

hostname for VnodeC

hostname for VnodeC

Notice that the node file is the same as the previous example, even though the number of CPUs used is different.

Example 5-8: If you want four MPI processes, where each process has its own CPU:

-lselect=4:ncpus=1

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide for a definitions of the mpiprocs
resource.
PBS Professional 2022.1 User’s Guide UG-81

Chapter 5 Multiprocessor Jobs
5.1.3.1 Chunks With No MPI Processes

If you request a chunk that has no MPI processes, PBS may take that chunk from a vnode which has already supplied
another chunk. You request a chunk that has no MPI processes using either of the following:

-lselect=1:ncpus=0

-lselect=1:ncpus=2:mpiprocs=0

5.1.4 Caveats and Advice for Multiprocessor Jobs

5.1.4.1 Requesting Uniform Processors

Some MPI jobs require the work on all vnodes to be at the same stage before moving to the next stage. For these appli-
cations, the work can proceed only at the pace of the slowest vnode, because faster vnodes must wait while it catches up.
In this case, you may find it useful to ensure that the job's vnodes are homogeneous.

If there is a resource that identifies the architecture, type, or speed of the vnodes, you can use it to ensure that all chunks
are taken from vnodes with the same value. You can either request a specific value for this resource for all chunks, or
you can group vnodes according to the value of the resource. See section 4.7.1.3, “Grouping on a Resource”, on page 69.

Example 5-9: The resource that identifies the speed is named speed, and your job requests 16 chunks, each with two
CPUs, two MPI processes, all with speed equal to fast:

-lselect=16:ncpus=2:mpiprocs=2:speed=fast

Example 5-10: Request 16 chunks where each chunk has two CPUs, using grouping to ensure that all chunks share the
same speed. The resource that identifies the speed is named speed:

-lselect=16:ncpus=2:mpiprocs=2:place=group=speed

5.1.4.2 Requesting Storage on NFS Server

One of the vnodes in your complex may act as an NFS server to the rest of the vnodes, so that all vnodes have access to
the storage on the NFS server.

Example 5-11: The scratch resource is shared among all the vnodes in the complex, and is requested from a central
location, called the "nfs_server" vnode. To request two vnodes, each with two CPUs to do calculations, and one
vnode with 10gb of memory and no MPI processes:

-l select=2:ncpus=2+1:host=nfs_server:scratch=10gb:ncpus=0

With this request, your job has one MPI process on each chunk containing CPUs, and no MPI processes on the mem-
ory-only chunk. The job shows up as having a chunk on the "nfs_server" host.

5.1.5 File Staging for Multiprocessor Jobs

PBS stages files to and from the primary execution host only.

5.1.6 Prologue and Epilogue

The prologue is run as root on the primary host, with the current working directory set to PBS_HOME/mom_priv, and
with PBS_JOBDIR and TMPDIR set in its environment.

PBS runs the epilogue as root on the primary host. The epilogue is executed with its current working directory set to the
job's staging and execution directory, and with PBS_JOBDIR and TMPDIR set in its environment.
UG-82 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.1.7 MPI Environment Variables

NCPUS
PBS sets the NCPUS environment variable in the job's environment on the primary execution host. PBS sets
NCPUS to the value of ncpus requested for the first chunk.

OMP_NUM_THREADS
PBS sets the OMP_NUM_THREADS environment variable in the job's environment on the primary execution
host. PBS sets this variable to the value of ompthreads requested for the first chunk, which defaults to the
value of ncpus requested for the first chunk.

5.1.8 Examples of Multiprocessor Jobs

Example 5-12: For a 10-way MPI job with 2gb of memory per MPI task:

qsub -l select=10:ncpus=1:mem=2gb

Example 5-13: If you have a cluster of small systems with for example two CPUs each, and you wish to submit an MPI
job that will run on four separate hosts:

qsub -l select=4:ncpus=1 -l place=scatter

In this example, the node file contains one entry for each of the hosts allocated to the job, which is four entries.

The variables NCPUS and OMP_NUM_THREADS are set to one.

Example 5-14: If you do not care where the four MPI processes are run:

qsub -l select=4:ncpus=1 -l place=free

Here, the job runs on two, three, or four hosts depending on what is available.

For this example, the node file contains four entries. These are either four separate hosts, or three hosts, one of
which is repeated once, or two hosts, etc.

NCPUS and OMP_NUM_THREADS are set to 1, the number of CPUs allocated from the first chunk.

5.1.9 Submitting SMP Jobs

To submit an SMP job, simply request a single chunk containing all of the required CPUs and memory, and if necessary,
specify the hostname. For example:

qsub -l select=ncpus=8:mem=20gb:host=host1

When the job is run, the node file will contain one entry, the name of the selected execution host.

The job will have two environment variables, NCPUS and OMP_NUM_THREADS, set to the number of CPUs allo-
cated.

5.2 Using MPI with PBS

5.2.1 Using an Integrated MPI

Many MPIs are integrated with PBS. PBS provides tools to integrate most of them; a few MPIs supply the integration.
When a job is run under an integrated MPI, PBS can track resource usage, signal job processes, and perform accounting
for all processes of the job.
PBS Professional 2022.1 User’s Guide UG-83

Chapter 5 Multiprocessor Jobs
When a job is run under an MPI that is not integrated with PBS, PBS is limited to managing the job only on the primary
vnode, so resource tracking, job signaling, and accounting happen only for the processes on the primary vnode.

The instructions that follow are for integrated MPIs. Check with your administrator to find out which MPIs are inte-
grated at your site. If an MPI is not integrated with PBS, you use it as you would outside of PBS.

Some of the integrated MPIs have slightly different command lines. See the instructions for each MPI.

The following table lists the supported MPIs and gives links to instructions for using each MPI:

5.2.1.1 Integration Caveats

• Some MPI command lines are slightly different; the differences for each are described.

Table 5-1: List of Supported MPIs

MPI Name Versions Instructions for Use

HP MPI 1.08.03

2.0.0

See section 5.2.4, “HP MPI with PBS”, on page 86

Intel MPI 2.0.022

3

4

See section 5.2.7, “Intel MPI 2.0.022, 3, and 4 with PBS”, on page 87

Intel MPI 4.0.3 on Linux See section 5.2.5, “Intel MPI 4.0.3 On Linux with PBS”, on page 86

Intel MPI 4.0.3 on Windows See section 5.2.6, “Intel MPI 4.0.3 On Windows with PBS”, on page 87

MPICH-P4

Deprecated.

1.2.5

1.2.6

1.2.7

See section 5.2.8, “MPICH-P4 with PBS”, on page 90

MPICH-GM

Deprecated.

See section 5.2.9, “MPICH-GM with PBS”, on page 91

MPICH-MX

Deprecated.

See section 5.2.10, “MPICH-MX with PBS”, on page 94

MPICH2

Deprecated.

1.0.3

1.0.5

1.0.7

On Linux

See section 5.2.11, “MPICH2 with PBS on Linux”, on page 96

MPICH2 1.4.1p1 on Windows See section 5.2.12, “MPICH2 1.4.1p1 On Windows with PBS”, on page 99

MVAPICH

Deprecated.

1.2 See section 5.2.13, “MVAPICH with PBS”, on page 99

MVAPICH2 1.8 See section 5.2.14, “MVAPICH2 with PBS”, on page 100

Open MPI 1.4.x See section 5.2.15, “Open MPI with PBS”, on page 102

Platform MPI 8.0 See section 5.2.16, “Platform MPI with PBS”, on page 102

HPE MPI Any See section 5.2.17, “HPE MPI with PBS”, on page 103
UG-84 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.1.2 Integrating an MPI on the Fly

The PBS administrator can perform the steps to integrate the supported MPIs. For non-integrated MPIs, you can inte-
grate them on the fly. You integrate Intel MPI 4.0.3 using environment variables; see section 5.2.5, “Intel MPI 4.0.3 On
Linux with PBS”, on page 86. For the rest, you integrate them using the pbs_tmrsh command.

5.2.1.2.i Integrating an MPI on the Fly using the pbs_tmrsh Command

You should not use pbs_tmrsh with an integrated MPI or with Intel MPI 4.0.3.

This command emulates rsh, but uses the PBS TM interface to talk directly to pbs_mom on sister vnodes. The
pbs_tmrsh command informs the primary and sister MoMs about job processes on sister vnodes. When the job uses
pbs_tmrsh, PBS can track resource usage for all job processes.

You use pbs_tmrsh as your rsh or ssh command. To use pbs_tmrsh, set the appropriate environment variable to
pbs_tmrsh. For example, to integrate MPICH, set the P4_RSHCOMMAND environment variable to pbs_tmrsh, and
to integrate HP MPI, set MPI_REMSH to pbs_tmrsh.

The following figure illustrates how the pbs_tmrsh command can be used to integrate an MPI on the fly:

Figure 5-1:PBS knows about processes on vnodes 2 and 3, because pbs_tmrsh talks directly to
pbs_mom, and pbs_mom starts the processes on vnodes 2 and 3

5.2.1.2.ii Caveats for the pbs_tmrsh Command

• This command cannot be used outside of a PBS job; if used outside a PBS job, this command will fail.

• The pbs_tmrsh command does not perform exactly like rsh. For example, you cannot pipe output from
pbs_tmrsh; this will fail.
PBS Professional 2022.1 User’s Guide UG-85

Chapter 5 Multiprocessor Jobs
5.2.2 Prerequisites to Using MPI with PBS

The MPI that you intend to use with PBS must be working before you try to use it with PBS. You must be able to run an
MPI job outside of PBS.

5.2.3 Caveats for Using MPIs

Some applications write scratch files to a temporary location. PBS makes a temporary directory available for this, and
puts the path in the TMPDIR environment variable. The location of the temporary directory is host-dependent. If you
are using an MPI other than Open MPI, and your application needs scratch space, the temporary directory for the job
should be consistent across execution hosts. Your PBS administrator can specify a root for the temporary directory on
each host using the $tmpdir MoM parameter. In this case, the TMPDIR environment variable is set to the full path of the
resulting temporary directory. Do not attempt to set TMPDIR.

5.2.4 HP MPI with PBS

HP MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate HP MPI with PBS.

5.2.4.1 Setting up Your Environment for HP MPI

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh choice>

5.2.4.2 Using HP MPI with PBS

You can run jobs under PBS using HP MPI without making any changes to your MPI command line.

5.2.4.3 Options

When running a PBS HP MPI job, you can use the same arguments to the mpirun command as you would outside of
PBS. The following options are treated differently under PBS:

-h <host>
Ignored

-l <user>
Ignored

-np <number>
Modified to fit the available resources

5.2.4.4 Caveats for HP MPI with PBS

Under the integrated HP MPI, the job's working directory is changed to your home directory.

5.2.5 Intel MPI 4.0.3 On Linux with PBS

If your PBS administrator has integrated Intel MPI 4.0.3 on Linux with PBS, you can use its mpirun exactly the same
way inside and outside of a PBS job.

The default process manager for Intel MPI 4.0.3 on Linux is Hydra.
UG-86 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.6 Intel MPI 4.0.3 On Windows with PBS

On Windows PBS supplies a wrapper script for Intel MPI called pbs_intelmpi_mpirun.bat, located in $PBS_EXEC\bin.
You call this script instead of Intel mpirun. All options are passed through the script to mpirun.

5.2.6.1 Integrating Intel MPI 4.0.3 on the Fly

If you are using Intel MPI 4.0.3 but it has not been integrated with PBS, you can integrate it on the fly by setting environ-
ment variables:

1. Specify rsh:
I_MPI_HYDRA_BOOTSTRAP=rsh

2. Specify pbs_tmrsh.

a. If you are running your job entirely on hosts which have PBS_EXEC/bin in the default PATH, set this:

I_MPI_HYDRA_BOOTSTRAP_EXEC=pbs_tmrsh

b. If you are running your job entirely on hosts which do not have PBS_EXEC/bin in the default PATH, include
the full path in the environment variable. For example:

I_MPI_HYDRA_BOOTSTRAP_EXEC=/opt/pbs/bin/pbs_tmrsh

5.2.7 Intel MPI 2.0.022, 3, and 4 with PBS

PBS provides an interface to Intel MPI mpirun for these versions. If executed inside a PBS job, this allows PBS to
track all Intel MPI processes so that PBS can perform accounting and have complete job control. If executed outside of
a PBS job, it behaves exactly as if standard Intel MPI mpirun was used.

5.2.7.1 Using Intel MPI 2.0.022, 3, or 4 Integrated with PBS

You use the same mpirun command as you would use outside of PBS.

When submitting PBS jobs that invoke the PBS-supplied interface to mpirun for Intel MPI, be sure to explicitly specify
the actual number of ranks or MPI tasks in the qsub select specification. Otherwise, jobs will fail to run with "too
few entries in the machinefile".

For an example of this problem, specification of the following:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask

results in the following node file:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun since only two MPD daemons are started.

The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes the node file to contain:

hostA

hostB

hostB

and is consistent with "mpirun -np 3".
PBS Professional 2022.1 User’s Guide UG-87

Chapter 5 Multiprocessor Jobs
5.2.7.2 Options to Integrated Intel MPI 2.0.022, 3, or 4

If executed inside a PBS job script, all of the options to the PBS interface are the same as for Intel MPI's mpirun except
for the following:

-host, -ghost
For specifying the execution host to run on. Ignored.

-machinefile <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

mpdboot option --totalnum=*
Ignored and replaced by the number of unique entries in $PBS_NODEFILE.

mpdboot option --file=*
Ignored and replaced by the name of $PBS_NODEFILE. The argument to this option is replaced by
$PBS_NODEFILE.

Argument to mpdboot option -f <mpd_hosts_file> replaced by $PBS_NODEFILE.

-s
If the PBS interface to Intel MPI's mpirun is called inside a PBS job, Intel MPI's mpirun -s argument to
mpdboot is not supported as this closely matches the mpirun option "-s <spec>". You can simply run a
separate mpdboot -s before calling mpirun. A warning message is issued by the PBS interface upon
encountering a -s option describing the supported form.

-np
If you do not specify a -np option, then no default value is provided by the PBS interface. It is up to the stan-
dard mpirun to decide what the reasonable default value should be, which is usually 1. The maximum num-
ber of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.7.3 MPD Startup and Shutdown

Intel MPI's mpirun takes care of starting and stopping the MPD daemons. The PBS interface to Intel MPI's mpirun
always passes the arguments -totalnum=<number of mpds to start> and -file=<mpd_hosts_file>
to the actual mpirun, taking its input from unique entries in $PBS_NODEFILE.

5.2.7.4 Examples

Example 5-15: Run a single-executable Intel MPI job with six processes spread out across the PBS-allocated hosts listed
in $PBS_NODEFILE:

Node file:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

UG-88 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
Job script:

mpirun takes care of starting the MPD

daemons on unique hosts listed in

$PBS_NODEFILE, and also runs the 6 processes

on the 6 hosts listed in

$PBS_NODEFILE; mpirun takes care of

shutting down MPDs.

mpirun /path/myprog.x 1200

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job ID>

Example 5-16: Run an Intel MPI job with multiple executables on multiple hosts using $PBS_NODEFILE and
mpiexec arguments to mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

mpirun runs MPD daemons on hosts listed in $PBS_NODEFILE

mpirun runs 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the

MPDs at the end of MPI job run.

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

 <job ID>

Example 5-17: Run an Intel MPI job with multiple executables on multiple hosts via the -configfile option and
$PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC
PBS Professional 2022.1 User’s Guide UG-89

Chapter 5 Multiprocessor Jobs
Job script:

echo "-np 2 /tmp/mpitest1" >> my_config_file

echo "-np 2 /tmp/mpitest2" >> my_config_file

echo "-np 2 /tmp/mpitest3" >> my_config_file

mpirun takes care of starting the MPD daemons

config file says run 2 instances of mpitest1

on hostA; 2 instances of mpitest2 on

hostB; 2 instances of mpitest3 on hostC.

mpirun takes care of shutting down the MPD daemons.

mpirun -configfile my_config_file

cleanup

rm -f my_config_file

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job ID>

5.2.7.5 Restrictions

The maximum number of ranks that can be launched under integrated Intel MPI is the number of entries in
$PBS_NODEFILE.

5.2.8 MPICH-P4 with PBS

The wrapper is deprecated. MPICH-P4 can be integrated with PBS on Linux so that PBS can track resource usage, sig-
nal processes, and perform accounting, for all job processes. Your PBS administrator can integrate MPICH-P4 with PBS.

5.2.8.1 Options for MPICH-P4 with PBS

Under PBS, the syntax and arguments for the MPICH-P4 mpirun command on Linux are the same except for one
option, which you should not set:

-machinefile <file>
PBS supplies the machinefile. If you try to specify it, PBS prints a warning that it is replacing the machinefile.

5.2.8.2 Example of Using MPICH-P4 with PBS

Example of using mpirun:

#PBS -l select=arch=linux

#

mpirun a.out
UG-90 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.8.3 MPICH Under Windows

Under Windows, you may need to use the -localroot option to MPICH's mpirun command in order to allow the
job's processes to run more efficiently, or to get around the error "failed to communicate with the barrier
command". Here is an example job script:

C:\DOCUME~1\user1>type job.scr

echo begin

type %PBS_NODEFILE%

"\Program Files\MPICH\mpd\bin\mpirun" -localroot -np 2 -machinefile %PBS_NODEFILE%
\winnt\temp\netpipe -reps 3

echo done

You also need to specify "arch=windows" in each chunk specification.

5.2.8.3.i Caveats for MPICH Under Windows

Under Windows, MPICH is not integrated with PBS. Therefore, PBS is limited to tracking and controlling processes and
performing accounting only for job processes on the primary vnode.

5.2.9 MPICH-GM with PBS

5.2.9.1 Using MPICH-GM and MPD with PBS

The wrapper is deprecated. PBS provides an interface to MPICH-GM's mpirun using MPD. If executed inside a PBS
job, this allows for PBS to track all MPICH-GM processes started by the MPD daemons so that PBS can perform
accounting and have complete job control. If executed outside of a PBS job, it behaves exactly as if standard mpirun
with MPD had been used.

You use the same mpirun command as you would use outside of PBS. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.

5.2.9.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with MPD except for the follow-
ing:

-m <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.9.1.ii MPD Startup and Shutdown

The script starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either the rsh or ssh
method based on the value of the environment variable RSHCOMMAND. The default is rsh. The script also takes
care of shutting down the MPD daemons at the end of a run.
PBS Professional 2022.1 User’s Guide UG-91

Chapter 5 Multiprocessor Jobs
If the MPD daemons are not running, the PBS interface to mpirun will start GM's MPD daemons as you on the allo-
cated PBS hosts. The MPD daemons may have been started already by the administrator or by you. MPD daemons are
not started inside a PBS prologue script since it won't have the path of mpirun that you executed (GM or MX), which
would determine the path to the MPD binary.

5.2.9.1.iii Examples

Example 5-18: Run a single-executable MPICH-GM job with 3 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

qsub -l select=3:ncpus=1

[MPICH-GM-HOME]/bin/mpirun -np 3 /path/myprog.x 1200

^D

<job ID>

If the GM MPD daemons are not running, the PBS interface to mpirun will start them as you on the allocated PBS
hosts. The daemons may have been previously started by the administrator or by you.

Example 5-19: Run an MPICH-GM job with multiple executables on multiple hosts listed in the process group file
procgrp:

Job script:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-GM-HOME]/bin/mpirun -pg procgrp /path/mypro.x 1200

rm -f procgrp

^D

<job ID>

When the job runs, mpirun gives the warning message:

warning: "-pg" is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control.

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.9.2 Using MPICH-GM and rsh/ssh with PBS

PBS provides an interface to MPICH-GM's mpirun using rsh/ssh. If executed inside a PBS job, this lets PBS track
all MPICH-GM processes started via rsh/ssh so that PBS can perform accounting and have complete job control. If
executed outside of a PBS job, it behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

5.2.9.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun except for the following:

-machinefile <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.
UG-92 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
-np
If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.9.2.ii Examples

Example 5-20: Run a single-executable MPICH-GM job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1 -l place=scatter

mpirun -np 64 /path/myprog.x 1200

^D

<job ID>

Example 5-21: Run an MPICH-GM job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "host1 1 user1 /x/y/a.exe arg1 arg2" > procgrp

echo "host2 1 user1 /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/mypro.x

rm -f procgrp

^D

<job ID>

When the job runs, mpirun gives this warning message:

warning: "-pg" is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under the control of PBS.

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.9.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-GM is the number of entries in
$PBS_NODEFILE.
PBS Professional 2022.1 User’s Guide UG-93

Chapter 5 Multiprocessor Jobs
5.2.10 MPICH-MX with PBS

5.2.10.1 Using MPICH-MX and MPD with PBS

The wrapper is deprecated. PBS provides an interface to MPICH-MX's mpirun using MPD. If executed inside a PBS
job, this allows for PBS to track all MPICH-MX processes started by the MPD daemons so that PBS can perform
accounting and have complete job control. If executed outside of a PBS job, it behaves exactly as if standard
MPICH-MX mpirun with MPD was used.

You use the same mpirun command as you would use outside of PBS. If the MPD daemons are not already running,
the PBS interface will take care of starting them for you.

5.2.10.1.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as mpirun with MPD except for the follow-
ing:

-m <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np
If not specified, the number of entries found in $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.10.1.ii MPD Startup and Shutdown

The PBS mpirun interface starts MPD daemons on each of the unique hosts listed in $PBS_NODEFILE, using either
the rsh or ssh method, based on value of environment variable RSHCOMMAND. The default is rsh. The interface
also takes care of shutting down the MPD daemons at the end of a run.

If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD daemons as you on the allocated
PBS hosts. The MPD daemons may already have been started by the administrator or by you. MPD daemons are not
started inside a PBS prologue script since it won't have the path of mpirun that you executed (GM or MX), which
would determine the path to the MPD binary.

5.2.10.1.iii Examples

Example 5-22: Run a single-executable MPICH-MX job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1 -lplace=scatter

[MPICH-MX-HOME]/bin/mpirun -np 64 /path/myprog.x 1200

^D

<job ID>
UG-94 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
If the MPD daemons are not running, the PBS interface to mpirun starts MX's MPD daemons as you on the allo-
cated PBS hosts. The MPD daemons may be already started by the administrator or by you.

Example 5-23: Run an MPICH-MX job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

[MPICH-MX-HOME]/bin/mpirun -pg procgrp /path/myprog.x 1200

rm -f procgrp

^D

<job ID>

mpirun prints a warning message:

warning: "-pg" is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.10.2 Using MPICH-MX and rsh/ssh with PBS

Deprecated. PBS provides an interface to MPICH-MX's mpirun using rsh/ssh. If executed inside a PBS job, this
allows for PBS to track all MPICH-MX processes started by rsh/ssh so that PBS can perform accounting and has com-
plete job control. If executed outside of a PBS job, it behaves exactly as if standard mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

5.2.10.2.i Options

Inside a PBS job script, all of the options to the PBS interface are the same as standard mpirun except for the following:

-machinefile <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-np
If not specified, the number of entries found in the $PBS_NODEFILE is used. The maximum number of ranks
that can be launched is the number of entries in $PBS_NODEFILE.

-pg
The use of the -pg option, for having multiple executables on multiple hosts, is allowed but it is up to you to
make sure only PBS hosts are specified in the process group file; MPI processes spawned on non-PBS hosts are
not guaranteed to be under the control of PBS.

5.2.10.2.ii Examples

Example 5-24: Run a single-executable MPICH-MX job with 64 processes spread out across the PBS-allocated hosts
listed in $PBS_NODEFILE:
PBS Professional 2022.1 User’s Guide UG-95

Chapter 5 Multiprocessor Jobs
$PBS_NODEFILE:

pbs-host1

pbs-host2

...

pbs-host64

qsub -l select=64:ncpus=1

mpirun -np 64 /path/myprog.x 1200

^D

<job ID>

Example 5-25: Run an MPICH-MX job with multiple executables on multiple hosts listed in the process group file
procgrp:

qsub -l select=2:ncpus=1

echo "pbs-host1 1 username /x/y/a.exe arg1 arg2" > procgrp

echo "pbs-host2 1 username /x/x/b.exe arg1 arg2" >> procgrp

mpirun -pg procgrp /path/myprog.x

rm -f procgrp

^D

<job ID>

mpirun prints the warning message:

warning: "-pg" is allowed but it is up to user to make sure only PBS hosts are specified; MPI
processes spawned are not guaranteed to be under PBS-control

The warning is issued because if any of the hosts listed in procgrp are not under the control of PBS, then the pro-
cesses on those hosts will not be under the control of PBS.

5.2.10.3 Restrictions

The maximum number of ranks that can be launched under integrated MPICH-MX is the number of entries in
$PBS_NODEFILE.

5.2.11 MPICH2 with PBS on Linux

On Linux, PBS provides an interface to MPICH2's mpirun. If executed inside a PBS job, this allows for PBS to track
all MPICH2 processes so that PBS can perform accounting and have complete job control. If executed outside of a PBS
job, it behaves exactly as if standard MPICH2's mpirun had been used.

You use the same mpirun command as you would use outside of PBS.

When submitting PBS jobs under the PBS interface to MPICH2's mpirun, be sure to explicitly specify the actual num-
ber of ranks or MPI tasks in the qsub select specification. Otherwise, jobs will fail to run with "too few entries
in the machinefile".

For instance, the following erroneous specification:

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB

mpirun -np 3 /tmp/mytask
UG-96 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
results in this $PBS_NODEFILE listing:

hostA

hostB

which conflicts with the "-np 3" specification in mpirun as only two MPD daemons are started.

The correct way is to specify either of the following:

#PBS -l select=1:ncpus=1:host=hostA+2:ncpus=1:host=hostB

#PBS -l select=1:ncpus=1:host=hostA+1:ncpus=2:host=hostB:mpiprocs=2

which causes $PBS_NODEFILE to contain:

hostA

hostB

hostB

and this is consistent with "mpirun -np 3".

5.2.11.1 Options

If executed inside a PBS job script, all of the options to the PBS interface are the same as MPICH2's mpirun except for
the following:

-host, -ghost
For specifying the execution host to run on. Ignored.

-machinefile <file>
The file argument contents are ignored and replaced by the contents of $PBS_NODEFILE.

-localonly <number of processes>
For specifying the number of processes to run locally. Not supported. You are advised instead to use the equiva-
lent arguments:

"-np <x> -localonly".

-np
If you do not specify a -np option, then no default value is provided by the PBS interface to MPICH2. It is up to
the standard mpirun to decide what the reasonable default value should be, which is usually 1. The maxi-
mum number of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.11.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in $PBS_NODEFILE. It also ensures
that the MPD daemons are shut down at the end of MPI job execution.

5.2.11.3 Examples

Example 5-26: Run a single-executable MPICH2 job with six processes spread out across the PBS-allocated hosts listed
in $PBS_NODEFILE. Only three hosts are available:

$PBS_NODEFILE:

pbs-host1

pbs-host2

pbs-host3

pbs-host1

pbs-host2

pbs-host3
PBS Professional 2022.1 User’s Guide UG-97

Chapter 5 Multiprocessor Jobs
Job.script:

mpirun runs 6 processes, scattered over 3 hosts

listed in $PBS_NODEFILE

mpirun -np 6 /path/myprog.x 1200

Run job script:

qsub -l select=6:ncpus=1 -lplace = scatter job.script

<job ID>

Example 5-27: Run an MPICH2 job with multiple executables on multiple hosts using $PBS_NODEFILE and
mpiexec arguments in mpirun:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

mpirun -np 2 /tmp/mpitest1 : -np 2 /tmp/mpitest2 : -np 2 /tmp/mpitest3

Run job:

qsub job.script

Example 5-28: Run an MPICH2 job with multiple executables on multiple hosts using mpirun -configfile option
and $PBS_NODEFILE:

$PBS_NODEFILE:

hostA

hostA

hostB

hostB

hostC

hostC

Job script:

#PBS -l select=3:ncpus=2:mpiprocs=2

echo "-np 2 /tmp/mpitest1" > my_config_file

echo "-np 2 /tmp/mpitest2" >> my_config_file

echo "-np 2 /tmp/mpitest3" >> my_config_file

mpirun -configfile my_config_file

rm -f my_config_file
UG-98 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
Run job:

qsub job.script

5.2.11.4 Restrictions

The maximum number of ranks that can be launched under integrated MPICH2 is the number of entries in
$PBS_NODEFILE.

5.2.12 MPICH2 1.4.1p1 On Windows with PBS

On Windows PBS supplies a wrapper script for MPICH2 1.4.1p1 called pbs_mpich2_mpirun.bat, located in
$PBS_EXEC\bin. You call this script instead of MPICH2 mpirun. All options are passed through the script to mpirun.

5.2.13 MVAPICH with PBS

The wrapper is deprecated. PBS provides an mpirun interface to the MVAPICH mpirun. When you use the
PBS-supplied mpirun, PBS can track all MVAPICH processes, perform accounting, and have complete job control.
Your PBS administrator can integrate MVAPICH with PBS so that you can use the PBS-supplied mpirun in place of the
MVAPICH mpirun in your job scripts.

MVAPICH allows your jobs to use InfiniBand.

5.2.13.1 Interface to MVAPICH mpirun Command

If executed outside of a PBS job, the PBS-supplied interface to mpirun behaves exactly as if standard MVAPICH
mpirun had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as MVAPICH's mpirun except
for the following:

-map
The map option is ignored.

-machinefile <file>
The machinefile option is ignored.

-exclude
The exclude option is ignored.

-np
If you do not specify a -np option, then PBS uses the number of entries found in $PBS_NODEFILE. The
maximum number of ranks that can be launched is the number of entries in $PBS_NODEFILE.

5.2.13.2 Examples

Example 5-29: Run a single-executable MVAPICH job with six ranks spread out across the PBS-allocated hosts listed in
$PBS_NODEFILE:
PBS Professional 2022.1 User’s Guide UG-99

Chapter 5 Multiprocessor Jobs
$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Contents of job.script:

mpirun runs 6 processes mapped one to each line in $PBS_NODEFILE

mpirun -np 6 /path/myprog

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job ID>

5.2.13.3 Restrictions

The maximum number of ranks that can be launched under integrated MVAPICH is the number of entries in
$PBS_NODEFILE.

5.2.14 MVAPICH2 with PBS

PBS provides an mpiexec interface to MVAPICH2's mpiexec. When you use the PBS-supplied mpiexec, PBS can
track all MVAPICH2 processes, perform accounting, and have complete job control. Your PBS administrator can inte-
grate MVAPICH2 with PBS so that you can use the PBS-supplied mpirun in place of the MVAPICH2 mpirun in your
job scripts.

MVAPICH2 allows your jobs to use InfiniBand.

5.2.14.1 Interface to MVAPICH2 mpiexec Command

If executed outside of a PBS job, it behaves exactly as if standard MVAPICH2's mpiexec had been used.

If executed inside a PBS job script, all of the options to the PBS interface are the same as MVAPICH2's mpiexec
except for the following:

-host
The host option is ignored.

-machinefile <file>
The file option is ignored.

-mpdboot
If mpdboot is not called before mpiexec, it is called automatically before mpiexec runs so that an MPD
daemon is started on each host assigned by PBS.

5.2.14.2 MPD Startup and Shutdown

The interface ensures that the MPD daemons are started on each of the hosts listed in $PBS_NODEFILE. It also ensures
that the MPD daemons are shut down at the end of MPI job execution.
UG-100 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.14.3 Examples

Example 5-30: Run a single-executable MVAPICH2 job with six ranks on hosts listed in $PBS_NODEFILE:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

mpiexec -np 6 /path/mpiprog

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job ID>

Example 5-31: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts listed in the default file
"mpd.hosts". Here, run executables prog1 and prog2 with two ranks of prog1 on host1, two ranks of prog2 on
host2 and two ranks of prog2 on host3, all specified on the command line:

$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

mpiexec -n 2 prog1 : -n 2 prog2 : -n 2 prog2

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job ID>

Example 5-32: Launch an MVAPICH2 MPI job with multiple executables on multiple hosts listed in the default file
"mpd.hosts". Run executables prog1 and prog2 with two ranks of prog1 on host1, two ranks of prog2 on host2
and two ranks of prog2 on host3, all specified using the -configfile option:
PBS Professional 2022.1 User’s Guide UG-101

Chapter 5 Multiprocessor Jobs
$PBS_NODEFILE:

pbs-host1

pbs-host1

pbs-host2

pbs-host2

pbs-host3

pbs-host3

Job.script:

echo "-n 2 -host host1 prog1" > /tmp/jobconf

echo "-n 2 -host host2 prog2" >> /tmp/jobconf

echo "-n 2 -host host3 prog2" >> /tmp/jobconf

mpiexec -configfile /tmp/jobconf

rm /tmp/jobconf

Run job script:

qsub -l select=3:ncpus=2:mpiprocs=2 job.script

<job ID>

5.2.14.4 Restrictions

The maximum number of ranks that can be launched under MVAPICH2 is the number of entries in $PBS_NODEFILE.

5.2.15 Open MPI with PBS

Open MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate Open MPI with PBS.

5.2.15.1 Using Open MPI with PBS

You can run jobs under PBS using Open MPI without making any changes to your MPI command line.

5.2.16 Platform MPI with PBS

Platform MPI can be integrated with PBS on Linux so that PBS can track resource usage, signal processes, and perform
accounting, for all job processes. Your PBS administrator can integrate Platform MPI with PBS.

5.2.16.1 Using Platform MPI with PBS

You can run jobs under PBS using Platform MPI without making any changes to your MPI command line.

5.2.16.2 Setting up Your Environment

In order to override the default rsh, set PBS_RSHCOMMAND in your job script:

export PBS_RSHCOMMAND=<rsh command>
UG-102 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
5.2.17 HPE MPI with PBS

PBS supplies its own mpiexec to use with HPE MPI on a multi-vnode machine running supported versions of HPE
MPI. When you use the PBS-supplied mpiexec, PBS can track resource usage, signal processes, and perform account-
ing, for all job processes. The PBS mpiexec provides the standard mpiexec interface.

See your PBS administrator to find out whether your system is configured for the PBS mpiexec.

5.2.17.1 Using HPE MPI with PBS

You can launch an MPI job on a single HPE system, or across multiple HPE systems. For MPI jobs across multiple HPE
systems, PBS will manage the multi-host jobs. For example, if you have two HPE systems named host1 and host2, and
want to run two applications called mympi1 and mympi2 on them, you can put this in your job script:

mpiexec -host host1 -n 4 mympi1 : -host host2 -n 8 mympi2

PBS will manage and track the job's processes. When the job is finished, PBS will clean up after it.

You can run MPI jobs in the placement sets chosen by PBS.

5.2.17.2 Prerequisites

In order to use MPI within a PBS job with HPE MPI, you may need to add the following in your job script before you
call MPI:

module load mpt

5.2.17.3 Fitting Jobs onto Nodeboards

PBS will try to put a job that fits in a single nodeboard on just one nodeboard. However, if the only CPUs available are
on separate nodeboards, and those vnodes are not allocated exclusively to existing jobs, and the job can share a vnode,
then the job is run on the separate nodeboards.

5.2.17.4 Checkpointing and Suspending Jobs

Jobs are suspended on the HPE systems using the PBS suspend feature.

Jobs are checkpointed on HPE systems using application-level checkpointing. There is no OS-level checkpoint.

Suspended or checkpointed jobs will resume on the original nodeboards.

5.2.17.5 Using CSA

PBS support for CSA on HPE systems is no longer available. The CSA functionality for HPE systems has been
removed from PBS.

5.3 Using PVM with PBS

You use the pvmexec command to execute a Parallel Virtual Machine (PVM) program. PVM is not integrated with
PBS; PBS is limited to monitoring, controlling, and accounting for job processes only on the primary vnode.

5.3.1 Arguments to pvmexec Command

The pvmexec command expects a hostfile argument for the list of hosts on which to spawn the parallel job.
PBS Professional 2022.1 User’s Guide UG-103

Chapter 5 Multiprocessor Jobs
5.3.2 Using PVM Daemons

To start the PVM daemons on the hosts listed in $PBS_NODEFILE:

1. Start the PVM console on the first host in the list

2. Print the hosts to the standard output file named jobname.o<PBS job ID>:

echo conf | pvm $PBS_NODEFILE

To quit the PVM console but leave the PVM daemons running:

quit

To stop the PVM daemons, restart the PVM console, and quit:

echo halt | pvm

5.3.3 Submitting a PVM Job

To submit a PVM job to PBS, use the following:

qsub <job script>

5.3.4 Examples

Example 5-33: To submit a PVM job to PBS, use the following:

qsub your_pvm_job

Here is an example script for your_pvm_job:

#PBS -N pvmjob

#PBS -V

cd $PBS_O_WORKDIR

echo conf | pvm $PBS_NODEFILE

echo quit | pvm

./my_pvm_program

echo halt | pvm

Example 5-34: Sample PBS script for a PVM job:

#PBS -N pvmjob

#

pvmexec a.out -inputfile data_in

5.4 Using OpenMP with PBS

PBS Professional supports OpenMP applications by setting the OMP_NUM_THREADS variable in the job's environ-
ment, based on the resource request of the job. The OpenMP run-time picks up the value of OMP_NUM_THREADS
and creates threads appropriately.
UG-104 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
MoM sets the value of OMP_NUM_THREADS based on the first chunk of the select statement. If you request
ompthreads in the first chunk, MoM sets the environment variable to the value of ompthreads. If you do not request
ompthreads in the first chunk, then OMP_NUM_THREADS is set to the value of the ncpus resource of that chunk. If
you do not request either ncpus or ompthreads for the first chunk of the select statement, then
OMP_NUM_THREADS is set to 1.

You cannot directly set the value of the OMP_NUM_THREADS environment variable; MoM will override any setting
you attempt.

See “Resources Built Into PBS” on page 265 of the PBS Professional Reference Guide for a definition of the
ompthreads resource.

Example 5-35: Submit an OpenMP job as a single chunk, for a two-CPU, two-thread job requiring 10gb of memory:

qsub -l select=1:ncpus=2:mem=10gb

Example 5-36: Run an MPI application with 64 MPI processes, and one thread per process:

#PBS -l select=64:ncpus=1

mpiexec -n 64 ./a.out

Example 5-37: Run an MPI application with 64 MPI processes, and four OpenMP threads per process:

#PBS -l select=64:ncpus=4

mpiexec -n 64 omplace -nt 4 ./a.out

or

#PBS -l select=64:ncpus=4:ompthreads=4

mpiexec -n 64 omplace -nt 4 ./a.out

5.4.1 Running Fewer Threads than CPUs

You might be running an OpenMP application on a host and wish to run fewer threads than the number of CPUs
requested. This might be because the threads need exclusive access to shared resources in a multi-core processor system,
such as to a cache shared between cores, or to the memory shared between cores.

Example 5-38: You want one chunk, with 16 CPUs and eight threads:

qsub -l select=1:ncpus=16:ompthreads=8

5.4.2 Running More Threads than CPUs

You might be running an OpenMP application on a host and wish to run more threads than the number of CPUs
requested, perhaps because each thread is I/O bound.

Example 5-39: You want one chunk, with eight CPUs and 16 threads:

qsub -l select=1:ncpus=8:ompthreads=16

5.4.3 Caveats for Using OpenMP with PBS

Make sure that you request the correct number of MPI ranks for your job, so that the PBS node file contains the correct
number of entries. See section 5.1.3, “Specifying Number of MPI Processes Per Chunk”, on page 80.
PBS Professional 2022.1 User’s Guide UG-105

Chapter 5 Multiprocessor Jobs
5.5 Hybrid MPI-OpenMP Jobs

For jobs that are both MPI and multi-threaded, the number of threads per chunk, for all chunks, is set to the number of
threads requested (explicitly or implicitly) in the first chunk, except for MPIs that have been integrated with the PBS TM
API.

For MPIs that are integrated with the PBS TM interface, (Open MPI), you can specify the number of threads separately
for each chunk, by specifying the ompthreads resource separately for each chunk.

For most MPIs, the OMP_NUM_THREADS and NCPUS environment variables default to the number of ncpus
requested for the first chunk.

Should you have a job that is both MPI and multi-threaded, you can request one chunk for each MPI process, or set
mpiprocs to the number of MPI processes you want on each chunk. See section 5.1.3, “Specifying Number of MPI Pro-
cesses Per Chunk”, on page 80.

5.5.1 Examples

Example 5-40: To request four chunks, each with one MPI process, two CPUs and two threads:

qsub -l select=4:ncpus=2

or

qsub -l select=4:ncpus=2:ompthreads=2

Example 5-41: To request four chunks, each with two CPUs and four threads:

qsub -l select=4:ncpus=2:ompthreads=4

Example 5-42: To request 16 MPI processes each with two threads on machines with two processors:

qsub -l select=16:ncpus=2

Example 5-43: To request two chunks, each with eight CPUs and eight MPI tasks and four threads:

qsub -l select=2:ncpus=8:mpiprocs=8:ompthreads=4

Example 5-44: For the following:

qsub -l select=4:ncpus=2

This request is satisfied by four CPUs from VnodeA, two from VnodeB and two from VnodeC, so the following is
written to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeC

The OpenMP environment variables are set, for the four PBS tasks corresponding to the four MPI processes, as fol-
lows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=2 NCPUS=2

• For PBS task #4 on VnodeC: OMP_NUM_THREADS=2 NCPUS=2

Example 5-45: For the following:

qsub -l select=3:ncpus=2:mpiprocs=2:ompthreads=1
UG-106 PBS Professional 2022.1 User’s Guide

Multiprocessor Jobs Chapter 5
This is satisfied by two CPUs from each of three vnodes (VnodeA, VnodeB, and VnodeC), so the following is writ-
ten to $PBS_NODEFILE:

VnodeA

VnodeA

VnodeB

VnodeB

VnodeC

VnodeC

The OpenMP environment variables are set, for the six PBS tasks corresponding to the six MPI processes, as follows:

• For PBS task #1 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #2 on VnodeA: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #3 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #4 on VnodeB: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #5 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

• For PBS task #6 on VnodeC: OMP_NUM_THREADS=1 NCPUS=1

Example 5-46: To run two threads on each of N chunks, each running a process, all on the same HPE system:

qsub -l select=N:ncpus=2 -l place=pack

This starts N processes on a single host, with two OpenMP threads per process, because
OMP_NUM_THREADS=2.
PBS Professional 2022.1 User’s Guide UG-107

Chapter 5 Multiprocessor Jobs
UG-108 PBS Professional 2022.1 User’s Guide

6

Controlling How Your Job Runs

6.1 Using Job Exit Status

PBS can use the exit status of your job as input to the epilogue, and to determine whether to run a dependent job. If you
are running under Linux, make sure that your job's exit status is captured correctly; see section 1.4.2.4, “Capture Correct
Job Exit Status”, on page 5.

Job exit codes are listed in section 10.9, "Job Exit Status Codes", on page 469 of the PBS Professional Administrator’s
Guide.

The exit status of a job array is determined by the status of each of its completed subjobs, and is only available when all
valid subjobs have completed. The individual exit status of a completed subjob is passed to the epilogue, and is available
in the 'E' accounting log record of that subjob. See “Job Array Exit Status” on page 160.

6.1.1 Caveats for Exit Status

• Normally, qsub exits with the exit status for a blocking job, but if you submit a job that is both blocking and inter-
active, PBS does not return the job's exit status. See section 6.10, “Making qsub Wait Until Job Ends”, on page 122.

• For a blocking job, the exit status is returned before staging finishes. See section 6.10.2, “Caveats for Blocking
Jobs”, on page 123.

• The exit status of an interactive job is always recorded as 0 (zero), regardless of the actual exit status.

6.2 Using Job Dependencies

PBS allows you to specify dependencies between two or more jobs. Dependencies are useful for a variety of tasks, such
as:

• Specifying the order in which jobs in a set should execute

• Requesting a job run only if an error occurs in another job

• Holding jobs until a particular job starts or completes execution

There is no limit on the number of dependencies per job.

If you have one or more jobs j2... jN that are dependent on a job j1 so that they can run only after j1 runs, and you delete
j1, PBS deletes jobs j2... jN. If you have jobs j2... jN that can run only after j1 has not run successfully, and you delete j1,
PBS releases the dependencies for jobs j2... jN so that they can run.

6.2.1 Syntax for Job Dependencies

Use the "-W depend=<dependency list>" option to qsub to define dependencies between jobs. The depen-
dency list has the format:

<type>:<arg list>[,<type>:<arg list> ...]

where except for the on type, the arg list is one or more PBS job IDs in the form:

<job ID>[:<job ID> ...]
PBS Professional 2022.1 User’s Guide UG-109

Chapter 6 Controlling How Your Job Runs
These are the available dependency types:

after:<arg list>
This job may start only after all jobs in arg list have started execution.

afterok:<arg list>
This job may start only after all jobs in arg list have terminated with no errors.

afternotok:<arg list>
This job may start only after all jobs in arg list have terminated with errors.

afterany:<arg list>
This job may start after all jobs in arg list have finished execution, with or without errors. This job will not run
if a job in the arg list was deleted without ever having been run.

before:<arg list>
Jobs in arg list may start only after specified jobs have begun execution. You must submit jobs that will run
before other jobs with a type of on.

beforeok:<arg list>
Jobs in arg list may start only after this job terminates without errors.

beforenotok:<arg list>
If this job terminates execution with errors, the jobs in arg list may begin.

beforeany:<arg list>
Jobs in arg list may start only after specified jobs terminate execution, with or without errors. Requires use of
on dependency for jobs that will run before other jobs.

on:count
This job may start only after count dependencies on other jobs have been satisfied. This type is used in conjunc-
tion with one of the before types. count is an integer greater than 0.

runone:<job ID>
Puts the current job and the job with job ID in a set of jobs out of which PBS will eventually run just one. To
add a job to a set, specify the job ID of another job already in the set.

The depend job attribute controls job dependencies. You can set it using the qsub command line or a PBS directive:

qsub -W depend=...

#PBS depend=...

6.2.1.1 Running Your Job on First Available Resources

You may want to run a job on whichever resources become available first, even if the job could run on other sets of
resources. You may want to start a flexible job as soon as possible on a smaller set of resources rather than waiting
longer for a larger set of resources, or you may prefer certain resources but be able to use others (for example, you might
prefer a specific processor, but still be able to run on another if that is all that's available).

If you submit a set of jobs where each job has a "runone" dependency on the others, PBS runs only one of the jobs in the
"runone set". PBS automatically groups the jobs into a runone set. The jobs in a runone set can run different scripts.

When any of the jobs in the set starts, PBS applies a system hold to the others. The hold on the other jobs is released
when the running job is requeued:

• Via qrerun

• When node fail requeue is triggered
UG-110 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
The other jobs in the set are deleted:

• When a job ends, regardless of its exit status

• When the running job is deleted

To identify a job as a member of the set, give it a "runone" dependency on the previously-submitted member of the set.
For example, we have three jobs, each of which runs on different resources. To submit these three jobs as a runone set:

qsub -lselect=200:ncpus=16 -lwalltime=1:00:00 myscript.sh

10.myserver

qsub -lselect=100:ncpus=16 -lwalltime=2:00:00 -Wdepend=runone:10 myscript.sh

11.myserver

qsub -lselect=50:ncpus=16 -lwalltime=4:00:00 -Wdepend=runone:10 myscript.sh

12.myserver

6.2.2 Job Dependency Examples

Example 6-1: You have three jobs, job1, job2, and job3, and you want job3 to start after job1 and job2 have ended:

qsub job1

16394.jupiter

qsub job2

16395.jupiter

qsub -W depend=afterany:16394:16395 job3

16396.jupiter

Example 6-2: You want job2 to start only if job1 ends with no errors:

qsub job1

16397.jupiter

qsub -W depend=afterok:16397 job2

16396.jupiter

Example 6-3: job1 should run before job2 and job3. To use the beforeany dependency, you must use the on depen-
dency:

qsub -W depend=on:2 job1

16397.jupiter

qsub -W depend=beforeany:16397 job2

16398.jupiter

qsub -W depend=beforeany:16397 job3

16399.jupiter

6.2.3 Job Array Dependencies

Job dependencies are supported:

• Between jobs and jobs

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays

Job dependencies are not supported for subjobs or ranges of subjobs.
PBS Professional 2022.1 User’s Guide UG-111

Chapter 6 Controlling How Your Job Runs
6.2.4 Caveats and Advice for Job Dependencies

6.2.4.1 Correct Exit Status Required

Under Linux, make sure that job exit status is captured correctly; see section 6.1, “Using Job Exit Status”, on page 109.

6.2.4.2 Permission Required for Dependencies

To use the before types, you must have permission to alter the jobs in arg list. Otherwise, the dependency is rejected and
the new job is aborted.

6.2.4.3 Warning About Job History

Enabling job history changes the behavior of dependent jobs. If a job j1 depends on a finished job j2 for which PBS is
maintaining history, PBS releases j1's dependency, and takes appropriate action. If job j1 depends on a finished job j3 that
has been purged from job history, j1 is rejected just as in previous versions of PBS where the job was no longer in the
system.

6.2.4.4 Error Reporting

PBS checks for errors in the existence, state, or condition of the job after accepting the job. If there is an error, PBS sends
you mail about the error and deletes the job.

6.3 Adjusting Job Running Time

This feature was added in PBS Professional 12.0.

6.3.1 Shrink-to-fit Jobs

PBS allows you to submit a job whose running time can be adjusted to fit into an available scheduling slot. The job's
minimum and maximum running time are specified in the min_walltime and max_walltime resources. PBS chooses the
actual walltime. Any job that requests min_walltime is a shrink-to-fit job.

6.3.1.1 Requirements for a Shrink-to-fit Job

A job must have a value for min_walltime to be a shrink-to-fit job. Shrink-to-fit jobs are not required to request
max_walltime, but it is an error to request max_walltime and not min_walltime.

Jobs that do not have values for min_walltime are not shrink-to-fit jobs, and you can specify their walltime.

6.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

The only difference between a shrink-to-fit and a non-shrink-to-fit job is how the job's walltime is treated. PBS sets the
walltime when it runs the job. Any walltime value that exists before the job runs is ignored.

6.3.2 Using Shrink-to-fit Jobs

If you have jobs that can run for less than the expected time needed and still make useful progress, you can make them
shrink-to-fit jobs in order to maximize utilization.
UG-112 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
You can use shrink-to-fit jobs for the following:

• Jobs that are internally checkpointed. This includes jobs which are part of a larger effort, where a job does as much
work as it can before it is killed, and the next job in that effort takes up where the previous job left off.

• Jobs using periodic PBS checkpointing

• Jobs whose real running time might be much less than the expected time

• When you have dedicated time for system maintenance, and you want to take advantage of time slots right up until
shutdown, you can run speculative shrink-to-fit jobs if you can risk having a job killed before it finishes. Similarly,
speculative jobs can take advantage of the time just before a reservation starts

• Any job where you do not mind running the job as a speculative attempt to finish some work

6.3.3 Running Time of a Shrink-to-fit Job

6.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs

It is only required that the job request min_walltime to be a shrink-to-fit job. Requesting max_walltime without
requesting min_walltime is an error.

You can set the job's running time range by requesting min_walltime and max_walltime, for example:

qsub -l min_walltime=<min walltime>, max_walltime=<max walltime> <job script>

6.3.3.2 Setting walltime for Shrink-to-fit Jobs

For a shrink-to-fit job, PBS sets the walltime resource based on the values of min_walltime and max_walltime, regard-
less of whether walltime is specified for the job.

PBS examines each shrink-to-fit job when it gets to it, and looks for a time slot whose length is between the job's
min_walltime and max_walltime. If the job can fit somewhere, PBS sets the job's walltime to a duration that fits the
time slot, and runs the job. The chosen value for walltime is visible in the job's Resource_List.walltime attribute. Any
existing walltime value, regardless of where it comes from, e.g. previous execution, is reset to the new calculated run-
ning time.

If a shrink-to-fit job is run more than once, PBS recalculates the job's running time to fit an available time slot that is
between min_walltime and max_walltime, and resets the job's walltime, each time the job is run.

For a multi-vnode job, PBS chooses a walltime that works for all of the chunks required by the job, and places job
chunks according to the placement specification.

6.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs

6.3.4.1 Modifying min_walltime and max_walltime

You can change min_walltime and/or max_walltime for a shrink-to-fit job by using the qalter command. Any
changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.

6.3.4.1.i Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs

You can convert a normal non-shrink-to-fit job into a shrink-to-fit job using the qalter command to set values for
min_walltime and max_walltime.

Any changes take effect after the current scheduling cycle. Changes affect only queued jobs; running jobs are unaffected
unless they are rerun.
PBS Professional 2022.1 User’s Guide UG-113

Chapter 6 Controlling How Your Job Runs
6.3.4.1.ii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

To make a shrink-to-fit job into a normal, non-shrink-to-fit job, use the qalter command to do the following:

• Set the job's walltime to the value for max_walltime

• Unset min_walltime

• Unset max_walltime

6.3.5 Viewing Running Time for a Job

6.3.5.1 Viewing min_walltime and max_walltime

You can use qstat -f to view the values of min_walltime and max_walltime. For example:

% qsub -lmin_walltime=01:00:15, max_walltime=03:30:00 job.sh

<job ID>

% qstat -f <job ID>

...

Resource_List.min_walltime=01:00:15

Resource_List.max_walltime=03:30:00

You can use tracejob to display max_walltime and min_walltime as part of the job's resource list. For example:

12/16/2011 14:28:55 A user=pbsadmin group=Users project=_pbs_project_default

…

Resource_List.max_walltime=10:00:00

Resource_List.min_walltime=00:00:10

6.3.5.2 Viewing walltime for a Shrink-to-fit Job

PBS sets a job's walltime only when the job runs. While the job is running, you can see its walltime via qstat -f.
While the job is not running, you cannot see its real walltime; it may have a value set for walltime, but this value is
ignored.

You can see the walltime value for a finished shrink-to-fit job if you are preserving job history. See section 10.15, “Man-
aging Job History”, on page 479.

6.3.6 Lifecycle of a Shrink-to-fit Job

6.3.6.1 Execution of Shrink-to-fit Jobs

Shrink-to-fit jobs are started just like non-shrink-to-fit jobs.

6.3.6.2 Termination of Shrink-to-fit Jobs

When a shrink-to-fit job exceeds the walltime PBS has set for it, it is killed by PBS exactly as a non-shrink-to-fit job is
killed when it exceeds its walltime.
UG-114 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.3.7 The min_walltime and max_walltime Resources

max_walltime
Maximum walltime allowed for a shrink-to-fit job. Job's actual walltime is between max_walltime and
min_walltime. PBS sets walltime for a shrink-to-fit job. If this resource is specified, min_walltime must also
be specified. Must be greater than or equal to min_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. If not specified, PBS uses 5 years as the maxi-
mum time slot. Can be requested only outside of a select statement. Non-consumable. Default: None. Type:
duration. Python type: pbs.duration

min_walltime
Minimum walltime allowed for a shrink-to-fit job. When this resource is specified, job is a shrink-to-fit job. If
this attribute is set, PBS sets the job's walltime. Job's actual walltime is between max_walltime and
min_walltime. Must be less than or equal to max_walltime. Cannot be used for resources_min or
resources_max. Cannot be set on job arrays or reservations. Can be requested only outside of a select state-
ment. Non-consumable. Default: None. Type: duration. Python type: pbs.duration

6.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

It is erroneous to specify max_walltime for a job without specifying min_walltime. If attempted via qsub or
qalter, the following error is printed:

'Can not have "max_walltime" without "min_walltime"'

It is erroneous to specify a min_walltime that is greater than max_walltime. If attempted via qsub or qalter, the fol-
lowing error is printed:

'"min_walltime" can not be greater than "max_walltime"'

Job arrays cannot be shrink-to-fit. You cannot have a shrink-to-fit job array. It is erroneous to specify a min_walltime or
max_walltime for a job array. If attempted via qsub or qalter, the following error is printed:

'"min_walltime" and "max_walltime" are not valid resources for a job array'

Reservations cannot be shrink-to-fit. You cannot have a shrink-to-fit reservation. It is erroneous to set min_walltime or
max_walltime for a reservation. If attempted via pbs_rsub, the following error is printed:

'"min_walltime" and "max_walltime" are not valid resources for reservation.'

It is erroneous to set resources_max or resources_min for min_walltime and max_walltime. If attempted, the fol-
lowing error message is displayed, whichever is appropriate:

"Resource limits can not be set for min_walltime"

"Resource limits can not be set for max_walltime"

6.4 Using Checkpointing

6.4.1 Prerequisites for Checkpointing

A job is checkpointable if it has not been marked as non-checkpointable and any of the following is true:

• Its application supports checkpointing and your administrator has set up checkpoint scripts

• There is a third-party checkpointing application available

• The OS supports checkpointing
PBS Professional 2022.1 User’s Guide UG-115

Chapter 6 Controlling How Your Job Runs
6.4.2 Minimum Checkpoint Interval

The execution queue in which the job resides controls the minimum interval at which a job can be checkpointed. The
interval is specified in CPU minutes or walltime minutes. The same value is used for both, so for example if the mini-
mum interval is specified as 12, then a job using the queue's interval for CPU time is checkpointed every 12 minutes of
CPU time, and a job using the queue's interval for walltime is checkpointed every 12 minutes of walltime.

6.4.3 Syntax for Specifying Checkpoint Interval

Use the "-c checkpoint-spec" option to qsub to specify the interval, in CPU minutes, or in walltime minutes, at
which the job will be checkpointed.

The checkpoint-spec argument is specified as:

c
Job is checkpointed at the interval, measured in CPU time, set on the execution queue in which the job resides.

c=<minutes of CPU time>
Job is checkpointed at intervals of the specified number of minutes of CPU time used by the job. This value
must be greater than zero. If the interval specified is less than that set on the execution queue in which the job
resides, the queue's interval is used.

Format: Integer

w
Job is checkpointed at the interval, measured in walltime, set on the execution queue in which the job resides.

w=<minutes of walltime>
Checkpointing is to be performed at intervals of the specified number of minutes of walltime used by the job.
This value must be greater than zero. If the interval specified is less than that set on the execution queue in
which the job resides, the queue's interval is used.

Format: Integer

n
Job is not checkpointed.

s
Job is checkpointed only when the PBS server is shut down.

u
Checkpointing is unspecified, and defaults to the same behavior as "s".

The Checkpoint job attribute controls the job's checkpoint interval. You can set it using the qsub command line or a
PBS directive:

Use qsub to specify that the job should use the execution queue's checkpoint interval:

qsub -c c my_job

Use a directive to checkpoint the job every 10 minutes of CPU time:

#PBS -c c=10

6.4.4 Using Checkpointing for Preempting or Holding Jobs

Your site may need to preempt jobs while they are running, or you may want to be able to place a hold your job while it
runs. To allow either of these, make your job checkpointable. This means that you should not mark it as non-checkpoint-
able (do not use qsub -c n), your application must be checkpointable or there is a third-party checkpointing applica-
tion, and your administrator must supply a checkpoint script to be run by the MoM where the job runs.
UG-116 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
You can use application-level checkpointing when your job is preempted or you place a hold on it to save the partial
results. When your checkpointed job is restarted, your job script can find that the job was checkpointed, and can start
from the checkpoint file instead of starting from scratch.

If you try to hold a running job that is not checkpointable (either it is marked as non-checkpointable or the script is miss-
ing or returns failure), the job continues to run with its Hold_Types attribute set to h. See section 6.5, “Holding and
Releasing Jobs”, on page 117.

6.4.5 Caveats and Restrictions for Checkpointing

• Checkpointing is not supported for job arrays.

• If you do not specify qsub -c checkpoint-spec, it is unspecified, and defaults to the same as "s".

• PBS limits the number of times it tries to run a job to 21, and tracks this count in the job's run_count attribute. If
your job is checkpointed and requeued enough times, it will be held.

6.5 Holding and Releasing Jobs

You can place a hold on your job to do the following:

• A queued job remains queued until you release the hold; see section 6.5.3, “Holding a Job Before Execution”, on
page 118

• A running job stops running but can resume where it left off; see section 6.5.4.1, “Checkpointing and Requeueing
the Job”, on page 118

• A running job continues to run but is held if it is requeued; see section 6.5.4.2, “Setting Hold Type for a Running
Job”, on page 118

You hold a job using the qhold command; see “qhold” on page 150 of the PBS Professional Reference Guide.

You can release a held queued job to make it eligible to be scheduled to run, and you can release a hold on a running job.
You release a hold on your job using the qrls command; see “qrls” on page 183 of the PBS Professional Reference Guide.

The qhold command uses the following syntax:

qhold [-h <hold list>] <job ID> [<job ID> ...]

The qrls command uses the following syntax:

qrls [-h <hold list>] <job ID> [<job ID> ...]

For a job array the job ID must be enclosed in double quotes.

6.5.1 Types of Holds

The hold list specifies the types of holds to be placed on the job. The hold list argument is a string consisting of one or
more of the letters u, p, o, or s in any combination, or the letter n. The following table shows the hold type associated
with each letter:

Table 6-1: Hold Types

Hold Type Meaning Who Can Set or Release

u User Job owner, Operator, Manager, administrator, root

o Other Operator, Manager, administrator, root
PBS Professional 2022.1 User’s Guide UG-117

Chapter 6 Controlling How Your Job Runs
If no -h option is specified, PBS applies a user hold to the jobs listed in the job ID list.

If a job in the job ID list is in the queued, held, or waiting states, the only change is that the hold type is added to the job's
other holds. If the job is queued or waiting in an execution queue, the job is also put in the held state.

6.5.2 Requirements for Holding or Releasing a Job

The user executing the qhold or qrls command must have the necessary privilege to apply a hold or release a hold.
The same rules apply for releasing a hold and for for setting a hold.

6.5.3 Holding a Job Before Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. However, you can tell PBS that the job is ineligible
to run and should remain queued. Use the "-h" option to qsub to apply a user hold to the job when you submit it. PBS
accepts the job and places it in the held state. The job remains held and ineligible to run until the hold is released.

The Hold_Types job attribute controls the job's holding behavior; set it via qsub or a directive:

qsub -h my_job

#PBS -h

6.5.4 Holding a Job During Execution

6.5.4.1 Checkpointing and Requeueing the Job

If your job is checkpointable, you can stop its execution by holding it. In this case the following happens:

• The job is checkpointed

• The resources assigned to the job are released

• The job is put back in the execution queue in the Held state

See section 6.4.1, “Prerequisites for Checkpointing”, on page 115.

To hold your job, use the qhold command:

qsub -h my_job

6.5.4.2 Setting Hold Type for a Running Job

If your job is not checkpointable, qhold merely sets the job's Hold_Types attribute. This has no effect unless the job is
requeued with the qrerun command. In that case the job remains queued and ineligible to run until you release the
hold.

s System Manager, administrator, root, PBS (dependency)

n No hold Job owner, Operator, Manager, administrator, root

p Bad password Administrator, root

Table 6-1: Hold Types

Hold Type Meaning Who Can Set or Release
UG-118 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.5.5 Releasing a Job

You can release one or more holds on a job by using the qrls command.

The qrls command uses the following syntax:

qrls [-h <hold list>] <job ID> ...

For job arrays, the job ID must be enclosed in double quotes.

If you try to release a hold on a job which is not held, the qrls command is ignored. If you use the qrls command to
release a hold on a job that had been previously running and was checkpointed, the hold is released and the job is
returned to the queued (Q) state, and the job becomes eligible to be scheduled to run when resources come available.

The qrls command does not run the job; it simply releases the hold and makes the job eligible to be run the next time
the scheduler selects it.

6.5.6 Caveats and Restrictions for Holding and Releasing

Jobs

• The qhold command can be used on job arrays, but not on subjobs or ranges of subjobs. On job arrays, the qhold
command can be applied only in the 'Q', 'B' or 'W' states. This will put the job array in the 'H', held, state. If any sub-
jobs are running, they will run to completion. Job arrays cannot be moved in the 'H' state if any subjobs are running.

• Checkpointing is not supported for job arrays. Even on systems that support checkpointing, no subjobs will be
checkpointed; they will run to completion.

• To hold a running job and stop its execution, the job must be checkpointable. See section 6.4.1, “Prerequisites for
Checkpointing”, on page 115.

• The qrls command can only be used with job array objects, not with subjobs or ranges. The job array will be
returned to its pre-hold state, which can be either 'Q', 'B', or 'W'.

• The qhold command can only be used with job array objects, not with subjobs or ranges. A hold can be applied
to a job array only from the 'Q', 'B' or 'W' states. This will put the job array in the 'H', held, state. If any subjobs are
running, they will run to completion. No queued subjobs will be started while in the 'H' state.

• PBS limits the number of times it tries to run a job to 21, and tracks this count in the job's run_count attribute. If
your job is checkpointed and requeued enough times, it will be held.

6.5.7 Why is Your Job Held?

Your job may be held for any of the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error ("s")

• After provisioning, the AOE reported by the vnode does not match the AOE requested by the job ("s")

• The job was held by a PBS Manager or Operator ("o")

• The job was checkpointed and requeued ("s")

• Your job depends on a finished job for which PBS is maintaining history ('s")

• The job's password is invalid ("p")

• The job's run_count attribute has a value greater than 20.
PBS Professional 2022.1 User’s Guide UG-119

Chapter 6 Controlling How Your Job Runs
6.5.8 Examples of Holding and Releasing Jobs

The following examples illustrate how to use both the qhold and qrls commands. Notice that the state ("S") column
shows how the state of the job changes with the use of these two commands.

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

qhold 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 H --

qrls -h u 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:20 Q --

6.6 Allowing Your Job to be Re-run

You can specify whether or not your job is eligible to be re-run if for some reason the job is terminated before it finishes.
Use the "-r" option to qsub to specify whether the job is rerunnable. The argument to this option is "y", meaning that
the job can be re-run, or "n", meaning that it cannot. If you do not specify whether or not your job is rerunnable, it is
rerunnable.

If running your job more than once would cause a problem, mark your job as non-rerunnable. Otherwise, leave it as
rerunnable . The purpose of marking a job as non-rerunnable is to prevent it from starting more than once.

If a job that is marked non-rerunnable has an error during startup, before it begins execution, that job is requeued for
another attempt.

The Rerunable job attribute controls whether the job is rerunnable; you can set it via qsub or a PBS directive:

qsub -r n my_job

#PBS -r n
UG-120 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
The following table lists the circumstances where the job's Rerunable attribute makes a difference or does not:

6.6.1 Caveats and Restrictions for Marking Jobs as

Rerunnable

• Interactive jobs are not rerunnable.

• Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as not rerunnable. You can
submit a job array without specifying whether it is rerunnable, and PBS will automatically mark it as rerunnable.

• Mark your job as not rerunnable only if running it more than once would cause a problem. If your job is marked as
not rerunnable, and a higher-priority job needs resources, your job could be deleted.

6.7 Controlling Number of Times Job is Re-run

PBS has a built-in limit of 21 on the number of times it will try to run your job. The number of attempts is tracked in the
job's run_count attribute. By default, the value of run_count is zero at job submission. The job is held when the value
of run_count goes above 20.

You can reduce the number of times PBS attempts to run your job. You can specify a non-negative value for run_count
at job submission, and you can use qalter to raise the value of run_count while the job is running. You cannot give a
job more retries than the limit, and you cannot lower the value of run_count while the job is running.

6.7.1 Caveats for Raising Value of run_count Attribute

If your job is checkpointed and requeued enough times, it will be held.

6.8 Deferring Execution

Normally, PBS runs your job as soon as an appropriate slot opens up. Instead, you can specify a time after which the job
is eligible to run. The job is in the wait (W) state from the time it is submitted until the time it is eligible for execution.

Table 6-2: When does Rerunable Attribute Matter?

Circumstance Rerunnable Not Rerunnable

Job fails upon startup, before running Job is requeued Job is requeued

Job is running on multiple hosts, and one host goes down Job is requeued Job is deleted

Job is scheduled to run on multiple hosts, and did not start on at
least one host

Job is requeued Job is requeued

Server is shut down with a delay Job is requeued Job finishes

Server is shut down immediately Job is requeued Job is deleted

Job requests provisioning and provisioning script fails Job is requeued Job is requeued

Job is running on multiple hosts and one host becomes busy due
to console activity

Job is requeued Job is deleted

Higher-priority job needs resources Job may be requeued Job may be deleted
PBS Professional 2022.1 User’s Guide UG-121

Chapter 6 Controlling How Your Job Runs
6.8.1 Syntax for Deferring Execution

Use the "-a <datetime>" option to qsub to specify the time after which the job is eligible for execution. The
datetime argument is in the form:

[[[[CC]YY]MM]DD]hhmm[.SS]

where

CC is the first two digits of the year (the century): optional

YY is the second two digits of the year: optional

MM is the two digits for the month: optional

DD is the day of the month: optional

hh is the hour

mm is the minute

SS is the seconds: optional

If the day DD is in the future, and the month MM is not specified, the month defaults to the current month. If the day DD
is in the past, and the month MM is not specified, the month is set to next month. For example, if today is the 10th, and
you specify the 12th but no month, your job is eligible to run two days from today, on the 12th.

Similarly, if the time hhmm is in the future, and the day DD is not specified, the day defaults to the current day. If the
time hhmm is in the past, and the day DD is not specified, the day is set to tomorrow. For example, if you submit a job at
11:15am with a time of "1110", the job will be eligible to run at 11:10am tomorrow.

The job's Execution _Time attribute controls deferred execution. You can set it using either of the following:

qsub -a 0700 my_job

#PBS -a 10220700

6.9 Setting Priority for Your Job

PBS includes a place in each job where you can specify the job's priority. Your administrator may or may not choose to
use this priority value when scheduling jobs. Use the "-p <priority>" to specify the priority of the job. The priority
argument must be an integer between -1024 (lowest priority) and +1023 (highest priority) inclusive. The default is unset,
which is equivalent to zero.

The Priority job attribute contains the value you specify. Set it via qsub or a directive:

qsub -p 120 my_job

#PBS -p -300

If you need an absolute ordering of your own jobs, see section 6.2, “Using Job Dependencies”, on page 109.

6.10 Making qsub Wait Until Job Ends

Normally, when you submit a job, the qsub command exits after returning the ID of the new job. You can use the "-W
block=true" option to qsub to specify that you want qsub to "block", meaning wait for the job to complete and
report the exit value of the job.

If your job is successfully submitted, qsub blocks until the job terminates or an error occurs. If job submission fails, no
special processing takes place.
UG-122 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
If the job runs to completion, qsub exits with the exit status of the job. For job arrays, blocking qsub waits until the
entire job array is complete, then returns the exit status of the job array.

The block job attribute controls blocking. Set it either via qsub or a PBS directive:

qsub -W block=true

#PBS -W block=true

6.10.1 Signal Handling and Error Processing for Blocking

Jobs

Signals SIGQUIT and SIGKILL are not trapped, and immediately terminate the qsub process, leaving the associated
job either running or queued.

If qsub receives one of the signals SIGHUP, SIGINT, or SIGTERM, it prints a message and then exits with an exit sta-
tus of 2.

If the job is deleted before running to completion, or an internal PBS error occurs, qsub prints an an error message
describing the situation to this error stream and qsub exits with an exit status of 3.

6.10.2 Caveats for Blocking Jobs

• If you submit a job that is both blocking and interactive, the job's exit status is not returned at the end of the job.

• PBS returns the exit status of a blocking job before staging finishes for the job. To see whether the job is still stag-
ing, use qstat -f, and look at the job's substate attribute. This attribute has value 51 when files are staging out.

6.11 Running Your Job Interactively

PBS provides a special kind of batch job called an interactive-batch job or interactive job. An interactive job is treated
just like a regular batch job in that it is queued up, and has to wait for resources to become available before it can run.
However, once it starts, your terminal input and output are connected to the job similarly to a login session. It appears
that you are logged into one of the available execution machines, and the resources requested by the job are reserved for
that job. This is useful for debugging applications or for computational steering.

You can use GUI applications in interactive jobs on remote hosts. The PBS interface is slightly different on Linux and
Windows. For Linux, see section 6.11.9, “Receiving X Output from Interactive Linux Jobs”, on page 126. For Win-
dows, see section 6.11.10, “Submitting Interactive GUI Jobs on Windows”, on page 127.

Interactive jobs can use provisioning.

6.11.1 Input and Output for Interactive Jobs

An interactive job comes complete with a pseudotty suitable for running commands that set terminal characteristics.
Once the interactive job has started execution, input to and output from the job pass through qsub. You provide all input
to your interactive job through the terminal session in which the job runs.

For interactive jobs, you can specify PBS directives in a job script. You cannot provide commands to the job by using a
job script. For interactive jobs, PBS ignores executable commands in job scripts.
PBS Professional 2022.1 User’s Guide UG-123

Chapter 6 Controlling How Your Job Runs
6.11.2 Running Your Interactive Job

To run your job interactively, you can do either of the following:

• Use qsub -I at the command line

• Use #PBS interactive=true (deprecated) in a PBS directive

When your interactive job is running, you can run commands, executables, shell scripts, DOS commands, etc. These
commands behave normally; for example, if the path to a command is not in your PATH environment variable, you must
provide the full path.

6.11.3 Lifecycle of an Interactive Job

1. You start the interactive job using qsub #PBS interactive=true (deprecated) or -I

2. If there is a script, PBS processes any directives in the script

3. The scheduler runs the job

4. Output is connected to the submission window

5. You run commands, executables, shell scripts, etc. interactively

6. The job is terminated

6.11.3.1 Terminating Interactive Jobs

When you run an interactive job, the qsub command does not terminate when the job is submitted. qsub remains run-
ning until one of the following:

• You qdel the job

• Someone else deletes the job

• You exit the shell

• The job is aborted

• You interrupt qsub with a SIGINT (the control-C key) before the scheduler starts the job.

Once the scheduler starts the job, SIGINT is ignored.

Under Linux, if you interrupt qsub before the job starts, qsub queries whether you want it to exit. If you respond "yes",
qsub exits and the job is aborted. Under Windows, if you interrupt the job before it starts, the job is deleted, and the fol-
lowing messages are printed:

qsub: wait for job <job ID> interrupted by signal 2

<job ID> is being deleted

6.11.4 Interactive Jobs and Exit Codes

Under Windows, if you specify an exit code when you exit the interactive session, via "exit <exit code>", that exit code
is used as the job's exit code. This exit code is visible in the output of the tracejob command.

Under Linux, you cannot provide an exit code for the interactive session.
UG-124 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.11.5 Tracking Progress for Interactive Jobs

After you have submitted an interactive job, PBS prints the following message to the window where you submitted the
job:

qsub: waiting for job <job ID> to start

When the job is started by the scheduler, PBS prints the following message to the submission window:

qsub: job <job ID> ready

When the interactive job finishes, PBS prints the following message to the submission window:

qsub: job <job ID> completed

6.11.6 Special Sequences for Interactive Jobs

Keyboard-generated interrupts are passed to the job. Lines entered that begin with the tilde ('~') character and contain
special sequences are interpreted by qsub itself. The recognized special sequences are:

~.
qsub terminates execution. The batch job is also terminated.

 ~susp
Suspends the qsub program. "susp" is the suspend character, usually CTRL-Z.

 ~asusp
Suspends the input half of qsub (terminal to job), but allows output to continue to be displayed. "asusp" is the
auxiliary suspend character, usually control-Y.

6.11.7 Caveats and Restrictions for Interactive Jobs

• Make sure that your login file does not run processes in the background. See section 1.4.2.5, “Avoid Background
Processes Inside Jobs”, on page 6.

• You cannot run an array job interactively.

• Interactive jobs are not rerunnable.

• You cannot use the CLS command in an interactive job. It will not clear the screen.

• After the scheduler has started the interactive job, SIGINT (Ctrl-C) is ignored.

• Under Linux, you cannot provide an exit code for the interactive session.

• When an interactive job finishes, staged files and stdout and/or stderr may not have been copied back yet.

• The submission host must accept incoming ephemeral ports

6.11.8 Errors and Logging

• If PBS cannot open a remote interactive shell to run an interactive job, PBS prints the following error message:
"qsub: failed to run remote interactive shell"

• If IPC$ on the remote host cannot be connected, PBS prints the following message:
"Couldn't connect to host <hostname>"

• If PBS is successful in connecting to the IPC$ at the execution host, but fails to execute the remote shell, PBS prints
the following error message:
"Couldn't execute remote shell at host <hostname>"
PBS Professional 2022.1 User’s Guide UG-125

Chapter 6 Controlling How Your Job Runs
6.11.9 Receiving X Output from Interactive Linux Jobs

Under Linux, you can receive X output from an interactive job via the qsub -X option.

6.11.9.1 How to Receive X Output Under Linux

To receive X output, use qsub -X -I. For example:

qsub -I -X <return>

xterm <return>

Control is returned here when your X process terminates. You can background the process here, if you want to.

6.11.9.1.i Receiving X Output on Non-submission Host

You can view your X output on a host that is not the job submission host. For example, you submit a job from SubHost,
and want to see the output on ViewHost. If you want to receive X output on a host that is not the submission host, for
example ViewHost, do the following:

• Run an X server on ViewHost

• On ViewHost, log into SubHost using ssh -X

• In window logged into SubHost, run qsub -I -X

6.11.9.2 Requirements for Receiving X Output

• You must be running Linux.

• The job must be interactive: you must also specify -I.

• An X server must be running on the system where you want to see the X output.

• The DISPLAY variable in the job's submission environment must be set to the display where the X output is desired.

• Your administrator must configure MoM's PATH to include the xauth utility.

6.11.9.3 Viewing X Output Job Attributes

Each job has two read-only attributes containing X forwarding information. These are the following:

forward_x11_cookie
This attribute contains the X authorization cookie.

forward_x11_port
This attribute contains the number of the port being listened to by the port forwarder on the submission host.

You can view these attributes using qstat -f <job ID>.

6.11.9.4 Caveats and Advice for Receiving X Output

• This option is not available under Windows.

• If you use the qsub -V option, PBS will handle the DISPLAY variable correctly.

• If you use the qsub -v DISPLAY option, you will get an error.

• At most 25 concurrent X applications can run using the same job session.

• If you experience a problem with X when using qsub –X –I, use the following to create the correct ~/.Xau-
thority file for qsub to use when establishing the X session:
ssh –X <hostname> server <-> <exec host(s)>
UG-126 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.11.9.5 X Forwarding Errors

• If the DISPLAY environment variable is pointing to a display number that is correctly formatted but incorrect, sub-
mitting an interactive X forwarding job results in the following error message:
"cannot read data from 'xauth list <display number>', errno=<errno>"

• If the DISPLAY environment variable is pointing to an incorrectly formatted value, submitting an interactive X for-
warding job results in the following error message:
"qsub: Failed to get xauth data (check $DISPLAY variable)"

• If the X authority utility (xauth) is not found on the submission host, the following error message is displayed:
"execution of xauth failed: sh: xauth: command not found"

• When the execution of the xauth utility results in an error, the error message displayed by the xauth utility is pre-
ceded by the following:
"execution of xauth failed: "

• When the qsub -X option is used without -I, the following error message is displayed:
"qsub: X11 forwarding possible only for Interactive Jobs"

6.11.10 Submitting Interactive GUI Jobs on Windows

You can run an interactive job that uses a GUI application. If the job executes on a host other than the one from which
you submit the job, PBS uses a remote viewer or interactive shell to connect the GUI application to the remote host.
Under Windows, PBS supports any GUI application, including Remote Viewer and X. If your job requires a GUI appli-
cation or interactive shell, you must run it as an interactive job.

To run an interactive PBS job that launches a GUI application:

qsub -I -G -- <GUI application>

When the same host is used for submission and execution, the application is launched on the local console. No
remote viewer client is launched.

When the submission and execution hosts are different, the GUI application is launched in the remote session using
the specified remote viewer. The remote viewer client is launched.

To run X under Windows, do not use the -X option. This option is not available under Windows. Use -G.

To launch an interactive shell in a PBS job:

qsub -I -G

When the submission and execution host are the same, the interactive shell is launched on the local console. No
remote viewer client is launched.

When the submission and execution hosts are different, the interactive shell is launched, and any GUI application
launched through this shell is visible in the remote session using the configured remote viewer. The remote viewer
client is launched.

Your interactive GUI job is finished or no longer running under the following circumstances:

• When the GUI application launched via qsub -I -G <GUI application> is closed

• When the interactive shell launched via qsub -I -G exits

• When the remote viewer is terminated, closed, or logged off, all applications started by the remote viewer are closed.

• When a GUI job is deleted via qdel, all the applications and tasks associated with the job are killed

See “-G [<path to GUI application or script>]” on page 223 of the PBS Professional Reference Guide.
PBS Professional 2022.1 User’s Guide UG-127

Chapter 6 Controlling How Your Job Runs
6.12 Using Environment Variables

PBS provides your job with environment variables where the job runs. PBS takes some from your submission environ-
ment, and creates others. You can create environment variables for your job. The environment variables created by PBS
begin with "PBS_". The environment variables that PBS takes from your submission (originating) environment begin
with "PBS_O_".

For example, here are a few of the environment variables that accompany a job, with typical values:

PBS_O_HOME=/u/user1

PBS_O_LOGNAME=user1

PBS_O_PATH=/usr/bin:/usr/local/bin:/bin

PBS_O_SHELL=/bin/tcsh

PBS_O_HOST=host1

PBS_O_WORKDIR=/u/user1

PBS_JOBID=16386.server1

For a complete list of PBS environment variables, see “PBS Environment Variables” on page 397 of the PBS Profes-
sional Reference Guide.

6.12.1 Exporting All Environment Variables

The "-V" option declares that all environment variables in the qsub command's environment are to be exported to the
batch job.

qsub -V my_job

#PBS -V

6.12.2 Exporting Specific Environment Variables

The "-v <variable list>" option to qsub allows you to specify additional environment variables to be exported
to the job. variable list names environment variables from the qsub command environment which are made available to
the job when it executes. These variables and their values are passed to the job. These variables are added to those
already automatically exported. Format: comma-separated list of strings in the form:

-v <variable>

or

-v <variable>=<value>

If a <variable>=<value> pair contains any commas, the value must be enclosed in single or double quotes, and the
<variable>=<value> pair must be enclosed in the kind of quotes not used to enclose the value. For example:

qsub -v DISPLAY,myvariable=32 my_job

qsub -v "var1='A,B,C,D'" job.sh

qsub -v a=10, "var2='A,B'", c=20, HOME=/home/zzz job.sh

6.12.3 Caveat for Environment Variables and Shell Functions

Make sure that no exported shell function you want to forward has the same name as an environment variable. The shell
function will not be visible in the environment.
UG-128 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.12.4 Forwarding Exported Shell Functions

You can forward exported shell functions using either qsub -V or qsub -v <function name>. You can also put
these functions in your .profile or .login on the execution host(s).

If you use -v or -V, make sure that there is no environment variable with the same name as any exported shell functions
you want to forward; otherwise, the shell function will not be visible in the environment.

6.13 Specifying Which Jobs to Preempt

You can specify which groups of jobs your job is allowed to preempt in order to run. You can specify all the jobs in one
or more queues, and all jobs that request particular resources, by listing them in the preempt_targets resource.

Syntax:

...-l preempt_targets="queue=<queue name>[,queue=<queue name>],
Resource_List.<resource>=<value>[,Resource_List.<resource>=<value>]"

For example, to specify that your job can preempt jobs in the queue named QueueA and/or jobs that requested
arch=linux:

...-l preempt_targets="queue=QueueA,Resource_List.arch=linux"

You can prevent a job from preempting any other job in the complex by setting its preemption_targets to the keyword
"None" (case-insensitive).

Make the preempt_targets resource specification last or use another -l specification for subsequent resource specifica-
tions. Otherwise, subsequent resource specifications will look to PBS like additions to preempt_targets.

6.14 Releasing Unneeded Vnodes from Your Job

If you want to prevent unnecessary resource usage, you can release unneeded sister hosts or vnodes (not the primary exe-
cution host or its vnodes) from your job. You can use the pbs_release_nodes command or the
release_nodes_on_stageout job attribute:

• You can use the pbs_release_nodes command either at the command line or in your job script to release sister
hosts or vnodes when the command is issued. You can use this command to release specific vnodes that are not on
the primary execution host, or all vnodes that are not on the primary execution host. You can also use it to release all
hosts or vnodes except for what you specify, which can be either a count of hosts to keep, or a select specification
describing the vnodes to keep. You cannot use the command to release vnodes on the primary execution host. See
“pbs_release_nodes” on page 92 of the PBS Professional Reference Guide.

• You can set the job's release_nodes_on_stageout attribute to True so that PBS releases all of the job's vnodes
that are not on the primary execution host when stageout begins. You must set the job's stageout attribute as well.
See “Job Attributes” on page 327 of the PBS Professional Reference Guide.
PBS Professional 2022.1 User’s Guide UG-129

Chapter 6 Controlling How Your Job Runs
6.14.1 Caveats and Restrictions for Releasing Vnodes

• You must specify a stageout parameter in order to be able to release vnodes on stageout. If you do not specify stage-
out, release_nodes_on_stageout has no effect.

• You can release only vnodes that are not on the primary execution host. You cannot release vnodes on the primary
execution host.

• The job must be running (in the R state).

• The pbs_release_nodes command is not supported on vnodes tied to Cray X* series systems (vnodes whose
vntype has the "cray_" prefix).

• If cgroups support is enabled, and pbs_release_nodes is called to release some but not all the vnodes managed
by a MoM, resources on those vnodes are released.

• If a vnode on a multi-vnode host is assigned exclusively to a job, and the vnode is released, the job will show that the
vnode is released, but the vnode will still show as assigned to the job in pbsnodes -av until the other vnodes on
that host have been released. If a vnode on a multi-vnode machine is not assigned exclusively to a job, and the
vnode is released, it shows as released whether or not the other vnodes on that host are released.

• If you specify release of a vnode on which a job process is running, that process is terminated when the vnode is
released.

6.14.2 What Happens When You Release Vnodes

After you release a job's vnode:

• The job's $PBS_NODEFILE no longer lists the released vnode

• The server continues to hold on to the job until receiving confirmation that the job has been cleaned up from the
vnode

• The vnode reports to the primary execution host MoM its resources_used* values for the job as the final action.
The released vnode no longer updates the resources_used values for the job since it's no longer part of the job. But
the primary execution host holds onto the data, and adds the data during final aggregation of resources_used val-
ues when job exits

• After every successful call to pbs_release_nodes, qstat shows updated values for the job's exec_host,
exec_vnode, and Resource_List attributes

When releasing vnodes, if all vnodes assigned to a job managed by the same MoM have been released, the job is com-
pletely removed from that MoM's host. This results in the following:

• The execjob_epilogue hook script (if it exists) runs

• Job processes are killed on that host

• Any job-specific specific files including job temporary directories are removed

If one or more, but not all, the vnodes from an execution host assigned to a job are released, the job is not removed from
that host yet. If those released vnodes have been configured to be shared, they can be reassigned to other jobs.

6.14.3 Examples of Releasing Unneeded Vnodes From Job

Example 6-4: Submit a job that will release its non-primary-execution-host vnodes on stageout:

% qsub -W stageout=my_stageout@executionhost2:my_stageout.out -W release_nodes_on_stageout=true
job.scr

Example 6-5: Release particular vnodes from a job:
UG-130 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
Syntax: pbs_release_nodes [-j <job ID>] <vnode name> [<vnode name>] ...]

% qsub job.scr

241.myserverhost

% qstat 241 | grep "exec|Resource_List|select"

exec_host = executionhost1[0]/0*0+executionhost2/0*0+executionhost3/0*2

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1+executionhost1[1]:mem=1048576kb:ncpus=1+executionho
st1[2]:ncpus=1)+(executionhost2:mem=104

8576kb:ncpus=1+executionhost2[0]:mem=1048576k:ncpus=1+executionhost2[1]:ncpus=1)+(executionhost3
:ncpus=2:mem=2097152kb)

Resource_List.mem = 6gb

Resource_List.ncpus = 8

Resource_List.nodect = 3

Resource_List.place = scatter

Resource_List.select = ncpus=3:mem=2gb+ncpus=3:mem=2gb+ncpus=2:mem=2gb

schedselect = 1:ncpus=3:mem=2gb+1:ncpus=3:mem=2gb+1:ncpus=2:mem=2gb

% pbs_release_nodes -j 241 executionhost2[1] executionhost3

% qstat 241 | grep "exec|Resource_List|select"

exec_host = executionhost1[0]/0*0+executionhost2/0*0 (no executionhost3; all assigned vnodes in
executionhost3 have been released)

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1+executionhost1[1]:mem=1048576kb:ncpus=1+executionho
st1[2]:ncpus=1)+(executionhost2:mem=1048576kb:ncpus=1+executionhost2[0]:mem=1048576kb:ncpus=
1) (executionhost2[1] and executionhost3 no longer appear)

Resource_List.mem = 4194304kb (reduced by 2gb from executionhost3)
Resource_List.ncpus = 5 (reduced by 3 CPUs, 1 from executionhost2[1] and 2 from executionhost3)
Resource_List.nodect = 2 (reduced by 1 chunk; when executionhost3 was released, its entire chunk assignment

disappeared)
Resource_List.place = scatter

schedselect = 1:mem=2097152kb:ncpus=3+1:mem=2097152kb:ncpus=2

Example 6-6: Release all vnodes not on the primary execution host:
PBS Professional 2022.1 User’s Guide UG-131

Chapter 6 Controlling How Your Job Runs
Syntax: pbs_release_nodes [-j <job ID>] -a

% pbs_release_nodes -j 241 -a

% qstat -f 241

exec_host = executionhost1[0]/0*0

exec_vnode =
(executionhost1[0]:mem=1048576kb:ncpus=1)+executionhost1[1]:mem=1048576kb:ncpus=1+executionh
ost1[2]:ncpus=1)

Resource_List.mem = 2097152kb

Resource_List.ncpus = 3

Resource_List.nodect = 1

Resource_List.place = scatter

schedselect = 1:mem=2097152kb:ncpus=3

Example 6-7: Release all sister hosts except for 4:

% pbs_release_nodes -k 4

Example 6-8: Release all sister vnodes except for 8 of those marked with "bigmem":

% pbs_release_nodes -k select=8:bigmem=true

Example 6-9: Sister vnodes are no longer listed in $PBS_NODEFILE after they are released:

% qsub -l select=2:ncpus=1:mem=1gb -l place=scatter -I

qsub: waiting for job 247.executionhost1.example.com to start

qsub: job 247.executionhost1.example.com ready

% cat $PBS_NODEFILE

executionhost1.example.com

executionhost2.example.com

% pbs_release_nodes -j 247 executionhost2

% cat $PBS_NODEFILE

executionhost1.example.com

6.15 Running Your Job in a Container

PBS supports running multi-vnode, multi-host, and interactive jobs in Docker and Singularity containers.

You can pull from a public registry, or you can pull from a private registry as long as you can log into it.

If you do not specify a script, for example "qsub -l container_image=hello-world", qsub asks you interactively for
a script.

If you supply a script to qsub, PBS runs the script inside the specified container.

For a multi-host job, you can use any version of OpenMPI with containers.

PBS runs an infinite-duration sleep command in the container to keep the container alive.
UG-132 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.15.1 Requesting a Container Engine

You can specify a container engine by requesting a resource whose value is set to that engine, or you can use the default
by not requesting one. You can request only one container engine per job, even though this resource is requested at the
host level. You must request the same container engine for all chunks. Ask your administrator for the name of the
resource listing available container engines, or find it using pbsnodes (look for container engine names). We recom-
mend that this resource is named "container engine".

qsub ... -l select=ncpus=...:<container engine resource>=<container engine>

6.15.2 Requesting a Container Image

You request a container image for your job via -l container_image=<container image> or by setting the
CONTAINER_IMAGE environment variable to the name of the image and passing the environment variable with the
job:

qsub ... -l container_image=<container image> ...

or

qsub ... -v CONTAINER_IMAGE=<name of container image> ...

6.15.2.1 Specifying a Registry

If you don't specify a registry, PBS uses a default, set by your administrator. You can specify the registry in the container
image.

Example 6-10: Specifying the registry (and namespace) in the container image:

qsub -v CONTAINER_IMAGE=pbsprohub.local/pbsuser/test-image

6.15.2.2 Pulling from a Private Registry

To pull from a private registry, PBS uses a credential file to log into the registry. This file is in JSON format.

6.15.2.2.i Registry Credential Filename

The credential filename has this format:

<job owner>/.container/tokens.json

6.15.2.2.ii Registry Credential File Format

The file contents have this format:

{

 "registry1 <URL>/<endpoint>": {

 "user_id" : "<user ID>" , "passwd" : "<generated OAUTH token/password>"

 },

 "registry2 <URL>/<endpoint>": {

 "user_id" : "<user ID>" , "passwd" : "<generated OAUTH token/password>"

 }

}

PBS Professional 2022.1 User’s Guide UG-133

Chapter 6 Controlling How Your Job Runs
6.15.2.2.iii Registry Credential File Default Values

registry: default registry (first element in the allowed_registries parameter)

user_id: job owner; if this is empty, PBS tries instead with the job owner ID

passwd: no password

6.15.2.2.iv Registry Credential File Location

The registry credential file base path is the path to where registry credential files are stored, up to but not including <job
owner>/.container/tokens.json. The default base path to registry credential files is /home. Your administrator can
configure the base path to where registry credential files are stored.

Example 6-11: The base path is "/container/creds/", and your job owner is User1. The full path to the JSON file is:

/container/creds/User1/.container/tokens.json

6.15.2.3 Specifying Image Namespace

PBS uses the registry's default namespace for container images unless you specify otherwise. If the image you want is in
a non-default namespace, specify the namespace with the image name.

Example 6-12: To request the Docker container engine and an image named "centos", using the "MyImages" namespace:

qsub -l select=1:ncpus=1:container_engine=docker -lcontainer_image="MyImages/centos" --
/bin/sleep 500

Example 6-13: To request the Docker container engine and an image named "centos", using the default namespace:

qsub -l select=1:ncpus=1:container_engine=docker -lcontainer_image="centos" -- /bin/sleep 500

6.15.3 Specifying Ports with Docker Containers

For single-vnode jobs in Docker containers, you can request ports for applications. PBS maps requested ports to avail-
able ports on the host and returns the mapping. You request ports by listing comma-separated port numbers in the
container_ports job resource. Lists of port numbers must be enclosed in single quotes. PBS sets the job's
resources_used.container_ports value to comma-separated <container port>:<host port> pairs. For example, your
job can request specific ports:

qsub -l container_ports="'2324,8989'" ...

PBS returns the port mapping in the job's resources_used.container_ports resource:

resources_used.container_ports = 2324:8080,8989:32771

6.15.4 Specifying Additional Arguments to Container Engine

You can specify additional arguments to the container engine via the PBS_CONTAINER_ARGS environment variable,
which is a semicolon-separated list. For example, to specify --shm-size to be 1GB and --tmpfs to be
"/run:rw,noexec,nosuid,size=65536k":

export PBS_CONTAINER_ARGS="--shm-size=1GB";"--tmpfs /run:rw,noexec,nosuid,size=65536k"

Your PBS administrator must whitelist any additional arguments before you use them in a job.

The --env and --entrypoint arguments to docker run are not supported.
UG-134 PBS Professional 2022.1 User’s Guide

Controlling How Your Job Runs Chapter 6
6.15.5 Passing Environment Variables Into Containers

To pass environment variables directly to PBS, use qsub -v <environment variable list>. The --env
argument is not supported for passing environment variables into containers.

6.15.6 Adding Job Owner to Secondary Groups in Docker

Containers

Your administrator can configure PBS to add the job owner to secondary groups inside the container. These are the
groups on the execution host where the job owner is already a member. This feature applies only to Docker containers,
since Singularity automatically adds the job owner to all groups.

6.15.7 Running Single-vnode Single-host Jobs in Singularity

Containers

In addition to using PBS to launch your containers, you can always run a single-vnode job in a single Singularity con-
tainer by prepending your scripts, executables, or commands with the Singularity binary.

6.15.8 Specifying Shell in Container

You can run your default shell inside a container without taking any extra steps. To run a shell in a container using any-
thing besides the default, you must specify the shell using the -S option to qsub. Make sure the selected shell is avail-
able inside the container.

6.15.9 Caveats and Restrictions

• You cannot use old-style resource requests such as -lncpus with containers.

• Any entry point in a container is disabled. If you want to run the equivalent of an entry point command, you must
include the complete command with its arguments on the command line.

• Mounting some directories or files in your container may be restricted. Ask your administrator for details.

6.15.10 Restrictions and Caveats for Cloud Bursting with PBS

• Cloud bursting is supported only on Linux.

• Reservations are not supported on cloud nodes.

6.16 Allowing Your Job to Tolerate Vnode Failures

You can allow your job to tolerate vnode failures if your administrator has configured PBS to do so. PBS lets you allo-
cate extra vnodes to a job so that the job can successfully start and run even if some vnodes fail. PBS can allocate the
extra vnodes only for startup, or for the life of the job. Later, for jobs where the extra vnodes are needed only for reliable
startup, PBS can trim the allocated vnodes back to just what the job will use to run, releasing the unneeded vnodes for
other jobs.

To allow your job to tolerate vnode failures during startup only, set the job's tolerate_node_failures attribute to "start".
PBS Professional 2022.1 User’s Guide UG-135

Chapter 6 Controlling How Your Job Runs
To allow your job to tolerate vnode failures during the life of the job, set the job's tolerate_node_failures attribute to
"all".

Examples of setting this attribute:

• Via qsub:
qsub -W tolerate_node_failures="all" <job script>

• Via qalter:
qalter -W tolerate_node_failures="job_start" <job ID>
UG-136 PBS Professional 2022.1 User’s Guide

7

Reserving Resources

In this chapter we go over job reservations only (advance, standing, and job-specific reservations); maintenance reserva-
tions are covered in "Reservations" on page 195 in the PBS Professional Administrator’s Guide.

7.1 Glossary

Advance reservation

A reservation for a set of resources for a specified time. The reservation is available only to the creator of the
reservation and any users or groups specified by the creator.

Degraded reservation

A job-specific or advance reservation for which one or more associated vnodes are unavailable.

A standing reservation for which one or more vnodes associated with any occurrence are unavailable.

Job-specific reservation

A reservation created for a specific job, for the same resources that the job requested.

Job-specific ASAP reservation

Reservation created for a specific queued job, for the same resources the job requests. PBS schedules the reser-
vation to run as soon as possible, and PBS moves the job into the reservation. Created when you use
pbs_rsub -Wqmove=<job ID> on a queued job.

Job-specific now reservation

Reservation created for a specific running job. PBS immediately creates a job-specific now reservation on the
same resources as the job is using, and moves the job into the reservation. The reservation is created and starts
running immediately when you use pbs_rsub --job <job ID> on a running job.

Job-specific start reservation

Reservation created for a specific job, for the same resources the job requests. PBS starts the job according to
scheduling policy. When the job starts, PBS creates and starts the reservation, and PBS moves the job into the
reservation. Created when you use qsub -Wcreate_resv_from_job=true to submit a job or when you
qalter a job to set the job's create_resv_from_job attribute to True.

Occurrence of a standing reservation

An instance of the standing reservation.

An occurrence of a standing reservation behaves like an advance reservation, with the following exceptions:

• while a job can be submitted to a specific advance reservation, it can only be submitted to the standing res-
ervation as a whole, not to a specific occurrence. You can only specify when the job is eligible to run.
See“qsub” on page 216 of the PBS Professional Reference Guide.

• when an advance reservation ends, it and all of its jobs, running or queued, are deleted, but when an occur-
rence ends, only its running jobs are deleted.

Each occurrence of a standing reservation has reserved resources which satisfy the resource request, but each
occurrence may have its resources drawn from a different source. A query for the resources assigned to a stand-
ing reservation will return the resources assigned to the soonest occurrence, shown in the resv_nodes attribute
reported by pbs_rstat.
PBS Professional 2022.1 User’s Guide UG-137

Chapter 7 Reserving Resources
Soonest occurrence of a standing reservation

The occurrence which is currently active, or if none is active, then it is the next occurrence.

Standing reservation

An advance reservation which recurs at specified times. For example, you can reserve 8 CPUs and 10GB every
Wednesday and Thursday from 5pm to 8pm, for the next three months.

7.2 Quick Explanation of Reservations for Jobs

You can reserve resources to be used later by jobs, or you can create a reservation using the resources requested by a spe-
cific job, and move the job into that reservation.

You create an advance or standing reservation, then submit jobs to the reservation. An advance reservation reserves
specific resources for a specific time period, and a standing reservation does the same thing, but for a repeating
sequence of time periods.

PBS creates job-specific reservations by reserving the same resources that a queued job requests, or a running job is
using, then moving the job into the reservation's queue.

• PBS creates Job-specific Start Reservations for specific queued jobs whose create_resv_from_job attribute is
True. When the job runs, PBS creates and starts the reservation, and PBS moves the job into the reservation. This
reservation allows you to re-run the job later without having to wait for it to be scheduled again. You can set this
attribute at submission using qsub -Wcreate_resv_from_job=true.

• PBS creates Job-specific ASAP Reservations for specific queued jobs when you use pbs_rsub -Wqmove=<job ID>
on those jobs. PBS creates the reservation and moves the job into the reservation, and the reservation is scheduled to
run as soon as possible.

• PBS creates Job-specific Now Reservations for specific running jobs when you use pbs_rsub --job <job
ID> on them. PBS immediately creates a reservation, starts it, and moves the job into the reservation. This reserva-
tion allows you to re-run the job without having to wait for it to be scheduled again.

7.3 Prerequisites for Reserving Resources

The time for which a reservation is requested is in the time zone at the submission host.

You must set the submission host's PBS_TZID environment variable. The format for PBS_TZID is a timezone location.
Example: America/Los_Angeles, America/Detroit, Europe/Berlin, Asia/Kolkata. See section
1.4.4, “Setting Time Zone for Submission Host”, on page 9.

7.4 Advance and Standing Reservations

7.4.1 Introduction to Creating and Using Advance and

Standing Reservations

You can create both advance and standing reservations using the pbs_rsub command. PBS either confirms that the res-
ervation can be made, or rejects the request. Once the reservation is confirmed, PBS creates a queue for the reservation's
jobs. Jobs are then submitted to this queue.
UG-138 PBS Professional 2022.1 User’s Guide

Reserving Resources Chapter 7
When a reservation is confirmed, it means that the reservation will not conflict with currently running jobs, other con-
firmed reservations, or dedicated time, and that the requested resources are available for the reservation. A reservation
request that fails these tests is rejected. All occurrences of a standing reservation must be acceptable in order for the
standing reservation to be confirmed.

The pbs_rsub command returns a reservation ID, which is the reservation name. For an advance reservation, this res-
ervation ID has the format:

R<sequence number>.<server name>

For a standing reservation, this reservation ID refers to the entire series, and has the format:

S<sequence number>.<server name>

You specify the resources for a reservation using the same syntax as for a job. Jobs in reservations are placed the same
way non-reservation jobs are placed in placement sets.

The time for which a reservation is requested is in the time zone at the submission host.

The pbs_rsub command returns a reservation ID string, and the current status of the reservation.

You can create an advance or standing reservation so that if the reservation sits idle, it is automatically deleted after the
amount of time you specify. For a standing reservation, this applies to each occurrence separately. If one occurrence of
a standing reservation is deleted, the next occurrence still starts at its designated time. To have your reservation be
deleted automatically, use pbs_rsub -Wdelete_idle_time=<allowed idle time> and specify the number of seconds as
an integer, or the duration as HH:MM:SS.

For the options to the pbs_rsub command, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide.

7.4.2 Creating Advance Reservations

You create an advance reservation using the pbs_rsub command. PBS must be able to calculate the start and end times
of the reservation, so you must specify two of the following three options:

D Duration

E End time

R Start time

7.4.2.1 Setting Time Zone for Advance Reservations

If you need the time zone for your advance reservation to be UTC, set this when you create the reservation:

TZ=UTC pbs_rsub -R...

7.4.2.2 Examples of Creating Advance Reservations

The following example shows the creation of an advance reservation asking for 1 vnode, 30 minutes of wall-clock time,
and a start time of 11:30. Since an end time is not specified, PBS will calculate the end time based on the reservation start
time and duration.

pbs_rsub -R 1130 -D 00:30:00

PBS returns the reservation ID:

R226.south UNCONFIRMED

The following example shows an advance reservation for 2 CPUs from 8:00 p.m. to 10:00 p.m.:

pbs_rsub -R 2000.00 -E 2200.00 -l select=1:ncpus=2

PBS returns the reservation ID:

R332.south UNCONFIRMED
PBS Professional 2022.1 User’s Guide UG-139

Chapter 7 Reserving Resources
7.4.3 Creating Standing Reservations

You create standing reservations using the pbs_rsub command. You must specify a start and end date when creating a
standing reservation. The recurring nature of the reservation is specified using the -r option to pbs_rsub. The -r
option takes the recurrence_rule argument, which specifies the standing reservation's occurrences. The recurrence
rule uses iCalendar syntax, and uses a subset of the parameters described in RFC 2445.

The recurrence rule can take two forms:

"FREQ=<freq spec>;COUNT=<count spec>;<interval spec>"

In this form, you specify how often there will be occurrences, how many there will be, and which days and/or hours
apply.

"FREQ=<freq spec>;UNTIL=<until spec>;<interval spec>"

Do not include any spaces in your recurrence rule.

In this form, you specify how often there will be occurrences, when the occurrences will end, and which days and/or
hours apply.

freq spec
This is the frequency with which the reservation repeats. Valid values are WEEKLY|DAILY|HOURLY

When using a freq spec of WEEKLY, you may use an interval spec of BYDAY and/or BYHOUR. When using a
freq spec of DAILY, you may use an interval spec of BYHOUR. When using a freq spec of HOURLY, do not use
an interval spec.

count spec
The exact number of occurrences. Number up to 4 digits in length. Format: integer.

interval spec
Specifies the interval at which there will be occurrences. Can be one or both of BYDAY=<days> or
BYHOUR=<hours>. Valid values are BYDAY = MO|TU|WE|TH|FR|SA|SU and BYHOUR = 0|1|2|...|23.
When using both, separate them with a semicolon. Separate days or hours with a comma.

For example, to specify that there will be recurrences on Tuesdays and Wednesdays, at 9 a.m. and 11 a.m., use
BYDAY=TU,WE;BYHOUR=9,11

BYDAY should be used with FREQ=WEEKLY. BYHOUR should be used with FREQ=DAILY or
FREQ=WEEKLY.

until spec
Occurrences will start up to but not after this date and time. This means that if occurrences last for an hour, and
normally start at 9 a.m., then a time of 9:05 a.m on the day specified in the until spec means that an occurrence
will start on that day.

Format: YYYYMMDD[THHMMSS]

Note that the year-month-day section is separated from the hour-minute-second section by a capital T.

Default: 3 years from time of reservation creation.

7.4.3.1 Setting Reservation Start Time and Duration

In a standing reservation, the arguments to the -R and -E options to pbs_rsub can provide more information than they
do in an advance reservation. In an advance reservation, they provide the start and end time of the reservation. In a
standing reservation, they can provide the start and end time, but they can also be used to compute the duration and the
offset from the interval start.

The difference between the values of the arguments for -R and -E is the duration of the reservation. For example, if you
specify

-R 0930 -E 1145
UG-140 PBS Professional 2022.1 User’s Guide

Reserving Resources Chapter 7
the duration of your reservation will be two hours and fifteen minutes. If you specify

-R 150800 -E 170830

the duration of your reservation will be two days plus 30 minutes.

The interval spec can be used to specify the day or the hour at which the interval starts. If you specify

-R 0915 -E 0945 ... BYHOUR=9,10

the duration is 30 minutes, and the offset is 15 minutes from the start of the interval. The interval start is at 9 and again at
10. Your reservation will run from 9:15 to 9:45, and again at 10:15 and 10:45. Similarly, if you specify

-R 0800 -E -1000 ... BYDAY=WE,TH

the duration is two hours and the offset is 8 hours from the start of the interval. Your reservation will run Wednesday
from 8 to 10, and again on Thursday from 8 to 10.

Elements specified in the recurrence rule override those specified in the arguments to the -R and -E options. Therefore if
you specify

-R 0730 -E 0830 ... BYHOUR=9

the duration is one hour, but the hour element (9:00) in the recurrence rule has overridden the hour element specified in
the argument to -R (7:00). The offset is still 30 minutes after the interval start. Your reservation will run from 9:30 to
10:30. Similarly, if the 16th is a Monday, and you specify

-R 160800 -E 170900 ... BYDAY=TU;BYHOUR=11

the duration 25 hours, but both the day and the hour elements have been overridden. Your reservation will run on Tues-
day at 11, for 25 hours, ending Wednesday at 12. However, if you specify

-R 160810 -E 170910 ... BYDAY=TU;BYHOUR=11

the duration is 25 hours, and the offset from the interval start is 10 minutes. Your reservation will run on Tuesday at
11:10, for 25 hours, ending Wednesday at 12:10. The minutes in the offset weren't overridden by anything in the recur-
rence rule.

The values specified for the arguments to the -R and -E options can be used to set the start and end times in a standing
reservation, just as they are in an advance reservation. To do this, don't override their elements inside the recurrence rule.
If you specify

-R 0930 -E 1030 ... BYDAY=MO,TU

you haven't overridden the hour or minute elements. Your reservation will run Monday and Tuesday, from 9:30 to 10:30.

7.4.3.2 Requirements for Creating Standing Reservations

• You must specify a start and end date.

• You must set the submission host's PBS_TZID environment variable. The format for PBS_TZID is a timezone
location. Example: America/Los_Angeles, America/Detroit, Europe/Berlin, Asia/Cal-
cutta. See section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

• The recurrence rule must be one unbroken line.

• The recurrence rule must be enclosed in double quotes.

• Vnodes that have been configured to accept jobs only from a specific queue (vnode-queue restrictions) cannot be
used for advance or standing reservations. See your PBS administrator to determine whether some vnodes have been
configured to accept jobs only from specific queues.

• Make sure that there are no spaces in your recurrence rule.
PBS Professional 2022.1 User’s Guide UG-141

Chapter 7 Reserving Resources
7.4.3.3 Examples of Creating Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10 occurrences:

pbs_rsub -R 0800 -E 1000 - r"FREQ=DAILY;COUNT=10"

Every weekday from 6am to 6pm until December 10, 2008:

pbs_rsub -R 0600 -E 1800 -r "FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR;UNTIL=20081210"

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9 occurrences, i.e., for three weeks:

pbs_rsub -R 1500 -E 1700 -r "FREQ=WEEKLY;BYDAY=MO,WE,FR;COUNT=9"

7.5 Job-specific Reservations

7.5.1 Job-specific Start Reservations

PBS runs the job normally, and when the job starts, PBS creates and starts a job-specific start reservation and moves the
job into the reservation. PBS creates the reservation using the same resources that are being used by the job. The reser-
vation holds the resources needed for the job in case the job fails and needs to be re-submitted, allowing it to run again
without having to wait to be scheduled. The reservation starts when the job starts and has the same end time as the job.

If you have a queued job that you think is likely to fail and need to be corrected and re-submitted, you can create a
job-specific start reservation. When you submit the job, set its create_resv_from_job attribute to True using the -W
option to qsub:

qsub ... -Wcreate_resv_from_job=true

For example, to create a job-specific start reservation for the job whose script is named myscript.sh:

qsub -Wcreate_resv_from_job=true myscript.sh

You can also qalter a queued job to set this attribute:

qalter -Wcreate_resv_from_job=true <job ID>

For example, to create a start reservation when job 1234.myserver starts:

qalter -Wcreate_resv_from_job=true 1234.myserver

A job-specific start reservation ID has the format:

R<sequence number>.<server name>

PBS sets the start reservation's reserve_job attribute to the ID of the job from which the reservation was created, sets the
reservation's Reserve_Owner attribute to the value of the job's Job_Owner attribute, sets the reservation's
resv_nodes attribute to the jobs's exec_vnode attribute, sets the reservation's resources to the job's schedselect
attribute, and sets the reservation's Resource_List attribute to the job's Resource_List attribute.

The start reservation's duration and start time are the same as the job's walltime and start time. If the job is peer sched-
uled, the now reservation is created in the pulling complex.

The start reservation is created when the job begins execution. You can set the create_resv_from_job attribute to True
at any time, but this is only effective if you do it before the job starts. If your job has started running and you want to cre-
ate a job-specific reservation for it, create a job-specific now reservation; see section 7.5.3, “Job-specific Now Reserva-
tions”, on page 143.

Can be used only with queued jobs.

Cannot be used with job arrays, jobs being submitted to other reservations, or other users' jobs.
UG-142 PBS Professional 2022.1 User’s Guide

Reserving Resources Chapter 7
7.5.2 Job-specific ASAP Reservations

PBS schedules a job-specific ASAP reservation to start as soon as possible. PBS creates a job-specific ASAP reservation
using the resources requested by a specific queued job, and moves the job into the reservation.

Other jobs can also be moved into that queue via qmove or submitted to that queue via qsub.

To create an ASAP reservation:

pbs_rsub -W qmove=<job ID>

For example, to create an ASAP reservation for job 1234.myserver:

pbs_rsub -W qmove="1234.myserver"

A job-specific ASAP reservation ID has the format:

R<sequence number>.<server name>

The -R and -E options to pbs_rsub are disabled when using the -W qmove option.

Cannot be used on job arrays.

For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide.

We recommend using ASAP reservations only for sites that set job walltime. A job's default walltime is 5 years. There-
fore an ASAP reservation's start time can be 5 years later, or more, if all the jobs in the system have the default walltime.

The delete_idle_time attribute for an ASAP reservation has a default value of 10 minutes.

7.5.3 Job-specific Now Reservations

PBS creates and starts a job-specific now reservation on the same resources used by a running job, and moves the run-
ning job into the reservation. The reservation holds the resources needed for the job in case the job fails and needs to be
re-submitted, allowing it to run again without having to wait to be scheduled.

If you realize that a running job needs modification and re-submitting, and you don't want to have to wait until the sched-
uler finds a slot, you can create a now reservation. Later, you can submit a modified version of the job into the reserva-
tion:

pbs_rsub --job <job ID>

For example, to create a now reservation for job 1234.myserver while it's running:

pbs_rsub --job 1234.myserver

A job-specific now reservation ID has the format:

R<sequence number>.<server name>

PBS sets the job's create_resv_from_job attribute to True, sets the now reservation's reserve_job attribute to the ID of
the job from which the reservation was created, sets the reservation's Reserve_Owner attribute to the value of the job's
Job_Owner attribute, sets the reservation's resv_nodes attribute to the jobs's exec_vnode attribute, sets the reserva-
tion's resources to the job's schedselect attribute, and sets the reservation's Resource_List attribute to the job's
Resource_List attribute.

The now reservation's duration and start time are the same as the job's walltime and start time. If the job is peer sched-
uled, the now reservation is created in the pulling complex.

Can be used on running jobs only (jobs in the R state, with substate 42).

Cannot be used with job arrays, jobs already in reservations, or other users' jobs.
PBS Professional 2022.1 User’s Guide UG-143

Chapter 7 Reserving Resources
7.6 Getting Confirmation of a Reservation

By default the pbs_rsub command does not immediately notify you whether the reservation is confirmed or denied.
Instead you receive email with this information. You can specify that the pbs_rsub command should wait for confir-
mation by using the -I <block time> option. The pbs_rsub command will wait up to block time seconds for the reser-
vation to be confirmed or denied and then notify you of the outcome. If block time is negative and the reservation is not
confirmed in that time, the reservation is automatically deleted.

To find out whether the reservation has been confirmed, use the pbs_rstat command. It will display the state of the
reservation. CO and RESV_CONFIRMED indicate that it is confirmed. If the reservation does not appear in the output
from pbs_rstat, that means that the reservation was denied.

To ensure that you receive mail about your reservations, set the reservation's Mail_Users attribute via the -M <email
address> option to pbs_rsub. By default, you will get email when the reservation is terminated or confirmed. If you
want to receive email about events other than those, set the reservation's Mail_Points attribute via the -m <mail events>
option. For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide and “Reservation
Attributes” on page 303 of the PBS Professional Reference Guide.

7.7 Modifying Reservations

You can use the pbs_ralter command to alter an existing reservation, whether it is an individual job-specific or advance
reservation, or the next or current instance of a standing reservation. Syntax:

pbs_ralter [-D <duration>] [-E <end time>] [-G <auth group list>] [-I <block time>] [-l select=<select spec>] [-m
<mail points>] [-M <mail list>] [-N <reservation name>] [-R <start time>] [-U <auth user list>] <reservation
ID>

You can modify an advance or standing reservation so that if the reservation sits idle, it is automatically deleted after the
amount of time you specify. For a standing reservation, this applies to each occurrence separately. If one occurrence of
a standing reservation is deleted, the next occurrence still starts at its designated time. To have a reservation be deleted
automatically, use pbs_ralter -Wdelete_idle_time=<allowed idle time> and specify the number of
seconds as an integer, or the duration as HH:MM:SS. Note that you cannot change any other reservation attributes when
you change this one.

You cannot change the start time of a reservation in which jobs are running.

When changing the select specification, the behavior depends on whether there are jobs running.

• If jobs are running in the reservation:

• You cannot release chunks where reservation jobs are running

• Vnodes where jobs are running cannot change, but everything else can

• If no jobs are running, the select specification can be changed completely

When requesting chunks, make sure each chunk request specifies chunks of a single type.

To find unused chunks in a running reservation, you can compare the reservation's resv_nodes attribute to the
exec_vnode attribute of the jobs running in the reservation.

If the reservation has not started, modifying the select specification may result in moving the reservation to different
vnodes.

After the change is requested, the change is either confirmed or denied. On denial of the change, the reservation is not
deleted and is left as is, and the following message appears in the server's log:

Unable to alter reservation <reservation ID>

When a reservation is confirmed, the following message appears in the server's log:

Reservation alter successful for <reservation ID>
UG-144 PBS Professional 2022.1 User’s Guide

Reserving Resources Chapter 7
To find out whether or not the change was allowed:

• Use the pbs_rstat command: see whether you altered reservation attribute(s)

• Use the interactive option: check for confirmation after the blocking time has run out

If the reservation has not started and it cannot be confirmed on the same vnodes, PBS searches for another set of vnodes.
See section 8.4, "Reservation Fault Tolerance", on page 401 of the PBS Professional Administrator’s Guide.

You must be the reservation owner or the PBS Administrator to run this command.

For details, see “pbs_ralter” on page 85 of the PBS Professional Reference Guide.

7.7.0.0.i Examples of Modifying Reservations

Example 7-1: Grow a reservation:

Existing:

select=100:ncpus=20:mem=512gb

pbs_ralter -l select=150:ncpus=20:mem=512gb

Example 7-2: Grow and shrink a reservation:

Existing:

select=100:ncpus=20+10:ncpus=10:mem=512gb

pbs_ralter -l select=150:ncpus=20+5:ncpus=10:mem=512gb

Example 7-3: Grow a reservation, and get rid of a type of chunk:

Existing:

select=100:ncpus=20+10:ncpus=10:mem=512MB+15:ncpus=40

pbs_ralter -l select=150:ncpus=20+30:ncpus=40

Example 7-4: No running jobs; change select completely:

Existing:

select=100:ncpus=20+10:ncpus=10:mem=512GB

pbs_ralter -l select=150:ncpus=20:mem=1024GB+5:ncpus=15:mem=512GB

Example 7-5: Job is running on 50 vnodes of the first type of chunk; grow and shrink reservation:

Existing:

select=100:ncpus=20+50:ncpus=40

pbs_ralter -l select=50:ncpus=20+100:ncpus=40

Example 7-6: Negative example. With job running on 50 vnodes on the first type of chunk, we try to do an invalid alter-
ation by trying to remove chunks from running jobs:

Existing:

select =100:ncpus=20+50:ncpus=40

pbs_ralter -l select=25:ncpus=20+100:ncpus=40

ALTER DENIED
PBS Professional 2022.1 User’s Guide UG-145

Chapter 7 Reserving Resources
7.8 Deleting Reservations

You can delete a reservation by using the pbs_rdel command. For a standing reservation, you can only delete the
entire reservation, including all occurrences. When you delete a reservation, all of the jobs that have been submitted to
the reservation are also deleted. A reservation can be deleted by its owner or by a PBS Operator or Manager. For exam-
ple, to delete S304.south:

pbs_rdel S304.south

or

pbs_rdel S304

You can create a reservation so that if the reservation sits idle, it is automatically deleted after the amount of time you
specify. For a standing reservation, this applies to each occurrence separately. If one occurrence of a standing reserva-
tion is deleted, the next occurrence still starts at its designated time. To have your reservation be deleted automatically,
use pbs_rsub -Wdelete_idle_time=<allowed idle time> and specify the number of seconds as an integer, or the dura-
tion as HH:MM:SS.

7.9 Viewing the Status of a Reservation

The following table shows the list of possible states for a reservation. The states that you will usually see are CO, UN,
BD, and RN, although a reservation usually remains unconfirmed for too short a time to see that state. See “Reservation
States” on page 367 of the PBS Professional Reference Guide.

To view the status of a reservation, use the pbs_rstat command. It will display the status of all reservations at the
PBS server. For a standing reservation, the pbs_rstat command will display the status of the soonest occurrence.
Duration is shown in seconds. The pbs_rstat command will not display a custom resource which has been created to
be invisible. See section 4.3.8, “Caveats and Restrictions on Requesting Resources”, on page 59. This command has
three options:

Table 7-1: Options to pbs_rstat Command

Option Meaning Description

B Brief Lists only the names of the reservations

S Short Lists in table format the name, queue name, owner, state, and start, duration and end times
of each reservation

F Full Lists the name and all non-default-value attributes for each reservation.

<none> Default Default is S option
UG-146 PBS Professional 2022.1 User’s Guide

Reserving Resources Chapter 7
The full listing for a standing reservation is identical to the listing for an advance reservation, with the following addi-
tions:

• A line that specifies the recurrence rule:
reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

• An entry for the vnodes reserved for the soonest occurrence of the standing reservation. This entry also appears for
an advance reservation, but will be different for each occurrence:
resv_nodes=(<vnode name>:...)

• A line that specifies the total number of occurrences of the standing reservation:
reserve_count = 5

• The index of the soonest occurrence:
reserve_index = 1

• The timezone at the site of submission of the reservation is appended to the reservation's Variable_List attribute.
For example, in California:
Variable_List=<other variables>PBS_TZID=America/Los_Angeles

To get the status of a reservation at a server other than the default server, set the PBS_SERVER environment variable to
the name of the server you wish to query, then use the pbs_rstat command. Your PBS commands will treat the new
server as the default server, so you may wish to unset this environment variable when you are finished.

You can also get information about the reservation's queue by using the qstat command. See “qstat” on page 200 of
the PBS Professional Reference Guide .

7.9.1 Examples of Viewing Reservation Status Using

pbs_rstat

In our example, we have one advance reservation and one standing reservation. The advance reservation is for today, for
two hours, starting at noon. The standing reservation is for every Thursday, for one hour, starting at 3:00 p.m. Today is
Monday, April 28th, and the time is 1:00, so the advance reservation is running, and the soonest occurrence of the stand-
ing reservation is Thursday, May 1, at 3:00 p.m.

Example brief output:

pbs_rstat -B

Name: R302.south

Name: S304.south

Example short output:

pbs_rstat -S

Name Queue User State Start / Duration / End

--

R302.south R302 user1 RN Today 12:00 / 7200/ Today 14:00

S304.south S304 user1 CO May 1 2008 15:00/3600/May 1 2008 16:00
PBS Professional 2022.1 User’s Guide UG-147

Chapter 7 Reserving Resources
Example full output:

pbs_rstat -F

Name: R302.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_RUNNING

reserve_substate = 5

reserve_start = Mon Apr 28 12:00:00 2008

reserve_end = Mon Apr 28 14:00:00 2008

reserve_duration = 7200

queue = R302

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 02:00:00

Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:00:00 2008

Mail_Users = user1@mydomain.com

mtime = Mon Apr 28 11:00:00 2008

Variable_List = PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com

Name: S304.south

Reserve_Name = NULL

Reserve_Owner = user1@south.mydomain.com

reserve_state = RESV_CONFIRMED

reserve_substate = 2

reserve_start = Thu May 1 15:00:00 2008

reserve_end = Thu May 1 16:00:00 2008

reserve_duration = 3600

queue = S304

Resource_List.ncpus = 2

Resource_List.nodect = 1

Resource_List.walltime = 01:00:00

Resource_List.select = 1:ncpus=2

Resource_List.place = free

resv_nodes = (south:ncpus=2)

reserve_rrule = FREQ=WEEKLY;BYDAY=MO;COUNT=5

reserve_count = 5

reserve_index = 2

Authorized_Users = user1@south.mydomain.com

server = south

ctime = Mon Apr 28 11:01:00 2008

Mail_Users = user1@mydomain.com
UG-148 PBS Professional 2022.1 User’s Guide

Reserving Resources Chapter 7
mtime = Mon Apr 28 11:01:00 2008

Variable_List = PBS_O_LOGNAME=user1,PBS_O_HOST=south.mydomain.com,PBS_TZID=America/Los_Angeles

7.10 Submitting a Job to a Reservation

Jobs can be submitted to the queue associated with a reservation, or they can be moved from another queue into the res-
ervation queue. You submit a job to a reservation by using the -q <queue> option to the qsub command to specify the
reservation queue. For example, to submit a job to the soonest occurrence of a standing reservation named
S123.south, submit to its queue S123:

qsub -q S123 <script>

You move a job into a reservation queue by using the qmove command. For more information, see “qsub” on page 216
of the PBS Professional Reference Guide and “qmove” on page 175 of the PBS Professional Reference Guide. For
example, to qmove job 22.myhost from workq to S123, the queue for the reservation named S123.south:

qmove S123 22.myhost

or

qmove S123 22

A job submitted to a standing reservation without a restriction on when it can run will be run, if possible, during the soon-
est occurrence. In order to submit a job to a specific occurrence, use the -a <start time> option to the qsub command,
setting the start time to the time of the occurrence that you want. You can also use a cron job to submit a job at a spe-
cific time. See “qsub” on page 216 of the PBS Professional Reference Guide and the cron(8) man page.

7.10.1 Who Can Use Your Reservation

By default, the reservation accepts jobs only from the user who created the reservation, and accepts jobs submitted from
any group or host. You can specify a list of users and groups whose jobs will and will not be accepted by the reservation
by setting the reservation's Authorized_Users and Authorized_Groups attributes using the -U <authorized
user list> and -G <authorized group list> options to pbs_rsub and pbs_ralter. You can specify the hosts from
which jobs can and cannot be submitted by setting the reservation's Authorized_Hosts attribute using the -H <autho-
rized host list> option to pbs_rsub.

The administrator can also specify which users and groups can and cannot submit jobs to a reservation, and the list of
hosts from which jobs can and cannot be submitted.

For more information, see “pbs_rsub” on page 96 of the PBS Professional Reference Guide and “Reservation Attributes”
on page 303 of the PBS Professional Reference Guide.

7.10.2 Viewing Status of a Job Submitted to a Reservation

You can view the status of a job that has been submitted to a reservation or to an occurrence of a standing reservation by
using the qstat command. See “qstat” on page 200 of the PBS Professional Reference Guide.

For example, if a job named MyJob has been submitted to the soonest occurrence of the standing reservation named
S304.south, it is listed under S304, the name of the queue:

qstat

Job id Name User Time Use S Queue

---------- --------- ------------ -------- -- -----

139.south MyJob user1 0 Q S304
PBS Professional 2022.1 User’s Guide UG-149

Chapter 7 Reserving Resources
7.10.3 How Reservations Treat Jobs

A confirmed reservation will accept jobs into its queue at any time. Jobs are only scheduled to run from the reservation
once the reservation period arrives.

The jobs in a reservation are not allowed to use, in aggregate, more resources than the reservation requested. A reserva-
tion job is accepted in the reservation regardless of whether its requested walltime will fit within the reservation period.
So for example if the reservation runs from 10:00 to 11:00, and the job's walltime is 4 hours, the job will be started.

When an advance reservation ends, any running or queued jobs in that reservation are deleted.

When an occurrence of a standing reservation ends, any running jobs in that reservation are killed. Any jobs still queued
for that reservation are kept in the queued state. They are allowed to run in future occurrences. When the last occurrence
of a standing reservation ends, all jobs remaining in the reservation are deleted, whether queued or running.

A job in a reservation cannot be preempted.

A job in a reservation runs with the normal job environment variables; see section 6.12, “Using Environment Variables”,
on page 128.

7.10.3.1 Caveats for How Reservations Treat Jobs

If you submit a job to a reservation, and the job's walltime fits within the reservation period, but the time between when
you submit the job and when the reservation ends is less than the job's walltime, PBS will start the job, and then kill it if
it is still running when the reservation ends.

7.11 Reservation Caveats and Errors

7.11.1 Time Zone Must be Correct

The environment variable PBS_TZID must be set at the submission host. The time for which a reservation is requested
is the time defined at the submission host. See section 1.4.4, “Setting Time Zone for Submission Host”, on page 9.

7.11.2 Time Required Between Reservations

Leave enough time between reservations for the reservations and jobs in them to clean up. A job consumes resources
even while it is in the E or exiting state. This can take longer when large files are being staged. If the job is still running
when the reservation ends, it may take up to two minutes to be cleaned up. The reservation itself cannot finish cleaning
up until its jobs are cleaned up. This will delay the start time of jobs in the next reservation unless there is enough time
between the reservations for cleanup.

7.11.3 Reservation Information in the Accounting Log

The PBS server writes an accounting record for each reservation in the job accounting file. The accounting record for a
reservation is similar to that for a job. The accounting record for any job belonging to a reservation will include the res-
ervation ID. See "Accounting" on page 529 in the PBS Professional Administrator’s Guide.

7.11.4 Reservation Fault Tolerance

If one or more vnodes allocated to a job-specific reservation, an advance reservation, or to the soonest occurrence of a
standing reservation become unavailable, the reservation's state becomes DG or RESV_DEGRADED. A degraded res-
ervation does not have all the reserved resources to run its jobs.
UG-150 PBS Professional 2022.1 User’s Guide

Reserving Resources Chapter 7
PBS attempts to reconfirm degraded reservations. This means that it looks for alternate available vnodes on which to run
the reservation. The reservation's retry_time attribute lists the next time when PBS will try to reconfirm the reservation.

If PBS is able to reconfirm a degraded reservation, the reservation's state becomes CO, or RESV_CONFIRMED, and
the reservation's resv_nodes attribute shows the new vnodes.

7.11.5 Job and Reservation Exclusivity Must Match

If your job requests exclusive placement, and it is in a reservation, the reservation must also request exclusive placement
via -l place=excl.
PBS Professional 2022.1 User’s Guide UG-151

Chapter 7 Reserving Resources
UG-152 PBS Professional 2022.1 User’s Guide

8

Job Arrays

8.1 Advantages of Job Arrays

PBS provides job arrays, which are useful for collections of almost-identical jobs. Each job in a job array is called a
"subjob". Subjobs are scheduled and treated just like normal jobs, with the exceptions noted in this chapter. You can
group closely related work into a set so that you can submit, query, modify, and display the set as a unit. Job arrays are
useful where you want to run the same program over and over on different input files. PBS can process a job array more
efficiently than it can the same number of individual normal jobs. Job arrays are suited for SIMD operations, for exam-
ple, parameter sweep applications, rendering in media and entertainment, EDA simulations, and forex (historical data).

8.2 Glossary

Job array identifier

The identifier returned upon success when submitting a job array. Format:

<sequence number>[]

Job array range

A set of subjobs within a job array. When specifying a range, indices used must be valid members of the job
array's indices.

Sequence number

The numeric part of a job or job array identifier, e.g. 1234.

Subjob

Individual entity within a job array (e.g. 1234[7], where 1234[] is the job array itself, and 7 is the index) which
has many properties of a job as well as additional semantics (defined below.)

Subjob index

The unique index which differentiates one subjob from another. This must be a non-negative integer.

8.3 Description of Job Arrays

A job array is a compact representation of two or more jobs. A job that is part of a job array is called a "subjob". Each
subjob in a job array is treated exactly like a normal job, except for any differences noted in this chapter.

8.3.1 Job Script for Job Arrays

All subjobs in a job array share a single job script, including the PBS directives and the shell script portion. The job
script is run once for each subjob.

The job script may invoke different commands based on the subjob index. The commands of course may be scripts them-
selves. You can do this by naming different commands with the subjob index or via "if" statements in the script.
PBS Professional 2022.1 User’s Guide UG-153

Chapter 8 Job Arrays
8.3.2 Attributes and Resources for Job Arrays

All subjobs in one job array have the same attributes, including resource requirements and limits.

The same job script runs for each subjob in the job array. If the job script calls other scripts or commands, those scripts
or commands cannot change the attributes and resources for individual subjobs, because PBS stops processing directives
when it starts processing commands.

8.3.3 Scheduling Job Arrays and Subjobs

The scheduler handles each subjob in a job array as a separate job. All subjobs within a job array have the same schedul-
ing priority.

8.3.4 Identifier Syntax

The sequence number (1234 in 1234[].<server>) is unique, so that jobs and job arrays cannot share a sequence number.
The job identifiers of the subjobs in the same job array are the same except for their indices. Each subjob has a unique
index. You can refer to job arrays or parts of job arrays using the following syntax forms:

• The job array object itself: The format is <sequence number>[] or <sequence number>[].<server>.<domain>.com

Example: 1234[].myserver or 1234[]

• A single subjob with index M: The format is <sequence number>[M] or <sequence num-
ber>[M].<server>.<domain>.com

Example where M=17: 1234[17].myserver or 1234[17]

• A range of subjobs of a job array: The format is <sequence number>[start-end[:step]] or <sequence num-
ber>[start-end[:step]].<server>.<domain>.com

Example where we start at 2, end at 8, and the step is 3: 1234[2-8:3].myserver or 1234[2-8:3]

8.3.4.1 Examples of Using Identifier Syntax

1234[] Short job array identifier

1234[].myserver.domain.com Full job array identifier

1234[73] Short subjob identifier of the 73rd index of job array 1234[]

1234[73].myserver.domain.com Full subjob identifier of the 73rd index of job array 1234[]

8.3.4.2 Shells and Array Identifiers

Since some shells, for example csh and tcsh, read "[" and "]" as shell metacharacters, job array names and subjob
names must be enclosed in double quotes for all PBS commands.

Example:

qdel "1234[5].myhost"

qdel "1234[].myhost"

Single quotes will work, except where you are using shell variable substitution.
UG-154 PBS Professional 2022.1 User’s Guide

Job Arrays Chapter 8
8.3.5 Special Attributes for Job Arrays

Job arrays and subjobs have all of the attributes of a job. In addition, they have the following when appropriate. These
attributes are read-only.

8.3.6 Job Array States

The state of subjobs in the same job array can be different. See “Job Array States” on page 363 of the PBS Professional
Reference Guide and “Subjob States” on page 363 of the PBS Professional Reference Guide.

8.3.7 PBS Environmental Variables for Job Arrays

8.3.8 Accounting

Job accounting records for job arrays and subjobs are the same as for jobs. When a job array has been moved from one
server to another, the subjob accounting records are split between the two servers.

Subjobs do not have "Q" records.

Table 8-1: Job Array Attributes

Name Type
Applies

To
Value

array Boolean Job array True if item is job array

array_id String Subjob Subjob's job array identifier

array_index String Subjob Subjob's index number

array_indices_remaining String Job array List of indices of subjobs still queued. Range or list of
ranges, e.g. 500, 552, 596-1000

array_indices_submitted String Job array Complete list of indices of subjobs given at submission
time. Given as range, e.g. 1-100

array_state_count String Job array Similar to state_count attribute for server and queue
objects. Lists number of subjobs in each state.

max_run_subjobs Integer Job array Limit on number of subjobs that can be running at one time.

Table 8-2: PBS Environmental Variables for Job Arrays

Environment
Variable Name

Used For Description

PBS_ARRAY_INDEX Subjobs Subjob index in job array, e.g. 7

PBS_ARRAY_ID Subjobs Identifier for a job array. Sequence number of job array, e.g.
1234[].myserver

PBS_JOBID Jobs, subjobs Identifier for a job or a subjob. For subjob, sequence number and subjob
index in brackets, e.g. 1234[7].myserver
PBS Professional 2022.1 User’s Guide UG-155

Chapter 8 Job Arrays
8.3.9 Prologues and Epilogues

If defined, prologues and epilogues run at the beginning and end of each subjob, but not for the array object.

8.3.10 The "Rerunnable" Flag and Job Arrays

Job arrays are required to be rerunnable. PBS will not accept a job array that is marked as not rerunnable. You can sub-
mit a job array without specifying whether it is rerunnable, and PBS will automatically mark it as rerunnable.

8.4 Submitting a Job Array

8.4.1 Job Array Submission Syntax

You submit a job array through a single command. You specify subjob indices, and optionally a limit on the number of
subjobs that can be running at one time, at submission.

For the range, you can specify any of the following:

• A contiguous range, e.g. 1 through 100

• A range with a stepping factor, e.g. every second entry in 1 through 100 (1, 3, 5, ... 99)

The limit is an optional percent sign followed by an integer.

Syntax for submitting a job array:

qsub -J <index start>-<index end>[:<stepping factor>] [%<max subjobs>]

where

index start is the lowest index number in the range

index end is the highest index number in the range

stepping factor is the optional difference between index numbers

max subjobs is the limit on the number of subjobs that can be running at one time

The index start and end must be whole numbers, and the stepping factor must be a positive integer. The index end must
be greater than the index start. If the index end is not a multiple of the stepping factor above the index start, it will not be
used as an index value, and the highest index value used will be lower than the index end. For example, if index start is
1, index end is 8, and the stepping factor is 3, the index values are 1, 4, and 7.

8.4.1.1 Limiting Number of Simultaneously Running Subjobs

By default PBS simultaneously runs as many subjobs from a job array as possible. You can limit the number of subjobs
that are running at one time by setting the value of the max_run_subjobs job attribute. This is helpful if for example
every subjob needs access to the same shared data file and you want to prevent slowdowns due to an access bottleneck.
You can set the limit at submission by appending %<max subjobs> to your -J option:

qsub -J <index start>-<index end>[:<stepping factor>] [%<max subjobs>]

For example:

qsub -J 1-20000 %500 myscript.sh

Or you can use qalter to set or change the max_run_subjobs attribute:

qalter -Wmax_run_subjobs=<new value> <job ID>
UG-156 PBS Professional 2022.1 User’s Guide

Job Arrays Chapter 8
For example:

qalter -Wmax_run_subjobs=1000 123[].myserver

Suspended subjobs do not count against the limit set in max_run_subjobs.

8.4.2 Examples of Submitting Job Arrays

Example 8-1: To submit a job array of 10,000 subjobs, with indices 1, 2, 3, ... 10000:

$ qsub -J 1-10000 job.scr

1234[].server.domain.com

Example 8-2: To submit a job array of 500 subjobs, with indices 500, 501, 502, ... 1000:

$ qsub -J 500-1000 job.scr

1235[].server.domain.com

Example 8-3: To submit a job array with indices 1, 3, 5 ... 999:

$ qsub -J 1-1000:2 job.scr

1236[].server.domain.com

Example 8-4: To submit a job array of 10,000 subjobs with indices 1, 2, 3, ... 10000, and a limit of 500 simultaneously
running subjobs:

$ qsub -J 1-10000 %500 job.scr

1237[].server.domain.com

8.4.3 File Staging for Job Arrays

When preparing files to be staged for a job array, plan on naming the files so that they match the index numbers of the
subjobs. For example, inputfile3 is meant to be used by the subjob with index value 3.

To stage files for job arrays, you use the same mechanism as for normal jobs, but include a variable to specify the subjob
index. This variable is named array_index.

8.4.3.1 File Staging Syntax for Job Arrays

You can specify files to be staged in before the job runs and staged out after the job runs. Format:

qsub -W stagein=<stagein file list> -W stageout=<stageout file list>

You can use these as options to qsub, or as directives in the job script.

For both stagein and stageout, the file list has the form:

<execution path>^array_index^@<storage host>:<storage path>^array_index^[,...]

The name <execution path><index number> is the name of the file in the job's staging and execution directory (on the
execution host). The execution path can be relative to the job's staging and execution directory, or it can be an absolute
path.

The '@' character separates the execution specification from the storage specification.

The name <storage path><index number> is the file name on the host specified by storage host. For stagein, this is the
location where the input files come from. For stageout, this is where the output files end up when the job is done. You
must specify a storage host. The name can be absolute, or it can be relative to your home directory on the storage
machine.

For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.
PBS Professional 2022.1 User’s Guide UG-157

Chapter 8 Job Arrays
When staging more than one set of filenames, separate the filenames with a comma and enclose the entire list in double
quotes.

8.4.3.2 Job Array Staging Syntax on Windows

In Windows the stagein and stageout string must be contained in double quotes when using ^array_index^.

Example of a stagein:

qsub -W stagein="foo.^array_index^@host-1:C:\WINNT\Temp\foo.^array_index^" -J 1-5 stage_script

Example of a stageout:

qsub -W stageut="C:\WINNT\Temp\foo.^array_index^@host-1:Q:\my_username\foo. ̂ array_index^_out" -J
1-5 stage_script

8.4.3.3 Job Array File Staging Caveats

We recommend using an absolute pathname for the storage path. Remember that the path to your home directory may be
different on each machine, and that when using sandbox = PRIVATE, you may or may not need to have a home
directory on all execution machines.

8.4.3.4 Examples of Staging for Job Arrays

Example 8-5: Simple example:

Storage path: store:/film

Data files used as input: frame1, frame2, frame3

execution path: pix

Executable: a.out

For this example, a.out produces frame2.out from frame2.

#PBS -W stagein=pix/in/frame^array_index^@store:/film/frame^array_index^

#PBS- W stageout=pix/out/frame^array_index^.out @store:/film/frame^array_index^.out

#PBS -J 1-3 a.out frame$PBS_ARRAY_INDEX ./in ./out

Note that the stageout statement is all one line.

The result is that your directory named "film" contains the original files frame1, frame2, frame3, plus the new
files frame1.out, frame2.out, and frame3.out.

Example 8-6: In this example, we have a script named ArrayScript which calls scriptlet1 and scriptlet2.

All three scripts are located in /homedir/testdir.

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-2

echo "Main script: index " $PBS_ARRAY_INDEX

/homedir/testdir/scriptlet$PBS_ARRAY_INDEX
UG-158 PBS Professional 2022.1 User’s Guide

Job Arrays Chapter 8
In our example, scriptlet1 and scriptlet2 simply echo their names. We run ArrayScript using the qsub com-
mand:

qsub ArrayScript

Example 8-7: In this example, we have a script called StageScript. It takes two input files, dataX and extraX,
and makes an output file, newdataX, as well as echoing which iteration it is on. The dataX and extraX files
will be staged from inputs to work, then newdataX will be staged from work to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein="/homedir/work/data^array_index^@host1:/homedir/inputs/data^array_index^, \

/homedir/work/extra^array_index^ @host1:/homedir/inputs/extra^array_index^"

#PBS -W stageout=/homedir/work/newdata^array_index^@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cd /homedir/work

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX >> newdata$PBS_ARRAY_INDEX

Execution path:

/homedir/work

Storage host:

host1

Storage path for inputs (original data files dataX and extraX):

/homedir/inputs

Storage path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by typing:

qsub StageScript

It will run in /homedir, our home directory, which is why the line

"cd /homedir/work"

 is in the script.

Example 8-8: In this example, we have the same script as before, but we will run it in a staging and execution directory
created by PBS. StageScript takes two input files, dataX and extraX, and makes an output file, newdataX, as
well as echoing which iteration it is on. The dataX and extraX files will be staged from inputs to the staging
and execution directory, then newdataX will be staged from the staging and execution directory to outputs.

#!/bin/sh

#PBS -N StagingExample

#PBS -J 1-2

#PBS -W stagein="data^array_index^@host1:/homedir/inputs/data^array_index^, \

extra^array_index^@host1:/homedir/inputs/extra^array_index^"

#PBS -W stageout=newdata^array_index^@host1:/homedir/outputs/newdata^array_index^

echo "Main script: index " $PBS_ARRAY_INDEX

cat data$PBS_ARRAY_INDEX extra$PBS_ARRAY_INDEX >> newdata$PBS_ARRAY_INDEX

Execution path (directory): created by PBS; we don't know the name

Storage host:

host1
PBS Professional 2022.1 User’s Guide UG-159

Chapter 8 Job Arrays
Storage path for inputs (original data files dataX and extraX):

/homedir/inputs

Storage path for results (output of computation newdataX):

/homedir/outputs

StageScript resides in /homedir/testdir. In that directory, we can run it by typing:

qsub StageScript

It will run in the staging and execution directory created by PBS. See section 3.2, “Input/Output File Staging”, on
page 33.

8.4.4 Filenames for Standard Output and Standard Error

The name for stdout for a subjob defaults to <job name>.o<sequence number>.<index>, and the name for stderr
for a subjob defaults to <job name>.e<sequence number>.<index>.

Example 8-9: The job is named "fixgamma" and the sequence number is "1234".

The subjob with index 7 is 1234[7].<server name>. For this subjob, stdout and stderr are named fix-
gamma.o1234.7 and fixgamma.e1234.7.

8.4.5 Job Array Dependencies

Job dependencies are supported for the following relationships:

• Between job arrays and job arrays

• Between job arrays and jobs

• Between jobs and job arrays

8.4.5.1 Caveats for Job Array Dependencies

Job dependencies are not supported for subjobs or ranges of subjobs.

8.4.6 Job Array Exit Status

The exit status of a job array is determined by the status of each of the completed subjobs. It is only available when all
valid subjobs have completed. The individual exit status of a completed subjob is passed to the epilogue, and is available
in the 'E' accounting log record of that subjob.

8.4.6.1 Making qsub Wait Until Job Array Finishes

Blocking qsub waits until the entire job array is complete, then returns the exit status of the job array.

Table 8-3: Job Array Exit Status

Exit Status Meaning

0 All subjobs of the job array returned an exit status of 0. No PBS error occurred. Deleted subjobs are
not considered

1 At least 1 subjob returned a non-zero exit status. No PBS error occurred.

2 A PBS error occurred.
UG-160 PBS Professional 2022.1 User’s Guide

Job Arrays Chapter 8
8.4.6.2 Caveats for Job Array Exit Status

Subjob exit status is available only as long as the subjob is in job history. When a subjob is not in job history, a failed or
terminated subjob will show an exit status of Finished, instead of failed or terminated.

8.4.7 Caveats for Submitting Job Arrays

8.4.7.1 No Interactive Job Submission of Job Arrays

Interactive submission of job arrays is not allowed.

8.5 Viewing Status of a Job Array

You can use the qstat command to query the status of a job array. The default output is to list the job array in a single
line, showing the job array identifier. You can combine options.

You can use the -f option to the qstat command to see all of a subjob's attributes.

 To show the state of all running subjobs, use -t -r. To show the state of subjobs only, not job arrays, use -t -J.

8.5.1 Example of Viewing Job Array Status

We run an example job and an example job array, on a machine with 2 processors:

demoscript:

#!/bin/sh

#PBS -N JobExample

sleep 60

arrayscript:

#!/bin/sh

#PBS -N ArrayExample

#PBS -J 1-5

sleep 60

Table 8-4: Job Array and Subjob Options to qstat

Option Result

-t Shows state of job array object and subjobs.

Also shows state of jobs.

-J Shows state only of job arrays.

-p Prints the default display, with column for Percentage Completed.

For a job array, this is the number of subjobs completed or deleted divided by the total number of subjobs.
For a job, it is time used divided by time requested.
PBS Professional 2022.1 User’s Guide UG-161

Chapter 8 Job Arrays
We run these scripts using qsub:

qsub arrayscript

1235[].host

qsub demoscript

1236.host

We query using various options to qstat:

qstat

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 0 Q workq

qstat -J

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

qstat -p

Job id Name User % done S Queue

----------- ------------ ---------- ------- - -----

1235[].host ArrayExample user1 0 B workq

1236.host JobExample user1 -- Q workq

qstat -t

Job id Name User Time Use S Queue

----------- ------------ ---------- -------- - -----

1235[].host ArrayExample user1 0 B workq

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq

1236.host JobExample user1 0 Q workq

qstat -Jt

Job id Name User Time Use S Queue

------------ ------------ ----- -------- - -----

1235[1].host ArrayExample user1 00:00:00 R workq

1235[2].host ArrayExample user1 00:00:00 R workq

1235[3].host ArrayExample user1 0 Q workq

1235[4].host ArrayExample user1 0 Q workq

1235[5].host ArrayExample user1 0 Q workq
UG-162 PBS Professional 2022.1 User’s Guide

Job Arrays Chapter 8
After the first two subjobs finish:

qstat -Jtp

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq

qstat -pt

Job id Name User % done S Queue

------------ ------------ ----- ------ - -----

1235[].host ArrayExample user1 40 B workq

1235[1].host ArrayExample user1 100 X workq

1235[2].host ArrayExample user1 100 X workq

1235[3].host ArrayExample user1 -- R workq

1235[4].host ArrayExample user1 -- R workq

1235[5].host ArrayExample user1 -- Q workq

1236.host JobExample user1 -- Q workq

Now if we wait until only the last subjob is still running:

qstat -rt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- ------ ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 3048 -- 1 -- -- R 00:00

1236.host user1 workq JobExample 3042 -- 1 -- -- R 00:00

qstat -Jrt

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

----------- -------- ----- --------- ---- --- --- ------ ---- - -----

1235[5].host user1 workq ArrayExamp 048 -- 1 -- -- R 00:01
PBS Professional 2022.1 User’s Guide UG-163

Chapter 8 Job Arrays
8.6 Using PBS Commands with Job Arrays

The following table shows how you can or cannot use PBS commands with job arrays, subjobs or ranges:

8.6.1 Deleting a Job Array

The qdel command will take a job array identifier, subjob identifier or job array range. The indicated object(s) are
deleted, including any currently running subjobs. Running subjobs are treated like running jobs. Subjobs not running are
deleted and never run.

By default, one email is sent per deleted subjob, so deleting a job array of 5000 subjobs results in 5000 emails being sent,
unless you are suppressing the number of emails sent. See “-Wsuppress_email=<N>” on page 144 of the PBS Profes-
sional Reference Guide.

8.6.2 Altering a Job Array

The qalter command can only be used on a job array object, not on subjobs or ranges. Job array attributes are the
same as for jobs.

To modify the max_run_subjobs attribute, use qalter -Wmax_run_subjobs=<new value> <job ID>.

8.6.3 Moving a Job Array

The qmove command can only be used with job array objects, not with subjobs or ranges. Job arrays can only be moved
from one server to another if they are in the 'Q', 'H', or 'W' states, and only if there are no running subjobs. The state of
the job array object is preserved in the move. The job array will run to completion on the new server.

Table 8-5: Using PBS Commands with Job Arrays

Argument to Command

Command Array[]: Array Object
Array[Range]: Specified

Range of Subjobs
Array[Index]:

Specified Subjob

qalter Array object erroneous erroneous

qdel Array object & Running subjobs Running subjobs in specified range Specified subjob

qhold Array object & Queued subjobs erroneous erroneous

qmove Array object & Queued subjobs erroneous erroneous

qmsg erroneous erroneous erroneous

qorder Array object erroneous erroneous

qrerun Running and finished subjobs Running subjobs in specified range Specified subjob

qrls Array object & Queued subjobs erroneous erroneous

qsig Running subjobs Running subjobs in specified range Specified subjob

qstat Array object Specified range of subjobs Specified subjob

tracejob erroneous erroneous Specified subjob
UG-164 PBS Professional 2022.1 User’s Guide

Job Arrays Chapter 8
As with jobs, a qstat on the server from which the job array was moved does not show the job array. A qstat on the
job array object is redirected to the new server.

8.6.4 Holding a Job Array

The qhold command can only be used with job array objects, not with subjobs or ranges. A hold can be applied to a job
array only from the 'Q', 'B' or 'W' states. This puts the job array in the 'H', held, state. If any subjobs are running, they
will run to completion. No queued subjobs are started while in the 'H' state.

If a job array has subjobs that have a System hold, the job array also gets a System hold.

8.6.5 Releasing a Job Array

The qrls command can be used directly only with job array objects, not with subjobs or ranges. If the job array was in
the 'Q' or 'B' state, it is returned to that state. If it was in the 'W' state, it is returned to that state, unless its waiting time
was reached, in which case it goes to the 'Q' state.

You can use qrls indirectly on subjobs. If you use qrls on a job array, and that job array has a System hold because it
has subjobs(s) with a System hold, the subjobs that were held with a System hold are released, then the System hold on
the job array is released (you'll need Manager, root, or PBS Administrator privilege for this).

8.6.6 Selecting Job Arrays

The default behavior of qselect is to return the job array identifier, without returning subjob identifiers.

The qselect command does not return any job arrays when the state selection (-s) option restricts the set to 'R', 'S', 'T'
or 'U', because a job array will never be in any of these states. However, you can use qselect to return a list of subjobs
by using the -t option.

You can combine options to qselect. For example, to restrict the selection to subjobs, use both the -J and the -T
options. To select only running subjobs, use -J -T -sR.

8.6.7 Ordering Job Arrays in the Queue

The qorder command can only be used with job array objects, not on subjobs or ranges. This changes the queue order
of the job array in association with other jobs or job arrays in the queue.

8.6.8 Requeueing a Job Array

The qrerun command will take a job array identifier, subjob identifier or job array range. If a job array identifier is
given as an argument, it is returned to its initial state at submission time, or to its altered state if it has been qaltered. All
of that job array's subjobs are requeued, which includes those that are currently running, and those that are completed and
deleted. If a subjob or range is given, those subjobs are requeued as jobs would be.

Table 8-6: Options to qselect for Job Arrays

Option Selects Result

(none) jobs, job arrays Shows job and job array identifiers

-J job arrays Shows only job array identifiers

-T jobs, subjobs Shows job and subjob identifiers
PBS Professional 2022.1 User’s Guide UG-165

Chapter 8 Job Arrays
8.6.9 Signaling a Job Array

If a job array object, subjob or job array range is given to qsig, all currently running subjobs within the specified set are
sent the signal.

8.6.10 Sending Messages to Job Arrays

The qmsg command is not supported for job arrays.

8.6.11 Getting Log Data on Job Arrays

The tracejob command can be run on job arrays and individual subjobs. When tracejob is run on a job array or a
subjob, the same information is displayed as for a job, with additional information for a job array. Note that subjobs do
not exist until they are running, so tracejob will not show any information until they are. When tracejob is run
on a job array, the information displayed is only that for the job array object, not the subjobs. Job arrays themselves do
not produce any MoM log information. Running tracejob on a job array gives information about why a subjob did
not start.

8.6.12 Caveats for Using PBS Commands with Job Arrays

8.6.12.1 Shells and PBS Commands with Job Arrays

Some shells such as csh and tcsh use the square bracket ("[", "]") as a metacharacter. When using one of these shells,
and a PBS command taking subjobs, job arrays or job array ranges as arguments, the subjob, job array or job array range
must be enclosed in double quotes.

8.7 Job Array Caveats

8.7.1 Job Arrays Required to be Rerunnable

Job arrays are required to be rerunnable, and are rerunnable by default.

8.7.2 Resources Same for All Subjobs

You cannot combine jobs into an array that have different hardware requirements, i.e. different select statements.

8.7.3 Checkpointing Not Supported for Job Arrays

Checkpointing is not supported for job arrays. On systems that support checkpointing, subjobs are not checkpointed,
instead they run to completion.

8.7.4 Caveats for Job Array Exit Status

Subjob exit status is available only as long as the subjob is in job history. When a subjob is not in job history, a failed or
terminated subjob will show an exit status of Finished, instead of failed or terminated.
UG-166 PBS Professional 2022.1 User’s Guide

9

Working with PBS Jobs

9.1 Using Job History

PBS Professional can provide job history information, including what the submission parameters were, whether the job
started execution, whether execution succeeded, whether staging out of results succeeded, and which resources were
used.

PBS can keep job history for jobs which have finished execution, were deleted, or were moved to another server.

9.1.1 Definitions

Moved jobs

Jobs which were moved to another server

Finished jobs

Jobs whose execution is done, for any reason:

• Jobs which finished execution successfully and exited

• Jobs terminated by PBS while running

• Jobs whose execution failed because of system or network failure

• Jobs which were deleted before they could start execution

9.1.2 Job History Information

PBS can keep all job attribute information, including the following:

• Submission parameters

• Whether the job started execution

• Whether execution succeeded

• Whether staging out of results succeeded

• Which resources were used

PBS keeps job history for the following jobs:

• Jobs that are running at another server

• Jobs that have finished execution

• Jobs that were deleted

• Jobs that were moved to another server

While a job is running, you can see information about it. After a job has finished or been deleted, its history information
is preserved for the specified duration. The administrator chooses a duration for preservation of job history information
after each job has finished or been deleted. PBS periodically checks each finished job, and deletes job history for those
whose history has been preserved for longer than the specified duration.

Subjobs are not considered finished jobs until the parent array job is finished, which happens when all of its subjobs have
terminated execution.
PBS Professional 2022.1 User’s Guide UG-167

Chapter 9 Working with PBS Jobs
9.1.2.1 Working With Moved Jobs

You can use the following commands with moved jobs. They will function as they do with normal jobs.

qalter

qhold

qmove

qmsg

qorder

qrerun

qrls

qrun

qsig

While a moved job is running, its state is M. When a moved job finishes, its substate becomes 92. See “Job States” on
page 361 of the PBS Professional Reference Guide.

9.1.2.2 PBS Commands and Finished Jobs

The commands listed above cannot be used with finished jobs, whether they finished at the local server or a remote
server. These jobs are no longer running; PBS is storing their information, and this information cannot be altered. Trying
to use one of the above commands with a finished job results in the following error message:

<command name>: Job <job ID> has finished

9.2 Modifying Job Attributes

Most attributes can be changed by the owner of the job (or a manager or operator) while the job is still queued. However,
once a job begins execution, the only values that can be modified are cputime, walltime, and run_count. You can
decrease walltime, and you can increase run_count.

When the qalter -l option is used to alter the resource list of a queued job, it is important to understand the interac-
tions between altering the select directive and job limits.

If the job was submitted with an explicit "-l select=", then vnode-level resources must be qaltered using the "-l
select=" form. In this case a vnode level resource RES cannot be qaltered with the "-l <resource>" form.

For example:

Submit the job:

% qsub -l select=1:ncpus=2:mem=512mb jobscript

Job's ID is 230

qalter the job using "-l RES" form:

% qalter -l ncpus=4 230

Error reported by qalter:

qalter: Resource must only appear in "select"

specification when select is used: ncpus 230
UG-168 PBS Professional 2022.1 User’s Guide

Working with PBS Jobs Chapter 9
qalter the job using the "-l select=" form:

% qalter -l select=1:ncpus=4:mem=512mb 230

No error reported by qalter:

%

9.2.1 Changing the Selection Directive

If the selection directive is altered, the job limits for any consumable resource in the directive are also modified.

For example, if a job is queued with the following resource list:

select=2:ncpus=1:mem=5gb

job limits are set to ncpus=2, mem=10gb.

If the select statement is altered to request:

select=3:ncpus=2:mem=6gb

then the job limits are reset to ncpus=6 and mem=18gb

9.2.2 Changing the Job-wide Limit

If the job-wide limit is modified, the corresponding resources in the selection directive are not modified. It would be
impossible to determine where to apply the changes in a compound directive.

Reducing a job-wide limit to a new value less than the sum of the resource in the directive is strongly discouraged. This
may produce a situation where the job is aborted during execution for exceeding its limits. The actual effect of such a
modification is not specified.

A job's walltime may be altered at any time, except when the job is in the Exiting state, regardless of the initial value.

If a job is queued, requested modifications must still fit within the queue's and server's job resource limits. If a requested
modification to a resource would exceed the queue's or server's job resource limits, the resource request will be rejected.

Resources are modified by using the -l option, either in chunks inside of selection statements, or in job-wide modifica-
tions using resource_name=value pairs. The selection statement is of the form:

-l select=[N:]chunk[+[N:]chunk ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

Job-wide <resource name>=<value> modifications are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

Placement of jobs on vnodes is changed using the place statement:

-l place=<modifier>[:<modifier>]

where modifier is any combination of group, excl, exclhost, and/or one of free|pack|scatter|vscatter.

The usage syntax for qalter is:

qalter <job resources> <job list>
PBS Professional 2022.1 User’s Guide UG-169

Chapter 9 Working with PBS Jobs
The following examples illustrate how to use the qalter command. First we list all the jobs of a particular user. Then
we modify two attributes as shown (increasing the wall-clock time from 20 to 25 minutes, and changing the job name
from "airfoil" to "engine"):

qstat -u barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

51.south barry workq airfoil 930 -- 1 -- 0:16 R 0:01

54.south barry workq airfoil -- -- 1 -- 0:20 Q --

qalter -l walltime=20:00 -N engine 54

qstat -a 54

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south barry workq engine -- -- 1 -- 0:25 Q --

The qalter command can be used on job arrays, but not on subjobs or ranges of subjobs. When used with job arrays,
any job array identifiers must be enclosed in double quotes, e.g.:

qalter -l walltime=25:00 "1234[].south"

You cannot use the qalter command (or any other command) to alter a custom resource which has been created to be
invisible or unrequestable. See section 4.3.8, “Caveats and Restrictions on Requesting Resources”, on page 59.

For more information, see “qalter” on page 130 of the PBS Professional Reference Guide.

9.2.2.1 Caveats

Be careful when using a Boolean resource as a job-wide limit.

9.3 Deleting Jobs

PBS provides the qdel command for deleting jobs. The qdel command deletes jobs in the order in which their job
identifiers are presented to the command. A batch job may be deleted by its owner, a PBS operator, or a PBS administra-
tor. Unless you are an administrator or an operator, you can delete only your own jobs.

To delete a queued, held, running, or suspended job:

qdel <job ID>

Example:

qdel 51

qdel 1234[].server

Job array identifiers must be enclosed in double quotes.

9.3.1 Deleting Jobs with Force

You can delete a job whether or not its execution host is reachable, and whether or not it is in the process of provisioning:

qdel -W force <job ID>
UG-170 PBS Professional 2022.1 User’s Guide

Working with PBS Jobs Chapter 9
9.3.2 Deleting Finished Jobs

By default, the qdel command does not affect finished jobs. You can use the qdel -x option to delete job histories.
This option also deletes any specified jobs that are queued, running, held, suspended, finished, or moved. When you use
this, you are deleting the job and its history in one step. If you use the qdel command without the -x option, you delete
the job, but not the job history, and you cannot delete a finished job.

To delete a finished job, whether or not it was moved:

qdel -x <job ID>

If you try to delete a finished job without the -x option, you will get the following error:

qdel: Job <job ID> has finished

9.3.3 Deleting Moved Jobs

You can use the qdel -x option to delete jobs that are queued, running, held, suspended, finished, or moved.

To delete a job that was moved:

qdel <job ID sequence number>.<original server>

To delete a job that was moved, and then finished:

qdel -x <job ID>

9.3.4 Restricting Number of Emails

By default, mail is sent for each job or subjob you delete. Use the following option to qdel to specify a limit on emails
sent:

qdel -Wsuppress_email=<N>

See section 2.5.1.3, “Restricting Number of Job Deletion Emails”, on page 27.

9.4 Sending Messages to Jobs

To send a message to a job is to write a message string into one or more output files of the job. Typically this is done to
leave an informative message in the output of the job. Such messages can be written using the qmsg command.

You can send messages to running jobs only.

The usage syntax of the qmsg command is:

qmsg [-E][-O] <message string> <job ID>

Example:

qmsg -O "output file message" 54

qmsg -O "output file message" "1234[].server"

Job array identifiers must be enclosed in double quotes.

The -E option writes the message into the error file of the specified job(s). The -O option writes the message into the out-
put file of the specified job(s). If neither option is specified, the message will be written to the error file of the job.
PBS Professional 2022.1 User’s Guide UG-171

Chapter 9 Working with PBS Jobs
The first operand, message_string, is the message to be written. If the string contains blanks, the string must be quoted. If
the final character of the string is not a newline, a newline character will be added when written to the job's file. All
remaining operands are job IDs which specify the jobs to receive the message string. For example:

qmsg -E "hello to my error (.e) file" 55

qmsg -O "hello to my output (.o) file" 55

qmsg "this too will go to my error (.e) file" 55

9.5 Sending Signals to Jobs

You can use the qsig command to send a signal to your job. The signal is sent to all of the job's processes.

Usage syntax of the qsig command is:

qsig [-s <signal>] <job ID>

Job array job IDs must be enclosed in double quotes.

If the -s option is not specified, SIGTERM is sent. If the -s option is specified, it declares which signal is sent to the job.
The signal argument is either a signal name, e.g. SIGKILL, the signal name without the SIG prefix, e.g. KILL, or an
unsigned signal number, e.g. 9. The signal name SIGNULL is allowed; the server will send the signal 0 to the job which
will have no effect. Not all signal names will be recognized by qsig. If it doesn't recognize the signal name, try issuing
the signal number instead. The request to signal a batch job will be rejected if:

• You are not authorized to signal the job

• The job is not in the running state

• The requested signal is not supported by the execution host

• The job is exiting

• The job is provisioning

Two special signal names, "suspend" and "resume", (note, all lower case), are used to suspend and resume jobs. When
suspended, a job continues to occupy system resources but is not executing and is not charged for walltime. Manager or
operator privilege is required to suspend or resume a job.

The signal TERM is useful, because it is ignored by shells, but you can trap it and do useful things such as write out sta-
tus.

The three examples below all send a signal 9 (SIGKILL) to job 34:

qsig -s SIGKILL 34

qsig -s KILL 34

If you want to trap the signal in your job script, the signal must be trapped by all of the job's shells.

On most Linux systems the command "kill -l" (that's 'minus ell') will list all the available signals.

9.6 Changing Order of Jobs

PBS provides the qorder command to change the order of two jobs, within or across queues. To order two jobs is to
exchange the jobs' positions in the queue or queues in which the jobs reside. If job1 is at position 3 in queue A and job2
is at position 4 in queue B, qordering them will result in job1 being in position 4 in queue B and job2 being in position 3
in queue A.

No attribute of the job (such as Priority) is changed. The impact of changing the order within the queue(s) is dependent
on local job scheduling policy; contact your systems administrator for details.
UG-172 PBS Professional 2022.1 User’s Guide

Working with PBS Jobs Chapter 9
Usage of the qorder command is:

qorder <job ID>1 <job ID2>

Job array identifiers must be enclosed in double quotes.

Both operands are job IDs which specify the jobs to be exchanged.

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

qorder 54 "63[]"

qstat -u bob

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

63[].south bob workq airfoil -- -- 1 -- 0:13 Q --

54.south bob workq twinkie -- -- 1 -- 0:20 Q --

9.6.1 Restrictions

• The two jobs must be located at the same server, and both jobs must be owned by you. However, a PBS Manager or
Operator can exchange any jobs.

• A job in the running state cannot be reordered.

• The qorder command can be used with entire job arrays, but not on subjobs or ranges. Reordering a job array
changes the queue order of the job array in relation to other jobs or job arrays in the queue.

9.7 Moving Jobs Between Queues

PBS provides the qmove command to move jobs between different queues (even queues on different servers). To move
a job is to remove the job from the queue in which it resides and instantiate the job in another queue.

A job in the running state cannot be moved.

The usage syntax of the qmove command is:

qmove <destination> <job ID(s)>

Job array <job ID>s must be enclosed in double quotes.

The first operand is the new destination for

<queue>

@<server>

<queue>@<server>
PBS Professional 2022.1 User’s Guide UG-173

Chapter 9 Working with PBS Jobs
If the destination operand describes only a queue, then qmove will move jobs into the queue of the specified name at the
job's current server. If the destination operand describes only a server, then qmove will move jobs into the default queue
at that server. If the destination operand describes both a queue and a server, then qmove will move the jobs into the
specified queue at the specified server. All following operands are job IDs which specify the jobs to be moved to the new
destination.

The qmove command can only be used with job array objects, not with subjobs or ranges. Job arrays can only be moved
from one server to another if they are in the 'Q', 'H', or 'W' states, and only if there are no running subjobs. The state of
the job array object is preserved in the move. The job array will run to completion on the new server.

As with jobs, a qstat on the server from which the job array was moved will not show the job array. A qstat on the
job array object will be redirected to the new server.

The subjob accounting records will be split between the two servers.
UG-174 PBS Professional 2022.1 User’s Guide

10

Checking Job & System Status

10.1 Selecting Jobs to Examine

When you want to examine jobs, you can see them all at once, or you can select a subset. You can perform this selection
via the following:

• Use the qsig command to select jobs according to your criteria and return a list of job IDs, which becomes the input
to the qstat command; see section 10.1.1, “Selecting Jobs via qselect”, on page 175

• Use options to the qstat command to filter the jobs it will display; see section 10.1.2, “Filtering Jobs via qstat”, on
page 177

10.1.1 Selecting Jobs via qselect

Use the qsig command to list the job identifiers of the jobs, job arrays or subjobs that meet your selection criteria. The
command prints a list of selected jobs to standard output. You can select jobs according to name, priority, project, state,
etc. In this section, we describe a few ways to select jobs.

10.1.1.1 Selecting Jobs by Resource and Attribute Value

You can select jobs where attribute and/or resource values are equal to, not equal to, greater than, greater than or equal to,
less than, or less than or equal to a particular value. The default relation is "equal to", specified by ".eq.".

For example, you can list the jobs owned by barry that requested more than 16 CPUs, and discover that there are three at
the default server (named "south"):

qselect -u barry -l ncpus.gt.16

121.south

133.south

154.south

10.1.1.2 Selecting Jobs by Time Criteria

You can use the qselect -t option to list queued, running, finished and moved jobs, job arrays, and subjobs, accord-
ing to values of their time attributes. You can use the -t option twice to bracket a time period.

Example 10-1: Select jobs with end times between noon and 3PM:

qselect -te.gt.09251200 -te.lt.09251500

Example 10-2: Select finished and moved jobs with start times between noon and 3PM:

qselect -x -s "MF" -ts.gt.09251200 -ts.lt.09251500

Example 10-3: Select all jobs with creation times between noon and 3PM:

qselect -x -tc.gt.09251200 -tc.lt.09251500

Example 10-4: Select all jobs including finished and moved jobs with qtime of 2.30PM. Here we use the default rela-
tion of ".eq". by omitting any specification for a relation:

qselect -x -tq09251430
PBS Professional 2022.1 User’s Guide UG-175

Chapter 10 Checking Job & System Status
10.1.1.3 Selecting Finished and Moved Jobs

You can list identifiers of finished and moved jobs in the same way as for queued and running jobs, as long as the job his-
tory is still being preserved. The PBS administrator sets job history preservation duration.

The -x option to the qselect command allows you to list job identifiers for all jobs, whether they are running, queued,
finished or moved. The -H option to the qselect command allows you to list job identifiers for finished or moved jobs
only.

To see a list of job IDs for finished and moved jobs:

qselect -H

10.1.1.4 Passing List of Selected Jobs to qstat

To see information about a selected list of job IDs, use the output of the qselect command as input to the qstat com-
mand. Syntax:

qstat [qstat options] `qselect [qselect options]`
For example, to see all queued and running jobs belonging to barry that requested more than 16 CPUs (in alternate for-
mat; see section 10.2.1.2, “Extended Job List: Job Status in Alternate Format”, on page 182):

• Linux:
qstat -a `qselect -u barry -l ncpus.gt.16 `

 Req'd Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----

54.south barry workq airfoil -- -- 1 -- 0:13 Q --

121.south barry workq airfoil -- -- 32 -- 0:01 H --

133.south barry workq trialx -- -- 20 -- 0:01 W --

154.south barry workq airfoil 930 -- 32 -- 1:30 R 0:32

• Windows (type the following at the cmd prompt, all on one line):
for /F "usebackq" %j in (`qselect -u barry -l ncpus.gt.16`) do (qstat -a %j)

54.south

121.south

133.south

154.south

10.1.1.5 Passing List of Finished and Moved jobs to qstat

To use qstat to examine a list of finished or moved (history) jobs, make sure you tell both qstat via its -x option, and
qselect via its -H option:

qstat -x `qselect -H [qselect options] `

10.1.1.6 Restrictions and Caveats for Selecting Jobs via qselect

• Each time you call the qselect command, you can select jobs from just one server.

• You must use the backtick syntax to use the output of qselect as the input for qstat. You cannot use the pipe
symbol to pipe output from qselect to qstat.
UG-176 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
10.1.2 Filtering Jobs via qstat

By default, qstat displays information for queued or running jobs, not finished or moved jobs, and not job arrays or sub-
jobs. However, you can tell qstat to display information for all jobs, whether they are running, queued, finished, or
moved. Job history for finished and moved jobs is kept for a period defined by your administrator.

You can specify to qstat that you want information for a job identifier, a list of job identifiers, or all of the jobs at a des-
tination, for example all jobs at a specified queue or server. You can get job information in three main formats:

• Default format: a basic table that lists each job ID on one line along with the username of the job owner, the state of
the job, its queue, etc. See section 10.2.1.1, “Basic Job List: Job Status in Default Format”, on page 181

• Alternate format: a more detailed table that lists each job ID on one line which also includes session ID, requested
time, elapsed time, etc. See section 10.2.1.2, “Extended Job List: Job Status in Alternate Format”, on page 182

• Long format: jobs are listed one at a time, and each job attribute and resource is listed on its own line. See section
10.2.1.3, “Complete Job Information: Job Status in Long Format”, on page 183

10.1.2.1 Expanding and Filtering Job ID List

In addition to using qselect to select job IDs, you can use the following criteria:

• To see job arrays (not subjobs): -J

• To see job arrays and subjobs: -t

• To see only subjobs: -Jt

• To see finished and moved jobs in alternate format: -H ; see section 10.1.2.6.iii, “Restricting to Finished and Moved
Jobs”, on page 180

• To see finished and moved jobs in addition to running and queued jobs: -x; see section 10.1.2.6.ii, “Including Fin-
ished and Moved Jobs”, on page 179

Formats for job IDs:

• Job ID:

<sequence number>[.<server name>][@<server name>]
• Job array ID:

<sequence number>[][.<server name>][@<server name>]
• Subjob ID:

<sequence number>[<index>][.<server name>][@<server name>]
• Range of subjobs:

<sequence number>[<index start>-<index end>][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

10.1.2.2 Specifying Destination

If you don't specify a destination, you get jobs at all queues at the default server. You can specify queue and/or server.
Formats for destinations:

• To display status for all jobs in the specified queue at the default server:

<queue name>
• To display status for all jobs in the specified queue at the specified server:

<queue name>@<server name>
• To display status for all jobs at all queues at the specified server:

@<server name>
PBS Professional 2022.1 User’s Guide UG-177

Chapter 10 Checking Job & System Status
10.1.2.3 Filtering Jobs by User

Use the "-u" option to qstat to display jobs owned by any of a list of usernames you specify. Syntax:

qstat -u <username>[@<host>][,<username>[@<host>],...]

Host names are not required, and may be wildcarded on the left end, e.g. "*.mydomain.com". Entering "<username>"
without a "@<host>" is equivalent to "<username>@*".

qstat -u user1

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

qstat -u user1,barry

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --

10.1.2.4 Looking for Running and Suspended Jobs

Use the "-r" option to qstat to display the status of all running and suspended jobs in alternate format. For example:

qstat –r

host1:

 Req'd Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:00

10.1.2.5 Looking for Non-Running Jobs

Use the "-i" option to qstat to display the status of all non-running jobs (queued, held, and waiting) in alternate for-
mat. For example:

qstat –i

host1:

 Req'd Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --
UG-178 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
10.1.2.6 Looking for Finished and Moved Jobs (History Jobs)

You can view information for finished and moved jobs in the same way as for queued and running jobs, as long as the job
history is still being stored by PBS.

10.1.2.6.i Looking for Jobs Moved to Another Server

If your job is running at another server, you can examine it. If your site is using peer scheduling, your job may be moved
to a server that is not your default server. For example, you submit a job to ServerA, and it returns the job ID as
"123.ServerA". Then 123.ServerA is moved to ServerB.

• To see information about all jobs, whether running, queued, finished, or moved:
qstat -x

• To see specific jobs, give the job ID as an argument to qstat:
qstat 123

or

qstat 123.ServerA

• To list all jobs at ServerB:
qstat @ServerB

Example 10-5: Viewing moved job:

• There are three servers with hostnames ServerA, ServerB, and ServerC

• barry submits job 123 to ServerA

• After some time, barry moves the job to ServerB

• After more time, the administrator moves the job to QueueC at ServerC

• barry runs "qstat 123"

Job id Name User Time Use S Queue

---------------- ----------- ----- ------- --- ------

123.ServerA STDIN barry 00:00:00 M QueueC@ServerC

10.1.2.6.ii Including Finished and Moved Jobs

You can use the -x option to the qstat command to examine finished, moved, queued, and running jobs, in default for-
mat.

• To display information for queued, running, finished, and moved jobs, in default format:

qstat -x

• To display information for a job, regardless of its state, in default format:

qstat -x <job ID>

• To see status for jobs, job arrays and subjobs that are queued, running, finished, and moved:

qstat -xt
• To see status for job arrays that are queued, running, finished, or moved

qstat -xJ
PBS Professional 2022.1 User’s Guide UG-179

Chapter 10 Checking Job & System Status
When information for a moved job is displayed, the destination queue and server are shown as <queue>@<server>.

Example 10-6: Showing finished and moved jobs with queued and running jobs, and showing that job 102 was moved to
destq at server2:

qstat -x

Job id Name User Time Use S Queue

------------- ----------- ------ ------- --- ------

101.server1 STDIN user1 00:00:00 F workq

102.server1 STDIN user1 00:00:00 M destq@server2

103.server1 STDIN user1 00:00:00 R workq

104.server1 STDIN user1 00:00:00 Q workq

10.1.2.6.iii Restricting to Finished and Moved Jobs

You can use the -H option to the qstat command to see job history for finished or moved jobs in alternate format. This
does not display running or queued jobs.

• To display information for finished or moved jobs, in alternate format:

qstat -H
• To display information for a specific job in alternate format, whether or not it is finished or moved:

qstat -H <job ID>
• To display information for finished or moved jobs at a specific destination:

qstat -H <destination>
• To see alternate-format status for jobs, job arrays and subjobs that are finished and moved:

qstat -Ht
• To see alternate-format status for job arrays that are finished or moved:

qstat -HJ

Example 10-7: Job history in alternate format:

qstat -H

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------ -------- ---- ------- ------ --- --- ------ ---- -- -----

101.S1 user1 workq STDIN 5168 1 1 -- -- F 00:00

102.S1 user1 Q1@S2 STDIN -- 1 2 -- -- M --

The -H option is incompatible with the -a, -i, -f, and -r options.
UG-180 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
10.1.2.7 Grouping Jobs and Sorting by ID

You can use the -E option to sort and group jobs in the output of qstat. The -E option groups jobs by server and dis-
plays each group by ascending ID. This option also improves qstat performance. This option is useful when you have
an unordered list of job IDs and you want to see ordered results grouped by server. The following table shows how the -E
option affects the behavior of qstat:

10.2 Examining Jobs

10.2.1 How to See Job Information (Output Formats)

You can get job information in three main formats:

• Default format: a basic table that lists each job ID on one line along with the username of the job owner, the state of
the job, its queue, etc. See section 10.2.1.1, “Basic Job List: Job Status in Default Format”, on page 181

• Alternate format: a more detailed table that lists each job ID on one line which also includes session ID, requested
time, elapsed time, etc. See section 10.2.1.2, “Extended Job List: Job Status in Alternate Format”, on page 182

• Long format: jobs are listed one at a time, and each job attribute and resource is listed on its own line. See section
10.2.1.3, “Complete Job Information: Job Status in Long Format”, on page 183

10.2.1.1 Basic Job List: Job Status in Default Format

The default qstat output format shows you a list of jobs, one to a line. Syntax:

qstat
qstat [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

The default display shows the following information:

• The job identifier assigned by PBS

• The job name given by the submitter

• The job owner

• The CPU time used

• The job state; see “Job States” on page 361 of the PBS Professional Reference Guide.

• The queue in which the job resides

Table 10-1: How -E Option Affects qstat Output

How qstat is Used Result Without -E Result With -E

qstat (no job ID specified) Queries the default server and displays
result

No change in behavior; same as with-
out -E option

qstat <list of job IDs
from single server>

Displays results in the order they are
specified

Displays results in ascending ID order

qstat <job IDs at multiple
servers>

Displays results in the order they are
specified

Groups jobs by server. Displays each
group in ascending order
PBS Professional 2022.1 User’s Guide UG-181

Chapter 10 Checking Job & System Status
The following example illustrates the default output format of qstat.

qstat

Job id Name User Time Use S Queue

--------- ----------- ----------- -------- - -----

16.south aims14 user1 0 H workq

18.south aims14 user1 0 W workq

26.south airfoil barry 00:21:03 R workq

27.south airfoil barry 21:09:12 R workq

28.south myjob user1 0 Q workq

29.south tns3d susan 0 Q workq

30.south airfoil barry 0 Q workq

31.south seq_35_3 donald 0 Q workq

10.2.1.2 Extended Job List: Job Status in Alternate Format

The alternate qstat output format shows you a list of jobs, one to a line, with more detail than the basic job informa-
tion. Syntax:

qstat -a
qstat [-a | -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1]] [-s [-1]] [-t] [-T] [-u <user list>] [-w] [[<job ID> | <destina-

tion>] ...]
The alternate format shows the following fields:

• Job ID

• Job owner

• Queue in which job resides

• Job name

• Session ID (only appears when job is running)

• Number of chunks or vnodes requested

• Number of CPUs requested

• Amount of memory requested

• Amount of CPU time requested, if CPU time requested; if not, amount of wall clock time requested

• State of job

• Amount of CPU time elapsed, if CPU time requested; if not, amount of wall clock time elapsed
qstat -a

 Req'd Elap

Job ID User Queue Jobname Ses NDS TSK Mem Time S Time

-------- ------ ----- ------- --- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

52.south user1 workq myjob -- -- 1 -- 0:10 Q --

53.south susan workq tns3d -- -- 1 -- 0:20 Q --

54.south barry workq airfoil -- -- 1 -- 0:13 Q --

55.south donald workq seq_35_ -- -- 1 -- 2:00 Q --

You can use the -1 option to reformat qstat output to a single line. This option can only be used in conjunction with
the -n and/or -s options.
UG-182 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
10.2.1.3 Complete Job Information: Job Status in Long Format

The long format output of qstat shows you complete information about a job, including values for its attributes and
resources. Syntax and example:

qstat -f
qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

qstat -f 13

Job Id: 13.host1

 Job_Name = STDIN

 Job_Owner = user1@host2

 resources_used.cpupercent = 0

 resources_used.cput = 00:00:00

 resources_used.mem = 2408kb

 resources_used.ncpus = 1

 resources_used.vmem = 12392kb

 resources_used.walltime = 00:01:31

 job_state = R

 queue = workq

 server = host1

 Checkpoint = u

 ctime = Thu Apr 2 12:07:05 2010

 Error_Path = host2:/home/user1/STDIN.e13

 exec_host = host2/0

 exec_vnode = (host3:ncpus=1)

 Hold_Types = n

 Join_Path = n

 Keep_Files = n

 Mail_Points = a

 mtime = Thu Apr 2 12:07:07 2010

 Output_Path = host2:/home/user1/STDIN.o13

 Priority = 0

 qtime = Thu Apr 2 12:07:05 2010

 Rerunable = True

 Resource_List.ncpus = 1

 Resource_List.nodect = 1

 Resource_List.place = free

 Resource_List.select = host=host3

 stime = Thu Apr 2 12:07:08 2010

 session_id = 32704

 jobdir = /home/user1

 substate = 42

 Variable_List = PBS_O_HOME=/home/user1,PBS_O_LANG=en_US.UTF-8,

 PBS_O_LOGNAME=user1,

 PBS_O_PATH=/opt/gnome/sbin:/root/bin:/usr/local/bin:/usr/bin:/usr/X11R

 6/bin:/bin:/usr/games:/opt/gnome/bin:/opt/kde3/bin:/usr/lib/mit/bin:/us
PBS Professional 2022.1 User’s Guide UG-183

Chapter 10 Checking Job & System Status
 r/lib/mit/sbin,PBS_O_MAIL=/var/mail/root,PBS_O_SHELL=/bin/bash,

 PBS_O_HOST=host2,PBS_O_WORKDIR=/home/user1,PBS_O_SYSTEM=Linux,

 PBS_O_QUEUE=workq

 comment = Job run at Thu Apr 02 at 12:07 on (host3:ncpus=1)

 alt_id = <dom0:job ID xmlns:dom0="http://schemas.microsoft.com/HPCS2008/hpcb

 p">149</dom0:Job ID>

 etime = Thu Apr 2 12:07:05 2010

 Submit_arguments = -lselect=host=host3 -- ping -n 100 127.0.0.1

 executable = <jsdl-hpcpa:Executable>ping</jsdl-hpcpa:Executable>

 argument_list = <jsdl-hpcpa:Argument>-n</jsdl-hpcpa:Argument><jsdl-hpcpa:Ar

 gument>100</jsdl-hpcpa:Argument><jsdl-hpcpa:Argument>127.0.0.1</jsdl-hp

 cpa:Argument>

See “Job Attributes” on page 327 of the PBS Professional Reference Guide for a description of each job attribute.

10.2.1.4 Showing Additional Job Information for Default and Alternate

Formats

The long format shows everything about a job, but if you want to see your jobs in a more compact format (default or
alternate), you can use the following options.

10.2.1.4.i Listing Hosts Assigned to Jobs

Use the "-n" option to qstat to display the hosts allocated to any running job, in alternate format. This shows the
exec_host information immediately below the job. A text string of "--" is printed for non-running jobs. Notice the dif-
ferences between the queued and running jobs in the example below:

qstat -n

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ------ ----- ------- ---- --- --- --- ---- - ----

16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 --

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 --

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

 south/0

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 --
UG-184 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
10.2.1.4.ii Displaying Job Comments

The "-s" option to qstat displays the job comments, in addition to the other information presented in the alternate dis-
play. The job comment is printed immediately below the job. By default the job comment is updated by the scheduler
with the reason why a given job is not running, or when the job began executing. A text string of "--" is printed for jobs
whose comment has not yet been set. The example below illustrates the different type of messages that may be displayed:

qstat -s

 Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

-------- ----- ----- ------- ---- --- --- --- ---- - ----
16.south user1 workq aims14 -- -- 1 -- 0:01 H --

 Job held by user1 on Wed Aug 22 13:06:11 2004

18.south user1 workq aims14 -- -- 1 -- 0:01 W --

 Waiting on user requested start time

51.south barry workq airfoil 930 -- 1 -- 0:13 R 0:01

 Job run on host south - started Thu Aug 23 at 10:56

52.south user1 workq my_job -- -- 1 -- 0:10 Q --

 Not Running: No available resources on nodes

57.south susan workq solver -- -- 2 -- 0:20 Q --

 --

10.2.1.4.iii Printing Job Array Percentage Completed

The "-p" option to qstat prints the default display, with a column for Percentage Completed. For a job array, this is the
number of subjobs completed and deleted, divided by the total number of subjobs. For example:

qstat –p

Job ID Name User % done S Queue

------------- -------- ----------- -------- - -----

44[].host1 STDIN user1 40 B workq

10.2.1.4.iv Viewing Job Start Time

There are two ways you can find the job's start time. If the job is still running, you can do a qstat -f and look for the
stime attribute. If the job has finished, you look in the accounting log for the S record for the job. For an array job, only
the S record is available; array jobs do not have a value for the stime attribute.

10.2.1.4.v Viewing Estimated Start Times For Jobs

You can view the estimated start times and vnodes of jobs using the qstat command. If you use the -T option to
qstat when viewing job information, the Elap Time field is replaced with the Est Start Time field. Running jobs are
shown above queued jobs. Running jobs are sorted by their stime attribute (start time).

Queued jobs whose estimated start times are unset (estimated.start_time = unset) are displayed after those with esti-
mated start times, with estimated start time shown as a double dash ("--"). Queued jobs with estimated start times in the
past are treated as if their estimated start times are unset.

Time displayed is local to the qstat command. Current week begins on Sunday.

If the estimated start time or vnode information is invisible to unprivileged users, no estimated start time or vnode infor-
mation is available via qstat.
PBS Professional 2022.1 User’s Guide UG-185

Chapter 10 Checking Job & System Status
Example output:

qstat -T

 Est

 Req'd Req'd Start

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------- -------- ----- -------- ----- --- --- ------ ----- - -----

5.host1 user1 workq foojob 12345 1 1 128mb 00:10 R --

9.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 11:30

10.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Tu 15

7.host1 user1 workq foojob -- 1 1 128mb 00:10 Q Jul

8.host1 user1 workq foojob -- 1 1 128mb 00:10 Q 2010

11.host1 user1 workq foojob -- 1 1 128mb 00:10 Q >5yrs

13.host1 user1 workq foojob -- 1 1 128mb 00:10 Q --

If the start time for a job cannot be estimated, the start time is shown as a question mark ("?").

10.2.1.4.vi Why Does Estimated Start Time Change?

The estimated start time for your job may change for the following reasons:

• Changes to the system, such as vnodes going down, or the administrator offlining vnodes

• A higher priority job coming into the system, or a shift in priority of the existing jobs

10.2.1.5 Changing Output Format Characteristics

10.2.1.5.i Displaying Size in Gigabytes or Megawords

By default qstat displays size in the smallest displayable units. You can use the -G or -M options to qstat to display
sizes in gigabytes or megawords, respectively. Both of these options trigger display in alternate format. If you specify -G
and the actual size is less than 1GB, the output is rounded up to 1GB. A word is considered to be 8 bytes.

For example:

qstat –G

host1:

 Req'd Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

--------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 1gb -- Q --

For example:

qstat –M

host1:

 Req'd Req'd Elap

Job ID User Queue Jobname Sess NDS TSK Mem Time S Time

---------- ----- ----- ------- ---- --- --- ----- ----- - -----

43.host1 user1 workq STDIN 4693 1 1 -- -- R 00:05

44[].host1 user1 workq STDIN -- 1 1 -- -- Q --

45.host1 user1 workq STDIN -- 1 1 25mw -- Q --
UG-186 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
10.2.1.5.ii Viewing Job Status in Wider Columns

You can use the -w qstat option to display job status in wider columns with the default and alternate formats. The
total width of the display is extended from 80 characters to 120 characters. The Job ID column can be up to 30 characters
wide, while the Username, Queue, and Jobname column can be up to 15 characters wide. The SessID column can be up
to eight characters wide, and the NDS column can be up to four characters wide.

You can use this option only with the -a, -n, or -s qstat options.

This option is different from the -w option used with -f.

10.2.1.5.iii Path Display under Windows

When you view a job in long format that was submitted from a mapped drive, PBS displays the UNC path for the job's
Output_Path, Error_Path attributes, and the value for PBS_O_WORKDIR in the job's Variable_List attribute.

When you view a job in long format that was submitted using UNC paths for output and error files, PBS displays the
UNC path for the job's Output_Path and Error_Path attributes.

10.2.2 Examining Job Resource Usage

10.2.2.1 Examining Resource Usage by Running and Queued Jobs

You can see resource usage by running jobs, job arrays, and subjobs, by displaying the job in long format:

qstat -f <job ID>

10.2.2.2 Examining Resources Used by Finished and Moved Jobs

You can see the resources that finished and moved jobs and job arrays have used, but not finished or moved subjobs.

10.2.2.2.i Examining Resource Usage by Finished and Moved Jobs and Job
Arrays

You can see resource usage via the long format -f output option to qstat. To see the resources used by finished and
moved jobs and job arrays, use the output of the qselect command to filter the jobs that you list via qstat. Tell
qstat to look at all jobs and give you the full output showing resources in long format:

Linux:

qstat -fx `qselect -H`

Windows:

for /F "usebackq" %%j in (`"\Program Files\ PBSPro\ exec\ bin\qselect" -H`)

do ("\Program Files\PBS\exec\bin\qstat" -fx %%j)

10.2.2.2.ii Examining Resource Usage by Finished and Moved Subjobs

Resource usage by finished and moved subjobs is available only via the accounting logs, which are available only to root
and the PBS administrator.

10.2.3 Caveats for Job Information

• MoM periodically polls jobs for usage by the jobs running on her host, collects the results, and reports this to the
server. When a job exits, she polls again to get the final tally of usage for that job.

For example, MoM polls the running jobs at times T1, T2, T4, T8, T16, T24, and so on.

The output shown by a qstat during the window of time between T8 and T16 shows the resource usage up to T8.
PBS Professional 2022.1 User’s Guide UG-187

Chapter 10 Checking Job & System Status
If the qstat is done at T17, the output shows usage up through T16. If the job ends at T20, the accounting log (and
the final log message, and the email to you if "qsub -me" was used in job submission) contains usage through T20.

• The final report does not include the epilogue. The time required for the epilogue is treated as system overhead.

• The order in which jobs are displayed is undefined.

10.3 Checking Server Status

To see server information in default format:

qstat -B [<server> ...]

To see server information in long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server> ...]

10.3.0.1 Specifying Destination

If you don't specify a destination, you get the default server. You can specify a server. Format:

<server name>

Example 10-8: Getting status of non-default server S1:

qstat -B S1

Server Max Tot Que Run Hld Wat Trn Ext Status

----------- --- ---- ---- ---- ---- ---- ---- ---- ------

S1.example 0 14 13 1 0 0 0 0 Active

10.3.1 Viewing Server Information in Default Format

The "-B" option to qstat displays the status of the specified PBS server. One line of output is generated for each server
queried. The three letter abbreviations correspond to the following: Maximum, Total, Queued, Running, Held, Waiting,
Transiting, and Exiting. The last column gives the status of the server itself: active, idle, or scheduling.

qstat -B

Server Max Tot Que Run Hld Wat Trn Ext Status

----------- --- ---- ---- ---- ---- ---- ---- ---- ------

fast.domain 0 14 13 1 0 0 0 0 Active

10.3.2 Viewing Server Information in Long Format

You can see server status in JSON or delimiter-separated value formats; see “Job, Queue, and Server Status Options” on
page 210 of the PBS Professional Reference Guide.
UG-188 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
When querying jobs, servers, or queues, you can add the "-f" option to qstat to change the display to the full or long
display. For example, the server status shown above can be expanded using "-f" as shown below:

qstat -Bf

Server: fast.mydomain.com

server_state = Active

scheduling = True

total_jobs = 14

state_count = Transit:0 Queued:13 Held:0 Waiting:0

Running:1 Exiting:0

managers = user1@fast.mydomain.com

default_queue = workq

log_events = 511

mail_from = adm

query_other_jobs = True

resources_available.mem = 64mb

resources_available.ncpus = 2

resources_default.ncpus = 1

resources_assigned.ncpus = 1

resources_assigned.nodect = 1

scheduler_iteration = 600

pbs_version = PBSPro_2022.1.41640

10.4 Checking Queue Status

To view queue information in default format:

qstat -Q [<destination> ...]

To view queue information in alternate format:

qstat -q [-G | -M] [<destination> ...]

To view queue information in long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

10.4.1 Specifying Destination

If you don't specify a destination, you get jobs at all queues at the default server. You can specify queue and/or server.

• To display status for the specified queue at the default server:

<queue name>
• To display status for the specified queue at the specified server:

<queue name>@<server name>
• To display status for all queues at the specified server:

@<server name>
PBS Professional 2022.1 User’s Guide UG-189

Chapter 10 Checking Job & System Status
10.4.2 Viewing Queue Information in Default Format

The "-Q" option to qstat displays the status of specified queues. One line of output is generated for each queue que-
ried.

qstat -Q

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type

----- --- --- --- --- --- --- --- --- --- --- ---------

workq 0 10 yes yes 7 1 1 1 0 0 Execution

The columns show the following for each queue:

• Queue Queue name

• Max Maximum number of jobs allowed to run concurrently in the queue

• Tot Total number of jobs in the queue

• Ena Whether the queue is enabled or disabled

• Str Whether the queue is started or stopped

• Que Number of queued jobs

• Run Number of running jobs

• Hld Number of held jobs

• Wat Number of waiting jobs

• Trn Number of jobs being moved (transiting)

• Ext Number of exiting jobs

• Type Type of queue: execution or routing

10.4.3 Displaying Queue Limits in Alternate Format

The "-q" option to qstat displays any limits set on the requested (or default) queues. Since PBS is shipped with no
queue limits set, any visible limits will be site-specific. The limits are listed in the format shown below.

qstat -q

server: south

Queue Memory CPU Time Walltime Node Run Que Lm State

------ ------ -------- -------- ---- --- --- -- -----

workq -- -- -- -- 1 8 -- E R

10.4.4 Viewing Queue Information in Long Format

You can see queue information in JSON or delimiter-separated value formats; see “Job, Queue, and Server Status
Options” on page 210 of the PBS Professional Reference Guide.
UG-190 PBS Professional 2022.1 User’s Guide

Checking Job & System Status Chapter 10
Use the long format to see the value for each queue attribute:

qstat -Qf

Queue: workq

queue_type = Execution

total_jobs = 10

state_count = Transit:0 Queued:7 Held:1 Waiting:1

Running:1 Exiting:0

resources_assigned.ncpus = 1

hasnodes = False

enabled = True

started = True

10.4.5 Caveats for the qstat Command

When you use the -f option to qstat to display attributes of jobs, queues, or servers, attributes that are unset may not be
displayed. If you do not see an attribute, it is unset.

10.5 Checking License Availability

You can check to see where licenses are available. You can do either of the following:

• Display license information for the current host:
qstat -Bf

• Display resources available (including licenses) on all hosts:
qmgr

Qmgr: print node @default

If your site is using floating licenses, when looking at the server's license_count attribute, use the sum of the
Avail_Global and Avail_Local values.
PBS Professional 2022.1 User’s Guide UG-191

Chapter 10 Checking Job & System Status
UG-192 PBS Professional 2022.1 User’s Guide

11

Running Jobs in the Cloud

11.1 Introduction

You run a job in the cloud by putting that job in a cloud queue. You can submit the job to the queue, or move it there
from another queue. Each cloud queue gives its jobs access to a specific scenario; that scenario offers specific instance
types, OS images, and application licenses. Each scenario has a default instance type and OS image. Each job can
request any instance type, OS image, or application license offered by the scenario. A job cannot request an instance
type, OS image, or application license that is not offered by the scenario.

11.2 Running Your Job in the Cloud

Each cloud scenario is associated with a specific cloud queue and vice versa. Each scenario offers specific instance
types, OS images, and application licenses. Submit your job to the cloud queue that offers the right combination. You
specify the queue via the -q <queue name> option to qsub. You can override the default instance type and OS
image by requesting them at job submission.

To submit a job that can run in the cloud, submit it to the configured cloud queue. Syntax:

qsub -q <name of cloud queue> -l <resource request> <job script>

For example:

qsub -q cloudq -- /bin/sleep 100

11.2.1 Requesting Instance Type

Each scenario has a default instance type, specified in the cloud_instance_type queue resource. You can choose any of
the instance types offered by the queue scenario. To request an instance type, specify the instance via the
cloud_node_instance_type chunk resource:

qsub -lselect=...:cloud_node_instance_type=<instance type>:... -q <queue name> <job script>

For example:

qsub -lselect=1:ncpus=2:mem=1gb:cloud_node_instance_type=e2-highmem-8

Make sure that the instance type you request matches the offered instance type exactly. Each chunk can request or
default to a different instance type.

11.2.1.1 Requesting Preemptable and Spot Instances

If the scenario includes them, you can request preemptable instances, including spot instances. When requesting cloud
nodes, the request should be for either non-preemptable instances or preemptable instances, but not both. Do not request
some cloud nodes that are on-demand and some that are preemptable or spot.
PBS Professional 2022.1.0 Cloud Guide CG-193

Chapter 11 Running Jobs in the Cloud
11.2.2 Requesting OS Image

Each scenario has a default OS image, specified in the cloud_default_image scenario parameter. You can use the
default, or choose any of the OS images offered by the queue scenario. To request an OS image, specify the image via
the cloud_node_image chunk resource in the select statement.

qsub -lselect=...:cloud_node_image=<OS image>:... -q <queue name> <job script>

For example:

qsub -lselect=1:ncpus=2:mem=1gb:cloud_node_image="myimages/image-1" myscript

Each chunk can use a different OS image.

11.2.3 Running Your Job on Cloud Nodes Connected by a

High Speed Network

You may want to run jobs on cloud nodes where all job nodes are on the same high speed network. Cloud providers can
allow PBS Cloud to burst groups of nodes where each group is connected by a high speed switch. For example, Azure
provides InfiniBand scale sets, and Oracle provides InfiniBand instance pools. To simplify the discussion, we call a
group of nodes on a high speed network a proximate node group.

When PBS Cloud bursts a group of nodes on a high speed network, it labels all of the nodes in that proximate node group
with the same network name. You do not need to request the actual network name; you only need to request that your job
is on such a node group via the cloud_network=ib chunk request. See our example below.

11.2.3.1 Running Your Job on Cloud Instances Connected by a High

Speed Network and Burst on Bare Metal

Additionally, PBS lets you run jobs on cloud nodes connected by a high speed network where the instances are burst on
bare metal. There is no difference between running a job on a high speed network with or without using bare metal. To
burst instances on bare metal, make sure that you choose the correct instance type and matching OS (but this is true for
any job using a high speed network).

In this version, Oracle is the only provider that allows you to burst instances on bare metal.

11.2.3.2 Caveats and Restrictions for Jobs on High Speed Networks

You can run your job using a high speed network only where the network is offered by the cloud provider and supported
by PBS Cloud. Currently PBS Cloud supports high speed networks on Oracle and Azure.

The current default limit for the number of Azure nodes with InfiniBand is 100.

11.2.3.3 How to Run a Job on Cloud Nodes on a High Speed Network

To run on a group of cloud nodes connected by a high speed network (a proximate node group), request
cloud_network=ib for each job chunk. O

Make sure that each chunk in your job gets the following, and make sure they are the same across all chunks of the job:

• Instance type with high speed network enabled

via the cloud_node_instance_type resource

• OS image enabled with a high speed network

via the cloud_node_image resource
CG-194 PBS Professional 2022.1.0 Cloud Guide

Running Jobs in the Cloud Chapter 11
You can submit your job to the queue that is associated with the bursting scenario you want that has the instance type and
OS image you want (for example, an Azure scenario with InfiniBand enabled). You can also request the instance type
and OS image.

Here is the syntax for running your job in a proximate node group and requesting instance type and OS image:

qsub -q <cloud queue> -lselect=...:cloud_network=ib:cloud_node_instance=<instance type w/high speed
network>:cloud_node_image=<OS image w/high speed network> <job script>

For example:

qsub -q cloudq -lselect=1:ncpus=2:mem=1gb:cloud_network=ib:cloud_node_instance_type= e2-high-
mem-8:cloud_node_image="projects/images/myimage" -- /bin/sleep 60

Do not request the cloud_scenario resource.

11.2.4 Running Jobs Requiring Application Licenses

To run a job that needs an application license:

• Choose a scenario that offers that application license

• Request the application license

Each application license is represented by two PBS resources; one is static, and one is dynamic. If your job requires
an application license, your job script must include requests for both resources. For example, if your job requires an
App1 license, represented by the resources app1_static and app1_dynamic, your job script should contain the fol-
lowing:

#PBS -l app1_static=1

#PBS -l app1_dynamic=1

11.3 Sample Job Scripts for Cloud Jobs

11.3.1 Example of Simple Sleep Job Script

Example 11-1: Simple job requesting 10 minutes of walltime that will sleep for 1 minute (or tune $sleeptime as appro-
priate) and then exit. It requests cloudq; adjust the name depending on your site configuration. You can save the
following job script as sleep.sh. Then you can submit it to PBS:

qsub sleep.sh

Script:

#!/bin/bash

#PBS -N testjob

#PBS -j oe

#PBS -m n

#PBS -q cloudq

#PBS -l select=1:ncpus=2:mem=16mb

#PBS -l walltime=0:10:00

sleeptime=60

cmd="sleep $sleeptime"

echo $cmd

$cmd

exit
PBS Professional 2022.1.0 Cloud Guide CG-195

Chapter 11 Running Jobs in the Cloud
11.3.2 Example of Radioss Cloud Job Script

Example 11-2: Job script for cloud job that uses 25 Radioss licenses. This script uses Intel MPI. The static resource is
named "Rad_stat" and the dynamic resource is named "Rad_dyn":

#!/bin/bash

#PBS -N RunRad

#PBS -j oe

#PBS -m n

#PBS -q CloudRadq

#PBS -P project1

#PBS -l select=1:ncpus=16:mem=16gb

#PBS -l walltime=2:00:00

#PBS -l Rad_stat=25

#PBS -l Rad_dyn=25

/usr/local/altair/scripts/radioss -mpi i -nt $NCPUS -np 1 -hostfile $PBS_NODEFILE -both
SEAT_DYREL_0000.rad

11.3.3 Viewing Job Output

When the job completes you should see the job's output. This will appear where the job was submitted.
CG-196 PBS Professional 2022.1.0 Cloud Guide

12

Using Budgets

12.1 Budgets Commands

12.1.1 Command Path

To run Budgets commands, export the path of the am binaries to the PATH environment variable by using the command:

export PATH=$PATH:/opt/am/python/bin/

12.1.2 Using Budgets Commands

All Budgets commands are prefixed with "amgr ".

To see a list of Budgets subcommands with a single-line description for each command:

amgr <enter>

To get usage information for a command or subcommand:

<command> --help

<command> <subcommand> --help

For example:

amgr add --help provides information on how to use the main amgr add command

amgr add period --help provides information on how to use the period subcommand.

If you enter a command without the required arguments, Budgets will prompt you to enter them.

See "Budgets Commands" on page 77 in the PBS Professional Budgets Guide.

12.2 Submitting Jobs with Budgets

Before you submit a job, you can ask Budgets to give you an estimate for the cost of the job.

Any job that is submitted must be validated by Budgets in order to be queued. Make sure that you are charging the job to
a valid user or project account.

You can run project jobs on the PBS complexes associated with the project. You can run your own jobs on the complexes
associated with your account. You can run jobs only when your account is active.

Job submitters do not need to log into Budgets.

12.2.1 Getting Job Cost Estimate from Budgets

You can get Budgets to give you a quote for the cost of your job before you submit that job. It can tell you how much of
each currency the job would require if you were to submit the job. You request an estimate, then PBS prints the esti-
mated costs associated with the job. You can get cost estimates for cloud or on premise jobs.
PBS Professional 2022.1 Budgets Guide BG-197

Chapter 12 Using Budgets
Estimated cost may be different from actual cost because Budgets estimates the cost of each job based on the job's
requested resources, but computes the final cost for a job that has run based on resources actually used.

If your administrator has configured Budgets with the quote command, you can use that to get a job quote. Otherwise
you use the qsub command to get a job quote. When you use the qsub command to get a quote, you use normal job
submission language, but the job does not actually run.

12.2.1.1 Requesting Cost Estimate via quote Command

To use the quote command to get an estimate for the cost of a job, you use the same job script or resource request as
you would to submit the job, but you pass it to the quote command:

quote <job script>
quote -l <resource>=<value> -lselect=...

For example:

quote my_job_script.sh

quote -l walltime=1:00 -lselect=2:ncpus=4:mem=8GB --/bin/sleep 30

12.2.1.1.i Examples of Requesting Estimate of Costs via quote Command

Example 12-1: You submit a sleep job requesting 30 seconds of walltime and your sleep command calls for 30 seconds,
and the charge rate is a penny for every CPU-second:

quote -l walltime=30 --/bin/sleep 30

qsub: Budgets estimate for job cost: {"cpu_sec": 30.0, "dollar": 0.30}

If you run the job, you are charged 30 cents (one penny for each CPU-second).

Example 12-2: You submit a sleep job requesting 30 seconds of walltime but your sleep command calls for 20 seconds,
and the charge rate is a penny for every CPU-second:

quote -l walltime=30 --/bin/sleep 20

qsub: Budgets estimate for job cost: {"cpu_sec": 30.0, "dollar": 0.30}

If you run the job, you are charged 20 cents (one penny for each CPU-second).

12.2.1.2 Requesting Cost Estimate via qsub Command

To use the qsub command to get an estimate for the cost of a job, you use the same qsub command to submit the job,
but you include "-l am_job_quote=true":

qsub ... -l am_job_quote=true

When you include this option, the job is not actually submitted, only evaluated.

12.2.1.3 Estimate Format

Budgets prints an estimate for the amount of each currency your job would require. Format:

qsub: Budgets estimate for job cost: {"<currency name>": <value>, "<currency name>": <value>, ...}

12.2.1.3.i Examples of Requesting Estimate of Costs via qsub Command

Example 12-3: You submit a sleep job requesting 30 seconds of walltime and your sleep command calls for 30 seconds,
and the charge rate is a penny for every CPU-second:

qsub -l walltime=30 -l am_job_quote=t --/bin/sleep 30

qsub: Budgets estimate for job cost: {"cpu_sec": 30.0, "dollar": 0.30}
BG-198 PBS Professional 2022.1 Budgets Guide

Using Budgets Chapter 12
If you run the job, you are charged 30 cents (one penny for each CPU-second).

Example 12-4: You submit a sleep job requesting 30 seconds of walltime but your sleep command calls for 20 seconds,
and the charge rate is a penny for every CPU-second:

qsub -l walltime=30 -l am_job_quote=t --/bin/sleep 20

qsub: Budgets estimate for job cost: {"cpu_sec": 30.0, "dollar": 0.30}

If you run the job, you are charged 20 cents (one penny for each CPU-second).

12.2.1.4 Caveats and Restrictions for Getting Job Cost Estimate

Some nodes may have special costs associated with those nodes. Budgets does not know where the job will run, so it
does not know about costs associated with specific nodes. The estimate you get from Budgets will not include those
costs, if any.

12.2.2 Checking Whether You Have Enough Credit to Run Job

You can query Budgets to find out whether you have sufficient credit to run a specific job or jobs. Note that you can give
the command a list of jobs to check; the command examines each job individually, without considering the other jobs in
the list. So for example if you have 10 credits, and you check two jobs each requiring 10 credits, the command will tell
you that you can run both. To query Budgets about jobs, use amgr precheck jobs. See "Prechecking Jobs" on
page 126 in the PBS Professional Budgets Guide.

12.2.3 Charging Jobs to User or Project Account

When you submit a job, the job is charged to an account.

• To charge a job to a project account, use qsub -P <project name> to specify the project. For example, to run
a job using ProjectScript for one hour and charge it to the project named "Project1":
qsub -P Project1 -l select=1:ncpus=1:mem=1gb -l walltime=1:00:00 ProjectScript

• To charge a job to your own account, do not specify a project. For example, to run a job using MyScript for one hour
and charge it to your own account:
qsub -l select=1:ncpus=1:mem=1gb -l walltime=1:00:00 MyScript

12.2.4 Credit

Each project has its own credit balance, and each job submitter has their own credit balance. Credit is measured in stan-
dard service units. A service unit represents usage of a PBS-tracked resource, such as CPU hours or GPU hours. A ser-
vice unit can be treated like a currency. Group managers are responsible for depositing service units into user and project
accounts.

12.2.5 Submitting Jobs in Postpaid Mode

In postpaid mode, you do not need credit to run a job. Running jobs in postpaid mode is like using a credit card, except
that the amount you can charge is not limited by Budgets and you don't have to pay off the bill.

If you are in postpaid mode, you can charge jobs to your own account or any project accounts to which you belong.

When a job finishes, Budgets debits the amount of credit that was consumed by the job.

You can optionally pay down the bill, and the administrator can optionally refund you for a job.
PBS Professional 2022.1 Budgets Guide BG-199

Chapter 12 Using Budgets
12.2.6 Submitting Jobs in Prepaid Mode

In prepaid mode, you need credit in order to run a job.

If you are in prepaid mode, you can charge jobs to your own account as long as you have sufficient credit. If you are part
of a project, you can charge project jobs to that project's account, as long as the project has sufficient credit.

You can start a job only if the credit account it will use has sufficient credit. When the job starts, the requested credit is
put into escrow. When the job finishes, any unused credit is returned to the account. Budgets does not allow your credit
balance to become negative.

If you do not have sufficient credit to run a job, the job is held with a user hold. To allow the job to run, first acquire
enough credit to run the job, then use qrls to release the hold on the job.

12.2.7 Resource Requirements for Jobs

Each job must request the compute resources that are used in the billing formula used at that complex. For the default
formula, this means walltime and ncpus. Make sure that every PBS job requests ncpus and walltime when it runs.
Each job can have these set at submission by the job submitter or later via qalter, can inherit a value from the server or
queue, or can be assigned a value by a hook. For ncpus, the server attribute default_chunk.ncpus may take care of the
requirement.

12.2.8 Accounting Policy

Jobs are charged to the periods in which they run. A project job is charged according to the project's accounting policy.
Your jobs are charged according to your accounting policy. An accounting policy is one of the following:

begin_period
The user or project account is charged when the job begins.

end_period
The user or project account is charged when the job ends.

proportionate
The user or project account is charged during all periods when the job runs, and each period is charged in pro-
portion to the usage during that period.

12.2.9 Allocation Periods

Your credit balance is allocated in specific time periods. Each period has a defined start and end date.

To see what periods have been defined:

amgr ls period

See "Listing Periods" on page 88 in the PBS Professional Budgets Guide.

In prepaid mode, credit in a period cannot be used when the period is over, although a group manager or administrator
can transfer credit from one period to another.

12.2.10 Checking Your Credit Balance

When you check your credit balance, specify the period:

amgr checkbalance -n <your username> -p <period>
BG-200 PBS Professional 2022.1 Budgets Guide

Using Budgets Chapter 12
For example, if your username is MyUsername and the period in question is Q4:

amgr checkbalance -n MyUsername -p Q4

See "Checking Service Unit Balance for User" on page 122 in the PBS Professional Budgets Guide.

12.2.11 Listing Clusters

You can list the clusters that represent PBS complexes associated with Budgets:

amgr ls cluster [-n <PBS server>] [-a <active>] [-f] [-l | -j]

For example:

amgr ls cluster -n Cluster1 -f

See "Listing Clusters" on page 87 in the PBS Professional Budgets Guide.

12.2.12 Quotas on External Resources

There may be quotas set on externally-managed resources such as storage. A quota is a limit on a dynamic service unit.
To see quotas, list all service units:

amgr ls serviceunit

See "Listing Service Units" on page 88 in the PBS Professional Budgets Guide.

12.2.13 Getting Reports on Usage and Transactions

You can get reports on your own usage:

amgr report user -n <username> [-s <service unit name> | -t <service unit type>] -h <group names> -p <period> -S
<start date> -E <end date> [-l] [-o <output file>] [-r]

For example, to get a report on MyUsername for the period Q4:

amgr report user -n MyUsername -p Q4

See "Getting User Reports" on page 104 in the PBS Professional Budgets Guide.

You can get reports on your transactions

amgr report transaction -i <transaction ID> [-l] -N <count> [-o <output-file>] [-r]

12.3 Tutorials

12.3.1 Tutorial on Using Budgets in Prepaid Mode

12.3.1.1 Prerequisites

A working installation of PBS Professional, with at least two accounts that can submit and run jobs at the complex. In
our example, the cluster is named Cluster1, and the users are User1 and User2. User1 is associated with a cluster named
Cluster1 and a project named P1. User1 has credit of 1200 cpu_hrs, and P1 has credit of 1000 cpu_hrs.

Substitute in your own names for the cluster, project, and users when going through the tutorial.
PBS Professional 2022.1 Budgets Guide BG-201

Chapter 12 Using Budgets
12.3.1.2 Tutorial Steps to Use Budgets

12.3.1.2.i Run User Job

1. Log in as User1.

2. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User1:

qsub -lwalltime=00:02:00 -- /bin/sleep 10

3. Check the credit balance for user User1. It will have decreased:

amgr checkbalance user -n User1 -p 2022.Q2

4. After the job is finished, check the balance again. You should see that the unused amount has been returned:

amgr checkbalance user -n User1 -p 2022.Q2

12.3.1.2.ii Run Project Job

5. Run a sleep job for 36 seconds with a walltime of 1 hour, and charge it to project P1:

qsub -P P1 -lwalltime=01:00:00 -- /bin/sleep 36

6. To see the job running:

qstat -sw

7. Log in as Manager1.

8. Check the credit balance for project P1. It will have decreased:

amgr checkbalance project -n P1 -p 2022.Q2

9. After the job is finished, check the balance again. You should see that the unused amount has been returned:

amgr checkbalance project -n P1 -p 2022.Q2

12.3.1.2.iii Non-project User Tries to Run Project Job

10. Log in as User2.

11. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User2:

qsub -lwalltime=00:02:00 --/bin/sleep 10

12. Check the credit balance for user User2. It will have decreased:

amgr checkbalance user -n User2 -p 2022.Q2

13. After the job is finished, check the balance again. You should see that the unused amount has been returned:

amgr checkbalance user -n User2 -p 2022.Q2

14. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to project P1:

qsub -P P1 -lwalltime=00:02:00 -- /bin/sleep 10

This job cannot run, because User2 is not part of project P1.

Example 12-5: Report for all standard service units and current lowest period:

amgr report project -n p1
BG-202 PBS Professional 2022.1 Budgets Guide

Using Budgets Chapter 12
12.3.1.2.iv Manager Runs Report on Project

15. Log in as Manager1:

amgr login

16. Get report on project P1:

amgr report project -n P1

Command output:

name | period | serviceunit | opening_balance | total_credits

P1 | 2022 | cpu_hrs | 0.0 | 1000.0

--

| total_debits | total_debits_reconciled | total_debits_authorized

--

| 0.01 | 1.99 | 0.0

| net_balance | metadata

| 999.99 | {}

12.3.2 Tutorial on Using Budgets in Postpaid Mode

12.3.2.1 Prerequisites

A working installation of PBS Professional, with at least two accounts that can submit and run jobs at the complex. In
our example, the cluster is named Cluster1, and the users are User1 and User2. User1 is associated with a cluster named
Cluster1 and a project named P1.

Substitute in your own names for the cluster, project, and users when going through the tutorial.

12.3.2.2 Tutorial Steps to Use Budgets

12.3.2.2.i Run User Job

17. Log in as User1.

18. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User1:

qsub -lwalltime=00:02:00 -- /bin/sleep 10

19. After the job is finished, check the credit used by user User1. It will have increased:

amgr checkbalance user -n User1 -p 2022
PBS Professional 2022.1 Budgets Guide BG-203

Chapter 12 Using Budgets
12.3.2.2.ii Run Project Job

20. Run a sleep job for 36 seconds with a walltime of 1 hour, and charge it to project P1:

qsub -P P1 -lwalltime=01:00:00 -- /bin/sleep 36

21. To see the job running:

qstat -sw

22. Log in as Manager1.

23. After the job is finished, check the credit used by project P1. It will have increased:

amgr checkbalance project -n P1 -p 2022

12.3.2.2.iii Non-project User Tries to Run Project Job

24. Log in as User2.

25. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User2:

qsub -lwalltime=00:02:00 --/bin/sleep 10

26. After the job is finished, check the credit used by user User2. It will have increased:

amgr checkbalance user -n User2 -p 2022

27. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to project P1:

qsub -P P1 -lwalltime=00:02:00 -- /bin/sleep 10

This job cannot run, because User2 is not part of project P1.

12.3.2.2.iv Manager Runs Report on Project

28. Log in as Manager1:

amgr login

29. Get report on project P1:

amgr report project -n P1

Command output:

--

name | period | serviceunit | total_outstanding | metadata

--

P1 | 2022 | cpu_hrs | 000.01 | {}
BG-204 PBS Professional 2022.1 Budgets Guide

13

Submitting Jobs to NEC

SX-Aurora TSUBASA

13.1 Vnodes for NEC SX-Aurora TSUBASA

The basic hardware unit for NEC SX-Aurora TSUBASA is a vector host (a standard x86 server) connected to a set of
accelerators called vector engines (VEs) via optional PCIe. The unit can consist of one or more NUMA nodes. Each unit
uses one or more host channel adapters to communicate with other units and with the rest of the world.

The increasing order of communication overhead is first within a vector engine, then between vector engines via a shared
PCIe, then between vector engines via PCIes on a common vector host, and finally between vector engines on separate
vector hosts.

PBS creates topology-aware vnodes by grouping each PCIe with its associated vector host and vector engines together
into one vnode. If there is no PCIe, PBS groups the vector host and its VEs into a vnode. A NUMA node without its own
PCIe is in its own vnode. The topology-based vnode creation is handled by an exechost_startup event in the built-in
hook named PBS_sx_aurora.

PBS tries to do topology-aware scheduling by grouping job processes on vector engines in a way that produces the low-
est communication overhead. When a job requests vector engines, PBS tries to assign vector engines from a single
vnode to minimize communication overhead between vector engines.

13.2 Terminology

HCA

Host channel adapter. Network interconnect used by vnode. Each vector host can have one or more HCAs.

Vector engine, VE

Accelerator associated with vector host. Executes parallel and/or vectorized numeric operations.

Vector host, VH

Standard x86 server. Performs tasks such as I/O.

VE offloading

Main operations that take place on the vector host offload parallel and/or vectorized numeric operations to vec-
tor engines. In offloading, NEC MPI launches processes on the VH, and those processes then launch other job
processes on VEs assigned to the job. See section 13.4.3.4, “Using VE Offloading”, on page 210.
PBS Professional 2022.1 User’s Guide UG-205

Chapter 13 Submitting Jobs to NEC SX-Aurora TSUBASA
13.3 Resources for SX-Aurora TSUBASA

nves
Host-level consumable integer. Allows you to specify the number of vector engines per chunk. PBS sets the
available VEs on a vnode in resources_available.nves. The default for resources_available.nves is num-
ber of VEs attached to the PCIe. The out-of-the-box default value for a job request is zero; PBS assigns a value
of zero unless the administrator has set the value otherwise.

nhcas
Chunk-level non-consumable integer. When requested in a job chunk, PBS sets _NEC_HCA_LIST_IO and
_NEC_HCA_LIST_MPI environment variables accordingly for that chunk. When not requested for a chunk,
PBS sets _NEC_HCA_LIST_IO and _NEC_HCA_LIST_MPI to include all HCAs on a host.

ve_mem
Job-wide string. Used for reporting the maximum memory on vector engines used by job.

ve_cput
Job-wide string. Used for reporting the total CPU time, in seconds, on vector engines used by job.

ncpus
PBS sets the value of resources_available.ncpus on each vnode to (#CPUs on whole host / #vnodes on host)
- #VEs on vnode. One CPU per VE is reserved for the VEOS daemon.

mem
PBS sets the value of resources_available.mem on each vnode by dividing the memory of the whole host
equally among the vnodes on the host.

13.4 Running Your Job on NEC SX-Aurora

TSUBASA

13.4.1 Requesting Resources on NEC SX-Aurora TSUBASA

You can request CPUs on the VH using the ncpus resource. If you do not request ncpus for the processes that will run
on the VH, PBS will assign your job the default number of CPUs, which is generally 1 (one).

You request VEs for each chunk using the nves resource.

You request HCAs for each chunk using the nhcas resource. PBS will always try to assign the HCA closest to the job's
VEs to the job.

13.4.1.1 Restrictions for Requesting HCAs

If you request chunks with different numbers of HCAs, for example a one-HCA chunk and a two-HCA chunk, add -l
place=scatter to your request, otherwise performance may be reduced. If you do not specify -l place=scatter, the
value of nhcas for all chunks on each vector host is set to the value given for the first chunk.
UG-206 PBS Professional 2022.1 User’s Guide

Submitting Jobs to NEC SX-Aurora TSUBASA Chapter 13
13.4.2 Default Process Distribution

On NEC SX-Aurora TSUBASA, use the mpirun command and optionally specify process distribution via the
NEC_PROCESS_DIST environment variable. NEC MPI launches processes directly on VHs and/or VEs and orders
process ranks according to the mpirun command line. Here are some example mpirun commands that use default
process distribution:

Example 13-1: To run 32 ve.out processes on VEs:

mpirun -np 32 ve.out

Example 13-2: To run 1 vh.out process on the VH and 12 ve.out processes on VEs:

mpirun -vh -np 1 vh.out : -np 12 ve.out

The process with rank 0 executes vh.out on a VH, and processes with ranks 1 through 12 execute ve.out on VEs.

Example 13-3: We have 1 chunk with 4 VEs running 4 processes, and 1 chunk with 4 VEs running 13 processes:

qsub -lselect=1:nves=4:mpiprocs=4+1:nves=4:mpiprocs=13

In job script:

mpirun -np 17 ve.out

13.4.2.1 Letting PBS Distribute VE Processes in a Chunk

Without NEC_PROCESS_DIST, PBS distributes processes in a chunk as described in this section, depending on
whether or not the number of processes in the chunk is an integer multiple of the number of VEs in the chunk. Processes
are directly launched by NEC MPI. When it is an integer multiple, we call it "perfect distribution".

13.4.2.1.i Perfect Distribution

Within a chunk, if the number of processes is an integer multiple of the number of VEs, PBS puts the same number of
processes on each VE. For example if you have 12 processes and 4 VEs, PBS puts 3 processes on each VE.

To let PBS distribute VE processes as evenly as possible across the VEs in a chunk, request the chunk, and specify the
number of VEs and the number of processes via the mpiprocs resource.

Example 13-4: We have 1 chunk with 6 processes and 2 VEs, and we want 3 VE processes to run on each VE:

In the job script:

mpirun -np 6 ve.out

Submit the job:

qsub -l select=ncpus=2:nves=2:mpiprocs=6 ...

13.4.2.1.ii Imperfect Distribution

If the number of processes is not an integer multiple of the number of VEs, PBS gives more processes to the VEs earlier
in topological order as recognized by PBS. PBS gives those VEs the smallest integer greater than (#processes / #VEs),
and puts the remainder on the next VE. For example if you have 10 processes and 4 VEs, PBS may put 3 processes on
the first 3 VEs, and one process on the last VE. However, if you have 5 processes and 4 VEs, PBS puts 2 processes on
the first 2 VEs, 1 process on the next VE, and no processes on the last VE.

Example 13-5: We request 2 CPUs, 3 VEs, and 8 mpiprocs. In this example, the first VE gets 3 VE processes, the sec-
ond VE gets 3 VE processes, and the third VE gets 2 processes. In the job script:

mpirun -np 8 ve.out

Submit the job:

qsub -l select=ncpus=2:mpiprocs=8:nves=3 ...
PBS Professional 2022.1 User’s Guide UG-207

Chapter 13 Submitting Jobs to NEC SX-Aurora TSUBASA
Distribution of processes on VEs:

ve=0

ve=0

ve=0

ve=1

ve=1

ve=1

ve=2

ve=2

13.4.3 Specifying Process Distribution

You can optionally use the NEC_PROCESS_DIST environment variable to specify where processes should run. You
specify process distribution chunk by chunk. You can either launch processes directly via NEC MPI, or you can have the
process(es) that run on the VH launch any processes that run on VEs.

In each chunk, you can do the following:

• Specify the number of processes for each VE in the chunk, using one of these methods:

• Specify different numbers of processes for direct launch on each VE, as in Section 13.4.3.1, "Specifying Process
Placement for All VEs in a Chunk"

• Distribute processes for direct launch evenly by specifying the number of processes for just the first VE and
implying the rest, as in Section 13.4.3.2, "Replicating Process Distribution Across VEs in a Chunk"

• Let PBS distribute the processes for direct launch as evenly as possible, as in Section 13.4.2.1, "Letting PBS
Distribute VE Processes in a Chunk"

• Use VE offloading to indirectly launch processes on VEs, as in Section 13.4.3.4, "Using VE Offloading"

• Specify which processes should run on the vector host, as in Section 13.4.3.3, "Placing Processes on VHs"

Additionally, if you have a group of identical chunks, you can specify the process placement for the first of these chunks,
and PBS can replicate the placement for the remaining identical chunks. If you have more than one such group, where
each group is different, you can specify the placement for just the first chunk for each group. See Section 13.4.3.5, "Rep-
licating the Same Process Distribution Across Multiple Chunks".

We describe the syntax for process distribution in detail in each of the following sections, but here is a summary. Syntax
for process distribution for multiple chunks:

NEC_PROCESS_DIST = <chunk1 distribution>+<chunk2 distribution> +... + <chunkN distribution>

where <chunk distribution> is

[<number of processes on vector host>]:[<number of processes on first VE>][:<numbers of processes on subsequent
VEs>]

Separate each chunk specification using a plus sign ("+").

13.4.3.1 Specifying Process Placement for All VEs in a Chunk

Within each chunk, you can optionally specify how many VE processes should be directly launched by NEC MPI on
each VE. Separate the number of VE processes you want on each VE with a colon.
UG-208 PBS Professional 2022.1 User’s Guide

Submitting Jobs to NEC SX-Aurora TSUBASA Chapter 13
Syntax for distribution of processes on VEs in a single chunk:

NEC_PROCESS_DIST=<process count for first VE>:<process count for second VE> :...: <process count for nth VE>

Example 13-6: We have 6 processes, and 3 VEs, and we want 1 process to run on the first VE, 3 on the second, and 2 on
the third:

qsub -lselect=1:ncpus=2:nves=3:mpiprocs=6 -v NEC_PROCESS_DIST=1:3:2

13.4.3.1.i Restrictions and Caveats for Process Placement for All VEs in Chunk

For a chunk, when you specify the process count for more than one VE, you must specify the process count for all VEs.

13.4.3.2 Replicating Process Distribution Across VEs in a Chunk

If you specify how many VE processes should be directly launched by NEC MPI on just the first VE in a chunk, PBS can
replicate that distribution for the rest of the VEs in the chunk. Distribution depends on whether or not the number of pro-
cesses in the chunk is an integer multiple of the number of VEs in the chunk. When it is an integer multiple, we call it
"perfect distribution". We say that when you specify only for the first VE in a chunk, you are implying what should hap-
pen for the others in that chunk.

Syntax for replicating process distribution across VEs in a single chunk:

NEC_PROCESS_DIST=<process count for first VE>

13.4.3.2.i Implying Perfect Distribution

You can use implied specification for perfect distribution via direct launch by NEC MPI over VEs.

Example 13-7: We have 1 chunk with 6 processes and 2 VEs, and we want 3 VE processes to run on each VE:

-l select=ncpus=2:nves=2:mpiprocs=6 -v NEC_PROCESS_DIST=3

13.4.3.2.ii Implying Imperfect Distribution

You can imply imperfect distribution (when the number of processes is not an integer multiple of the number of VEs) via
direct launch by NEC MPI, by following the same formula PBS uses. Specify the larger number of processes (the small-
est integer greater than #processes/#VEs) for the first VE. For example, if you have 7 processes and 3 VEs, specify 3
processes for the first VE, not 1 or 2.

Example 13-8: We have 1 chunk with 11 processes and 3 VEs, and we want 4 VE processes to run on the first and sec-
ond VEs, and 3 processes on the third VE:

-l select=ncpus=2:nves=3:mpiprocs=11 -v NEC_PROCESS_DIST=4

13.4.3.3 Placing Processes on VHs

For each chunk in a job, you can place one or more of the processes on the VH by specifying the number of VH pro-
cesses. Use the letter "S" before the number of VH processes. You can combine this with the methods for launching pro-
cesses on VEs (direct launch or VE offloading).

Syntax for distribution of processes on VH:

NEC_PROCESS_DIST=S<VH process count>

Syntax for distribution of processes for a single chunk on VH and on VEs (the specification for VH process count can
appear in any position in the chunk distribution; we show it here in the first position):

NEC_PROCESS_DIST=S<VH process count>:<process count for first VE>[:<process count for second VE> :...:
<process count for nth VE>]
PBS Professional 2022.1 User’s Guide UG-209

Chapter 13 Submitting Jobs to NEC SX-Aurora TSUBASA
Separate chunks with a plus sign:

NEC_PROCESS_DIST=S<VH process count>:<process count for first VE>[:<process count for second VE> :...:
<process count for nth VE>]+S<VH process count>:<process count for first VE>[:<process count for second VE>
:...: <process count for nth VE>]

Example 13-9: We have 5 processes and 1 VE. The first 2 processes will run on the VH, and the last 3 will run on the
VE:

qsub -lselect=1:ncpus=2:nves=1:mpiprocs=5 -v NEC_PROCESS_DIST=S2:3

13.4.3.3.i Restrictions and Caveats for Placing Processes on VHs

• When you specify process placement on a VH, you must request the ncpus resource to reserve CPUs for those pro-
cesses.

• You can specify VH process distribution only once per chunk.

• If you specify VH processes, you must specify at least one VH process; you cannot specify zero VH processes.

13.4.3.4 Using VE Offloading

In offloading, NEC MPI launches main processes on the vector host, and those processes then launch (offload) parallel
and/or vectorized numeric operations on vector engines that are attached to the vector host and assigned to the job. A
process that has been offloaded to a VE is not directly started by NEC MPI.

A VE process that has not been offloaded is directly started by NEC MPI on the VE.

VE offloading is applied chunk by chunk; you specify which chunks should use it. In any chunk, you can either use VE
offloading or not; you cannot mix offloading and direct launch on VEs by NEC MPI in the same chunk.

To offload processes to VEs:

• Use the nves resource to specify the number of VEs you need for offloading

• Use the NEC_PROCESS_DIST environment variable to specify that one or more processes should start on the VH

• Specify that no processes should be started directly by NEC MPI on VEs

• Make sure that the number of processes in the mpirun command and the total number of mpiprocs is the same,
because NEC MPI launches only the processes on the VH; it does not launch processes that are offloaded.

We use a specific syntax to indicate offloading, regardless of the number of VEs. While it may seem that logically equiv-
alent syntax should also work, it will not. Specify zero for the first VE only, and nothing else for other VEs. Syntax for
VE offloading:

NEC_PROCESS_DIST=S<number of VH processes>:0

Example 13-10: We will run 2 processes on the VH, and offload 3 processes to the VEs. Process vh.out launches
ve.out on attached VEs:

qsub -l select=ncpus=2:mpiprocs=2:nves=2 -v NEC_PROCESS_DIST=S2:0

In job script:

mpirun -vh -np 2 vh.out

13.4.3.4.i Restrictions and Caveats for VE Offloading

The syntax for VE offloading is S<VH process count>:0, not S<VH process count>:0:0:0 or S<VH process count>,
despite the fact that the last two look logically equivalent.
UG-210 PBS Professional 2022.1 User’s Guide

Submitting Jobs to NEC SX-Aurora TSUBASA Chapter 13
13.4.3.5 Replicating the Same Process Distribution Across Multiple

Chunks

If you have a group of identical chunks, you can specify the process placement for the first of these chunks, and PBS can
replicate the placement for the remaining identical chunks. (You can repeat the specification for each identical chunk if
you want, but you don't need to.) Syntax for process distribution for one group of identical chunks:

NEC_PROCESS_DIST = <distribution for all chunks in group>

Example 13-11: We have 2 identical chunks, each with 6 processes and 3 VEs, and for each chunk we want 1 process to
run on the first VE, 3 on the second, and 2 on the third. We specify the distribution for the first chunk, and PBS rep-
licates it for the remaining identical chunk:

qsub -lselect=2:ncpus=2:nves=3:mpiprocs=6 -v NEC_PROCESS_DIST=1:3:2

If you have more than one group of identical chunks, where each group is different, you can specify just the first chunk
for each group. Syntax for process distribution for multiple groups of identical chunks:

NEC_PROCESS_DIST = <group1 chunk distribution>+<group2 chunk distribution> +... + <group N chunk
distribution>

Example 13-12: We have 2 groups of chunks:

The first group is 2 chunks that have 6 processes and 3 VEs and we want 1 process to run on the first VE, 3 on the
second, and 2 on the third.

For the second group of 2 chunks, we have 6 processes evenly distributed across 2 VEs.

We specify the distribution for the first chunk in each group, and PBS replicates it for the remaining identical chunk
in each group:

qsub -lselect=2:ncpus=2:nves=3:mpiprocs=6+2:nves=2:mpiprocs=6 -v NEC_PROCESS_DIST=1:3:2+3

13.4.3.6 Examples of Specifying Process Distribution

In the following examples, we'll use vh.out as the name of a process that runs on VHs, and ve.out as the name of the
process that runs on VEs.

Example 13-13: We have 6 processes, and 3 VEs, and we want 1 process to run on the first VE, 3 on the second, and 2 on
the third:

qsub -lselect=1:ncpus=2:nves=3:mpiprocs=6 -v NEC_PROCESS_DIST=1:3:2

In job script:

mpirun -np 6 ve.out

Example 13-14: We have 1 chunk with 6 processes and 2 VEs, and we want 3 VE processes to run on each VE:

qsub -l select=ncpus=2:nves=2:mpiprocs=6 -v NEC_PROCESS_DIST=3

In job script:

mpirun -np 6 ve.out

Example 13-15: We have 2 chunks:

In the first chunk, we have 6 processes, and 3 VEs, and we want 1 process to run on the first VE, 3 on the second,
and 2 on the third.

In the second chunk, we have 6 processes and 2 VEs, and we want 3 VE processes to run on each VE (combining
examples 13-13 and 13-14):

qsub -lselect=1:ncpus=2:nves=3:mpiprocs=6+1:ncpus=2:nves=2:mpiprocs=6 -v NEC_PROCESS_DIST=1:3:2+3
PBS Professional 2022.1 User’s Guide UG-211

Chapter 13 Submitting Jobs to NEC SX-Aurora TSUBASA
In job script:

mpirun -np 12 ve.out

Example 13-16: We have 3 chunks:

In the first chunk, we have 5 processes and 1 VE. The first 2 processes will run on the VH, and the last 3 will run on
the VE.

In the second chunk, we have 6 processes and 3 VEs; 1 process will run on the VH and 5 will run on the VEs.

 In the third chunk, we'll run 4 processes on a VE:

qsub -l
select=1:ncpus=2:nves=1:mpiprocs=5+1:ncpus=2:nves=3:mpiprocs=6+1:ncpus=2:nves=1:mpiprocs=4 -v
NEC_PROCESS_DIST=S2:3+2:1:S1:2+4

In job script:

mpirun -vh -np 2 vh.out : -np 6 ve.out : -vh -np 1 vh.out : -np 6 ve.out

Example 13-17: We have 2 chunks:

In the first chunk, process vh.out launches 3 processes ve.out on attached VEs.

In the second chunk, we run 4 processes on 2 VEs:

qsub -l select=ncpus=2:mpiprocs=2:nves=2+1:ncpus=2:nves=2:mpiprocs=4 -v NEC_PROCESS_DIST=S2:0+2

In job script:

mpirun -vh -np 2 vh.out : -np 4 ve.out

Example 13-18: We have 3 groups of chunks:

The first group is 2 chunks that have 6 processes and 3 VEs and we want 1 process to run on the first VE, 3 on the
second, and 2 on the third.

For the second group of 2 chunks, we have 6 processes evenly distributed across 2 VEs.

For the third group, we have 3 chunks, and we run 1 process on the VH and 2 processes on a VE.

We specify the distribution for the first chunk in each group, and PBS replicates it for the remaining identical chunk
in each group:

qsub -lselect=2:ncpus=2:nves=3:mpiprocs=6+2:nves=2:mpiprocs=6+3:ncpus=2:nves=1:mpiprocs=3 -v
NEC_PROCESS_DIST=1:3:2+3+S1:2

In the job script:

mpirun -np 24 ve.out : -vh -np 1 vh.out : -np 2 ve.out : -vh -np 1 vh.out : -np 2 ve.out : -vh -np
1 vh.out : -np 2 ve.out

Example 13-19: We have 3 chunks:

In the first chunk, we have 5 processes and 1 VE. The first 2 processes will run on the VH, and the last 3 will run on
the VE.

In the second chunk, we have 3 processes, all of which will run on the VH.

In the third chunk, we'll run 4 processes on a VE:

qsub -l select=1:ncpus=2:nves=1:mpiprocs=5+1:ncpus=3:mpiprocs=3+1:ncpus=2:nves=1:mpiprocs=4 -v
NEC_PROCESS_DIST=S2:3+S3+4

In job script:

mpirun -vh -np 2 vh.out : -np 3 ve.out : -vh -np 3 vh.out : -np 4 ve.out
UG-212 PBS Professional 2022.1 User’s Guide

Submitting Jobs to NEC SX-Aurora TSUBASA Chapter 13
13.4.3.7 Restrictions and Caveats for Specifying Process Distribution

• If you use the NEC_PROCESS_DIST environment variable for a job, you must request the mpiprocs resource for
all chunks in the job.

• For each job, make sure that the number of chunks in your select specification is the same as the number in
NEC_PROCESS_DIST.

• For each chunk, the sum of the specified VE processes and VH processes must be equal to the sum of mpiprocs.
You can imply even distribution, as in section 13.4.3.2.i, “Implying Perfect Distribution”, on page 209.

• If you specify distribution for any VEs in a job, you must specify distribution for all VEs in all chunks of the job.
You can imply even distribution, as in section 13.4.3.2.i, “Implying Perfect Distribution”, on page 209.

• When you are not using VE offloading, you cannot specify a count of zero processes on any VEs.

13.5 Job Accounting on NEC SX-Aurora TSUBASA

When PBS writes accounting records, PBS records nves in both Resource_List.nves and resources_assigned.nves.
PBS also writes ve_mem and ve_cput as part of the value of the job's resources_used attribute.

13.6 Environment Variables for NEC MPI

Before launching a job requesting vector engines, PBS sets the following environment variables on each execution host:

_VENODELIST
List of VE numbers assigned to this job on a VH.

For example, PBS assigns VE numbers 0-3 to a job on a VH via export _VENODELIST="0 1 2 3"; if no VEs
are assigned to a job on a VH, you get export _VENODELIST=""

VE_NODE_NUMBER
The lowest VE number assigned to this job on a VH.

For example, PBS assigns VE numbers 0-3 on a VH via export VE_NODE_NUMBER="0"; if no VEs are assigned
to a job on a VH, you get export VE_NODE_NUMBER=-1

_NECMPI_VE_NUM_NODES
Number of vector engines assigned to this job which are directly used by NEC MPI and not used for VE off-
loading.

For example, PBS assigns VE numbers 0-3 to a job on a VH via export _NECMPI_VE_NUM_NODES=4

_NECMPI_VE_NODELIST
Space-separated list of VE numbers assigned to this job which are directly used by NEC MPI and not used for
VE offloading.

For example, PBS assigns VE numbers 0-3 to a job on a VH via export _NECMPI_VE_NODELIST="0 1 2 3"

_NEC_HCA_LIST_IO
Space-separated list of HCA-lists assigned to this job on this vector host.

An HCA-list is a comma-separated list of HCAs assigned to this job on each VE.

When a job requests nhcas for a job chunk, PBS sets _NEC_HCA_LIST_IO accordingly for that chunk.
When nhcas is not requested for a chunk, PBS sets _NEC_HCA_LIST_IO to include all HCAs on a host.

For example, if there are two VEs and two HCAs (labeled mlx5_0:1 and mlx5_1:1) attached to the VH, and
each VE uses both HCAs, _NEC_HCA_LIST_IO=mlx5_0:1,mlx5_1:1 mlx5_0:1,mlx5_1:1
PBS Professional 2022.1 User’s Guide UG-213

Chapter 13 Submitting Jobs to NEC SX-Aurora TSUBASA
_NEC_HCA_LIST_MPI
Space-separated list of HCA-lists for each VE used by this job, and not used for offloading. See the environ-
ment variable _NEC_HCA_LIST_IO

When a job requests nhcas for a job chunk, PBS sets _NEC_HCA_LIST_MPI accordingly for that chunk.
When nhcas is not requested for a chunk, PBS sets _NEC_HCA_LIST_MPI to include all HCAs on a host.

For example, if there are two VEs and two HCAs (labeled mlx5_0:1 and mlx5_1:1) attached to the VH, and
each VE uses both HCAs, but one of the VEs is used for offloading,
_NEC_HCA_LIST_IO=mlx5_0:1,mlx5_1:1
UG-214 PBS Professional 2022.1 User’s Guide

14

 Using MLS with PBS

Professional

14.1 About SELinux PBS Professional

With this version of PBS Professional, we offer a separate software package that supports SELinux enforcement mode
used with one or more MLS policies on RHEL 7. In this chapter, we describe how to use SELinux PBS only.

14.2 Requirement for Submitting Jobs

When you submit a job to PBS, you must do so from a machine running this version of the PBS commands. This version
of PBS includes the security_context job attribute, and if it is missing, an error occurs, a server message is logged, and
the job is rejected.

14.3 Viewing and Operating on Jobs

When a user queries or operates on his or her own job, PBS requires that the security_context attribute of the job match
the security context of the requester. It is not sufficient that the credential of the requester dominate that of the job.

14.3.1 Checking Security Context

PBS writes the security context for a job in its security_context attribute. For example, if you need to compare the
security context of jobs and users:

Find job security context:

bash-4.2$ qstat -f | grep security

security_context = user_u:user_r:user_t:s3:c1,c2

Find user security context:

bash-4.2$ id -Z

user_u:user_r:user_t:s3:c1,c2

14.4 Credentials of Deleted Jobs

When a job is deleted via qdel or qdel -x, the job's credentials are handled the same way they would be if PBS were
not being used.
PBS Professional 2022.1 User’s Guide UG-215

Chapter 14 Using MLS with PBS Professional
14.5 Caveats

If your site is using polyinstantiation and MoM (the execution service process) dies or is told to exit while there are run-
ning jobs, you may need to manually clean up directories and/or files created for those jobs after the jobs have exited.

14.6 Errors and Logging

14.6.1 Logging

PBS may log the following messages in the server and/or MoM logs:

Table 14-1: Log Messages

Message Log Level

no security context found Error (0x0001)

failed to read credential file Error (0x0001)

job credential <context> Debug (0x0080)

unable to create the job directory Error (0x0001)

the staging and execution directory <dir> already exists Debug3 (0x0400)

could not set security context for <dir> Error (0x0001)

unable to change permissions on staging and execution directory <dir> Debug (0x0080)

unable to open user session Debug4 (0x0800)

unable to start job, no security context found or not able to set security
context

Error (0x0001)

cannot get current socket context Error (0x0001)

cannot set socket context for <jobid> Error (0x0001)

cannot restore socket context Error (0x0001)

failed to set file context for <dir> Error (0x0001)

could not save security context Debug (0x0080)

saved security context Debug (0x0080)

client connection no security context information present Security (0x0020)

client connection security context information present, but no job secu-
rity context information present

Security (0x0020)

client connection security context information not present, but job
security context information present

Security (0x0020)

client connection security context information job security context
information do not match

Security (0x0020)
UG-216 PBS Professional 2022.1 User’s Guide

Using MLS with PBS Professional Chapter 14
14.6.2 Errors

PBS may write the following error messages to the job submitter's standard error:

"pbs_iff: fgetfilecon(1) returned -1"

"pbs_iff: filecon overflow"

"pbs_iff: malloc extendarg failed"

14.7 SELinux Documentation

• DIRECTOR OF CENTRAL INTELLIGENCE DIRECTIVE 6/3 PROTECTING SENSITIVE COMPART-
MENTED INFORMATION WITHIN INFORMATION SYSTEMS
http://www.fas.org/irp/offdocs/DCID_6-3_20Manual.htm

• Red Hat Enterprise Linux 7 SELinux User's and Administrator's Guide
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_

administrators_guide/index

• Getting Started with Reference Policy
http://oss.tresys.com/projects/refpolicy/wiki/GettingStarted
PBS Professional 2022.1 User’s Guide UG-217

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/index

Chapter 14 Using MLS with PBS Professional
UG-218 PBS Professional 2022.1 User’s Guide

15

Using Provisioning

PBS provides automatic provisioning of an OS or application on vnodes that are configured to be provisioned. When a
job requires an OS that is available but not running, or an application that is not installed, PBS provisions the vnode with
that OS or application.

15.1 Definitions

AOE

The environment on a vnode. This may be one that results from provisioning that vnode, or one that is already
in place

Provision

To install an OS or application, or to run a script which performs installation and/or setup

Provisioned Vnode

A vnode which, through the process of provisioning, has an OS or application that was installed, or which has
had a script run on it

15.2 How Provisioning Works

Provisioning can be performed only on vnodes that have provisioning enabled, shown in the vnode's provision_enable
attribute.

Provisioning can be the following:

• Directly installing an OS or application

• Running a script which may perform setup or installation

Each vnode is individually configured for provisioning with a list of available AOEs, in the vnode's
resources_available.aoe attribute.

Each vnode's current_aoe attribute shows that vnode's current AOE. The scheduler queries each vnode's aoe resource
and current_aoe attribute in order to determine which vnodes to provision for each job.

Provisioning can be used for interactive jobs.

A job's walltime clock starts when provisioning for the job has finished.

15.2.1 Causing Vnodes To Be Provisioned

An AOE can be requested for a job or a reservation. When a job requests an AOE, that means that the job will be run on
vnodes running that AOE. When a reservation requests an AOE, that means that the reservation reserves vnodes that
have that AOE available. The AOE is instantiated on reserved vnodes only when a job requesting that AOE runs.

When the scheduler runs each job that requests an AOE, it either finds the vnodes that satisfy the job's requirements, or
provisions the required vnodes. For example, if SLES is available on a set of vnodes that otherwise suit your job, you
can request SLES for your job, and regardless of the OS running on those vnodes before your job starts, SLES will be
running at the time the job begins execution.
PBS Professional 2022.1 User’s Guide UG-219

Chapter 15 Using Provisioning
15.2.2 Using an AOE

When you request an AOE for a job, the requested AOE must be one of the AOEs that has been configured at your site.
For example, if the AOEs available on vnodes are "rhel" and "sles", you can request only those; you cannot request
"suse".

Your job can run where its requested AOE can be supplied both by provisioning and where the AOE already matches the
request. Some of your job chunks can run on the non-provisionable vnodes that already match the requested AOE, and
some chunks can run on vnodes that can be provisioned to match the requested AOE.

You can request a reservation for vnodes that have a specific AOE available. This way, jobs needing that AOE can be
submitted to that reservation. This means that jobs needing that AOE are guaranteed to be running on vnodes that have
that AOE available.

Each reservation can have at most one AOE specified for it. Any jobs that run in that reservation must not request a dif-
ferent AOE from the one requested for the reservation. That is, the job can run in the reservation if it either requests no
AOE, or requests the same AOE as the reservation.

15.2.3 Job Substates and Provisioning

When a job is in the process of provisioning, its substate is provisioning. This is the description of the substate:

provisioning
The job is waiting for vnode(s) to be provisioned with its requested AOE. Integer value is 71. See “Job Sub-
states” on page 361 of the PBS Professional Reference Guide for a list of job substates.

The following table shows how provisioning events affect job states and substates:

15.3 Requirements and Restrictions

15.3.1 Host Restrictions

15.3.1.1 Single-vnode Hosts Only

PBS will provision only single-vnode hosts. Do not attempt to use provisioning on hosts that have more than one vnode.

Table 15-1: Provisioning Events and Job States/Substates

Event Initial Job State, Substate Resulting Job State, Substate

Job submitted Queued and ready for selection

Provisioning starts Queued, Queued Running, Provisioning

Provisioning fails to start Queued, Queued Held, Held

Provisioning fails Running, Provisioning Queued, Queued

Provisioning succeeds and job runs Running, Provisioning Running, Running

Internal error occurs Running, Provisioning Held, Held
UG-220 PBS Professional 2022.1 User’s Guide

Using Provisioning Chapter 15
15.3.1.2 Server Host Cannot Be Provisioned

The server host cannot be provisioned: a MoM can run on the server host, but that MoM's vnode cannot be provisioned.
The provision_enable vnode attribute, resources_available.aoe, and current_aoe cannot be set on the server host.

15.3.2 AOE Restrictions

Only one AOE can be instantiated at a time on a vnode.

Only one kind of aoe resource can be requested in a job. For example, an acceptable job could make the following
request:

-l select=1:ncpus=1:aoe=suse+1:ncpus=2:aoe=suse

15.3.2.1 Vnode Job Restrictions

A vnode with any of the following jobs will not be selected for provisioning:

• One or more running jobs

• A suspended job

• A job being backfilled around

15.3.2.2 Provisioning Job Restrictions

A job that requests an AOE will not be backfilled around.

15.3.2.3 Vnode Reservation Restrictions

A vnode will not be selected for provisioning for job MyJob if the vnode has a confirmed reservation, and the start time
of the reservation is before job MyJob will end.

A vnode will not be selected for provisioning for a job in reservation R1 if the vnode has a confirmed reservation R2, and
an occurrence of R1 and an occurrence of R2 overlap in time and share a vnode for which different AOEs are requested
by the two occurrences.

15.3.3 Requirements for Jobs

15.3.3.1 If AOE is Requested, All Chunks Must Use Same AOE

If any chunk of a job requests an AOE, all chunks must use that AOE, even if they do not explicitly request an AOE. For
example, if your job requests

-l select=2:ncpus=1:aoe=suse+4:ncpus=2

all chunks must use the suse AOE.

If a job requesting an AOE is submitted to a reservation, that reservation must also request the same AOE.
PBS Professional 2022.1 User’s Guide UG-221

Chapter 15 Using Provisioning
15.4 Using Provisioning

15.4.1 Requesting Provisioning

You request a reservation with an AOE in order to reserve the resources and AOE required to run a job. You request an
AOE for a job if that job requires that AOE. You request provisioning for a job or reservation using the same syntax.

You can request an AOE for the entire job/reservation:

-l aoe = <AOE>

Example:

-l aoe = suse

The -l <AOE> form cannot be used with -l select.

You can request an AOE for a single-chunk job/reservation:

-l select=<chunk request>:aoe=<AOE>

Example:

-ls select=1:ncpus=2:aoe=rhel

You can request the same AOE for each chunk of a job/reservation:

-l select=<chunk request>:aoe=<AOE> + <chunk request>:aoe=<AOE>

Example:

-l select=1:ncpus=1:aoe=suse + 2:ncpus=2:aoe=suse

You can request the an AOE for some, but not all, chunks of a job/reservation:

-l select=<chunk request>:aoe=<AOE> + <chunk request>

Example:

-l select=1:ncpus=1:aoe=suse + 2:ncpus=2

15.4.2 Commands and Provisioning

If you try to use PBS commands on a job that is in the provisioning substate, the commands behave differently. The pro-
visioning of vnodes is not affected by the commands; if provisioning has already started, it will continue. The following
table lists the affected commands:

Table 15-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate

qdel (Without force) Job is not deleted

(With force) Job is deleted

qsig -s suspend Job is not suspended

qhold Job is not held

qrerun Job is not requeued
UG-222 PBS Professional 2022.1 User’s Guide

Using Provisioning Chapter 15
15.4.3 How Provisioning Affects Jobs

A job that has requested an AOE will not preempt another job. Therefore no job will be terminated in order to run a job
with a requested AOE.

A job that has requested an AOE will not be backfilled around.

15.5 Caveats and Errors

15.5.1 Requested Job AOE and Reservation AOE Should

Match

Do not submit jobs that request an AOE to a reservation that does not request the same AOE. Reserved vnodes may not
supply that AOE; your job will not run.

15.5.2 Allow Enough Time in Reservations

If a job is submitted to a reservation with a duration close to the walltime of the job, provisioning could cause the job to
be terminated before it finishes running, or to be prevented from starting. If a reservation is designed to take jobs
requesting an AOE, leave enough extra time in the reservation for provisioning.

15.5.3 Requesting Multiple AOEs For a Job or Reservation

Do not request more than one AOE per job or reservation. The job will not run, or the reservation will remain uncon-
firmed.

15.5.4 Held and Requeued Jobs

The job is held with a system hold for the following reasons:

• Provisioning fails due to invalid provisioning request or to internal system error

• After provisioning, the AOE reported by the vnode does not match the AOE requested by the job

The hold can be released by the PBS Administrator after investigating what went wrong and correcting the mistake.

The job is requeued for the following reasons:

• The provisioning hook fails due to timeout

• The vnode is not reported back up

qmove Cannot be used on a job that is provisioning

qalter Cannot be used on a job that is provisioning

qrun Cannot be used on a job that is provisioning

Table 15-2: Effect of Commands on Jobs in Provisioning Substate

Command Behavior While in Provisioning Substate
PBS Professional 2022.1 User’s Guide UG-223

Chapter 15 Using Provisioning
15.5.5 Conflicting Resource Requests

The values of the resources arch and vnode may be changed by provisioning. Do not request an AOE and either arch or
vnode for the same job.

15.5.6 Job Submission and Alteration Have Same

Requirements

Whether you use the qsub command to submit a job, or the qalter command to alter a job, the job must eventually
meet the same requirements. You cannot submit a job that meets the requirements, then alter it so that it does not.
UG-224 PBS Professional 2022.1 User’s Guide

16

Using Accounting

16.1 Using Accounting

16.1.1 Specifying Accounting String

You can associate an accounting string with your job by setting the value of the Account_Name job attribute. This
attribute has no default value. You can set the value of Account_Name at the command line or in a PBS directive:

qsub -A <accounting string>

#PBS Account_Name=<accounting string>

The <accounting string> can be any string of characters; PBS does not attempt to interpret it.

You can use the qalter command to change the value of the Account_Name job attribute while the job is queued, but
not while the job is running.

16.1.2 Using Comprehensive System Accounting

You can use CSA on Cray systems running CLE 5.2. PBS support for CSA on HPE systems is no longer available. The
CSA functionality for HPE systems has been removed from PBS.

CSA provides accounting information about user jobs, called user job accounting.

CSA works the same with and without PBS. To run user job accounting, either you must specify the file to which raw
accounting information will be written, or an environment variable must be set. The environment variable is
ACCT_TMPDIR. This is the directory where a temporary file of raw accounting data is written.

To run user job accounting, you issue the CSA command "ja <filename>" or, if the environment variable
ACCT_TMPDIR is set, "ja". In order to have an accounting report produced, you issue the command "ja
-<options>" where the options specify that a report should be written and what kind to write. To end user job
accounting, you issue the command "ja -t"; the -t option can be included in the previous set of options. See the man
page on ja for details.

The starting and ending ja commands must be used before and after any other commands you wish to monitor. Here are
examples of a command line and a script:

On the command line:

qsub -N myjobname -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

ctrl-D

Accounting data for your job (sleep 50) is written to myreport.
PBS Professional 2022.1 User’s Guide UG-225

Chapter 16 Using Accounting
If you create a job script foo with these commands:

#PBS -N myjobname

#PBS -l ncpus=1

ja myrawfile

sleep 50

ja -c > myreport

ja -t myrawfile

Then you can run your job script via qsub, to do the same thing as in the previous example:

qsub foo

16.1.3 Using Dependencies with Accounting

If you need to run end-of-day accounting, you can use dependencies; see section 6.2, “Using Job Dependencies”, on page
109

16.1.4 Advice and Caveats for Using Accounting

16.1.4.1 Use an Integrated MPI

Many MPIs are integrated with PBS. PBS provides tools to integrate most of them; a few MPIs supply the integration.
When a job is run under an integrated MPI, PBS can track resource usage, signal job processes, and perform accounting
for all processes of the job.

When a job is run under an MPI that is not integrated with PBS, PBS is limited to managing the job only on the primary
vnode, so resource tracking, job signaling, and accounting happen only for the processes on the primary vnode.

Under Windows, some MPIs such as MPICH are not integrated with PBS.

See section 5.2.1, “Using an Integrated MPI”, on page 83.
UG-226 PBS Professional 2022.1 User’s Guide

Index

_NEC_HCA_LIST_IO UG-213
_NEC_HCA_LIST_MPI UG-214
_NECMPI_VE_NODELIST UG-213
_NECMPI_VE_NUM_NODES UG-213
_VENODELIST UG-213

A
accounting UG-225
ACCT_TMPDIR UG-225
advance reservation UG-137

creation UG-139
amgr

help BG-197
AOE UG-219

using UG-220
application licenses

floating UG-56
node-locked

per-CPU UG-57

B
blocking jobs UG-122
Boolean

format UG-51
Budgets

configuration tutorial BG-201, BG-203

C
changing order of jobs UG-172
chunk UG-53, UG-55
chunk-level resource UG-53
commands UG-2

and provisioning UG-222
PATH BG-197

comment UG-185
communication daemon UG-3
configuration

tutorial BG-201, BG-203
count_spec UG-140
CSA UG-225
cygwin UG-16

D
daemon

communication UG-3

deleting jobs UG-170
documentation

PBS Professional UG-217
SELinux UG-217

E
errors

fgetfilecon UG-217
filecon UG-217
malloc UG-217

escrow BG-200
exclhost UG-67
exclusive UG-67
exit status

job arrays UG-160

F
fgetfilecon error UG-217
file

staging UG-33
filecon error UG-217
float

format UG-52
floating licenses UG-56
format

Boolean UG-51
float UG-52
size UG-52
string resource value UG-52
string_array UG-53

free UG-67
freq_spec UG-140

G
group=resource UG-67

H
HCA UG-205
here document UG-22
host channel adapter UG-205

I
identifier UG-12
InfiniBand UG-99, UG-100
instance UG-137
PBS Professional 2022.1 User’s Guide UG-227

Index
instance of a standing reservation UG-137
instructions

for job submitters BG-197
Intel MPI

examples UG-88
interval_spec UG-140

J
ja

CSA command UG-225
job

comment UG-185
definition UG-2
dependencies UG-109
identifier UG-12
identifier syntax UG-154
submission options UG-24

job array
identifier UG-153
range UG-153
states UG-155

job arrays UG-153
exit status UG-160
prologues and epilogues UG-156

job attributes
setting UG-16

job submitters
instructions BG-197

jobs
changing order UG-172
deleting UG-170
moving between queues UG-173
sending messages to UG-171
sending signals to UG-172
submitting BG-197

job-specific ASAP reservation UG-137
job-specific now reservation UG-137
job-specific reservation UG-137
job-specific start reservation UG-137
job-wide resource UG-53, UG-54

L
limits

resource usage UG-63

M
malloc error UG-217
max_walltime UG-115
min_walltime UG-115
MoM UG-2
monitoring UG-1
moving jobs between queues UG-173
MPI

Intel MPI
examples UG-88

MPICH2
examples UG-101

MPICH-MX
MPD

examples UG-94
rsh/ssh

examples UG-95
MVAPICH1 UG-99

examples UG-99
MPICH UG-90
MPICH2

examples UG-101
MPICH-MX

MPD
examples UG-94

rsh/ssh
examples UG-95

MPI-OpenMP UG-106
MVAPICH1 UG-99

examples UG-99

N
NEC SX-Aurora TSUBASA UG-205
NEC_PROCESS_DIST UG-208
nhcas UG-206
nves UG-206

O
OpenMP UG-104

P
pack UG-67
Parallel Virtual Machine (PVM) UG-103
PATH

for commands BG-197
PBS environmental variables UG-155
PBS_ARRAY_ID UG-155
PBS_ARRAY_INDEX UG-155
pbs_iff UG-217
PBS_JOBID UG-155
PCIe UG-205
per-CPU node-locked licenses UG-57
prologues and epilogues

job arrays UG-156
provision UG-219
provisioned vnode UG-219
provisioning UG-220

allowing time UG-223
and commands UG-222
AOE restrictions UG-221
UG-228 PBS Professional 2022.1 User’s Guide

Index
host restrictions UG-220
requesting UG-222
using AOE UG-220
vnodes UG-219

PVM (Parallel Virtual Machine) UG-103

Q
qhold UG-120
qmove UG-173
qmsg UG-171
qorder UG-172, UG-173
qrls UG-120
qstat UG-120, UG-170, UG-173, UG-178, UG-186
queuing UG-1

R
recurrence rule UG-140
report UG-225
requesting provisioning UG-222
reservation

advance UG-137, UG-139
degraded UG-137
deleting UG-146
instance UG-137
job-specific UG-137

ASAP UG-137
now UG-137
start UG-137

setting start time & duration UG-140
soonest occurrence UG-138
standing UG-138

instance UG-137
soonest occurrence UG-138

standing reservation UG-140
submitting jobs UG-149

reservations
time for provisioning UG-223

resource
job-wide UG-53, UG-54

Resource_List UG-24
restrictions

AOE UG-221
provisioning hosts UG-220

resv_nodes UG-137
run_count UG-25, UG-121

S
scatter UG-67
scheduler UG-2
scheduling UG-1
sequence number UG-153
server UG-2
setting job attributes UG-16

share UG-67
SIGKILL UG-172
SIGNULL UG-172
SIGTERM UG-172
size

format UG-52
soonest occurrence UG-138
stagein UG-25
stageout UG-25
standing reservation UG-138, UG-140
start reservation UG-137
states

job array UG-155
string resource value

format UG-52
string_array

format UG-53
subjob UG-153
subjob index UG-153
submitting a PBS job UG-11
submitting jobs BG-197
SX-Aurora UG-205
syntax

identifier UG-154

T
time between reservations UG-150
TSUBASA UG-205
tutorial

configuring Budgets BG-201, BG-203

U
until_spec UG-140
user job accounting UG-225

V
VE UG-205
VE offloading UG-205
ve_cput UG-206, UG-213
ve_mem UG-206, UG-213
VE_NODE_NUMBER UG-213
vector engine UG-205
vector host UG-205
VH UG-205
vnode types UG-51
vnodes

provisioning UG-219
vscatter UG-67

W
waiting for job completion UG-122
PBS Professional 2022.1 User’s Guide UG-229

Index
UG-230 PBS Professional 2022.1 User’s Guide

Altair PBS Professional 2022.1

Programmer's Guide

You are reading the Altair PBS Professional 2022.1

Programmer’s Guide (PG)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

List of APIs vii

About PBS Documentation ix

1 PBS Architecture 1
1.1 PBS Components . 1

2 Server Functions 5
2.1 Roles and Required Privilege . 5
2.2 Batch Server Functions . 5
2.3 Server Management . 5
2.4 Queue Management . 6
2.5 Vnode Management . 6
2.6 Job Management. 6
2.7 Server to Server Requests . 11
2.8 Deferred Services . 12
2.9 Resource Management . 17
2.10 Network Protocol . 17

3 Developer Headers and Libraries 19
3.1 Location of API Libraries . 19
3.2 Location of Header Files . 19
3.3 Developer Package. 19
3.4 Batch Interface Library . 20
3.5 Example Compilation Line. 20

4 Batch Interface Library (IFL) 21
4.1 Interface Library Overview . 21
4.2 Batch Library Routines . 22

5 TM Library 95
5.1 TM Library Routines . 95

6 RM Library 101
6.1 RM Library Routines . 101

7 TCL/tk Interface 105
7.1 TCL/tk API Functions . 105

8 Hooks 111
8.1 Introduction . 111
8.2 How Hooks Work. 111
8.3 Interface to Hooks . 112
PBS Professional 2022.1 Programmer’s Guide PG-v

Contents
9 Custom Authentication and Encryption Library APIs 123

Index 135
PG-vi PBS Professional 2022.1 Programmer’s Guide

List of APIs

4.3 pbs_alterjob. 24
4.4 pbs_asyrunjob. 26
4.5 pbs_confirmresv . 28
4.6 pbs_connect . 30
4.7 pbs_default . 32
4.8 pbs_deljob. 33
4.9 pbs_delresv. 35
4.10 pbs_disconnect . 36
4.11 pbs_geterrmsg . 37
4.12 pbs_holdjob. 38
4.13 pbs_locjob . 39
4.14 pbs_manager . 41
4.15 pbs_modify_resv . 45
4.16 pbs_movejob. 47
4.17 pbs_msgjob. 49
4.18 pbs_orderjob . 51
4.19 pbs_preempt_jobs. 52
4.20 pbs_relnodesjob . 54
4.21 pbs_rerunjob . 56
4.22 pbs_rlsjob . 57
4.23 pbs_runjob . 58
4.24 pbs_selectjob . 60
4.25 pbs_selstat . 63
4.26 pbs_sigjob . 67
4.27 pbs_statfree . 69
4.28 pbs_stathost . 70
4.29 pbs_statjob . 72
4.30 pbs_statnode. 75
4.31 pbs_statque. 77
4.32 pbs_statresv . 79
4.33 pbs_statrsc . 81
4.34 pbs_statsched . 83
4.35 pbs_statserver. 85
4.36 pbs_statvnode. 87
4.37 pbs_submit . 89
4.38 pbs_submit_resv . 91
4.39 pbs_terminate . 93
5.2 tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit, tm_taskinfo,

tm_atnode, tm_rescinfo, tm_publish, tm_subscribe, tm_finalize, tm_attach. 96
6.2 openrm, closerm, downrm, configrm, addreq, allreq, getreq, flushreq, activereq,
PBS Professional 2022.1 Programmer’s Guide PG-vii

List of APIs
fullresp. 102
7.2 pbs_tclapi . 106
8.4 pbs_module. 113
8.5 pbs_stathook(3B) . 119
9.1 pbs_auth_set_config . 124
9.2 pbs_auth_create_ctx. 125
9.3 pbs_auth_destroy_ctx . 127
9.4 pbs_auth_get_userinfo . 128
9.5 pbs_auth_process_handshake_data . 130
9.6 pbs_auth_encrypt_data. 132
9.7 pbs_auth_decrypt_data. 133
PG-viii PBS Professional 2022.1 Programmer’s Guide

21

PBS Architecture

PBS is a distributed workload management system which manages and monitors the computational workload on a set of
one or more computers.

21.1 PBS Components

You can manage one or more machines using PBS. PBS consists of commands, a data service, and the following dae-
mons:

• Server daemon for central management; this daemon runs on Linux only.

• One or more scheduler daemons to schedule jobs; schedulers run on Linux only.

• Communication daemon to manage communication; this daemon also runs only on Linux.

• Job management daemon called MoM to manage each execution host; this daemon can run on Linux or Windows.

The data service runs on Linux only. Commands can run on Linux or Windows.

21.1.1 Single Execution System

If PBS is to manage a single system, all components are installed on that same system. For installation instructions, see
the PBS Professional Installation & Upgrade Guide.

The following illustration shows how communication works when PBS is on a single host in TPP mode. For more on
TPP mode, see “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Figure 21-1:PBS daemons on a single execution host

 All PBS components on a single host

Scheduler

MoM

ServerJobs

Commands
Kernel

Communication

Job
processes
PBS Professional 2022.1 Programmer’s Guide PG-1

Chapter 21 PBS Architecture
21.1.2 Single Execution System with Front End

The PBS server and default scheduler (pbs_server and pbs_sched) can run on one system and jobs can execute on
another. Job execution is managed by the MoM daemon. The following illustration shows how communication works
when the PBS server and scheduler are on a front-end system and MoM is on a separate host, in TPP mode. For more on
TPP mode, see “Communication” on page 45 in the PBS Professional Installation & Upgrade Guide.

Figure 21-2:PBS daemons on single execution system with front end

Scheduler

MoM
Server

Jobs

Kernel

Single execution host

Commands

Front-end system

Communication

Job processes
PG-2 PBS Professional 2022.1 Programmer’s Guide

PBS Architecture Chapter 21
21.1.3 Multiple Execution Systems

When you run PBS on several systems, the server (pbs_server), the scheduler (pbs_sched), and the communica-
tion daemon (pbs_comm) are installed on a "front end" system, and a MoM (pbs_mom) is installed and run on each
execution host. The following diagram illustrates this for an eight-host complex in TPP mode.

Figure 21-3:Typical PBS daemon locations for multiple execution hosts

21.1.4 Server

The server process is the central focus for PBS. In our documentation, it is generally referred to as the server, the PBS
server, or by the execution name pbs_server. All commands and communication with the server are via an Internet Pro-
tocol (IP) network. The server provides core batch services such as receiving batch job requests, creating batch jobs,
modifying jobs, protecting jobs against system crashes, and sending jobs to MoM for execution. One server manages
each PBS complex.

Scheduler

MoM

Server
Jobs

 PBS
Commands

Execution Host

MoM

 Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

MoM

Execution Host

Communication
PBS Professional 2022.1 Programmer’s Guide PG-3

Chapter 21 PBS Architecture
21.1.5 Job Executor (MoM)

The Job Executor is the component that actually places the job into execution. This daemon, pbs_mom, is informally
called MoM as it is the mother of all executing jobs on that host. MoM places a job into execution when it receives a
copy of the job from the server. MoM creates a new session that is as identical to a user login session as is possible. For
example, if the user's login shell is csh, then MoM creates a session in which .login is run as well as .cshrc. MoM
also returns the job's output to the user. One MoM runs on each execution host (a host where PBS jobs execute).

21.1.6 Schedulers

PBS has a default scheduler; if you want to schedule individual partitions separately, you can add any number of addi-
tional schedulers, called multischeds. Each PBS scheduler follows its own scheduling policy.

Each scheduler daemon implements a policy that you define that controls when each job is run and on which resources.
See "About Schedulers" on page 91 in the PBS Professional Administrator’s Guide.

Each scheduler makes a persistent connection to the server via pbs_connect(). If the scheduler does not have a con-
nection to the server, it continues trying every 2 seconds until it gets a connection.

21.1.7 Communication Daemon

The communication daemon, pbs_comm, handles communication between the other PBS daemons. For a complete
description, see section 4.5, “Inter-daemon Communication Using TPP”, on page 49.

21.1.8 Privilege

PBS recognizes separate roles and levels of privilege: Manager role is required for sensitive operations, Operator role can
perform various less-sensitive functions, and User role allows access to only the user's own jobs. Root privilege is
required for some of the Manager operations; the combination of root privilege and Manager role is called PBS Adminis-
trator. See "Security" on page 489 in the PBS Professional Administrator’s Guide.

21.1.9 Commands

PBS provides a set of commands for submitting and managing jobs, and for managing PBS. PBS commands are
described in “PBS Commands” on page 21 of the PBS Professional Reference Guide.
PG-4 PBS Professional 2022.1 Programmer’s Guide

22

Server Functions

22.1 Roles and Required Privilege

PBS recognizes specific roles and levels of privilege, and these are required for some operations on PBS. For details,
see "User Roles and Required Privilege" on page 489 in the PBS Professional Administrator’s Guide.

22.2 Batch Server Functions

A batch server provides services in the following ways:

• The server provides a service at the request of a client. Clients are processes that make requests of a batch server.
The requests may ask for an action to be performed on one or more jobs, one or more queues, the server itself, etc.
Any requests that cannot be successfully completed are rejected. The reason for the rejection is returned in the reply
to the client.

• The server provides a deferred service when it detects a change in conditions that it monitors. The server may,
depending on conditions being monitored, defer a client service request until a later time. Deferred services include
file staging, sending jobs for execution, etc. See section 22.8, “Deferred Services”, on page 12.

The server also performs a number of internal bookkeeping functions.

22.3 Server Management

The following sections describe the services provided by a batch server in response to a request from a client. The
requests are grouped in the following subsections by the type of object affected by the request: server, queue, job, reser-
vation, vnode, hook, or resource. The batch requests described in this section control the functioning of the batch server.
The control is either direct as in the Shut Down request, or indirect as when server attributes are modified. For a list of
batch request codes, see “Request Codes” on page 393 of the PBS Professional Reference Guide.

22.3.1 Manage Request

The Manage request supports qmgr and other commands. For more information, see “qmgr” on page 152 of the PBS
Professional Reference Guide.

22.3.2 Server Status Request

The status of the server may be requested with a server Status request. The batch server will reject the request if the
user of the client is not authorized to query the status of the server. If the request is accepted, the server will return a
server Status Reply. See “qstat” on page 200 of the PBS Professional Reference Guide details of which server
attributes are returned to the client.
PBS Professional 2022.1 Programmer’s Guide PG-5

Chapter 22 Server Functions
22.3.3 Starting the PBS Server

A batch request to start a server cannot be sent to a server since the server is not running. Therefore a batch server must
be started by a process local to the host on which the server is to run. For how to start the server, see “Server: Starting,
Stopping, Restarting” on page 145 in the PBS Professional Installation & Upgrade Guide.

The server recovers the state of managed objects, such as queues and jobs, from the information last recorded by the
server. The.treatment of jobs which were in the running state when the server previously shut down is dictated by the
start up mode; see “pbs_server” on page 107 of the PBS Professional Reference Guide.

22.3.4 Stopping the PBS Server

The batch server is "shut down" when it no longer responds to requests from clients and does not perform deferred ser-
vices. The batch server is requested to shut down by sending it a server Shutdown request. The server will reject the
request from a client not authorized to shut down the server. When the server accepts a shut down request, it will termi-
nate in the manner described in “qterm” on page 236 of the PBS Professional Reference Guide. When shutting down,
the server must record the state of all managed objects (jobs, queues, etc.) in non-volatile memory. Jobs which were run-
ning will be marked in the secondary state field for possible special treatment when the server is restarted. If checkpoint
is supported, any job running at the time of the shut down request whose Checkpoint attribute is not n, will be check-
pointed. This includes jobs whose Checkpoint attribute value is "unspecified", a value of u. If the server receives
either a SIGTERM or a SIGSHUTDN signal, the server will act as if it had received a shut down immediate request.

22.4 Queue Management

The following client requests operate on the queues managed by the server.

22.4.1 Queue Status Request

The status of a queue at the server may be requested with a Queue Status request. The batch server requires that the
following conditions are true:

• The user of the client is authorized to query the status of the designated queue

• The specified queue exists on the server

If the request does not specify a queue, status of all the queues at the server will be returned. When the request is
accepted, the server will return a Queue Status Reply. See“qstat” on page 200 of the PBS Professional Reference
Guide for details of which queue attributes are returned to the client.

22.5 Vnode Management

22.5.1 Modify Vnode Request

The ModifyVnode request tells the server to modify a vnode. Modifications include state changes.

22.6 Job Management

The following client requests operate on jobs managed by the server. These requests do not require any special privilege
except when the job for which the request is issued is not owned by the user making the request.
PG-6 PBS Professional 2022.1 Programmer’s Guide

Server Functions Chapter 22
22.6.1 Queue Job Request

A Queue Job request consists of several subrequests: Initiate Job Transfer, Job Data, Job Script, and Commit. The
end result of a successful Queue Job request is an additional job being managed by the server. The job may have been
created by the request or it may have been moved from another server. After the successful request, the job resides in a
queue managed by the server. When a queue is not specified in the request, the job is placed in the default queue. The
administrator can specify the default queue. We call the queue where the job ends up the target queue. The batch server
requires that the following conditions are true:

• The client is authorized to create a job in the target queue

• The target queue exists at the server.

• The target queue is enabled.

• If the target queue is an execution queue, no resource requirement of the job exceeds the limits set for the queue

• If the target queue is an execution queue, all resources requested by the job are recognized

• The job requires access to a user identifier that the client is authorized to access

When a job is placed in an execution queue, it is put in the queued state unless one of the following conditions applies:

• The job has an Execution_Time attribute that specifies a time in the future and the Hold_Types attribute has value
of no hold, in which case the job is placed in the waiting state

• The job has a Hold_Types attribute with a value other than no hold, in which case the job is placed in the held state.

When a job is placed in a routing queue, its state may change based on the conditions described in section 22.8.4, “Job
Routing”, on page 16.

A server that accepts a Queue Job request for a new job will do the following:

• Add the PBS_O_QUEUE variable to the Variable_List attribute of the job and set the value to the name of the tar-
get queue

• Add the PBS_JOBID variable to the Variable_List attribute of the job and set the value to the job identifier
assigned to the job

• Add the PBS_JOBNAME variable to the Variable_List attribute of the job and set the value to the value of the
Job_Name attribute of the job

When the server accepts a Queue Job request for an existing job, the server will send a Track Job request to the server
which created the job.

22.6.2 Job Credential Request

The Job Credential sub-request is part of the Queue Job request. This sub-request transfers a copy of the credential
provided by the authentication facility explained below.

22.6.3 Job Script Request

The Job Script sub-request is part of the Queue Job request. This sub-request passes a block of the job script file to
the receiving server. The script is broken into blocks to prevent having to hold the entire script in memory. Multiple
Job Script sub-requests may be required to transfer the script file.

22.6.4 Commit Request

The Commit sub-request is part of the Queue Job request. The Commit notifies the receiving server that all parts of
the job have been transferred and the receiving server should now assume ownership of the job. Prior to sending the
Commit, the sending client, command, or another server, is the owner.
PBS Professional 2022.1 Programmer’s Guide PG-7

Chapter 22 Server Functions
22.6.5 Message Job Request

A batch server can be requested to write a string of characters to one or both output streams of an executing job. This
request is primarily used by an operator to record a message for the user. The batch server will accept a Message Job
request if all of the following conditions are true:

• The specified job is in the running state

• The user of the client is authorized to post a message to the designated job

• The specified job is owned by the server

When the server accepts the Message Job request, it will forward the request to the primary MoM for the job. Upon
receiving the Message Job request from the server, the MoM will append the message string, followed by a newline
character, to the file or files indicated. If no file is indicated, the message will be written to the standard error of the job.

22.6.6 Locate Job Request

A client may ask a server to return the location of a job that was created by or is owned by the server. When the server
accepts the Locate Job request, it returns a Locate Reply. The request will be accepted if all of the following condi-
tions are true:

• The server owns (manages) the job

• The server created the job

• The server is maintaining a record of the current location of the job

22.6.7 Delete Job Request

A Delete Job request asks a server to remove a job from the queue in which it exists and not place it elsewhere. The
batch server will accept a Delete Job request if all of the following conditions are true:

• The user of the client is authorized to delete the designated job.

• The designated job is owned by the server.

• The designated job is in an eligible state. Eligible states are queued, held, waiting, running, and transiting.

If the job is in the running state, the server will forward the Delete Job request to the primary MoM responsible for the
job. The MoM daemon will first send a SIGTERM signal to the job process group. After a delay specified by the
delete request, or if not specified, the kill_delay queue attribute, the MoM will send a SIGKILL signal to the job process
group. The job is then placed into the exiting state. Option arguments exist to specify the delay in seconds between the
SIGTERM and SIGKILL signals, as well as to force the deletion of the job even if the node it is running on is not
responding.

22.6.8 Modify Job Request

A batch client makes a Modify Job request to the server to alter the attributes of a job. The batch server will accept a
Modify Job request if all of the following conditions are true:

• The user of the client is authorized to make the requested modification to the job.

• The designated job is owned by the server.

• The requested modification is consistent with the state of the job.

• A requested resource change would not exceed the limits of the queue or server.

• An recognized resource is requested for a job in an execution queue.
PG-8 PBS Professional 2022.1 Programmer’s Guide

Server Functions Chapter 22
When the batch server accepts a Modify Job request, it will modify all the specified attributes of the job. When the
batch server rejects a Modify Job request, it will modify none of the attributes of the job.

22.6.9 Run Job Request

The Run Job request directs the server to place the specified job into immediate execution. The request is issued by a
qrun command or by the PBS job scheduler.

22.6.10 Rerun Job Request

To rerun a job is to kill the members of the session (process) group of the job and leave the job in the execution queue. If
the Hold_Types attribute is not NONE , the job is eligible to be re-scheduled for execution. The server will accept the
Rerun Job request if all of the following conditions are true:

• The user of the client is authorized to rerun the designated job

• The Rerunable attribute of the job is set to True

• The job is in the running state

• The server owns the job

When the server accepts the Rerun Job request, the request will be forwarded to the primary MoM responsible for the
job, who will then perform the following actions:

1. Send a SIGKILL signal to the session (process) group of the job

2. Send an OBIT notice to the server with resource usage information

3. The server will then requeue the job in the execution queue in which it was executing

If the Hold_Types attribute is not NONE, the job will be placed in the held state. If the execution_time attribute is a
future time, the job will be placed in the waiting state. Otherwise, the job is.placed in the queued state.

22.6.11 Hold Job Request

A client can request that one or more holds be applied to a job. The batch server will accept a Hold Job request if all of
the following conditions are true:

• The user of the client is authorized to add any of the specified holds

• The batch server manages the specified job

When the server accepts the Hold Job request, it will add each specified hold which is not already present to the value of
the Hold_Types attribute of the job. If the job is in the queued or waiting state, it is placed in the held state.

If the job is in running state:

If checkpoint / restart is supported by the host system, placing a hold on a running job will cause:

a. The job is checkpointed

b. The resources assigned to the job will be released

c. The job is placed in the held state in the execution queue.

If checkpoint / restart is not supported, the server will only set the requested hold type(s). This will have no effect
unless the job is rerun or restarted.
PBS Professional 2022.1 Programmer’s Guide PG-9

Chapter 22 Server Functions
22.6.12 Release Job Request

A client can request that one or more holds be removed from a job. A batch server accepts a Release Job request if all
of the following conditions are true:

• The user of the client is authorized to add (remove) any of the specified holds.

• The batch server manages the specified job.

When the server accepts the Release Job request, it will remove each specified type of hold from the value of the
Hold_Types attribute of the job. Normally, the job will then be placed in the queued state, unless another hold type is
remaining on the job. However, if all holds have been removed, but the Execution_Time attribute specifies a time in
the future, the job is placed in the waiting state.

22.6.13 Move Job Request

A client can request a server to move a job to a new destination. The batch server will accept a Move Job request if all
of the following conditions are true:

• The user of the client is authorized to remove the designated job from the queue in which the job resides

• The user of the client is authorized to submit a job to the new destination

• The designated job is owned by the server

• The designated job is in the queued, held, or waiting state

• The new destination is enabled

• The new destination is accessible. When the server accepts a Move Job request, it will

• Queue the designated job at the new destination.

• Remove the job from the current queue.

If the destination exists at a different server, the current server will transfer the job to the new server by sending a Queue
Job request sequence to the target server. The server will ensure that a job is neither lost nor duplicated.

22.6.14 Select Jobs Request

A client is able to request from the server a list of jobs owned by that server that match a list of selection criteria. The
request is a Select Jobs request. All the jobs owned by the server and which the user is authorized to query are initially
eligible for selection. Job attribute and resource relationships listed in the request restrict the selection of jobs. Only
jobs which have attributes and resources that meet the specified criteria will be selected. The server will reject the
request if the queue portion of a specified destination does not exist on the server. When the request is accepted, the
server will return a Select Reply containing a list of zero or more jobs that met the selection criteria.

22.6.15 Signal Job Request

A batch client is able to request that the server signal the session (process) group of a job. Such a request is called a Sig-
nal Job request. The batch server will accept a Signal Job request if all of the following conditions are true:

• The user of the client is authorized to signal the job

• The job is in the running state, except for the special signal "resume" when the job must be in the Suspended state

• The server owns the designated job

• The requested signal is supported by the host operating system. (The kill system call returns [EINVAL].)

When the server accepts a request to signal a job, it will forward the request to the primary MoM daemon responsible for
the job, who will then send the signal requested by the client to the all processes in the job's session.
PG-10 PBS Professional 2022.1 Programmer’s Guide

Server Functions Chapter 22
22.6.16 Status Job Request

The status of a job or set of jobs at a destination may be requested with a Status Job request. The batch server will
accept a Status Job request if all of the following conditions are true:

• The user of the client is authorized to query the status of the designated job

• The designated job is owned by the server

When the server accepts the request, it will return a Job Status message to the client. See the qstat command for
details of which job attributes are returned to the client. If the request specifies a job identifier, status will be returned
only for that job. If the request specifies a destination identifier, status will be returned for all jobs residing within the
specified queue that the user is authorized to query.

22.7 Server to Server Requests

Server to server requests are a special category of client requests. They are only issued to a server by another server.

22.7.1 Track Job Request

A client that wishes to request an action be performed on a job must send a batch request to the server that currently man-
ages the job.

As jobs are routed or moved through the batch network, finding the location of the job can be difficult without a tracking
service. The Track Job request forms the basis for this service.

A server that queues a job sends a track job request to the server which created the job.

Additional backup location servers may be defined.

A server that receives a track job request records the information contained therein.

This information is made available in response to a Locate Job request.

22.7.2 Job Dependency

PBS supports job dependencies. A job, the "child", can be declared to be dependent on one or more jobs, the "parents".
A parent may have any number of children. The dependency is specified as an attribute via the qsub command with the
-W depend=<dependency list> option.

See “qsub” on page 216 of the PBS Professional Reference Guide for the complete specification of the dependency list,
and "Using Job Dependencies", on page 109 of the PBS Professional User’s Guide for how to use them.

When a server queues a job with a dependency type of after, afterok, afternotok, or afterany in an execution queue, the
server will send a Register Dependent Job request to the server managing the job specified by the associated job iden-
tifier. The request will specify that the server is to register the dependency. This actually creates a corresponding
before type dependency attribute entry on the parent (e.g. run job X before job Y). If the request is rejected because the
parent job does not exist, the child job is aborted. If the request is accepted, a system hold is placed on the child job.
When a parent job with any of the before... types of dependency reaches the required state, starts, or terminates, the
server executing the parent job sends a Register Dependent Job request to the server managing the child job directing
it to release the child job. If there are no other dependencies on other jobs, the system hold on the child job is removed.
When a child job is submitted with an on dependency and the parent is submitted with any of the before... types of
dependencies, the parent will register with the child. This causes the on dependency count to be reduced and a corre-
PBS Professional 2022.1 Programmer’s Guide PG-11

Chapter 22 Server Functions
sponding after... dependency to be created for the child job. The result is a pairing between corresponding before...
and after... dependency types. If the parent job terminates so that the child is not released, it is up to the user to correct
the situation by either deleting the child job or by correcting the problem with the parent job and resubmitting it. If the
parent job is resubmitted, it must have a dependency type of before, beforeok, beforenotok, or beforeany specified to
connect it to the waiting child job.

22.8 Deferred Services

The PBS server uses an internal mechanism of deferred services to handle some work asynchronously.

Servers use deferred services for these job-related tasks:

• File staging

• Job selection

• Job initiation

• Job routing

• Job exit

• Job abort

• Rerunning jobs after a server restart

The following rules apply to deferred services used for jobs:

• If the server cannot complete a deferred service for a reason which is permanent, the job is aborted

• If the service cannot be completed at the current time but may be completed later, the service is retried a finite num-
ber of times

22.8.1 Job Scheduling

PBS has a default scheduler; if you want to schedule individual partitions separately, you can add any number of addi-
tional schedulers, called multischeds. Each PBS scheduler follows its own scheduling policy.

Each scheduler daemon implements a policy that you define that controls when each job is run and on which resources.
See "About Schedulers" on page 91 in the PBS Professional Administrator’s Guide.

22.8.1.1 Connection Between Scheduler and Server

Each scheduler is persistently connected to the server via pbs_connect(). If the scheduler does not have a connec-
tion to the server, it continues trying every 2 seconds until it succeeds.

Each scheduler registers itself as a client with the server by sending a PBS_BATCH_RegisterSched batch request.
The scheduler passes its name to the server along with this batch request. The administrator must set the scheduler host-
name in the sched_host scheduler attribute when creating the scheduler object so that the server can verify that the
incoming client request is from the specified scheduler host. The server authenticates the scheduler, and marks this
authenticated client as a scheduler.

The scheduler uses pbs_connect() to make two connections to the server. After each call to pbs_connect(), the
scheduler sends a PBS_BATCH_RegisterSched batch request along with its name, and waits for an ACK from the
server. The scheduler first establishes a primary connection to the server, and uses it for data and IFL calls. The sched-
uler then establishes a secondary connection to the server, and uses it to get scheduling commands from the server and to
send end-of-cycle notifications to the server. After the scheduler receives an ACK for both connections, it waits for
scheduling commands from the server. The server waits for each end-of-cycle notification before sending the next
scheduling command.
PG-12 PBS Professional 2022.1 Programmer’s Guide

Server Functions Chapter 22
22.8.1.1.i Process for Server to Accept Scheduler Connection Request

1. When the server receives a request to register a scheduler, the server verifies that the connection is authenticated and
that the connection is coming from a daemon.

2. Next, the server validates the scheduler name via find_sched(); if no scheduler is found with the specified name, the
request is rejected.

3. If the scheduler is already connected, the server rejects the request.

4. If a scheduler with the specified name is found, temporarily store the current connection file descriptor in the sched-
uler object; later this will become the primary connection and be used to accept the current request.

5. When the second register scheduler batch request is received for same scheduler object, the server again authenti-
cates the connection and validates the scheduler name and user.

6. The server checks for a temporary stored connection; if there is no temporary stored connection found, the server
rejects the request.

7. The server validates that the second connection is not the same as the first connection; if both are the same connec-
tion, the server rejects the request.

8. The server validates that both connections come from the same host; if connections are not from the same host, the
server rejects the request.

9. The server checks that the connection host is identical to the value of sched_host set by the administrator on the
scheduler object; if they are not identical, the server rejects the request.

10. If all tests are passed, the server accepts the request, promotes the client as a scheduler, and assigns the first connec-
tion as primary connection and the second connection as secondary connection to the scheduler object.

22.8.1.2 Scheduling Cycle

If a scheduler's scheduling attribute is True, the server sends scheduling commands to that scheduler.

A scheduler runs in a loop. Inside each loop, it starts up, performs all of its work, and then stops. The scheduling cycle
is triggered by a timer and by several possible events.

When there are no events to trigger the scheduling cycle, it is started by a timer. The time between starts is set in each
scheduler's scheduler_iteration server attribute. The default value is 10 minutes.

The maximum duration of the cycle is set in each scheduler's sched_cycle_length attribute. A scheduler will terminate
its cycle if the duration of the cycle exceeds the value of the attribute. The default value for the length of the scheduling
cycle is 20 minutes. A scheduler does not include the time it takes to query dynamic resources in its cycle measurement.
PBS Professional 2022.1 Programmer’s Guide PG-13

Chapter 22 Server Functions
22.8.1.3 Triggers for Scheduling Cycle

A scheduler starts when the following happen:

• The specified amount of time has passed since the previous start

• A job is submitted

• A job finishes execution.

• A new reservation is created

• A reservation starts

• Scheduling is enabled

• The server comes up

• A job is qrun

• A queue is started

• A job is moved to a local queue

• Eligible wait time for jobs is enabled

• A reservation is re-confirmed after being degraded

• A hook restarts the scheduling cycle

22.8.2 File Staging

PBS provides staging in before execution and staging out after execution. These services are requested via the -W
option, which sets the stagein and stageout job attributes. The attributes specify the files to be staged:

-W stagein=<execution path>@<input file storage host>:<input file storage path>[,...]

-W stageout=<execution path>@<output file storage host>:<output file storage path>[,...]

The name execution path is the name of the file in the job's staging and execution directory (on the execution host). The
execution path can be relative to the job's staging and execution directory, or it can be an absolute path.

The '@' character separates the execution specification from the storage specification.

The name storage path is the file name on the host specified by storage host. For stagein, this is the location where the
input files come from. For stageout, this is where the output files end up when the job is done. The user must specify a
hostname. The name can be absolute, or it can be relative to your home directory on the machine named storage host.

For stagein, the direction of travel is from storage path to execution path.

For stageout, the direction of travel is from execution path to storage path.

A request to stage in a file tells the server to direct MoM to copy a file from the storage location to the execution location.
The user must have authority to access the file under the same username under which the job will be run. The storage
file is not modified or destroyed. The file will be available before the job is initiated. If a file cannot be staged in for
any reason, any files which were staged in are deleted and the job is placed in the wait state and mail is sent to the job
owner.

A request to stage out a file tells the server to direct MoM to move a file from the execution location to the storage loca-
tion. This service is performed after the job has completed execution and regardless of job exit status. If a file cannot
be moved, mail is sent to the job owner. If a file is successfully staged out, the local file is deleted.

For file copy mechanism information, see "Setting File Transfer Mechanism" on page 441 in the PBS Professional
Administrator’s Guide.
PG-14 PBS Professional 2022.1 Programmer’s Guide

Server Functions Chapter 22
22.8.3 Job Start

The server receives Run Job requests from a PBS scheduler and the qrun command. If a request is authenticated, the
server forwards the Run Job request to the primary MoM for the job; the primary MoM is chosen by the scheduler or
specified in the Run Job request.

See the sequence of events in "Sequence of Events for Start of Job" on page 477 in the PBS Professional Administrator’s
Guide.

The primary MoM creates a session leader that runs the shell program specified in the job's Shell_Path_List attribute.

The pathname of the script and any script arguments are passed as parameters to the shell. If the pathname of the shell is
relative, the MoM searches its execution path, $PATH, for the shell. If the pathname of the shell is omitted or is the null
string, the MoM uses the login shell for the job owner.

The MoM determines the job owner using the following rules:

1. Choose the username in the User_List job attribute whose hostname matches the execution host.

2. Choose the username in the User_List job attribute which has no associated hostname.

3. Use the username from the Job_Owner job attribute.

The MoM creates and sets the following environment variables in the environment of the session leader of the job:

• PBS_ENVIRONMENT; value set to the string "PBS_BATCH"

• PBS_QUEUE; value set to the name of the execution queue

PBS provides each job with environment variables where the job runs. PBS takes some from the submission environ-
ment, and creates others. Job submitters can create environment variables for their jobs. The environment variables
created by PBS begin with "PBS_". The environment variables that PBS takes from the job submission environment
begin with "PBS_O_".

For example, here are a few of the environment variables that accompany a job submitted by user1, with typical values:

PBS_O_HOME=/u/user1

PBS_O_LOGNAME=user1

PBS_O_PATH=/usr/bin:/usr/local/bin:/bin

PBS_O_SHELL=/bin/tcsh

PBS_O_HOST=host1

PBS_O_WORKDIR=/u/user1

PBS_JOBID=16386.server1

For a complete list of PBS environment variables, “PBS Environment Variables” on page 397 of the PBS Professional
Reference Guide.

The MoM puts all of the variables found in the job's Variable_List attribute, with their corresponding values, into the
environment of the job's session leader.

The MoM places the specified limits on host-level resources.

If the job has been run before and is now being rerun, the MoM will ensure that the standard output and standard error
streams of the job are appended to the prior streams, if any.

If the MoM and host system support accounting, the MoM will use the value of the Account_Name job attribute as
required by the host system.
PBS Professional 2022.1 Programmer’s Guide PG-15

Chapter 22 Server Functions
If the MoM and host system support checkpoint, the MoM will set up checkpointing of the job according to the value of
the Checkpoint job attribute. If checkpoint is supported and the Checkpoint attribute requests checkpointing at the
minimum interval or at an interval less than the minimum interval for the queue, then checkpoint will be set for an inter-
val given by the queue attribute checkpoint_min.

The MoM will set up the standard output stream and the standard error stream of the job according to the table labeled
"How k, sandbox, o, and e Options to qsub Affect stdout and stderr", on page 43 of the PBS Professional User’s Guide.

22.8.4 Job Routing

The PBS server performs all job routing tasks. Job routing is described in "Routing Queues" on page 27 in the PBS Pro-
fessional Administrator’s Guide.

If the routing destination is at another server, the current server uses a Queue Job request to move the job to the new
destination.

22.8.5 Job Exit

When the session leader of a batch job exits, the MoM will perform the following actions in the order listed:

• Place the job in the exiting state.

• Manage the output and error streams of the job, according to "How k, sandbox, o, and e Options to qsub Affect std-
out and stderr", on page 43 of the PBS Professional User’s Guide.

• If the Mail_Points job attribute contains the value e (EXIT), the server will send mail to the users listed in the
Mail_Users job attribute.

• Files are staged out

• Frees the resources allocated to the job. The actual releasing of resources assigned to the processes of the job is per-
formed by the kernel. PBS will free the resources which it reserved for the job by decrementing the resources_used
generic data item for the queue and server.

• The job will be removed from the execution queue.

22.8.6 Aborting Job

If the server aborts a job and the Mail_Points job attribute contains the value a (ABORT), the server will send mail to
the users listed in the Mail_Users job attribute. The mail message will contain the reason the job was aborted.

22.8.7 Timed Events

The server performs certain events at a specified time or after a specified time delay. Examples:

• A job may have its Execution_Time attribute set to a time in the future. When that time is reached, the job state is
updated.

• If the server is unable to make connection with another server, it is to retry after a time specified by the routing queue
attribute route_retry_time.

22.8.8 Event Logging

The PBS server maintains an event logfile, the format and contents of which are documented in "Event Logging" on page
428 in the PBS Professional Administrator’s Guide.
PG-16 PBS Professional 2022.1 Programmer’s Guide

Server Functions Chapter 22
22.8.9 Accounting

The PBS server maintains an accounting file, the format and contents of which are documented in "Accounting" on page
529 in the PBS Professional Administrator’s Guide.

22.9 Resource Management

PBS performs resource allocation at job initiation in two ways depending on the support provided by the host system.
Resources are either reservable or non reservable.

22.9.1 Resource Limits

A job submitter can specify limits for resources used by their job, by requesting those amounts. If the job exceeds those
limits, it is aborted. The administrator can specify default limits for resource use by jobs. Defaults are specified at the
server and at queues. Defaults are applied when limits are not specified by the submitter. The administrator can also
use hooks to set resource requests, and thereby limits, in whatever way is useful. See "Allocating Default Resources to
Jobs" on page 244 in the PBS Professional Administrator’s Guide and the PBS Professional Plugins (Hooks) Guide.

If the submitter does not specify a limit for a resource and there is no default, the job can use an unlimited amount of the
resource.

22.9.2 Resource Names

For additional information, see “List of Built-in Resources” on page 259 of the PBS Professional Reference Guide where
all resource names are documented.

22.10 Network Protocol

The PBS system fits into a client - server model, with a batch client making a request of a batch server and the server
replying. This client - server communication necessitates an interprocess communication method and a data exchange
(data encoding) format. Since the client and server may reside on different systems, the interprocess communication
must be supportable over a network.

While the basic PBS system fits nicely into the client - server model, it also has aspects of a transaction system. When
jobs are being moved between servers, it is critical that the jobs are not lost or replicated. Updates to a batch job must be
applied once and only once. Thus the operation must be atomic. Most of the client to server requests consist of a single
message. Treating these requests as an atomic operation is simple. One request, "Queue Job", is more complex and
involves several messages, or subrequests, between the client and the server. Any of these subrequests might be rejected
by the server. It is important that either side of the connection be able to abort the request (transaction) without losing or
replicating the job. The network connection also might be lost during the request. Recovery from a partially transmitted
request sequence is critical. The sequence of recovery from lost connections is discussed in the Queue Job Request
description.

The batch system data exchange protocol must be built on top of a reliable stream connection protocol. PBS uses TCP/IP
and the socket interface to the network. Either the Simple Network Interface, SNI, or the Detailed Network Interface,
DNI, as specified by POSIX.12, Protocol Independent Interfaces, could be used as a replacement.
PBS Professional 2022.1 Programmer’s Guide PG-17

Chapter 22 Server Functions
22.10.1 General DIS Data Encoding

The purpose of the "Data is Strings" encoding is to provide a simple, fast, small, machine-independent form for encoding
data to a character string and back again. Because data can be decoded directly into the final internal data structures, the
number of data copy operations are reduced. Data items are represented as people think of them, but preceded with a
count of the length of each data item.

For small positive integers, it is impossible to tell from the encoded data whether they came from signed or unsigned
chars, shorts, ints, or longs. Similarly, for small negative numbers, the only thing that can be determined from the
encoded data is that the source datum was not unsigned. It is impossible to tell the word size of the encoding machine, or
whether it uses 2's complement, one's complement or sign - magnitude representation, or.even if it uses binary arithmetic.
All of the basic C data types are handled. Signed and unsigned chars, shorts, ints, longs produce integers. NULL-termi-
nated and counted strings produce counted strings (with the terminating NULL removed). Floats, doubles, and long dou-
bles produce real numbers. Complex data must be built up from the basic types. Note that there is no type tagging, so
the type and sequence of data to be decoded must be known in advance.
PG-18 PBS Professional 2022.1 Programmer’s Guide

23

Developer Headers and

Libraries

23.1 Location of API Libraries

All of the libraries containing the PBS API are installed by default in $PBS_EXEC/lib/.

23.2 Location of Header Files

Header files used by your code are found in $PBS_EXEC/include.

23.3 Developer Package

We provide a development package as an RPM package. The files in this package are useful only for developing and
compiling software that interfaces with PBS. They are not required to run PBS.

The development package is named pbspro-devel and contains the following headers and libraries:

/opt/pbs/include/pbs_error.h

/opt/pbs/include/pbs_ifl.h

/opt/pbs/include/rm.h

/opt/pbs/include/tm.h

/opt/pbs/include/tm_.h

/opt/pbs/lib/libattr.a

/opt/pbs/lib/liblog.a

/opt/pbs/lib/libnet.a

/opt/pbs/lib/libpbs.a

/opt/pbs/lib/libpbs_sched.a

/opt/pbs/lib/libsite.a

These files were previously in the pbspro-server, pbspro-client and pbspro-execution packages.

The pbspro-devel package also contains the README file, like the other PBS Professional RPM packages:

/usr/share/doc/pbspro-devel-19.0.0/README.md

You can install the pbspro-devel package separately from the other PBS packages. This package does not conflict with
other PBS packages.
PBS Professional 2022.1 Programmer’s Guide PG-19

Chapter 23 Developer Headers and Libraries
23.4 Batch Interface Library

The primary external application programming interface to PBS is the Batch Interface Library, or IFL. This library pro-
vides all of the batch service requests used for PBS. The IFL provides a user-callable function corresponding to each
batch client command in PBS Professional. Each command generates its own batch service request. You request service
from a batch server by calling the appropriate library routine and passing it the required arguments.

The user-callable routines are declared in the header file PBS_ifl.h.

We describe the Batch Interface Library in section , “Batch Interface Library (IFL)”, on page 21.

23.4.1 Error Codes

Error codes are available in the header file PBS_error.h.

23.4.2 Windows Requirement

To use pbs_connect() with Windows, initialize the network library and link with winsock2. Call winsock_init()
before calling pbs_connect(), and link against the ws2_32.lib library.

23.5 Example Compilation Line

A compile command might look like the following:

cc mycode.c -I/usr/pbs/include -L/usr/pbs/lib -lpbs
PG-20 PBS Professional 2022.1 Programmer’s Guide

24

Batch Interface Library (IFL)

You can use the commands in this library to build your new batch clients. For example, you can customize your job sta-
tus display instead of using qstat, build new control commands, or use these commands to build jobs that can get their
own status or spawn new jobs.

24.1 Interface Library Overview

The primary external application programming interface to PBS is the Batch Interface Library, or IFL. This library pro-
vides all of the batch service requests used for PBS. The IFL provides a user-callable function corresponding to each
batch client command in PBS Professional. Each command generates its own batch service request. You request service
from a batch server by calling the appropriate library routine and passing it the required arguments.

The user-callable routines are declared in the header file PBS_ifl.h.

Error codes are available in the header file PBS_error.h.

24.1.1 Connection to Server

We provide network connection management routines to be used with our API commands.

You open a connection with a batch server via a call to pbs_connect(), which returns a connection handle to the
desired server. You can open multiple connections, and you can use each connection for multiple service requests.

When you are finished using a connection to the server, close it via a call to pbs_disconnect().

24.1.2 Authentication

Before it establishes a connection, pbs_connect() fork()s and exec()s a pbs_iff process. The pbs_iff
process provides a credential which validates the user's identity, and prevents a user from spoofing another user's iden-
tity. This credential is included in each batch request sent to the server, and consists of the following:

• The user's name from the password file based on running pbs_iff's "real uid" value

• The unprivileged, client-side port value associated with the original pbs_connect() request message to the
server.

The server checks the entries in its connection table for a matching entry which is not yet marked authenticated. The
server requires that the matching entry came from a privileged, remote-end, port value.
PBS Professional 2022.1 Programmer’s Guide PG-21

Chapter 24 Batch Interface Library (IFL)

24.1.3 Windows Requirement

To use pbs_connect() with Windows, initialize the network library and link with winsock2. Call winsock_init()
before calling pbs_connect(), and link against the ws2_32.lib library.

24.2 Batch Library Routines

4.3 pbs_alterjob . 24
4.4 pbs_asyrunjob . 26
4.5 pbs_confirmresv . 28
4.6 pbs_connect . 30
4.7 pbs_default . 32
4.8 pbs_deljob . 33
4.9 pbs_delresv . 35
4.10 pbs_disconnect . 36
4.11 pbs_geterrmsg . 37
4.12 pbs_holdjob . 38
4.13 pbs_locjob . 39
4.14 pbs_manager . 41
4.15 pbs_modify_resv . 45
4.16 pbs_movejob . 47
4.17 pbs_msgjob . 49
4.18 pbs_orderjob . 51

Client

pbs_connect()

any port

pbs_iff

reserved port

pbs_server

1. connect

2. local port number

3. local port, user, host

4. ACK

5. request
6. reply

Figure 4-1: Interface Between Client, IFF, and Server
PG-22 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
4.19 pbs_preempt_jobs . 52
4.20 pbs_relnodesjob. 54
4.21 pbs_rerunjob . 56
4.22 pbs_rlsjob . 57
4.23 pbs_runjob . 58
4.24 pbs_selectjob . 60
4.25 pbs_selstat . 63
4.26 pbs_sigjob . 67
4.27 pbs_statfree . 69
4.28 pbs_stathost . 70
4.29 pbs_statjob. 72
4.30 pbs_statnode . 75
4.31 pbs_statque . 77
4.32 pbs_statresv . 79
4.33 pbs_statrsc . 81
4.34 pbs_statsched. 83
4.35 pbs_statserver . 85
4.36 pbs_statvnode . 87
4.37 pbs_submit. 89
4.38 pbs_submit_resv . 91
4.39 pbs_terminate . 93
PBS Professional 2022.1 Programmer’s Guide PG-23

Chapter 24 Batch Interface Library (IFL)
24.3 pbs_alterjob

alter a PBS batch job

24.3.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_alterjob(int connect, char *jobID, struct attropl *change_list, char *extend)

24.3.2 Description

Issues a batch request to alter a batch job.

This command generates a Modify Job (11) batch request and sends it to the server over the connection specified by
connect.

Job state may affect which attributes can be altered. See “qalter” on page 130 of the PBS Professional Reference Guide.

24.3.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID
ID of job or job array to be altered. Format for a job:

<sequence number>.<server name>
Format for an array job:

<sequence number>[].<server name>

change_list
Pointer to a list of attributes to change. Each attribute is described in an attropl structure, defined in pbs_ifl.h
as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

extend
Character string for extensions to command. Not currently used.

24.3.3.1 Members of attropl Structure

next
Points to next attribute in list. A null pointer terminates the list.
PG-24 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a pointer to a null string.

If the resource is already present in the job's Resource_List attribute, the value is altered as specified. Other-
wise the resource is added.

value
Points to a string containing the value of the attribute or resource.

op
Defines the operation to perform on the attribute or resource. For this command, operators are SET, UNSET,
INCR, DECR.

24.3.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.3.5 See Also

qalter, qhold, qrls, qsub, pbs_connect, pbs_holdjob, pbs_rlsjob
PBS Professional 2022.1 Programmer’s Guide PG-25

Chapter 24 Batch Interface Library (IFL)
24.4 pbs_asyrunjob

run an asynchronous PBS batch job

24.4.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_asyrunjob(int connect, char *jobID, char *location, char *extend)

24.4.2 Description

Issues a batch request to run a batch job.

Generates an Asynchronous Run Job (23) request and sends it to the server over the connection specified by connect.

The server validates the request and replies before initiating the execution of the job.

You can use this version of the call to reduce latency in scheduling, especially when the scheduler must start a large num-
ber of jobs.

24.4.3 Required Privilege

You must have Manager or Operator privilege to use this command.

24.4.4 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID
ID of job to be run.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

location
Location where job should run, and optionally resources to use. Same as qrun -H:

-H <vnode specification without resources>
The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)
PG-26 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
PBS applies one requested chunk from the job's selection directive in round-robin fashion to each vchunk in
the list. Each vchunk must be sufficient to run the job's corresponding chunk, otherwise the job may not
execute correctly.

-H <vnode specification with resources>
The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

PBS creates a new selection directive from the vnode specification with resources, using it instead of the
original specification from the user. Any single resource specification results in the job's original selection
directive being ignored. Each vchunk must be sufficient to run the job's corresponding chunk, otherwise the
job may not execute correctly.

If the job being run requests -l place=exclhost, take extra care to satisfy the exclhost request.
Make sure that if any vnodes are from a multi-vnoded host, all vnodes from that host are allocated. Other-
wise those vnodes can be allocated to other jobs.

extend
Character string for extensions to command. Not currently used.

24.4.5 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.4.6 See Also

qrun, pbs_connect, pbs_runjob
PBS Professional 2022.1 Programmer’s Guide PG-27

Chapter 24 Batch Interface Library (IFL)
24.5 pbs_confirmresv

confirm a PBS reservation

24.5.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_confirmresv(int connect, char *reservationID, char *location, unsigned long start_time, char *extend)

24.5.2 Description

Issues a batch request to confirm a PBS advance, standing, or maintenance reservation.

This function generates a Confirm Reservation (75) batch request and sends it to the server over the connection speci-
fied by connect.

24.5.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

reservationID
Reservation to be confirmed.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>
Format for maintenance reservation:

M<sequence number>.<server name>

location
String describing vnodes and resources to be used for reservation. Format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

start_time
Unsigned long containing start time in seconds since epoch. Used only for ASAP reservations (reservations cre-
ated by using pbs_rsub -W qmove=<jobID> on an existing job).
PG-28 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
extend
Character string for specifying confirmation/non-confirmation action:

• To confirm a normal reservation, pass in PBS_RESV_CONFIRM_SUCCESS.

• To have an unconfirmed reservation deleted, pass in PBS_RESV_CONFIRM_FAIL.

• To have the scheduler set the time when it will try to reconfirm a degraded reservation, pass in
PBS_RESV_CONFIRM_FAIL.

24.5.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.5.5 See Also

pbs_rsub, pbs_connect
PBS Professional 2022.1 Programmer’s Guide PG-29

Chapter 24 Batch Interface Library (IFL)
24.6 pbs_connect

return a connection handle from a PBS batch server

24.6.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_connect(char *server)

24.6.2 Description

This function establishes a virtual stream (TCP/IP) connection with the specified batch server.

Returns a connection handle.

pbs_connect() determines whether or not the complex has a failover server configured. It also determines which
server is the primary and which is the secondary.

24.6.3 Arguments

server
Specifies name of server to connect to. Format:

<hostname>[:<port>]
If you do not specify a port, PBS uses the default.

If server is a null pointer or a null string, this function opens a connection to the default server. The default
server is specified in the PBS_DEFAULT environment variable or the PBS_SERVER parameter in
/etc/pbs.conf.

24.6.4 Usage

Use this function to establish a connection handle to the desired server before calling any of the other pbs_* API func-
tions. They will send their batch requests over the connection established by this function. You can send multiple
requests over one connection.

24.6.5 Cleanup

After you are done using the connection handle, close the connection via a call to pbs_disconnect().

24.6.6 Side Effects

The global variable pbs_server is declared in pbs_ifl.h. This variable is set on return to point to the server name to
which pbs_connect() connected or attempted to connect.
PG-30 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.6.7 Windows Requirement

In order to use pbs_connect() with Windows, initialize the network library and link with winsock2. To do this, call
winsock_init() before calling pbs_connect(), and link against the ws2_32.lib library.

24.6.8 Return Value

On success, the routine returns a connection handle which is a non-negative integer.

If an error occurred, the routine returns -1, and the error number is available in the global integer pbs_errno.

24.6.9 See Also

qsub, pbs_alterjob, pbs_deljob, pbs_disconnect, pbs_geterrmsg, pbs_holdjob, pbs_locjob, pbs_manager,
pbs_modify_resv, pbs_movejob, pbs_msgjob, pbs_rerunjob, pbs_rlsjob, pbs_runjob, pbs_selectjob, pbs_selstat,
pbs_sigjob, pbs_statjob, pbs_statque, pbs_statresv, pbs_statsched, pbs_statserver, pbs_submit, pbs_submit_resv,
pbs_terminate, pbs_server
PBS Professional 2022.1 Programmer’s Guide PG-31

Chapter 24 Batch Interface Library (IFL)
24.7 pbs_default

return the name of the default PBS server

24.7.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_default()

24.7.2 Description

Returns a pointer to a character string containing the name of the default PBS server.

The default server is specified in the PBS_DEFAULT environment variable or the PBS_SERVER parameter in
/etc/pbs.conf.

24.7.3 Return Value

On success, returns a pointer to a character string containing the name of the default PBS server. You do not need to free
the character string.

Returns null if it cannot determine the name of the default server.
PG-32 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.8 pbs_deljob

delete a PBS batch job

24.8.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_deljob(int connect, char *jobID, char *extend)

24.8.2 Description

Issues a batch request to delete a batch job.

This function generates a Delete Job (6) batch request and sends it to the server over the connection specified by con-
nect.

If the batch job is running, the MoM sends the SIGTERM signal followed by SIGKILL.

If the batch job is deleted by a user other than the job owner, PBS sends mail to the job owner.

24.8.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID
ID of job, job array, subjob, or range of subjobs to be deleted.

Format for a job:

<sequence number>.<server name>
Format for an array job:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>][.<server name>]
Format for a range of subjobs:

<sequence number>[<first>-<last>][.<server name>]

extend
Character string for extensions to command. If the string is not null, it is appended to the message mailed to the
job owner.

24.8.4 Return Value

The routine returns 0 (zero) on success.

On error, the routine returns a non-zero exit value, and the error number is available in the global integer pbs_errno.
PBS Professional 2022.1 Programmer’s Guide PG-33

Chapter 24 Batch Interface Library (IFL)
24.8.5 See Also

qdel, pbs_connect
PG-34 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.9 pbs_delresv

delete a reservation

24.9.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_delresv(int connect, char *reservationID, char *extend)

24.9.2 Description

Issues a batch request to delete a reservation.

This function generates a Delete Reservation (72) batch request and sends it to the server over the connection specified
by connect.

If the reservation is in state RESV_RUNNING, and there are jobs in the reservation queue, those jobs are deleted before
the reservation is deleted.

24.9.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

reservationID
Reservation to be deleted.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>
Format for maintenance reservation:

M<sequence number>.<server name>

extend
Character string for extensions to command. Not currently used.

24.9.4 Return Value

The routine returns 0 (zero) on success.

On error, the routine returns a non-zero exit value, and the error number is available in the global integer pbs_errno.

24.9.5 See Also

pbs_rdel, pbs_connect
PBS Professional 2022.1 Programmer’s Guide PG-35

Chapter 24 Batch Interface Library (IFL)
24.10 pbs_disconnect

disconnect from a PBS batch server

24.10.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_disconnect(int connect)

24.10.2 Description

Closes the virtual stream connection to a PBS batch server. Connection was previously returned from a call to
pbs_connect().

24.10.3 Arguments

connect
Connection handle to be closed. Return value of pbs_connect(). Specifies connection used earlier to send
batch requests to server.

24.10.4 Return Value

The routine returns 0 (zero) after successfully closing the connection.

If an error occurred, the routine returns -1, and the error number is available in the global integer pbs_errno.

24.10.5 See Also

pbs_connect
PG-36 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.11 pbs_geterrmsg

get error message for most recent PBS batch operation

24.11.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_geterrmsg(int connect)

24.11.2 Description

Returns most recent error message text associated with a batch server request.

If a preceding batch interface library call over the connection specified by connect returned an error from the server, the
server may have created an associated text message. If there is a text message, this function returns a pointer to the text
message.

24.11.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to request error message from
server.

24.11.4 Return Value

If the server returned an error and created an error text string in reply to a previous batch request, this function returns a
pointer to the text string. The text string is null-terminated.

If the server does not have an error text string, this function returns a null pointer.

The text string is a global variable; you do not need to free it.

24.11.5 See Also

pbs_connect
PBS Professional 2022.1 Programmer’s Guide PG-37

Chapter 24 Batch Interface Library (IFL)
24.12 pbs_holdjob

place a hold on a PBS batch job

24.12.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_holdjob(int connect, char *jobID, char *hold_type, char *extend)

24.12.2 Description

Issues a batch request to place a hold on a job or job array.

This function generates a Hold Job (7) batch request sends it to the server over the connection specified by connect.

24.12.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID
ID of job which is to be held.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

hold_type
Type of hold to apply to job or job array. Valid values are defined in pbs_ifl.h. If hold_type is a null pointer or
points to a null string, PBS applies a User hold to the job or job array.

extend
Character string for extensions to command. Not currently used.

24.12.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.12.5 See Also

qhold, pbs_connect, pbs_alterjob, pbs_rlsjob
PG-38 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.13 pbs_locjob

return current location of a PBS batch job

24.13.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_locjob(int connect, char *jobID, char *extend)

24.13.2 Description

Issues a batch request to locate a batch job or job array.

This function generates a Locate Job (8) batch request and sends it to the server over the connection specified by con-
nect.

If the server currently manages the batch job, or knows which server does currently manage the job, the server returns the
location of the job.

24.13.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID
ID of job to be located.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

extend
Character string for extensions to command. Not currently used.

24.13.4 Cleanup

The character string returned by pbs_locjob() is allocated by pbs_locjob(). You must free it via a call to
free().

24.13.5 Return Value

On success, returns a pointer to a character string containing current location. Format:

<server name>

On failure, returns a null pointer, and the error number is available in the global integer pbs_errno.
PBS Professional 2022.1 Programmer’s Guide PG-39

Chapter 24 Batch Interface Library (IFL)
24.13.6 See Also

pbs_connect
PG-40 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.14 pbs_manager

modify a PBS batch object

24.14.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_manager(int connect, int command, int object_type, char *object_name, struct attropl *attrib_list, char *extend)

24.14.2 Description

Issues a batch request to perform administrative functions at a server.

Generates a Manager (9) batch request and sends it to the server over the connection specified by connect.

You can use this to create, delete, and set attributes of objects such as queues.

24.14.3 Required Privilege

This function requires Manager or Operator privilege depending on the operation, and root privilege when used with
hooks.

When not used with hooks:

• Functions MGR_CMD_CREATE and MGR_CMD_DELETE require PBS Manager privilege.

• Functions MGR_CMD_SET and MGR_CMD_UNSET require PBS Manager or Operator privilege.

When used with hooks:

• All commands require root privilege on the server host.

• Functions MGR_CMD_IMPORT, MGR_CMD_EXPORT, and MGR_OBJ_HOOK are used only with hooks, and
therefore require root privilege on the server host.

• Hook commands are run at the server host.

24.14.4 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

command
Operation to be performed. Valid values are specified in pbs_ifl.h.

object_type
Specifies type of object on which command is to operate. Valid values are specified in pbs_ifl.h.

object_name
Name of object on which to operate.
PBS Professional 2022.1 Programmer’s Guide PG-41

Chapter 24 Batch Interface Library (IFL)
attrib_list
Pointer to a list of attributes to be operated on. Each attribute is described in an attropl structure, defined in
pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

extend
Character string for extensions to command. Not currently used.

24.14.4.1 Members of attropl Structure

next
Points to next attribute in list. A null pointer terminates the list.

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

If the resource is already present in the object's attribute, the value is altered as specified. Otherwise the
resource is added.

value
Points to a string containing the new value of the attribute or resource. For parameterized limit attributes, this
string contains all parameters for the attribute.

op
Defines the manner in which the new value is assigned to the attribute or resource. The operators used for this
function are SET, UNSET, INCR, DECR.
PG-42 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.14.5 Usage for Hooks

When importing a hook or hook configuration file:

• Set command to MGR_CMD_IMPORT

• Set object_type to SITE_HOOK (or PBS_HOOK if you are importing a configuration file for a built-in hook; you
cannot import a built-in hook)

• Set object_name to the name of the hook

• In one attropl structure:

• Set name to "content-type"

• Set value to "application/x-python" for a hook, or "application/x-config" for a configuration file

• In another attropl structure:

• Set name to "content-encoding"

• Set value to "default" or "base64"

• In a third attropl structure:

• Set name to "input-file"

• Set value to the name of the input file

• Set op to SET

When exporting a hook or hook configuration file:

• Set command to MGR_CMD_EXPORT

• Set object_type to SITE_HOOK (or PBS_HOOK if you are exporting a configuration file for a built-in hook; you
cannot export a built-in hook)

• Set object_name to the name of the hook

• In one attropl structure:

• Set name to "content-type"

• Set value to "application/x-python" for a hook, or "application/x-config" for a configuration file

• In another attropl structure:

• Set name to "content-encoding"

• Set value to "default" or "base64"

• In a third attropl structure:

• Set name to "output-file"

• Set value to the name of the output file

• Set op to SET

See the PBS Professional Hooks Guide.

24.14.6 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.
PBS Professional 2022.1 Programmer’s Guide PG-43

Chapter 24 Batch Interface Library (IFL)
24.14.7 See Also

qmgr, pbs_connect
PG-44 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.15 pbs_modify_resv

modify a PBS reservation

24.15.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_modify_resv(int connect, char *reservationID, struct attropl *attrib_list, char *extend)

24.15.2 Description

Issues a batch request to modify a reservation.

Generates a Modify Reservation (91) batch request and sends it to the server over the connection specified by connect.

24.15.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

reservationID
Reservation to be modified.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>

attrib_list
Pointer to a list of attributes to modify. Each attribute is described in an attropl structure, defined in pbs_ifl.h
as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

For any attribute that is not specified or that is a null pointer, PBS takes the default action for that attribute. The
default action is to assign the default value or to not pass the attribute with the reservation; the action depends
on the attribute.

extend
Character string for extensions to command. Not currently used.
PBS Professional 2022.1 Programmer’s Guide PG-45

Chapter 24 Batch Interface Library (IFL)
24.15.3.1 Members of attropl Structure

next
Points to next attribute in list. A null pointer terminates the list.

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

If the resource is already present in the reservation's Resource_List attribute, the value is altered as specified.
Otherwise the resource is added.

value
Points to a string containing the value of the attribute or resource.

op
Operator. The only allowed operator for this function is SET.

24.15.4 Return Value

On success, returns a character string containing the reservation ID assigned by the server.

On failure, returns a null pointer, and the error number is available in the global integer pbs_errno.

24.15.5 Cleanup

The space for the reservation ID string is allocated by pbs_modify_resv().

Release the reservation ID via a call to free() when no longer needed.

24.15.6 See Also

pbs_rsub, pbs_connect
PG-46 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.16 pbs_movejob

move a PBS batch job to a new destination

24.16.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_movejob(int connect, char *jobID, char *destination, char *extend)

24.16.2 Description

Issues a batch request to move a job or job array to a new destination.

Generates a Move Job (12) batch request and sends it to the server over the connection specified by connect.

Moves specified job or job array from its current queue and server to the specified queue and server.

You cannot move a job in the Running, Transiting, or Exiting states.

24.16.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID
ID of job to be moved.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

destination
New location for job or job array. Formats:

<queue name>@<server name>
Specified queue at specified server

<queue name>
Specified queue at default server

@<server name>
Default queue at specified server

@default
Default queue at default server

(null pointer or null string)
Default queue at default server

extend
Character string for extensions to command. Not currently used.
PBS Professional 2022.1 Programmer’s Guide PG-47

Chapter 24 Batch Interface Library (IFL)
24.16.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.16.5 See Also

qmove, pbs_connect
PG-48 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.17 pbs_msgjob

record a message for a running PBS batch job

24.17.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_msgjob(int connect, char *jobID, int file, char *message, char *extend)

24.17.2 Description

Issues a batch request to write a message in one or more output files of a batch job.

Generates a Message Job (10) batch request and sends it to the server over the connection specified by connect.

You can write a message into a job's stdout and/or stderr files. Can be used on jobs or subjobs, but not job arrays or
ranges of subjobs.

24.17.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID
ID of job into whose output file(s) to write.

Format for a job:

<sequence number>.<server name>
Format for a subjob:

<sequence number>[<index>].<server name>

file
Indicates whether to write to stdout, stderr, or both:

1
Writes to stdout

2
Writes to stderr

3
Writes to stdout and stderr

message
Character string to be written to output file(s).

extend
Character string for extensions to command. Not currently used.

24.17.4 Return Value

The routine returns 0 (zero) on success.
PBS Professional 2022.1 Programmer’s Guide PG-49

Chapter 24 Batch Interface Library (IFL)
If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.17.5 See Also

qmsg, pbs_connect
PG-50 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.18 pbs_orderjob

swap positions of two PBS batch jobs

24.18.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_orderjob(int connect, char *jobID1, char *jobID2, char *extend)

24.18.2 Description

Issues a batch request to swap the positions of two jobs.

Generates an Order Job (50) batch request and sends it to the server over the connection specified by connect.

Can be used on jobs and job arrays. Can be used on jobs in different queues. Both jobs must be at the same server.

You cannot swap positions of jobs that are running.

24.18.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID1, jobID2
IDs of jobs to be swapped.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

extend
Character string for extensions to command. Not currently used.

24.18.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.18.5 See Also

qmove, qorder, qsub, pbs_connect
PBS Professional 2022.1 Programmer’s Guide PG-51

Chapter 24 Batch Interface Library (IFL)
24.19 pbs_preempt_jobs

preempt a list of jobs

24.19.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

preempt_job_info *pbs_preempt_jobs(int connect, char **jobID_list)

24.19.2 Description

Sends the server a list of jobs to be preempted.

Sends a Preempt Jobs (93) batch request to the server over the connection specified by connect.

Returns a list of preempted jobs along with the method used to preempt each one.

24.19.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID_list
List of job IDs to be preempted, as a null-terminated array of pointers to strings.

Format for a job ID:

<sequence number>.<server name>
Format for a job array ID:

<sequence number>[].<server name>
For example:

const char *joblist[3];

joblist[0]="123.myserver";

joblist[1]="456.myserver";

joblist[2]=NULL;

24.19.4 Return Value

Returns a list of preempted jobs. Each job is represented in a preempt_job_info structure, which has the following
fields:

job_id
The job ID, in a char*

preempt_method
How the job was preempted, in a char:

S
The job was preempted using suspension.

C
The job was preempted using checkpointing.
PG-52 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
R
The job was preempted by being requeued.

D
The job was preempted by being deleted.

0 (zero)
The job could not be preempted.

24.19.5 Cleanup

You must free the list of preempted jobs by passing it directly to free().
PBS Professional 2022.1 Programmer’s Guide PG-53

Chapter 24 Batch Interface Library (IFL)
24.20 pbs_relnodesjob

release some or all of the non-primary-execution-host vnodes assigned to a PBS job

24.20.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_relnodesjob (int connect, char *jobID, char *vnode_list, char *extend)

24.20.2 Description

Issues a batch request to release some or all of the vnodes of a batch job. Generates a RelnodesJob (90) batch request
and sends it to the server over the connection specified by connect.

You cannot release vnodes on the primary execution host.

Do not use when MPI processes are running on a host managed by the cgroups hook. Use when MPI processes are not
running.

You can use this on jobs and subjobs, but not on job arrays or ranges of subjobs.

24.20.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID
ID of job or subjob whose vnodes are to be released.

Format for a job:

<sequence number>.<server name>
Format for a subjob:

<sequence number>[<index>].<server name>

vnode_list
List of vnode names separated by plus signs ("+").

If vnode_list is a null pointer, this specifies that all the vnodes assigned to the job that are not on the primary
execution host are to be released.

extend
Character string for extensions to command. Not currently used.

24.20.4 Return Value

On success, returns 0 (zero).

On error, returns a non-zero exit value, and the error number is available in the global integer pbs_errno.
PG-54 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.20.5 See Also

pbs_connect
PBS Professional 2022.1 Programmer’s Guide PG-55

Chapter 24 Batch Interface Library (IFL)
24.21 pbs_rerunjob

requeue a PBS batch job

24.21.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_rerunjob(int connect, char *jobID, char *extend)

24.21.2 Description

Issues a batch request to requeue a batch job, job array, subjob, or range of subjobs.

Generates a Rerun Job (14) batch request and sends it to the server over the connection specified by connect.

You cannot requeue a job that is marked as not rerunnable (the Rerunable attribute is False).

24.21.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID
ID of job to be requeued.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>].<server name>
Format for a range of subjobs:

<sequence number>[<index start>-<index end>].<server name>

extend
Character string for extensions to command. Not currently used.

24.21.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.21.5 See Also

qrerun, pbs_connect
PG-56 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.22 pbs_rlsjob

release a hold on a PBS batch job

24.22.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_rlsjob(int connect, char *jobID, char *hold_type, char *extend)

24.22.2 Description

Issues a batch request to release a hold on a job or job array.

Generates a Release Job (13) batch request and sends it to the server over the connection specified by connect.

24.22.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

jobID
ID of job which is to have a hold released.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

hold_type
Type of hold to remove from job or job array. Valid values are defined in pbs_ifl.h. If hold_type is a null
pointer or points to a null string, PBS removes a User hold from the job or job array.

extend
Character string for extensions to command. Not currently used.

24.22.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.22.5 See Also

qhold, qrls, pbs_connect, pbs_holdjob
PBS Professional 2022.1 Programmer’s Guide PG-57

Chapter 24 Batch Interface Library (IFL)
24.23 pbs_runjob

run a PBS batch job

24.23.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_runjob(int connect, char *jobID, char *location, char *extend)

24.23.2 Description

Issues a batch request to run a batch job.

Generates a Run Job (15) batch request and sends it to the server over the connection specified by connect.

If no file stagein is required, the server replies when the job has started execution. If file stagein is required, the server
replies when staging is started.

24.23.3 Required Privilege

You must have Operator or Administrator privilege to use this command.

24.23.4 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID
ID of job to run.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>

location
Location where job should run, and optionally resources to use. Same as qrun -H:

-H <vnode specification without resources>
The vnode specification without resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>[+<vnode name> ...]
Example:

-H (VnodeA+VnodeB)+(VnodeC)

PBS applies one requested chunk from the job's selection directive in round-robin fashion to each vchunk in
the list. Each vchunk must be sufficient to run the job's corresponding chunk, otherwise the job may not
execute correctly.
PG-58 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
-H <vnode specification with resources>
The vnode specification with resources has this format:

(<vchunk>)[+(<vchunk>) ...]
where vchunk has the format

<vnode name>:<vnode resources>[+<vnode name>:<vnode resources> ...]
and where vnode resources has the format

<resource name>=<value>[:<resource name>=<value> ...]
Example:

-H (VnodeA:mem=100kb:ncpus=1) +(VnodeB:mem=100kb:ncpus=2+VnodeC:mem=100kb)

PBS creates a new selection directive from the vnode specification with resources, using it instead of the
original specification from the user. Any single resource specification results in the job's original selection
directive being ignored. Each vchunk must be sufficient to run the job's corresponding chunk, otherwise the
job may not execute correctly.

If the job being run requests -l place=exclhost, take extra care to satisfy the exclhost request.
Make sure that if any vnodes are from a multi-vnoded host, all vnodes from that host are allocated. Other-
wise those vnodes can be allocated to other jobs.

extend
Character string for extensions to command. Not currently used.

24.23.5 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.23.6 See Also

qrun, pbs_asyrunjob, pbs_connect
PBS Professional 2022.1 Programmer’s Guide PG-59

Chapter 24 Batch Interface Library (IFL)
24.24 pbs_selectjob

select PBS batch jobs according to specified criteria

24.24.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char **pbs_selectjob(int connect, struct attropl *criteria_list, char *extend)

24.24.2 Description

pbs_selectjob() issues a batch request to select jobs that meet specified criteria, and returns an array of job IDs
that meet the specified criteria.

This command generates a Select Jobs (16) batch request and sends it to the server over the connection handle specified
by connect.

By default, pbs_selectjob() returns all batch jobs for which the user is authorized to query status. You filter the
jobs by specifying values for job attributes and resources. You send a linked list of attributes with associated values and
operators. Job attributes are listed in “Job Attributes” on page 327 of the PBS Professional Reference Guide.

Returns a list of jobs that meet all specified criteria.

24.24.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

criteria_list
Pointer to a list of attributes to use as selection criteria. Each attribute is described in an attropl structure,
defined in pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

If criteria_list itself is null, you are not using attributes or resources as selection criteria.

extend
Character string where you can specify limits or extensions of your search.

24.24.3.1 Members of attropl Structure

next
Points to next attribute in list. A null pointer terminates the list.

name
Points to a string containing the name of the attribute.
PG-60 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource.

op
Defines the operator in the logical expression:

<existing value> <operator> <specified limit>
Jobs for which the logical expression evaluates to True are selected.

For this command, op can be EQ, NE, GE, GT, LE, LT.

24.24.4 Querying States

You can select jobs in more than one state using a single request, by listing all states you want returned. For example, to
get jobs in Held and Waiting states:

• Fill in criteria_list->name with "job_state"

• Fill in criteria_list->value with "HW" for Held and Waiting

24.24.5 Extending Your Query

You can use the following characters in the extend parameter:

T, t
Extends query to include subjobs. Job arrays are not included.

x
Extends query to include finished and moved jobs.

24.24.5.1 Querying Finished and Moved Jobs

To get information on finished or moved jobs, as well as current jobs, add an 'x' character to the extend parameter (set
one character to be the 'x' character). For example:

pbs_selectjob (..., ..., <extend characters>) ...

To get information on finished jobs only:

• Add the 'x’ character to the extend parameter

• Fill in criteria_list->name with "ATTR_state"

• Fill in criteria_list->value with "FM" for Finished and Moved

Subjobs are not considered finished until the parent array job is finished.

24.24.5.2 Querying Job Arrays and Subjobs

To query only job arrays (not jobs or subjobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”
PBS Professional 2022.1 Programmer’s Guide PG-61

Chapter 24 Batch Interface Library (IFL)
To query only job arrays and subjobs (not jobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”

• Add the ‘T’ or ‘t’ character to the extend parameter

To query only jobs and subjobs (not job arrays), add the ‘T’ or ‘t’ character to the extend parameter.

24.24.6 Return Value

The return value is a pointer to a null-terminated array of character pointers. Each character pointer in the array points to
a character string which is a job ID in the form:

<sequence number>.<server>@<server>

If no jobs met the criteria, the first pointer in the array is null.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.24.7 Cleanup Required

The returned array of character pointers is malloc()’ed by pbs_selectjob(). When the array is no longer needed,
you must free it via a call to free().

24.24.8 See Also

pbs_alterjob, pbs_connect, qsig
PG-62 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.25 pbs_selstat

get status of selected PBS batch jobs

24.25.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

struct batch_status *pbs_selstat(int connect, struct attropl *criteria_list, struct attrl *output_attribs, char *extend)

24.25.2 Description

Issues a batch request to get the status of jobs which meet the specified criteria.

Generates a Select Status (51) batch request and sends it to the server over the connection specified by connect.

Returns a list of batch_status structures for jobs that meet the selection criteria.

This function is a combination of pbs_selectjob() and pbs_statjob().

By default this gives status for all jobs for which you are authorized to query status. You can filter the results by specify-
ing selection criteria.

24.25.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

criteria_list
Pointer to a list of selection criteria, which are attributes and resources with required values. If this list is null,
you are not filtering your results via selection criteria. Each attribute or resource is described in an attropl struc-
ture, defined in pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

If criteria_list itself is null, you are not using attributes or resources as selection criteria.

output_attribs
Pointer to a list of attributes to return. If this list is null, all attributes are returned. Each attribute is described in
an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};
PBS Professional 2022.1 Programmer’s Guide PG-63

Chapter 24 Batch Interface Library (IFL)
extend
Character string where you can specify limits or extensions of your selection.

24.25.3.1 Members of attropl Structure

next
Points to next attribute in list. A null pointer terminates the list.

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource. For parameterized limit attributes, this string
contains all parameters for the attribute.

op
Specifies the test to be applied to the attribute or resource. The operators are EQ, NE, GE, GT, LE, LT.

24.25.3.2 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource. Should always be null.

next
Points to next attribute in list. A null pointer terminates the list.

24.25.4 Querying States

You can select jobs in more than one state using a single request, by listing all states you want returned. For example, to
get jobs in Held and Waiting states:

• Fill in criteria_list->name with “job_state”

• Fill in criteria_list->value with “HW” for Held and Waiting

24.25.5 Extending Your Query

You can use the following characters in the extend parameter:

T, t
Extends query to include subjobs. Job arrays are not included.

x
Extends query to include finished and moved jobs.
PG-64 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.25.5.1 Querying Finished and Moved Jobs

To get information on finished or moved jobs, as well as current jobs, add an 'x' character to the extend parameter (set
one character to be the 'x' character). For example:

pbs_selstat (..., ..., <extend characters>) ...

To get information on finished jobs only:

• Add the ‘x character to the extend parameter

• Fill in criteria_list->name with “ATTR_state”

• Fill in criteria_list->value with “FM” for Finished and Moved

For example:

criteria_list->name = ATTR_state;

criteria_list->value = "FM";

criteria_list->op = EQ;

pbs_selstat (..., criteria_list, ..., extend) ...

Subjobs are not considered finished until the parent array job is finished.

24.25.5.2 Querying Job Arrays and Subjobs

To query only job arrays (not jobs or subjobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”

To query only job arrays and subjobs (not jobs):

• Fill in criteria_list->name with “array”

• Fill in criteria_list->value with “True”

• Add the ‘T’ or ‘t’ character to the extend parameter

To query only jobs and subjobs (not job arrays), add the ‘T’ or ‘t’ character to the extend parameter.

24.25.6 Return Value

Returns a pointer to a list of batch_status structures for jobs that meet the selection criteria. If no jobs meet the criteria
or can be queried for status, returns the null pointer.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.25.6.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

PBS Professional 2022.1 Programmer’s Guide PG-65

Chapter 24 Batch Interface Library (IFL)
24.25.7 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.25.8 See Also

qsig, qstat, pbs_connect, pbs_selectjob, pbs_statfree, pbs_statjob
PG-66 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.26 pbs_sigjob

send a signal to a PBS batch job

24.26.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_sigjob(int connect, char *jobID, char *signal, char *extend)

24.26.2 Description

Issues a batch request to send a signal to a batch job.

Generates a Signal Job (18) batch request and sends it to the server over the connection specified by connect.

You can send a signal to a job, job array, subjob, or range of subjobs.

The batch server sends the job the specified signal.

The job must be in the running or suspended state.

24.26.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

jobID
ID of job to be signaled.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>].<server name>
Format for a range of subjobs:

<sequence number>[<index start>-<index end>].<server name>

signal
Name of signal to send to job. Can be alphabetic, with or without SIG prefix. Can be signal number.

The following special signals are all lower-case, and have no associated signal number:

admin-suspend
Suspends a job and puts its vnodes into the maintenance state. The job is put into the S state and its pro-
cesses are suspended.

admin-resume
Resumes a job that was suspended using the admin-suspend signal, without waiting for scheduler. Can-
not be used on jobs that were suspended with the suspend signal. When the last admin-suspended job has
been admin-resumed, the vnode leaves the maintenance state.

suspend
Suspends specified job(s). Job goes into suspended (S) state.
PBS Professional 2022.1 Programmer’s Guide PG-67

Chapter 24 Batch Interface Library (IFL)
resume
Marks specified job(s) for resumption by scheduler when there are sufficient resources. Cannot be used on
jobs that were suspended with the admin_suspend signal.

If the signal is not recognized on the execution host, no signal is sent and an error is returned.

extend
Character string for extensions to command. Not currently used.

24.26.4 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.26.5 See Also

qsig, pbs_connect
PG-68 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.27 pbs_statfree

free a PBS status object

24.27.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

24.27.2 Description

Frees the specified PBS status object returned by PBS API routines such as pbs_statque(), pbs_statserver(),
pbs_stathook(), etc.

24.27.3 Arguments

psj
Pointer to the batch_status structure to be freed.

24.27.3.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.27.4 Return Value

No return value.
PBS Professional 2022.1 Programmer’s Guide PG-69

Chapter 24 Batch Interface Library (IFL)
24.28 pbs_stathost

get status of PBS execution host(s)

24.28.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_stathost(int connect, char *target, struct attrl *output_attribs, char *extend)

24.28.2 Description

Issues a batch request to get the status of PBS execution hosts.

Generates a Status Node (58) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified execution host or all execution hosts. If an execution host has
multiple vnodes, this command reports aggregated information from the vnodes for that host.

24.28.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target
Name of execution host whose attributes are to be reported. If this argument is a null pointer or points to a null
string, returns attributes of all execution hosts known to the server.

output_attribs
Pointer to a list of attributes to return. If this argument is null, returns all attributes. Each attribute is described
in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.

24.28.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.
PG-70 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
value
Points to a string containing the value of the attribute or resource.

next
Points to next attribute in list. A null pointer terminates the list.

24.28.4 Return Value

Returns a pointer to a list of batch_status structures describing the execution host(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.28.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.28.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.28.6 See Also

qstat, pbs_connect, pbs_statfree
PBS Professional 2022.1 Programmer’s Guide PG-71

Chapter 24 Batch Interface Library (IFL)
24.29 pbs_statjob

get status of PBS batch jobs

24.29.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statjob(int connect, char *ID, struct attrl *output_attribs, char *extend)

24.29.2 Description

Issues a batch request to get the status of a specified batch job, a list of batch jobs, or the batch jobs at a queue or server.

Generates a Status Job (19) batch request and sends it to the server over the connection specified by connect.

You can query status of jobs, job arrays, subjobs, and ranges of subjobs.

Queries all specified jobs that the user is authorized to query.

24.29.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

ID
Job ID, list of job IDs, queue, server, or null.

If ID is a null pointer or points to a null string, gets status of jobs at connected server.

Format for a job:

<sequence number>.<server name>
Format for a job array:

<sequence number>[].<server name>
Format for a subjob:

<sequence number>[<index>].<server name>
Format for a range of subjobs:

<sequence number>[<index start>-<index end>].<server name>
Format for a list of jobs: comma-separated list of job IDs in a single string. White space is ignored. No limit on
length:

“<job ID>,<job ID>,<job ID>, ...”
Format for a queue:

<queue name>@<server name>
Format for a server:

<server name>
PG-72 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
output_attribs
Pointer to a list of attributes to return. If this list is null, all attributes are returned. Each attribute is described in
an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string where you can specify limits or extensions of your search. Order of characters is not important.

24.29.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource.

next
Points to next attribute in list. A null pointer terminates the list.

24.29.4 Querying Job Arrays and Subjobs

You can query status of job arrays and their subjobs, or just the parent job arrays only.

To query status of job arrays and their subjobs, include the job array IDs in the ID argument, and include the ‘t’ character
in the extend argument. The function returns the status of each parent job array followed by status of each subjob in that
job array.

To query status of one or more parent job arrays only, but not their subjobs, include their job IDs in the ID argument, but
do not include anything in the extend argument.

24.29.5 Querying the Jobs at a Queue or Server

To query status of all jobs at a queue, give the queue name in the ID argument.

To query status of all jobs at a server, give the server name in the ID argument. If you give a null ID argument, the func-
tion queries the default server.

24.29.6 Extending Your Query

You can use the following characters in the extend parameter:

T, t
Extends query to include subjobs. Job arrays are not included.
PBS Professional 2022.1 Programmer’s Guide PG-73

Chapter 24 Batch Interface Library (IFL)
x
Extends query to include finished and moved jobs.

24.29.6.1 Querying Finished and Moved Jobs

To get status for finished or moved jobs, as well as current jobs, add an 'x' character to the extend parameter (set one
character to be the 'x' character). For example:

pbs_statjob (..., ..., <extend characters>) ...

Subjobs are not considered finished until the parent array job is finished.

24.29.7 Return Values

For a single job, if the job can be queried, returns a pointer to a batch_status structure containing the status of the spec-
ified job. If the job cannot be queried, returns a NULL pointer, and pbs_errno is set to an error number indicating the
reason the job could not be queried.

For a list of jobs, if any of the specified jobs can be queried, returns a pointer to a batch_status structure containing the
status of all the queryable jobs. If none of the jobs can be queried, returns a NULL pointer, and pbs_errno is set to the
error number that indicates the reason that the last job in the list could not be queried.

For a queue, if the queue exists, returns a pointer to a batch_status structure containing the status of all the queryable
jobs in the queue. If the queue does not exist, returns a NULL pointer, and pbs_errno is set to PBSE_UNKQUE
(15018). If the queue exists but contains no queryable jobs, returns a NULL pointer, and pbs_errno is set to
PBSE_NONE (0).

When querying a server, the connection to the server is already established by pbs_connect(). If there are jobs at the
server, returns a pointer to a batch_status structure containing the status of all the queryable jobs at the server. If the
server does not contain any queryable jobs, returns a NULL pointer, and pbs_errno is set to PBSE_NONE (0).

24.29.7.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.29.8 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.29.9 See Also

qstat, pbs_connect
PG-74 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.30 pbs_statnode

get status of PBS execution host(s)

24.30.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statnode(int connect, char *target, struct attrl *output_attribs, char *extend)

24.30.2 Description

Issues a batch request to get the status of PBS execution hosts.

Generates a Status Node (58) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified execution host or all execution hosts. If an execution host has
multiple vnodes, this command reports aggregated information from the vnodes for that host.

Identical to pbs_stathost(); retained for backward compatibility.

24.30.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target
Name of execution host whose attributes are to be reported. If this argument is null, returns attributes of all exe-
cution hosts known to the server.

output_attribs
Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.

24.30.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.
PBS Professional 2022.1 Programmer’s Guide PG-75

Chapter 24 Batch Interface Library (IFL)
resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource.

next
Points to next attribute in list. A null pointer terminates the list.

24.30.4 Return Value

Returns a pointer to a list of batch_status structures describing the host(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.30.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.30.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.30.6 See Also

qstat, pbs_connect
PG-76 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.31 pbs_statque

get status of PBS queue(s)

24.31.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

struct batch_status *pbs_statque(int connect, char *target, struct attrl *output_attribs, char *extend)

24.31.2 Description

Issues a batch request to get the status of PBS queues.

Generates a Status Queue (20) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified queue or all queues.

24.31.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target
Name of queue whose attributes are to be reported. If this argument is null, returns attributes of all queues
known to the server.

output_attribs
Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.

24.31.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource.
PBS Professional 2022.1 Programmer’s Guide PG-77

Chapter 24 Batch Interface Library (IFL)
next
Points to next attribute in list. A null pointer terminates the list.

24.31.4 Return Value

Returns a pointer to a list of batch_status structures describing the queue(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.31.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.31.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.31.6 See Also

qstat, pbs_connect, pbs_statfree
PG-78 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.32 pbs_statresv

get status of PBS reservation(s)

24.32.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statresv(int connect, char *target, struct attrl *output_attribs, char *extend)

24.32.2 Description

Issues a batch request to get the status of PBS reservation(s).

Generates a Status Reservation (71) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified reservation or all reservations.

24.32.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target
ID of reservation whose attributes are to be reported. If this argument is a null pointer or points to a null string,
returns attributes of all reservations the user is authorized to query.

Format for advance reservation:

R<sequence number>.<server name>
Format for standing reservation:

S<sequence number>.<server name>
Format for maintenance reservation:

M<sequence number>.<server name>

output_attribs
Pointer to a list of attributes to return. If this argument is null, returns all attributes. Each attribute is described
in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.
PBS Professional 2022.1 Programmer’s Guide PG-79

Chapter 24 Batch Interface Library (IFL)
24.32.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource.

next
Points to next attribute in list. A null pointer terminates the list.

24.32.4 Return Value

Returns a pointer to a list of batch_status structures describing the reservation(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.32.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.32.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.32.6 See Also

qstat, pbs_connect, pbs_statfree
PG-80 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.33 pbs_statrsc

get status of PBS resources

24.33.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statrsc(int connect, char *rescname, struct attrl *output_attribs, char *extend)

24.33.2 Description

Issues a batch request to query and return the status of a specified resource, or a set of resources at a server.

Generates a Status Resource (82) batch request and sends it to the server over the connection specified by connect.

24.33.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

rescname
Name of resource to be queried. If this is null, queries all resources at the server.

output_attribs
Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.

24.33.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Should be a null pointer.

value
Points to a string containing the value of the attribute or resource. Should always be a pointer to a null string.

next
Points to next attribute in list. A null pointer terminates the list.
PBS Professional 2022.1 Programmer’s Guide PG-81

Chapter 24 Batch Interface Library (IFL)
24.33.4 Querying Resources at Server

Use the pbs_connect() command to get a connection handle at the server.

To query all resources at the server, pass a null pointer as the name of the resource.

24.33.5 Return Value

For a single resource, if the resource can be queried, returns a pointer to a batch_status structure containing the status of
the specified resource.

If the resource cannot be queried, the routine returns a null pointer, and the error number is available in the global integer
pbs_errno.

When querying a server, the connection to the server is already established by pbs_connect(). If there are resources
at the server, returns a pointer to a batch_status structure describing the queryable resource(s) at the server.

In the unlikely event that the server does not contain any queryable resources because the user is unprivileged and all
resources are marked as invisible (the i flag is set), returns a NULL pointer, and pbs_errno is set to PBSE_NONE (0).

24.33.5.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.33.6 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.33.7 See Also

qstat, pbs_connect
PG-82 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.34 pbs_statsched

get status of PBS schedulers

24.34.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statsched(int connect, struct attrl *output_attribs, char *extend)

24.34.2 Description

Issues a batch request to get the status of the PBS schedulers.

Generates a Status Scheduler (81) batch request and sends it to the server over the connection specified by connect.

This command returns status of the default scheduler and all multischeds.

24.34.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

output_attribs
Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.

24.34.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource. Should always be a pointer to a null string.

next
Points to next attribute in list. A null pointer terminates the list.
PBS Professional 2022.1 Programmer’s Guide PG-83

Chapter 24 Batch Interface Library (IFL)
24.34.4 Return Value

Returns a pointer to a list of batch_status structures describing the default scheduler and all multischeds.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.34.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.34.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.34.6 See Also

qstat, pbs_connect
PG-84 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.35 pbs_statserver

get status of a PBS batch server

24.35.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statserver(int connect, struct attrl *output_attribs, char *extend)

24.35.2 Description

Issues a batch request to get the status of a batch server.

Generates a Status Server (21) batch request and sends it to the server over the connection specified by connect.

24.35.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

output_attribs
Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.

24.35.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource. Should always be a pointer to a null string.

next
Points to next attribute in list. A null pointer terminates the list.
PBS Professional 2022.1 Programmer’s Guide PG-85

Chapter 24 Batch Interface Library (IFL)
24.35.4 Return Value

Returns a pointer to a batch_status structure describing the server.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.35.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.35.5 Cleanup

You must free the batch_status structure when no longer needed, by calling pbs_statfree().

24.35.6 See Also

qstat, pbs_connect, pbs_statfree
PG-86 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.36 pbs_statvnode

get status of PBS vnode(s) on execution hosts

24.36.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

void pbs_statfree(struct batch_status *psj)

struct batch_status *pbs_statvnode(int connect, char *target, struct attrl *output_attribs, char *extend)

24.36.2 Description

Issues a batch request to get the status of PBS vnodes on execution hosts.

Generates a Status Node (58) batch request and sends it to the server over the connection specified by connect.

Returns specified attributes or all attributes of specified execution host vnode or all execution host vnodes.

24.36.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

target
Name of execution host vnode whose attributes are to be reported. If this argument is null, returns attributes of
all execution host vnodes known to the server.

output_attribs
Pointer to a list of attributes to return. If this argument is a null pointer or points to a null string, returns all
attributes. Each attribute is described in an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string for extensions to command. Not currently used.

24.36.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.
PBS Professional 2022.1 Programmer’s Guide PG-87

Chapter 24 Batch Interface Library (IFL)
value
Points to a string containing the value of the attribute or resource.

next
Points to next attribute in list. A null pointer terminates the list.

24.36.4 Return Value

Returns a pointer to a list of batch_status structures describing the vnode(s).

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.36.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

24.36.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

24.36.6 See Also

qstat, pbs_connect, pbs_statfree
PG-88 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.37 pbs_submit

submit a PBS batch job

24.37.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_submit(int connect, struct attropl *attrib_list, char *jobscript, char *destqueue, char *extend)

24.37.2 Description

Issues a batch request to submit a new batch job.

Generates a Queue Job (1) batch request and sends it to the server over the connection specified by connect.

Submits job to specified queue at connected server, or if no queue is specified, to default queue at connected server.

24.37.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

attrib_list
Pointer to a list of attributes explicitly requested for job. Each attribute is described in an attropl structure,
defined in pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

For any attribute that is not specified or that is a null pointer, PBS takes the default action for that attribute. The
default action is to assign the default value or to not pass the attribute with the job; the action depends on the
attribute.

jobscript
Pointer to path to job script. Can be absolute or relative. Relative path begins with the directory where the user
submits the job.

If null pointer or pointer to null string, no script is passed with job.

destqueue
Pointer to name of destination queue at connected server. If this is a null pointer or points to a null string, the
job is submitted to the default queue at the connected server.

extend
Character string for extensions to command. Not currently used.
PBS Professional 2022.1 Programmer’s Guide PG-89

Chapter 24 Batch Interface Library (IFL)
24.37.3.1 Members of attropl Structure

next
Points to next attribute in list. A null pointer terminates the list.

name
Points to a string containing the name of the attribute.

resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource.

op
Operation to perform on the attribute or resource. In this command, the only allowed operator is SET.

24.37.4 Return Value

Returns a pointer to a character string containing the job ID assigned by the server.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.37.5 Cleanup

The space for the job ID returned by pbs_submit() is allocated by pbs_submit(). Free it via a call to free()
when you no longer need it.

24.37.6 See Also

qsub, pbs_connect
PG-90 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.38 pbs_submit_resv

submit a PBS reservation

24.38.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

char *pbs_submit_resv(int connect, struct attropl *attrib_list, char *extend)

24.38.2 Description

Issues a batch request to submit a new reservation.

Generates a Submit Reservation (70) batch request and sends it to the server over the connection specified by connect.

Returns a pointer to the reservation ID.

24.38.3 Arguments

connect
Return value of pbs_connect(). Specifies connection over which to send batch request to server.

attrib_list
Pointer to a list of attributes to set, with values. Each attribute is described in an attropl structure, defined in
pbs_ifl.h as:

struct attropl {

struct attropl *next;

char *name;

char *resource;

char *value;

enum batch_op op;

};

For any attribute that is not specified or that is a null pointer, PBS takes the default action for that attribute. The
default action is to assign the default value or to not pass the attribute with the reservation; the action depends
on the attribute.

extend
Character string for extensions to command. Not currently used.

24.38.3.1 Members of attropl Structure

next
Points to next attribute in list. A null pointer terminates the list.

name
Points to a string containing the name of the attribute.
PBS Professional 2022.1 Programmer’s Guide PG-91

Chapter 24 Batch Interface Library (IFL)
resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Points to a string containing the value of the attribute or resource.

op
Operator. The only allowed operator for this function is SET.

24.38.4 Return Value

Returns a pointer to a character string containing the reservation ID assigned by the server.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

24.38.5 Cleanup

The space for the reservation ID returned by pbs_submit_resv() is allocated by pbs_submit_resv(). Free it
via a call to free() when you no longer need it.

24.38.6 See Also

pbs_rsub, pbs_connect
PG-92 PBS Professional 2022.1 Programmer’s Guide

Batch Interface Library (IFL) Chapter 24
24.39 pbs_terminate

shut down a PBS batch server

24.39.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

int pbs_terminate(int connect, int manner, char *extend)

24.39.2 Description

Issues a batch request to shut down a batch server.

Generates a Server Shutdown (17) batch request and sends it to the server over the connection specified by connect.

The pbs_terminate() command exits after the server has completed its shutdown procedure.

24.39.3 Required Privilege

You must have Operator or Manager privilege to run this command.

24.39.4 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

manner
Manner in which to shut down server. The available manners are defined in pbs_ifl.h. Valid values:
SHUT_IMMEDIATE, SHUT_DELAY, SHUT_QUICK. See “qterm” on page 236 of the PBS Professional
Reference Guide for information on manner in which to shut down server.

extend
Character string for extensions to command. Not currently used.

24.39.5 Return Value

The routine returns 0 (zero) on success.

If an error occurred, the routine returns a non-zero exit value, and the error number is available in the global integer
pbs_errno.

24.39.6 See Also

qterm, pbs_connect
PBS Professional 2022.1 Programmer’s Guide PG-93

Chapter 24 Batch Interface Library (IFL)
PG-94 PBS Professional 2022.1 Programmer’s Guide

25

TM Library

This chapter describes the PBS Task Management library. The TM library is a set of routines used to manage multi-pro-
cess, parallel, and distributed applications.

25.1 TM Library Routines

The following manual pages document the application programming interface provided by the TM library.
PBS Professional 2022.1 Programmer’s Guide PG-95

Chapter 25 TM Library
25.2 tm_init, tm_nodeinfo, tm_poll, tm_notify,

tm_spawn, tm_kill, tm_obit, tm_taskinfo,

tm_atnode, tm_rescinfo, tm_publish,

tm_subscribe, tm_finalize, tm_attach

task management API
PG-96 PBS Professional 2022.1 Programmer’s Guide

TM Library Chapter 25
25.2.1 Synopsis

#include <tm.h>

int tm_init(info, roots)

void *info;

struct tm_roots *roots;

int tm_nodeinfo(list, nnodes)

tm_node_id **list;

int *nnodes;

int tm_poll(poll_event, result_event, wait, tm_errno)

tm_event_t poll_event;

tm_event_t *result_event;

int wait;

int *tm_errno;

int tm_notify(tm_signal)

int tm_signal;

int tm_spawn(argc, argv, envp, where, tid, event)

int argc;

char **argv;

char **envp;

tm_node_id where;

tm_task_id *tid;

tm_event_t *event;

int tm_kill(tid, sig, event)

tm_task_id tid;

int sig;

tm_event_t *event;

int tm_obit(tid, obitval, event)

tm_task_id tid;

int *obitval;

tm_event_t *event;

int tm_taskinfo(node, tid_list, list_size, ntasks, event)

tm_node_id node;

tm_task_id *tid_list;

int list_size;

int *ntasks;

tm_event_t *event;

int tm_atnode(tid, node)

tm_task_id tid;

tm_node_id *node;

int tm_rescinfo(node, resource, len, event)

tm_node_id node;

char *resource;

int len;

tm_event_t *event;

int tm_publish(name, info, len, event)
PBS Professional 2022.1 Programmer’s Guide PG-97

Chapter 25 TM Library
char *name;

void *info;

int len;

tm_event_t *event;

int tm_subscribe(tid, name, info, len, info_len, event)

tm_task_id tid;

char *name;

void *info;

int len;

int *info_len;

tm_event_t *event;

int tm_attach(jobid, cookie, pid, tid, host, port)

char *jobid;

char *cookie;

pid_t pid;

tm_task_id *tid;

char *host;

int port;

int tm_finalize()

25.2.2 Description

These functions provide a partial implementation of the task management interface part of the PSCHED API. In PBS,
MoM provides the task manager functions. This library opens a tcp socket to the MoM running on the local host and
sends and receives messages using the DIS protocol (described in the PBS IDS). The tm interface can only be used by a
process within a PBS job.

The PSCHED Task Management API description used to create this library was committed to paper on November 15,
1996 and was given the version number 0.1. Changes may have taken place since that time which are not reflected in this
library.

The API description uses several data types that it purposefully does not define. This was done so an implementation
would not be confined in the way it was written. For this specific work, the definitions follow:

typedef int tm_node_id; /* job-relative node id */

#define TM_ERROR_NODE ((tm_node_id)-1)

typedef int tm_event_t; /* > 0 for real events */

#define TM_NULL_EVENT ((tm_event_t)0)

#define TM_ERROR_EVENT ((tm_event_t)-1)

typedef unsigned long tm_task_id;

#define TM_NULL_TASK (tm_task_id)0

There are a number of error values defined as well: TM_SUCCESS, TM_ESYSTEM, TM_ENOEVENT,
TM_ENOTCONNECTED, TM_EUNKNOWNCMD, TM_ENOTIMPLEMENTED, TM_EBADENVIRONMENT,
TM_ENOTFOUND.

tm_init() initializes the library by opening a socket to the MoM on the local host and sending a TM_INIT message, then
waiting for the reply. The info parameter has no use and is included to conform with the PSCHED document. The roots
pointer will contain valid data after the function returns and has the following structure:

struct tm_roots {
PG-98 PBS Professional 2022.1 Programmer’s Guide

TM Library Chapter 25
tm_task_id tm_me;

tm_task_id tm_parent;

int tm_nnodes;

int tm_ntasks;

int tm_taskpoolid;

tm_task_id *tm_tasklist;

};

tm_me The task id of this calling task.

tm_parent The task id of the task which spawned this task or TM_NULL_TASK if the calling task is the initial

task started by PBS.

tm_nnodes The number of nodes allocated to the job.

tm_ntasks This will always be 0 for PBS.

tm_taskpoolid PBS does not support task pools so this will always be -1.

tm_tasklist This will be NULL for PBS.

The tm_ntasks, tm_taskpoolid and tm_tasklist fields are not filled with data specified by the PSCHED document. PBS
does not support task pools and, at this time, does not return information about current running tasks from tm_init. There
is a separate call to get information for current running tasks called tm_taskinfo which is described below. The return
value from tm_init is TM_SUCCESS if the library initialization was successful, or an error is returned otherwise.

tm_nodeinfo() places a pointer to a malloc'ed array of tm_node_id's in the pointer pointed at by list. The order of the
tm_node_id's in list is the same as that specified to MoM in the "exec_host" attribute. The int pointed to by nnodes con-
tains the number of nodes allocated to the job. This is information that is returned during initialization and does not
require communication with MoM. If tm_init has not been called, TM_ESYSTEM is returned, otherwise
TM_SUCCESS is returned.

tm_poll() is the function which will retrieve information about the task management system to locations specified when
other routines request an action take place. The bookkeeping for this is done by generating an event for each action.
When the task manager (MoM) sends a message that an action is complete, the event is reported by tm_poll and informa-
tion is placed where the caller requested it. The argument poll_event is meant to be used to request a specific event. This
implementation does not use it and it must be set to TM_NULL_EVENT or an error is returned. Upon return, the argu-
ment result_event will contain a valid event number or TM_ERROR_EVENT on error. If wait is zero and there are no
events to report, result_event is set to TM_NULL_EVENT. If wait is non-zero an there are no events to report, the func-
tion will block waiting for an event. If no local error takes place, TM_SUCCESS is returned. If an error is reported by
MoM for an event, then the argument tm_errno will be set to an error code.

tm_notify() is described in the PSCHED documentation, but is not implemented for PBS yet. It will return
TM_ENOTIMPLEMENTED.

tm_spawn() sends a message to MoM to start a new task. The node id of the host to run the task is given by where. The
parameters argc, argv and envp specify the program to run and its arguments and environment very much like exec().
The full path of the program executable must be given by argv[0] and the number of elements in the argv array is given
by argc. The array envp is NULL terminated. The argument event points to a tm_event_t variable which is filled in with
an event number. When this event is returned by tm_poll, the tm_task_id pointed to by tid will contain the task id of the
newly created task.

tm_kill() sends a signal specified by sig to the task tid and puts an event number in the tm_event_t pointed to by event.

tm_obit() creates an event which will be reported when the task tid exits. The int pointed to by obitval will contain the
exit value of the task when the event is reported.
PBS Professional 2022.1 Programmer’s Guide PG-99

Chapter 25 TM Library
tm_taskinfo() returns the list of tasks running on the node specified by node. The PSCHED documentation mentions a
special ability to retrieve all tasks running in the job. This is not supported by PBS. The argument tid_list points to an
array of tm_task_id's which contains list_size elements. Upon return, event will contain an event number. When this
event is polled, the int pointed to by ntasks will contain the number of tasks running on the node and the array will be
filled in with tm_task_id's. If ntasks is greater than list_size, only list_size tasks will be returned.

tm_atnode() will place the node id where the task tid exists in the tm_node_id pointed to by node.

tm_rescinfo() makes a request for a string specifying the resources available on a node given by the argument node. The
string is returned in the buffer pointed to by resource and is terminated by a NUL character unless the number of charac-
ters of information is greater than specified by len. The resource string PBS returns is formatted as follows:

A space separated set of strings from the uname system call. The order of the strings is sysname, nodename, release, ver-
sion, machine.

A comma separated set of strings giving the components of the "Resource_List" attribute of the job, preceded by a colon
(:). Each component has the resource name, an equal sign, and the limit value.

tm_publish() causes len bytes of information pointed at by info to be sent to the local MoM to be saved under the name
given by name.

tm_subscribe() returns a copy of the information named by name for the task given by tid. The argument info points to a
buffer of size len where the information will be returned. The argument info_len will be set with the size of the published
data. If this is larger than the supplied buffer, the data will have been truncated.

tm_attach() commands MoM to create a new PBS "attached task" out of a session running on MoM's host. The jobid
parameter specifies the job which is to have a new task attached. If it is NULL, the system will try to determine the cor-
rect jobid. The cookie parameter must be NULL. The pid parameter must be a non-zero process id for the process which
is to be added to the job specified by jobid. If tid is non-NULL, it will be used to store the task id of the new task. The
host and port parameters specify where to contact MoM. host should be NULL. The return value will be 0 if a new task
has been successfully created and non-zero on error. The return value will be one of the TM error numbers defined in
tm.h as follows:

TM_ESYSTEM MoM cannot be contacted

TM_ENOTFOUND No matching job was found

TM_ENOTIMPLEMENTED The call is not implemented/supported

TM_ESESSION The session specified is already attached

TM_EUSER The calling user is not permitted to attach

TM_EOWNER The process owner does not match the job

TM_ENOPROC The process does not exist

tm_finalize() may be called to free any memory in use by the library and close the connection to MoM.

25.2.3 See Also

pbs_mom(8B), pbs_sched(8B)
PG-100 PBS Professional 2022.1 Programmer’s Guide

26

RM Library

This chapter describes the PBS Resource Monitor library. The RM library contains functions to facilitate communication
with the PBS Professional resource monitor. It is set up to make it easy to connect to several resource monitors and han-
dle the network communication efficiently.

26.1 RM Library Routines

The following manual pages document the application programming interface provided by the RM library.
PBS Professional 2022.1 Programmer’s Guide PG-101

Chapter 26 RM Library
26.2 openrm, closerm, downrm, configrm, addreq,

allreq, getreq, flushreq, activereq, fullresp

resource monitor API

26.2.1 Synopsis

#include <sys/types.h>

#include <netinet/in.h>

#include <rm.h>

int openrm (host, port)

char *host;

unsigned int port;

int closerm (stream)

int stream;

int downrm (stream)

int stream;

int configrm (stream, file)

int stream;

char *file;

int addreq (stream, line)

int stream;

char *line;

int allreq (line)

char *line;

char *getreq(stream)

int stream;

int flushreq()

int activereq()

void fullresp(flag)

int flag;

26.2.2 Description

The resource monitor library contains functions to facilitate communication with the PBS Professional resource monitor.
It is set up to make it easy to connect to several resource monitors and handle the network communication efficiently.

In all these routines, the variable pbs_errno will be set when an error is indicated. The lower levels of network protocol
are handled by the "Data Is Strings" DIS library and the TPP library.

configrm() causes the resource monitor to read the file named. Deprecated.

addreq() begins a new message to the resource monitor if necessary. Then adds a line to the body of an outstanding com-
mand to the resource monitor.

allreq() begins, for each stream, a new message to the resource monitor if necessary. Then adds a line to the body of an
outstanding command to the resource monitor.
PG-102 PBS Professional 2022.1 Programmer’s Guide

RM Library Chapter 26
getreq() finishes and sends any outstanding message to the resource monitor. If fullresp() has been called to turn off "full
response" mode, the routine searches down the line to find the equal sign just before the response value. The returned
string (if it is not NULL) has been allocated by malloc and thus free must be called when it is no longer needed to prevent
memory leaks.

flushreq() finishes and sends any outstanding messages to all resource monitors. For each active resource monitor struc-
ture, it checks if any outstanding data is waiting to be sent. If there is, it is sent and the internal structure is marked to
show "waiting for response".

fullresp() turns on, if flag is true, "full response" mode where getreq() returns a pointer to the beginning of a line of
response. This is the default. If flag is false, the line returned by getreq() is just the answer following the equal sign.

activereq() Returns the stream number of the next stream with something to read or a negative number (the return from
tpp_poll) if there is no stream to read.

In order to use any of the above with Windows, initialize the network library and link with winsock2. To do this, call
winsock_init() before calling the function and link against the ws2_32.lib library.

26.2.3 See Also

tcp(4P), udp(4P)
PBS Professional 2022.1 Programmer’s Guide PG-103

Chapter 26 RM Library
PG-104 PBS Professional 2022.1 Programmer’s Guide

27

TCL/tk Interface

As of version 19.4.1, the PBS TCL API is deprecated.

The PBS Professional software includes a TCL/tk interface to PBS. Wrapped versions of many of the API calls are com-
piled into a special version of the TCL shell, called pbs_tclsh. (A special version of the tk window shell is also pro-
vided, called pbs_wish.). This chapter documents the TCL/tk interface to PBS.

The pbs_tclapi is a subset of the PBS external API wrapped in a TCL library. This functionality allows the creation
of scripts that query the PBS system. Specifically, it permits the user to query the pbs_server about the state of PBS,
jobs, queues, and nodes, and communicate with pbs_mom to get information about the status of running jobs, available
resources on nodes, etc.

27.1 TCL/tk API Functions

A set of functions to communicate with the PBS server and resource monitor have been added to those normally avail-
able with Tcl. All these calls will set the Tcl variable pbs_errno to a value to indicate if an error occurred. In all cases,
the value "0" means no error. If a call to a Resource Monitor function is made, any error value will come from the sys-
tem supplied errno variable. If the function call communicates with the PBS server, any error value will come from the
error number returned by the server. This is the same TCL interface used by the pbs_tclsh and pbs_wish com-
mands.

Note that the pbs_tclapi pbsrescquery command, which calls the C API pbs_rescquery, is obsolete. Any
attempt to use it will result in a PBSE_NOSUPPORT error being returned.
PBS Professional 2022.1 Programmer’s Guide PG-105

Chapter 27 TCL/tk Interface
27.2 pbs_tclapi

PBS TCL Application Programming Interface

27.2.1 Description

The pbs_tclapi is a subset of the PBS external API wrapped in a TCL library. This functionality allows the creation of
scripts that query the PBS system. Specifically, it permits the user to query the pbs_server about the state of PBS, jobs,
queues, and nodes, and communicate with pbs_mom to get information about the status of running jobs, available
resources on nodes, etc.

27.2.2 Usage

A set of functions to communicate with the PBS server and resource monitor have been added to those normally avail-
able with Tcl. All these calls will set the Tcl variable "pbs_errno" to a value to indicate if an error occurred. In all cases,
the value "0" means no error. If a call to a Resource Monitor function is made, any error value will come from the system
supplied errno variable. If the function call communicates with the PBS Server, any error value will come from the error
number returned by the server. This is the same TCL interface used by the pbs_tclsh and pbs_wish commands.

openrm host ?port?

Creates a connection to the PBS Resource Monitor on host using port as the port number or the standard port for the
resource monitor if it is not given. A connection handle is returned. If the open is successful, this will be a non-negative
integer. If not, an error occurred.

closerm connection

The parameter connection is a handle to a resource monitor which was previously returned from openrm. This connec-
tion is closed.

Nothing is returned.

downrm connection

Sends a command to the connected resource monitor to shutdown.

Nothing is returned.

configrm connection filename

Sends a command to the connected resource monitor to read the configuration file given by filename. If this is success-
ful, a "0" is returned, otherwise, "-1" is returned.

addreq connection request

A resource request is sent to the connected resource monitor. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

getreq connection

One resource request response from the connected resource monitor is returned. If an error occurred or there are no more
responses, an empty string is returned.

allreq request

A resource request is sent to all connected resource monitors. The number of streams acted upon is returned.

flushreq

All resource requests previously sent to all connected resource monitors are flushed out to the network. Nothing is
returned.
PG-106 PBS Professional 2022.1 Programmer’s Guide

TCL/tk Interface Chapter 27
activereq

The connection number of the next stream with something to read is returned. If there is nothing to read from any of the
connections, a negative number is returned.

fullresp flag

Evaluates flag as a boolean value and sets the response mode used by getreq to full if flag evaluates to "true". The full
return from a resource monitor includes the original request followed by an equal sign followed by the response. The
default situation is only to return the response following the equal sign. If a script needs to "see" the entire line, this func-
tion may be used.

pbsstatserv

The server is sent a status request for information about the server itself. If the request succeeds, a list with three ele-
ments is returned, otherwise an empty string is returned. The first element is the server's name. The second is a list of
attributes. The third is the "text" associated with the server (usually blank).

pbsstatjob

The server is sent a status request for information about the all jobs resident within the server. If the request succeeds, a
list is returned, otherwise an empty string is returned. The list contains an entry for each job. Each element is a list with
three elements. The first is the job's jobid. The second is a list of attributes. The attribute names which specify resources
will have a name of the form "Resource_List:name" where "name" is the resource name. The third is the "text" associ-
ated with the job (usually blank).

pbsstatque

The server is sent a status request for information about all queues resident within the server. If the request succeeds, a
list is returned, otherwise an empty string is returned. The list contains an entry for each queue. Each element is a list
with three elements. This first is the queue's name. The second is a list of attributes similar to pbsstatjob. The third is the
"text" associated with the queue (usually blank).

pbsstatnode

The server is sent a status request for information about all nodes defined within the server. If the request succeeds, a list
is returned, otherwise an empty string is returned. The list contains an entry for each node. Each element is a list with
three elements. This first is the node's name. The second is a list of attributes similar to pbsstatjob. The third is the
"text" associated with the node (usually blank).

pbsselstat

The server is sent a status request for information about the all runnable jobs resident within the server. If the request
succeeds, a list similar to pbsstatjob is returned, otherwise an empty string is returned.

pbsrunjob jobid ?location?

Run the job given by jobid at the location given by location. If location is not given, the default location is used. If this
is successful, a "0" is returned, otherwise, "-1" is returned.

pbsasyrunjob jobid ?location?

Run the job given by jobid at the location given by location without waiting for a positive response that the job has actu-
ally started. If location is not given, the default location is used. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsrerunjob jobid

Re-runs the job given by jobid. If this is successful, a "0" is returned, otherwise, "-1" is returned.

pbsdeljob jobid

Delete the job given by jobid. If this is successful, a "0" is returned, otherwise, "-1" is returned.

pbsholdjob jobid

Place a hold on the job given by jobid. If this is successful, a "0" is returned, otherwise, "-1" is returned.
PBS Professional 2022.1 Programmer’s Guide PG-107

Chapter 27 TCL/tk Interface
pbsmovejob jobid ?location?

Move the job given by jobid to the location given by location. If location is not given, the default location is used. If this
is successful, a "0" is returned, otherwise, "-1" is returned.

pbsqenable queue

Set the "enabled" attribute for the queue given by queue to true. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsqdisable queue

Set the "enabled" attribute for the queue given by queue to false. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsqstart queue

Set the "started" attribute for the queue given by queue to true. If this is successful, a "0" is returned, otherwise, "-1" is

returned.

pbsqstop queue

Set the "started" attribute for the queue given by queue to false. If this is successful, a "0" is returned, otherwise, "-1" is
returned.

pbsalterjob jobid attribute_list

Alter the attributes for a job specified by jobid. The parameter attribute_list is the list of attributes to be altered. There
can be more than one. Each attribute consists of a list of three elements. The first is the name, the second the resource
and the third is the new value. If the alter is successful, a "0" is returned, otherwise, "-1" is returned.

pbsrescquery resource_list

Deprecated. Obtain information about the resources specified by resource_list. This will be a list of strings. If the
request succeeds, a list with the same number of elements as resource_list is returned. Each element in this list will be a
list with four numbers. The numbers specify available, allocated, reserved, and down in that order.

pbsconnect ?server?

Make a connection to the named server or the default server if a parameter is not given. Only one connection to a server
is allowed at any one time.

pbsdisconnect

Disconnect from the currently connected server.

The above Tcl functions use PBS interface library calls for communication with the server and the PBS resource monitor
library to communicate with pbs_mom.

datetime ?day? ?time?

The number of arguments used determine the type of date to be calculated. With no arguments, the current POSIX date
is returned. This is an integer in seconds.

With one argument there are two possible formats. The first is a 12 (or more) character string specifying a complete date
in the following format:

YYMMDDhhmmss

All characters must be digits. The year (YY) is given by the first two (or more) characters and is the number of years
since 1900. The month (MM) is the number of the month [01-12]. The day (DD) is the day of the month [01-32]. The
hour (hh) is the hour of the day [00-23]. The minute (mm) is minutes after the hour [00-59]. The second (ss) is seconds
after the minute [00-59]. The POSIX date for the given date/time is returned.

The second option with one argument is a relative time. The format for this is

HH:MM:SS
PG-108 PBS Professional 2022.1 Programmer’s Guide

TCL/tk Interface Chapter 27
With hours (HH), minutes (MM) and seconds (SS) being separated by colons ":". The number returned in this case will
be the number of seconds in the interval specified, not an absolute POSIX date.

With two arguments a relative date is calculated. The first argument specifies a day of the week and must be one of the
following strings: "Sun", "Mon", "Tue", "Wed", "Thr", "Fri", or "Sat". The second argument is a relative time as given
above. The POSIX date calculated will be the day of the week given which follows the current day, and the time given in
the second argument. For example, if the current day was Monday, and the two arguments were "Fri" and "04:30:00",
the date calculated would be the POSIX date for the Friday following the current Monday, at four-thirty in the morning.
If the day specified and the current day are the same, the current day is used, not the day one week later.

strftime format time

This function calls the POSIX function strftime(). It requires two arguments. The first is a format string. The format
conventions are the same as those for the POSIX function strftime(). The second argument is POSIX calendar time in
second as returned by datetime. It returns a string based on the format given. This gives the ability to extract information
about a time, or format it for printing.

logmsg tag message

This function calls the internal PBS function log_err(). It will cause a log message to be written to the scheduler's log
file. The tag specifies a function name or other word used to identify the area where the message is generated. The mes-
sage is the string to be logged.

27.2.3 See Also

pbs_tclsh(8B), pbs_wish(8B), pbs_mom(8B), pbs_server(8B), pbs_sched(8B)
PBS Professional 2022.1 Programmer’s Guide PG-109

Chapter 27 TCL/tk Interface
PG-110 PBS Professional 2022.1 Programmer’s Guide

28

Hooks

This chapter describes the PBS hook APIs. For more information on hooks, see the PBS Professional Administrator's
Guide.

28.1 Introduction

A hook is a block of Python code that is triggered in response to queueing a job, modifying a job, moving a job, running
a job, submitting a PBS reservation, MoM receiving a job, MoM starting a job, MoM killing a job, a job finishing, and
MoM cleaning up a job. Each hook can accept (allow) or reject (prevent) the action that triggers it. The hook can mod-
ify the input parameters given for the action. The hook can also make calls to functions external to PBS. PBS provides
an interface for use by hooks. This interface allows hooks to read and/or modify things such as job and server attributes,
the server, queues, and the event that triggered the hook.

The Administrator creates any desired hooks.

This chapter contains the following man pages:

• pbs_module(7B)

• pbs_stathook(3B)

See the following additional man pages:

• qmgr(1B)

• qsub(1B)

• qmove(1B)

• qalter(1B)

• pbs_rsub(1B)

• pbs_manager(3B)

28.2 How Hooks Work

28.2.1 Hook Contents and Permissions

A hook contains a Python script. The script is evaluated by a Python 3 or later interpreter, embedded in PBS.

Hooks have a default Linux umask of 022. File permissions are inherited from the current working directory of the hook
script.

28.2.2 Accepting and Rejecting Actions

The hook script always accepts the current event request action unless an unhandled exception occurs in the script, a
hook alarm timeout is triggered or there's an explicit call to "pbs.event().reject()".
PBS Professional 2022.1 Programmer’s Guide PG-111

Chapter 28 Hooks
28.2.3 Exceptions

A hook script can catch an exception and evaluate whether or not to accept or reject the event action. In this example,
while referencing the non-existent attribute pbs.event().job.interactive, an exception is triggered, but the event action is
still accepted:

…

try:

e = pbs.event()

if e.job.interactive:

 e.reject("Interactive jobs not allowed")

except SystemExit:

pass

except:

e.accept()

28.2.4 Unsupported Interfaces and Uses

Site hooks which read, write, close, or alter stdin, stdout, or stderr, are not supported. Hooks which use any interfaces
other than those described are unsupported.

28.3 Interface to Hooks

Two PBS APIs are used with hooks. These are pbs_manager() and pbs_stathook(). The pbs module provides
a Python interface to PBS.

28.3.1 The pbs Module

Hooks have access to a special module called "pbs", which contains functions that perform PBS-related actions. This
module must be explicitly loaded by the hook writer via the call "import pbs".

The pbs module provides an interface to PBS and the hook environment. The interface is made up of Python objects,
which have attributes and methods. You can operate on these objects using Python code.

28.3.1.1 Description of pbs Module
PG-112 PBS Professional 2022.1 Programmer’s Guide

Hooks Chapter 28
28.4 pbs_module

The interface is made up of Python objects, which have attributes and methods. You can operate on these objects using Python
code. For a description of each object, see the PBS Professional Administrator's Guide.

28.4.0.1 pbs Module Objects

See "The pbs Module" on page 82 in the PBS Professional Hooks Guide.

28.4.0.2 pbs Module Global Attribute Creation Methods

See "PBS Types and Their Methods" on page 168 in the PBS Professional Hooks Guide.

28.4.0.3 Attributes and Resources

See "Using Attributes and Resources in Hooks" on page 45 in the PBS Professional Hooks Guide.

28.4.0.4 Exceptions

See "Table of Exceptions" on page 44 in the PBS Professional Hooks Guide and "Hook Alarm Calls and Unhandled Excep-
tions" on page 44 in the PBS Professional Hooks Guide.

28.4.0.5 See Also

The PBS Professional Administrator's Guide, pbs_hook_attributes(7B), pbs_resources(7B), qmgr(1B)

28.4.1 The pbs_manager() API

The pbs_manager() API is described in "pbs_manager” on page 41.

The pbs_manager() API contains the following:

• An obj_name called "hook" defined as MGR_OBJ_HOOK, for use with non-built-in hooks

• An obj_name called "pbshook" defined as MGR_OBJ_PBS_HOOK, for use with built-in hooks.

• The following hook commands, which operate only on hook objects:

MGR_CMD_IMPORT

This command is used for loading the hook script contents into a hook.

MGR_CMD_EXPORT

This command is used for dumping to a file the contents of a hook script.

The parameters to MGR_CMD_IMPORT and MGR_CMD_EXPORT are specified via the attrib parameter of
pbs_manager().

For MGR_CMD_IMPORT, specify attropl "name" as "content-type", "content-encoding", and "input-file" along
with the corresponding "value" and an "op" of SET.

For MGR_CMD_EXPORT, specify attropl "name" as "content-type", "content-encoding", and "output-file" along
with the corresponding "value" and an "op" of SET.

Functions MGR_CMD_IMPORT, MGR_CMD_EXPORT, and MGR_OBJ_HOOK are used only with hooks, and
therefore require root privilege on the server host.

When obj_name is MGR_OBJ_PBS_HOOK, the only allowed options for command are MGR_CMD_SET,
MGR_CMD_UNSET, MGR_CMD_IMPORT, and MGR_CMD_EXPORT.
PBS Professional 2022.1 Programmer’s Guide PG-113

Chapter 28 Hooks
If MGR_CMD_IMPORT or MGR_CMD_EXPORT is specified when obj_name is MGR_OBJ_PBS_HOOK, the
attropl content-type must be "application/x-config".

28.4.1.1 Troubleshooting

You can use pbs_geterrmsg() to determine the last error message received from the pbs_manager() call. For
instance, with a MGR_OBJ_PBS_HOOK where command is either MGR_CMD_IMPORT or MGR_CMD_EXPORT,
but attropl 'content-type' is not "application/x-config", pbs_geterrmsg() returns:

"<content-type> must be application/x-config"

If an unrecognized hook configuration file suffix is given, whether for MGR_OBJ_HOOK or MGR_OBJ_PBS_HOOK,
pbs_geterrmsg() returns:

"<input-file> contains an invalid suffix, should be one of: .json .py .txt .xml .ini"

If the hook configuration file failed to be precompiled by PBS, pbs_geterrmsg() shows:

"Failed to validate config file, hook '<hook_name>' config file not overwritten"

28.4.1.2 Privilege for Hooks

To run, hooks require root privilege on Linux, and local Administrators privilege on Windows.
PG-114 PBS Professional 2022.1 Programmer’s Guide

Hooks Chapter 28
28.4.1.3 Examples of Using pbs_manager()

Example 28-1: The following:

qmgr -c 'import hook hook1 application/x-python base64 hello.py.b64'

is programmatically equivalent to:

static struct attropl imp_attribs[] = {

{ "content-type",

(char *)0,

"application/x-python",

SET,

(struct attropl *)&imp_attribs[1]

},

{ "content-encoding",

(char *)0,

"base64",

SET,

(struct attropl *)&imp_attribs[2]},

{ "input-file",

(char *)0,

"hello.py.b64",

SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_IMPORT, MGR_OBJ_HOOK, "hook1", &imp_attribs[0], NULL);

Example 28-2: The following:

qmgr -c 'export hook hook1 application/x-python default hello.py'

is programmatically equivalent to:

static struct attropl exp_attribs[] = {

{ "content-type",

(char *)0,

"application/x-python",

SET,

(struct attropl *)&exp_attribs[1]},

{ "content-encoding",

(char *)0,

"default",

SET,

(struct attropl *)&exp_attribs[2]},

{ "output-file",

(char *)0,

"hello.py",

SET,

(struct attropl *)0
PBS Professional 2022.1 Programmer’s Guide PG-115

Chapter 28 Hooks
}

};

pbs_manager(con, MGR_CMD_EXPORT, MGR_OBJ_HOOK, "hook1", &exp_attribs[0], NULL);

Example 28-3: The following:

qmgr -c 'import pbshook hook1 application/x-config default hello.json'
PG-116 PBS Professional 2022.1 Programmer’s Guide

Hooks Chapter 28
is programmatically equivalent to:

static struct attropl imp_attribs[] = {

{ "content-type",

(char *)0,

"application/x-config",

SET,

(struct attropl *)&imp_attribs[1]},

{ "content-encoding",

(char *)0,

"default",

SET,

(struct attropl *)&imp_attribs[2]},

{ "input-file",

(char *)0,

"hello.json",

< SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_IMPORT, MGR_OBJ_PBS_HOOK, "hook1", &imp_attribs[0], NULL);

Example 28-4: The following:

qmgr -c 'export pbshook hook1 application/x-config default hello.json'

is programmatically equivalent to:

static struct attropl exp_attribs[] = {

{ "content-type",

(char *)0,

"application/x-config",

SET,

(struct attropl *)&exp_attribs[1]},

{ "content-encoding",

(char *)0,

"default",

SET,

(struct attropl *)&exp_attribs[2]},

{ "output-file",

(char *)0,

"hello.json",

SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_EXPORT,

MGR_OBJ_PBS_HOOK, "hook1", &exp_attribs[0], NULL);
PBS Professional 2022.1 Programmer’s Guide PG-117

Chapter 28 Hooks
28.4.2 The pbs_stathook() API

The PBS API called "pbs_stathook()" is used to get attributes and values for site hooks and built-in hooks.

The prototype for pbs_stathook() is as follows:

struct batch_status *pbs_stathook(int connect, char *hook_name, struct attrl *attrib, char
*extend)

To query status for site hooks:

The call to pbs_stathook() causes a PBS_BATCH_StatusHook request to be sent to the server. In reply, the PBS
server returns a batch reply status of object type MGR_OBJ_HOOK listing the attributes and values that were
requested relating to a particular hook or all hooks of type HOOK_SITE. Leave the extend value blank.

To query status for built-in hooks:

Pass PBS_HOOK as the extend value. The server returns a batch reply status of object type
MGR_OBJ_PBS_HOOK.

28.4.2.1 Example of Using pbs_stathook()

To list all site hooks using qmgr:

qmgr -c "list hook"

To list all site hooks using the pbs_stathook() API:

pbs_stathook()

The result is the same. For example, if there are two site hooks, c3 and c36:

Hook c3

type = site

enabled = true

event = queuejob, modifyjob

user = pbsadmin

alarm = 30

order = 1

Hook c36

type = site

enabled = true

event = resvsub

user = pbsadmin

alarm = 30

order = 1
PG-118 PBS Professional 2022.1 Programmer’s Guide

Hooks Chapter 28
28.5 pbs_stathook(3B)

get status information about PBS site hooks

28.5.1 Synopsis

#include <pbs_error.h>

#include <pbs_ifl.h>

struct batch_status *pbs_stathook(int connect, char *hook_id, struct attrl *output_attribs, char *extend)

void pbs_statfree(struct batch_status *psj)

28.5.2 Description

Issues a batch request to get the status of a specified site hook or a set of site hooks at the current server.

Generates a Status Hook batch request and sends it to the server over the connection specified by connect.

28.5.2.1 Required Privilege

This API can be executed only by root on the local server host.

28.5.3 Arguments

connect
Return value of pbs_connect(). Specifies connection handle over which to send batch request to server.

hook_id
Hook name, null string, or null pointer.

If hook_id specifies a name, the attribute-value list for that hook is returned.

If hook_id is a null string or a null pointer, the status of all hooks at the current server is returned.

output_attribs
Pointer to a list of attributes to return. If this list is null, all attributes are returned. Each attribute is described in
an attrl structure, defined in pbs_ifl.h as:

struct attrl {

char *name;

char *resource;

char *value;

struct attrl *next;

};

extend
Character string where you can specify limits or extensions of your selection.

28.5.3.1 Members of attrl Structure

name
Points to a string containing the name of the attribute.
PBS Professional 2022.1 Programmer’s Guide PG-119

Chapter 28 Hooks
resource
Points to a string containing the name of a resource. Used only when the specified attribute contains resource
information. Otherwise, resource should be a null pointer.

value
Should always be a pointer to a null string.

next
Points to next attribute in list. A null pointer terminates the list.

28.5.4 Return Value

Returns a pointer to a list of batch_status structures for the specified site hook. If no site hook can be queried for status,
returns the null pointer.

If an error occurred, the routine returns a null pointer, and the error number is available in the global integer pbs_errno.

28.5.4.1 The batch_status Structure

The batch_status structure is defined in pbs_ifl.h as

struct batch_status {

struct batch_status *next;

char *name;

struct attrl *attribs;

char *text;

}

28.5.5 Cleanup

You must free the list of batch_status structures when no longer needed, by calling pbs_statfree().

28.5.6 Error Messages

The following error message is returned by the pbs_geterrmsg() API after calling pbs_manager() operating on
a hook object, with the MGR_CMD_IMPORT command, with "content-type" of "application/x-config":

"Failed to validate config file, hook 'submit' config file not overwritten"

If the input config file given is of unrecognized suffix, then the following message is returned by the
pbs_geterrmsg() API after calling pbs_manager() operating on a hook object, MGR_CMD_IMPORT com-
mand with "content-type" of "application/x-config":

"<input-file> contains an invalid suffix, should be one of: .json .py .txt .xml .ini"

If you specify an unknown hook event, pbs_geterrmsg() returns the following after calling pbs_manager():

invalid argument (<bad_event>) to event. Should be one or more of:
queuejob,modifyjob,resvsub,movejob,runjob,provision,execjob_begin,execjob_prologue,execjob_e
pilogue,execjob_preterm,execjob_end,exechost_periodic,execjob_launch,exechost_startup or ""
for no event

If you specify an invalid value for a hook's debug attribute, the following error message appears in qmgr's stderr and is
returned by pbs_geterrmsg() after calling pbs_manager():

"unexpected value '<bad_val>' must be (not case sensitive) true|t|y|1|false|f|n|0"
PG-120 PBS Professional 2022.1 Programmer’s Guide

Hooks Chapter 28
A runjob hook cannot set the value of a Resource_LIst member other than those listed in "Tables: Reading & Setting
Built-in Job Resources in Hooks" on page 64 in the PBS Professional Hooks Guide. Setting any of the wrong resources
results in the following:

• The hook request is rejected

• The following message is the output from calling pbs_geterrmsg() after the failed pbs_runjob():
" request rejected by filter hook: '<hook name>' hook failed to set job's

Resource_List.<resc_name> = <resc_value> (not allowed)"

28.5.7 See Also

pbs_connect, pbs_statfree, “Hook Attributes” on page 349 of the PBS Professional Reference Guide
PBS Professional 2022.1 Programmer’s Guide PG-121

Chapter 28 Hooks
PG-122 PBS Professional 2022.1 Programmer’s Guide

29

Custom Authentication and

Encryption Library APIs

This chapter describes LibAuth, which contains APIs you can use to create your own custom authentication or encryption
library.

Call the pbs_auth_set_config API first before calling any other LibAuth API.

Table of Authentication and Encryption APIs

9.1 pbs_auth_set_config . 124
9.2 pbs_auth_create_ctx . 125
9.3 pbs_auth_destroy_ctx . 127
9.4 pbs_auth_get_userinfo. 128
9.5 pbs_auth_process_handshake_data . 130
9.6 pbs_auth_encrypt_data . 132
9.7 pbs_auth_decrypt_data . 133
PBS Professional 2022.1 Programmer’s Guide PG-123

Chapter 29 Custom Authentication and Encryption Library APIs
29.1 pbs_auth_set_config

specify configuration for authentication library

29.1.1 Synopsis

void pbs_auth_set_config(const pbs_auth_config_t *auth_config)

29.1.2 Description

Specifies configuration for the authentication library. Use this to specify logging method, where to find required creden-
tials, etc.

Call this API first before calling any other LibAuth API.

29.1.3 Arguments

const pbs_auth_config_t *auth_config
Pointer to a configuration structure

29.1.4 Configuration Structure

typedef struct pbs_auth_config {
char *pbs_home_path;

Path to PBS_HOME directory (aka same value as PBS_HOME in pbs.conf). This must be a null-terminated
string.

char *pbs_exec_path;
Path to PBS_EXEC directory (aka same value as PBS_EXEC in pbs.conf). This must be a null-terminated
string.

char *auth_method;
Name of authentication method (aka same value as PBS_AUTH_METHOD in pbs.conf). This must be a
null-terminated string.

char *encrypt_method;
Name of encryption method (aka same value as PBS_ENCRYPT_METHOD in pbs.conf). This must be a
null-terminated string

void (*logfunc)(int type, int objclass, int severity, const char *objname, const char *text);
Function pointer to the logging method with the same signature as log_event from Liblog.

With this, the user of the authentication library can redirect logs from the authentication library into respec-
tive log files or stderr in case no log files.

If func is set to NULL then logs will be written to stderr (if available, else no logging at all).

} pbs_auth_config_t;

29.1.5 Return Value

None return value
PG-124 PBS Professional 2022.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 29
29.2 pbs_auth_create_ctx

create authentication context

29.2.1 Synopsis

int pbs_auth_create_ctx(void **ctx, int mode, int conn_type, char *hostname)

29.2.2 Description

Creates an authentication context for a given mode and connection type. Context is used by other LibAuth APIs for
authentication, encryption, and decryption of data.

29.2.3 Arguments

void **ctx
Pointer to auth context to be created

int mode
Specifies type of context to be created. Should be one of AUTH_CLIENT or AUTH_SERVER.

Use AUTH_CLIENT for client-side (who is initiating authentication) context

Use AUTH_SERVER for server-side (who is authenticating incoming user/connection) context

enum AUTH_ROLE {

AUTH_ROLE_UNKNOWN = 0,

AUTH_CLIENT,

AUTH_SERVER,

AUTH_ROLE_LAST

};

int conn_type
Specifies type of connection is for context to be created. Should be one of AUTH_USER_CONN or
AUTH_SERVICE_CONN

Use AUTH_USER_CONN for user-oriented connection (such as when PBS client is connecting to PBS server)

Use AUTH_SERVICE_CONN for service-oriented connection (such as when PBS MoM is connecting to PBS
server via PBS comm)

enum AUTH_CONN_TYPE {

AUTH_USER_CONN = 0,

AUTH_SERVICE_CONN

};

char *hostname
The null-terminated hostname of another authenticating party

29.2.4 Return Value

Integer.
PBS Professional 2022.1 Programmer’s Guide PG-125

Chapter 29 Custom Authentication and Encryption Library APIs
0
On Success

1
On Failure

29.2.5 Cleanup

When a context created using this API is no longer required, destroy it via auth_destroy_ctx.
PG-126 PBS Professional 2022.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 29
29.3 pbs_auth_destroy_ctx

destroy an authentication context created using auth_create_ctx

29.3.1 Synopsis

void pbs_auth_destroy_ctx(void *ctx)

29.3.2 Description

Destroys the authentication context created using auth_create_ctx

29.3.3 Arguments

void *ctx
Pointer to authentication context to be destroyed

29.3.4 Return Value

No return value
PBS Professional 2022.1 Programmer’s Guide PG-127

Chapter 29 Custom Authentication and Encryption Library APIs
29.4 pbs_auth_get_userinfo

extract username with its realm, and hostname of connecting party from authentication context

29.4.1 Synopsis

int pbs_auth_get_userinfo(void *ctx, char **user, char **host, char **realm)

29.4.2 Description

Extracts username with its realm, and hostname of the connecting party from the given authentication context.

The extracted user, host, and realm values are null-terminated strings.

This API is mostly useful for authenticating on the server side to get information about an authenticating client.

The authenticating server can use this information from the auth library to match against the actual username/realm/host-
name provided by the connecting party.

29.4.3 Arguments

void *ctx
Pointer to auth context from which information will be extracted

char **user
Pointer to a buffer in which this API will write the username

char **host
Pointer to a buffer in which this API will write hostname

char **realm
Pointer to a buffer in which this API will write the realm

29.4.4 Return Value

Integer

0
On success

1
On failure

29.4.5 Cleanup

When the returned user, host, and realm are no longer required, free them using free(), since they use allocated heap
memory.
PG-128 PBS Professional 2022.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 29
29.4.6 Example

This example shows what the values of user, host, and realm will be. Let's use an example with GSS/Kerberos authenti-
cation, where the authentication client hostname is "xyz.abc.com", the username is "test", and in the Kerberos configura-
tion, the domain realm is "PBSPRO". When the client authenticates to the server using the Kerberos authentication
method, it is authenticated as "test@PBSPRO", and this API returns user = test, host = xyz.abc.com, and realm =
PBSPRO.
PBS Professional 2022.1 Programmer’s Guide PG-129

Chapter 29 Custom Authentication and Encryption Library APIs
29.5 pbs_auth_process_handshake_data

handle and generate handshakes, and generate handshake data

29.5.1 Synopsis

int pbs_auth_process_handshake_data(void *ctx, void *data_in, size_t len_in, void **data_out, size_t *len_out, int
*is_handshake_done)

29.5.2 Description

Process incoming handshake data and do the handshake. If required generate handshake data which to be sent to another
party. If there is no incoming data then initiate a handshake and generate initial handshake data to be sent to the authen-
tication server.

29.5.3 Arguments

void *ctx
Pointer to authentication context for which handshake is happening

void *data_in
Incoming handshake data to process, if any. A NULL value indicates that this API should initiate a handshake
and generate initial handshake data to be sent to the authentication server.

size_t len_in
Length of incoming handshake data, if any, else 0

void **data_out
Outgoing handshake data to be sent to another authentication party.

A NULL value indicates that the handshake is completed and no further data needs to be sent.

When this API returns 1 (failure), data_out contains the error message.

size_t *len_out
Length of outgoing handshake/auth error data, if any, else 0

int *is_handshake_done
Indicates whether handshake is completed or not.

0 means that the handshake is not completed.

1 means that the handshake is completed.

29.5.4 Return Value

Integer

0
On success

1
On failure

On failure, the value of data_out is the error data/message, to be sent to another authentication party as authen-
tication error data.
PG-130 PBS Professional 2022.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 29
29.5.5 Cleanup

When the returned data_out (if any) is no longer required, free it using free(), since it uses allocated heap memory.
PBS Professional 2022.1 Programmer’s Guide PG-131

Chapter 29 Custom Authentication and Encryption Library APIs
29.6 pbs_auth_encrypt_data

encrypt data using specified authentication context

29.6.1 Synopsis

int pbs_auth_encrypt_data(void *ctx, void *data_in, size_t len_in, void **data_out, size_t *len_out)

29.6.2 Description

Encrypt given unencrypted data using the specified authentication context.

29.6.3 Arguments

void *ctx
Pointer to auth context which will be used while encrypting given unencrypted data

void *data_in
unencrypted data to encrypt

size_t len_in
Length of unencrypted data

void **data_out
Encrypted data

size_t *len_out
Length of encrypted data

29.6.4 Return Value

Integer

0
Success

1
Failure

29.6.5 Cleanup

When the returned data_out is no longer required, free it using free(), since it uses allocated heap memory.
PG-132 PBS Professional 2022.1 Programmer’s Guide

Custom Authentication and Encryption Library APIs Chapter 29
29.7 pbs_auth_decrypt_data

decrypt data

29.7.1 Synopsis

int pbs_auth_decrypt_data(void *ctx, void *data_in, size_t len_in, void **data_out, size_t *len_out)

29.7.2 Description

Decrypt encrypted data using the specified authentication context

29.7.3 Arguments

void *ctx
Pointer to authentication context which will be used while decrypting given encrypted data

void *data_in
Encrypted data to decrypt

size_t len_in
Length of encrypted data

void **data_out
Unencrypted data

size_t *len_out
Length of unencrypted data

29.7.4 Return Value

Integer

0
On success

1
On failure

29.7.5 Cleanup

When the returned data_out is no longer required, free it using free(), since it uses allocated heap memory.
PBS Professional 2022.1 Programmer’s Guide PG-133

Chapter 29 Custom Authentication and Encryption Library APIs
PG-134 PBS Professional 2022.1 Programmer’s Guide

Index

A
activereq PG-102
addreq PG-102
allreq PG-102

C
closerm PG-102
commands PG-4
configrm PG-102
credential PG-21

D
downrm PG-102

E
executor PG-4

F
flushreq PG-102
fullresp PG-102

G
getreq PG-102

J
job

executor (MoM) PG-4

M
MoM PG-3, PG-4

O
openrm PG-102

P
pbs_alterjob PG-24
pbs_asyrunjob PG-26, PG-58
pbs_auth_create_ctx PG-125
pbs_auth_decrypt_data PG-133
pbs_auth_destroy_ctx PG-127
pbs_auth_encrypt_data PG-132
pbs_auth_get_userinfo PG-128
pbs_auth_process_handshake_data PG-130

pbs_auth_set_config PG-124
pbs_connect PG-21, PG-30
pbs_default PG-32
pbs_deljob PG-33
pbs_delresv PG-35
pbs_disconnect PG-36
pbs_geterrmsg PG-37
pbs_holdjob PG-38
pbs_iff PG-21
pbs_locjob PG-39
pbs_manager PG-41
pbs_module PG-113
pbs_mom PG-3, PG-4
pbs_movejob PG-47
pbs_msgjob PG-49
pbs_orderjob PG-51
pbs_preempt_jobs PG-52
pbs_relnodesjob PG-54
pbs_rerunjob PG-56
pbs_rlsjob PG-57
pbs_runjob PG-26, PG-58
pbs_sched PG-2, PG-3
pbs_selectjob PG-60
pbs_selstat PG-63
pbs_server PG-2, PG-3
pbs_sigjob PG-67
pbs_statfree PG-69
pbs_stathook(3B) PG-119
pbs_stathost PG-70
pbs_statjob PG-72
pbs_statnode PG-75
pbs_statque PG-77
pbs_statresv PG-79
pbs_statrsc PG-81
pbs_statsched PG-83
pbs_statserver PG-85
pbs_statvnode PG-87
pbs_submit PG-89
pbs_submit_resv PG-91
pbs_tclapi PG-106
pbs_tclsh PG-105
pbs_terminate PG-93
pbs_wish PG-105

S
scheduler PG-3
PBS Professional 2022.1 Programmer’s Guide PG-135

Index
server PG-3

T
TCL PG-105
tm_atnode PG-96
tm_attach PG-96
tm_finalize PG-96
tm_init PG-96
tm_kill PG-96
tm_nodeinfo PG-96
tm_notify PG-96
tm_obit PG-96
tm_poll PG-96
tm_publish PG-96
tm_rescinfo PG-96
tm_spawn PG-96
tm_subscribe PG-96
tm_taskinfo PG-96
PG-136 PBS Professional 2022.1 Programmer’s Guide

Altair PBS Professional 2022.1

Cloud Guide

You are reading the Altair PBS Professional 2022.1

Cloud Guide (CG)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation i

1 Introduction to PBS Cloud 1
1.1 Introduction to Cloud Bursting . 1
1.2 Cloud Bursting Terminology . 1
1.3 How PBS Cloud Bursting Works . 2
1.4 Distributing Jobs to Cloud and On Premise Nodes. 4
1.5 Licensing PBS Cloud Nodes . 4
1.6 Caveats and Restrictions for PBS Cloud. 4

2 Installing PBS Cloud 5
2.1 Supported Platforms . 5
2.2 Prerequisites . 8
2.3 Recommended Configurations . 9
2.4 Installation Steps. 11
2.5 Create Extension Cloud Bursting Hook. 19
2.6 Install and Configure Simulate . 19

3 Configuring PBS Cloud 21
3.1 Overview of Configuring PBS Cloud . 21
3.2 Configuring PBS Professional for Cloud Bursting . 24
3.3 Configuring PBS Cloud . 31
3.4 Providing Nodes Grouped on High Speed Network . 48
3.5 Providing Bare-metal Instances . 49
3.6 Testing Cloud Bursting . 51

4 Configuring the Cloud Bursting Hook 53
4.1 The Cloud Bursting Hooks . 53
4.2 Configuring the Cloud Bursting Hooks . 55
4.3 Testing Automated Cloud Bursting . 63

5 Using Cloud Provider Services 67
5.1 Configuring Amazon Web Service Cloud Bursting . 69
5.2 Configuring Microsoft Azure Cloud Bursting . 82
5.3 Configuring Google Cloud Platform Cloud Bursting . 95
5.4 Configuring Oracle Cloud Platform Cloud Bursting . 103
5.5 Configuring Orange Cloud Flexible Engine for Cloud Bursting . 114
5.6 Configuring HUAWEI Cloud for Cloud Bursting . 123
5.7 Configuring Open Telekom Cloud for Cloud Bursting . 131
5.8 Configuring OpenStack Cloud Bursting. 139
5.9 Configuring Alibaba Cloud Bursting . 144
5.10 Windows Bursting on AWS and Azure . 153
PBS Professional 2022.1.0 Cloud Guide CG-i

Contents
6 The Cloud Node Startup Script 155
6.1 Introduction . 155
6.2 Customizing Your Startup Script . 156
6.3 Developing the Startup Script . 159

7 Managing Cloud Bursting 163
7.1 Logging into PBS Cloud . 163
7.2 Managing Cloud Bursting . 163
7.3 Starting, Stopping, Restarting, and Statusing PBS Cloud. 166
7.4 Monitoring Logs and Workflows . 166
7.5 Updating PBS Cloud Administrator Password . 167
7.6 Troubleshooting Cloud Bursting . 167

8 Managing Cloud Jobs 169
8.1 Managing Job Distribution to Cloud and On-premise Nodes . 169
8.2 Allowing Easy Assignment of Jobs to On-premise or Cloud Nodes . 170

9 Example Azure Head/Service Node 173
9.1 Example Configuration of Cloud Head/Service Node in Azure . 173

10 Command Reference 177
10.1 PBS Cloud PCLM Command-line Interface . 177
10.2 PBS Cloud pkr Interface . 185

Index 189
CG-ii PBS Professional 2022.1.0 Cloud Guide

1

Introduction to PBS Cloud

1.1 Introduction to Cloud Bursting

PBS Cloud allows PBS Professional to burst nodes in the cloud, so that your site can handle demand peaks. PBS Profes-
sional uses Simulate and two cloud bursting hooks called cloud_hook and cloud_ext_hook to analyze jobs from the cloud
queue(s), estimate the demand, and burst the required cloud nodes having the specified instance type and OS image. The
PBS scheduler runs the jobs from the cloud queue in the cloud nodes. PBS Cloud dynamically adjusts the number of
cloud nodes according to current load and how long you want nodes to wait for jobs to appear.

PBS Cloud provides the framework for the interface to the cloud. PBS Cloud supports multiple cloud vendors as well as
private OpenStack clouds. You can use multiple vendors at the same time, and multiple accounts at each vendor. PBS
Cloud also supports instance types that are on-demand, preemptable (GCP), spot (AWS and Azure), and bare metal. PBS
Cloud supports jobs that use MPI and high speed networks such as InfiniBand.

PBS Cloud requires Simulate for cloud bursting. Simulate figures out how many nodes to burst and which jobs can run
in each burst.

One PBS Cloud can handle cloud bursting for multiple PBS Professional complexes as long as all scenarios have differ-
ent (unique) API keys.

1.2 Cloud Bursting Terminology

Burst

The action of creating a node in the cloud and adding it to the PBS complex

Cloud bursting hook (main)

The main cloud bursting hook is called "cloud_hook", and it is installed when you install PBS Cloud. The PBS
cloud bursting hook manages cloud nodes and jobs via PBS Cloud and cloud queues. You specify details for
each scenario that you want the hook to handle. The main cloud bursting hook handles bursting for all instances
except bare metal, which are handled by the extension cloud bursting hook.

Cloud bursting hook (extension)

The extension cloud bursting hook is called "cloud_ext_hook", and you create it as a modified version of the
main cloud bursting hook. The extension PBS cloud bursting hook handles bursting bare metal instances.

Cloud node

A virtual machine or instance that has been created on cloud hardware. Each cloud node is burst using the OS
image specified for the job. After the node is burst, it is initialized via cloud-init scripts with everything
required to run PBS jobs.

Cloud queue

Each scenario uses its own cloud queue. This is where the jobs for that scenario are enqueued. Cloud jobs must
be submitted to the appropriate cloud queue.

Head node

Node where the PBS Professional server/scheduler are installed.
PBS Professional 2022.1.0 Cloud Guide CG-1

Chapter 1 Introduction to PBS Cloud
Instance type

A specification for an instance including characteristics such as CPUs, memory, storage capacity, network tech-
nology, etc. The PBS Cloud administrator specifies the instance types that will be available to job submitters.
Jobs can request and use only instance types that the administrator has made available.

PBS Cloud supports instance types that are on-demand, preemptable (GCP), spot (AWS and Azure), and bare
metal.

OS image

A pre-configured OS image in the cloud from which virtual machines can be instantiated. At the vendor, you
create an OS image to use as the default for a particular scenario at that vendor. Jobs can request a specific OS
image, the cloud bursting hook can specify a default OS image for that scenario, and you can set a default OS
image for the cloud queue for that scenario.

Proximate node group

A group of nodes that are on the same high speed network. For example, a group of nodes that share a high
speed switch, for example a group of nodes that are in one Azure InfiniBand scale set, or are in an Oracle
instance pool.

Scenario

A bursting scenario encapsulates information needed to burst cloud nodes, such as the default OS image and
which cloud-init script should initialize cloud nodes. You create a scenario data structure in PBS Cloud;
this is where you specify information about resources provided by the cloud vendor that PBS Cloud uses for
bursting. You define other aspects of the same scenario in the appropriate cloud bursting hook. A scenario can
use one or more instance types to burst cloud nodes, with these restrictions:

• All the instance types for a scenario must be non-preemptable or be preemptable, but cannot be mixed

• All the instance types for a scenario must be non-bare-metal or bare metal, but cannot be mixed

You can have as many scenarios as you want.

Service node

Node where PBS Cloud module is installed.

Simulate

The PBS Professional workload simulation tool. See the PBS Professional Simulate Guide.

Unburst

The action of removing a node from both the PBS complex and the cloud.

Workflow

The process of bursting one or more nodes in the cloud. See section 7.6.3, “Examining Node Bursting Work-
flows”, on page 168.

1.3 How PBS Cloud Bursting Works

1.3.1 How Node Bursting Works

You create an administrator account with your cloud vendor. PBS Cloud uses this vendor administrator account to man-
age cloud nodes.

You create a cloud queue for each scenario, and job submitters request the cloud queue for their cloud jobs. The PBS
scheduler runs the cloud jobs in the cloud nodes.

PBS Simulate analyzes the resources needed by cloud jobs, figures out how many and what type of nodes to burst, and
which jobs to run.
CG-2 PBS Professional 2022.1.0 Cloud Guide

Introduction to PBS Cloud Chapter 1
One of the cloud bursting hooks bursts the nodes: if the required nodes are not on bare metal, the main cloud bursting
hook bursts the required cloud nodes via PBS Cloud, but if the required nodes are on bare metal, the extension cloud
bursting hook bursts the nodes.

Each hook uses existing nodes when possible, and bursts new nodes when needed.

The following illustration shows the relationships between PBS Professional, PBS Cloud, Simulate, and cloud providers.

Figure 1-1: Relationships between PBS Professional, PBS Cloud, Simulate, and cloud providers

1.3.1.1 OS Image and Instance Type Assignment to Job

The OS image and instance type used for a particular job depend on whether the job requests it, or whether the job inher-
its it along the way. The OS image is specified via the cloud_node_image resource, and the instance type is specified
via the cloud_node_instance_type resource. Assignment works in this order, with the first one encountered being the
one assigned:

1. Job request

2. Queue default

3. Cloud bursting hook default

4. PBS Cloud scenario default

1.3.1.2 Main Cloud Bursting Hook and Extension Cloud Bursting

Hook

The main cloud bursting hook is called "cloud_hook", and it bursts any non-bare-metal instances. The extension cloud
bursting hook is called "cloud_ext_hook", and it bursts any bare-metal instances. The hooks are identical except for their
configuration files (and names). All non-bare-metal instances are in scenarios defined in the configuration file for
cloud_hook. All bare-metal instances are in scenarios defined in the configuration file for cloud_ext_hook.

You cannot mix bare-metal and non-bare-metal instances in the same scenario. You cannot mix bare-metal and
non-bare-metal scenarios in the same hook configuration file.
PBS Professional 2022.1.0 Cloud Guide CG-3

Chapter 1 Introduction to PBS Cloud
1.3.2 Tracking Application Licenses

Jobs that run in the cloud may require application licenses. PBS Cloud bursts nodes for these jobs only when application
licenses are available; otherwise the nodes could sit idle.

PBS Cloud uses a custom consumable server-level integer resource to track how many of each kind of application license
are available. The cloud bursting hook checks the value of this resource before bursting cloud nodes, so that it only
bursts new nodes for jobs requiring application licenses when those licenses are available. The administrator creates a
script, typically run as a cron job, that keeps this resource as up-to-date as possible.

1.4 Distributing Jobs to Cloud and On Premise

Nodes

The basic configuration for PBS Cloud allows job submitters to request nodes that are burst in the cloud for their jobs, as
an alternative to requesting on premise nodes. With the basic configuration, jobs in cloud queues run in the cloud, and
jobs in non-cloud queues run on premises. However, you may want more flexibility in where jobs run, and you can
achieve this with some additional configuration:

• If you have the right resources on premises, it can make sense to run jobs residing in cloud queues on premises. The
least expensive way to run a job is generally on premises, except for when you use spot pricing in some cases. How-
ever, jobs that run on spot instances may not be allowed to finish execution. You can configure on premise nodes to
accept suitable cloud jobs; see section 3.2.8, “Running Cloud Queue Jobs On Premises”, on page 31.

• You may want to run non-cloud jobs in the cloud if for example they need to run right away. You can use a hook that
examines jobs in non-cloud queues and moves them to suitable cloud queues; see section 3.2.9, “Running
Non-Cloud Queue Jobs in the Cloud”, on page 31.

1.5 Licensing PBS Cloud Nodes

PBS Cloud is part of PBS Professional, and the licensing that you use for PBS Professional is used for PBS Cloud. For
example, if you use PBSProNodes licenses for PBS Professional, you use that for PBS Cloud. Similarly, if you use
PBSProSockets licenses for PBS Professional, that is the licensing for PBS Cloud.

1.6 Caveats and Restrictions for PBS Cloud

• The main cloud bursting hook can burst the nodes required for multiple jobs in a single burst, as long as those jobs
do not require bare metal instances. The extension cloud bursting hook handles bursting for jobs requiring bare
metal instances. This is because bursting to bare metal can slow the overall burst rate unacceptably when mixed
with non-bare-metal.
CG-4 PBS Professional 2022.1.0 Cloud Guide

2

Installing PBS Cloud

2.1 Supported Platforms

2.1.1 OpenSSL Requirement

PBS requires OpenSSL 1.1.1. If this is not already present on your platform, you must install it.

2.1.2 PBS Components

PBS Professional is made up of the following components:

• PBS Professional server/scheduler daemon on PBS Professional server/scheduler host/head node

• PBS Professional MoM daemon on execution host/compute node, with the following options:

• On premise

• Burst in cloud via PBS Cloud (optional)

• PBS Professional client commands on PBS submission host/client host

• PBS Professional communication daemon on communication host

• PBS Cloud module on service node (where AMS module runs) (optional)

• Budgets server on Budgets head node (optional)

• Budgets AMS module on service node (where PBS Cloud module runs) (optional)

• Budgets client commands on Budgets client host (optional)

• Simulate module:

• When using PBS Cloud, Simulate must be installed on PBS Professional server/scheduler host

• When not using PBS Cloud, Simulate can be installed on any supported host
PBS Professional 2022.1.0 Cloud Guide CG-5

Chapter 2 Installing PBS Cloud
2.1.3 Supported Platforms for PBS Components

PBS components are supported on the following platforms. A (d) indicates that support is deprecated:

Table 2-1: Supported Platforms

Maker Version
Chip
set

Components

PBS Professional Cloud + AMS Budgets Simulate

Server
Sched

MoM
on

prem
Comm

Client
cmds

Cloud
module
+ AMS

MoM
burst
node

Head
node +
client
cmds

Head
node

CentOS 7 x86_64 Yes Yes Yes Yes Yes Yes Yes No

7 ARM64 Yes Yes Yes Yes No Yes No No

Red Hat
Enterprise
Linux
RHEL

7 x86_64 Yes Yes Yes Yes Yes Yes Yes Yes

7 ARM64 Yes Yes Yes Yes No Yes No Yes

7 MLS x86_64 Yes Yes Yes Yes No No No No

8 x86_64 Yes Yes Yes Yes Yes Yes Yes Yes

8 ARM64 Yes Yes Yes Yes No Yes No Yes

Rocky
Linux

8 x86_64 Yes Yes Yes Yes No Yes No No

8 ARM64 Yes Yes Yes Yes No Yes No No

SUSE
SLES

12 x86_64 Yes Yes Yes Yes Yes * Yes Yes Yes

12 ARM64 Yes Yes Yes Yes No Yes No No

15 x86_64 Yes Yes Yes Yes No Yes Yes Yes

15 ARM64 Yes Yes Yes Yes No Yes No Yes

Ubuntu 18.04 x86_64 Yes Yes Yes Yes No Yes Yes Yes

18.04 ARM64 Yes Yes Yes Yes No Yes No Yes

20.04 x86_64 Yes Yes Yes Yes No Yes Yes Yes

20.04 ARM64 Yes Yes Yes Yes No Yes No Yes

HPE Cray
Shasta

1.1
SLES 15

x86_64 Yes Yes Yes Yes Yes * No Yes * Yes

1.1 RHEL
7

x86_64 Yes Yes Yes Yes No No No Yes

NEC SX-Aurora TSUBASA Yes Yes Yes Yes No No No Yes

Windows 10 Pro x86_64 No Yes No Yes No Yes No No
CG-6 PBS Professional 2022.1.0 Cloud Guide

Installing PBS Cloud Chapter 2
2.1.3.1 * SLES Restrictions for Cloud and Budgets Nodes

The following restrictions apply when using SLES on service node host for PBS Cloud or head node host for Budgets:

• Each SLES host must be registered with the SUSE Customer Center via SUSEConnect, and have a support contract.
This happens automatically for cloud nodes.

• SLES hosts require Docker Enterprise Edition.

2.1.4 Supported Platforms for Nodes Burst in Cloud

• Linux: any Linux platform that supports both PBS MoM and cloud-init

• Windows: 10, Server 2012

All versions of cloud-init are supported.

2.1.5 Restrictions on Simulate Module Location when Using

PBS Cloud

If you will use the PBS Cloud module, you must install Simulate on the PBS Professional server/scheduler host (the PBS
Professional head node).

11 Pro x86_64 No Yes No Yes No Yes No No

Server
2016

x86_64 No Yes No Yes No Yes No No

Server
2019

x86_64 No Yes No Yes No Yes No No

Table 2-1: Supported Platforms

Maker Version
Chip
set

Components

PBS Professional Cloud + AMS Budgets Simulate

Server
Sched

MoM
on

prem
Comm

Client
cmds

Cloud
module
+ AMS

MoM
burst
node

Head
node +
client
cmds

Head
node
PBS Professional 2022.1.0 Cloud Guide CG-7

Chapter 2 Installing PBS Cloud
2.1.6 Supported Cloud Providers

You must already have an account with one of the supported cloud providers. We support the listed variant for each
cloud provider:

2.1.7 Minimum Hardware Requirements for PBS Cloud Host

(Service Node)

2.1.7.1 Requirements for Connected Host

Minimum hardware requirements for connected PBS Cloud host (service node):

• Number of cores: 4

• RAM: 32GB

• Disk: 100GB

2.1.7.2 Requirements for Offline Host

Minimum hardware requirements for offline PBS Cloud host (service node):

• One host that is connected to the Internet, with:

• Number of cores: 4

• RAM: 32GB

• Disk: 120GB

• An offline host where you will use PBS Cloud, with:

• Number of cores: 4

• RAM: 32GB

• Disk: 130GB

2.2 Prerequisites

You can install PBS Cloud on a host that is connected to the Internet, or one that is not. We give instructions for both.

Table 2-2: Supported Clouds

Cloud Provider Variant

Microsoft Azure Azure Compute

Amazon Web Services (AWS) Elastic Compute Cloud (EC2)

Google Cloud Platform (GCP) Compute Engine

Oracle Cloud Platform Oracle Cloud Infrastructure

Orange Technical Cloud (OTC) Orange Flexible

Deutsche Telekom Open Telekom Cloud (OTC)

HUAWEI Cloud Elastic Cloud Server

OpenStack cloud on premise Stein
CG-8 PBS Professional 2022.1.0 Cloud Guide

Installing PBS Cloud Chapter 2
2.2.1 Software and Accounts

• A working PBS complex managed by PBS Professional version 2022.1.0. The PBS complex can be either of the
recommended configurations in Recommended Configurations

• docker-ce v19.x or later for most systems

• docker-ee v19.x or later for SLES

• SELinux must be disabled

• VPN connection to the cloud you will use (unless the PBS server is hosted in the cloud)

• Cloud provider account with:

• Correct authorizations

• Approved method of payment

2.2.2 Licensing

Make sure that the time zone for your on premise hardware and all cloud nodes and your licenses is the same. You will
also need the following:

• Altair License Server 14.5.1 or later

• PBSProNodes or PBSProSockets v20 license

2.2.3 Required Accounts

• To install PBS Cloud, you need to be root.

• To configure PBS Cloud, you must use pbsadmin@altair. This account is created by the PBS Cloud installer soft-
ware during installation. The default password for pbsadmin@altair is Altair@123. We strongly recommend chang-
ing the password to something known only to you.

2.3 Recommended Configurations

The head node is where the PBS Professional server is installed. The service node is where the PBS Cloud module is
installed.

The head node and service node can be one of either:

• Both on premises

• Both in cloud

Do not put one on premises and one in the cloud.

2.3.1 Recommended Configuration for Larger Installations

For larger installations using on premises hosts:

• On premises: head node (PBS server/scheduler), service node (PBS Cloud in a container), and on-premise execution
nodes (on-premise MoMs)

• In cloud: burst execution nodes

• VPN connection to the cloud you will use
PBS Professional 2022.1.0 Cloud Guide CG-9

Chapter 2 Installing PBS Cloud
Notes:

• You may not want to run PBS Cloud on the PBS Professional head node, because PBS Cloud runs in a Docker con-
tainer, which may impose too high a load on that node.

• All components are mix-and-match (with Docker restriction).

• You don't need to configure additional pbs_comm daemons for cloud nodes, because PBS Cloud can't cause enough
throughput to need one.

• For PBS configuration instructions, see the PBS Professional Administrator's Guide.

2.3.2 Recommended Configuration for Smaller Installations

For smaller installations cloud-only installations where the workload is low enough:

• All PBS components can be hosted in the cloud

• All components can run on the same node

• You can run Docker on the same node as the PBS components

Notes:

• No VPN is required for this configuration

• We show an example of putting the PBS server and the PBS cloud module on the same node in Chapter 9, "Example
Azure Head/Service Node", on page 173
CG-10 PBS Professional 2022.1.0 Cloud Guide

Installing PBS Cloud Chapter 2
2.4 Installation Steps

2.4.1 Installing on an Internet-connected Host

2.4.1.1 Install Docker

1. On the service node, log in as root

2. Install, start, and enable docker-ce:

• For CentOS or RedHat:

Log in to the machine where PBS Cloud is to be installed.

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

• For SLES12 or 15:

Log in to the machine where PBS Cloud is to be installed.

For SLES 12:

sudo SUSEConnect -p sle-module-containers/12/x86_64 -r ''

For SLES 15:

sudo SUSEConnect -p sle-module-containers/15.1/x86_64 -r ''

sudo zypper install docker

sudo systemctl enable docker.service

sudo systemctl start docker.service

Configure the firewall to allow forwarding of Docker traffic to the external network:

Set FW_ROUTE="yes" in /etc/sysconfig/SuSEfirewall2

• For Ubuntu:

Log in to the machine where PBS Cloud is to be installed.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-proper-
ties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

The key should match the second line in the output; validate the last 8 characters. Example of second line:

9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

sudo systemctl enable docker.service

sudo systemctl start docker.service
PBS Professional 2022.1.0 Cloud Guide CG-11

Chapter 2 Installing PBS Cloud
2.4.1.2 Install the PBS Cloud Module

1. On the service node, log in as root

1. Make backups of your cloud bursting hook configuration files:
qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json.backup

qmgr -c "export hook cloud_ext_hook application/x-config default" > cloud_ext_config.json.backup

2. Clean up any previous installations of the PBS Cloud module:

• If the PBS cloud hook, named "cloud_hook", exists, delete it:
qmgr -c 'd h cloud_hook'

• If the PBS cloud extension hook, named "cloud_ext_hook", exists, delete it:
qmgr -c 'd h cloud_ext_hook'

• If the pclm command exists in $PBS_EXEC/bin or /opt/pbs/bin, delete it:
source /etc/pbs.conf

rm $PBS_EXEC/bin/pclm

3. Extract the installer:

tar xvfz PBSPro-cloud_2022.1.0-<OS>_x86_64.tar.gz

4. To install PBS cloud module, main PBS cloud hook, and PBS Cloud command layer, execute the installation script:

a. Change directory to pbspro-cloud-installer directory:

cd pbspro-cloud-installer

b. We strongly recommend changing the administrator password before installing PBS Cloud. Edit install.sh
and replace the default administrator password (Altair@123) with a new password:
PBSCLOUD_PASSWORD=<new password>

c. Run the installer:

.install.sh

2.4.1.3 Allow Easy PBS Cloud Status Check

1. Log in as root

2. Create an alias to easily use pkr. Type the following all one line:

alias pkr="docker run -ti --network host --rm -e PBSCLOUD_VERSION=pbspro-cloud-2022.1.0 -e
PKR_VERSION=pbspro-cloud-2022.1.0 -v /run/docker.sock:/run/docker.sock -v /root/kard:/pkr/kard
pbsclou-dio.azurecr.io/pkr:pbspro-cloud-2022.1.0 pkr"
CG-12 PBS Professional 2022.1.0 Cloud Guide

Installing PBS Cloud Chapter 2
2.4.1.4 Configure PBS Cloud to Use SSL Connections

You will probably want PBS Cloud to use SSL connections in order to protect your data while it is in transit. You can use
a self-signed certificate or one that is signed by a certificate authority. The file names and formats for a certificate from a
certificate authority may be different. If you need help, contact Altair Support. The .pem format is the most common; we
provide an example of that here. On the service node:

1. Provide SSL certificates.

• Example of creating a self-signed certificate:
openssl req -new > cert.csr

openssl rsa -in privkey.pem -out key.pem

openssl x509 -in cert.csr -out cert.pem -req -signkey key.pem -days 1001

cat key.pem>>cert.pem

2. Optionally save your certificates in a persistent location, such as /root/certificates/ so that they are not deleted
if you re-install PBS Cloud.

3. Stop and remove all PBS Cloud containers:

pkr stop

pkr clean

4. Edit /root/kard/current/meta.yml:

Look for this line:

ui_port: 9980:

Just below it, insert these new lines:

ui_https_port: 443

ssl_certificate: /<full path to cert>/cert.pem

ssl_private_key: /<full path to key>/key.pem

Make sure that your new lines come before this line:

watch_ui: false

For example, you end up with:

...

ui_port: 9980:

ui_https_port: 443

ssl_certificate: /root/certificates/cert.pem

ssl_private_key: /root/certificates/key.pem

watch_ui: false

5. Push your changes into the PBS Cloud module:

pkr kard make

pkr start
PBS Professional 2022.1.0 Cloud Guide CG-13

Chapter 2 Installing PBS Cloud
2.4.1.5 Test the Installation

1. Log in as root

2. Make sure that relevant services are up and running. Each should have an IP address. See section 10.2.4, “Sample
pkr Output while Running”, on page 187 for sample healthy output reference data for pkr.

pkr ps

3. If you are running the PBS Cloud module on a service node in the cloud, use the vendor tools to open access through
the firewall to port 9980 so that you can use the vendor web interface.

4. Log into PBS Cloud from your web browser:

http://<PBS Cloud host name or IP address>:<port>/pbspro-cloud/#/login

• Default port: 9980

• Username: pbsadmin@altair

• Password: <administrator password> (Default is Altair@123)

2.4.2 Installing on an Offline Host

In order to install PBS Cloud on an offline host, you download the standard installation package on a connected host,
extract the package, download Altair files to the package, tar it back up, copy it over to the offline host, untar it, and run
the offline installer. We detail the steps below.
CG-14 PBS Professional 2022.1.0 Cloud Guide

Installing PBS Cloud Chapter 2
2.4.2.1 Install Docker on Connected Host

1. Log in as root on the service node

2. Install, start, and enable docker-ce:

• For CentOS or RedHat:

Log in to the machine where PBS Cloud is to be installed.

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

• For SLES12 or 15:

Log in to the machine where PBS Cloud is to be installed.

For SLES 12:

sudo SUSEConnect -p sle-module-containers/12/x86_64 -r ''

For SLES 15:

sudo SUSEConnect -p sle-module-containers/15.1/x86_64 -r ''

sudo zypper install docker

sudo systemctl enable docker.service

sudo systemctl start docker.service

Configure the firewall to allow forwarding of Docker traffic to the external network:

Set FW_ROUTE="yes" in /etc/sysconfig/SuSEfirewall2

• For Ubuntu:

Log in to the machine where PBS Cloud is to be installed.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-proper-
ties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

The key should match the second line in the output; validate the last 8 characters. Example of second line:

9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

sudo systemctl enable docker.service

sudo systemctl start docker.service

2.4.2.2 Download Installation Tarball to Connected Host

On the connected host:

1. Log in as root

2. Extract the contents of the installer package:

tar xvfz PBSPro-cloud_2022.1.0-<OS>_x86_64.tar.gz
PBS Professional 2022.1.0 Cloud Guide CG-15

Chapter 2 Installing PBS Cloud
This creates the directory named "pbspro-cloud-installer"

3. Run the script that uses Docker to pull images from the Altair site and adds them to installer:

a. Change directory to pbspro-cloud-installer directory:

cd pbspro-cloud-installer

b. Make the scripts executable:

chmod 0755 *.sh

c. Run the download script:

.offline_download.sh

4. Tar up the modified installer:

tar cvfz PBSPro-cloud_2022.1.0-CentOS7_x86_64_offline.tar.gz pbspro-cloud-installer/

2.4.2.3 Copy Tarball to Offline Host

Copy the tarball of the modified installation script onto the offline host.

2.4.2.4 Install Docker on Offline Host

On the offline host (service node):

1. Log in as root

2. Install Docker and its dependencies

• For CentOS, RedHat, and Ubuntu, install docker-ce (Docker Community Edition) and its dependencies:

docker-ce

docker-ce-cli

containerd.io

• For SLES 12 and 15, install docker-ee (Docker Enterprise Edition). You may need to use SUSEConnect.

3. Enable Docker

4. Start Docker
CG-16 PBS Professional 2022.1.0 Cloud Guide

Installing PBS Cloud Chapter 2
2.4.2.5 Extract Tarball to Offline Host

On the offline host:

1. Make backups of your cloud bursting hook configuration files:
qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json.backup

qmgr -c "export hook cloud_ext_hook application/x-config default" >

cloud_ext_config.json.backup

2. Clean up any previous installations of the PBS Cloud module:

• If the PBS cloud hook, named "cloud_hook", exists, delete it:
qmgr -c 'd h cloud_hook'

• If the PBS cloud extension hook, named "cloud_ext_hook", exists, delete it:
qmgr -c 'd h cloud_ext_hook'

• If the pclm command exists in $PBS_EXEC/bin or /opt/pbs/bin, delete it:
source /etc/pbs.conf

rm $PBS_EXEC/bin/pclm

3. Untar the package for the modified installer:

tar xvfz PBSPro-cloud_2022.1.0-CentOS7_x86_64_offline.tar.gz

This creates the directory named "pbspro-cloud-installer"

4. Run the script for installing PBS Cloud on an offline host:

a. Change directory to pbspro-cloud-installer directory:

cd pbspro-cloud-installer

b. We strongly recommend changing the administrator password before installing PBS Cloud. Edit
offline_install.sh and replace the default administrator password (Altair@123) with a new password:
PBSCLOUD_PASSWORD=<new password>

c. Run the offline installation script:

.offline_install.sh
2.4.2.6 Allow Easy PBS Cloud Status Check

On the offline host:

1. Log in as root

2. Create an alias to easily use pkr. Type the following all one line:

alias pkr="docker run -ti --network host --rm -e PBSCLOUD_VERSION=pbspro-cloud-2021.1 -e
PKR_VERSION=pbspro-cloud-2021.1 -v /run/docker.sock:/run/docker.sock -v /root/kard:/pkr/kard
pbscloudio.azurecr.io/pkr:pbspro-cloud-2021.1 pkr"
PBS Professional 2022.1.0 Cloud Guide CG-17

Chapter 2 Installing PBS Cloud
2.4.2.7 Configure PBS Cloud to Use SSL Connections

You will probably want PBS Cloud to use SSL connections in order to protect your data while it is in transit. You can use
a self-signed certificate or one that is signed by a certificate authority. The file names and formats for a certificate from a
certificate authority may be different. If you need help, contact Altair Support. The .pem format is the most common; we
provide an example of that here. On the service node:

1. Provide SSL certificates

• Example of creating a self-signed certificate:
openssl req -new > cert.csr

openssl rsa -in privkey.pem -out key.pem

openssl x509 -in cert.csr -out cert.pem -req -signkey key.pem -days 1001

cat key.pem>>cert.pem

2. Optionally save your certificates in a persistent location, such as /root/certificates/ so that they are not deleted
if you re-install PBS Cloud.

3. Stop and remove all PBS Cloud containers:

pkr stop

pkr clean

4. Edit /root/kard/current/meta.yml:

Look for this line:

ui_port: 9980:

Just below it, insert these new lines:

ui_https_port: 443

ssl_certificate: /<full path to cert>/cert.pem

ssl_private_key: /<full path to key>/key.pem

Make sure that your new lines come before this line:

watch_ui: false

For example, you end up with:

...

ui_port: 9980:

ui_https_port: 443

ssl_certificate: /root/certificates/cert.pem

ssl_private_key: /root/certificates/key.pem

watch_ui: false

5. Push your changes into the PBS Cloud module:

pkr kard make

pkr start
CG-18 PBS Professional 2022.1.0 Cloud Guide

Installing PBS Cloud Chapter 2
2.4.2.8 Test the Installation

On the offline host:

1. Log in as root

2. Make sure that relevant services are up and running. Each should have an IP address. See section 10.2.4, “Sample
pkr Output while Running”, on page 187 for sample healthy output reference data for pkr.

pkr ps

3. If you are running the PBS Cloud module on a service node in the cloud, use the vendor tools to open access through
the firewall to port 9980 so that you can use the vendor web interface.

4. Log into PBS Cloud from your web browser:

http://<PBS Cloud host name or IP address>:<port>/pbspro-cloud/#/login

• Default port: 9980

• Username: pbsadmin@altair

• Password: <administrator password> (Default is Altair@123)

2.5 Create Extension Cloud Bursting Hook

If you want to burst instances on bare metal (currently this means using Oracle's InfiniBand on bare metal), create the
extension cloud bursting hook. We recommend naming this hook "cloud_ext_hook". The extension cloud bursting hook
is identical to the main cloud bursting hook; the difference is in their configuration files. We show you how to set up the
configuration files later in section 4.2, “Configuring the Cloud Bursting Hooks”, on page 55.

Steps to create the extension cloud bursting hook:

1. Export the main cloud bursting hook to a file:
qmgr -c "export hook cloud_hook application/x-python default" > cloud_hook.py

2. Import the file to a hook named "cloud_ext_hook":

qmgr -c "import hook cloud_ext_hook application/x-python default cloud_hook.py"

2.6 Install and Configure Simulate

PBS Cloud requires Simulate for cloud bursting. Simulate figures out how many nodes to burst and which jobs can run
in each burst.

1. Install Simulate on the PBS Professional server/scheduler host (the PBS head node); follow the instructions in sec-
tion 1.4, “Installation”, on page 4 of the PBS Professional Simulate Guide.

2. Configure Simulate; follow the instructions in section 1.5, “Configuration”, on page 4 of the PBS Professional Sim-
ulate Guide.
PBS Professional 2022.1.0 Cloud Guide CG-19

Chapter 2 Installing PBS Cloud
CG-20 PBS Professional 2022.1.0 Cloud Guide

3

Configuring PBS Cloud

3.1 Overview of Configuring PBS Cloud

Much of the information required to configure PBS Cloud and PBS Professional is generated or chosen while you are
logged into your cloud provider, building your cloud components. We provide a list of what to collect while you are
doing this so that you will have the information you need later. Alternatively, you may want to have one window open
for each purpose simultaneously, rather than performing these steps in sequence. We recommend reading through the
instructions once before starting so that you can see where information is transferred from one tool to another.

The following is an overview of the steps involved; you can use this as a checklist. We cover the actual steps in detail
elsewhere.

1. If you have not done so already, install PBS Professional; see the PBS Professional Installation & Upgrade Guide

2. If you have not done so already, install the PBS Cloud module; see Chapter 2, "Installing PBS Cloud", on page 5

3. If you have not done so already, install and configure the PBS Simulate module; see section 2.6, “Install and Config-
ure Simulate”, on page 19

4. Configure PBS Professional for cloud bursting. This step is covered in section 3.2, “Configuring PBS Professional
for Cloud Bursting”, on page 24, but we outline it here for clarity:

a. Log into the PBS server host as administrator

b. Configure PBS Professional for bursting to cloud nodes

1. Create and configure resources

1. Create and configure cloud queue(s)

1. Modify non-cloud queues and nodes to prevent cloud jobs from running on-premise and spanning
on-premise and cloud nodes

2. Configure scheduling

3. Use authentication and encryption; see section 3.2.7, “Use Authentication and Encryption”, on page 31

5. Log into your cloud provider

6. PBS Cloud will use an account at the cloud provider to manage cloud nodes. Create a cloud provider account for
this purpose; see section 3.3.2, “Create Your Cloud Provider Account”, on page 32.
PBS Professional 2022.1.0 Cloud Guide CG-21

Chapter 3 Configuring PBS Cloud
7. Build and configure your cloud components. During this step, capture the information listed; while you are generat-
ing or selecting each item, we'll remind you to collect it. You will use this information in the following steps here.
Building and configuring cloud components is different for each cloud provider; use the provider-specific instruc-
tions in Chapter 5, "Using Cloud Provider Services", on page 67. We show an outline here so you can see what is
covered:

a. Log into your cloud provider

b. Create the necessary cloud provider components, such as a virtual network

c. Create a virtual machine

d. Install the PBS Professional MoM, and other required software in the VM, including cloud-init

e. If you will use cloud-init to configure freshly burst nodes, create a startup script for configuring burst
nodes; see Chapter 6, "The Cloud Node Startup Script", on page 155

f. Create the OS image to be used for bursting

8. Configure PBS Cloud. This step is described in section 3.3, “Configuring PBS Cloud”, on page 31, but we give you
an idea of what's involved here:

a. Log into PBS Cloud; see section 3.3.1, “Log Into PBS Cloud”, on page 31

b. Add your cloud provider account to PBS Cloud; see section 3.3.3, “Add Your Provider Account to PBS Cloud”,
on page 32

c. Create a bursting scenario; see section 3.3.4, “Create a Bursting Scenario”, on page 35

d. Manually test bursting; see section 6.3, “Developing the Startup Script”, on page 159

e. For each remaining scenario, create and test the scenario

f. Disable public IP addresses for the scenario

9. Configure the PBS cloud bursting hooks; see section 4.1, “The Cloud Bursting Hooks”, on page 53

a. Log into the PBS server host as administrator

b. Configure and enable the cloud hooks

c. For each scenario, test it with the cloud hook by using it to automatically burst scenario nodes; see section 4.3,
“Testing Automated Cloud Bursting”, on page 63

10. To prevent running out of PBSProNodes licenses, set a limit on the number of cloud nodes that can exist simulta-
neously. See section 3.3.6, “Managing Node Licenses”, on page 48

3.1.1 Overview of Creating Bursting Scenarios

We take you through the steps to define your bursting scenarios later during the instructions. But it helps to know why
you are doing each step, so we summarize what's involved here. Each scenario is defined in all of the following:

• The scenario interface in PBS Cloud, where you set parameters such as the scenario name, and generate an API key
for the scenario; see section 3.3.4, “Create a Bursting Scenario”, on page 35. PBS Cloud stores the API key you gen-
erate using the PBS Cloud interface.

• The matching scenario subsection in the relevant cloud bursting hook, where you set hook configuration parameters
for that scenario, including the API key you generated via the PBS Cloud interface and the scenario name; see sec-
tion 4.2.4, “Defining a Scenario in a Cloud Bursting Hook Configuration File”, on page 59

• The matching queue, where you set the value of resources_available.cloud_scenario to the exact name you used
in the matching scenario subsection for the relevant cloud bursting hook. You create the matching queue; see section
3.2.5, “Create and Configure Cloud Queues”, on page 29. Each scenario requires its own cloud queue, and vice
versa.
CG-22 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
Each scenario is identified via an API key and a name. The API key ties the cloud bursting hook configuration file to the
matching PBS Cloud scenario definition. The scenario name ties the cloud bursting hook configuration file to the match-
ing queue. The following figure illustrates the relationships between a scenario definition in the PBS Cloud interface, a
cloud bursting hook configuration file, and a cloud queue.

Figure 3-1: Relationships between a scenario definition in the PBS Cloud interface, a cloud bursting hook
configuration file, and a cloud queue

The Scenario Name parameter in the PBS Cloud scenario interface is not used for scenario identification. However, we
recommend making it the same as the name that you use in the cloud bursting hook configuration file and the cloud
queue to make debugging easier.
PBS Professional 2022.1.0 Cloud Guide CG-23

Chapter 3 Configuring PBS Cloud
3.2 Configuring PBS Professional for Cloud

Bursting

3.2.1 List of PBS Professional Custom Resources for Cloud

Bursting

PBS Professional uses the following custom resources to manage cloud jobs:

burst_by_hook
Used by cloud bursting hooks to distinguish manually burst cloud nodes from automatically burst cloud nodes.
Do not set.

cloud_account
Queue-level string

Cloud account associated with this queue.

cloud_instance_type
Queue-level string

Default cloud provider instance type (machine, shape type or flavor) associated with the scenario for this queue.

Make sure you choose an instance type that is enabled in PBS Cloud.

Note that the value of default_chunk.cloud_node_instance_type at this queue needs to be the same as
resources_available.cloud_instance_type.

cloud_min_instances
Server-level integer

Minimum number of cloud nodes (instances) to be present in the cloud at any time.

cloud_max_instances
Server-level integer

Maximum number of cloud nodes (instances) that can be present in the cloud at any time.

cloud_max_jobs_check_per_queue
Deprecated.

Queue-level integer

Maximum number of jobs in this cloud queue to be checked to determine the number of cloud nodes that must
be burst based on the requested instance type. The relevant cloud bursting hook computes the number of nodes
it must burst in order to run the checked cloud jobs. For example, if the instance type has 2 CPUs, and the first
3 jobs in the queue need a total of 10 CPUs, the hook bursts 5 nodes.

Must be greater than zero. Setting this to zero results in no jobs from this queue being considered for cloud
bursting.

Default: 64

cloud_network
Host-level string

For requesting nodes on a high-speed network (a proximate node group). All nodes will have the same network
name.

Replaces the CLOUD_NETWORK environment variable for job requests.
CG-24 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
cloud_node_image
Host-level string

Specifies OS image for a cloud job.

When set at a queue, this is the default scenario OS image to use when bursting a cloud node. Value at queue is
overridden by image specified in a job.

Set default_chunk.cloud_node_image for a queue to the exact OS image specified in its
cloud_default_image scenario parameter.

Replaces the CLOUD_IMAGE environment variable for job requests.

cloud_node_instance_type
Host-level string

Set the value for default_chunk.cloud_node_instance_type at the cloud queue to the value of the
resources_available.cloud_instance_type queue resource.

This is set at the cloud node by the relevant cloud bursting hook when that node is burst.

If a job requests an instance type, that overrides the default set at the queue.

Replaces CLOUD_INSTANCE environment variable for job requests.

cloud_provisioned_time
Host-level integer

Time in seconds since the relevant cloud bursting hook started bursting cycle; if node doesn't successfully come
up in that time, the cloud bursting hook tries again

cloud_queue
Queue-level Boolean

Indicates whether the queue is a cloud queue. When True, the queue is a cloud queue. The cloud bursting hooks
analyze jobs in cloud queues.

cloud_scenario
Host-level string.

Scenario associated with this queue. One value per queue. Set in resources_available.cloud_scenario at
queue to indicate scenario associated with queue. Set in default_chunk.cloud_scenario at queue to force each
job chunk to run on node that has same scenario as queue.

lic_signature
Host-level string

Contains licensing information.

node_location
Host-level string. Arbitrary.

Used to differentiate on-premise nodes from cloud nodes. Lets you keep a job either all in the cloud or all on
premise. On cloud nodes, if you have multiple clouds, we recommend that you name this for the cloud. For
on-premise nodes, we recommend using something like "local" or "on-prem".

(static resource to represent each application license)
Consumable server-level integer

Each application license is represented by one static and one dynamic resource. Used by cloud bursting hooks
to track license availability.

(dynamic resource to represent each application license)
Consumable server-level integer

Each application license is represented by one static and one dynamic resource. Used by cloud bursting hooks
to track license availability.
PBS Professional 2022.1.0 Cloud Guide CG-25

Chapter 3 Configuring PBS Cloud
3.2.2 Create Custom Resources for Cloud Bursting

1. Log in to the PBS server host as the PBS administrator

2. Create the custom resources required for cloud bursting:

qmgr -c 'create resource cloud_queue type=boolean'

qmgr -c 'create resource cloud_instance_type type=string'

qmgr -c 'create resource cloud_node_instance_type type=string,flag=h'

qmgr -c 'create resource cloud_min_instances type=long'

qmgr -c 'create resource cloud_max_instances type=long'

qmgr -c 'create resource cloud_provisioned_time type=long,flag=h'

qmgr -c 'create resource lic_signature type=string,flag=h'

qmgr -c 'create resource cloud_node_image type=string,flag=h'

qmgr -c 'create resource cloud_network type=string,flag=h'

qmgr -c 'create resource node_location type=string,flag=h'

qmgr -c 'create resource cloud_scenario type=string,flag=h'

qmgr -c 'create resource burst_by_hook type=boolean'

qmgr -c 'create resource cloud_account type=string'

3.2.3 Configure PBS Server and Scheduler for Cloud

Bursting

1. Log in to the PBS server host as the PBS administrator

2. Set server limits:

qmgr -c "set server resources_available.cloud_min_instances = 0"

qmgr -c "set server resources_available.cloud_max_instances = <max nodes>"

3. Enable placement sets (if not enabled) and group on node_location:

qmgr -c "set server node_group_enable=true"

qmgr -c "set server node_group_key+=node_location"

4. Allow creation of placement sets from unset resources:

qmgr -c "set sched only_explicit_psets=false"

5. Prevent any single job from running on both local and cloud vnodes:

qmgr -c "set sched do_not_span_psets=true"

6. Make sure that the scheduler log level is set to at least 767 (the default). Otherwise bursting does not work:

qmgr -c 'set sched <scheduler name> log_events=767'

7. Change directory to $PBS_HOME/sched_priv

8. Edit the sched_config file. Add cloud_scenario, cloud_node_image, cloud_node_instance_type, and
node_location to the resources: line:

resources: "ncpus, mem, arch, host, vnode, netwins, aoe, cloud_scenario, cloud_node_image,
cloud_node_instance_type, node_location"

Do not add cloud_network to the resources: line.
CG-26 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
9. Make the scheduler reread its configuration file; HUP the scheduler:

kill -HUP <scheduler PID>

3.2.4 Manage Application Licenses for Cloud Jobs

If the cloud jobs at your site are not using externally-managed application licenses, you can skip this step.

Jobs that run in the cloud may require application licenses. PBS Cloud bursts nodes for these jobs only when application
licenses are available; otherwise the nodes could sit idle.

PBS Cloud uses a custom consumable server-level integer resource to track how many of each kind of application license
are available. The cloud bursting hooks check the value of this resource before bursting cloud nodes, so that they only
burst new nodes for jobs requiring application licenses when those licenses are available. The administrator creates a
script, typically run as a cron job, that keeps this resource as up-to-date as possible.

PBS Cloud needs two custom server-level consumable integer resources to represent each kind of application license.

• A dynamic resource updated by a server_dyn_res script: The scheduler uses the dynamic resource to check license
availability for jobs. The scheduler needs to use a dynamic resource because it needs the resource to be up-to-date
for each scheduling cycle.

• A static resource updated via a cron script: The cloud bursting hooks use the static resource to check license avail-
ability for jobs. The cloud bursting hooks cannot use the dynamic resource because that resource is not available to
the hooks.

3.2.4.1 Create cron Script and Static Resource

1. For each kind of application license, create one custom server-level static consumable long resource. The command
looks like this:
qmgr -c 'create resource <application license static resource> type=long,flag=q'

2. Create a cron script that updates the value of each static consumable license-tracking resource. Currently the sim-
ulator needs the value of the static resource to include the number of licenses being used. We recommend that the
cron script should do the following:

a. Duplicate the code in the server_dyn_res script to retrieve the number of free licenses

b. Add the number of licenses being used; this is the value in the server's resources_assigned.<static
resource>

c. Update the server's resources_available.<static resource> value by calling qmgr:

qmgr -c 'set server resources_available.<static resource>=<updated value>'

3. The script has to run as manager or root. If you run it as manager, add the script owner to the server's list of manag-
ers:

qmgr -c 'set server managers += <script owner>'

4. Set the permissions of the script to 0700.

5. The script should run at least as frequently as the cloud bursting hooks. The script does not need to run more than
twice as often as the cloud bursting hooks.

If you have any questions, contact Altair support; we will be happy to work with you.
PBS Professional 2022.1.0 Cloud Guide CG-27

Chapter 3 Configuring PBS Cloud
3.2.4.2 Create Dynamic Server-level Resource for Each Application

License

If you have already created a dynamic server-level resource for each application license, and it is already updated via a
server_dyn_res script, you can skip this step.

1. For each kind of application license, create one custom server-level dynamic long resource. The command looks
like this:
qmgr -c 'create resource <application license dynamic resource> type=long'

2. Write a server_dyn_res script that returns the number of available licenses via stdout.

The format of a dynamic server-level resource query is a shell escape:

server_dyn_res: "<resource name> !<path to command>"

In this query, <resource name> is the name of the dynamic resource, and <path to command> is typically the full
path to the script or program that performs the query in order to determine the status and/or availability of the new
resource you have added. This usually means querying a license server.

3. Name the script to indicate what it does, for example, "serverdyn.pl".

4. Place the script on the server host. For example, it could be placed in /usr/local/bin/serverdyn.pl

5. Make sure the server_dyn_res script meets the following requirements:

• The script:

• Owned by PBS_DAEMON_SERVICE_USER

• Has permissions of 0755

• Returns its output via stdout, and the output must be in a single line ending with a newline

• The scheduler has access to the script, and can run it

• If you have set up peer scheduling, make sure that the script is available to any scheduler that needs to run it

• The directory containing the script:

• Owned by PBS_DAEMON_SERVICE_USER

• Accessible only by PBS_DAEMON_SERVICE_USER (must not give write permission to group or oth-
ers)

• Has permissions 0550

6. Configure each scheduler to use the server_dyn_res script by adding the resource and the path to the script in the
server_dyn_res line of <sched_priv directory>/sched_config. For example:

server_dyn_res: "floatlicense !/usr/local/bin/serverdyn.pl"

7. Optionally give each scheduler a time limit for the script by setting its server_dyn_res_alarm attribute:

qmgr -c 'set sched <scheduler name> server_dyn_res_alarm=<new value>'

8. For each application license, add both its static and dynamic custom resources (the one tracked by the
server_dyn_res script, and the one tracked by the cron job) to the resources: line in <sched_priv
directory>/sched_config. For example, if your resources that track App1 are app1_static and app1_dyn:

resources: "ncpus, mem, arch, host, vnode, netwins, aoe, cloud_scenario, cloud_node_image,
cloud_node_instance_type, app1_static, app1_dyn"

9. Restart each scheduler. See “Restarting and Reinitializing Scheduler or Multisched” on page 148 in the PBS Profes-
sional Installation & Upgrade Guide.
CG-28 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
3.2.4.3 Include Licenses in Scenarios

Later, when you define each scenario that uses licenses, you will follow the instructions in section 4.2.4.3, “Steps to
Define a Scenario in a Hook Configuration File”, on page 59 to set the value for check_resources. You do not need to
do this now; the instructions are included in the steps for defining a scenario.

3.2.5 Create and Configure Cloud Queues

Create one cloud queue for each scenario. We show the relationships between a cloud queue, a scenario definition in the
PBS Cloud interface, and a hook configuration file in section 3.1.1, “Overview of Creating Bursting Scenarios”, on page
22.

1. Log in to the PBS server host as root

2. Create a queue. You may find it helpful to name each cloud queue with information that makes it easy to match the
queue with its purpose and/or scenario:

qmgr -c "create queue <queue name> queue_type=execution,enabled=true,started=true"

3. Make this queue into a cloud queue:

qmgr -c "set queue <queue name> resources_available.cloud_queue = True"

4. Assign a bursting scenario to the queue:

qmgr -c "set queue <queue name> resources_available.cloud_scenario = <scenario name>"

The queue scenario name must be identical to the scenario name in the cloud bursting hook configuration file. Here
is an example scenario named "azure_scenario_1" as it would appear in the cloud bursting hook configuration file:

"scenario": {

"azure_scenario_1": {

"api_key": "<API key>",

"cloud_default_image": "azure_bursting_image1",

"cloud_max_instances": 10,

"network_max_group_size" : 10,

"network_type": "new",

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180,

"check_resources":["hw_units"],

"preemptable": false

}

}

See Chapter 4, "Configuring the Cloud Bursting Hook", on page 53.

5. Assign a default instance type to the queue:

qmgr -c "set queue <queue name> resources_available.cloud_instance_type = <instance type>"

This is the default instance type to be burst for this queue. It must match one of the instance types enabled for the
bursting scenario that you assigned to the queue. For example:

qmgr -c "set queue <queue name> resources_available.cloud_instance_type = Standard_DS2_v2"

See section 3.3.4.7.i, “Cloud Provider Instance Types”, on page 43.
PBS Professional 2022.1.0 Cloud Guide CG-29

Chapter 3 Configuring PBS Cloud
6. Set the cloud_account resource for this queue to the cloud account associated with the queue. To find cloud
account names, see section 7.2.1, “Viewing Cloud Account Details”, on page 163. Use the exact string that you gave
to PBS Cloud:

qmgr -c 'set queue <queue name> cloud_account=<account name>'

7. Make each job chunk inherit the default instance type, if the job does not request it explicitly:

qmgr -c "set queue <queue name> default_chunk.cloud_node_instance_type = <instance type>"

This is the same default instance type you assigned to resources_available.cloud_instance_type for this queue.
For example:

qmgr -c "set queue <queue name> default_chunk.cloud_node_instance_type = Standard_DS2_v2"

8. Make each job chunk inherit the default OS image for the scenario, if the job does not request it explicitly. Set the
default chunk for the queue to the default image. This is the same as the OS image specified in the
cloud_default_image scenario parameter:

qmgr -c "set queue <queue name> default_chunk.cloud_node_image = <default OS image>"

9. Make each job chunk inherit the scenario for this queue. Set the default chunk for the queue to the same scenario
specified in resources_available.cloud_scenario for the queue:

qmgr -c "set queue <queue name> default_chunk.cloud_scenario = <name of scenario in
resources_available.cloud_scenario>"

10. For each cloud queue, verify that the value of resources_default.node_location is unset. List the queue:

To list a specific queue:

qmgr -c 'list queue <queue name>'

To list all queues:

qmgr -c 'list queue'

3.2.6 Configure Non-cloud Queues and Nodes

Here we describe the basic configuration for PBS Cloud, where jobs in cloud queues run only on cloud nodes, and jobs in
non-cloud queues run only on premises.

• Make sure that each non-cloud queue is marked as a non-cloud queue, so that the cloud bursting hooks do not ana-
lyze the jobs in non-cloud queues. At each non-cloud queue, the value of resources_available.cloud_queue
should be False:
qmgr -c "set node <vnode name> resources_available.cloud_queue=false"

• Make sure that jobs do not span both on-premise and cloud nodes. Set the node_location resource to indicate that
these queues and nodes are on premises. You can use a value such as "local" or "on-prem"; use the same value
everywhere on premises:

• At each non-cloud queue, set the default_chunk.node_location queue resource to "local", "on-prem", or sim-
ilar
qmgr -c "set queue <queue name> default_chunk.node_location=on-prem"

• At each on-premise node, set resources_available.node_location to "local", "on-prem", or similar:
qmgr -c "set node <vnode name> resources_available.node_location=on-prem"

• In the sched_config file, add node_location to the "resources:" line

We describe the additional configuration to allow more flexibility in section 3.2.8, “Running Cloud Queue Jobs On Pre-
mises”, on page 31 and section 3.2.9, “Running Non-Cloud Queue Jobs in the Cloud”, on page 31.
CG-30 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
3.2.7 Use Authentication and Encryption

We recommend configuring PBS Professional so that it uses authentication and encryption when communicating with
cloud nodes (as well as other nodes).

• Configure PBS to use authentication via MUNGE; see "Authentication for Daemons & Users" on page 508 in the
PBS Professional Administrator’s Guide.

• Configure PBS to use encrypted communication via TLS; see "Encrypting PBS Communication" on page 517 in the
PBS Professional Administrator’s Guide.

3.2.8 Running Cloud Queue Jobs On Premises

To allow jobs in a cloud queue to run on premises, set the host-level cloud resources at on premise nodes to the specific
combination of scenario, OS image, and instance type that you want to run on premises. You can set each on premise
node with one scenario, one OS image, and one instance type. This way the scheduler can run jobs requiring those spe-
cific resources on premises when the on premise resources are available, and when they are not, the cloud bursting hook
will burst the required cloud nodes:

qmgr -c "set node <vnode name> resources_available.cloud_node_image=<OS image>"

qmgr -c "set node <vnode name> resources_available.cloud_node_instance_type=<instance type>"

qmgr -c "set node <vnode name> resources_available.cloud_scenario=<scenario name>"

To set multiple nodes, you can use the active command with qmgr:

qmgr <return>

Qmgr: active node <node1>,<node2>,...<nodeN>
Qmgr: set node resources_available.cloud_node_image=<OS image>"
Qmgr: set node resources_available.cloud_node_instance_type=<instance type>"
Qmgr: set node resources_available.cloud_scenario=<scenario name>"

3.2.9 Running Non-Cloud Queue Jobs in the Cloud

To allow jobs in non-cloud queues to run on cloud nodes, you can use a periodic hook that examines the jobs in one or
more non-cloud queues and moves selected jobs to selected cloud queues. For example, you may want to make sure that
jobs don't wait longer than a specific amount of time before they run.

You can manage which jobs in non-cloud queues are selected to be run on cloud nodes. If for example job submitters
want to minimize cost by keeping their jobs on premises regardless of wait time, you can create a job-wide resource such
as "prem-only" that job submitters can request; the hook can ignore jobs that request this resource. Or you can designate
specific non-cloud queues for jobs that are allowed or not allowed to run on cloud nodes.

3.3 Configuring PBS Cloud

3.3.1 Log Into PBS Cloud

You must be logged into PBS Cloud as pbsadmin@altair to configure PBS Cloud.
PBS Professional 2022.1.0 Cloud Guide CG-31

Chapter 3 Configuring PBS Cloud
Log into PBS Cloud from your web browser:

http://<PBS Cloud host name or IP address>:<port>/pbspro-cloud/#/login

• Default port: 9980

• Username: pbsadmin@altair

• Password: <administrator password> (Default is Altair@123)

We recommend changing the password immediately; use the UX to do this; see section 7.5, “Updating PBS Cloud
Administrator Password”, on page 167.

3.3.2 Create Your Cloud Provider Account

PBS Cloud uses an administrator account at the cloud provider to manage cloud nodes. Create your cloud provider
account; follow the steps for your cloud provider in Chapter 5, "Using Cloud Provider Services", on page 67. While you
are creating the account, capture the information we list at the start of the provider-specific instructions; you will use that
information to add your cloud provider account to PBS Cloud.

3.3.3 Add Your Provider Account to PBS Cloud

PBS Cloud can use multiple cloud providers, and can use multiple accounts at each provider.

Tell PBS Cloud about the cloud account you have created at your cloud provider by filling in the PBS Cloud parameters.
We will walk you through the steps.

The Name parameter is common to all accounts, meaning that all accounts have a name, but the name can be different for
each provider. The other parameters for an account are different for each vendor; for example, only Oracle uses a finger-
print ID. Follow the steps for your vendor to capture the information we list so that you can use it to fill in the account
parameters. For the vendor-specific steps, see Chapter 5, "Using Cloud Provider Services", on page 67.

The information required varies by cloud provider.

1. Click the Cloud tab.

2. Under Infrastructure, click Cloud.

3. Select your cloud provider

4. Fill in the account name. This is an arbitrary string, and it is not the administrator account name created at the ven-
dor. We recommend making it informative.
CG-32 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
5. Add the information for the parameters that are vendor-specific. We list the parameter information by vendor:

• For an Amazon Web Services (AWS) account:

• For an Azure account:

• For a Google Cloud Platform (GCP) account:

• For an Oracle account:

Table 3-1: Account Parameters for Amazon Web Services (AWS)

Account Parameter Collected During Configuration at Vendor Format

Access Key ID Access Key ID from vendor .csv file String

Secret Access Key Secret Access Key from vendor .csv file String

Table 3-2: Account Parameters for Microsoft Azure

Account Parameter Collected During Configuration at Vendor Format

Client ID Application ID generated when registering PBS Cloud with the Azure
Active Directory

String

Secret Key Secret Key generated during account creation at vendor String

AD Tenant ID Azure tenant ID generated during account creation at vendor String

Subscription ID Subscription ID generated during account creation at vendor String

Table 3-3: Account Parameters for Google Cloud Platform (GCP)

Account Parameter Collected During Configuration at Vendor Format

Project ID Value of project_id in JSON file created at vendor String

Client ID Value of client_id in JSON file created at vendor String

Client Mail Value of client_email in JSON file created at vendor String

Private Key ID Value of private_key_id in JSON file created at vendor String

Private Key Value of private_key in JSON file created at vendor String

Table 3-4: Account Parameters for Oracle

Account Parameter Collected During Configuration at Vendor Format

User OCID User OCID generated when creating Oracle cloud user account at ven-
dor

String

Tenant OCID Tenancy OCID generated at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-33

Chapter 3 Configuring PBS Cloud
• For a Huawei, Deutsche Telekom, Orange, or OpenStack account:

• For an Alibaba Cloud account:

6. Click Create account.

Compartment OCID Root compartment OCID generated at vendor String

Fingerprint OCID Fingerprint generated when adding the public SSH key for Oracle user
at vendor

String

Private Key RSA private key generated at vendor String

Table 3-5: Account Parameters for Huawei, Deutsche Telekom, Orange,
OpenStack

Account Parameter Collected During Configuration at Vendor Format

Auth URL Orange: https://iam.<orange region>.<console link>

Huawei: https://iam.ap-southeast-1.myhwclouds.com

Deutsche Telekom: https://iam.eu-de.otc.t-systems.com/v3

OpenStack: contact Altair support

String

User Domain Name Orange: Customer ID used to log in to Orange account. Same as
domain name

Deutsche Telekom: OTC domain name used to log in to OTC console
at vendor

Huawei: Domain Name provided when your subscription to HUAWEI
Cloud was created

OpenStack: Domain name for cloud account in private cloud

String

Username Administrator username created at vendor String

Password Huawei & Deutsche Telekom: Administrator password created at ven-
dor

Orange: API password generated at vendor

OpenStack: Password for administrator account

String

Table 3-6: Account Parameters for Alibaba Cloud Account

Account Parameter Collected During Configuration at Vendor Format

Access Key ID Access Key ID from vendor .csv file String

Access Secret Key Access Secret Key from vendor .csv file String

Table 3-4: Account Parameters for Oracle

Account Parameter Collected During Configuration at Vendor Format
CG-34 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
3.3.3.1 Example of Adding Azure Account to PBS Cloud

1. Log in to PBS Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Click

5. Enter the following to add a cloud account:

a. For Account name, enter any name for the cloud account.

The name can be anything meaningful to your organization, e.g., azure_cloudaccount.

b. For Client ID, enter the Application ID generated when PBS Cloud was registered with the Azure Active Direc-
tory.

c. For Secret Key, enter the client secret key generated when you register PBS Cloud.

d. For AD tenant ID, enter your Azure tenant ID.

e. For Subscription ID, enter your Azure subscription ID.

6. Click Create account.

3.3.4 Create a Bursting Scenario

A bursting scenario encapsulates information needed to burst cloud nodes. Some scenario parameters are common to all
scenarios, meaning that all scenarios have an associated hostname prefix, but the hostname prefix can be different for
each scenario. Some parameters for a bursting scenario are different for each vendor; for example, only Azure uses a
resource group. For each vendor, we list the steps to capture required scenario information, so that you can use it to fill
in the scenario parameters in the PBS Cloud interface. For the vendor-specific steps, see Chapter 5, "Using Cloud Pro-
vider Services", on page 67.

You can create an unlimited number of bursting scenarios. We recommend creating and testing them one at a time.

1. Go to the bursting scenario interface in PBS Cloud:

a. Open a browser window and log in to PBS Cloud.

b. Click on Cloud.

c. Under Infrastructure, click on Bursting.

d. Click Add Bursting Scenario.

2. Add the information for the following parameters common to all scenarios:

Table 3-7: Common Scenario Parameters

Scenario
Parameter

Description Format

Name Arbitrary friendly scenario name String

Description Arbitrary scenario description String

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list
PBS Professional 2022.1.0 Cloud Guide CG-35

Chapter 3 Configuring PBS Cloud
Domain name Domain used by cloud nodes to talk to PBS server String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen
during configuration at vendor; see section 3.3.4.1, “Adding
Hostname Prefix”, on page 40

String

Add public IP to VMs Optional public IP address to VMs for initial troubleshooting; see
section 3.3.4.2, “Temporarily Adding Public IP for Debugging”,
on page 40

Checkbox

cloud-init Name of startup script launched by cloud-init for configur-
ing freshly burst nodes. Browse to a file, and optionally edit the
file; see section 3.3.4.3, “Specifying the Cloud Node Startup
Script”, on page 40

String

SSH keys Administrator SSH key to give you access for initial debugging if
/home won't mount in the node; see section 3.3.4.4, “Adding SSH
Key for Access to Burst Nodes”, on page 41

String

Idle time before
unbursting

Time for burst node to sit idle before unbursting. Default: 180
seconds; see section 3.3.4.5, “Setting Idle Time”, on page 41

Integer seconds

Tag Optional labeling system for convenience. You can apply multi-
ple tags. See section 3.3.4.6, “Adding Tags (Labels) to Sce-
nario”, on page 42

Key:value pair as
<string>:<string>

Instances Instances that will be available for job submitters to select for
their jobs. Instances must be all non-preemptable or all preempt-
able, and all bare-metal or non-bare-metal; see section 3.3.4.7,
“Managing Instances”, on page 42

Checkboxes

Table 3-7: Common Scenario Parameters

Scenario
Parameter

Description Format
CG-36 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
3. Add the information for the parameters that are vendor-specific:

• For an AWS scenario:

• For a GCP scenario:

• For an Azure scenario:

Table 3-8: Scenario Parameters for Amazon Web Services (AWS)

Scenario
Parameter

Collected During Configuration at Vendor Format

AMI ID Name of image to be burst; chosen during configuration at vendor String

Security Group IDs List of security group IDs associated with VPC and VM created at vendor Comma
separated
strings

Subnet ID Name of security group subnet for bursting VPC created at vendor. To
burst nodes in multiple Availability Zones, use a comma-separated list of
subnet IDs

String

Table 3-9: Scenario Parameters for Google Cloud Platform (GCP)

Scenario
Parameter

Collected During Configuration at Vendor Format

Network name Name of VPC for cloud bursting created at vendor String

Subnetwork name Name of VPC network subnet created at vendor String

OS Image URI Choose image, click "REST Equivalent", find value of "selfLink"
name-value pair, and put it here

(This gives path to the OS image)

String

Table 3-10: Scenario Parameters for Microsoft Azure

Scenario
Parameter

Collected During Configuration at Vendor Format

Resource group name Name of resource group (virtual network, virtual machine, OS image) cre-
ated at vendor

String

Network name Name of virtual network created at vendor

If the network is in a different resource group from the one specified, enter
it as Resource Group Name/Virtual Network Name

String

Subnetwork name Name of virtual subnet created at vendor

If the subnet is in a different resource group from the one specified, enter it
as Resource Group Name/Subnet Name

String
PBS Professional 2022.1.0 Cloud Guide CG-37

Chapter 3 Configuring PBS Cloud
Network security
group name

Name of network security group for resource group

If the network security group is contained in a resource group that is differ-
ent from the one entered for the bursting scenario, enter it as Resource
Group Name/Network Security Group Name.

String

Managed Storage Managed disk feature selected at vendor Boolean

OS Image If using managed disks, name of the image.

If not using managed disks, Linux Source BLOB URI.

If the OS image is contained in a Resource group that is different from the
one entered for the bursting scenario, enter it as Resource Group Name/OS
Image Name or Resource Group Name/URI.

String

Maximum number of
VMs inside a
ScaleSet with Man-
aged Storage and a
single Placement
Group

Set this to the maximum number of maximum number of VMs you want
allowed in a scale set.

If you use InfiniBand, the default limit available is 100. This limit is set by
vendor; can be negotiated.

Without InfiniBand, for a scale set with managed disk and custom image,
you can specify a higher limit.

Make sure this conforms with what the vendor can provide.

Integer

Table 3-10: Scenario Parameters for Microsoft Azure

Scenario
Parameter

Collected During Configuration at Vendor Format
CG-38 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
• For an Oracle scenario:

• For a Huawei, Deutsche Telekom, Orange, or OpenStack scenario:

• For an Alibaba Cloud scenario:

4. Create the scenario: click on "Instantiate scenario"

5. Create an API key and add it to the scenario (PBS Cloud keeps it, but hidden; after this, you can never see it again).

Each cloud hook uses the scenario API key as a unique identifier for that scenario. You cannot use the same API key
for more than one scenario. If you lose an API key, you can generate a new one. Later, you will put this API key in
the appropriate cloud bursting hook configuration file so that the hook can identify the correct scenario.

The default lifetime of an API key is one year. You can have multiple keys for a scenario; this is to allow overlap
near the expiration date. You can only list one API key per scenario in a cloud hook configuration file.

You can create an API key only for an existing scenario.

Table 3-11: Scenario Parameters for Oracle

Scenario
Parameter

Collected During Configuration at Vendor Format

Subnet ID OCID of subnet associated with data center where cloud bursting virtual
machine is hosted

String

OS Image URI Vendor link to bursting image OCID String

Table 3-12: Scenario Parameters for Huawei, Deutsche Telekom, Orange,
OpenStack

Scenario
Parameter

Collected During Configuration at Vendor Format

Subnet ID ID of subnet for VPC created at cloud vendor String

Security Group ID ID of security group created at cloud vendor String

OS Image URI ID of OS image created at cloud vendor String

Table 3-13: Scenario Parameters for Alibaba Cloud

Scenario
Parameter

Collected During Configuration at Vendor Format

Zone Zone selected during VPC creation. Use the exact string listed in the
Regions and Zones list

String

VPC ID ID of VPC you created String

vSwitch ID ID of vSwitch you created String

Image ID ID of custom image you created at cloud vendor String

Security Group ID Security group ID associated with VPC and VM you created at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-39

Chapter 3 Configuring PBS Cloud
Generate and save the key using the following steps:

a. Click Add token located at the bottom of the web page to open up a dialog box.

b. For Name, enter a name for the API key. Format: lowercase alphabetic + numeric

c. For Expiration date, specify the expiration date. Format: MM/DD/YYYY

d. Generate the API key by clicking Add Token inside the dialog box.

PBS Cloud generates the API key, and displays it only once.

e. Copy and save the API key so that you can paste it into the appropriate cloud hook configuration file later.

f. Click Close.

6. We recommend adding quotas on resource usage, and alerts when those quotas are reached. To set each quota and
associated alert:

a. Click Add Quota.

b. For Resource, choose a resource from the menu.

c. Click Add Quota.

d. For Limit, provide a limit for the resource.

e. To add an alert for this quota, click Add.

f. Provide an alert value.

For more about quotas and alerts, see section 3.3.4.8, “Adding Quotas and Alerts”, on page 43.

7. Enable the scenario; see section 7.2.4, “Enabling or Disabling a Bursting Scenario in PBS Cloud”, on page 164.

3.3.4.1 Adding Hostname Prefix

The hostname prefix is the base name of each burst node. For example, if you choose "cloudnode", burst nodes are
named "cloudnode1", "cloudnode2", "cloudnode3", etc. Format is a string.

3.3.4.2 Temporarily Adding Public IP for Debugging

You can add a public IP address to the bursting scenario to make it easier to debug, then remove the IP address when you
have your scenario working. To add a public IP address to the scenario:

1. Log in to PBS Cloud.

2. Click on Cloud.

3. Under Infrastructure, click on Bursting.

4. Click the name of the bursting scenario.

5. Click on the Customization tab

6. Click Edit

7. Check the checkbox next to Enable Public IP Address.

8. Click Save.

3.3.4.3 Specifying the Cloud Node Startup Script

You can optionally use the cloud-init tool to run a cloud node startup script when each node is burst, to automate
node configuration tasks. We describe how to create the script in Chapter 6, "The Cloud Node Startup Script", on page
155. The startup script can be located anywhere that your PBS Cloud web interface can browse to. Once a script has
been added to a scenario, the script is stored in the PBS Cloud database.
CG-40 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
Note that you may not need a startup script. If you configure the VM that you use to create your OS image to have every-
thing you need to run jobs, you do not need a startup script.

3.3.4.3.i Startup Script Prerequisites

• The startup script must run using a shell or language available in the freshly burst node. For example, if you have
bash and Python available, your script can use bash, or it could use a bash script to launch a Python script.

• On Windows cloud nodes, use a PowerShell startup script. Enclose the content of the PowerShell script in <power-
shell> and </powershell>. Refer to Microsoft documentation for more information about PowerShell.

• The startup script can have any name.

3.3.4.3.ii Steps to Add Startup Script to Scenario

You can add and edit the cloud node startup script for this scenario from the web interface:

1. Log in to PBS Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click the edit pen.

6. Click the Browse button, and browse to the file you want

7. Optionally edit the file as needed

8. Click Save.

3.3.4.4 Adding SSH Key for Access to Burst Nodes

You typically add the administrator SSH key so that if /home fails to mount during node bursting while testing a scenario,
you can log in and debug the problem. For example, you need an SSH key when yum update turns SELinux back on
and /home won't mount. Public SSH keys in a scenario are copied to each burst node for secure connectivity.

You can add SSH keys for only those users allowed to submit jobs to these burst nodes, although you have to make those
users' home directories available on the burst nodes so that PBS Professional can use them for jobs.

To add a public SSH key for access to burst nodes:

1. Log in to the PBS Professional server host.

2. Copy the public SSH key for the user; public key files are usually stored in /.ssh in the user's home directory.

3. In the PBS Cloud interface:

a. Click Add; PBS Cloud displays an editable box

b. In Public SSH keys, paste the public SSH key.

To remove public SSH keys so that users do not have access to burst nodes, click the "x" located next to the SSH key
box.

3.3.4.5 Setting Idle Time

The Idle before unburst parameter specifies the minimum time that a cloud node can be idle before it is unburst.

Default idle time is 180 seconds. We recommend making the idle time more than double the PBS scheduler cycle time.

Format is integer seconds.
PBS Professional 2022.1.0 Cloud Guide CG-41

Chapter 3 Configuring PBS Cloud
3.3.4.6 Adding Tags (Labels) to Scenario

You can optionally add tags (labels) to burst nodes in order to categorize them, for example by purpose, owner, or envi-
ronment. You can add multiple tags.

1. Log in to PBS Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click the Cloud tab, then the global edit pen.

6. The Tags box appears.

1. To add a label to that will be applied to burst nodes, enter a key-value pair, followed by <return>. Format:

<key>:<value><return>

The key and the value can contain alphanumeric, dash (-) and an underscore (_). The maximum length for the key
is 35 characters, and the maximum length for the value is 42 characters.

The <return> is required.

When you add the tag, it appears within its own bubble:

Figure 3-2:Key-Value Tag

Repeat the previous step to add more tags:

Figure 3-3:Additional Tags

2. Click Save.

3.3.4.7 Managing Instances

When you create a scenario, choose the instance types that you want job submitters to be able to use with that scenario.
The instance type determines which hardware is used to burst the cloud node. The available instance types depend on
which cloud provider you use.

For each scenario, you can use either all non-preemptable instance types, or all preemptable instance types. Do not mix
the two. See section 3.3.5, “Using Spot or Preemptable Pricing”, on page 46. For information about spot and preempt-
able instance types, see section 3.3.5, “Using Spot or Preemptable Pricing”, on page 46.

For each scenario, you can use either all bare-metal or all non-bare-metal instance types, but not both.
CG-42 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
3.3.4.7.i Cloud Provider Instance Types

The instance type (also called shape, machine type or flavor) determines the hardware of the host computer used for your
cloud nodes. Each instance type offers different compute, memory, and storage capabilities. The following table lists
some instance types by cloud provider:

3.3.4.7.ii Steps to Choose Instance Types

1. Log in to to PBS Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click Edit Instances.

6. Choose the instance types you want available for the bursting scenario by clicking the Enabled checkbox located to
the far right of the instance type name.

7. Click Save. You will see a list of the enabled instance types.

3.3.4.7.iii Managing Hyperthreading for an Instance Type

You can choose whether or not to enable hyperthreading via a checkbox next to the instance type. By default, PBS cloud
enables hyperthreading. The vendor reports hyperthreading to PBS Cloud, and PBS Cloud reports hyperthreading to the
cloud bursting hooks.

If you turn off hyperthreading for an instance type, PBS Cloud disables hyperthreading in the cloud node, and reports the
the number of available cores to the hooks, so that job requests are aligned with core availability.

If you leave hyperthreading on, hyperthreading is enabled, and PBS Cloud reports the number of threads to the cloud
bursting hooks. In this case, job requests are aligned with thread availability.

3.3.4.8 Adding Quotas and Alerts

For each scenario, you can optionally specify quotas on resource usage at any point in time, so that when PBS Cloud hits
a quota, it stops bursting nodes until usage drops back down. Use quotas to prevent huge jumps in expenditure.

For each quota, you can set an associated alert so that the web interface displays a notification when the quota is reached.

You can add quotas and alerts only to an existing scenario.

Table 3-14: Some Example Instance Types

Provider Classification System Example Instance Types

Azure Instance sizes Standard_DS1_v2, Standard_D2s_v3, Standard_NC6
Standard_H16r, Standard_H16mr (InfiniBand)

AWS Amazon EC2 instance types t2.medium, r4.large, p3.2xlarge

GCP Machine types n1-standard-8, n1-highmem-2, n1-highcpu-64

Oracle Machine shapes and GPU instances VM.Standard1.1, VM.DenseIO1.16, VM.GPU3.1

Orange Cloud Instance family s1.medium, s3.large.4, cc3.large.4

HUAWEI Cloud ECS types s2.small.1, s2.medium.4, s2.xlarge.2

OTC ECS types s1.medium, c1.large, m1.xlarge
PBS Professional 2022.1.0 Cloud Guide CG-43

Chapter 3 Configuring PBS Cloud
You can set quotas on the following:

• Number of CPUs in use

• Amount of memory in use

• Number of burst nodes

To set each quota and associated alert:

1. Log in to PBS Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click Add Quota.

6. For Resource, choose a resource from the menu.

7. Click Add Quota.

8. For Limit, provide a limit for the resource.

9. To add an alert for this quota, click Add.

10. Provide an alert value.

3.3.4.9 Example of Creating a Scenario

Example 3-1: Create an Azure cloud bursting scenario; see section 5.2.9, “Collect Information for an Azure Cloud Burst-
ing Scenario”, on page 93

We show some recommended options:

• For Name, give the scenario a short name, all in lowercase, e.g. hyperburst

• Select Managed Disks

• For node debugging, select Public IP; you can disable this once your scenario is working properly

• We recommend using the Standard_A4 instance type for minimal cost

• Optionally provide a startup script; for a sample script, see section 6.2.4, “Example cloud-init Startup Script for
Linux”, on page 158

• Create an API key and store it safely. It is lost once you close the window, although you can simply create
another if you lose it

• Enable the scenario; see section 7.2.4, “Enabling or Disabling a Bursting Scenario in PBS Cloud”, on page 164
CG-44 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
3.3.4.10 Editing a Bursting Scenario

You can use the web interface to PBS Cloud to edit a scenario and specify bursting scenario elements, including scenario
name, description, domain name, OS image, and VPC details.

1. Before you edit a bursting scenario, stop the bursting process and make sure no jobs are running on the burst nodes;
see section 7.2.5, “Disabling Bursting for a Scenario and Queue”, on page 165.

2. Edit the bursting scenario:

a. Log in to PBS Cloud.

b. Click Cloud.

c. Under Infrastructure, click Bursting.

d. Select the name of the bursting scenario.

e. To modify the scenario, click the edit pen.

Figure 3-4:Edit Scenario Details

3. After you edit the scenario, enable it; see section 7.2.4, “Enabling or Disabling a Bursting Scenario in PBS Cloud”,
on page 164.

3.3.4.11 Creating API Key for Cloud Hook to Use

Each cloud hook uses the scenario API key as a unique identifier for that scenario. You cannot use the same API key for
more than one scenario. If you lose an API key, you can generate a new one. Later, you will put this API key in the
appropriate cloud bursting hook configuration file so that the hook can identify the correct scenario.

The default lifetime of an API key is one year. You can have multiple keys for a scenario; this is to allow overlap near the
expiration date. You can only list one API key per scenario in a cloud hook configuration file.

You can create an API key only for an existing scenario.

Generate and save the key using the following steps:

1. Log in to PBS Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Click Add token located at the bottom of the web page.

6. For Name, enter a name for the API key. Format: lowercase alphabetic + numeric

7. For Expiration date, specify the expiration date. Format: MM/DD/YYYY

8. Generate the API key by clicking Add Token.

PBS Cloud generates the API key, and displays it only once.
PBS Professional 2022.1.0 Cloud Guide CG-45

Chapter 3 Configuring PBS Cloud
9. Copy and save the API key so that you can paste it into the appropriate cloud hook configuration file later.

10. Click Close.

3.3.5 Using Spot or Preemptable Pricing

3.3.5.1 When to Use Spot or Preemptable Instances

Preemptable instances offer spare compute capacity available in the cloud at steep discounts compared to on-demand
instances. Spot instances are preemptable. Drawbacks:

• Spot and preemptable instances can be interrupted with two minutes' notice when the provider needs the capacity
back. AWS, Azure, and GCP can preempt your spot instance when the vendor needs the resource.

• AWS and Azure can interrupt your spot instance when the spot price exceeds your maximum price, when the
demand for spot instances rises, or when the supply of spot instances decreases.

• Google Cloud Platform (GCP) will kill your instance if it has been running for 24 hours.

We do not recommend running critical or long-running jobs in spot instances, as jobs may be killed when spot instances
are preempted.

You can take advantage of preemptable and spot instances by using them for shorter jobs, and jobs that can be preempted.

3.3.5.2 How Spot and Preemptable Instances Work

• Dedicated on-demand: the instance is guaranteed to be available, but does not need longer-term commitments or
up-front payments. You can increase or decrease your compute capacity depending on the demands of your applica-
tion. You pay only for what you use. Fixed per hour or per second price depending on the instance type.

• Preemptable: vendor can preempt instance with about 2 minutes' notice; You pay a fixed discount. Instance is killed
after 24 hours. GCP uses this model.

• Spot: price is set by vendor, based on demand. You set the max you are willing to pay. You pay actual spot price. If
current price goes over your max price, all your instances are preempted. If the vendor needs them, they are pre-
empted. Cost savings of up to 90%, but most volatile. AWS and Azure use this model.

3.3.5.3 Setting Max for Spot Pricing

For AWS and Azure, you can specify the maximum price that you are willing to pay to continue using a spot instance.
Your max spot price should be greater than 0 and less than the current on-demand price.

3.3.5.4 Preemptable Pricing

For GCP, the price for preemptable instances is fixed.

3.3.5.5 Specifying Spot Pricing

The scenario you use for spot pricing must already exist, must contain only preemptable instances, and must have pre-
emptable set to true in the main cloud hook configuration file (you cannot have an instance be both spot/preemptable
and bare metal).

1. Configure the main cloud bursting hook with a scenario for this instance type. Make sure that the scenario contains
only preemptable instance types. Make sure the instance type is preemptable. In the cloud bursting hook, the sce-
nario must include:
"preemptable": true

See section 4.2.6, “Creating a Scenario for a Preemptable or Spot Instance”, on page 61.
CG-46 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
2. Log in to PBS Cloud.

3. Click the Cloud tab.

4. Under Infrastructure, click Bursting.

5. Select a bursting scenario by clicking on its name.

6. Go to the instance table.

PBS Cloud displays a table of instance types you can enable for spot pricing:

Figure 3-5:Spot Instances

7. Enable spot pricing for an instance type by checking the Enable for spot box next to the instance name.

8. For AWS and Azure, set the spot price your site is willing to pay by entering it in the Max Spot Price box.

9. Disable spot pricing for an instance type by un-checking the Enable for spot box.

10. For AWS and Azure, enter a maximum spot price that you are willing to pay for the instance type.

3.3.5.6 Example of Choosing Instances for Spot Pricing

Two instance types are selected for spot pricing:

Figure 3-6:Spot Instances
PBS Professional 2022.1.0 Cloud Guide CG-47

Chapter 3 Configuring PBS Cloud
3.3.6 Managing Node Licenses

Make sure that the number of cloud nodes plus the number of on premise nodes does not exceed the number of
PBSProNodes licenses for your PBS complex. Set the value of resources_available.cloud_max_instances at the
PBS server to be the number of PBSProNodes licenses minus the number of on premise nodes.

3.4 Providing Nodes Grouped on High Speed

Network

Job submitters may want to run jobs on cloud nodes where all job nodes are on the same high speed network. Cloud pro-
viders can allow PBS Cloud to burst groups of nodes where each group is connected by a high speed switch; in this ver-
sion these providers are Azure and Oracle, and the high speed network is InfiniBand. Azure provides InfiniBand scale
sets, and Oracle provides instance pools. To simplify the discussion, we call a group of nodes on a high speed network a
proximate node group.

The main cloud bursting hook handles bursting nodes on high speed networks when the instances are not on bare metal;
when instances are on bare metal, that is handled by the extension cloud bursting hook.

When the main cloud bursting hook bursts a group of nodes on a high speed network, the hook labels all of the nodes in
that group with the same network name. Job submitters do not need to know or request the actual network name; they
only need to request that their job is on such a node group via the cloud_network=ib chunk request. The cloud bursting
hook automatically creates a placement set for each proximate node group so that the scheduler can run the job within a
single node group all on the same high speed network.

3.4.1 Requirements for Providing Nodes on High Speed

Networks

To allow jobs to run on groups of nodes on high speed networks:

1. If needed, create a queue for a high speed scenario; see section 3.2.5, “Create and Configure Cloud Queues”, on
page 29

2. Configure a high speed scenario using the PBS Cloud interface; see section 3.3.4, “Create a Bursting Scenario”, on
page 35

• No instances in this scenario can be bare metal

• Make sure that the network_max_group_size scenario parameter conforms to what the vendor can provide

• Set the network_type scenario parameter to new

3. Add the high speed scenario definition to the main cloud bursting hook configuration file

4. Add the API key you created when defining the high speed scenario in the PBS Cloud interface to the "api_key" line
in the high speed scenario definition in the main cloud bursting hook configuration file

5. Add an instance type with a high speed network enabled to:

• The Instances section of the high speed scenario definition in the PBS Cloud interface; see section 3.3.4.7,
“Managing Instances”, on page 42

• The high speed queue default_chunk.cloud_node_instance_type

• The high speed queue resources_available.cloud_instance_type
CG-48 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
6. Add an OS image with a high speed network driver to:

• The "cloud_default_image" line in the high speed scenario definition in the main cloud bursting hook configura-
tion file

• The high speed queue default_chunk.cloud_node_image

7. Add the high speed scenario to:

• The configuration file for the main cloud bursting hook; see section 4.2.4, “Defining a Scenario in a Cloud
Bursting Hook Configuration File”, on page 59

• The high speed queue resources_available.cloud_scenario

• The high speed queue default_chunk.cloud_scenario

8. Make sure placement sets use the cloud_network resource and are enabled:

qmgr -c "set server node_group_key+=cloud_network"

qmgr -c "set server node_group_enable=true"

9. Prevent any single job from running across multiple node groups:

qmgr -c "set sched do_not_span_psets=true"

10. Do not put cloud_network in the resources: line in sched_config

3.5 Providing Bare-metal Instances

Job submitters may want to run jobs on instances burst on bare metal. Cloud providers can allow PBS Cloud to burst
instances on bare metal; in this version the only provider is Oracle, and the high speed network is InfiniBand. Oracle
provides groups of bare metal instances in instance pools. To simplify the discussion, we call a group of nodes on a high
speed network a proximate node group.

The extension cloud bursting hook handles bursting nodes on high speed networks when the instances are on bare metal;
when instances are not on bare metal, that is handled by the main cloud bursting hook.

When the extension cloud bursting hook bursts a group of instances on bare metal, the hook puts all of the nodes in that
group on the same network and labels the nodes with the same network name. Job submitters do not need to know or
request the actual network name; they only need to request that their job is on such a node group via the
cloud_network=ib chunk request. The cloud bursting hook automatically creates a placement set for each proximate
node group so that the scheduler can run the job within a single node group all on the same high speed network.

3.5.1 Requirements for Providing Bare Metal Instances

To allow job submitters to request cloud nodes burst on bare metal:

1. Create a cloud queue for the bare metal scenario; see section 3.2.5, “Create and Configure Cloud Queues”, on page
29

2. Create the extension cloud bursting hook; see section 2.5, “Create Extension Cloud Bursting Hook”, on page 19

3. Create the configuration file for the extension cloud bursting hook; see section 4.2, “Configuring the Cloud Bursting
Hooks”, on page 55

4. Add the bare metal scenario definition to the extension cloud bursting hook configuration file
PBS Professional 2022.1.0 Cloud Guide CG-49

Chapter 3 Configuring PBS Cloud
5. Configure a bare metal scenario using the PBS Cloud interface; see section 3.3.4, “Create a Bursting Scenario”, on
page 35

• All instances in this scenario must be bare metal

• Make sure that the network_max_group_size scenario parameter conforms to what the vendor can provide

• Set the network_type scenario parameter to new

6. Add the API key you created when defining the bare scenario in the PBS Cloud interface to the "api_key" line in the
bare metal scenario definition in the extension cloud bursting hook configuration file

7. Add an instance type for bare metal with a high speed network enabled to:

• The Instances section of the bare metal scenario definition in the PBS Cloud interface; see section 3.3.4.7,
“Managing Instances”, on page 42

• The bare metal queue default_chunk.cloud_node_instance_type

• The bare metal queue resources_available.cloud_instance_type

8. Add an OS image for bare metal with a high speed network driver to:

• The "cloud_default_image" line in the bare metal scenario definition in the extension cloud bursting hook con-
figuration file

• The bare metal queue default_chunk.cloud_node_image

You create this OS image, possibly using a base image provided by the cloud vendor. Follow the vendor instructions
for creating the OS image.

9. Add the bare metal scenario to:

• The configuration file for the extension cloud bursting hook; see section 4.2.4, “Defining a Scenario in a Cloud
Bursting Hook Configuration File”, on page 59

• The bare metal queue resources_available.cloud_scenario

• The bare metal queue default_chunk.cloud_scenario

10. Make sure placement sets use the cloud_network resource and are enabled:

qmgr -c "set server node_group_key+=cloud_network"

qmgr -c "set server node_group_enable=true"

11. Prevent any single job from running across multiple node groups:

qmgr -c "set sched do_not_span_psets=true"

12. Do not put cloud_network in the resources: line in sched_config

13. At this point, InfiniBand is not configured. Use cloud-init to set up InfiniBand to configure and start the Infini-
Band adapter. We show an example of a section of cloud-init for managing an OCI BM InfiniBand adapter via its
configuration file, where the network adapter is named "enp94s0f0". For a different instance type, the network
adapter will be different; check with your cloud provider.

In this example the node is configured with its main network adapter on 10.30.0.x, and we have configured a net-
work in OCI for 10.40.0.x. Because there is no DHCP on the 10.40 network segment, and the InfiniBand isn't
hooked up to any DHCP, we chop out the x from the 10.30.0 network and apply it in the 10.40.0 network. This uses
DHCP on the first network to avoid IP duplication on the second network.
CG-50 PBS Professional 2022.1.0 Cloud Guide

Configuring PBS Cloud Chapter 3
All other parts are using the default options for these adapters on BM.HPC2.36 instances. The name of the adapter
and required options may vary on different base BM instance types.

IPext=$(echo $IP | awk -F. '{print $NF}')

ifdown enp94s0f0

echo "TYPE=\"Ethernet\"" > /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "BOOTPROTO=\"none\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "IPADDR=10.40.0.$IPext" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "NETMASK=255.255.255.0" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "DEFROUTE=\"no\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "PEERDNS=\"no\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "PEERROUTES=\"no\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "IPV4_FAILURE_FATAL=\"no\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "IPV6INIT=\"no\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "IPV6_FAILURE_FATAL=\"no\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "NAME=\"System enp94s0f0\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "DEVICE=\"enp94s0f0\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

echo "ONBOOT=\"yes\"" >> /etc/sysconfig/network-scripts/ifcfg-enp94s0f0

ifup enp94s0f0

3.6 Testing Cloud Bursting

We recommend testing each scenario before using it in the cloud bursting hook. After you can manually burst a working
cloud node for a scenario, add the scenario to the relevant cloud bursting hook and test that the hook can run jobs on the
cloud nodes.

3.6.1 Test Each Scenario using Manual Bursting

3.6.1.1 Troubleshooting Prerequisites

To be able to troubleshoot cloud nodes, make sure the scenario has the following:

• The Add Public IP to VMs scenario option is enabled; see section 3.3.4.2, “Temporarily Adding Public IP for
Debugging”, on page 40

• The SSH keys parameter has an administrator SSH key; see section 3.3.4.4, “Adding SSH Key for Access to Burst
Nodes”, on page 41

• You have the corresponding private key

• Port 22 in the vendor firewall has to be open (already covered when you were configuring vendor components)

3.6.1.2 Testing and Refining a Scenario

Manually burst a single cloud node for that scenario and test its initial configuration, by following the steps in section
6.3, “Developing the Startup Script”, on page 159.

The typical testing cycle is burst a node, check it, unburst it, modify the cloud-init script, and repeat.
PBS Professional 2022.1.0 Cloud Guide CG-51

Chapter 3 Configuring PBS Cloud
3.6.1.3 Disabling Public IP Address

Once your scenario is working, you can disable its public IP address:

1. Log in to PBS Cloud.

2. Click Cloud.

3. Under Infrastructure, click Bursting.

4. Click the name of the bursting scenario.

5. Disable the public IP address.

6. Click Save.
CG-52 PBS Professional 2022.1.0 Cloud Guide

4

Configuring the Cloud Bursting

Hook

4.1 The Cloud Bursting Hooks

PBS Cloud uses two cloud bursting hooks: a main cloud bursting hook and an extension cloud bursting hook. The hook
bodies are the same; the difference is in their configuration files.

The main cloud bursting hook is called cloud_hook, and it bursts any non-bare-metal instances. When you install the
PBS Cloud module, the installer creates and imports the main cloud bursting hook. This hook comes with a default con-
figuration file, which you then modify, as described in section 4.2, “Configuring the Cloud Bursting Hooks”, on page 55.
This configuration file defines all your non-bare-metal scenarios and instances.

The extension cloud bursting hook is called cloud_ext_hook, and it bursts any bare-metal instances. You create this hook
if you need it; see section 2.5, “Create Extension Cloud Bursting Hook”, on page 19. The configuration file for
cloud_ext_hook is the same as for cloud_hook, except that it defines all your bare-metal scenarios and instances. You
create and modify the configuration file for this hook, as described in section 4.2, “Configuring the Cloud Bursting
Hooks”, on page 55.

You cannot mix bare-metal and non-bare-metal instances in the same scenario. You cannot mix bare-metal and
non-bare-metal scenarios in the same hook configuration file. (No bare-metal in the main hook, and no non-bare-metal
in the extension hook.)

Both cloud bursting hooks run at periodic events.

The cloud bursting hooks use PBS Simulate to figure out how many nodes and which jobs to burst.
PBS Professional 2022.1.0 Cloud Guide CG-53

Chapter 4 Configuring the Cloud Bursting Hook
4.1.1 Default Cloud Bursting Hook Configuration File

{

"pclm_server": "https://<hostname or IP address of PBS Cloud module>:9980/pbspro-cloud/",

"_comment_pclm_server_example": "e.g. http://control_server.mydomain:9980/pbspro-cloud/",

"use_node_hour_license": false,

"_comment_node_hour": "Node Hour License: True for Control, False for PBS Pro",

"pclm_no_check_ssl_certificate": false,

"cloud_min_instances": 1,

"resources":["ncpus", "mem", "ngpus"],

"cloud_driver": "PclmDriver",

"plugin": "simulator",

"plugin_binary_path": "<absolute path to directory containing simsh>",

"use_custom_snapshot": false,

"scenario":{

"<scenario name>":{

"api_key": "<API key>",

"cloud_default_image": "<default cloud image for this scenario>",

"cloud_max_instances": 10,

"network_max_group_size" : 10,

"__comment__network_max_group_size "Maximum high speed network size; use for Azure and
OCI",

"network_type":"new",

"__comment__network_type":"available options: [new, auto]",

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180,

"check_resources":["<resource name>", "<resource name>"],

"__comment_check_resources":"List of static server-level license tracking resources",

"preemptable": false,

"__comment__preemptable": "Scenarios are preemptable or on-demand, not mixed.",

"__comment__preemptable_example": "Only set to true for supported clouds and scenarios
with spot/preemptable instances selected."

},

"<additional scenario name>":{

"api_key": "<API key>",

"cloud_default_image": "<default cloud image for this scenario>",

"cloud_max_instances": 20,

"max_nodes_per_burst":50,

"cloud_node_wait_timeout":180,

"check_resources":["<resource name>", "<resource name>"],

"preemptable": false

}

}

}

CG-54 PBS Professional 2022.1.0 Cloud Guide

Configuring the Cloud Bursting Hook Chapter 4
4.2 Configuring the Cloud Bursting Hooks

4.2.1 Main Configuration Parameters for Cloud Hooks

The main section of each cloud bursting hook configuration file contains the following parameters:

cloud_driver
Cloud driver used by this cloud bursting hook.

Currently, the only value supported is "PclmDriver". DO NOT change this value.

cloud_min_instances
Required. Minimum number of instances to be present in the cloud at any time, as measured by this cloud
bursting hook. Each hook has its own number of instances. Does not apply during startup; cloud nodes are not
immediately burst on startup. This is the minimum number that are maintained after they are initially burst on
demand.

This value is overridden by the value of the cloud_min_instances resource set at the PBS server.

pclm_no_check_ssl_certificate
Specifies whether or not the cloud bursting hook checks that PBS Cloud has an SSL certificate.

If you set up a self-signed SSL certificate for PBS Cloud, set this to True so you can use https:// for the end-
point for PBS Cloud instead of http://.

If you have an SSL certificate that is not self-signed, or no certificate, leave this set to False.

This should be the same for all scenarios.

Default: False; the hook does not check for an SSL certificate

pclm_server
Endpoint for accessing PBS Cloud.

Format: either of these:

http://<PBS Cloud hostname>:<port>/pbspro-cloud/
http://<PBS Cloud IP address>:<port>/pbspro-cloud/

Default port: 9980

plugin
Name of plugin that figures out which nodes to burst and jobs to run. Currently the only allowed value is "sim-
ulator".

Default: "simulator"

plugin_binary_path
Absolute path to directory containing the plugin that figures out which nodes to burst and jobs to run. Currently
plugin_binary_path is the absolute path to the directory containing simsh.

Default: no default

resources
Resources to be considered for calculating the number of nodes to burst. Resource names must be in quotes.

This does not have to be the same in both hook configuration files.

Use one of the following strings:

• ["ncpus", "mem", "ngpus"]

• ["ncpus", "mem"]
PBS Professional 2022.1.0 Cloud Guide CG-55

Chapter 4 Configuring the Cloud Bursting Hook
scenario
List of scenarios for this cloud bursting hook. Each scenario has a name and its own configuration parameters,
listed below.

You can have one scenario for each cloud provider or multiple scenarios for a cloud provider or both. A sce-
nario can contain either all non-preemptable instances or all preemptable instances. For the main cloud bursting
hook, all scenarios must be purely non-bare-metal. For the extension cloud bursting hook, all scenarios must be
purely bare-metal.

Each bursting scenario must have its own unique API key. API keys must be unique across all scenarios used by
this installation of PBS Cloud; this includes both cloud bursting hooks and all PBS complexes associated with
this installation of PBS Cloud.

use_custom_snapshot
Specifies whether to use a custom snapshot or one generated by the hook. See section 4.2.9, “Using Custom
Snapshots”, on page 62.

Default: false

4.2.2 Scenario Configuration Parameters for Cloud Hooks

api_key
API key you generated for a bursting scenario via the PBS Cloud user interface. Each scenario definition in a
cloud bursting hook configuration file can have only one API key. Each API key must be unique across all sce-
narios used by this installation of PBS Cloud; this includes both cloud bursting hooks and all PBS complexes
associated with this installation of PBS Cloud.

check_resources
Specifies list of static consumable server-level license-tracking resources to check for license availability.

For creating and updating license tracking resources, see section 3.2.4, “Manage Application Licenses for Cloud
Jobs”, on page 27.

Format: comma-separated list of quoted resources, enclosed in square brackets

This does not have to be the same in both hook configuration files.

Examples:

"check_resources": [],

or

"check_resources": ["App1", "App2"],

Default: no default

cloud_default_image
Default OS image to use when bursting a cloud node. This is the OS image you create via the vendor interface.
Overridden when the OS image is provided at job submission via the qsub command. Same default OS image
as in default_chunk.cloud_node_image for scenario queue.

cloud_max_instances
Maximum number of instances that can be made available in the cloud for this scenario. Required.

Must be greater than 0.

Format: Integer
CG-56 PBS Professional 2022.1.0 Cloud Guide

Configuring the Cloud Bursting Hook Chapter 4
cloud_node_wait_timeout
Maximum time to wait for freshly burst node to become usable. Minimum value: 180 seconds. You can set this
to a higher value, but not lower. Because Oracle cloud nodes can take longer to get to a usable state after being
burst, we recommend setting this for Oracle to a value such as 900. For bare metal this needs to be longer, for
example 960. See the cloud provider instructions.

Default: 180 seconds.

max_nodes_per_burst
Maximum number of nodes allowed to burst in a single hook cycle. Maximum number of cloud node licenses to
renew per hook cycle. This is not necessarily the same for both cloud bursting hooks.

network_max_group_size
Limit on number of nodes on a single high speed switch. Depends on resources available at the vendor.

Supported on Azure and OCI only. This is not necessarily the same for both cloud bursting hooks.

Default: 10

network_type
Specifies whether hook should always create a new node group, or first try to use an existing node group. When
set to new, always creates a new node group. When set to auto, hook tries to use existing group first.

Default: new

preemptable
Specifies whether this scenario supports preemptable or spot instances.

Default: False

use_node_hour_license
This parameter must be set to false for PBS Cloud.

Default: False

4.2.3 Steps to Configure Cloud Bursting Hooks

To summarize the process, you create a separate configuration file for each cloud bursting hook; you export the default
cloud bursting hook configuration file, edit it for your site and add scenarios, and import it into the appropriate cloud
bursting hook. Then you set each hook's frequency and alarm timeout, and enable each hook.

You can create as many scenarios as you need for each hook.

1. Log in to the PBS server host as root

2. Export the default cloud bursting hook configuration to a file:

For the main cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json

For the extension cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_ext_config.json

3. Edit the cloud hook configuration file:

a. If you are using a self-signed SSL certificate for PBS Cloud, set the pclm_no_check_ssl_certificate parame-
ter to True:

"pclm_no_check_ssl_certificate": true,

b. Set pclm_server to the endpoint for PBS Cloud:

Format depends on whether you are using http or https, and can be one of the following:

<http/https>://<PBS Cloud hostname>:<port>/pbspro-cloud/
PBS Professional 2022.1.0 Cloud Guide CG-57

Chapter 4 Configuring the Cloud Bursting Hook
<http/https>://<PBS Cloud IP address>:<port>/pbspro-cloud/
Default port: 9980

c. Set the value of cloud_min_instances to the minimum number of instances to be present in the cloud at any
time. Required for bursting. The value you choose for the main cloud bursting hook may be different from the
value you choose for the extension cloud bursting hook.

d. Set resources to a comma-separated list of resources that are to be considered for calculating the number of
nodes to burst. Resource names must be in quotes. Use one of the following strings:

• ["ncpus", "mem", "ngpus"]

• ["ncpus", "mem"]

e. Set the path for plugin_binary_path to the absolute path to the directory containing simsh.

f. If you are using custom snapshots, set use_custom_snapshot to true. See section 4.2.9, “Using Custom
Snapshots”, on page 62.

g. Create each scenario; see section 4.2.4, “Defining a Scenario in a Cloud Bursting Hook Configuration File”, on
page 59. For the main cloud bursting hook, no instances in any scenario can use bare metal. For the extension
cloud bursting hook, all instances in all scenarios must be bare metal.

4. Import the hook configuration file:

For the main cloud bursting hook:

qmgr -c "import hook cloud_hook application/x-config default cloud_config.json"

For the extension cloud bursting hook:

qmgr -c "import hook cloud_ext_hook application/x-config default cloud_ext_config.json"

5. The default cloud bursting hook frequency is 2 minutes (120 seconds). Optionally set the frequency; the format is
integer seconds:

For the main cloud bursting hook:

qmgr -c "set hook cloud_hook freq=<number of seconds>"

For the extension cloud bursting hook:

qmgr -c "set hook cloud_ext_hook freq=<number of seconds>"

6. Set the alarm timeout in integer seconds. The default cloud bursting hook alarm timeout is 10 minutes (600 sec-
onds). For non-bare-metal, we recommend setting this to less than 20 minutes (1200 seconds). For bare metal, we
recommend 960 or more; contact us for recommendations. Consider the following factors:

• Time required to burst nodes in the cloud

• Time required to unburst nodes in the cloud

• Number of cloud queues

For the main cloud bursting hook:

qmgr -c "set hook cloud_hook alarm=<number of seconds>"

For the extension cloud bursting hook:

qmgr -c "set hook cloud_ext_hook alarm=<number of seconds>"

7. Each cloud bursting hook is disabled by default. Enable this cloud bursting hook:

For the main cloud bursting hook:

qmgr -c "set hook cloud_hook enabled=True"

For the extension cloud bursting hook:

qmgr -c "set hook cloud_ext_hook enabled=True"
CG-58 PBS Professional 2022.1.0 Cloud Guide

Configuring the Cloud Bursting Hook Chapter 4
4.2.4 Defining a Scenario in a Cloud Bursting Hook

Configuration File

When you define a scenario in a cloud bursting hook configuration file, you are telling that cloud bursting hook about a
scenario that you have already created using the PBS Cloud interface. The cloud bursting hook uses the API key that you
generated using the PBS Cloud interface to identify the correct scenario to burst. We show the relationships between a
cloud queue, a scenario definition in the PBS Cloud interface, and a hook configuration file in section 3.1.1, “Overview
of Creating Bursting Scenarios”, on page 22.

4.2.4.1 Put All Bare Metal Scenarios in Extension Cloud Bursting

Hook

The main cloud bursting hook is for all non-bare-metal instances: all scenarios and all instances must be non-bare-metal
(no instances in any scenario can use bare metal). The extension cloud bursting hook is for all bare-metal instances: all
scenarios and all instances must be bare-metal. You cannot mix bare-metal and non-bare-metal instances in the same
scenario. You cannot mix bare-metal and non-bare-metal scenarios in the same hook configuration file. (No bare-metal
in the main hook, and no non-bare-metal in the extension hook.)

4.2.4.2 Prerequisites for Defining a Scenario in a Hook Configuration

File

• The PBS Cloud scenario must already exist, have a unique API key, and be enabled. See section 3.3.4, “Create a
Bursting Scenario”, on page 35.

• The cloud queue for this scenario must already exist and be configured for this scenario. See section 3.2.5, “Create
and Configure Cloud Queues”, on page 29.

4.2.4.3 Steps to Define a Scenario in a Hook Configuration File

Define each scenario in the "scenario" section, under its own name. You can add as many scenarios as you want.

• Set the value of api_key to the API key you generated for this scenario using the PBS Cloud interface. You can use
that API key for only one scenario; each API key can appear only once in any cloud hook configuration file, and in
only one PBS Cloud scenario.

• Set the value of cloud_default_image to the OS image identifier (name or ID; see vendor instructions) of the
default image that should be used for bursting (this is the OS image you created using the vendor interface). This
default should be the same default OS image used in default_chunk.cloud_node_image for the scenario queue. If
a job submitter specifies an OS image, that overrides the default.

• Set the value of cloud_max_instances to the maximum number of instances that can be made available in the
cloud. Required. Must be an integer greater than 0.

• If you are using a high speed network:

• Make sure that the value of network_max_group_size conforms to what the vendor can provide. For exam-
ple, this value should match the value of Maximum number of VMs inside a scale set as specified in an
Azure bursting scenario. If you are not using a high speed network, this parameter is ignored.

• Make sure that the network_type parameter is set to new

• If this scenario is for any bare metal instances, all of its instances must be for bare metal.

• Set the value of max_nodes_per_burst to the maximum number of nodes allowed to burst in a single hook cycle.

• Set the value of cloud_node_wait_timeout to the maximum time to wait for a freshly burst node to become usable.
PBS Professional 2022.1.0 Cloud Guide CG-59

Chapter 4 Configuring the Cloud Bursting Hook
Oracle cloud nodes can take a longer time to get to a usable state. For Oracle we recommend setting
cloud_node_wait_timeout to a larger value, for example 900. For bare metal this may be even longer, for exam-
ple 960. See the cloud provider instructions.

Minimum value: 180 seconds. You can set this to a higher value, but not lower.

Default: 180 seconds

• If this scenario requires application licenses, set check_resources to the static consumable server-level resources
that track those licenses (these are updated via cron scripts, and are not the same as the dynamic resources updated
by server_dyn_res scripts). For example, if this scenario needs two kinds of application license App1 and App2,
and you track them with resources app1_static and app2_static, set check_resources like this:
"check_resources": ["app1_static","app2_static"],

The cloud bursting hook bursts this scenario only when the listed resources indicate that licenses are available.

For creating and updating license tracking resources, see section 3.2.4, “Manage Application Licenses for Cloud
Jobs”, on page 27.

• Set preemptable to:

• True: the bursting scenario supports preemptable or spot instances and cloud jobs can be preempted.

• False: jobs that are run in the cloud should not be preempted.

Default: False

4.2.5 Modifying a Cloud Bursting Hook Configuration File

When you modify either cloud bursting hook configuration file, that hook uses the new configuration information the
next time it runs.

1. If you are modifying a scenario, disable bursting for the scenario. See section 7.2.5, “Disabling Bursting for a Sce-
nario and Queue”, on page 165.

2. Log in to the PBS server host as root

3. Export the cloud bursting hook configuration to a file:

For the main cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json

For the extension cloud bursting hook:

qmgr -c "export hook cloud_ext_hook application/x-config default" > cloud_ext_config.json

4. Edit the cloud hook configuration file as needed.

5. To add or modify a scenario, follow the steps in section 4.2.4, “Defining a Scenario in a Cloud Bursting Hook Con-
figuration File”, on page 59.

6. Re-import the hook configuration file:

For the main cloud bursting hook:

qmgr -c "import hook cloud_hook application/x-config default cloud_config.json"

For the extension cloud bursting hook:

qmgr -c "import hook cloud_ext_hook application/x-config default cloud_ext_config.json"

7. If you modified a scenario, re-enable bursting for the scenario; see section 7.2.6, “Re-enabling Bursting for a Sce-
nario and Queue”, on page 165.
CG-60 PBS Professional 2022.1.0 Cloud Guide

Configuring the Cloud Bursting Hook Chapter 4
4.2.6 Creating a Scenario for a Preemptable or Spot Instance

• If you are changing an existing scenario:

• Disable bursting for the scenario. See section 7.2.5, “Disabling Bursting for a Scenario and Queue”, on page
165.

• Make sure the PBS Cloud scenario exists and has only preemptable instance types. If the scenario exists but has
non-preemptable instance types:

1. Create a new PBS Cloud scenario for the instance type

2. Create and configure a cloud queue for the new scenario

• If the PBS Cloud scenario doesn't exist, create it; see section 3.3.4, “Create a Bursting Scenario”, on page 35

1. Log in to the PBS server host as root

2. Export the cloud bursting hook configuration to a file:

For the main cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json

For the extension cloud bursting hook:

qmgr -c "export hook cloud_ext_hook application/x-config default" > cloud_ext_config.json

3. To add or modify a scenario, follow the steps in section 4.2.4, “Defining a Scenario in a Cloud Bursting Hook Con-
figuration File”, on page 59.

4. Make sure that the preemptable parameter is set to true for the scenario:

"preemptable": true

5. Re-import the hook configuration file:

For the main cloud bursting hook:

qmgr -c "import hook cloud_hook application/x-config default cloud_config.json"

For the extension cloud bursting hook:

qmgr -c "import hook cloud_ext_hook application/x-config default cloud_ext_config.json"

6. If you disabled bursting for the scenario, re-enable bursting; see section 7.2.6, “Re-enabling Bursting for a Scenario
and Queue”, on page 165.

4.2.7 Deleting a Scenario from the Cloud Bursting Hook

Configuration File

1. Disable bursting for the scenario. See section 7.2.5, “Disabling Bursting for a Scenario and Queue”, on page 165.

2. Log in to the PBS server host as root

3. Export the cloud bursting hook configuration to a file:

For the main cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json

For the extension cloud bursting hook:

qmgr -c "export hook cloud_ext_hook application/x-config default" > cloud_ext_config.json

4. Edit the configuration file: delete the scenario from the "scenario" section.

5. Re-import the hook configuration file:
PBS Professional 2022.1.0 Cloud Guide CG-61

Chapter 4 Configuring the Cloud Bursting Hook
For the main cloud bursting hook:

qmgr -c "import hook cloud_hook application/x-config default cloud_config.json"

For the extension cloud bursting hook:

qmgr -c "import hook cloud_ext_hook application/x-config default cloud_ext_config.json"

6. Re-enable bursting for the scenario; see section 7.2.6, “Re-enabling Bursting for a Scenario and Queue”, on page
165.

4.2.8 Changing PBS Cloud Host or Port

If you will move the PBS Cloud module to a different host or port:

1. Disable bursting for each scenario. See section 7.2.5, “Disabling Bursting for a Scenario and Queue”, on page 165.

2. Log in to the PBS server host as root

3. Export the cloud bursting hook configuration to a file:

For the main cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json

For the extension cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_ext_config.json

4. Edit the cloud hook configuration file as needed.

5. Set pclm_server to the new endpoint for PBS Cloud:

http://<IP address or hostname of the PBS Cloud host>:<port number>/pbspro-cloud/

6. Re-import the hook configuration file:

For the main cloud bursting hook:

qmgr -c "import hook cloud_hook application/x-config default cloud_config.json"

For the extension cloud bursting hook:

qmgr -c "import hook cloud_ext_hook application/x-config default cloud_ext_config.json"

7. Re-enable bursting for each scenario; see section 7.2.6, “Re-enabling Bursting for a Scenario and Queue”, on page
165.

4.2.9 Using Custom Snapshots

The cloud bursting hook uses PBS Simulate to figure out how many nodes and which jobs to burst. PBS Simulate uses a
snapshot of the PBS Professional configuration. By default the cloud bursting hook provides a snapshot each time the
hook runs. If the bursting cycle takes a long time due to snapshot creation, you can provide custom snapshots instead.
You can create each custom snapshot by hand, or you can use a cron job.

4.2.9.1 Creating Custom Snapshots

1. Use the --config-only option to the pbs_snapshot command to create the custom snapshot:
pbs_snapshot --config-only -o <PBS_HOME>/spool/snapshot_simulate

2. Edit the cloud bursting hook configuration file and set the use_custom_snapshot parameter to true:

"use_custom_snapshot": true,
CG-62 PBS Professional 2022.1.0 Cloud Guide

Configuring the Cloud Bursting Hook Chapter 4
4.2.9.2 Caveats and Restrictions for Using Custom Snapshots

• The custom snapshot must reside in $PBS_HOME/spool, and must be named "snapshot_simulate".

• You need a new snapshot every time you change the configuration of PBS Professional, for example if you change
scheduling policy, the scheduling formula, or create a queue.

4.3 Testing Automated Cloud Bursting

4.3.1 Prerequisites for Testing Cloud Bursting Hook

• You have installed PBS Professional, PBS Cloud, and PBS Simulate, configured PBS Professional and PBS Simu-
late, created a cloud administrator account at your cloud provider and added that account to PBS Cloud, created and
configured your cloud provider components including an OS image, and configured PBS Cloud. These steps are
outlined in section 3.1, “Overview of Configuring PBS Cloud”, on page 21.

• Make sure the cloud bursting hook is enabled.

• You should have at least one PBS Cloud scenario to test.

• This scenario must be enabled in PBS Cloud; see section 7.2.4, “Enabling or Disabling a Bursting Scenario in PBS
Cloud”, on page 164

• You have created a cloud queue for this scenario; see section 3.2.5, “Create and Configure Cloud Queues”, on page
29

• Make sure that the scenarios in the hook configuration file match the scenarios in PBS Cloud, especially whether or
not a scenario is preemptable, and whether or not the scenario is for bare metal

4.3.2 Steps to Test Automate Cloud Bursting

1. Log into the PBS server host as root

2. Disable the cloud bursting hooks:

For the main cloud bursting hook:

qmgr -c "set hook cloud_hook enabled=False"

For the extension cloud bursting hook:

qmgr -c "set hook cloud_ext_hook enabled=False"
PBS Professional 2022.1.0 Cloud Guide CG-63

Chapter 4 Configuring the Cloud Bursting Hook
3. Add the scenario you are testing to the cloud bursting hook:

a. Disable bursting for the scenario. See section 7.2.5, “Disabling Bursting for a Scenario and Queue”, on page
165.

b. Log in to the PBS server host as root

c. Export the cloud bursting hook configuration to a file:

For the main cloud bursting hook:

qmgr -c "export hook cloud_hook application/x-config default" > cloud_config.json

For the extension cloud bursting hook:

qmgr -c "export hook cloud_ext_hook application/x-config default" > cloud_ext_config.json

d. To add or modify a scenario, follow the steps in section 4.2.4, “Defining a Scenario in a Cloud Bursting Hook
Configuration File”, on page 59.

e. Re-import the hook configuration file:

For the main cloud bursting hook:

qmgr -c "import hook cloud_hook application/x-config default cloud_config.json"

For the extension cloud bursting hook:

qmgr -c "import hook cloud_ext_hook application/x-config default cloud_ext_config.json"

f. Re-enable bursting for the scenario; see section 7.2.6, “Re-enabling Bursting for a Scenario and Queue”, on
page 165.

4. Enable the cloud bursting hooks:

For the main cloud bursting hook:

qmgr -c "set hook cloud_hook enabled=True"

For the extension cloud bursting hook:

qmgr -c "set hook cloud_ext_hook enabled=True"

5. Specify that all log events should be captured in the PBS server logs:

qmgr -c "set server log_events=2047"

6. Submit jobs to the cloud queue for this scenario:

qsub -l select=1:ncpus=4 -q <scenario queue> TestJobScript.sh

qsub -l select=1:ncpus=4 -q <scenario queue> TestJobScript.sh

7. Check the status of the jobs:

qstat -s

8. Tail the PBS Professional server logs:

tail -f PBS_HOME/server_logs/<current PBS server log file>

9. Check the current log file to verify that the relevant cloud bursting hook is started. Search for the name of the cloud
bursting hook:

For the main cloud bursting hook:

<PBS server>@<PBS server host>;Hook;<cloud_hook>;started

For the extension cloud bursting hook:

<PBS server>@<PBS server host>;Hook;<cloud_ext_hook>;started

10. Log into PBS Cloud and go to your burst scenario. You should see the initiation of the workflow that is triggered by
the bursting hook. The workflow should automatically start within a couple of minutes.
CG-64 PBS Professional 2022.1.0 Cloud Guide

Configuring the Cloud Bursting Hook Chapter 4
11. List the nodes known to PBS Professional in order to verify that the relevant cloud bursting hook has burst cloud
nodes:

pbsnodes -av

12. Once a node is burst, jobs should start running. Check the status of the jobs:

qstat -s

13. You should see that any nodes that were burst for the test are unburst after the Idle Before Unburst period has
elapsed.

14. Go back to your normal server log levels. Reset the server log_events attribute to its previous value:

qmgr -c "set server log_events=<previous value>"
PBS Professional 2022.1.0 Cloud Guide CG-65

Chapter 4 Configuring the Cloud Bursting Hook
CG-66 PBS Professional 2022.1.0 Cloud Guide

5

Using Cloud Provider Services

Contents

5.1 Configuring Amazon Web Service Cloud Bursting . CG-69
5.1.1 Types of Amazon Accounts . CG-69
5.1.2 Creating and Activating AWS Owner Account . CG-69
5.1.3 Creating an AWS IAM User Account . CG-69
5.1.4 Multi-Availability Zone Management on AWS. CG-70
5.1.5 Create a Virtual Private Cloud Network. CG-71
5.1.6 Create an Internet Gateway . CG-72
5.1.7 Update the VPC Route Table . CG-73
5.1.8 Add Inbound Rules to VPC Security Groups. CG-74
5.1.9 Create a Virtual Machine . CG-75
5.1.10 Install a PBS MoM on the VM. CG-77
5.1.11 Add Authentication and Encryption . CG-78
5.1.12 Create an OS Image . CG-80
5.1.13 Collect Information for an AWS Cloud Bursting Scenario . CG-81

5.2 Configuring Microsoft Azure Cloud Bursting . CG-82
5.2.1 Prerequisites . CG-82
5.2.2 Register PBS Cloud with Azure . CG-82
5.2.3 Create a Resource Group . CG-85
5.2.4 Create a Virtual Network . CG-86
5.2.5 Create a Virtual Machine . CG-87
5.2.6 Install a PBS MoM on the VM. CG-89
5.2.7 Add Authentication and Encryption . CG-90
5.2.8 Create an OS Image . CG-92
5.2.9 Collect Information for an Azure Cloud Bursting Scenario. CG-93

5.3 Configuring Google Cloud Platform Cloud Bursting . CG-95
5.3.1 Sign Up for a GCP Account . CG-95
5.3.2 Create a Project. CG-95
5.3.3 Create a Service Account . CG-96
5.3.4 Create a Virtual Private Cloud Network. CG-96
5.3.5 Create a Virtual Machine . CG-97
5.3.6 Install and Configure a PBS MoM on the VM. CG-99
5.3.7 Add Authentication and Encryption . CG-99
5.3.8 Create an OS Image . CG-101
5.3.9 Collect Information for GCP Cloud Bursting Scenario . CG-101

5.4 Configuring Oracle Cloud Platform Cloud Bursting . CG-103
5.4.1 Sign Up for an Oracle Cloud Account . CG-103
5.4.2 Create Oracle Cloud User Account . CG-103
5.4.3 Generating an SSH Public Key for the Oracle Cloud User . CG-104
5.4.4 Obtain the Root Compartment Identifier . CG-105
5.4.5 Obtain the Tenancy Identifier. CG-105
5.4.6 Create a Virtual Cloud Network. CG-106
5.4.7 Check Tenancy Service Limits. CG-107
5.4.8 Creating a Virtual Machine . CG-108
5.4.9 Installing and Configuring a PBS MoM on the VM . CG-110
PBS Professional 2022.1.0 Cloud Guide CG-67

Chapter 5 Using Cloud Provider Services
5.4.10 Add Authentication and Encryption . CG-111
5.4.11 Create an OS Image . CG-112
5.4.12 Collect Information for Oracle Cloud Bursting Scenario. CG-113

5.5 Configuring Orange Cloud Flexible Engine for Cloud Bursting . CG-114
5.5.1 Purchase an Orange Business Services Account . CG-114
5.5.2 Create an Orange Cloud Flexible Engine User Account . CG-115
5.5.3 Select a Region . CG-116
5.5.4 Check Orange Cloud Flexible Engine Account Service Quota . CG-117
5.5.5 Create a Virtual Private Cloud . CG-117
5.5.6 Creating a Virtual Machine . CG-118
5.5.7 Installing and Configuring a PBS MoM on the VM . CG-119
5.5.8 Add Authentication and Encryption . CG-119
5.5.9 Create an OS Image . CG-121
5.5.10 Create Orange Cloud Cloud Bursting Scenario . CG-122

5.6 Configuring HUAWEI Cloud for Cloud Bursting . CG-123
5.6.1 Create and Activate HUAWEI Account. CG-123
5.6.2 Get the HUAWEI Cloud Administrator Credentials . CG-123
5.6.3 Check HUAWEI Cloud Account Service Quotas . CG-124
5.6.4 Create a Virtual Private Cloud . CG-124
5.6.5 Creating a Virtual Machine . CG-125
5.6.6 Installing and Configuring a PBS MoM on the VM . CG-126
5.6.7 Add Authentication and Encryption . CG-127
5.6.8 Create an OS Image . CG-129
5.6.9 Collect HUAWEI Cloud Bursting Scenario Information. CG-130

5.7 Configuring Open Telekom Cloud for Cloud Bursting. CG-131
5.7.1 Create and Activate OTC Cloud Account . CG-131
5.7.2 Obtain the OTC Administrator Credentials . CG-131
5.7.3 Check OTC Account Service Quotas . CG-132
5.7.4 Create a Virtual Private Cloud . CG-133
5.7.5 Creating a Virtual Machine . CG-134
5.7.6 Installing and Configuring a PBS MoM on the VM . CG-135
5.7.7 Add Authentication and Encryption . CG-136
5.7.8 Create an OS Image . CG-138
5.7.9 Create an OTC Cloud Bursting Scenario . CG-138

5.8 Configuring OpenStack Cloud Bursting . CG-139
5.8.1 Get OpenStack Administrator Credentials . CG-140
5.8.2 Create Virtual Private Cloud and OS Image . CG-140

5.9 Configuring Alibaba Cloud Bursting . CG-144
5.9.1 Create Alibaba Cloud Account. CG-144
5.9.2 Create a Virtual Private Cloud and a vSwitch (Subnet) . CG-145
5.9.3 Create a Virtual Machine . CG-146
5.9.4 Install a PBS MoM on the VM. CG-147
5.9.5 Create a Custom OS Image . CG-148
5.9.6 Collect Information for an Alibaba Cloud Bursting Scenario . CG-149
5.9.7 Alibaba Cloud Regions and Zones . CG-150

5.10 Windows Bursting on AWS and Azure . CG-153
5.10.1 OS Image Name . CG-153
5.10.2 Inbound Security Rule for RDP . CG-153
5.10.3 Startup Script . CG-154
5.10.4 See Also . CG-154
CG-68 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.1 Configuring Amazon Web Service Cloud

Bursting

5.1.1 Types of Amazon Accounts

Amazon has two kinds of accounts: owner (root user), and AWS Identity and Access Management (IAM) users. Here we
outline the steps you will follow below:

1. Create and activate an AWS root user account

2. Use the root user account to create an AWS IAM account and give the account administrator permissions.

3. Use the AWS IAM administrator account to do all administrative tasks. This is the account that PBS Cloud will use
to manage cloud nodes.

4. Use the AWS IAM administrator account to create the AWS components required for cloud bursting.

5.1.2 Creating and Activating AWS Owner Account

Create and activate your AWS owner account. See How do I create and activate a new Amazon Web Services account?

5.1.3 Creating an AWS IAM User Account

Follow these steps to create an AWS user account and give this account administrative permissions. See Creating an
IAM User in Your AWS Account. During this process, make sure you download a CSV file containing the following:

• Access key ID

• Secret access key

We will remind you of this step.

1. Log in to the AWS console.

2. Using the search box located under AWS services, enter IAM.

3. Click the IAM search result to open the Identity and Access Management dashboard.

4. In the navigation pane on the left-hand side of the web page, click Users.

5. Click Add user.

6. Enter the following information for this user:

a. For User name, enter a name for the user.

The name can be anything meaningful to your organization, e.g., pc_clouduser.

b. For Access type, enable Programmatic access.

The user requires this type of access because PBS Cloud needs to make API calls or use the AWS CLI. The
AWS interface generates an access key ID and a secret access key for the user.

7. Click Next:Permissions.

8. Optional: Click Add user to group. This button may already be selected.

9. Click Create group.
PBS Professional 2022.1.0 Cloud Guide CG-69

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws_account
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Chapter 5 Using Cloud Provider Services
10. Enter the following information to create a group, add the user to the group, and choose a permission policy for the
group:

a. For Group name, enter a group name.

The name can be anything meaningful to your organization, e.g., pc_cloudgroup.

b. For Policy type, enable Administrator Access.

This policy provides full access to AWS services and resources.

11. Click Create group.

This returns you to the Add user page and enables the new group, indicating that the user is added to the new group.

12. Click Next: Tags.

13. Click Next: Review.

14. Click Create user.

15. Click Download.csv.

16. Download and save this file in a secure location.

PBS Cloud will use the access key ID and secret access key in this file to manage cloud nodes.

17. Click Close.

The new user account is displayed.

5.1.4 Multi-Availability Zone Management on AWS

If you are not familiar with AWS regions, Availability Zones, VPCs or subnets, see the following AWS documentation:

• Regions, Availability Zones, and Local Zones

• VPCs and Subnets

Bursting cloud nodes in multiple Availability Zones allows an HPC complex to distribute the load across a region and
take advantage of AWS Spot Instances. To use multiple Availability Zones, your virtual private cloud must have a subnet
for each Availability Zone; all these subnets must belong to the same VPC.
CG-70 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
Once these prerequisites are met, then it is as simple as providing a comma-separated list of subnets when the bursting
scenario is created.

Figure 5-1:List of Subnets

PBS Cloud attempts to burst cloud nodes in the first subnet in the list. If there is no availability in that subnet, then it
attempts to burst cloud nodes in the next subnet in the list and will continue until it finds a subnet where it can burst the
cloud nodes or until bursting fails because no subnets have availability. The relevant cloud bursting hook attempts to
burst all requested cloud nodes in a single subnet. It does not burst cloud nodes across subnets. The cloud bursting hook
follows this process each bursting cycle until it finds availability to burst the cloud nodes.

Example 5-1: 10 cloud nodes are requested for bursting.

a. The cloud bursting hook attempts to burst all 10 nodes in subnet-014c5607b.

b. If there is no availability in subnet-014c5607b, the hook attempts to burst all 10 cloud nodes in sub-
net-0622f6467.

c. If there is no availability in subnet-0622f6467, the hook attempts to burst all 10 cloud nodes in sub-
net-05c352abff.

d. If there is no availability in subnet-05c352abff, cloud bursting fails for this cycle.

5.1.5 Create a Virtual Private Cloud Network

5.1.5.1 Choose a Region

Log in to your AWS Management Console and choose a region based on the geographical location of your users. All
cloud resources that are created are placed in this region.

For more information see Regions and Availability Zones. The menu for selecting a region is located at the upper
right-hand corner of the AWS Console menu bar.

Figure 5-2:AWS Region

AWS documentation can be found at Getting Started with IPv4 for Amazon VPC and Working with VPCs and Subnets.
PBS Professional 2022.1.0 Cloud Guide CG-71

Chapter 5 Using Cloud Provider Services
Record the region(s) you selected; you will use this later in the Region parameter in the bursting scenario.

5.1.5.2 Create a VPC

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.

4. Click the VPC search result. The VPC dashboard is opened.

5. In the menu located on the left-hand side of the web page, click Your VPCs.

6. To create a virtual private cloud, click Create VPC.

7. Enter the following to create a VPC:

a. For Name, enter any name for the VPC.

The name can be anything meaningful to your organization, e.g., bursting_vpc.

b. For IPv4 CIDR block, provide an address range in CIDR notation.

c. For IPv6 CIDR block, enable No IPv6 CIDR Block.

d. For Tenancy, choose Default.

e. Click Yes, Create.

5.1.5.3 Create Subnets for the VPC

Create at least one subnet for the VPC. To allow node bursting in several Availability Zones, create a subnet for each
Availability Zone that you want to burst in. For more information see Multi-Availability Zone Management on AWS.

1. In the menu located on the left-hand side of the web page, click Subnets.

2. Click Create Subnet.

a. For Name tag, enter a name for the subnet.

The name can be anything meaningful to your organization, e.g., bursting_subnet.

b. For VPC, choose the VPC that was previously created (e.g. bursting_vpc).

c. For Availability Zone, choose one of the following options:

• Choose a unique availability zone for each subnet.

• Choose No Preference to let Amazon choose an Availability Zone for you.

d. For IPv4 CIDR block, provide an address range in CIDR notation.

e. Click Create.

3. Click Close.

5.1.6 Create an Internet Gateway

You can SSH into a virtual machine that is used for cloud bursting via an internet gateway. You create an internet gate-
way and attach it to the bursting VPC. See AWS documentation at Internet Gateways.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.
CG-72 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
4. Click the VPC search result to open the VPC dashboard.

5. In the menu located on the left-hand side of the web page, click Internet Gateways.

6. Click Create internet gateway.

7. Enter a value for Name tag, to be a name for the internet gateway.

The name can be anything meaningful to your organization, e.g., bursting_gateway

8. Click Create.

9. Click Close.

10. Select the internet gateway that you just created by enabling the check box next to the name of the gateway.

11. You may need to deselect any other internet gateways that are displayed in the list. Amazon creates default
resources for your selected region so a default internet gateway may already exist.

12. Click Actions > Attach to VPC.

13. Select the VPC that you created previously (e.g. bursting_vpc).

14. Click Attach.

5.1.7 Update the VPC Route Table

You add a rule to the VPC route table that allows all internet access, and associate the route table with the bursting sub-
net. You can find AWS documentation at Route Tables.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.

4. Click the VPC search result to open the VPC dashboard.

5. In the menu located on the left-hand side of the web page, click Route Tables to display a list of route tables.

6. Select the route table attached to your VPC (e.g. bursting_vpc) by enabling the check box next to the name of the
route table.

The VPC column in the route table list specifies the VPC to which the route table is attached.

7. Click the Routes tab at the bottom of the web page.

8. Click Edit routes.

Figure 5-3:Add a Route

9. Click Add route.
PBS Professional 2022.1.0 Cloud Guide CG-73

Chapter 5 Using Cloud Provider Services
10. Enter the following to add a rule that allows all traffic access to the internet gateway:

• For Destination enter the PBS Cloud firewall IP address.

• For Target, select Internet Gateway, then the internet gateway that you created previously (e.g.
bursting_gateway).

11. Click Save routes.

12. Click Close.

13. Associate the route table to the bursting subnet:

a. Click the Subnet Associations tab.

b. Click Edit subnet associations.

c. Select the subnet you created for cloud bursting from the list.

14. Click Save.

5.1.8 Add Inbound Rules to VPC Security Groups

Add inbound rules to each VPC security group so that a connection can be established with an AWS VM using SSH or
RDP.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter VPC.

4. Click the VPC search result to open the VPC dashboard.

5. In the menu located on the left-hand side of the web page, under Security, click Security Groups.

6. Select the security groups associated with the VPC you created for cloud bursting by enabling the check box next to
their names.

When you created the VPC, the vendor system created a default VPC security group.

7. Click the Inbound Rules tab at the bottom of the web page.

8. Click Edit rules.

9. Click Add Rule.
CG-74 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
10. Add security rules based on your site's requirements. If you enable a public IP address for the associated scenario,
there is access to these ports, but the rules here filter who is allowed that access.

• On Linux platforms, add an inbound rule to allow SSH traffic on port 22.

• On Windows platforms, add an inbound rule to allow RDP traffic on port 3389.

• Add the IP address of the PBS Cloud firewall (replace what is here):

Figure 5-4:Security Rules

Warning: 0.0.0.0/0 enables all IPv4 addresses to access your instance. ::/0 enables all IPv6 address to access your
instance. This is acceptable for a short time in a test environment, but it's unsafe for production environments. In
production, authorize only a specific IP address or range of addresses to access your instance.

11. Click Save rules.

5.1.9 Create a Virtual Machine

In this section you create a virtual machine in AWS Elastic Compute Cloud (EC2).

For AWS documentation, see Launch a Linux Virtual Machine and Launching a Virtual Machine with Amazon EC2.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter EC2.

4. Click the EC2 search result to open the EC2 dashboard.

5. In the menu located on the left-hand side of the web page, click Instances.

6. Click Launch Instance.

7. In the menu located on the left-hand side of the web page, click AWS Marketplace.

8. Using the search box:

• On Linux platforms, choose a Linux platform that is supported for the PBS MoM and press ENTER.

• On Windows platforms, choose a Windows platform that is supported for the PBS MoM and press ENTER.

9. Locate the appropriate Amazon Machine Image (AMI) and click Select.

10. Click Continue.
PBS Professional 2022.1.0 Cloud Guide CG-75

Chapter 5 Using Cloud Provider Services
11. Select an Instance Type appropriate for your site's workload, based on these criteria:

• Number of cores

• Amount of memory

• Storage

• Network performance

Consider the nature of the applications that you plan to deploy on the instance, the number of users that you expect
to use the applications, and also how you expect the load to scale in the future. Remember to also factor in the CPU
and memory resources that are necessary for the operating system.

12. Click Next: Configure Instance Details.

13. Enter the following to configure instance details:

a. For Number of instances, specify 1.

b. For Network, choose the VPC that you previously created (e.g. bursting_vpc). The bursting subnet is populated
automatically.

c. For Auto-assign Public IP, select Enable.

14. Click Next: Add Storage.

15. Specify the storage options your site needs. We recommend enabling Delete on Termination to delete EBS volumes
(attached disks) when the virtual machine is terminated.

16. Click Next: Add Tags.

17. Optional: You can add tags for the VM in key-value pairs.

18. Click Next: Configure Security Group.

19. Assign at least one security group to the VM. Enter the following:

a. For Assign a security group, enable Select an existing security group.

b. Select the security group that was automatically created for the cloud bursting VPC by enabling the check box
next to its name.

20. Click Review and Launch.

21. Review the information about the VM and click Launch.

22. Create a new public/private key pair for the VM. Enter the following:

a. Select Create a new key pair.

b. Provide a name for the key pair.

c. Click Download Key Pair.

d. Download and save this file in a secure location.

PBS Cloud will use the information in this .pem file later to SSH into the cloud node.

23. Click Launch Instances.

24. At the bottom of the web page, click View Instances.

This displays all virtual machines that have been created.
CG-76 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
Your virtual machine is ready when the Instance State is "running" and Status Checks are complete. The virtual machine
can be accessed via its IPv4 Public IP.

Figure 5-5:Bursting Virtual Machine

5.1.10 Install a PBS MoM on the VM

5.1.10.1 Installing a PBS MoM on a Linux VM

On Linux platforms, the username for logging into the virtual machine is dependent on the Amazon Machine Image
(AMI) that you used to create the virtual machine. For example, the username for a CentOS AMI is "centos". Typically
you log in as "centos", using your SSH key, then switch to root:

 sudo -

For information about usernames and instructions for connecting and copying files to the Linux virtual machine see Con-
necting to Your Linux Instance Using SSH.

To establish a connection to the VM, you need the .pem file you downloaded while creating the VM.

1. Copy the PBS Professional installer package to the virtual machine. Use scp to copy the tarball file from the PBS
server host to the virtual machine. For more information, see Transferring Files to Linux Instances from Linux Using
SCP.

2. Log in to your site's PBS Professional server host.

3. SSH into the virtual machine as the user "centos" using the .pem file and the IPv4 Public IP assigned to the VM:

ssh -i /<path to .pem file>/<.pem file> centos@<public IP address of virtual machine>

Figure 5-6:Bursting Virtual Machine

4. Switch to root:

sudo -i

5. Copy the PBS Professional installation package to the VM.

6. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS Professional MoM.

7. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

8. If cloud-init is not installed, install it.
PBS Professional 2022.1.0 Cloud Guide CG-77

Chapter 5 Using Cloud Provider Services
5.1.10.2 Installing the PBS MoM on the Windows VM

Use an RDP client to access the virtual machine. You can establish a connection to the Windows virtual machine through
the AWS EC2 console. See Connect to Your Windows Instance for more information.

You will need the .pem file downloaded while creating the VM to establish a connection.

You will copy the PBS Professional installer package to the virtual machine, and use RDP to map a local drive to get
access to the installer package. For more information, see Transfer Files to Windows Instances.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter EC2.

4. Click the EC2 search result.

5. In the menu located on the left-hand side of the web page, click Instances.

6. Select the Windows virtual machine created for cloud bursting by enabling the check box next to its name.

7. At the top, click Connect.

8. Click Get Password.

9. Browse to the .pem file downloaded while creating the VM.

10. Open the .pem file.

11. Click Decrypt Password.

12. Hover over the decrypted password. You will see a copy to clipboard icon.

13. Click the copy to clipboard icon.

14. Click Download Remote Desktop File.

15. Open the file.

16. Click Connect.

17. For Password, paste the password copied to the clipboard.

18. Click OK.

19. Click Yes to connect, even if there are certificate errors.

A connection is established with the Windows virtual machine.

20. Copy the PBS Professional installation package to the VM.

21. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS Professional MoM.

22. Configure the VM for your site's environment, for example mounting file systems, connecting to the authentication
service, installing any applications, etc.

5.1.11 Add Authentication and Encryption

5.1.11.1 Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.
CG-78 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.

4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge

7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"

8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE

9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.1.11.2 Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.

To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs
PBS Professional 2022.1.0 Cloud Guide CG-79

https://github.com/dun/munge/wiki/Installation-Guide

Chapter 5 Using Cloud Provider Services
5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom

For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.

5.1.12 Create an OS Image

In the following steps, you will create an image of the virtual machine you have configured.

You can find AWS documentation at Create an AMI from an Amazon EC2 Instance.

1. Log in to the AWS console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter EC2.

4. Click the EC2 search result to open the EC2 dashboard.

5. In the menu located on the left-hand side of the web page, click Instances.

6. Select the virtual machine created for cloud bursting by enabling the check box next to its name.

7. At the top, click Actions > Instance State > Stop.

8. Click Yes, Stop.

It may take some time for the virtual machine to be stopped.

Do not proceed until the Instance State is "Stopped".

9. Click Actions > Image > Create Image.

10. For Image name, enter a name for the image.

The name can be anything meaningful to your organization, e.g., bursting_image.
CG-80 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
On Windows platforms, the name of the image must contain the string "windows" (case-insensitive). For example,
Windows_Server-2012-R2__RTM-English-64Bit-Base-2019.11.13.

11. Click Create Image.

12. Click the View pending image ami-xxxxxxxxxx link. The image is complete when its Status is "available".

13. You can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over time to
create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.

5.1.13 Collect Information for an AWS Cloud Bursting

Scenario

5.1.13.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters. We will remind you about them:

5.1.13.2 Steps to Collect Information

1. Open a browser window and log in to your AWS Management Console.

2. Click located in the upper left-hand corner of the web page.

3. Using the search box located under AWS services, enter EC2.

4. Click the EC2 search result to open the EC2 dashboard.

5. In the menu located on the left-hand side of the web page, click AMIs.

6. Select the Amazon Machine Image (AMI) you created for cloud bursting by enabling the check box next to its name.

7. In the Details tab located at the bottom of the web page, hover over the AMI ID so that the interface displays a copy
to clipboard icon.

8. Click the copy to clipboard icon.

Table 5-1: Scenario Parameters for Amazon Web Services (AWS)

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String

AMI ID Name of image to be burst; chosen during configuration at vendor String

Security Group IDs List of security group IDs associated with VPC and VM created at vendor Comma sepa-
rated string

Subnet ID Name of security group subnet for bursting VPC created at vendor. To burst
nodes in multiple Availability Zones, save a comma-separated list of subnet
IDs

String
PBS Professional 2022.1.0 Cloud Guide CG-81

Chapter 5 Using Cloud Provider Services
9. Save the image name to use for the AMI ID scenario parameter.

10. In the menu located on the left-hand side of the web page, under NETWORK & SECURITY, click Security Groups.

11. Select the security groups associated with the VPC and the VM by enabling the check box next to each Group ID.

12. In the Description tab located at the bottom of the web page, hover over the Group ID so that the interface displays a
copy to clipboard icon.

13. Click on the copy to clipboard icon.

14. Save the security group IDs to use for the Security Group IDs scenario parameter.

15. Click located in the upper left-hand corner of the web page.

16. Using the search box located under AWS services, enter VPC.

17. Click the VPC search result to open the VPC dashboard.

18. In the menu located on the left-hand side of the web page, click Subnets.

19. Select subnets for the bursting VPC by checking the box next to their names. Subnets are required in order to make
multiple availability zones work.

20. In the Description tab located at the bottom of the web page, hover over the Subnet ID so that the interface displays
a copy to clipboard icon.

21. Click the copy to clipboard icon.

22. Save the security group subnet name to use for the Subnet ID scenario parameter. To use cloud nodes in several
Availability Zones, save a comma-separated list of subnet IDs.

5.2 Configuring Microsoft Azure Cloud Bursting

5.2.1 Prerequisites

Purchase an Azure subscription, get a tenant ID, and get an Azure user account. For more information about subscrip-
tions see What is an Azure subscription. For more information about tenants see How to get an Azure Active Directory
tenant.

5.2.2 Register PBS Cloud with Azure

You can find Azure documentation at Quickstart: Register an application with the Microsoft identity platform.
CG-82 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
As you work through this section, save the following information in a file. We will remind you about these:

1. Register PBS Cloud with the Azure Active Directory and create a client secret key:

a. Log in to to your Microsoft Azure account.

b. Using the search box, enter app reg. You will see a list of search results.

c. Under Services, click App registrations.

d. Click New registration.

e. Enter the following to register PBS Cloud with the Azure Active Directory:

1. For Name, enter the name you will use for PBS Cloud at the vendor.

The name can be anything meaningful to your organization, e.g., pbs_cloud

2. For Supported account types, choose the option that best suits your organization. Click the Help me choose
link for additional information about the available options.

3. For Redirect URI, select Web and enter the URL https://<PBS Cloud host name or IP address>:<PBS Cloud
port>/pc. The default PBS Cloud port is 9980.

Table 5-2: Account Parameters for Microsoft Azure

Account Parameter What to Collect During Configuration at Vendor Format

Client ID Application ID generated when registering PBS Cloud with the Azure
Active Directory

String

Secret Key Secret Key generated during account creation at vendor String

AD Tenant ID Azure tenant ID generated during account creation at vendor String

Subscription ID Subscription ID generated during account creation at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-83

Chapter 5 Using Cloud Provider Services
where hostname is the hostname of the machine where the PBS Cloud web interface is installed. This is the
URL that is used to log in to PBS Cloud.

f. Register the application: click Register.

Once the application registration is complete, its details are displayed, including an Application ID.

g. To get the application ID for PBS Cloud, hover over the Application (client) ID and click the copy-to-clipboard
icon when it appears.

h. Store the application ID to a file. You will need this later when you add the vendor cloud account to PBS
Cloud.

1. Create a client secret key for PBS Cloud:

a. Under, Manage, click Certificates and secrets.

Figure 5-7:Certificates and Secrets

b. Under Client secrets, click New client secret.

c. Enter the following to add a client secret:

1. For DESCRIPTION, enter pc_client_secret.

2. For EXPIRES, select Never.

d. Click Add to generate the client secret key.

You will see the client secret key under the heading VALUE.

e. Click the copy icon next to the client secret key.

f. Store the client secret key to a file. The client secret key is used later to create a cloud account in PBS Cloud.
CG-84 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
2. Get your Azure subscription ID:

a. Using the search box, enter subscription. A list of search results is listed.

b. Under Services, click Subscriptions.

c. Locate and click your subscription to see details about the subscription, including its Subscription ID.

d. Hover over the Subscription ID and click on the copy icon when it appears.

e. Store the Subscription ID value to a file. You will use the Subscription ID later when you add the vendor
cloud account to PBS Cloud.

3. Assign an access control role to PBS Cloud.

a. Click Access control (IAM).

Figure 5-8:Add Access Controls

b. Click Add.

c. Click Add role assignment.

d. In the Add role assignment panel, enter the following to assign a role to PBS Cloud.

1. For Role, select Contributor.

2. For Assign access to, select Azure AD user, group, or service principal.

3. For Select, search for the newly registered application by entering its name, e.g., pbs_cloud.

4. Select the application by clicking on it.

e. Click Save.

4. Obtain your Azure tenant ID:

a. At the top of the web page, click ?.

b. Click Show diagnostics.

A dialog box is displayed allowing a file called PortalDiagnostics.json to be saved.

c. Open the file using any text editor.

d. Search for tenantId.

e. Store the value of tenantId to a file. You will use the Tenant ID later to add the vendor cloud account to PBS
Cloud.

5.2.3 Create a Resource Group

Azure documentation can be found at Manage Azure resources through portal.
PBS Professional 2022.1.0 Cloud Guide CG-85

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resources-portal?toc=%2Fen-us%2Fazure%2Farchitecture%2Ftoc.json&bc=%2Fen-us%2Fazure%2Farchitecture%2Fbread%2Ftoc.json

Chapter 5 Using Cloud Provider Services
A resource group is container that holds related resources for an Azure solution. The resource group can include all the
resources for the solution, or only those resources that you want to manage as a group. You decide how you want to allo-
cate resources to resource groups based on what makes the most sense for your organization. Once the resource group is
created, resources that are placed into the resource group are a virtual network, a virtual machine, and an image of the
virtual machine.

1. Log in to your Microsoft Azure account.

2. Using the search box, enter resource groups. A list of search results is listed.

3. Under Services, click Resource Groups.

4. Click Add.

5. Enter the following to configure the basic settings for the resource group:

a. For Project Details enter the following:

• For Subscription, choose the subscription to be billed for the use of the VM.

• For Resource group, enter a name for the resource group.

The name can be anything meaningful to your organization, e.g., bursting_resource_group.

b. For Resource Details enter the following:

• For Region, select a location based on the geographical location of users.

6. Click Review + create.

7. Click Create.

It may take a moment to create the resource group. All resources (networks, virtual machines, etc.) that are created are
placed within this resource group. The name of the resource group is required for creating a bursting scenario in PBS
Cloud.

5.2.4 Create a Virtual Network

Azure documentation can be found at Virtual Network Documentation.

1. Log in to your Microsoft Azure account.

2. Using the search box, enter virtual networks. A list of search results is listed.

3. Under Services, click Virtual networks.

4. Click Add.

5. For Name, enter a name for the virtual network.

The name can be anything meaningful to your organization, e.g., bursting_virtual_network

6. For Address space, enter an address range for the network using CIDR notation.

7. For Subscription, select the same subscription as was selected for the previously created resource group.

8. For Resource group, select the previously created resource group.

9. For Location, select the same geographical location as was selected for the previously created resource group.

10. For Subnet, enter the following:

a. For Name, enter a name for the virtual machine's subnet.

The name can be anything meaningful to your organization, e.g., bursting_subnet

b. For Address range, enter an address range for the subnet in CIDR notation.

11. Click Create.
CG-86 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
It may take a moment to create the virtual network. The name of the virtual network is required for creating a burst-
ing scenario in PBS Cloud.

5.2.5 Create a Virtual Machine

You may want to view the following web page to learn about Azure Managed Disks before creating a VM. Additionally,
a video is available from Microsoft that shows how to create a virtual machine: Create a Linux Virtual Machine.

1. Log in to your Microsoft Azure account.

2. Using the search box, enter virtual machines. A list of search results is listed.

3. Under Services, click Virtual machines.

4. Click Add.

Enter the following to configure the basic settings for the virtual machine:

5. For Project Details enter the following:

a. For Subscription, choose the subscription to be billed for the use of the VM.

b. For Resource group, choose the previously created resource group.

c. For Virtual machine name, enter a name for the virtual machine.

The name can be anything meaningful to your organization, e.g., bursting-vm.

d. For Region, select the same geographical location as was selected for the previously created resource group.

e. For Availability options, choose No infrastructure redundancy required.

f. For Image, click the Browse all public and private images link.

g. Using the search box:

• On Linux platforms, enter CentOS 7 or RHEL 7 and press ENTER.

• On Windows platforms, enter Windows and press ENTER.

h. Locate the appropriate image and select it.

• On Linux platforms, cloud bursting has been tested on on CentOS 7.2 - 7.6.

• On Windows platforms, cloud bursting has been tested on Windows 10 and Windows Server 2012.

i. For Size, click the Change size link and select an instance size appropriate for your site's workload based on:

• the number of cores

• the amount of memory

• storage

• network performance

Consider the nature of the applications that you plan to deploy on the instance, the number of users that you
expect to use the applications, and also how you expect the load to scale in the future. Remember to also factor
in the CPU and memory resources that are necessary for the operating system.

j. Click Select.

6. For Administrator Account, enter a user account :
PBS Professional 2022.1.0 Cloud Guide CG-87

Chapter 5 Using Cloud Provider Services
This user will have sudo rights and will be able to connect to the VM to install the PBS MoM.

• On Linux platforms:

• For Authentication type, enable SSH public key.

• For Username, enter a username of a user account that exists on your site's PBS Server.

• For SSH public key, copy the SSH public key (i.e., id_rsa.pub) of the user account and paste it.

• On Windows platforms:

• For Username, enter a username.

• For Password, enter a password.

7. For Inbound Port Rules, enter the following:

a. For Public inbound ports, enable Allow selected ports.

b. For Select inbound ports:

• For Linux platforms, enable SSH (22).

• For Windows platforms, enable RDH (3389).

8. Click Next.

Enter the following to configure the storage settings for the virtual machine:

9. For Disk Options, enter the following:

a. For OS disk size, choose an appropriate disk size based on your site's needs.

b. For OS disk type, choose one of the following options:

• Premium SSD

• Standard SSD

• Standard HDD

Choose SSD for I/O-intensive applications, where low latency and high throughput are critical. For testing, con-
sider HDD to keep costs down, as you scale up and down quickly.

1. For Advanced, enter the following:

a. Click Advanced.

b. For Use managed disks, choose one of the following options:

• Yes to use managed disks.

• No to not use managed disks.

Enable this feature to have Azure automatically manage the availability of disks to provide data redundancy and
fault tolerance, without creating and managing storage accounts on your own. This option is recommended by
Azure as it is a lot more scalable.

1. Click Next.

Enter the following to configure the networking settings for the virtual machine:

2. For Network Interface, enter the following:

• For Virtual network, choose the virtual network previously created.

3. Click Review + create.

4. Click Create.

It may take a few minutes for the VM to be deployed. You will use this virtual machine to create an OS image.

Once the virtual machine is deployed a message is displayed indicating success, click on Go to resource.
CG-88 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.2.6 Install a PBS MoM on the VM

5.2.6.1 Install a PBS MoM on a Linux VM

1. Log in to your site's PBS server host as the user account (username and the public SSH key) provided during the cre-
ation of the VM.

2. SSH into the virtual machine using the public IP address of the VM:

ssh IPV4PublicIP

where IPV4PublicIP is the public IP address of the virtual machine.

Figure 5-9:Bursting Virtual Machine

3. Enter the command:

sudo -i

4. Copy the PBS Professional installation package to the VM. Use SCP to copy the tarball file from the PBS server
host to the virtual machine. For more information, see Move files to and from a Linux VM using SCP.

5. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

6. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

7. If cloud-init is not installed, install it.

5.2.6.2 Install a PBS MoM on a Windows VM

You will use an RDP client to access the virtual machine. A connection can be established to the Windows virtual
machine through the Azure portal. For more information see How to connect and sign on to an Azure virtual machine
running Windows.

You will copy the PBS Professional installer package to the virtual machine. Use RDP to map a local drive to gain access
to the installer package.

1. Log in to the Azure portal.

2. Using the search box, enter virtual machines.

3. Under Services, click Virtual machines.

4. Select the Windows virtual machine created for cloud bursting by clicking its name.
PBS Professional 2022.1.0 Cloud Guide CG-89

Chapter 5 Using Cloud Provider Services
5. Click Connect.

6. Click the RDP tab.

7. Click Download RDP File.

8. Open the file.

9. Click Connect.

10. Enter the password that was established for the Administrator Account when creating the virtual machine.

11. Click OK.

12. Click Yes to connect even if there are certificate errors.

A connection is established with the Windows virtual machine.

13. Copy the PBS Professional installation package to the VM.

14. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MoM.

15. Configure the VM for your site's environment such as mounting file systems, connecting it to the authentication ser-
vice, installing any applications, etc.

5.2.7 Add Authentication and Encryption

5.2.7.1 Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.

To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.

4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge

7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"

8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE
CG-90 PBS Professional 2022.1.0 Cloud Guide

https://github.com/dun/munge/wiki/Installation-Guide

Using Cloud Provider Services Chapter 5
9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.2.7.2 Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.

To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom

For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.
PBS Professional 2022.1.0 Cloud Guide CG-91

Chapter 5 Using Cloud Provider Services
5.2.8 Create an OS Image

5.2.8.1 Create a Linux OS Image

Creating an OS image requires the Azure CLI. Refer to these instructions for installing the CLI: How to install the Azure
CLI. We recommend installing the CLI on a Windows or Mac machine and then using the command prompt to execute
the CLI commands.

Before you can create an OS image of the previously created VM, you must first SSH into the VM and deprovision it.
Next you will use the Azure CLI to deallocate and generalize the VM and then create the image. Generalizing the virtual
machine removes any SSH keys and DNS settings from the VM.

Follow Step 1 and Step 2 as documented in "How to create an image of a virtual machine or VHD" to create an image of
the VM.

Before you can deallocate the virtual machine you may have to execute the following commands to set your subscription
to be the active subscription:

az account list

az account set --subscription <your subscription ID>

You can now delete the virtual machine so that you are no longer charged for it.

5.2.8.2 Create a Windows OS Image

You will generalize the VM using Sysprep. For more information see Create a managed image of a generalized VM in
Azure.

1. Log in to the Azure portal.

2. Using the search box, enter virtual machines.

3. Under Services, click Virtual machines.

4. Select the Windows virtual machine created for cloud bursting by clicking its name.

5. Click Connect.

6. Click the RDP tab.

7. Click Download RDP File.

8. Open the file.

9. Click Connect.

10. Enter the password that was established for the Administrator Account when creating the virtual machine.

11. Click OK.

12. Click Yes to connect even if there are certificate errors.

13. Open a Command Prompt window as an administrator.

14. Using Windows Explorer, navigate to the directory C:\Windows\System32\Sysprep.

15. Right-click sysprep.exe and select Run as Administrator.

16. For System Cleanup Action, choose Enter System Out-of-Box Experience (OOBE).

17. Enable the Generalize check box.

18. For Shutdown Options, choose Shutdown.

19. Click OK.
CG-92 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
20. Once the VM is shut down, close the RDP session.

21. Navigate to the browser window where the Azure portal is open and the VM details are displayed.

22. Click Capture.

23. For name, enter a name for the image.

The name of the image should contain the string "windows" (case insensitive). For example, Windows Server 2012
R2 Datacenter.

24. For Resource group, choose the previously created resource group.

25. For Type the virtual machine name, enter the name of the VM.

26. Click Create.

27. You can now delete the virtual machine so that you are no longer charged for it.

5.2.9 Collect Information for an Azure Cloud Bursting

Scenario

5.2.9.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters. We will remind you about each one:

Table 5-3: Scenario Parameters for Microsoft Azure

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String

Resource group name Name of resource group (virtual network, virtual machine, OS image) cre-
ated at vendor

String

Network name Name of virtual network created at vendor

If the network is in a different resource group from the one specified, enter it
as Resource Group Name/Virtual Network Name

String

Subnetwork name Name of virtual subnet created at vendor String

Network security
group name

Name of network security group for resource group String
PBS Professional 2022.1.0 Cloud Guide CG-93

Chapter 5 Using Cloud Provider Services
5.2.9.2 Steps to Collect Information

Open a browser window and log in to your Microsoft Azure account.

For information on virtual machine scale sets, see the following Azure article about scale sets: What are virtual machine
scale sets.

A bursting scenario requires a resource group, but other scenario resources (network, subnet, network security group and
the OS image) can all reside in a different resource group. However, the resource groups must be in the same geographic
location for this to work.

28. In the menu located on the left-hand side of the web page, click Resource Groups.

29. Copy the name of the resource group created for cloud bursting.

30. Save the name of the resource group to a file. You will use this later when you create the bursting scenario.

31. In the menu located on the left-hand side of the web page, click Virtual Networks.

32. Copy the name of the virtual network created for cloud bursting.

33. Save the name of the network to a file. You will use this later when you create the bursting scenario.

34. Select the virtual network created for cloud bursting.

35. Click Subnets.

Figure 5-10:Subnet

36. For Subnet name, copy the name of the subnet created for the cloud bursting virtual network.

Managed Storage Managed disk feature selected at vendor Boolean

OS Image If using managed disks, name of the image.

If not using managed disks, Linux Source BLOB URI.

String

Maximum number of
VMs inside a scale set
with managed storage
and a single placement
group

Limit selected during configuration at vendor.

Default: 100

Integer

Table 5-3: Scenario Parameters for Microsoft Azure

Scenario
Parameter

What to Collect During Configuration at Vendor Format
CG-94 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
37. Save the name of the subnet to a file. You will use this later when you create the bursting scenario.

38. In the menu located on the left-hand side of the web page, click Resource Groups.

39. Select the Resource Group created for cloud bursting.

40. In the list, locate the Network Security group created for cloud bursting. The Type is Network Security group.

41. Copy the name of the network security group.

42. Save the name of the network security group to a file. You will use this later when you create the bursting sce-
nario.

43. In the menu located on the left-hand side of the web page, click Resource Groups.

44. Select the Resource Group created for cloud bursting.

45. In the list, locate the image that was created for cloud bursting. The Type is Image.

46. Select the image.

47. Choose one of the following options:

• If you chose to use managed disks when you created the VM, copy the name of the image.

• If you did not choose to use managed disks when you created the VM, copy the Linux Source BLOB URI.

48. Save the name of the image or the Linux Source BLOB URI to a file. You will use this later when you create the
bursting scenario.

5.3 Configuring Google Cloud Platform Cloud

Bursting

5.3.1 Sign Up for a GCP Account

Sign up for a GCP user account. This is different from a GCP service account. Go to the Google Account signup page.

5.3.2 Create a Project

Google Cloud Platform projects form the basis for creating, enabling, and using all Cloud Platform services including
managing APIs, enabling billing, adding and removing collaborators, and managing permissions for Cloud Platform
resources. GCP documentation can be found at Creating and Managing Projects.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click Home.

4. Click Create.

5. For Project Name, enter a name for the project.

The name can be anything meaningful to your organization, e.g., pc_cloudproject.

6. Click Create.

It may take a few moments to create the project.

7. Using a browser, navigate to the following URL: https://console.developers.google.com/ apis/library/com-
pute.googleapis.com?project=PROJECTNAME
PBS Professional 2022.1.0 Cloud Guide CG-95

Chapter 5 Using Cloud Provider Services
where PROJECTNAME is the name of the project.

8. Click Enable.

5.3.3 Create a Service Account

GCP documentation can be found at Understanding Service Accounts and Compute Engine IAM Roles .

A service account is a special Google account that is used by applications to use the Google Cloud APIs. PBS Cloud will
use a service account to manage cloud nodes.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click IAM & admin > Service accounts.

4. Click CREATE SERVICE ACCOUNT.

5. Enter the following to create a service account:

a. For the Service account name, enter a name for the service account.

The name can be anything meaningful to your organization, e.g., pc-service-account.

b. Click CREATE.

c. For the Project role, click Select a role > Compute Engine > Compute Admin. This role gives full control of all
Compute Engine resources.

d. Click CONTINUE.

e. Under Create key (optional), click CREATE KEY.

f. For Key type, enable JSON.

g. Click CREATE.

h. Save the JSON file in a secure location. Use the dialog box to choose a place to save it. You will need this
information later when you add the provider account to PBS Cloud.

6. Make sure you have downloaded a JSON file containing the following:

• Project ID

• Client ID

• Client email

• Private key ID

• Private key

7. Click CLOSE.

8. Click DONE.

5.3.4 Create a Virtual Private Cloud Network

GCP documentation can be found at Virtual Private Cloud Documentation and Using VPC Networks .

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click VPC network > VPC networks.

4. Click CREATE VPC NETWORK.
CG-96 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5. Enter the following to create a VPC:

a. For the Name, enter a name for the VPC.

The name can be anything meaningful to your organization, e.g., bursting-vpc.

b. In the Subnets section, click the Custom tab under Subnet creation mode.

c. For Name, enter a name for the subnet.

The name can be anything meaningful to your organization, e.g., bursting-subnet.

d. For Region, select a Region based on the geographical location of users.

e. For IP address range, enter an IP address range using CIDR notation

f. For Private Google access, enable Off.

g. Click Done.

h. For Dynamic routing mode, enable Regional.

6. Click Create.

Creating the VPC network may take some time. Do not proceed until the VPC is created.

7. Select the VPC by clicking on its name.

8. Click the Firewall rules tab.

9. Click CREATE FIREWALL RULE.

10. Enter the following to create a firewall rule:

a. For Name, enter a name for the firewall rule.

The name can be anything meaningful to your organization, e.g., ssh-all.

b. For Direction of Traffic, enable Ingress.

c. For Action on match, enable Allow.

d. For Targets, select All instances in the network.

e. For Source filter, select IP ranges.

f. For Source IP ranges, enter the IP address of the PBS Cloud firewall

g. For Protocols and ports, enable Specified protocols and ports.

h. Enable tcp.

i. Enter 22.

11. Click Create.

5.3.5 Create a Virtual Machine

GCP documentation can be found at Virtual Machine Instances and Creating and Starting a VM Instance.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute Engine > VM instances.

4. Click CREATE INSTANCE.
PBS Professional 2022.1.0 Cloud Guide CG-97

Chapter 5 Using Cloud Provider Services
5. Enter the following to create a virtual machine:

a. For the Name, enter a name for the virtual machine.

The name can be anything meaningful to your organization, e.g., bursting-vm.

b. For Zone, select a zone that is in the same Region as the subnet of the previously created VPC.

c. In the Machine type, click the Customize link.

Figure 5-11:Customize the Machine Type

d. Specify the CPUs, GPUs and RAM.

Consider the nature of the applications that you plan to deploy on the instance, the number of users that you
expect to use the applications, and also how you expect the load to scale in the future. Remember to also factor
in the CPU and memory resources that are necessary for the operating system.

e. For Boot disk, click Change.

f. Choose CentOS 7.

g. For Boot disk type, choose one of the following options:

• Standard persistent disk

• SSD persistent disk

Choose SSD for I/O-intensive applications, where low latency and high throughput are critical. For testing, con-
sider Standard persistent disk to keep costs down.

h. For Size, specify the size of the boot disk.

i. Click Select.

j. Under Identity and API access, for Service Account, select No service account.

k. For Firewall, choose Allow HTTP traffic.

l. Click Management, disks, networking, SSH Keys.

m. Click the Networking tab.

n. Click Add network interface.

o. For Network, choose the VPC you previously created for bursting.

p. For Network Service Tier, click Standard.

q. Click Done.

r. Delete any default network interfaces that might have been automatically generated.

s. Click the Security tab.

t. For SSK Keys, copy the SSH public key (i.e., id_rsa.pub) of the administrator account that exists on your site's
PBS server host and paste it.

This user will have sudo rights and will be able to SSH into the VM to install the PBS MoM.

6. Click Create.

Creating the virtual machine may take some time.
CG-98 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.3.6 Install and Configure a PBS MoM on the VM

1. Log in to your site's PBS Server as the user account (public SSH key) provided during the creation of the VM.

2. SSH into the virtual machine using the public IP address of the VM:

ssh <public IP address of VM>

Figure 5-12:Bursting Virtual Machine

3. Switch to root:

sudo -i

4. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

5. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

6. If cloud-init is not installed, install it.

5.3.7 Add Authentication and Encryption

5.3.7.1 Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.

To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.

4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge

7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"
PBS Professional 2022.1.0 Cloud Guide CG-99

https://github.com/dun/munge/wiki/Installation-Guide

Chapter 5 Using Cloud Provider Services
8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE

9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.3.7.2 Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.

To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom

For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.
CG-100 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.3.8 Create an OS Image

GCP documentation can be found at Creating, Deleting, and Deprecating Custom Images.

1. Log in to the GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute Engine > VM instances. A list of virtual machines is displayed.

4. Click the three vertical dots next to the virtual machine that was created for cloud bursting.

Figure 5-13:Bursting Virtual Machine

5. Click Stop.

It may take some time for the VM to be stopped. Do not proceed until the VM is stopped.

6. In the menu located on the left-hand side of the web page, click Images .

7. Click CREATE IMAGE.

8. Enter the following to create an image:

a. For Name, enter a name for the image.

The name can be anything meaningful to your organization, e.g., bursting-image.

b. For Source select Disk.

c. For Source disk, select the previously created virtual machine.

9. Click Create.

It may take some time to create the image. Do not proceed until the image is created.

10. You can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over time to
create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.

5.3.9 Collect Information for GCP Cloud Bursting Scenario

5.3.9.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters. We will remind you about each one:

Table 5-4: Scenario Parameters for Google Cloud Platform (GCP)

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String
PBS Professional 2022.1.0 Cloud Guide CG-101

Chapter 5 Using Cloud Provider Services
5.3.9.2 Steps to Collect Information

1. Open a browser window and log in to your GCP console.

2. Click located in the upper left-hand corner of the web page.

3. Click VPC network > VPC networks.

4. Click on the name of the VPC that was created for cloud bursting. VPC network details are displayed.

5. Copy the name of the VPC network.

6. Save the name of the VPC network. You will use this later when you create a bursting scenario.

7. Copy the name of the VPC network subnet.

8. Save the name of the VPC subnet. You will use this later when you create a bursting scenario.

9. Click located in the upper left-hand corner of the web page.

10. Click Compute Engine > Images.

11. Select the image created for cloud bursting.

12. Click Equivalent REST

13. Copy the value for the entry called selfLink.

14. Save this value. You will use this later when you create a bursting scenario.

15. Click Next.

Network name Name of VPC network for cloud bursting created at vendor String

Subnetwork name Name of VPC network subnet created at vendor String

OS Image URI Choose image, click "REST Equivalent", collect value of "selfLink"
name-value pair

(This gives path to the OS image)

String

Table 5-4: Scenario Parameters for Google Cloud Platform (GCP)

Scenario
Parameter

What to Collect During Configuration at Vendor Format
CG-102 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.4 Configuring Oracle Cloud Platform Cloud

Bursting

While you are working your way through the following sections, make sure you save the items in the following table for
later when you add the vendor account to PBS Cloud. We will remind you about them:

5.4.1 Sign Up for an Oracle Cloud Account

Sign up for an Oracle Cloud account and get an associated tenancy. Oracle documentation can be found at Adding Users
and Resource Identifiers.

5.4.2 Create Oracle Cloud User Account

Click located in the upper left-hand corner of the web page.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click Identity > Users.

3. Click Create User.

4. Enter the following to create the user:

a. For NAME, enter a name for the user.

The name can be anything meaningful to your organization, e.g., pc_clouduser.

b. For DESCRIPTION, enter a description of the user.

5. Click Create.

The user account is created and displayed in the users list.

6. Click Show located under the name of the user. The user account's OCID is displayed.

7. Click Copy to copy the OCID.

8. Store the user OCID to a file. You will need this later when you add the account to PBS Cloud.

9. Click Group from the menu located on the left-hand side of the web page.

10. Click Create Group.

Table 5-5: Account Parameters for Oracle

Account Parameter What to Collect During Configuration at Vendor Format

User OCID User OCID generated when creating Oracle cloud user account at vendor String

Tenant OCID Tenancy OCID generated at vendor String

Compartment OCID Root compartment OCID generated at vendor String

Fingerprint OCID Fingerprint generated when adding the public SSH key for Oracle user at
vendor

String

Private Key RSA private key generated at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-103

Chapter 5 Using Cloud Provider Services
11. Enter the following:

a. For Name, enter Administrators.

b. For Description, enter a description for the group.

c. Click Submit.

The group is created and is displayed in the Groups list.

12. Click on the name of the group.

13. Click Add User to Group.

a. For User, select the user that was previously created (e.g., pc_clouduser).

b. Click Add.

14. Click located in the upper left-hand corner of the web page.

15. Click Identity > Policies.

16. Click Create Policy.

a. For Name, enter a name for the policy.

b. For Policy Versioning, enable Keep Policy Current.

c. For Policy Statements, enter: ALLOW GROUP Administrators to manage all-resources IN TENANCY

d. Click Create.

5.4.3 Generating an SSH Public Key for the Oracle Cloud

User

You will use OpenSSL to create a private and public key in a PEM format for the previously created Oracle Cloud user.

If you're using Windows, you'll need to install Git Bash for Windows and run the commands with that tool.

1. Generate a private key by executing the following command:
openssl genrsa -out oracle_private_key.pem 2048

We recommend changing the permissions on this file so that only you have read/write access.

2. Save the private key file. You will need this later when you add the vendor to PBS Cloud.

3. Generate the public key by executing the following command:

openssl rsa -pubout -in oracle_private_key.pem -out oracle_public_key.pem

4. Log in to the Oracle Cloud Infrastructure console.

5. Click located in the upper left-hand corner of the web page.

6. Click Identity > Users.

7. Click the name of the previously created user (e.g., pc_clouduser).

8. Click Add Public Key.

9. Copy and paste the contents of the public RSA key file.
CG-104 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
10. Click Add to generate a fingerprint:

Figure 5-14:Public Key Fingerprint

11. Copy the fingerprint.

12. Store the fingerprint to a file. You will need the fingerprint later to add the vendor account to PBS Cloud.

5.4.4 Obtain the Root Compartment Identifier

Oracle documentation can be found at Understand Compartments.

When your tenancy is provisioned, a root compartment is created for you. Compartments can be used to organize and
isolate your resources to make it easier to manage and secure access to them. Your root compartment holds all of your
cloud resources. You can think of the root compartment like a root folder in a file system. The first time you sign in to the
Oracle Cloud Console and select a service, you will see your root compartment. All the resources required for cloud
bursting will be contained in this root compartment. You will need the root compartment's resource identifier to add an
Oracle cloud account to PBS Cloud.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Identity > Compartments.

4. Click Show located under the name of the root compartment. The compartment's OCID is displayed.

5. Click Copy to copy the OCID.

6. Store the root compartment OCID to a file. You will need this later when you add the vendor to PBS Cloud.

5.4.5 Obtain the Tenancy Identifier

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Administration > Tenancy Details.

4. Under Tenancy Information, click Show located to the right of OCID:
PBS Professional 2022.1.0 Cloud Guide CG-105

Chapter 5 Using Cloud Provider Services
The tenancy's OCID is displayed.

Figure 5-15:Tenancy OCID

5. Click Copy to copy the OCID.

6. Store the tenancy OCID to a file. You will need this later when you add the vendor cloud account to PBS Cloud

5.4.6 Create a Virtual Cloud Network

Oracle documentation can be found at Overview of Networking and Creating a Virtual Cloud Network.

Make sure that the VCN has a subnet associated with each of the region's availability domains.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Networking > Virtual Cloud Networks.

4. Choose a region based on the geographical location of your users. Use the REGION pull-down menu.

5. Click Create Virtual Cloud Network.

6. Enter the following to create a VCN:

a. For CREATE IN COMPARTMENT, select the root compartment.

b. For NAME, enter a name for the VCN.

The name can be anything meaningful to your organization, e.g., bursting_vcn.

c. Enable CREATE VIRTUAL CLOUD NETWORK PLUS RELATED RESOURCES.

Choosing this option automatically creates a VCN with a CIDR block 10.0.0.0/16, an internet gateway, a route
rule to enable traffic to and from the internet gateway, the default security list, the default set of DHCP options,
and one public subnet per availability domain.

7. Click Create Virtual Cloud Network.

A summary of the VCN, internet gateway, default route table, and subnets is displayed.

8. Click Close.
CG-106 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
A list of VCNs is displayed.

Figure 5-16:Virtual Machine Subnets and Associated Availability Domains

9. Click the name of the VCN.

The subnets are displayed. A subnet is created for each availability domain (data center) located in the previously
selected region.

5.4.7 Check Tenancy Service Limits

When you sign up for Oracle Cloud Infrastructure, a set of service limits are configured for your tenancy. The service
limit is the quota or allowance set on a resource. For example, your tenancy is allowed a maximum number of compute
instances (virtual machines) per availability domain. These limits are generally established with your Oracle sales repre-
sentative when you purchase Oracle Cloud Infrastructure. Oracle documentation can be found at Service Limits and
Regions and Availability Domains.

When you reach the service limit for a resource, you receive an error when you try to create a new resource of that type.
You cannot create a new resource until you are granted an increase to your service limit or you terminate an existing
resource.

View your tenancy's limits to ensure that there are sufficient resources available in a region's availability domains.

1. Log in to the Oracle Cloud Infrastructure console.

2. Choose the region where the previously created VCN is hosted. Use the REGION pull-down menu.

3. Click located in the upper left-hand corner of the web page.

4. Click Governance > Service Limits.

5. Scroll down to the Service Limits section.

6. Click Compute.
PBS Professional 2022.1.0 Cloud Guide CG-107

Chapter 5 Using Cloud Provider Services
Availability domains (data centers) for the region are displayed. For each resource (VM shape) the number of nodes
that can be burst in the corresponding availability domains are displayed. In the below example, three nodes can be
burst in each data center in the us-phoenix-1 region for the VM Standard1.1 shape.

Figure 5-17:Virtual Machine Type Limits

7. Verify that the appropriate service limits are set for your tenancy based on the VM shape chosen for the virtual
machine and the region's availability domains.

To request an increase a service limits for your tenancy see Requesting a Service Limit Increase.

5.4.8 Creating a Virtual Machine

Virtual machines are hosted in availability domains (data centers) located in a region and are based on predefined VM
shapes. Before proceeding, determine the VM shape that your site requires for cloud bursting based on the number of
CPUs, memory, disk space, network bandwidth, and virtual network interface cards. While selecting the shape for a VM,
consider the nature of the applications that you plan to deploy on the instance, the number of users that you expect to use
the applications, and also how you expect the load to scale in the future. Remember to also factor in the CPU and mem-
ory resources that are necessary for the operating system.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute > Instances.

4. Choose the region where the previously created VCN is hosted. Use the REGION pull-down menu.
CG-108 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5. For COMPARTMENT, select the root compartment.

6. Click Create Instance.

7. Enter the following to create a virtual machine:

a. For NAME, enter a name for the VM.

The name can be anything meaningful to your organization, e.g., bursting_vm.

b. For AVAILABILITY DOMAIN, choose one of the region's availability domains.

The virtual machine is hosted in the chosen availability domain (data center). Choose the availability domain
that best suits your site's cloud bursting requirements based on the machine type of the virtual machine (VM
shape) and service limits.

c. For BOOT VOLUME, enable ORACLE-PROVIDED OS IMAGE.

d. For IMAGE OPERATING SYSTEM, choose CentOS 7.

e. For SHAPE TYPE, enable VIRTUAL MACHINE.

f. For SHAPE, select a VM shape.

Choose the VM shape that best suits your site's cloud bursting requirements based on number of CPUs, memory,
disk space, and network bandwidth.

g. For IMAGE VERSION, select the latest available one.

h. For BOOT VOLUME CONFIGURATION, enable CUSTOM BOOT VOLUME SIZE and enter a boot volume
size in GBs.

i. Enable PASTE SSH KEYS and copy the SSH public key (i.e., id_rsa.pub) of a user account that exists on your
site's PBS Server and paste it.

This user will have sudo rights and will be able to SSH into the VM to install the PBS MoM.

j. For VIRTUAL CLOUD NETWORK, choose the VCN that was created for cloud bursting.

k. For SUBNET, choose the subnet associated with the previously chosen availability domain.

8. Click Create Instance.
PBS Professional 2022.1.0 Cloud Guide CG-109

Chapter 5 Using Cloud Provider Services
Creating the virtual machine may take some time. It is done when the state is "Running".

Figure 5-18:Running Virtual Machine

5.4.9 Installing and Configuring a PBS MoM on the VM

1. Log in to your site's PBS Server as the user account provided during the creation of the VM.

2. SSH into the virtual machine using the default user "opc", the private SSH key of the user account provided during
the creation of the VM and the External IP assigned to the VM.

ssh -i PRIVATE_KEY_PATH opc@PUBLIC_IP_ADDR

Where PRIVATE_KEY_PATH is the path to the file that contains the private SSH key of the user account provided
during the creation of the VM and PUBLIC_IP_ADDR is the public IP address of the VM.

Figure 5-19:Bursting Virtual Machine

3. Switch to root:

sudo -i
CG-110 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
4. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

5. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

6. If cloud-init is not installed, install it.

5.4.10 Add Authentication and Encryption

5.4.10.1 Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.

To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.

4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge

7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"

8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE

9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.4.10.2 Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.
PBS Professional 2022.1.0 Cloud Guide CG-111

https://github.com/dun/munge/wiki/Installation-Guide

Chapter 5 Using Cloud Provider Services
To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom

For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.

5.4.11 Create an OS Image

Oracle documentation can be found at Managing Custom Images.

1. Log in to the Oracle Cloud Infrastructure console.

2. Click located in the upper left-hand corner of the web page.

3. Click Compute > Instances.

A list of virtual machines is displayed.

4. Click the name of the virtual machine created for cloud bursting.

5. Click Create Custom Image.
CG-112 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
6. Enter the following to create a custom image:

a. For CREATE IN COMPARTMENT, select the root compartment.

b. For NAME, enter a name for the image.

The name can be anything meaningful to your organization, e.g., bursting_image.

7. Click Create Custom Image.

It may take some time to create the image. Do not proceed until the image is created.

8. You can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over time to
create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.

5.4.12 Collect Information for Oracle Cloud Bursting Scenario

5.4.12.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters. We will remind you about them:

5.4.12.2 Steps to Collect Information

Open a browser window and log in to the Oracle Cloud Infrastructure console.

9. Click located in the upper left-hand corner of the web page.

10. Click Networking > Virtual Cloud Networks.

11. Click the name of the VCN created for cloud bursting.

Table 5-6: Scenario Parameters for Oracle

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String

Subnet ID OCID of subnet associated with data center where cloud bursting virtual
machine is hosted,

String

OS Image URI Vendor link to bursting image OCID String
PBS Professional 2022.1.0 Cloud Guide CG-113

Chapter 5 Using Cloud Provider Services
12. Locate the subnet associated with the availability domain where the cloud bursting virtual machine is hosted.

Figure 5-20:Subnet and Associated Availability Domain

13. Click Show located under the name of the subnet.

The subnet's OCID is displayed.

14. Click Copy to copy the OCID.

15. Save the subnet OCID to a file. You will need this later when you create the bursting scenario.

16. Navigate to the Oracle Cloud Infrastructure browser window.

17. Click located in the upper left-hand corner of the web page.

18. Click Compute > Custom Images. A list of custom images is displayed.

19. Locate the custom image created from the cloud bursting virtual machine.

20. Click the Show link below the name of the image to view the OCID.

21. Click Copy to copy the OCID of the image.

22. Save the the image OCID to a file. You will need this later when you create the bursting scenario.

5.5 Configuring Orange Cloud Flexible Engine for

Cloud Bursting

5.5.1 Purchase an Orange Business Services Account

Purchase an Orange Business Services account. You will use your Orange ID and password to access the Flexible
Engine console. For more information visit Orange Cloud.

You should be able to log in to the Orange Cloud Customer space (https://selfcare.cloud.orange-business.com/) with the
credentials provided to you with your Orange Cloud account. You will also be provided with a domain name when you
sign up for your Orange Cloud account.
CG-114 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.5.2 Create an Orange Cloud Flexible Engine User Account

PBS Cloud will use an Orange Cloud user account to manage cloud nodes. Make sure that you collect the following
information while you are creating the user account (we will also remind you):

1. Go to the Orange Cloud Customer space login page.

2. Enter your Orange Cloud credentials.

3. Click Your services.

Figure 5-21:Orange Cloud Customer Space Services

4. In the navigation bar on the top click Users

5. Click Add user.

6. Enter the following user details:

a. For Civility, choose the form of address

b. For Last name, enter the user's last name.

c. For First name, enter the user's first name.

d. For Login, enter a login name for the user.

e. For Email, enter the user's email address.

f. For Phone number, enter the user's phone number.

g. For Mobile phone, enter the user's mobile phone number.

h. For Preferred language, choose the language in which the application should be displayed.

i. Click next.

Table 5-7: Account Parameters for Orange

Account Parameter What to Collect During Configuration at Vendor Format

Auth URL https://iam.<orange region>.<console link> String

User Domain Name Orange ID used to log in to Orange account. Same as domain name. String

Username Administrator username created at vendor String

Password API password generated at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-115

Chapter 5 Using Cloud Provider Services
7. In the Roles section enter these details:

a. For Billing, choose Visitor.

b. For Contracts, choose Account Manager.

c. For Dashboard, choose Visitor.

d. For Documents, choose Visitor.

e. For Orders, choose Visitor.

f. For Services, choose Visitor.

g. For Subscriptions, choose Visitor.

h. For Support, choose Visitor.

i. For Users, choose Manager.

j. For Flexible Engine Console, choose admin.

k. Click next.

8. In the Summary section review your choices. Click previous to edit your choices.

9. Click finish.

The new user account is created and displayed in the list of users. Emails are sent to the email address you specified.
The emails will contain:

• Orange ID (Domain Name). This is the administrator username PBS Cloud will use to manage cloud nodes.

• Link to set Orange Password. This password is for the administrator to log into Web interface.

• Link to access Cloud Customer Space.

• Link to log in to the Flexible Engine Console.

• Link to define your API password. This password is used by the administrator account for making API requests;
PBS Cloud will use this to make API requests.

10. Click the link in the email to set your Orange Password.

11. Click the link in the email to set your API Password.

12. Store the API Password to a file. The API Password is used later to create a cloud account in PBS Cloud.

5.5.3 Select a Region

Define a region in the Orange Cloud Flexible Engine console to set up the infrastructure for cloud bursting.

A region is a geographic area where resources used by your ECSes are located. ECSes in the same region can communi-
cate with each other over an intranet, but ECSes in different regions cannot. Before setting up the infrastructure for cloud
bursting, it is important to ensure that all the resources are defined in the same region. An Authorization URL is required
for adding the Orange Cloud Flexible Engine cloud account in PBS Cloud. This is based on the region selected.

1. Log in to the Orange Cloud Flexible Engine console.

2. In the navigation bar on the top, pull down the region menu and select the region for setting up your infrastructure.

3. For the Authorization URL, (IAM URL), enter the URL in the following format based on the region you chose in the
Orange Cloud Flexible Engine console:

https://iam.<orange region>.<console link>

e.g. https://iam.eu-west-0.prod-cloud-ocb.orange-business.com

4. Store the region and Auth (IAM) URL in a file. You will use these to add the provider cloud account to PBS
Cloud.
CG-116 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.5.4 Check Orange Cloud Flexible Engine Account Service

Quota

Quotas are used to limit the number of resources available to users. It is important to ensure you are not exceeding your
quota while setting up the resources for cloud bursting. If the existing resource quota cannot meet your service require-
ments, you can submit a work order to increase your quota. Once your application is approved, Orange Cloud Flexible
Engine will update your resource quota accordingly and send you a notification.

1. Log in to the Orange Cloud Flexible Engine console.

2. In the navigation bar on the top right hand side, click

Information about resources usage and availability is displayed.

5.5.5 Create a Virtual Private Cloud

Orange Cloud Flexible Engine documentation for VPC can be found at:Virtual Private Cloud Documentation

1. Log in to the Orange Cloud Flexible Engine console.

2. In the top navigation bar select the region where you wish to deploy your cloud infrastructure.

3. From the Network section click Virtual Private Cloud.

4. Click + Create VPC.

5. In the Basic Information section:

a. For Region, ensure the VPC is the same region as the other resources.

a. For Name, enter a name for the VPC.

a. For CIDR Block, enter CIDR values for the VPC.

6. In the Subnet Settings section:

a. For the Subnet Settings choose the AZ (Availability Zone) as the same as the region.

b. For Subnet Name, enter a name to match the VPC Name.

c. Enter CIDR Block for Subnet.

d. For Advanced Settings, click Default.

7. Review the Configuration information.

8. Click Create Now.

9. Once the VPC is created, click the Back to VPC List.

10. Click Security Group in the left hand side menu.

11. Click + Create Security Group.

12. For Name, enter a name for the Security Group.

13. For Description, enter a suitable Description.

14. Click OK

15. By default, the Outbound and Inbound traffic over IPv4 is open. You can add firewall rules to this security group if
required.
PBS Professional 2022.1.0 Cloud Guide CG-117

Chapter 5 Using Cloud Provider Services
5.5.6 Creating a Virtual Machine

1. Log in to the Orange Cloud Flexible Engine console.

2. In the Computing section and click Elastic Cloud Server.

3. From the menu on the left hand side click Key Pair.

4. Click + Create Key Pair.

5. Enter a Name for the Key Pair.

6. Click OK.

7. Save the Key Pair (.pem) file to your local disk in a secure location. The information in this .pem file is used later to
SSH into the VM.

8. Click OK to confirm that you have downloaded the Key Pair file.

9. From the menu on the left hand side, click Elastic Cloud Server.

10. Click + Create ECS.

11. For Region, click the region you selected for setting up the infrastructure.

12. For AZ (Availability Zone), select the AZ related to the region.

13. In the Specifications section:

a. For ECS type, click one of the flavor names. Orange Cloud Flexible Engine provides a set of predefined ECS
types for specific requirements. Click a flavor name to get the list of available configurations.

b. Review the specifications you have selected.

14. In the Image section:

a. Click Public image.

b. From the drop down menu select CentOS

c. From the version drop down menu select Select OBS_U_CentOS_7.2(40GB)

15. In the Disk section select the defaults.

16. In the VPC section:

a. For VPC, select the VPC you created from the drop down menu.

a. For NIC, choose the default primary NIC.

b. For Security Group, select the Security Group you created for the VPC.

c. For EIP, click Automatically assign

d. For Bandwidth, specify it as 5 Mbit/s.

17. For Login Mode, select the Key Pair you generated earlier from the drop down menu.

18. For Auto Recovery, click Enable.

19. For Advanced Settings, click Do not configure.

20. For ECS Name, enter a name.

21. For Quantity, specify 1.

22. Review the Current Configuration.

23. Click Create Now.
CG-118 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
24. Review the Specifications.

25. Click Submit.

The ECS (Virtual Machine) is created and displayed in the list of ECS.

5.5.7 Installing and Configuring a PBS MoM on the VM

1. Log in to your site's PBS Server.

2. Log in to the Flexible Engine console.

3. In the Computing section, click Elastic Cloud Server.

4. In the search box above the upper right corner of the ECS list, enter the ECS name, IP address, or ID, and click the
search icon.

5. Click the name of the target ECS.

6. The page providing details about the ECS is displayed.

7. Copy the Public IP address (External IP) of the ECS.

8. SSH into the VM using the default user "cloud", the .pem file you generated when creating the VM, and the External
IP assigned to the VM. For more information about logging into the Linux ECS, refer to the Elastic Cloud Server
User Guide.

ssh -i /<path to .pem file>/<name of .pem file>.pem cloud@<public IP address of VM>

9. Switch to root:

sudo -i

10. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

11. Save the file.

12. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

13. If cloud-init is not installed, install it.

5.5.8 Add Authentication and Encryption

5.5.8.1 Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.

To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.
PBS Professional 2022.1.0 Cloud Guide CG-119

https://github.com/dun/munge/wiki/Installation-Guide

Chapter 5 Using Cloud Provider Services
4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge

7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"

8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE

9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.5.8.2 Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.

To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs
CG-120 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom

For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.

5.5.9 Create an OS Image

Orange Cloud Flexible Engine documentation can be found at Creating a Linux Private Image Using an ECS.

5.5.9.1 Prerequisites

Before creating the Image from the ECS, you must have.

• A Linux ECS in the Stopped state.

• Configured DHCP for the NICs of the ECS

• Configured Network attributes of the ECS

• Detached Data Disks from the ECS

5.5.9.2 Steps to Create OS Image

1. Log in to the Flexible Engine console.

2. In the Computing section, click Image Management Service.

3. On the Image Management Service page, click + Create Private Image.

4. In the Image Type and Source section, .

a. For Type, click System disk image

b. For Source, click ECS

c. Select the target ECS from the ECS list.

5. Set the required information, such as Name and Description.

6. Click Create Now.

7. Confirm the parameters and click Submit.

8. Switch back to the Image Management Service page to view the image status.

The time required for creating an image varies depending on the image file size. Generally, it takes about 20 minutes
to create an image. The image is successfully created when its image status changes to Normal.

Do not perform any operation on the selected ECS or its associated resources during image creation.

9. You can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over time to
create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.
PBS Professional 2022.1.0 Cloud Guide CG-121

Chapter 5 Using Cloud Provider Services
5.5.10 Create Orange Cloud Cloud Bursting Scenario

5.5.10.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters. We will remind you about them:

5.5.10.2 Steps to Collect Information

Open a browser window and log in to the Orange Cloud Flexible Engine console.

10. Click Service List in the menu bar.

Figure 5-22:Orange Cloud Flexible Engine Console

11. Under Network, click Virtual Private Cloud.

12. Click Virtual Private Cloud from the menu located on the left-hand side of the web page.

13. Click the name of the VPC you created for cloud bursting.

14. Click the name of the Subnet for the VPC.

15. Copy the Subnet ID.

16. Save the subnet ID to a file. You will need this later when you create a bursting scenario.

17. Click Security Group from the left hand side menu.

18. Click the name of the Security Group you created for the VPC.

19. Copy the ID of the Security Group.

20. Save the security group to a file. You will need this later when you create a bursting scenario.

21. Click Service List in the menu bar.

22. Under Computing, click Image Management Service.

23. Click the Private Images tab.

24. Click the name of the VM image you created for cloud bursting.

Table 5-8: Scenario Parameters for Orange

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your administrator account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String

Subnet ID ID of subnet for VPC created at cloud vendor String

Security Group ID ID of security group created at cloud vendor String

OS Image URI ID of OS image created at cloud vendor String
CG-122 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
25. Copy the ID of the image.

26. Save the OS Image ID to a file. You will need this later when you create a bursting scenario.

5.6 Configuring HUAWEI Cloud for Cloud Bursting

5.6.1 Create and Activate HUAWEI Account

Create and activate a HUAWEI Cloud account.

5.6.2 Get the HUAWEI Cloud Administrator Credentials

PBS Cloud will use the HUAWEI Cloud administrative user account to manage cloud nodes. While you are getting the
credentials for the administrative user account, make sure you capture the following information:

5.6.2.1 Choose Administrative User

You can create a new user and give the user administrative privileges, or you can use the administrative user account that
is automatically created when you subscribe to HUAWEI Cloud.

The automatically-created user is an administrative user account with permissions for all system operations.

If you create a new user, give the user administrative privileges by setting its User Group to "admin".

5.6.2.2 Get Credentials

1. Log in to the HUAWEI Cloud Console.

2. Click Service List.

Figure 5-23:HUAWEI Cloud Console

3. Under Management & Deployment, click Identity and Access Management.

4. Click Users from the menu located on the left-hand side of the web page. A list of users is displayed.

5. Click the down-arrow located next to a username to display the user's details.

Table 5-9: Account Parameters for Huawei

Account Parameter What to Collect During Configuration at Vendor Format

Auth URL https://iam.ap-southeast-1.myhwclouds.com String

User Domain Name Domain Name provided when your subscription to HUAWEI Cloud was cre-
ated

If you do not know your Domain name, contact HUAWEI Cloud support.

String

Username Administrator username created at vendor String

Password Administrator password created at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-123

Chapter 5 Using Cloud Provider Services
The user account listed as an "admin" is the account to use to create the cloud account in PBS Cloud.

Figure 5-24:User Details

6. If you do not know the password for the administrative user account, click Set Credentials.

Figure 5-25:Set Password

a. Enable Set manually.

b. For Password, enter a password for the user account.

c. For Confirm Password, enter the password a second time.

d. Save the password. You will need this later when you add the administrative user account to PBS Cloud.

e. Click OK.

You may have to confirm the password change either by email or by a SMS text.

5.6.3 Check HUAWEI Cloud Account Service Quotas

View your OTC account resource usage and limits.

Quotas are used to limit the number of resources available to users. It is important to ensure you are not exceeding your
quota while setting up the resources for cloud bursting. If the existing resource quota cannot meet your service require-
ments, you can submit a work order to increase your quota. Once your application is approved, HUAWEI Cloud will
update your resource quota accordingly and send you a notification.

1. Log in to the HUAWEI Cloud console.

2. Click Resources > My Quota.

Information about resources usage and availability is displayed.

5.6.4 Create a Virtual Private Cloud

HUAWEI Cloud documentation for creating a VPC can be found at: Creating a VPC and Regions and AZs.

1. Log in to the HUAWEI Cloud Console.

2. Click Service List in the menu bar.

3. Under Network, click Virtual Private Cloud.

4. Click + Create VPC.
CG-124 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5. In the Basic Information section:

a. For Region, select a region.

Regions are geographic areas isolated from each other. Resources are region-specific and cannot be used across
regions through internal network connections. For low network latency and quick resource access, select the
nearest region.

b. For Name, enter a name for the VPC.

c. For CIDR Block, enter an address range for the network using CIDR notation.

6. In the Subnet Settings section:

a. For the Subnet Settings choose the AZ (Availability Zone).

An Availability Zone is a physical location where resources use independent power supplies and networks. AZs
are physically isolated and AZs in the same VPC are interconnected through an internal network.

b. For Subnet Name, enter a name for the subnet.

c. For CIDR, enter an address range for the subnet using CIDR notation.

d. For Advanced Settings, click Default.

7. Click Create Now.

8. Click Back to VPC List.

9. Click Security Group in the left hand side menu.

10. Click + Create Security Group.

11. For Name, enter a name for the security group.

12. For Description, enter a suitable description.

13. Click OK.

14. By default, the Outbound and Inbound traffic over IPv4 is open. You can add firewall rules to this security group if
required.

5.6.5 Creating a Virtual Machine

HUAWEI Cloud documentation for creating an ECS (virtual machine) can be found at Purchase an ECS.

1. Log in to the HUAWEI Cloud Console.

2. Click Service List in the menu bar.

3. Under Computing, click Elastic Cloud Server.

4. Click Key Pair from the menu located on the left-hand side of the web page.

5. Click + Create Key Pair.

6. For Name, enter a name for the key pair.

7. Click OK.

8. Save the key pair (.pem) file to your local disk in a secure location. The information in this .pem file is used later to
SSH into the VM.

9. Click OK to confirm that you have downloaded the key pair file.

10. Click Elastic Cloud Server from the menu located on the left-hand side of the web page.

11. Click Buy ECS.
PBS Professional 2022.1.0 Cloud Guide CG-125

Chapter 5 Using Cloud Provider Services
12. For Billing Mode, click Pay-per-use.

13. For Region, select the same region that was chosen for the previously created VPC.

14. For AZ (Availability Zone), select the same AZ that was chosen for the previously created VPC.

15. In the Type section:

a. Choose an ECS type category:

• General computing

• General computing-plus

• Memory-optimized

• Large-memory

• High-performance computing

• Disk-intensive

b. For ECS type, click one of the flavor based on the needs of your site.

16. In the Image section:

a. Click Public image.

b. For Select an OS, select CentOS.

c. For Select an OS version, select CentOS 7.2 64bit(40GB).

17. In the Disk section, select your system disk requirements.

18. In the VPC section:

a. For VPC, select the VPC you created for cloud bursting. The NIC information is automatically populated.

b. For Security Group, select the security group you created for cloud bursting.

c. For EIP, click Automatically assign

d. For Bandwidth, specify it as 5 Mbit/s.

19. For Login Mode, select Key Pair.

20. For Key Pair, select the key pair file you generated earlier.

21. For Advanced Settings, click Not required.

22. For ECS Name, enter a name for the virtual machine.

23. For Quantity, specify 1.

24. Click Next.

25. Review the specifications.

26. Enable the I have read and agree to the Huawei Image Disclaimer checkbox.

27. Click Submit Application.

28. Click Back to ECS List.

It may take some time to create the virtual machine. Once the ECS is created it is displayed in the ECS list.

5.6.6 Installing and Configuring a PBS MoM on the VM

1. Log in to the HUAWEI Cloud console.

2. Click Service List in the menu bar.
CG-126 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
3. Under Computing, click Elastic Cloud Server.

4. Copy the Public IP address (External IP) of the ECS.

Figure 5-26:VM IP Address

5. Log in to your site's PBS Server.

6. SSH into the VM using the default user "root", the .pem file you generated when creating the VM and the External
IP assigned to the VM.

sh -i /path/my-key-pair.pem root@IPV4PublicIP

where /path/my-key-pair.pem is the path to the .pem file downloaded while creating the virtual machine and
IPV4PublicIP is the public IP address of the virtual machine.

7. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

8. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

9. If cloud-init is not installed, install it.

5.6.7 Add Authentication and Encryption

5.6.7.1 Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.

To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.

4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge
PBS Professional 2022.1.0 Cloud Guide CG-127

https://github.com/dun/munge/wiki/Installation-Guide

Chapter 5 Using Cloud Provider Services
7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"

8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE

9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.6.7.2 Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.

To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom
CG-128 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.

5.6.8 Create an OS Image

HUAWEI Cloud documentation can be found at Creating a Linux Private Image.

1. Log in to the HUAWEI Cloud console.

2. Click Service List in the menu bar.

3. Under Computing, click Image Management Service.

4. Click + Create Image.

5. For Region, select the same region that was chosen for the previously created VPC and ECS.

6. In the Image Type and Source section, .

a. For Type, click System disk image.

b. For Source, click ECS.

c. Select the virtual machine created for cloud bursting.

d. For Name, enter a name for the virtual machine.

7. Click Next.

8. Review the specifications.

9. Enable the I have read and agree to the Statement of Commitment to Image Creation and Huawei Image Disclaimer
checkbox.

10. Click Submit.

11. Click Back to Image List.

The time required for creating an image varies depending on the image file size. Generally, it takes about 20 minutes
to create an image. The image is successfully created when its image status changes to Normal.

Do not perform any operation on the selected ECS or its associated resources during image creation.

12. You can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over time to
create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.
PBS Professional 2022.1.0 Cloud Guide CG-129

Chapter 5 Using Cloud Provider Services
5.6.9 Collect HUAWEI Cloud Bursting Scenario Information

5.6.9.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters. We will remind you about them:

5.6.9.2 Steps to Collect Information

Open a browser window and log in to the HUAWEI Cloud console.

13. Click Service List in the menu bar.

14. Under Network, click Virtual Private Cloud.

15. Click Virtual Private Cloud from the menu located on the left-hand side of the web page.

16. Click the name of the VPC you created for cloud bursting.

17. Click the name of the VPC's subnet.

18. Copy the Subnet ID.

19. Save the subnet ID to a file. You will need this later when you create a bursting scenario.

20. Click Security Group from the menu located on the left-hand side of the web page.

21. Click the name of the security group you created for the VPC.

22. Copy the ID of the security group.

23. Save the security group to a file. You will need this later when you create a bursting scenario.

24. Click Service List in the menu bar.

25. Under Computing, click Image Management Service.

26. Click the Private Images tab.

27. Click the name of the VM image you created for cloud bursting.

28. Copy the ID of the image.

29. Save the OS Image ID to a file. You will need this later when you create a bursting scenario.

Table 5-10: Scenario Parameters for Huawei

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String

Subnet ID ID of subnet for VPC created at cloud vendor String

Security Group ID ID of security group created at cloud vendor String

OS Image URI ID of OS image created at cloud vendor String
CG-130 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.7 Configuring Open Telekom Cloud for Cloud

Bursting

5.7.1 Create and Activate OTC Cloud Account

Create and activate an OTC Cloud account.

5.7.2 Obtain the OTC Administrator Credentials

PBS Cloud will use the OTC administrative user account to manage cloud nodes. While you are getting the credentials
for the administrative user account, make sure you capture the following information:

5.7.2.1 Choose Administrative User

You can create a new user and give the user administrative privileges, or you can use the administrative user account that
is automatically created when you subscribe to OTC.

The automatically-created user is an administrative user account with permissions for all system operations.

If you create a new user, give the user administrative privileges by setting its User Group to "admin".

5.7.2.2 Get Credentials

1. Log in to the OTC Console.

2. Click Service List in the menu bar.

3. Under Management & Deployment, click Identity and Access Management.

4. Click Users from the menu located on the left-hand side of the web page. A list of users is displayed.

5. Click the down-arrow located next to a username to display the user's details.

Table 5-11: Account Parameters for Deutsche Telekom OTC

Account Parameter What to Collect During Configuration at Vendor Format

Auth URL https://iam.eu-de.otc.t-systems.com/v3 String

User Domain Name Deutsche Telekom: OTC domain name used to log in to OTC console at ven-
dor

String

Username Administrator username created at vendor String

Password Administrator password created at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-131

Chapter 5 Using Cloud Provider Services
The user account listed as an "admin" is the account to use to create the cloud account in PBS Cloud.

Figure 5-27:User Details

6. If you do not know the password for the admin user account, click Set Credentials

Figure 5-28:Set Password

7. Enable Set manually.

8. For Password, enter a password for the user account.

9. For Confirm Password, enter the password a second time.

10. Click OK.

You may have to confirm the password change either by email or by a SMS text.

5.7.3 Check OTC Account Service Quotas

Quotas are used to limit the number of resources available to users. It is important to ensure you are not exceeding your
quota while setting up the resources for cloud bursting. If the existing resource quota cannot meet your service require-
ments, you can submit a work order to increase your quota. Once your application is approved, OTC will update your
resource quota accordingly and send you a notification.

1. Log in to the OTC Console.

2. Click the three vertical bars in the menu bar:

Figure 5-29:Viewing Quotas
CG-132 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
You can see resource usage and availability:

Figure 5-30:Resource quotas and availability

5.7.4 Create a Virtual Private Cloud

OTC documentation for creating a VPC can be found at: Creating a VPC and Regions.

1. Log in to the OTC Console.

2. Click Service List.

3. Under Network, click Virtual Private Cloud.

4. Click + Create VPC.

5. In the Basic Information section:

a. For Region, select a region.

Figure 5-31:Regions

A region is a geographical areas and can comprise one or more availability zones (AZs). A region is completely
isolated from other regions. Only AZs in the same region can communicate with one another through an internal
network.

b. For Name, enter a name for the VPC.

c. For CIDR Block, enter an address range for the network using CIDR notation.

6. In the Subnet Settings section:

a. For Subnet Name, enter a name for the subnet.

b. For CIDR, enter an address range for the subnet using CIDR notation.

c. For Advanced Settings, click Default.

7. Click Create Now.

8. Click Back to VPC List.
PBS Professional 2022.1.0 Cloud Guide CG-133

Chapter 5 Using Cloud Provider Services
9. Click Security Group in the left hand side menu.

10. Click + Create Security Group.

11. For Name, enter a name for the security group.

12. For Description, enter a suitable description.

13. Click OK.

The security group rules are displayed.

14. Click the Inbound tab.

15. Click Add Rule.

a. For Protocol/Application, select TCP.

b. For Port, enter 22.

c. For Source, select IP Address. and enter the PBS Cloud firewall IP address.

d. Click OK.

5.7.5 Creating a Virtual Machine

OTC documentation for creating an ECS (virtual machine) can be found at Create an ECS.

1. Log in to the OTC Console.

1. Click Service List in the menu bar.

2. Under Computing, click Elastic Cloud Server.

3. Click Key Pair from the menu located on the left-hand side of the web page.

4. Click + Create Key Pair.

5. For Name, enter a name for the key pair.

6. Click OK.

7. Save the key pair (.pem) file to your local disk in a secure location. The information in this .pem file is used later to
SSH into the VM.

8. Click OK to confirm that you have downloaded the key pair file.

9. Click Elastic Cloud Server from the menu located on the left-hand side of the web page.

10. Click Create ECS.

11. For Region, select the same region that was chosen for the previously created VPC.

12. For AZ (Availability Zone), select an availability zone.
CG-134 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
13. In the Specifications section:

a. Choose an ECS type category:

• General-purpose

• Dedicated general-purpose

• Memory-optimized

• Large-memory

• High-performance

• Disk-intensive

• GPU-accelerated

b. For ECS type, choose one of the flavors based on the needs of your site.

14. In the Image section:

a. Click Public image.

b. Select a supported OS as the operating system.

c. Select a supported version of the OS.

15. In the Disk section, select your system disk requirements.

16. In the VPC section:

a. For VPC, select the VPC you created for cloud bursting. The NIC information is automatically populated.

b. For Security Group, select the security group you created for cloud bursting.

c. For EIP, click Automatically assign

d. For Bandwidth, specify it as 5 Mbit/s.

17. For Log in Mode, select Key Pair.

18. For Key Pair, select the key pair file you generated earlier.

19. For Advanced Settings, click Do not configure.

20. For ECS Name, enter a name for the virtual machine.

21. For Quantity, specify 1.

22. Click Create Now.

23. Review the specifications.

24. Click Submit.

25. Click Back to ECS List.

It may take some time to create the virtual machine. Once the ECS is created it is displayed in the ECS list.

5.7.6 Installing and Configuring a PBS MoM on the VM

1. Log in to the OTC Console.

2. Click Service List in the menu bar.

3. Under Computing, click Elastic Cloud Server.
PBS Professional 2022.1.0 Cloud Guide CG-135

Chapter 5 Using Cloud Provider Services
4. Copy the Public IP address (External IP) of the ECS.

Figure 5-32:VM IP Address

5. Log in to your site's PBS Server.

6. SSH into the VM using the default user "root", the .pem file you generated when creating the VM and the External
IP assigned to the VM.

ssh -i /path/my-key-pair.pem root@IPV4PublicIP

where /path/my-key-pair.pem is the path to the .pem file downloaded while creating the virtual machine and
IPV4PublicIP is the public IP address of the virtual machine.

7. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MOM.

8. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

9. If cloud-init is not installed, install it.

5.7.7 Add Authentication and Encryption

5.7.7.1 Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.

To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.

4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge

7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"
CG-136 PBS Professional 2022.1.0 Cloud Guide

https://github.com/dun/munge/wiki/Installation-Guide

Using Cloud Provider Services Chapter 5
8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE

9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.7.7.2 Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.

To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom

For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.
PBS Professional 2022.1.0 Cloud Guide CG-137

Chapter 5 Using Cloud Provider Services
5.7.8 Create an OS Image

OTC documentation can be found at Creating a Linux Private Image.

1. Log in to the OTC Console.

2. Click Service List in the menu bar.

3. Under Computing, click Image Management Service.

4. Click + Create System Disk Image.

a. For Region, select the same region that was chosen for the previously created VPC and ECS.

b. For Source, click Server.

c. For Server Type, click ECS.

d. For ECS, select the virtual machine created for cloud bursting.

e. If the virtual machine is not stopped, stop it.

f. Click OK when prompted to verify that certain operations have been performed on the ECS. You do not need to
configure or optimize the ECS.

g. For Name, enter a name for the virtual machine.

5. Click Create Now.

6. Review the specifications.

7. Click Submit.

8. Click Back to Image List.

The time required for creating an image varies depending on the image file size. Generally, it takes about 20 minutes
to create an image. The image is successfully created when its image status changes to Normal.

Do not perform any operation on the selected ECS or its associated resources during image creation.

9. You can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over time to
create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.

5.7.9 Create an OTC Cloud Bursting Scenario

5.7.9.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters. We will remind you about them:

Table 5-12: Scenario Parameters for OTC

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String
CG-138 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.7.9.2 Steps to Collect Information

1. Open a browser window and log in to the OTC Console.

2. Click Service List in the menu bar.

3. Under Network, click Virtual Private Cloud.

4. Click Virtual Private Cloud from the menu located on the left-hand side of the web page.

5. Click the name of the VPC you created for cloud bursting.

6. Click the name of the VPC's subnet.

7. Copy the Subnet ID.

8. Save the subnet ID to a file. You will need this later when you create a bursting scenario.

9. Click Security Group from the menu located on the left- hand side of the web page.

10. Click the name of the security group you created for the VPC.

11. Copy the ID of the security group.

12. Save the security group to a file. You will need this later when you create a bursting scenario.

13. Click Service List in the menu bar.

14. Under Computing, click Image Management Service.

15. Click the Private Images tab.

16. Click the name of the VM image you created for cloud bursting.

17. Copy the Image ID of the image.

18. Save the OS Image ID to a file. You will need this later when you create a bursting scenario.

5.8 Configuring OpenStack Cloud Bursting

You can find OpenStack documentation for the Stein release at https://docs.openstack.org/stein/index.html. For specific
details, contact Altair support.

Subnet ID ID of subnet for VPC created at cloud vendor String

Security Group ID ID of security group created at cloud vendor String

OS Image URI ID of OS image created at cloud vendor String

Table 5-12: Scenario Parameters for OTC

Scenario
Parameter

What to Collect During Configuration at Vendor Format
PBS Professional 2022.1.0 Cloud Guide CG-139

Chapter 5 Using Cloud Provider Services
5.8.1 Get OpenStack Administrator Credentials

Get administrator credentials. While you work through the process of getting the administrator credentials, collect the
following, and save them to a file:

1. Find the username of the administrative user.

2. If you do not know the password, reset it.

3. Save the password. You will need this later when you add the administrative user account to PBS Cloud.

5.8.2 Create Virtual Private Cloud and OS Image

In the following sections, we touch on the steps to create a VPC and an OS image. While you are in the process, collect
the following information, and save it to a file:

5.8.2.1 Create a Virtual Private Cloud

Create a virtual private cloud using the Stein release of OpenStack:

1. Choose a region, a name, and an address range for the VPC.

2. Create a subnet and choose a name and an address range for it.

3. Create a security group and choose a name for it.

Table 5-13: Account Parameters for OpenStack

Account Parameter What to Collect During Configuration in Cloud Interface Format

Auth URL OpenStack: contact Altair support String

User Domain Name Domain name used to log in to your private cloud; see your OpenStack
administrator

String

Username Administrator username created using cloud interface String

Password Administrator password created using cloud interface String

Table 5-14: Scenario Parameters for OpenStack

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor Drop-down list

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String

Subnet ID ID of subnet for VPC created at cloud vendor String

Security Group ID ID of security group created at cloud vendor String

OS Image URI ID of OS image created at cloud vendor String
CG-140 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
4. Add an inbound rule:

• Use TCP

• Use port 22

• Choose IP Address

• Specify your PBS Cloud firewall IP address

Warning: 0.0.0.0/0 enables all IPv4 addresses to access your instance. ::/0 enables all IPv6 addresses to access
your instance. This is acceptable for a short time in a test environment, but it's unsafe for production environ-
ments. In production, authorize only a specific IP address or range of addresses to access your instance.

5.8.2.2 Create a Virtual Machine

Create a virtual machine using the instructions for your cloud. We recommend the following:

• Create a key pair, give it a name, and save the .pem file containing the key pair to your local disk in a secure loca-
tion. PBS Cloud will use this later to manage cloud nodes.

• Choose the same region you chose for the VPC.

• Choose an availability zone, if you have more than one

• Choose a type that fits your needs.

• Use a public image.

• Choose a supported OS

• Choose the disk characteristics you need.

• Assign the VPC you created.

• Assign the security group you created.

• Choose the Key Pair login mode.

• For the key pair, choose the .pem file you generated.

• Give the VM a name.

• Select a quantity of 1 for the number of nodes.

It may take some time to create the virtual machine.

5. You can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over time to
create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.

5.8.2.3 Install and Configure a PBS MoM on the Virtual Machine

1. Get the public IP address of the VM.

2. Log in to your site's PBS server host.

3. SSH into the VM using the default user "root", the .pem file you generated when creating the VM and the external IP
address assigned to the VM.

ssh -i /<path to .pem>/<.pem filename>.pem root@<public IP of VM>

4. Using the PBS Professional Installation and Upgrade Guide, install and configure the PBS MoM.
PBS Professional 2022.1.0 Cloud Guide CG-141

Chapter 5 Using Cloud Provider Services
5. Configure the VM to work with your site environment, for example mounting file systems, connecting to the authen-
tication service, installing any applications you need, etc. We recommend that you include the following:

• Mount /home in the VM

• Either install applications in the VM or cross-mount them from the PBS server host

• Either add users to the password file or connect the VM to a service such as NIS

6. If cloud-init is not installed, install it.

5.8.2.4 Add Authentication and Encryption

5.8.2.4.i Add Authentication via MUNGE

Configure your instance to use MUNGE to authenticate users and daemons.

To configure authentication on the instance that you will use as your image source, use MUNGE:

1. Log in as root

2. Download and install a supported version of MUNGE. You can get MUNGE either via your Linux distribution
package repositories or from the MUNGE project directly.

Follow the MUNGE installation instructions at https://github.com/dun/munge/wiki/Installation-Guide.

3. On the PBS server host, generate the munge.key file using the create-munge-key command.

4. On every host, if the library name is not exactly "libmunge.so", for example "libmunge.so.2", add a soft link to it.
For example:

ln -s /lib64/libmunge.so.2 /lib64/libmunge.so

5. Copy /etc/munge/munge.key from the PBS server host to the source instance:

scp $PBS_SERVER:/etc/munge/munge.key /etc/munge/munge.key

6. Start MUNGE:

systemctl start munge

7. Make sure that on the PB server host, the PBS configuration file (/etc/pbs.conf) contains these lines:

PBS_AUTH_METHOD=MUNGE

PBS_SUPPORTED_AUTH_METHODS="pwd,munge"

8. On your source instance that you will use to burst nodes, edit the PBS configuration file (/etc/pbs.conf) and
add this line:

PBS_AUTH_METHOD=MUNGE

9. Restart the PBS MoM:

systemctl restart pbs

For information about configuring encryption for PBS Professional, see "Authentication for Daemons & Users" on page
508 in the PBS Professional Administrator’s Guide.

5.8.2.4.ii Add Encryption via TLS

Configure your instance to use TLS to encrypt communication.
CG-142 PBS Professional 2022.1.0 Cloud Guide

https://github.com/dun/munge/wiki/Installation-Guide

Using Cloud Provider Services Chapter 5
To configure encryption on the instance that you will use as your image source, use TLS:

1. Log in as root

2. Edit PBS configuration file pbs.conf, and set the PBS_ENCRYPT_METHOD parameter:

PBS_ENCRYPT_METHOD=tls

3. Make it so we can use the value of PBS_HOME in pbs.conf:

source /etc/pbs.conf

4. Create certificate directory PBS_HOME/certs:

mkdir ${PBS_HOME}/certs

5. Copy files from the PBS server host certificate directory into the VM certificate directory:

a. Copy your cert.pem file to ${PBS_HOME}/certs/cert.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/cert.pem ${PBS_HOME}/certs/cert.pem

b. Copy your key.pem file to ${PBS_HOME}/certs/key.pem:

scp $PBS_SERVER:${PBS_HOME}/certs/key.pem ${PBS_HOME}/certs/key.pem

6. Set permissions and ownership for certificate directory:

a. Make sure that permissions for the certificate directory and its contents are 0600:

chmod -R 0600 ${PBS_HOME}/certs

b. Make sure the owner is root on Linux or Administrator on Windows:

chown -R root: ${PBS_HOME}/certs

7. Restart PBS MoM:

• On every Linux host in the complex:
<path to start/stop script>/pbs restart

or

systemctl start pbs

• On every Windows execution host in the complex:
net stop pbs_mom

net start pbs_mom

For information about configuring encryption for PBS Professional, see "Encrypting PBS Communication" on page 517
in the PBS Professional Administrator’s Guide.

5.8.2.5 Create OS Image from VM

Follow your cloud instructions to create an OS image from the VM you created. Use the same region you chose for the
VPC.

On Azure, you can now delete the virtual machine so that you are no longer charged for it.

On AWS, you can delete the virtual machine now to avoid storage costs, or keep the virtual machine and update it over
time to create updated OS images for bursting. You will incur storage costs, but this is an effective way to keep your OS
images up to date when there are changes in packages, patches, or applications.
PBS Professional 2022.1.0 Cloud Guide CG-143

Chapter 5 Using Cloud Provider Services
5.9 Configuring Alibaba Cloud Bursting

5.9.1 Create Alibaba Cloud Account

You create a user account at the cloud provider; the user account you create will have administrative rights to any
machines hosted in the cloud. This account is used to create cloud environment elements such as VPCs, instances, and
networks.

When you ssh into cloud nodes and do operations inside cloud nodes, you operate as root.

Here is an outline of the steps to create your Alibaba cloud account:

1. Sign up for an Alibaba cloud account

2. Create an Alibaba Cloud Resource Access Management (RAM) user account

3. Grant permissions to the Cloud RAM user

Save the account information for later. Save the account name, and during the process of creating your Alibaba cloud
account, make sure you download a CSV file containing the following:

• Access Key ID

• Access Secret Key

We will remind you of this step.

5.9.1.1 Steps for Creating Alibaba Cloud Account

1. Go to the login page of the International site (alibabacloud.com)

2. Click Sign In as RAM User

3. Log in to the RAM console by using your Alibaba Cloud account.

4. In the navigation pane on the left-hand side of the web page, choose Identities -> Users

5. Click Create User

6. Enter the following information:

a. For Logon Name, enter a name for the user

b. For Display Name, enter a name that will be displayed for the user. The name can be anything meaningful to
your organization, e.g. "ali_cloud_user".

c. For Access type, enable OpenAPI access; this allows PBS to make API calls or use the Alibaba Cloud CLI

7. Click OK to generate an AccessKey pair consisting of an Access Key ID and an Access Secret Key for the user

8. Click Download CSV File to download the AccessKey pair information

9. Save the CSV file in a secure location

PBS Cloud will use the access key ID and secret access key in this file to manage cloud nodes

10. Grant administrator permissions to the user by choosing Identities > User

11. In the Actions column, click Add Permission for the user.

12. Select the AdministratorAccess system policy; use the default settings for all parameters.

13. Click OK to attach the system policy to the administrator. This attaches a policy of roles and permissions to the user
you have created.
CG-144 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.9.2 Create a Virtual Private Cloud and a vSwitch (Subnet)

1. Log in to the Alibaba Cloud Management Console

2. Choose a region based on the geographical location of your users. All cloud resources that are created are placed in
this region.

Availability of instance types is determined by the region that you select and the resource inventory in the region.
You can go to the ECS Instance Types Available for Each Region page to view the instance types available in
each region.

3. Save the region for later when you tell PBS Cloud about it.

4. Move the cursor over the menu button in the upper left corner. The Products and Services page is displayed.

5. In the Products and Services menu, use the search box to search for "vpc"

6. Choose the "virtual private cloud" option to open the VPC console

7. In the top navigation bar, select the region where you want to create a VPC and a vSwitch

8. Create a Resource Group. This is a convenience for filtering and tracking resources.

a. Go to the All Resources dropdown at the top of the page and click Manage Resource Groups. This takes you to
a separate page.

b. On this separate page, create a resource group:

1. Click Create Resource Group

2. Provide a Resource Group Identifier and Display Name (they can be the same)

9. Navigate back to the VPC page

10. Click All Resources at the top of the VPC page and select your resource group

11. On the VPCs page, click Create VPC

12. Enter the following to create a VPC:

a. For Region, make sure the region you selected in the top navigation bar is displayed

b. For Name, enter any name for the VPC. The name can be anything meaningful to your organization, e.g.,
bursting_vpc.

c. For IPv4 CIDR block, provide an address range in CIDR notation, e.g. "10.17.0.0/24"

d. For Description, enter a meaningful description for the VPC

e. For Resource Group, select the resource group to which the VPC belongs

f. For vSwitch Name, enter a name for the vSwitch (2 to 128 characters long, begins with an alphabetic, can con-
tain digits, underscores, and hyphens)

g. For Zone, select a zone for the vSwitch from the drop-down menu. Each vSwitch works in one zone. The page
offers you vSwitches in your region. You need a vSwitch in each zone where you burst nodes. A vSwitch in
one zone can communicate with vSwitches in other zones in the same region. Allowing a vSwitch to communi-
cate with a vSwitch in a different region requires more setup and costs extra.

h. Take note of the zone you selected and save it. You will need this later.

i. For IPv4 CIDR, enter an IPv4 CIDR block for the vSwitch; this must be a subset of the CIDR for the VPC.

You can add at most 10 vSwitches in each VPC.

You cannot change the CIDR block of a vSwitch after it is created.

13. Click OK.
PBS Professional 2022.1.0 Cloud Guide CG-145

Chapter 5 Using Cloud Provider Services
5.9.3 Create a Virtual Machine

Here are the steps to create a virtual machine in Alibaba Cloud Elastic Compute Service (ECS) console:

1. Log in to the Alibaba cloud console

2. Move the cursor over the menu button in the upper left corner. The Products and Services page is displayed.

3. In the Products and Services menu, use the search box to search for "Elastic Compute Service"

4. Search for "Elastic Compute Service" and click the search result link to open the ECS console

5. Click Instances from the menu located on the left-hand side of the web page

6. Click Create Instance.

7. Click the Custom Launch tab.

8. In the Basic Configurations section, fill in the following:

a. For Billing Method, choose the subscription type suitable for your instance. We suggest using "Pay-as-you-go"
because you only need this instance for the process of creating your VM, but you want to make sure the instance
is not preempted while you are using it.

b. For Region, select the region you want the instance to be in

c. For Zone, select one of the zones you chose for a vSwitch.

You cannot change the region or zone after the instance is created.

d. For Instance Type, choose Type-based Selection, x86-Architecture, and the General Purpose category.
(This is the only supported combination)

e. Choose a specific instance type based on your requirements for vCPU, Memory, Clock Speed, Network Band-
width and pricing

f. For Image, select Public Image.

1. Go to the Alibaba Cloud Linux drop-down menu. Choose the Linux flavor you want.

2. Go to the Select a Version drop-down and choose the version you want.

This is your base image.

g. For Storage, select System Disk

h. For Disk specifications and performance choose Enhanced SSD (ESSD). Enhanced SSD is required.

40GB is the minimum recommended amount.

9. Click Next

10. In the Networking section, fill in the following:

a. For Network Type, select the VPC and vSwitch you created

b. For Public IP Address, select Assign Public IPv4 Address

c. For Bandwidth Billing, select Pay-By-Traffic

d. For Peak Bandwidth, set a speed of 4 Mbps

e. For Security Group, you can either accept the default or you can create what you want:

1. Click on Create Security Group. This brings up a form.

2. The form pre-selects your VPC

3. Select your resource group

4. Set the rules you want for inbound and outbound access.
CG-146 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
By default, security groups block all incoming connections and allow all outbound connections.

To be able to connect via the Internet, allow access to port 22 from 0.0.0.0/0 and/or from the IP address
from which you will connect to the cloud nodes (this happens in the default security group).

You can update the security group later if you need to add connections.

5. Click Create Security Group at the bottom of the form

11. Navigate back to the Networking section

12. Select the security group you just created or accepted by clicking the Reselect Security Group button

13. Click Next

14. In the System configurations section:

a. For Logon Credentials, choose "Key Pair"

Note that the preselected username is "root".

b. Click Create Key Pair

c. Generate an SSH key pair by autocreating or importing it

d. Provide an instance name (this is a friendly name for your own purposes) and a description

15. In the Grouping (optional) section:

a. For Tags, select the tags for the instance

16. Click Next

17. In the Preview step, confirm the configurations in the Configurations Selected section or click the Edit icon to mod-
ify configurations.

18. Read and select ECS Terms of Service.

19. Click Create Instance

20. In the Created message box, click Console to view the instance creation progress on the Instances page. If the
instance is created, it is in the Running state

21. Copy the public IP address of the instance so that you can use it when you want to connect to the ECS instance.

5.9.4 Install a PBS MoM on the VM

The user who logs into the virtual machine is root; root uses the SSH key that you specified during creation of the VM.

You may want to use a cloud-init script. The script configures cloud nodes so that they meet your needs. See Chap-
ter 6, "The Cloud Node Startup Script", on page 155.

1. Log in to the VM as root

2. ssh into the virtual machine using the public IP address of the VM:

ssh <public IP address of VM>

3. Copy the appropriate PBS Professional installation package to the VM.

4. Using the PBS Professional Installation and Upgrade Guide and the PBS Professional Administrator's Guide, install
and configure the PBS Professional MoM

5. Configure the VM for your site's environment. For example, mount file systems, connect it to the authentication ser-
vice, install any applications, etc.

6. If cloud-init is not installed, install it. To see whether it is installed:

yum list installed | grep cloud
PBS Professional 2022.1.0 Cloud Guide CG-147

Chapter 5 Using Cloud Provider Services
7. Test the VM:

a. Tell the PBS Professional server about the VM so that we can test whether we can submit a job to it:

qmgr -c 'create node <IP address of VM>'

a. Create a queue for this node only:

qmgr -c 'create queue cloudtestqueue'

qmgr -c 'set queue cloudtestqueue queue_type=execution'

qmgr -c 'set queue cloudtestqueue enabled=true'

qmgr -c 'set queue cloudtestqueue started=true'

a. Attach the node to the queue via a custom resource; see "Associating Vnodes with Queues" on page 106 in the
PBS Professional Administrator’s Guide.

a. Submit a job to ensure it is working as expected:

qsub -q cloudtestqueue -- /bin/sleep 60

5.9.5 Create a Custom OS Image

You can find Alibaba Cloud documentation at Create a custom image from an instance.

1. Log in to the Alibaba cloud console

2. Move the cursor over the menu button in the upper-left corner. The Products and Services page is displayed.

3. In the Products and Services page, search for Elastic Compute Service and click the search result link to open the
ECS console

4. Click Instances from the menu located on the left-hand side of the web page

5. Click More in the Actions column of the instance from which an image has to be created

6. Select Disk and Image -> Create Custom Image

7. In the Create Custom Image page:

a. For Custom Image Name, provide a suitable name

b. For Custom Image Description, provide a brief description of the image

c. You can add Image Family, Resource Groups, and tags as per your requirements

8. Click Create

Save the name and ID of the custom image you created. You will use the image ID and name of the custom image in
PBS Cloud to create a cloud bursting scenario.
CG-148 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
5.9.6 Collect Information for an Alibaba Cloud Bursting

Scenario

5.9.6.1 Scenario Parameters to Collect at Vendor Interface

Make sure that you capture the following scenario parameters:

5.9.6.2 Steps to Collect Information

1. Collect the name of the custom image you created in Section 5.9.5, "Create a Custom OS Image"

1. Open a browser window and log in to the Alibaba cloud console

2. Move the cursor over the menu button in the upper left corner. The Products and Services page is displayed.

3. Collect VPC ID:

a. Search for VPC and click the search result link to open the VPC console

b. Copy the ID of the VPC to be used for the cloud bursting scenario

4. Collect vSwitch ID:

a. Click vSwitch from the VPC menu located on the left-hand side of the web page

b. On the vSwitch page, find the vSwitch that you want to use and copy its ID

5. Collect security group:

a. In the left-side navigation pane, choose Network & Security > Security Groups

b. Find the security group that you want to use and copy its ID

Table 5-15: Scenario Parameters for Alibaba Cloud

Scenario
Parameter

What to Collect During Configuration at Vendor Format

Cloud account Name of your account at cloud vendor String

Region Region selected during configuration at cloud vendor. Use the exact string
listed in the Regions and Zones list

String

Domain name Domain used by cloud nodes String

Hostname prefix Optional prefix for burst node names; default is "node"; chosen during con-
figuration at vendor

String

Zone Zone selected during VPC creation. Use the exact string listed in the
Regions and Zones list

String

VPC ID ID of VPC you created String

vSwitch ID ID of vSwitch you created String

Image ID ID of custom image you created at cloud vendor String

Security Group ID Security group ID associated with VPC and VM you created at vendor String
PBS Professional 2022.1.0 Cloud Guide CG-149

Chapter 5 Using Cloud Provider Services
5.9.7 Alibaba Cloud Regions and Zones

Alibaba Cloud segregates geography by regions, and segregates region by zones. Information related to the regions is
available in the Alibaba cloud documentation.

5.9.7.1 Zone IDs for Specific Regions

Here is a list of regions and their zone IDs:

"cn-qingdao"

• "cn-qingdao-c"

• "cn-qingdao-b"

"cn-beijing"

• "cn-beijing-k"

• "cn-beijing-h"

• "cn-beijing-g"

• "cn-beijing-f"

• "cn-beijing-e"

• "cn-beijing-d"

• "cn-beijing-c"

• "cn-beijing-b"

• "cn-beijing-a"

• "cn-beijing-i"

• "cn-beijing-j"

• "cn-beijing-l"

"cn-zhangjiakou"

• "cn-zhangjiakou-a"

• "cn-zhangjiakou-c"

• "cn-zhangjiakou-b"

"cn-huhehaote"

• "cn-huhehaote-a"

• "cn-huhehaote-b"

"cn-wulanchabu"

• "cn-wulanchabu-b"

• "cn-wulanchabu-a"

• "cn-wulanchabu-c"
CG-150 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
"cn-hangzhou"

• "cn-hangzhou-k"

• "cn-hangzhou-i"

• "cn-hangzhou-j"

• "cn-hangzhou-h"

• "cn-hangzhou-g"

• "cn-hangzhou-f"

• "cn-hangzhou-b"

• "cn-hangzhou-e"

• "cn-hangzhou-d"

• "cn-hangzhou-c"

"cn-shanghai"

• "cn-shanghai-l"

• "cn-shanghai-b"

• "cn-shanghai-g"

• "cn-shanghai-f"

• "cn-shanghai-e"

• "cn-shanghai-d","cn-shanghai-c"

• "cn-shanghai-a"

• "cn-shanghai-k"

• "cn-shanghai-m"

• "cn-shanghai-n"

"cn-shenzhen"

• "cn-shenzhen-e"

• "cn-shenzhen-f"

• "cn-shenzhen-d"

• "cn-shenzhen-c"

• "cn-shenzhen-a",

• "cn-shenzhen-b"

"cn-heyuan"

• "cn-heyuan-b"

• "cn-heyuan-a"

"cn-guangzhou"

• "cn-guangzhou-a"

• "cn-guangzhou-b"

"cn-chengdu"

• "cn-chengdu-a"

• "cn-chengdu-b"
PBS Professional 2022.1.0 Cloud Guide CG-151

Chapter 5 Using Cloud Provider Services
"cn-hongkong"

• "cn-hongkong-b"

• "cn-hongkong-c"

• "cn-hongkong-d"

"ap-northeast-1"

• "ap-northeast-1b"

• "ap-northeast-1a"

"ap-northeast-2"

• "ap-northeast-2a"

"ap-southeast-1"

• "ap-southeast-1c"

• "ap-southeast-1b"

• "ap-southeast-1a"

"ap-southeast-2"

• "ap-southeast-2b"

• "ap-southeast-2a"

"ap-southeast-3"

• "ap-southeast-3a"

• "ap-southeast-3b"

"ap-southeast-6"

• "ap-southeast-6a"

"ap-southeast-5"

• "ap-southeast-5a"

• "ap-southeast-5b"

• "ap-southeast-5c"

"ap-south-1"

• "ap-south-1b"

• "ap-south-1a"

"ap-southeast-7"

• "ap-southeast-7a"

"us-east-1"

• "us-east-1b"

• "us-east-1a"

"us-west-1"

• "us-west-1b"

• "us-west-1a"

"eu-west-1"

• "eu-west-1b"

• "eu-west-1a"
CG-152 PBS Professional 2022.1.0 Cloud Guide

Using Cloud Provider Services Chapter 5
"me-east-1"

• "me-east-1a"

"eu-central-1"

• "eu-central-1b"

• "eu-central-1a"

"cn-nanjing"

• "cn-nanjing-a"

5.10 Windows Bursting on AWS and Azure

Bursting of Windows virtual machines is supported on AWS and Azure. Windows cloud bursting is similar to cloud
bursting on Linux platforms. Three special requirements are necessary to burst Windows cloud nodes.

5.10.1 OS Image Name

When creating the OS image, the name of the image must contain the term "windows" (case insensitive). For example,
on AWS, the AMI Name should look something like this:

Windows_Server-2012-R2_RTM-English-64Bit- Base-2019.11.13

On Azure, the Image Name should look something like Windows Server 2012 R2 Datacenter.

5.10.2 Inbound Security Rule for RDP

Secondly, an inbound rule to open the port 3389 must be added to the AWS security group or the Azure network security
group that is associated with the cloud provider virtual network. This allows a connection to be made to the Windows
VM via RDP so that the PBS MoM can be installed.

For more information see AWS: Authorizing Inbound Traffic for Your Windows Instances and Azure: Cannot connect
remotely to a VM because RDP port is not enabled in NSG.

Figure 5-33:AWS Inbound Security Rule for RDP

Figure 5-34:Azure Inbound Security Rule for RDP
PBS Professional 2022.1.0 Cloud Guide CG-153

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/authoring-access-to-an-instance.html
https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/troubleshoot-rdp-nsg-problem
https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/troubleshoot-rdp-nsg-problem

Chapter 5 Using Cloud Provider Services
5.10.3 Startup Script

The cloud node startup script must use a PowerShell script. For more information see PowerShell Scripting. The below
PowerShell script example generates a file in C:\Windows\Temp:

<powershell>

$file = $env:SystemRoot + "\Temp\" + (Get-Date).ToString("MM-dd-yy-hh-mm")

New-Item $file -ItemType file

</powershell>

5.10.4 See Also

• "Configuring Amazon Web Service Cloud Bursting” on page 69

• "Configuring Microsoft Azure Cloud Bursting” on page 82
CG-154 PBS Professional 2022.1.0 Cloud Guide

6

The Cloud Node Startup Script

6.1 Introduction

For each scenario, you will want to do some configuration of each cloud node after it boots. The simplest way to config-
ure an instance at boot time is to use a shell script. You can add a startup script to each bursting scenario that runs when
a scenario instance boots, in order to perform automated tasks to customize your cloud nodes. For example, you may
want to install packages, perform updates, start services, add users, configure filesystems (/etc/fstab), configure NIS
(/etc/yp.conf), or mount necessary filesystems.

The cloud-init tool is a utility for initializing cloud instances. PBS Cloud uses the cloud-init tool to launch its
own startup script first to configure each freshly burst cloud node so that the PBS server can connect to the cloud node.
If you use a startup script, it runs after the built-in script.

For more information on cloud-init, see the cloud-init documentation at cloud-init.

Note that you may not need a startup script. If you configure the VM that you use to create your OS image to have every-
thing you need to run jobs, you do not need a startup script.

6.1.1 Making cloud-init Tool Available in OS Image

For each scenario, you create an OS image that includes the cloud-init tool. Make sure that cloud-init is
installed in the VM that you use to create the image (we include that step in the instructions). Sometimes it is
pre-installed; if it's not there, install it. For example, on CentOS:

yum install -y cloud-init

6.1.2 Adding a cloud-init Script to a Scenario

You add a cloud-init script to each scenario via the PBS Cloud web interface; see section 3.3.4.3, “Specifying the
Cloud Node Startup Script”, on page 40. You can add a script while creating a scenario, and you can edit the script or
choose a new script later. The startup script to be included in a scenario can be located anywhere that your PBS Cloud
web interface can browse to. Once a script has been added to a scenario, the script is stored in the PBS Cloud database.

Make sure you develop the startup script for each scenario. See section 6.3, “Developing the Startup Script”, on page
159.

6.1.3 Startup Script Prerequisites

• The startup script must run using a shell or language available in the freshly burst node. For example, if you have
bash and Python available, your script can use bash, or it could use a bash script to launch a Python script.

• On Windows cloud nodes, use a PowerShell startup script. Enclose the content of the PowerShell script in <power-
shell> and </powershell>. Refer to Microsoft documentation for more information about PowerShell.

• The startup script can have any name.
PBS Professional 2022.1.0 Cloud Guide CG-155

https://cloud-init.io/

Chapter 6 The Cloud Node Startup Script
6.1.4 Startup Script Recommendations

• We strongly recommend mounting /home to simplify making each cloud node usable for jobs.

• We recommend installing your applications somewhere and then mounting that directory in each cloud node.

6.2 Customizing Your Startup Script

Make sure that your startup script uses the correct locations for PBS_HOME, PBS_EXEC, etc.

6.2.1 Mounting /home Directory

We strongly recommend that you mount /home so that users can run jobs in the cloud node. This makes user SSH keys
available, and /home can be used for PBS data transfer. If you do not mount /home, you have to create a /home directory
in the image, pre-fill it for each user who will submit jobs, and set up the user space.

echo "<PBS server host IP address> <PBS server hostname> <PBS server hostname>.<domain name>" >>
/etc/hosts

...

...

yum install -y nfs-utils

mount -t nfs <hostname of machine with /home>:/home /home

6.2.2 Configuring MoM for Local Copy

We recommend that you set the $usecp MoM configuration parameter to tell the MoM which local directories are
mapped to mounted directories, so that MoM can use the local copy mechanism for them:

echo "<PBS server host IP address> <PBS server hostname> <PBS server hostname>.<domain name>" >>
/etc/hosts

...

...

echo "\$usecp <hostname of machine with /home>:/home/ /home/" >> /var/spool/pbs/mom_priv/config

See "Letting MoM Know Whether Transfer is Local or Remote" on page 441 in the PBS Professional Administrator’s
Guide.

6.2.3 Creating Local Scratch Space

You can create local scratch on a fast local disk and use it as the default location where PBS runs jobs, if PBS will be cre-
ating the directories where jobs run. To do this, each job must have its sandbox attribute set to PRIVATE, and the
$jobdir_root MoM configuration parameter has to be set to /scratch.

mkdir /scratch

chmod 1777 /scratch

For example, if /scratch is not shared:

echo "\$jobdir_root /scratch" >> /var/spool/pbs/mom_priv/config
CG-156 PBS Professional 2022.1.0 Cloud Guide

The Cloud Node Startup Script Chapter 6
6.2.3.1 Creating Job-specific Staging and Execution Directories

Whether or not PBS creates job-specific staging and execution directories for a job is controlled by the job's sandbox
attribute:

• If the job's sandbox attribute is set to PRIVATE, PBS creates a staging and execution directory for each job, in the
location specified by the $jobdir_root MoM parameter. If the $jobdir_root parameter is unset, PBS creates job-spe-
cific staging and execution directories in the job submitter's home directory.

• If the job's sandbox attribute is set to HOME or is unset, PBS does not create job-specific staging and execution
directories. Instead PBS uses the job submitter's home directory.

6.2.3.2 Using Shared Directories for Staging and Execution

Using a shared directory for job staging and execution is a little more complicated when nodes are released early from a
job. Normally each MoM on a sister node that is being released cleans up its own files upon release. However, if the
directory is shared, you need to prevent those sister MoM(s) from prematurely cleaning up job files before the job has
finished. This is an issue whether or not the directory is the user home directory. You take care of this by specifying
whether the directory is shared via the $jobdir_root MoM parameter:

• When staging and execution directories are to be created in a shared (e.g. NFS) directory specified in $jobdir_root,
set the shared directive after the directory name:

$jobdir_root <directory name> shared

For example:

echo "\$jobdir_root /scratch shared " >> /var/spool/pbs/mom_priv/config

• If job submitter home directories are shared, tell MoM:

$jobdir_root PBS_USER_HOME shared

For example:

echo "\$jobdir_root PBS_USER_HOME shared " >> /var/spool/pbs/mom_priv/config

See "Staging and Execution Directories for Job" on page 473 in the PBS Professional Administrator’s Guide.
PBS Professional 2022.1.0 Cloud Guide CG-157

Chapter 6 The Cloud Node Startup Script
6.2.4 Example cloud-init Startup Script for Linux

Example 6-1: cloud-init startup script for Linux. Do not use this script as is; make sure you adapt it for your site.

#!/bin/sh

Map PBS server host IP address to hostnames via /etc/hosts

echo "/etc/hosts setup"

rm -f /etc/hosts

echo "127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4" > /etc/hosts

echo "<PBS server host IP address> <PBS server host> <PBS server host>.<cloud node domain>" >>
/etc/hosts

Disable NetworkManager and use network interface

so that it does not overwrite the /etc/resolv.conf file

systemctl disable NetworkManager

systemctl stop NetworkManager

systemctl enable network

systemctl start network

Configure PBS via /etc/pbs.conf

echo "PBS setup"

systemctl stop pbs

rm -f /etc/pbs.conf

echo "PBS_EXEC=/opt/pbs/default" > /etc/pbs.conf

echo "PBS_HOME=/var/spool/PBS" >> /etc/pbs.conf

echo "PBS_START_SERVER=0" >> /etc/pbs.conf

echo "PBS_START_MOM=1" >> /etc/pbs.conf

echo "PBS_START_SCHED=0" >> /etc/pbs.conf

echo "PBS_START_COMM=0" >> /etc/pbs.conf

echo "PBS_SERVER=PBS_SERVER_HOSTNAME" >> /etc/pbs.conf

echo "PBS_CORE_LIMIT=unlimited" >> /etc/pbs.conf

echo "PBS_SCP=/bin/scp" >> /etc/pbs.conf

Update pbs.conf with the cloud node's IP address

IP=$(ip addr show eth0 | grep "inet\b" | awk '{print $2}' | cut -d/ -f1)

echo "PBS_MOM_NODE_NAME=$IP" >> /etc/pbs.conf

Configure the MoM by updating PBS_HOME/mom_priv/config

echo "MoM configuration setup"

. /etc/pbs.conf

echo "\$clienthost $PBS_SERVER" >> /var/spool/pbs/mom_priv/config

echo "\$clienthost ${PBS_SERVER//.*}" >> /var/spool/pbs/mom_priv/config

echo "\$restrict_user_maxsysid 999" >> /var/spool/pbs/mom_priv/config

Restart PBS

systemctl start pbs
CG-158 PBS Professional 2022.1.0 Cloud Guide

The Cloud Node Startup Script Chapter 6
6.3 Developing the Startup Script

Troubleshooting issues with cloud bursting can be difficult and time consuming. Issues that can arise include the follow-
ing:

• Network issues

• SSH key issues

• Missing users or groups

• Missing packages

• Mounted file system errors

6.3.1 Prerequisites for Developing a Startup Script

• You have installed PBS Professional, Simulate, and PBS Cloud, configured PBS Professional and Simulate, created
a cloud administrator account at your cloud provider and added that account to PBS Cloud, created and configured
your cloud provider components including an OS image, and configured the PBS Cloud module. These steps are
outlined in section 3.1, “Overview of Configuring PBS Cloud”, on page 21.

• Make sure the cloud bursting hooks are disabled.

• You should have at least one PBS Cloud scenario to test.

• This scenario must be enabled.

• The Add Public IP to VMs scenario option is enabled; see section 3.3.4.2, “Temporarily Adding Public IP for
Debugging”, on page 40

• The SSH keys parameter has an administrator SSH key; see section 3.3.4.4, “Adding SSH Key for Access to Burst
Nodes”, on page 41

• You have the corresponding private key

• Port 22 in the vendor firewall has to be open (already covered when you were configuring vendor components)

6.3.2 What to Test For

• You can log into the node

• The /home directory is mounted

• The directory containing your applications is mounted

• Make sure applications work

• Make sure the node was added to PBS (use pbsnodes -a)

• All references work on the internal network; don't use external IP addresses

• You can ping and ssh from the cloud node to the PBS server host and vice versa

• The cloud infrastructure (VPN connectivity, networks, firewalls etc.) is working

• On the cloud node, the hostname for the PBS server appears in the following:
/etc/pbs.conf

/etc/hosts

/var/spool/pbs/mom_priv/config
PBS Professional 2022.1.0 Cloud Guide CG-159

Chapter 6 The Cloud Node Startup Script
6.3.3 Steps to Develop the Startup Script

We recommend that you burst a single cloud node, test it, and resolve one issue at a time. Each time you resolve an issue,
keep a log of your changes, and incorporate your solution into the cloud-init script. You can log your command-line
input as you work to resolve the issue, and convert this record into script inputs.

Once the cloud node is configured correctly, you can enable the cloud bursting hooks, use the relevant hook to burst
cloud nodes, and troubleshoot the cloud bursting hooks.

6.3.4 Example of Developing a cloud-init Script

This example is intended to be used after you have installed PBS Professional and PBS Cloud, configured PBS Profes-
sional, created a cloud administrator account at your cloud provider and added that account to PBS Cloud, created and
configured your cloud provider components including an OS image, and configured the PBS Cloud module. These steps
are outlined in section 3.1, “Overview of Configuring PBS Cloud”, on page 21.

Make sure the cloud bursting hooks are disabled.

You should have at least one PBS Cloud scenario to test. This scenario must be enabled.

1. If you have not already prepared the scenario for developing a startup script:

a. Create a cloud-init script by copying the example cloud-init script

b. In the script, map the PBS server host to its IP address:

echo "<PBS server host IP address> <PBS server hostname> <PBS server hostname>.<cloud node domain
name>" >> /etc/hosts

c. Make any other necessary changes to the script

d. Upload the cloud-init script to the scenario. Enable the Add public IP to VMs option for the scenario, and
add a suitable public SSH key to the scenario. Make sure you have the corresponding private key.

2. Log in to PBS Cloud.

3. Click the Cloud tab.

4. Under Infrastructure, click Bursting.

5. Select a bursting scenario by clicking on its name.

6. Go to the Node tab.

7. Under Machines (manually burst), click "Burst machines"

8. Choose the instance type and OS. Set the number of cloud nodes to be 1.

9. Choose "Burst", then confirm.

10. Once the cloud node is burst, attempt to SSH into the cloud node using the value of the private_ip parameter that is
returned from the PBS Cloud CLI bursting command.

11. If you encounter a "Permission denied" error, there is a problem with the cloud node configuration and/or the
cloud-init script. Each user's SSH keys are stored in the user's home directory under the .ssh directory and the
public key has been added to .ssh/authorized_keys in the user's home directory, so SSH should be working. .

12. Using PuTTY or a similar SSH client, SSH into the cloud node using the cloud node's public IP address (the value of
the parameter public_ip address returned from the PBS Cloud bursting command) and your previously generated
private SSH key (matching the public key used in the bursting scenario).

13. Check the contents of the /etc/hosts file. If the PBS server hostname is mapped to its IP address, the
cloud-init script is being run.
CG-160 PBS Professional 2022.1.0 Cloud Guide

The Cloud Node Startup Script Chapter 6
14. Check which filesystems have been mounted using the df command. If /home is not mounted, this is the cause of
the SSH failure to the private IP address of the cloud node.

15. Use the ls command to see whether /home exists.

16. To mount the directory, install nfs-utils and then mount /home:

yum install nfs-utils

mount -t nfs <PBS server hostname>:/home /home

17. Log in to PBS Cloud.

18. Click the Cloud tab.

19. Under Infrastructure, click Bursting.

20. Select a bursting scenario by clicking on its name.

21. Under Machines (manually burst), click Manual unbursting page.

22. Enabling the check box to the right of the cloud node.

23. Click Unburst.

24. Click Unburst machines to confirm the action.

25. Edit the bursting scenario.

26. Edit the cloud-init script.

27. Copy the two commands to install nfs-utils and mount /home and paste them into the cloud-init script.

28. Save the cloud-init script.

29. Burst another cloud node and repeat the process.

6.3.5 Caveats for Testing Startup Script

Occasionally you will burst a node that appears to be correct in all respects, but it simply won't run a job. Sometimes you
just get a bad node. In this case, unburst the node and burst a new one.
PBS Professional 2022.1.0 Cloud Guide CG-161

Chapter 6 The Cloud Node Startup Script
CG-162 PBS Professional 2022.1.0 Cloud Guide

7

Managing Cloud Bursting

7.1 Logging into PBS Cloud

To log into PBS Cloud, go to the PBS Cloud interface in your web browser:

http://<PBS Cloud hostname or IP address>:<port>/pbspro-cloud/#/login

The default port is 9980.

7.2 Managing Cloud Bursting

7.2.1 Viewing Cloud Account Details

1. Log in to PBS Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Cloud.

4. Select a cloud account by clicking on its name.

The information that was entered to create the cloud account is displayed.

5. Click Close.

7.2.2 Manually Bursting Cloud Nodes

Here we describe how to use the PBS Cloud GUI to manually burst cloud nodes.

The steps for bursting bare metal instances are the same as for other instance types.

1. Log in to PBS Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Bursting.

4. Select a bursting scenario by clicking on its name.

5. Go to the Node tab.

6. Under Machines (manually burst), click "Burst machines"

7. Choose the instance type and OS.

8. Choose the number of nodes to burst.

9. Choose "Burst", then confirm.

7.2.2.1 Tagging Burst Nodes

The PBS cloud bursting hooks always add a tag named "burst-by" and set its value to "pbs-cloudhook".
PBS Professional 2022.1.0 Cloud Guide CG-163

Chapter 7 Managing Cloud Bursting
You can use the same tag with a different value, or a different tag altogether, to distinguish manually burst nodes from
those burst via the cloud bursting hooks.

7.2.2.2 Caveats for Manually Burst Nodes

Cloud nodes that are manually burst remain up and running until explicitly unburst.

7.2.3 Viewing Burst Cloud Nodes

Information that is displayed about cloud nodes:

Machine Name
Hostname of the node.

IP Address
IP address assigned to the node.

Instance Type
Cloud provider instance type (machine type, shape or flavor) of cloud node.

Image
OS image used to burst the node.

1. Log in to PBS Cloud.

2. Click the Cloud tab.

3. Under Infrastructure, click Bursting.

4. Select a bursting scenario by clicking on its name.

Any cloud nodes that have been burst are displayed under the Machines category.

Figure 7-1:Burst Cloud Nodes

7.2.4 Enabling or Disabling a Bursting Scenario in PBS

Cloud

Each bursting scenario is enabled by default when you create it.

1. Log in to PBS Cloud.

2. Click Cloud.

3. Click the Bursting tab on the left-hand side of the web page.

4. Select the name of the bursting scenario.

• To enable the bursting scenario, click Enable.

• To disable the bursting scenario, click Disable.
CG-164 PBS Professional 2022.1.0 Cloud Guide

Managing Cloud Bursting Chapter 7
7.2.5 Disabling Bursting for a Scenario and Queue

How you stop the bursting process depends on whether the remaining jobs in the scenario queue can run using either the
existing or edited scenario.

• If the jobs in the queue can run using the changed scenario:

a. Stop the cloud queue associated with the scenario (prevent jobs in the queue from starting):

qmgr -c "set queue <queue name> started=false"

b. Allow the burst nodes for that scenario to drain and unburst, or requeue them

• If the jobs in the cloud queue must use the existing scenario:

a. Disable the cloud queue (prevent jobs being enqueued):

qmgr -c "set queue <queue name> enabled=false"

b. Log in to PBS Cloud.

c. Click Cloud.

d. Click the Bursting tab on the left-hand side of the web page.

e. Under Infrastructure, click Bursting.

f. Select the name of the bursting scenario.

g. Click Disable.

h. Allow the cloud queue associated with the bursting scenario to drain; allow time for the jobs that are waiting in
the queue to run and finish; allow automated unbursting to finish. You can shorten the time to unburst using the
PBS Cloud interface or the PBS Cloud CLI.

Verify that all cloud nodes are unburst:

a. Click on the name of the cloud bursting scenario.

b. Look under the Machines heading. The following message indicates that all cloud nodes are unburst:

No machines are available

7.2.6 Re-enabling Bursting for a Scenario and Queue

How you start the bursting process depends on how you stopped it.

• If you stopped the queue to prevent jobs from starting, start the cloud queue associated with the scenario (allow jobs
to start):
qmgr -c "set queue <queue name> started=true"

• If you disabled the queue to prevent jobs from being enqueued:

a. Enable the cloud queue (allow jobs to be enqueued):

qmgr -c "set queue <queue name> enabled=true"

b. Log in to PBS Cloud.

c. Click Cloud.

d. Click the Bursting tab on the left-hand side of the web page.

e. Under Infrastructure, click Bursting.

f. Select the name of the bursting scenario.

g. Click Enable.
PBS Professional 2022.1.0 Cloud Guide CG-165

Chapter 7 Managing Cloud Bursting
7.3 Starting, Stopping, Restarting, and Statusing

PBS Cloud

7.3.1 Start PBS Cloud

Starting PBS Cloud must be done as root or as a user with sudo permissions using the sudo command.

When your server hosting the PBS Cloud component reboots, containers are restarted automatically. If you need to man-
ually start PBS Cloud containers, please follow the below instructions.

1. Log in to the machine where PBS Cloud is installed.

2. Enter the following command to start PBS Cloud:

pkr start

7.3.2 Stop PBS Cloud

Stop PBS Cloud after a manual installation.

Stopping PBS Cloud must be done as root or as a user with sudo permissions using the sudo command.

1. Log in to the machine where PBS Cloud is installed.

2. Enter the following command to stop PBS Cloud:

pkr stop

7.3.3 Restart PBS Cloud

Restarting PBS Cloud must be done as root or as a user with sudo permissions using the sudo command.

When your server hosting the PBS Cloud component reboots, containers are restarted automatically. If you need to man-
ually restart PBS Cloud containers, please follow below instructions.

1. Log in to the machine where PBS Cloud is installed.

2. Enter the following command to restart PBS Cloud:

pkr restart

7.3.4 Determine the Status of PBS Cloud

Determine whether PBS Cloud is up or down.

1. Log in to the machine where PBS Cloud is installed.

2. Enter the following command to display the status of PBS Cloud:

pkr status

7.4 Monitoring Logs and Workflows

PBS Cloud includes a Loki interface for monitoring logs and workflows. To use this, log into PBS Cloud, then choose
Monitoring, Logs, or Workflows.
CG-166 PBS Professional 2022.1.0 Cloud Guide

Managing Cloud Bursting Chapter 7
The Monitoring section shows the status of the cloud services, including how many nodes are in the cloud, etc.

The Logs section shows all the PBS Cloud logs in chronological order.

The Workflows section shows you specific information about each workflow stage.

7.5 Updating PBS Cloud Administrator Password

We strongly recommend changing the administrator password after installing PBS Cloud.

Procedure to change PBS Cloud administrator password:

1. Log in to the PBS Cloud host as root

1. Run the following commands:
docker exec -ti guardian bash

source /opt/keystone_venv/bin/activate

openstack --os-identity-api-version 3 --os-auth-url http://localhost:4999/v3 --os-username
altair_admin --os-password $ADMIN_PASSWORD --os-system-scope all user set --password <new
password> pbsadmin

2. Type "exit" or ctrl-D to log out and close the connection to the container

7.6 Troubleshooting Cloud Bursting

Log messages can help you troubleshoot cloud bursting:

• Check log messages written to PBS_HOME/server_logs on the PBS server host.

• For debugging issues with node creation or issues with starting MoM on the cloud node, SSH to the cloud node and
check PBS_HOME/mom_logs. This requires:

• The Add Public IP to VMs scenario option is enabled; see section 3.3.4.2, “Temporarily Adding Public IP for
Debugging”, on page 40

• The SSH keys parameter has an administrator SSH key; see section 3.3.4.4, “Adding SSH Key for Access to
Burst Nodes”, on page 41

• You can use PBS Cloud to view the logs through a Loki interface; see section 7.4, “Monitoring Logs and Work-
flows”, on page 166

7.6.1 PBS MoM is Stopped or Down

When you are using cloud bursting and all PBS MoMs are stopped or down, you may find error messages similar to the
following in the PBS Server logs:

Server@server;Hook;Server@server;CLBR: Error: /opt/pbs/bin/pbsnodes: Server has no node list

Server@server;Hook;Server@server;CLBR: Error: Failed to get nodes info

Resolve the issue by starting at least one MoM.

7.6.2 Loki Logs

You can use the Loki logs to check the health of daemons/services. These logs collect information from daemons/ser-
vices. Go to the Loki Home Page, choose the Explore option (the compass symbol), and select "Loki" from the menu.
Enter your query in the query box. For more information, see https://grafana.com/oss/loki
PBS Professional 2022.1.0 Cloud Guide CG-167

https://grafana.com/oss/loki
https://grafana.com/oss/loki

Chapter 7 Managing Cloud Bursting
7.6.3 Examining Node Bursting Workflows

A workflow is the process of bursting one or more nodes in the cloud. A workflow consists of a set of steps.

You can get useful debugging information by looking at workflow error messages returned by the cloud vendor. For
each workflow step, you can see the request that PBS Cloud sent to the cloud provider, whether the step was successful,
and information about the nodes that were burst. If the cloud vendor encountered an error while attempting a workflow
step, PBS Cloud displays any error messages returned by the cloud vendor in the Outputs window for that step.

We recommend the following method for debugging workflows:

1. In PBS Cloud, click on the list of recent workflows.

2. In the "Filter" window, specify "error".

3. If necessary, you can sort by chronological order.

(If you sort by state, the resulting list is not in chronological order.)

4. Click on the problematic workflow.

The PBS Cloud window displays each step of the workflow down the left side.

5. To see the inputs and outputs for a step, click on it. The inputs and outputs for that step are displayed on the right
side of the window. To see the inputs and outputs for steps that have a node tree icon, look for the same icon on the
right side and click the down arrow next to it.

The "Input" window shows the request that PBS Cloud constructed and sent to the cloud provider.

The "Output" window shows a list of data about nodes that were burst for this workflow, including any errors returned by
the cloud provider.

Icons above the Outputs window allow you to open the Inputs and Outputs windows in full-screen mode, and to copy the
contents to the clipboard.
CG-168 PBS Professional 2022.1.0 Cloud Guide

8

Managing Cloud Jobs

8.1 Managing Job Distribution to Cloud and

On-premise Nodes

Your site may want to run certain types of jobs on-premise or in the cloud. PBS Professional provides various methods
to collect and distribute jobs. For more information see "Routing Jobs" on page 204 in the PBS Professional Administra-
tor’s Guide.

To send jobs to the appropriate queue on submission, use hooks or routing queues. For more information see the PBS
Professional Hooks Guide and "Routing Queues" on page 27 in the PBS Professional Administrator’s Guide.

8.1.1 Running Cloud Jobs On-Premise When Possible

You may prefer to run jobs on-premise, but you may want to burst cloud nodes when you run out of on-premise capacity
or need to get a job running sooner than it otherwise would.

You may want to use all, or a specific subset, of your on-premise nodes to run cloud jobs. To allow an on-premise node
to be used for cloud jobs, we set the node's default_chunk.cloud_scenario resource to the list of scenarios allowed to
run on this node. This is essentially overloading the meaning of the resource because no actual scenario is used; we're
pseudo-bursting when we run a cloud job on this node. Each on-premise node can be assigned a list of scenarios so that
it can run jobs from multiple cloud queues.

For each cloud queue whose jobs you want to run on-premise where possible, assign its bursting scenario to your selected
on-premise vnodes by adding the value of the default_chunk.cloud_scenario queue resource to the list in the
default_chunk.cloud_scenario vnode resource. Then those cloud jobs run on-premise when there is capacity, and
cloud nodes are burst only when on-premise nodes are not available.

Use placement sets to make sure that each job runs entirely in-premise or in the cloud, but not in both places. For more
information on placement sets, see "Placement Sets" on page 167 in the PBS Professional Administrator’s Guide.

8.1.1.1 Steps to Run Cloud Jobs On-premise When Possible

For any on-premise vnodes where you want to run cloud jobs, assign one or more desired bursting scenarios to the vnode:

• To assign a list of bursting scenarios to a vnode:
qmgr -c "set node <vnode name> resources_available.cloud_scenario= <scenario 1>,<scenario

2>,...<scenario N>"

• To assign a single bursting scenario to a vnode:
qmgr -c "set node <vnode name> resources_available.cloud_scenario= <scenario>"

For example:

qmgr -c "set node OnPrem1 resources_available.cloud_scenario=
azure_scenario_1,aws_scenario_1,aws_scenario_2"
PBS Professional 2022.1.0 Cloud Guide CG-169

Chapter 8 Managing Cloud Jobs
8.1.2 Job Distribution Examples and Solutions

8.1.2.1 Send Small Jobs to the Cloud

You have big machines for on-premise nodes and want to reserve those big machines for big jobs. You want to send
smaller jobs to the cloud.

Solution 1:

• Create three queues: a routing queue, a local queue, and a cloud queue.

• Use the routing queue to collect jobs on submission.

• Set resource gating on the local queue to filter out smaller jobs.

• Allow smaller jobs into the cloud queue.

Solution 2:

• Create two queues: a local queue, and a cloud queue.

• Use a queuejob hook to route jobs into the appropriate queue.

8.1.2.2 Send Specific Jobs Only to the Cloud

You want to send specific jobs to the cloud because:

• an application needed by some jobs runs well in the cloud.

• a resource that is available in the cloud is not available locally.

• a department has exhausted its share of local resources, and wants to send its jobs to the cloud.

Solution :

• Create two queues: a local queue, and a cloud queue.

• Use a queuejob hook to route jobs into the appropriate queue.

8.1.2.3 Charge Departments for Resources Used

You have multiple departments and each department should be charged for the resources it uses.

Solution 1:

• Consider using PBS Budget to monitor consumption of on premise and cloud resources

Solution 2:

• Create a cloud queue for each department

• Set separate limits on each cloud queue

8.2 Allowing Easy Assignment of Jobs to

On-premise or Cloud Nodes

8.2.1 Assigning Resources to Jobs Via Queue Defaults

You can move jobs back and forth between on-premise and cloud queues willy-nilly by using queue defaults. If you set
the resources needed by cloud jobs as defaults at cloud queues, and the resources needed by on-premise jobs as defaults
at on-premise queues, jobs inherit the resources they need to run in either place.
CG-170 PBS Professional 2022.1.0 Cloud Guide

Managing Cloud Jobs Chapter 8
You can use queue defaults to set the resources requested by the jobs in a queue, for resources that are not explicitly
requested by the job.

You can set default job-wide resources at a queue, which is the same as adding -l <resource name>=<value> to the
job's resource request, and you can set chunk resources, which is the same as adding :<resource name>=<value> to each
chunk.

You set job-wide resources via resources_default on the queue, and you set chunk resources via default_chunk on the
queue.

You can also specify default placement of jobs via -l place=free|pack|scatter|vscatter.

8.2.1.1 Specifying Chunk Default Resources at Queue

To specify a queue-level chunk default resource, use the qmgr command to set the queue's default _chunk.<resource
name> attribute:

qmgr -c 'set queue <queue name> default_chunk.<resource name>=<value>'

For example, if you want all job chunks that don't specify the OS image, network, or instance type to inherit specific val-
ues:

qmgr -c 'set queue cloud1 default_chunk.cloud_node_image="Image1"'

qmgr -c 'set queue cloud1 default_chunk.cloud_network="Network1"'

qmgr -c 'set queue cloud1 default_chunk.cloud_node_instance_type="Instance1"'

Make sure that default_chunk.cloud_node_instance_type matches the cloud_instance_type queue resource.

8.2.1.2 Specifying Job-wide Default Resources at Queue

To specify a default for a job-wide resource at a queue, use the qmgr command to set the queue's
resources_default.<resource name> attribute:

qmgr -c 'set queue <queue name> resources_default.<resource name> = <value>'

For example, to have jobs in the cloud1 queue inherit a job-wide limit for one hour of walltime if they don't explicitly
request walltime:

qmgr -c 'set queue cloud1 resources_default.walltime=1:00:00'
PBS Professional 2022.1.0 Cloud Guide CG-171

Chapter 8 Managing Cloud Jobs
CG-172 PBS Professional 2022.1.0 Cloud Guide

9

Example Azure Head/Service

Node

9.1 Example Configuration of Cloud Head/Service

Node in Azure

In this section we show an example of configuring a combined head and service node; it hosts both the PBS server and
the PBS Cloud module. You would use this configuration for a smaller site.

Here we show an example of how to configure a PBS server host/PBS Cloud service node using Azure:

1. Create a new VM based on Centos 7, using Rogue Wave Software's CentOS-based 7.6 image, not an HPC tagged
version

• Use Standard_D14 instance type for head node (Good price/performance option)

• Add additional storage: 1000GB SSD to allow an ext4 volume to be added; the Centos image uses XFS filesys-
tem which has a bug with docker

2. Provide a public ssh key for the username "centos" via Azure GUI

This is the only default user in this image

3. Once the node is up, use the provided external IP and your private key to connect to it. PuTTY is more robust for
connection to cloud than Moba xTerm

4. Unless noted otherwise all the following commands must be run as root. Use sudo or the following to switch to the
root user:

sudo su -

5. Use cfdisk to partition /dev/sdc using all space for a single volume. Make absolutely sure that /dev/sdc is the
right target. The target depends on instance type chosen and how many disks are added; if you followed the proce-
dure exactly this should be correct in this case‚ but formatting is destructive to data on the disk.

cfdisk /dev/sdc

a. Select New

b. Select Primary

c. Accept Default Size (Should be whole disk)

d. Select Write

e. Answer yes (You will need to type yes)

f. Select Quit

6. Create a filesystem on your drive (ext4 preferred):

mkfs -t ext4 /dev/sdc1

7. Make a folder to mount your new volume to:

mkdir /data
PBS Professional 2022.1.0 Cloud Guide CG-173

Chapter 9 Example Azure Head/Service Node
8. Set suitable permissions on the folder:

chmod 777 /data

9. Find UUID from /dev/disk/by-uuid, e.g.

lrwxrwxrwx 1 root root 10 Apr 1 12:48 640a03fd-aa69-4f8d-98d5-2f0d3d12bb26 -> ../../sdb1

lrwxrwxrwx 1 root root 10 Apr 1 12:48 a505f591-5a7d-424f-a5a1-06dcb72f944c -> ../../sda1

lrwxrwxrwx 1 root root 10 Apr 1 12:48 c6cd262b-3930-48a8-9b21-8981bb479cee -> ../../sdc1

lrwxrwxrwx 1 root root 10 Apr 1 12:48 e0d6ff47-4c69-4a4c-b44a-13ea19d80f96 -> ../../sda2

10. Add a line to end of /etc/fstab for this mount (Note: ID of /dev/sdc1 above):

UUID=c6cd262b-3930-48a8-9b21-8981bb479cee /data ext4 defaults 0 0

11. Mount the new filesystem:

mount /data

12. Upgrade all system packages to the latest versions:

yum upgrade

13. Disable SELinux by editing /etc/selinux/config and changing, then save:

SELINUX=enforcing -> SELINUX=disabled

14. Disable and stop firewalld

systemctl disable firewalld

systemctl stop firewalld

15. SELinux is still enforcing, so prevent that. Reboot.

16. Add password to user "centos":

passwd centos

17. Log in as centos

18. Create ssh keys for centos and enable passwordless ssh

Accept all the defaults for ssh-keygen step:

cd $HOME

ssh-keygen

cd .ssh

cat id_rsa.pub >> authorized_keys

19. For a cloud head node, make sure you validate that external ssh still works externally, before you disconnect your
first session. If there is an issue with ssh keys, which can be sometimes caused by errors in step 18 above, and you
disconnect your first session, you could be permanently locked out of your cloud VM. Use ssh from your local
machine to your cloud head node to create a second session using your public ssh key. Troubleshoot as required
while your first session is still up.

20. Add the key PBS Professional service users:

useradd -rm pbsdata; useradd pbsadmin

21. Follow steps 17, 18, and 19 for user pbsadmin
CG-174 PBS Professional 2022.1.0 Cloud Guide

Example Azure Head/Service Node Chapter 9
22. Install/Start/Enable docker-ce

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

23. Stop docker:

systemctl stop docker

24. Move docker data storage to new filesystem mounted on /data

25. Add -g /data/docker \ in file /lib/systemd/system/docker.service. ExecStart should look like this:

ExecStart=/usr/bin/dockerd-current ...

--seccomp-profile=/etc/docker/seccomp.json -g /data/docker $OPTIONS ...

$REGISTRIES

26. Reread daemon config files:

systemctl daemon-reload

27. Look in /data/docker; there should be subdirectories for Docker data

28. Start docker:

systemctl start docker

29. Create a repository for the PBS package:

mkdir /home/centos/software

chown -R centos:centos /home/centos/software

chmod 777 /home/centos/software

30. Download all the PBS package modules to your software directory (PBS Professional, PBS Cloud)

31. Install and configure NFS Server to share /home from head node, so you can avoid setting up ssh keys for client
nodes and have a convenient mount:

yum install nfs-utils

systemctl enable nfs-blkmap

systemctl enable nfs-rquotad

systemctl enable nfs-server

systemctl enable nfs

systemctl start nfs-blkmap

systemctl start nfs-rquotad

systemctl start nfs-server

systemctl start nfs

32. Edit /etc/exports to add

/home *(rw,sync,no_root_squash,no_all_squash)

33. Restart NFS server:

systemctl restart nfs-server
PBS Professional 2022.1.0 Cloud Guide CG-175

Chapter 9 Example Azure Head/Service Node
34. Add local machine name and IP to /etc/hosts, remove IPv6 loopback, e.g.

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

<PBS server IP address> <PBS server hostname>

This would look like:

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4

172.17.0.6 myhost

35. Follow the PBS Professional Installation & Upgrade Guide, the PBS Professional Administrator's Guide, and the
PBS Professional Licensing Guide to install, configure and license PBS Professional

• Set PBS to have MoM running on the head node before first start

36. Run test job and ensure job output is returned without issues (e.g. scp problems)

Sample test script using cloudq:

#!/bin/bash

#PBS -N testjob

#PBS -j oe

#PBS -m n

#PBS -q cloudq

#PBS -l select=1:ncpus=2:mem=16mb

#PBS -l walltime=0:10:00

sleeptime=60

cmd="sleep $sleeptime"

echo $cmd

$cmd

Exit
CG-176 PBS Professional 2022.1.0 Cloud Guide

10

Command Reference

10.1 PBS Cloud PCLM Command-line Interface

As of version 2021.1.3, the pclm command-line interface is deprecated.

10.1.1 Introduction

10.1.1.1 Bursting Scenarios

You create each cloud bursting scenario via PBS Cloud. Each scenario provides information needed for cloud bursting
including the cloud provider, region where nodes are burst, VPC details, the cloud node booting script, SSH keys, valid
instance types, etc.

10.1.1.2 Bursting Scenario States

READY
When the bursting scenario is enabled, it can be used to burst nodes

When the bursting scenario is disabled, it could be used to burst nodes if you enabled it

PENDING
The scenario is added but not validated

BUSY
The bursting or unbursting workflow is running; we are in the process of bursting or unbursting

DELETING
The bursting scenario is being deleted

ERROR
The bursting scenario contains an error

10.1.1.3 PBS Cloud Account States

READY
The account is ready and usable

PENDING
Your login credentials are being validated with the cloud vendor

BUSY
The account is busy

DELETING
The account is being deleted

ERROR
The account contains an error
PBS Professional 2022.1.0 Cloud Guide CG-177

Chapter 10 Command Reference
10.1.1.4 Cloud Node States

The following is a list of possible instance states. Only an instance that is UP is guaranteed to have an IP address and a
hostname. An instance that has been fully unburst will not appear in the output at all.

DOWN
Instance is created in the local database, but not yet in the cloud provider. This status is short-lived and rarely
visible.

DEPLOYING
Instance is in the process of being deployed

FAILED_DEPLOYING
Something has gone wrong and the instance deployment has failed. The instance is automatically unburst in this
case

FAILED_STARTING
Something has gone wrong and the instance has not started

FAILED_STOPPING
Something has gone wrong and the instance has not been stopped

FAILED_TERMINATING
Something has gone wrong and the instance has not been terminated

STARTING
Instance is starting

STOPPED
Instance is stopped

STOPPING
Instance is stopping

TERMINATING
Instance is being removed.

UP
Instance is deployed and ready

10.1.1.5 Some Outputs of PCLM Commands

Burst identifier
Unique numeric identifier returned from burst request.

Cloud node hostname
Hostname assigned to the cloud node. Find this using the command to display cloud node details described in
section 10.1.3.3, “Displaying Cloud Node Details”, on page 181

Machine ID
Unique label that identifies the cloud node. Find this using the command to display cloud node details described
in section 10.1.3.3, “Displaying Cloud Node Details”, on page 181

Private IP
Private IP address assigned to the cloud node. Find this using the command to display cloud node details
described in section 10.1.3.3, “Displaying Cloud Node Details”, on page 181
CG-178 PBS Professional 2022.1.0 Cloud Guide

Command Reference Chapter 10
Scenario ID
Unique label that identifies a bursting scenario. Required to enable, disable or get the status of a bursting sce-
nario. Use the command to display a list of bursting scenarios described in section 10.1.2.3, “Displaying a List
of Bursting Scenarios”, on page 179 to obtain a list of bursting scenarios including the scenario ID.

10.1.1.6 Options to the pclm Command

--raw
Displays the output of the command in JSON format.

This option must be the first option after the pclm command itself. For example:

pclm --raw --api-endpoint==http://<PBS Cloud hostname or IP address>:<PBS Cloud
port>/pbspro-cloud/ --api-key <API key>

--wait
The application waits for the node to be burst or unburst.

This option must be the first option after the bootstrapper option. For example:

pclm --api-endpoint=http://<PBS Cloud hostname or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper --wait scenario burst

10.1.2 CLI Scenario Commands

In this section we describe the PCLM command-line interface commands that you can use to get information such as sta-
tus about existing bursting scenarios, to enable a bursting scenario so that nodes can be burst, to disable a bursting sce-
nario to restrict nodes from being burst, etc.

10.1.2.1 Enabling a Bursting Scenario

To enable a bursting scenario so that cloud nodes can be burst using the scenario.

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper scenario enable <scenario ID>

To verify that the bursting scenario is enabled, use the command to display bursting scenario details described in section
10.1.2.4, “Displaying Bursting Scenario Details”, on page 180.

10.1.2.2 Disabling a Bursting Scenario

Cloud nodes cannot be burst using a scenario that is disabled.

To disable a bursting scenario:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper scenario disable <scenario ID>

To verify that the bursting scenario is disabled, use the command to display bursting scenario details described in section
10.1.2.4, “Displaying Bursting Scenario Details”, on page 180.

10.1.2.3 Displaying a List of Bursting Scenarios

To display a list of bursting scenarios created using PBS Cloud:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper scenario list

The output of the command is a list of bursting scenarios including the scenario ID, the state of the scenario, and whether
the scenario is enabled or disabled.
PBS Professional 2022.1.0 Cloud Guide CG-179

Chapter 10 Command Reference
10.1.2.4 Displaying Bursting Scenario Details

To get information about the bursting scenario:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper scenario show --id <scenario ID>

The output of the command displays information about the bursting scenario including the scenario ID, the state of the
scenario, the associated cloud account. and whether the scenario is enabled or disabled.

To display the amount of time before an idle node is unburst:

pclm --raw --api-endpoint=http://HOST:9980/pbspro-cloud/ --api-key KEY bootstrapper scenario show

The --raw argument is required.

The output of the command is in a JSON format. The idle time is displayed as a key-value pair in the output. Example:

{"idle_before_unburst": 100}

10.1.2.5 Setting Minimum Time Before Unbursting Idle Node

We recommend setting the Idle Before Unburst scenario parameter to more than double the PBS scheduler cycle time.

To set the minimum time that a cloud node can be idle before it is unburst:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper scenario patch --idle-before-unburst <max idle time before
unbursting> <scenario ID>

To verify that the idle before unburst time is updated, use the command to display bursting scenario details, and include
the --raw option. We describe the command in section 10.1.2.4, “Displaying Bursting Scenario Details”, on page 180.

10.1.3 CLI Node Commands

In this section we describe the pclm command-line interface commands that you can use to burst and unburst cloud
nodes, and to get status information about a bursting activity.

You can use these commands for the following:

• Testing cloud bursting without using the cloud bursting hooks

• Checking connectivity between the PBS server and the cloud infrastructure

• Checking whether bursting scenarios are working properly

• Bursting a cloud node so that it remains burst indefinitely

Cloud nodes that are manually burst remain up and running until explicitly unburst.

10.1.3.1 Bursting Cloud Nodes

To burst <burst_count> cloud nodes of type <instance type> for the bursting scenario identified by <API key>:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper --wait scenario burst '{"mom":[{"deployable_id":"<instance
type>","count":"<burst count>","tags":{"burst-by":"user"}}]}'

The PBS cloud bursting hooks always add a tag named "burst-by" and set its value to "pbs-cloudhook".

You can use the same tag with a different value, or a different tag altogether, to distinguish manually burst nodes from
those burst via the cloud bursting hooks.
CG-180 PBS Professional 2022.1.0 Cloud Guide

Command Reference Chapter 10
You can describe the type of node to burst and how many to burst by including JSON instructions directly on the com-
mand line, as shown above, or by loading it from a separate file. For example, you can copy the following JSON to a file
called node_to_burst.json:

{"mom":[{"deployable_id": "<instance type>", "count":"10", "tags": {"burst-by": "user"}}]}

Then you can use the file in the bursting command to load the information:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper --wait scenario burst node_to_burst.json

10.1.3.2 Unbursting Cloud Nodes

You can unburst a cloud node using its machine ID, private IP address, or hostname. To unburst cloud nodes:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/ --api-key <API
key> bootstrapper --wait scenario unburst <machine ID1>|<private IP address1>|<cloud node hostname1>
<machine ID2>|<private IP address2>|<cloud node hostname2> […]

You can unburst multiple nodes in a single call, and you can mix the parameter you use to unburst the nodes:

unburst <machine ID1> <private IP address2> <cloud node hostname3>

You can supply this information in JSON format on the command line or in a JSON file:

unburst '["<machine ID1>", "<private IP address2>", "<cloud node hostname3>"]'

unburst /tmp/machines_to_unburst.json

To get information about cloud nodes, use the command to display cloud bursting activity described in section 10.1.3.3,
“Displaying Cloud Node Details”, on page 181.

10.1.3.3 Displaying Cloud Node Details

To display details for cloud nodes, use the status command:

pclm --api-endpoint=http://<PBS Cloud hostname or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper scenario status -f tags

The status command displays node status details in a table with the machine ID, instance type, hostname, private and
public IP addresses, the OS image used to create the node, the node's state, and its creation time.

To display the output in JSON format, use the --raw option.

To display any associated tags, use the -f tags option.

Example of output:

Figure 10-1:status Command Output
PBS Professional 2022.1.0 Cloud Guide CG-181

Chapter 10 Command Reference
10.1.3.4 Defining Network Disk Size for Cloud Node Root System

Use the disk_size_gb parameter to define the size of the network disk for the root filesystem in GBs when bursting a
cloud node. By default the minimum size is compatible with the image associated with the bursting scenario defined by
<API key>.

"mom" : [

{

"deployable_id": "c3.xlarge",

"disk_size_gb": 12

},

{

"deployable_id": "d2.xlarge",

"count": 2,

"disk_size_gb": 15

}

]

10.1.3.5 Specifying Image to Use when Bursting

You can manually burst an instance from a specific image using the image parameter. Every bursting scenario has a
default image which is used for bursting if the image is not explicitly specified. The value of image depends on the
cloud provider. For example, for AWS you specify the name of the AMI:

"mom":[{"deployable_id": "t2.medium", "count":"10", "image":"ami-123456"}]

For Azure, you specify the resource group into which to place the instance and the name of the image:

"mom":[{"deployable_id": "Standard_DS1_v2", "count":"10", "image":"res-group/imagename"}]

10.1.3.6 Providing Nodes on High Speed Networks

Job submitters may want to run HPC workloads such as MPI jobs on groups of nodes connected by a high speed switch.
A job cannot run across multiple Infiniband networks. Only instances within the same scale set have high speed connec-
tivity. The cloud provider can burst a group of nodes on the same high speed network. For example, Azure provides
scale sets and Oracle provides instance pools.

In the following instructions, the command uses terms such as "infiniband" and "scaleset"; nevertheless, the command
works with other supported high speed switches and providers.

Use the infiniband_network parameter to ensure that all nodes for a bursting request are deployed into the same scale set
or instance pool.

Make sure that the OS image used for bursting Infiniband nodes contains everything that is needed to use the high speed
network.

You need to provide the correct instance types and placement sets; see section 3.4, “Providing Nodes Grouped on High
Speed Network”, on page 48.
CG-182 PBS Professional 2022.1.0 Cloud Guide

Command Reference Chapter 10
You can either create a new scale set or instance pool, or add to an existing one. However, it is highly unlikely that add-
ing to an existing scale set or instance pool will succeed, especially for high speed networks. (The cloud bursting hooks
always create a new group of nodes.)

• To create a new group of nodes on a high speed switch, set the value of the infiniband_network parameter to
"new":
"deployable_id":"Standard_H16mr", "infiniband_network": "new"

• To use an existing group of nodes on a high speed switch, set the value of the infiniband_network parameter to
"auto", which will re-use the existing groups as long as all requested nodes fit inside the group. If they do not, a new
group is created for the requested nodes.
"deployable_id":"Standard_H16mr", "infiniband_network": "auto"

Use the command in section 10.1.3.3, “Displaying Cloud Node Details”, on page 181 to display the status of the cloud
bursting activity to get information about a node's group (scale set, instance pool, etc.). For example:

{ ...,

"scaleset": {"nr": "2", "name": "pclmDEVvhoiAACrxTOHioWSkwg"}, ... }

Nodes with the same name value are in the same group. Each scenario is tagged with its own API key.

10.1.3.7 Bursting Asynchronously

Sometimes it can take several minutes to burst a cloud node. If you do not want to wait for the bursting command to
complete, eliminate the --wait option and provide a unique request identifier. The bursting call returns a unique
request identifier.

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper scenario burst --request-id <burst identifier>
'{"mom":[{"deployable_id": "<instance type>", "count":"<burst count>"}]}'

10.1.3.8 Querying Bursting Activity

When you make a burst request, the pclm command returns a unique burst identifier.

Using the burst request identifier to determine status of the burst request:

pclm --raw --api-endpoint==http://<PBS Cloud host name or IP address>:<PBS Cloud
port>/pbspro-cloud/ --api-key <API key> notif thread list --request-id <burst identifier>
--expand
PBS Professional 2022.1.0 Cloud Guide CG-183

Chapter 10 Command Reference
Output from the status query will look something like this:

[

{

"title": "Workflow bootstrapper.deploy_deployables",

"created_at": "2022-10-01T09:02:57.383000+00:00",

"open": false,

"related": [...],

"notifications": [

... ,

{

"notification_id": "5d93170000b64a0001c4fe00",

"sender": "executor",

"message": "Workflow \"deploy_deployables\" execution succeeded",

"timestamp": "2022-10-01T09:06:08.752000+00:00",

"content": {

"workflow": "deploy_deployables",

"workflow_name": "bootstrapper.deploy_deployables",

"machine_ids": [

"a8d1681f-173d-4476-9d52-05e7e1b405d5",

"535ec0fc-f6f4-4b51-8f9d-abb13984f42d"

],

"state": "SUCCEEDED",

"machines": [...],

... ,

},

...

}

},

],

...

}

While the asynchronous bursting command is running, open is true and state is RUNNING.

When the asynchronous bursting command has finished all operations, open is false and state is set to SUCCEEDED
or FAILED.

10.1.3.9 Bursting Preemptable Instances

We describe how to use spot and preemptable instances is in section 3.3.5, “Using Spot or Preemptable Pricing”, on page
46. To use pclm to burst preemptable instances:

• Use the preemptable parameter to burst preemptable or spot instances. This parameter takes a Boolean value.

• Make sure that the bursting request contains only preemptable instances or only non-preemptable instances.

• Make sure that the bursting scenario associated with the selected API key has "spot instances" enabled.

For example:

pclm --api-endpoint=http://<PBS Cloud host name or IP address>:<PBS Cloud port>/pbspro-cloud/
--api-key <API key> bootstrapper --wait scenario burst "mom":[{"deployable_id":
"c3.xlarge","count":"10","preemptable": true}]
CG-184 PBS Professional 2022.1.0 Cloud Guide

Command Reference Chapter 10
10.2 PBS Cloud pkr Interface

10.2.1 Using pkr with PBS Cloud

A kard defines all the container images and container services you need for PBS Cloud. Each kard is specific to its ver-
sion of PBS Cloud. This version of PBS Cloud comes packaged with the PBS Cloud kard already fully defined. The
PBS administrator is not expected to make any changes to the kard.

We use pkr to manage all the containers in the current kard, which in this context means all the services around the
Cloud Bursting feature in PBS Professional. Each service runs in its own container.

To start all pkr services:

pkr start

To stop all pkr services:

pkr stop

To list all pkr services:

pkr ps

10.2.2 Sample pkr Output on Startup

[root@myhost ~]# pkr start

Starting postgres ... done

Starting mongodb ... done

Starting cadvisor ... done

Starting loki ... done

Starting fluentd ... done

Starting prometheus ... done

Starting fluentd ... done

Starting bootstrapper-worker ... done

Starting bootstrapper-worker1 ... done

Starting grafana ... done

Starting guardian ... done

Starting notification-center ... done

Starting websocket-bridge ... done

Starting pacioli ... done

Starting keeper ... done

Starting hype ... done

Starting hubble ... done

Starting mistral-api ... done

Starting ui ... done

Starting executor-api ... done

Starting mistral-executor ... done

Starting cloudflow ... done

Starting bootstrapper-api ... done
PBS Professional 2022.1.0 Cloud Guide CG-185

Chapter 10 Command Reference
10.2.3 Sample pkr Output on Stop

[root@myhost ~]# pkr stop

Stopping bootstrapper-api ... done

Stopping cloudflow ... done

Stopping ui ... done

Stopping mistral-executor ... done

Stopping executor-api ... done

Stopping keeper ... done

Stopping notification-center ... done

Stopping pacioli ... done

Stopping websocket-bridge ... done

Stopping hype ... done

Stopping mistral-api ... done

Stopping hubble ... done

Stopping guardian ... done

Stopping grafana ... done

Stopping bootstrapper-worker1 ... done

Stopping bootstrapper-worker ... done

Stopping prometheus ... done

Stopping fluentd ... done

Stopping node-exporter ... done

Stopping postgres ... done

Stopping rabbitmq ... done

Stopping loki ... done

Stopping mongodb ... done

Stopping cadvisor ... done
CG-186 PBS Professional 2022.1.0 Cloud Guide

Command Reference Chapter 10
10.2.4 Sample pkr Output while Running

System is running:

[root@myhost ~]# pkr ps

- cadvisor: 172.18.0.4

- loki: 172.18.0.6

- fluentd: 172.18.0.9

- mongodb: 172.18.0.3

- node-exporter: 172.18.0.5

- postgres: 172.18.0.2

- prometheus: 172.18.0.8

- grafana: 172.18.0.12

- rabbitmq: 172.18.0.7

- guardian: 172.18.0.13

- pacioli: 172.18.0.14

- notification-center: 172.18.0.16

- mistral-api: 172.18.0.20

- mistral-executor: 172.18.0.23

- keeper: 172.18.0.17

- hype: 172.18.0.18

- hubble: 172.18.0.19

- executor-api: 172.18.0.22

- cloudflow: 172.18.0.24

- bootstrapper-worker1: 172.18.0.10

- bootstrapper-worker: 172.18.0.11

- bootstrapper-api: 172.18.0.25

- websocket-bridge: 172.18.0.15

- ui: 172.18.0.21

A missing IP address indicates that a service is unhealthy, although an IP address does not guarantee health.
PBS Professional 2022.1.0 Cloud Guide CG-187

Chapter 10 Command Reference
10.2.5 Sample pkr Output while Stopped

System is stopped:

[root@myhost ~]# pkr ps

- cadvisor: stopped

- loki: stopped

- fluentd: stopped

- mongodb: stopped

- node-exporter: stopped

- postgres: stopped

- prometheus: stopped

- grafana: stopped

- rabbitmq: stopped

- guardian: stopped

- pacioli: stopped

- notification-center: stopped

- mistral-api: stopped

- mistral-executor: stopped

- keeper: stopped

- hype: stopped

- hubble: stopped

- executor-api: stopped

- cloudflow: stopped

- bootstrapper-worker1: stopped

- bootstrapper-worker: stopped

- bootstrapper-api: stopped

- websocket-bridge: stopped
CG-188 PBS Professional 2022.1.0 Cloud Guide

Index

A
Altair License Server CG-9
Amazon Web Services CG-8
AWS CG-8
Azure cloud head node CG-173

B
burst CG-1
burst_by_hook CG-24

C
CentOS CG-6
cloud bursting hook CG-1
cloud head node in Azure CG-173
cloud node CG-1
cloud queue CG-1
cloud queues CG-29
cloud_account CG-24
cloud_instance_type CG-24
cloud_max_instances CG-24
cloud_max_jobs_check_per_queue CG-24
cloud_min_instances CG-24
cloud_network CG-24
cloud_node_image CG-25
cloud_node_instance_type CG-25
cloud_provisioned_time CG-25
cloud_queue CG-25
cloud_scenario CG-25
cloud-init CG-155
configuring PBS for cloud bursting CG-24
custom resources for cloud bursting CG-26

D
Deutsche Telekom CG-8
Docker

installing CG-11
docker-ce CG-9
docker-ee CG-9

F
firewalld CG-174

G
GCP CG-8
Google Cloud Platform CG-8

H
head node CG-1
hook

cloud bursting CG-1
HUAWEI Cloud CG-8

I
installation script CG-12
instance type CG-2, CG-43

L
lic_signature CG-25

M
Microsoft Azure CG-8

N
node

head CG-1
service CG-2

node_location CG-25

O
Open Telekom Cloud CG-8
OpenStack CG-8
Oracle Cloud Platform CG-8
Orange Cloud Flexible Engine CG-8
OTC CG-8

P
PBS

configuring for cloud bursting CG-24
pkr CG-12, CG-17

sample output CG-185
proximate node group CG-2

S
scenario CG-2
scratch CG-156
SELinux CG-9, CG-174
service node CG-2
SLES

restrictions CG-7
SuSE CG-6
CG-189PBS Professional 2022.1.0 Cloud Guide

Index
U
unburst CG-2

V
VPN CG-9

W
Windows CG-6
workflow CG-2, CG-168
CG-190 PBS Professional 2022.1.0 Cloud Guide

Altair PBS Professional 2022.1

Budgets Guide

You are reading the Altair PBS Professional 2022.1

Budgets Guide (BG)

Updated 7/16/22

Copyright © 2003-2022 Altair Engineering, Inc. All rights reserved.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information. Not for use or disclo-
sure outside of Licensee's organization. The software and information contained herein may only be used internally and
are provided on a non-exclusive, non-transferable basis. Licensee may not sublicense, sell, lend, assign, rent, distribute,
publicly display or publicly perform the software or other information provided herein, nor is Licensee permitted to
decompile, reverse engineer, or disassemble the software. Usage of the software and other information provided by Altair
(or its resellers) is only as explicitly stated in the applicable end user license agreement between Altair and Licensee. In
the absence of such agreement, the Altair standard end user license agreement terms shall govern.

Use of Altair's trademarks, including but not limited to "PBS™", "PBS Professional®", and "PBS Pro™", "PBS
Works™", "PBS Control™", "PBS Access™", "PBS Analytics™", "PBScloud.io™", and Altair's logos is subject to
Altair's trademark licensing policies. For additional information, please contact Legal@altair.com and use the wording
"PBS Trademarks" in the subject line.

For a copy of the end user license agreement(s), log in to https://secure.altair.com/UserArea/agreement.html or contact
the Altair Legal Department. For information on the terms and conditions governing third party codes included in the
Altair Software, please see the Release Notes.

This document is proprietary information of Altair Engineering, Inc.

Contact Us

For the most recent information, go to the PBS Works website, www.pbsworks.com, select "My PBS", and log in with
your site ID and password.

Altair

Altair Engineering, Inc., 1820 E. Big Beaver Road, Troy, MI 48083-2031 USA www.pbsworks.com

Sales

pbssales@altair.com 248.614.2400

Please send any questions or suggestions for improvements to agu@altair.com.

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation vii

1 Introduction to Budgets 1
1.1 Using Budgets to Track, Reveal, and Manage Resource Use . 1
1.2 Some Nuts and Bolts. 5
1.3 Budgets Terminology . 5
1.4 Roles . 7
1.5 Investing and Consuming Service Units . 8
1.6 Accounts in Budgets . 12
1.7 Accounting Tools. 18
1.8 Summary of Setting Budgets Up for Postpaid or Prepaid Mode . 24
1.9 Caveats and Restrictions . 25
1.10 Troubleshooting. 25
1.11 Formats in Budgets . 26

2 Installing and Upgrading Budgets 27
2.1 Supported Platforms . 27
2.2 Recommended Configurations . 29
2.3 Whether or Not to Start with Failover . 30
2.4 Prerequisites . 31
2.5 Installation Steps for All Locations . 31
2.6 Installation Steps for Default Location. 37
2.7 Installation Steps for Non-default Location . 45
2.8 Validating Budgets . 53
2.9 Configuring Budgets for Failover. 53
2.10 Upgrading Budgets . 57
2.11 Changing Budgets Administrator to New Username. 58
2.12 Installing Budgets Client Module . 58

3 Configuring and Managing Budgets 61
3.1 Defining Billing Periods . 61
3.2 Adding a PBS Complex and Setting its Billing Model . 61
3.3 Setting Budgets Configuration Attributes . 73
3.4 Configuring Budgets for Peer Scheduling . 73
3.5 Changing Between Modes . 74

4 Budgets Commands 77
4.1 Budgets Commands . 77
4.2 Commands for Managing Budgets Elements . 79
4.3 Transaction and Account Checking Commands . 119

5 Basic Install and Configure 137
5.1 Basic Install and Configure Instructions . 137
PBS Professional 2022.1 Budgets Guide BG-v

Contents
6 Using Budgets 145
6.1 Managing Credit with Budgets . 145
6.2 Tutorials. 145

Index 153
BG-vi PBS Professional 2022.1 Budgets Guide

1

Introduction to Budgets

1.1 Using Budgets to Track, Reveal, and Manage

Resource Use

Budgets allows you to track and manage credit and other resources for jobs at PBS complexes. You can define and track
multiple currencies, and these can be any form of currency you need: dollars, CPU hours, GPU hours, etc. You can
define how you want each currency calculated separately for on premise and cloud jobs at each PBS complex .

Budgets can provide a job submitter with an estimate for the cost of an on premise or cloud job. You can require that the
owner of a job has sufficient credit to run a job, including checking credit before bursting cloud nodes.

Using Budgets, you can see how resources are being used at your site, and you can manage how those resources are used.

1.1.1 Two Modes: Postpaid and Prepaid

Budgets has two modes:

• In postpaid mode, Budgets tracks resource usage by users and projects, according to the criteria you define, but does
not enforce limits. You use postpaid mode to understand how users and projects use resources, and how much they
need. In postpaid mode, users do not need credit to run jobs. In postpaid mode, job submitters owe a positive num-
ber, similar to the way a credit card bill shows that a positive amount is owed.

• In prepaid mode, Budgets enforces usage limits; users need sufficient credit to run each job. You use prepaid mode
to keep resource allocations within desired bounds. In prepaid mode, the amount of credit remaining in a job sub-
mitter's account is a positive number, and the amount debited for each job is a negative number.

The mode is global and applies to all of Budgets. You can switch back and forth between modes.

1.1.2 Using Postpaid Mode to Validate Jobs and Understand

Resource Usage

Postpaid mode behaves as if your users and projects are charging everything to a credit card that never demands pay-
ment. They accumulate a credit balance. They can pay down the balance as they go, but that is not required for them to
run jobs. The Budgets administrator can provide partial or full refunds if necessary.

This mode allows users and projects to run jobs without having been assigned a credit balance. However, you can use
this balance as a basis for charging users, if your site charges users for resources.

Using postpaid mode, you can get detailed reporting about the amount of resources used by each user and project submit-
ting jobs. In postpaid mode, Budgets provides reporting only for top-level time periods.

You can use postpaid mode to make sure that users and jobs are validated before jobs run.

In postpaid mode, Budgets adds the cost for a job to the job owner's account after the job runs.
PBS Professional 2022.1 Budgets Guide BG-1

Chapter 1 Introduction to Budgets
1.1.2.1 Job Flow in Postpaid Mode

1. A job is submitted

2. Budgets checks the following:

• Whether the submitter is associated with the cluster where the job is submitted

• Whether any quotas have been exceeded

• If a job is submitted as part of a project, whether the submitter is associated with the project

If the submitter and job pass all of these tests, PBS allows the job to be enqueued

3. The job runs

4. After the job runs, Budgets adds the cost for the job to the job submitter or project credit balance

1.1.3 Using Prepaid Mode to Validate Jobs and Manage

Credit and Costs

You represent each department in your organization as a group in Budgets. Each department receives investment which
it can then spend on projects and individual users. Funding allocations apply to, are charged against, and are tracked in
time periods. Every transaction is available for examination forever.

You can require that job owners have sufficient credit to run each job before allowing that job to be queued, or you can let
jobs with insufficient credit be queued and remain there until the owner has sufficient credit to run them.

Before a job runs, Budgets checks that the job owner has enough currency to run the job, then transfers that amount from
the job owner's account into escrow. After the job runs, Budgets reconciles charges for the job: it debits escrow for the
amount consumed by the job and returns any excess to the job owner, or if the job consumed more than requested it deb-
its more from the job owner's account. The Budgets administrator can provide partial or full refunds if necessary.

Budgets is flexible; a department can fund multiple projects and users working in multiple PBS complexes. A project or
user can be funded by multiple departments and run jobs in multiple PBS complexes.

1.1.3.1 Managing Job Submission and Execution in Prepaid Mode

When you manage a PBS complex via Budgets in prepaid mode, each PBS job can run only when the job can be charged
to a project or user account that has sufficient credit. The organization's CFO can fund a group representing a department
or other organizational entity; this group can then deposit credit with project or user accounts.

A project spends credit when a user associated with the project runs a job and charges the job to the project account. A
job can be charged to a project account only when it is run by an associated user on an associated complex. Any user
associated with the project can charge a job to the project account.

An individual user spends credit when they run a job and charge it to their own account. This job must be run on a com-
plex that is associated with the user.

When a group manager deposits group credit to a project account, that allocation is for a specific period and in a specific
currency (service unit). Currency is usually defined as resource usage, such as CPU hours or GPU hours, but can be in
dollars or other monetary units.

In addition to checking credit balances, Budgets checks whether a job owner has hit any quotas for externally-managed
resources such as storage, using a mechanism called dynamic service units. See section 1.7.2.2, “Dynamic Service
Units”, on page 19.

In prepaid mode, Budgets subtracts the estimated cost of each job from the job submitter or project credit balance before
the job runs, then reconciles any difference after the job runs.
BG-2 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
You can ensure that cloud jobs run only when the owner has sufficient credit. See section 3.2.7, “Requiring Sufficient
Credit Before Bursting Cloud Nodes”, on page 72.

1.1.3.2 Job Flow in Prepaid Mode

1. A job is submitted

2. Budgets checks the following:

• Whether the submitter is associated with the cluster where the job is submitted

• Whether any quotas have been exceeded

• If a job is submitted as part of a project, whether the submitter is associated with the project

• If AM_BALANCE_PRECHECK is set to True in the Budgets configuration file, whether the job submitter has
sufficient credit to run the job

• If there is sufficient credit, the job is enqueued

• If there is not sufficient credit, the job is rejected by PBS

• If AM_BALANCE_PRECHECK is set to False in the Budgets configuration file, whether the job submitter
has sufficient credit to run the job

• If there is sufficient credit, the job is enqueued

• If there is not sufficient credit, the job is enqueued with a comment noting the insufficient credit

3. The scheduler selects the job to run

4. Budgets checks the following:

• Whether the submitter is associated with the cluster where the job is submitted

• Whether any quotas have been exceeded

• If a job is submitted as part of a project, whether the submitter is associated with the project

• Whether the job submitter has sufficient credit to run the job

• If the submitter does not have enough credit, the job is returned to the queue

5. If the submitter has enough credit:

• Budgets reserves the full amount of credit estimated to run the job

• The job runs

6. After the job runs, Budgets reconciles the actual cost to run the job with the reserved credit, and returns any overage
to the submitter

When AM_BALANCE_PRECHECK is set to False in the Budgets configuration file, Budgets keeps creditless jobs in
the queue so that they will run as soon as the job submitter has sufficient credit; the job submitter does not need to resub-
mit or remove a hold from these jobs.

When AM_BALANCE_PRECHECK is set to True in the Budgets configuration file, PBS rejects any creditless jobs.
These jobs must be resubmitted when the job submitter has sufficient credit.
PBS Professional 2022.1 Budgets Guide BG-3

Chapter 1 Introduction to Budgets
1.1.4 Tracking Cloud Costs and On Premise Costs

Separately

You can treat all jobs as if they will run on premise, using the same formulas for all jobs. However, you can instead use
cloud-specific cost data in formulas designed specifically for cloud jobs, while using on premise formulas for on premise
jobs. You can collect cloud instance cost data and give it to Budgets, and Budgets can use it when computing
cloud-based billing costs. This way, you can track and charge for cloud costs separately from on premise costs. See sec-
tion 3.2.6, “Separating On Premise and Cloud Costs”, on page 71.

You can use and manage cloud cost information separately from on premise cost information:

• You can keep Budgets informed about the cost per unit time for each cloud instance. You collect the cost informa-
tion from the cloud provider, then use the amgr update clouddata command to give this information to Budgets.
You may find it helpful to do this in a cron job or periodic hook. See section 4.2.3.10, “Updating Cloud Cost
Data”, on page 98.

• You can see the cloud cost data that has been given to Budgets via the amgr ls clouddata command. See section
4.2.2.10, “Listing Cloud Data”, on page 90.

• You can create separate formulas for cloud-specific service units so that you can track cloud job costs. Budgets can
use the data you gave it for each specific instance when calculating the cost for a job that will use that instance. You
can also create formulas that combine on premise and cloud costs when you need to calculate total credit usage for a
job owner. See section 3.2.3.3, “Defining Cloud and On Premise Service Units”, on page 65.

• You can specify that each cloud job can burst cloud nodes only when the job owner has sufficient credit, as calcu-
lated by Budgets. See section 3.2.6, “Separating On Premise and Cloud Costs”, on page 71.

• The administrator and the job owner can check whether that job owner has sufficient credit to run a job via the amgr
precheck commands. See section 4.3.4, “Prechecking Service Unit Balance”, on page 124.

1.1.5 Recommendation: Start Using Budgets in Postpaid

Mode

We recommend starting with postpaid mode, especially if you are already running jobs, so that you can get an idea of
usage needs and patterns. In postpaid mode, you do not need to allocate credit to users and projects, and they can run
jobs right away. If you need to enforce limits, you can switch to prepaid mode. In prepaid mode, you do need to allocate
credit before jobs can be run.

If you want to begin using Budgets in prepaid mode but have not used such tools before, be aware that there are some
steps to define the business processes you will use to manage credit, and some calibration to understand the amount of
credit to provide to users and projects. It is important to get these steps right, because providing too little credit to users
and projects could prevent the site workload from running.

We recommend that you begin by using Budgets in postpaid mode for a meaningful period of time (e.g. a quarter, espe-
cially if you manage credit per quarter) which will give you data you can use to guide your investments later in prepaid
mode.

The easiest point at which to transition from postpaid to prepaid mode is on the boundary of a time period. For example
if you are in Q1 and you have sufficient data to make your future investment decisions, you can make the transition
between Q1 and Q2: before the end of Q1 you can pre-invest in Q2 users and projects, and then switch modes at the end
of Q1.
BG-4 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
1.2 Some Nuts and Bolts

1.2.1 The AMS Module

The AMS module provides the security framework for Budgets. Budgets uses AMS to retrieve tokens, verify them, and
authenticate users. When you install Budgets, the Budgets server is registered as a client of AMS. Every Budgets
request has an authorization token.

1.2.2 Number of Instances and Workers

A large site will probably find that a single instance of Budgets for all PBS complexes works best. With a single instance
of Budgets, you can use a different charging model for each PBS complex.

Budgets is web-based for scalability. By default, the number of workers is two; you can spawn more if you need to.

1.2.3 Hooks and Formulas

Budgets is tightly integrated with the job management mechanisms of PBS Professional.

Budgets uses hooks to calculate billing at each PBS complex. Budgets uses two hooks, am_hook and
am_hook_periodic, that are identical except for their triggering events, that are installed in the PBS complexes. These
hooks calculate service unit consumption using the billing formulas defined in the formula file, which is used as the hook
configuration file. You can define the formulas to be based on compute resources, time, day of week, time of day, prior-
ity of queue, etc. See section 3.2.3, “Define Billing Formulas”, on page 62.

1.2.4 Database

Budgets uses a Postgres database.

1.2.5 Budgets and PBS Cloud

Budgets and PBS Cloud are integrated so that Budgets can use cloud cost data to calculate costs for cloud jobs and track
credit. Budgets can make sure that each cloud job owner has sufficient credit before allowing a cloud job to burst cloud
nodes.

1.3 Budgets Terminology

Account

Budgets has user, project, and group accounts. See User, User Account, Project, Project Account, and Group,
Group Account.

Accounting Policy

A policy associated with a project or user. Can be any of begin_period, end_period, or proportionate.

Active or inactive

An active element can perform all its normal functions; an inactive element cannot run jobs or do transactions.
PBS Professional 2022.1 Budgets Guide BG-5

Chapter 1 Introduction to Budgets
Allocation

A specified amount of one or more service units designated for use by a project or user. An allocation exists for
a fixed time period. As the service units are consumed, the allocation is depleted. Allocations can be made for
compute resources, budget resources, time resources, or a combination of those.

AMS

Security module used by Budgets to retrieve tokens, verify them, and authenticate users.

Billing Formulas

An arithmetic formula defining how a service unit is charged at a PBS complex. This is typically a PBS
resource and time, for example, the PBS resource ncpus multiplied by walltime defines the service unit for
CPU hours. Other examples are GPU hours, memory hours, etc. The billing formulas for each PBS complex
are defined in the Budgets hook configuration file for that complex. See section 3.2.3, “Define Billing Formu-
las”, on page 62.

Cluster

A data structure representing a PBS complex. Named for the PBS server. See section 1.7.5, “Clusters”, on page
23.

Element

Blanket term used to refer to a part of Budgets, such as an account, a transaction, a role, etc. Can be an entity or
something associated with an entity, such as a limit on a service unit.

Entity

Data structure representing a part of Budgets: a period, cluster, service unit, user, project, or group.

Group, Group Account

Entity representing an organizational structure such as a department, business unit, etc. A group account has a
credit balance, at least one associated investor who invests service units in the group account, and at least one
associated manager who uses the group account to fund users and projects.

Instance

An installation of Budgets; described by a name and the hostname or IP address of the machine where Budgets
is installed.

Mode

Budgets runs in either postpaid or prepaid mode. In postpaid mode, job submitters do not need credit to run
jobs. In prepaid mode, job submitters need credit to run jobs. The mode is global and applies to all of Budgets.

PBS complex

An installation of PBS Professional consisting of daemons including a server daemon and at least one MoM
daemon, and the hosts on which those daemons run. The name for a PBS complex is the name of its server dae-
mon, which is found in PBS_SERVER parameter in the /etc/pbs.conf file.

Periods, Allocation Periods, Billing Periods

Time period. Budgets can use a hierarchical system of time periods.

Postpaid Mode

In postpaid mode, job submitters do not need credit in order to run jobs.

Prepaid Mode

In prepaid mode, job submitters must have sufficient credit in order to be able to run jobs.

Project, Project Account

Entity representing a project, for example a workflow, as well as its associated account, including its credit bal-
ance. A project has associated users and clusters, and users associated with the project can run jobs on those
complexes and charge the project account.
BG-6 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
Reconciling Jobs

Prepaid mode only. After a job runs, Budgets reconciles charges for the job: it debits escrow for the amount
consumed by the job and returns any excess to the job owner, or if the job consumed more than requested it deb-
its more from the job owner's account.

Roles

Roles define available actions and access to features in Budgets. Roles can be admin, investor, manager,
teller, and user.

Service Unit

A standard service unit represents a currency, which can be dollars, CPU hours, GPU hours, etc; see section
1.7.2.1, “Standard Service Units”, on page 19.

A dynamic service unit lets you set a quota on an externally-managed resource such as storage; see section
1.7.2.2, “Dynamic Service Units”, on page 19.

Standard Service Units

Currency representing compute resources, budget resources, time resources, or a combination. Defined by the
Budgets administrator; can be specific to the needs of the client. Examples: CPU hours, GPU hours, dollars.

Dynamic Service Units

Mechanism for placing a quota on an external compute resource such as storage. If a quota is exceeded, jobs
that depend on that dynamic service unit do not start.

Transactions

An action that affects a credit balance, such as depositing or refunding service units to an account, or withdraw-
ing service units from an account.

User, User Account

We use these terms to mean two different things:

• Budgets entity representing an individual user and their associated account, including its credit balance.
This user is typically a job submitter with the user role, although an individual user can have any role.
Each user account is funded by at least one group manager. See section 1.6.3, “User, User Account”, on
page 16.

• Username, password, etc. for administrator, database user, teller, or job submitter. See section 2.5.1, “Cre-
ate Required User Accounts”, on page 32.

Worker

Process that handles transactions for Budgets. This process is run by the web server.

1.4 Roles

Roles define available actions in and access to the features of Budgets. Except for the teller role, roles are hierarchical;
each role includes the capabilities of the roles below it in the hierarchy. For example, if a user is defined as an investor,
they can be added later to a group as a manager. A user can have only one role at a time, although that role may have the
privileges of lower roles. Roles are case-sensitive and are lowercase. The teller role is a special-purpose role for pro-
cessing transactions, and its capabilities are shared only with the admin role.

In hierarchical order, with the most powerful and inclusive role first:
PBS Professional 2022.1 Budgets Guide BG-7

Chapter 1 Introduction to Budgets
admin

Budgets administrator. Configures Budgets; adds users, projects, groups, clusters, sets roles, defines periods,
gives refunds, etc. Can modify any element in Budgets. Can transfer service units from any entity to any entity.

When you install Budgets, you specify a username for the Budgets administrator. This account automatically
gets assigned the admin role. This username is typically pbsadmin.

Not automatically associated with specific projects or groups.

The admin role includes the capabilities of the investor, manager, teller, and user roles.

investor

A user who is associated with a group and is responsible for investing service units in the associated group
account. Can also withdraw service units from the group account. An investor can be associated with one or
more groups.

Created by Budgets administrator.

The investor role includes the capabilities of the manager and user roles.

manager

A user who is associated with a group and is responsible for depositing service units from the group account to
associated user and project accounts. Can also withdraw service units from these user and project accounts, put-
ting them back into the group account. Can be associated with multiple groups.

Created by Budgets administrator.

The manager role includes the capabilities of the user role.

teller

A user who performs all acquire and reconcile transactions on behalf of projects and users. When the Budgets
hook performs these actions, it uses the teller role and username amteller.

The teller has full permissions for transactions and can read all projects, accounts, groups, etc.

Not associated with groups or projects.

 The teller role is a special-purpose role for processing transactions, and its capabilities are shared only with the
admin role.

Created by Budgets administrator.

The teller role includes the capabilities of the user role.

user

PBS job submitters who have an individual account and/or are associated with a project. A job submitter with
an individual account can charge jobs to their own account. A job submitter who is associated with a project can
charge jobs to the project.

Created by Budgets administrator.

Operations:

• When you create any user, you must assign a role to that user; see section 4.2.1.2, “Adding a User”, on page 80.

• To see all roles that have been created, list them; see section 4.2.2.9, “Listing Roles”, on page 89.

• To change a user's role, use amgr update user; see section 4.2.3.2, “Updating Users”, on page 93.

1.5 Investing and Consuming Service Units

Investing and consuming service units is required only in prepaid mode.
BG-8 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
1.5.1 Investing in Groups (Cost Centers)

Groups in Budgets represent organizational entities such as departments or businesses. For example, an organization
might have multiple departments including engineering, systems, and software. The CFO, who can be represented in
Budgets as an investor, deposits service units to a department's group account. An investor can deposit to multiple
groups, and a group can have multiple investors.

The amount each investor dispenses to a group is tracked. An investor can withdraw funds from a group, but cannot
withdraw more than the amount they deposited to that group.

The group budget pool does not have any defined period. The amount in the budget pool is available for an infinite
amount of time.

Operations:

• Investor invests in a group via amgr deposit group; see section 4.3.1.3, “Depositing Service Units to Group”,
on page 121.

• Investor withdraws from a group via amgr withdraw group; see section 4.3.3.3, “Withdrawing Service Units
from Group”, on page 124.

• Administrator transfers between groups via amgr transfer group; see section 4.3.8.5, “Transferring Service
Units for Investors and Group”, on page 134.

Figure 1-1 shows the basic path for investment/allocation of credit. Each arrow indicates a path for investment/alloca-
tion. A group investor puts credit in a group account, and a group manager allocates group credit to users and projects.

Figure 1-1: Basic investment path
PBS Professional 2022.1 Budgets Guide BG-9

Chapter 1 Introduction to Budgets
1.5.2 Investing in Users and Projects

Once the group has been been allocated service units, group managers can use that pool to fund projects and users. Each
allocation to a user or project is for a specific period of time. For example, the engineering group managers can allocate
funds to the design project for Quarter1 and to the testing project for Quarter2 and Quarter3.

A manager can use up to the entire pool on one user or project.

Each group manager can be linked to multiple groups, and each group can have multiple managers. Each group can fund
multiple users and projects, and each user or project can have multiple groups funding it.

If necessary, a group manager can also withdraw funds from projects and users, but only up to the amount they deposited.

Figure 1-2 shows how credit can be allocated through multiple paths. Each arrow shows a potential investment path. An
investor can be associated with multiple groups, a group can receive credit from multiple investors, a manager can be
associated with multiple groups, a group can have multiple managers, and a user or project can be allocated credit from
multiple groups and by multiple managers.

Figure 1-2: Multiple investment paths

1.5.3 Charging Jobs to User or Project Account

The Budgets hook monitors each job submission, and when the job submitter specifies a project via qsub -P
<project name>, Budgets charges the job to that project. If the job submitter does not specify a project, Budgets
charges the job to the job submitter's own account.
BG-10 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
1.5.4 Job and Credit Lifecycle

1.5.4.1 Job and Credit Lifecycle in Postpaid Mode

When a job runs, it can consume multiple kinds of service units, for example both CPU hours and GPU hours.

1. User submits a job, charging it either to the user's account or a project account

2. Budgets validates membership of the job owner (a user or project)

3. Job is queued at PBS server

4. Job runs at execution host(s)

5. When the job finishes, Budgets debits the amount of credit that was consumed by the job

6. After the job finishes, the administrator can optionally refund credit for the job

1.5.4.2 Job and Credit Lifecycle in Prepaid Mode

When a job runs, it can consume multiple kinds of service units, for example both CPU hours and GPU hours.

1. User submits a job, charging it either to the user's account or a project account

2. Budgets validates membership of the job owner (a user or project)

3. Optionally, Budgets validates credit of the job owner (a user or project)

4. Job is queued at PBS server

5. Before running the job:

a. Budgets checks balance of job owner's account

b. Budgets acquires service units from job owner and puts them in escrow

6. Job runs at execution host(s)

7. When the job finishes, Budgets reconciles the job: it debits the amount of credit that was consumed by the job and
returns any excess to the user or project, or if the job consumed more than requested it debits more from the job
owner's account

8. After the job finishes, the administrator can optionally refund credit for the job

1.5.5 Reconciling Jobs

For prepaid mode only. When a job finishes, Budgets reconciles the job by debiting the amount of credit used by the job,
and returning the excess to the job owner's account, or if the job consumed more than requested it debits more from the
job owner's account. However, in rare cases a job cannot be reconciled when the job fails. Budgets will try to reconcile
a job up to 3 times; if it is not successful, it marks the job as not reconciled.

To see all unreconciled jobs that have had count or more attempts to reconcile:

amgr report transaction -i <job or transaction ID> -N <count>

For example, amgr report transaction -N 2 displays all non-reconciled jobs with count >=2.

See section 4.2.5.5, “Getting Job and Transaction Reports”, on page 115.

You have to manually reconcile jobs with 3 failed attempts.

To reconcile a job that is part of a project:

amgr reconcile project -n <project name> -c <cluster> -f <formula file> -s <service unit name> <service unit
amount> [-D <transaction date>] -u <job owner username> -i <transaction ID> -d <duration> [-C <comment>]
PBS Professional 2022.1 Budgets Guide BG-11

Chapter 1 Introduction to Budgets
To reconcile a job that is not part of a project:

amgr reconcile user -n <username> -c <cluster> -f <formula file> -s <service unit name> <service unit amount> [-D
<transaction date>] -u <job owner username> -i <transaction ID> -d <duration> [-C <comment>]

See section 4.3.6, “Reconciling Service Units”, on page 130.

1.5.6 Refunding Users and Projects

For postpaid and prepaid modes. The administrator can refund the user or project that funded a job for some or all of the
service units charged for the job. You can choose to provide a refund for situations such as when a job fails or runs mul-
tiple times, for reasons which cannot be attributed to the job owner. You can provide refunds to active and inactive
projects and users. You can provide multiple refunds for the same job, but the total refund cannot exceed the amount
consumed by the job.

Budgets knows who paid for the job, so you do not have to specify where the refund goes. The refund amount is calcu-
lated by multiplying the specified percentage by the total consumed amount. Total consumed amount is the sum of all
transaction amounts of all transactions for a job. Refunds are strictly per job.

You must be admin to provide a refund.

When a job is refunded, the comment in the report is always prefixed with "refund:".

See section 4.3.7, “Refunding Service Units”, on page 132.

1.5.7 Retrieving Abandoned Service Units

If service units go unclaimed and become unusable, the admin role can transfer them so that they become usable. You
can transfer from any period, group, user, or project, to any other period, group, user, or project. You can transfer
between investors in the same group or different groups. A transfer gets its own transaction ID.

Service units may become unusable when the following happen:

• An investor is unlinked from a group, leaving funds with the group

• A group is unlinked from a project, leaving funds with the project

• A period expires and leaves service units unused in a user or project account

See section 4.3.8, “Transferring Service Units”, on page 133.

You must be admin to run this command.

1.6 Accounts in Budgets

1.6.1 Group, Group Account

A group, also called a group account, is a type of account that represents an organizational structure such as a depart-
ment, a business unit, etc. A group has the following:

• Name

• Credit balance

• One or more investors

• One or more managers

• Is active or inactive
BG-12 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
Group managers provide the funding for users and projects to run jobs by depositing service units to those accounts.
Group managers can also withdraw service units from associated job and project accounts and return the service units to
the group account. All funding for users and projects comes from groups. The group credit balance is in standard service
units; see Service Units.

Group managers can also set a quota on an externally-managed resource such as storage by setting a limit for the
dynamic service unit representing that resource. A dynamic service unit limit is per user, project, and period, so you can
set a different limit for each user and project for each period. Budgets checks usage by the job owner against this quota
before running any job. See section 1.7.2.2, “Dynamic Service Units”, on page 19.

Groups do not:

• Directly run jobs

• Have associated time periods

• Have associated dynamic service units

Operations:

• Administrator adds group via amgr add group; see section 4.2.1.4, “Adding a Group”, on page 82

• Administrator updates group via amgr update group; see section 4.2.3.4, “Updating Groups”, on page 95

• User lists group via amgr ls group; see section 4.2.2.4, “Listing Groups”, on page 86

• Administrator removes group via amgr rm group; see section 4.2.4.4, “Removing a Group”, on page 102. Note
that if a group has any associated current or past transactions, removing it results only in making it inactive.

• Group manager deposits service units to users and projects via amgr deposit; see section 4.3.1, “Depositing Ser-
vice Units”, on page 119

• Group manager withdraws service units from users and projects via amgr withdraw; see section 4.3.3, “With-
drawing Service Units”, on page 123

• Manager checks credit balance of group via amgr checkbalance group; see section 4.3.2.6, “Checking Ser-
vice Unit Balance for Group”, on page 122

• Group manager transfers service units to and from users and projects via amgr transfer; see section 4.3.8,
“Transferring Service Units”, on page 133

• Manager gets reports on groups via amgr report group; see section 4.2.5.4, “Getting Group Reports”, on page
112

• Investor invests in a group via amgr deposit group; see section 4.3.1.3, “Depositing Service Units to Group”,
on page 121.

• Investor withdraws from a group via amgr withdraw group; see section 4.3.3.3, “Withdrawing Service Units
from Group”, on page 124.

• Administrator transfers between groups via amgr transfer group; see section 4.3.8.5, “Transferring Service
Units for Investors and Group”, on page 134.

The difference between being active and inactive is that an active group can participate in transactions, but an inactive
group cannot.
PBS Professional 2022.1 Budgets Guide BG-13

Chapter 1 Introduction to Budgets
1.6.2 Project, Project Account

A project account is designed to represent a project such as a workflow. It has the following:

• Name

• Credit balance which it can use to run jobs

• One or more associated groups

• One or more associated users

• One or more associated clusters representing PBS complexes

• Accounting policy; see section 1.7.4, “Accounting Policy”, on page 23

• Optional independent start date

• Optional independent end date

• Optional metadata

• State: active or inactive

A project acquires credit when a group manager deposits group credit to the project account. A project spends credit
when a user associated with the project runs a job and charges the job to the project account. A job can be charged to a
project account only when it is run by an associated user on an associated complex. Any user associated with the project
can charge a job to the project account. A project can use multiple clusters.

When a group manager deposits group credit to a project account, that allocation is for a specific period and in a specific
currency (service unit). Currency is usually defined as resource usage, such as CPU hours or GPU hours, but can be in
dollars or other monetary units.
BG-14 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
Operations:

• Administrator adds project via amgr add project; see section 4.2.1.3, “Adding a Project”, on page 81

• Administrator updates project via amgr update project; see section 4.2.3.3, “Updating Projects”, on page 93

• Project member lists project via amgr ls project; see section 4.2.2.3, “Listing Projects”, on page 86

• Administrator removes project via amgr rm project; see section 4.2.4.3, “Removing a Project”, on page 102.
Note that if a project has any associated current or past jobs or transactions, removing it results only in making it
inactive.

• Group manager deposits service units to project via amgr deposit project; see section 4.3.1.2, “Depositing
Service Units to Project”, on page 120

• Group manager withdraws service units from project via amgr withdraw project; see section 4.3.3.2, “With-
drawing Service Units from Project”, on page 123

• Project member, investor, or manager checks credit balance of project via amgr checkbalance project; see
section 4.3.2.5, “Checking Service Unit Balance for Project”, on page 122

• Group manager transfers service units to and from projects via amgr transfer project; see section 4.3.8.4,
“Transferring Service Units for Project”, on page 134

• Administrator or teller reconciles service units for project via amgr reconcile project; see section 4.3.6.3,
“Reconciling Service Units for Project”, on page 131

• Group manager applies limits to dynamic service units for project via amgr limit project; see section 4.2.6,
“Applying Limits to Dynamic Service Units”, on page 116

• Administrator or teller acquires service units for project via amgr acquire project; see section 4.3.5.4,
“Acquiring Service Units for Project”, on page 129

• Project member, investor, or manager prechecks service unit balance for project via amgr precheck project;
see section 4.3.4.1, “Prechecking a User or Project”, on page 125

• Project member, investor, or manager gets reports on projects via amgr report project; see section 4.2.5.3,
“Getting Project Reports”, on page 106

The difference between being active and inactive is that an active project can run jobs and participate in transactions, but
an inactive project cannot.

Project start and end times are not periods and are independent of periods.

When you create a project, you must assign an accounting policy and at least one cluster.
PBS Professional 2022.1 Budgets Guide BG-15

Chapter 1 Introduction to Budgets
1.6.2.1 Project Attributes

Projects have a metadata attribute, consisting of comma-separated key-value pairs, where the keys are undefined. The
administrator can set, update, or remove metadata when creating or updating a project.

Example 1-1: Add metadata to project:

amgr update project -n project1 -m + Owner:"Owner1"

Example 1-2: See metadata by getting a project report in prepaid mode:

amgr report project -n project1

name | period | serviceunit | opening_balance | ... | metadata |

project1 | 2022.feb | cpu_hrs | 0.0 | ... | {'Owner': 'Owner1'} |

Example 1-3: See metadata by listing project:

amgr ls project -n project1 -l

project1

account = project1

metadata = {'Owner': 'Owner1'}

...

Example 1-4: Remove metadata:

amgr update project -n project1 -m - Owner

Example 1-5: Verify by listing project:

amgr ls project -n project1 -l

project1

account = project1

metadata = {}

...

1.6.3 User, User Account

Entity representing an individual user and their associated account, including its credit balance. This user is typically a
job submitter with the user role, although an individual user can have any role. A user has the following:

• Name, which is the username

• Credit balance

• One or more associated groups

• One or more associated clusters representing PBS complexes

• Optionally, one or more projects with which the user is associated

• Role; see section 1.4, “Roles”, on page 7

• Accounting policy; see section 1.7.4, “Accounting Policy”, on page 23

• Is active or inactive

A user acquires credit when a group manager deposits group credit to the user account. A user spends credit when that
user runs a job and charges the job to their account. A job can be charged to a user account only when it is run by that
user on a complex associated with that user. A user can be assigned to zero or more projects. When a user runs a job,
they can charge the job to an associated project account, or to their own account.
BG-16 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
When a group manager deposits group credit to a user account, that allocation is for a specific period and in a specific
currency (service unit). Currency is usually defined as resource usage, such as CPU hours or GPU hours, but can be in
dollars or other monetary units.

A user with any role can have an individual user account.

Operations:

• Administrator adds user via amgr add user; see section 4.2.1.2, “Adding a User”, on page 80

• Administrator updates user via amgr update user; see section 4.2.3.2, “Updating Users”, on page 93

• Job submitter lists self, or manager lists user user via amgr ls user; see section 4.2.2.2, “Listing Users”, on page
85

• Administrator removes user via amgr rm user; see section 4.2.4.2, “Removing a User”, on page 101. Note that
if a user has any associated current or past jobs or transactions, removing it results only in making it inactive.

• Group manager deposits service units to user via amgr deposit user; see section 4.3.1.1, “Deposit Service
Units to User”, on page 119

• Group manager withdraws service units from user via amgr withdraw user; see section 4.3.3.1, “Withdrawing
Service Units from User”, on page 123

• Job submitter checks own credit balance, or manager checks credit balance of user via amgr checkbalance
user; see section 4.3.2.4, “Checking Service Unit Balance for User”, on page 122

• Administrator transfers service units to and from users via amgr transfer user; see section 4.3.8.3, “Transfer-
ring Service Units for User”, on page 133

• Group manager applies limits to dynamic service units for user via amgr limit user; see section 4.2.6, “Apply-
ing Limits to Dynamic Service Units”, on page 116

• Administrator or teller acquires service units for user via amgr acquire user; see section 4.3.5.3, “Acquiring
Service Units for User”, on page 129

• Administrator or teller reconciles service units for user via amgr reconcile user; see section 4.3.6.2, “Recon-
ciling Service Units for User”, on page 130

• Job submitter prechecks own service unit balance, or manager prechecks service unit balance for user via amgr
precheck user; see section 4.3.4.1, “Prechecking a User or Project”, on page 125

• Job submitter prechecks whether own service unit balance is sufficient for specific jobs, or manager prechecks ser-
vice unit balance for user jobs, via amgr precheck jobs; see section 4.3.4.2, “Prechecking Jobs”, on page 126

• Job submitter gets report on self, or manager gets reports on user via amgr report user; see section 4.2.5.2,
“Getting User Reports”, on page 104

The difference between being active and inactive is that an active user can run jobs and participate in transactions, but an
inactive user cannot.

1.6.3.1 Requirements for Adding Job Submitters

When you create a user, you must assign a role, an accounting policy, and at least one cluster.

Each user you add to Budgets should already have an entry in the password file, with a password set, and a home direc-
tory on the Linux system where Budgets is installed.

When you add a user who will run jobs, that user must already be able to run jobs in a PBS complex.
PBS Professional 2022.1 Budgets Guide BG-17

Chapter 1 Introduction to Budgets
1.7 Accounting Tools

1.7.1 Periods, Allocation Periods, Billing Periods

A period, also called a billing period or an allocation period, is a defined period of time with fixed start and end dates.

When a group manager deposits service units to a project or user account, that allocation is deposited for a specific
period. The allocation is available to the project or user for that period only, expires at the end of the period, and is
reported against that period.

Group accounts do not have associated periods.

The Budgets administrator creates all periods. You can create a hierarchy of billing periods where the parent period
encompasses the child periods. For example the parent period can be Year, and the child periods can be Quarter1,
Quarter2, etc. There is no limit to the depth of the hierarchy.

Operations:

• Administrator adds period via amgr add period; see section 4.2.1.6, “Adding a Period”, on page 83

• Administrator updates period via amgr update period; see section 4.2.3.6, “Updating a Period”, on page 96.
Note that if a period has any associated jobs or transactions, you cannot update it.

• Any user lists any period via amgr ls period; see section 4.2.2.6, “Listing Periods”, on page 88

• Administrator removes period via amgr rm period; see section 4.2.4.6, “Removing a Period”, on page 103.
Note that if a period has any associated current or past jobs or transactions, you cannot remove it.

1.7.1.1 Caveats for Creating Periods

• Make sure that periods at the same level do not overlap. For example, if Quarter1 ends March 31st, make sure that
Quarter2 does not begin sooner than April 1st.

• If you want to create periods with a parent-child relationship, you must create the parent period first. You cannot add
a parent to an existing child. For example, if you want Year as the parent and Quarter1, Quarter2, etc., as children,
create Year first.

• If you create child periods, make sure that they fit within the parent period.

• Make sure that your period hierarchy is finalized BEFORE doing any transactions or running any jobs; you cannot
update or remove periods once transactions have been performed or jobs have started.

1.7.2 Service Units

Budgets has two types of service units:

• You use standard service units to track and bill for resource usage, such as dollars, CPU hours, or GPU hours; this
type is SU_STANDARD

• You use dynamic service units to set quotas on externally-managed resources such as storage; this type is
SU_DYNAMIC

You can define as many service units as you need, and you can define each one to be whatever you need. You can define
and use different service units for billing at each PBS complex. A job, project, or user can consume multiple service
units. The default type is SU_STANDARD.
BG-18 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
Operations:

• Administrator adds service unit via amgr add serviceunit; see section 4.2.1.7, “Adding a Service Unit”, on
page 84

• Administrator updates service unit via amgr update serviceunit; see section 4.2.3.7, “Updating a Service
Unit”, on page 97. You can update the type of a service unit only when it has no associated transactions or value
updates. Use this command to set a service unit active or inactive.

• Any user lists service unit via amgr ls serviceunit; see section 4.2.2.7, “Listing Service Units”, on page 88

• Administrator removes service unit via amgr rm serviceunit; see section 4.2.4.7, “Removing a Service
Unit”, on page 103. Note that if a service unit has any associated current or past transactions, removing it results
only in making it inactive.

• Administrator uses cron script to update dynamic service unit usage via amgr update dynamicvalues;
see section 4.2.3.9, “Updating Dynamic Service Unit Usage”, on page 98.

• Administrator sets a limit on the service unit via amgr limit {user | project}; see section 4.2.6, “Apply-
ing Limits to Dynamic Service Units”, on page 116

• Administrator defines each service unit in the billing formulas; see section 3.2.3, “Define Billing Formulas”, on page
62

The difference between being active and inactive is that an active service unit can be used for transactions or for quota
checks, but an inactive one cannot; it cannot be invested, transferred, consumed, etc.

1.7.2.1 Standard Service Units

A standard service unit can be a monetary unit such as dollars, or it can represent an internally-managed resource such as
CPU hours or GPU hours. Standard service units can be treated like a currency.

The Budgets hook runs at the PBS complex where a job runs and tracks standard service unit usage by the job. Budgets
debits the account of the job owner for the usage by the job. When you manage a PBS complex via Budgets, each PBS
job can run only when the job can be charged to a project or user account that has sufficient standard service units.

1.7.2.1.i Adding and Removing Standard Service Units

You can create separate standard service units for each cluster.

To create a standard service unit and add it to Budgets:

1. Define the service unit in a billing formula; see section 3.2.3, “Define Billing Formulas”, on page 62

2. Add the service unit to Budgets via amgr add serviceunit -n <name of new service unit>; see
section 4.2.1.7, “Adding a Service Unit”, on page 84

To remove a standard service unit:

1. Remove the service unit from all formulas, otherwise jobs will not run

2. Remove the service unit from Budgets via amgr rm serviceunit -n <service unit name>; see sec-
tion 4.2.4.7, “Removing a Service Unit”, on page 103

1.7.2.2 Dynamic Service Units

A dynamic service unit tracks an external resource such as storage. You use a dynamic service unit by setting a limit on
it to establish a quota. You can set separate limits on a dynamic service unit for each user and project, and for each user
or project, you can specify a different limit for each period, via amgr limit {user | project}; see section
4.2.6, “Applying Limits to Dynamic Service Units”, on page 116. To set a limit on a dynamic service unit for a user or
project, you must be the group manager for the group that provides standard service units for that user or project.

Budgets checks whether a job owner has hit a quota before starting each job. If a job owner hits a quota, they cannot start
any more jobs until either the limit is raised or usage goes down.
PBS Professional 2022.1 Budgets Guide BG-19

Chapter 1 Introduction to Budgets
1.7.2.2.i Caveats for Dynamic Service Units

If a dynamic service unit has no limit set on it, the limit is zero. If there are active dynamic service units, all jobs are
checked against those quotas, and a zero quota will stop any job from running. Make sure that you don't unintentionally
stop non-target users or projects from running jobs:

• Make sure you set the quota for all users and projects

• When you specify the period, make sure you either:

• Set the desired quota at the top level of the period hierarchy

• Set a very high quota at the top level of the period hierarchy, and a more restrictive quota for the period you
need to control

1.7.2.2.ii Attributes for Dynamic Service Units

The data_lifetime Budgets configuration attribute specifies the maximum time period between updates to dynamic ser-
vice units. The default value is 3600 seconds. See section 3.3, “Setting Budgets Configuration Attributes”, on page 73.

1.7.2.2.iii Adding and Removing Dynamic Service Units

To create and use a dynamic service unit, you add it to Budgets, set a limit, and keep its value updated:

1. Add the service unit to Budgets via amgr add serviceunit -n <name of new service unit>; see
section 4.2.1.7, “Adding a Service Unit”, on page 84

2. Set a limit on the service unit via amgr limit {user | project}; see section 4.2.6, “Applying Limits to
Dynamic Service Units”, on page 116

3. Periodically update the value of the service unit by having a cron script call amgr update dynamicvalues;
see section 4.2.3.9, “Updating Dynamic Service Unit Usage”, on page 98. The script should update the value at
intervals that are smaller than the limit set in the data_lifetime attribute; the default value is 3600 seconds. See sec-
tion 3.3, “Setting Budgets Configuration Attributes”, on page 73

To remove a dynamic service unit from Budgets, use amgr rm serviceunit -n <service unit name>; see
section 4.2.4.7, “Removing a Service Unit”, on page 103

1.7.2.2.iv Checking Quotas (Limits on Dynamic Service Units)

There may be quotas set on externally-managed resources such as storage. A quota is a limit on a dynamic service unit.
To see quotas, list all service units:

amgr ls serviceunit

See section 4.2.2.7, “Listing Service Units”, on page 88.

1.7.2.3 Examples of Storage Quotas via Dynamic Service Units

Example 1-6: Setting user and project quotas:

Set user quota:

amgr limit user -n user1 -s storage 12.0 -p 2022

Set project quota:

amgr limit project -n project1 -s storage 25.0 -p 2022

Example 1-7: Setting consumption by user and project. This call is typically made via a cron job, and you would want
to make sure you set this more often than the limit in the data_lifetime attribute:

Set consumption for user1:

amgr update dynamicvalues -v '{"storage": {"user1": {"total":8}}}'
BG-20 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
Set consumption for project1:

amgr update dynamicvalues -v '{"storage": {"project1": {"total":30}}}'

Example 1-8: Reporting storage usage:

Report user storage data:

amgr report user -n user1 -t SU_DYNAMIC

--

name | serviceunit | period | limit | last_reported_time | total_consumed

--

user1 | storage | 2022.feb | 12.0 | 2022-02-11 18:58... | 8.0

Report project storage data:

amgr report project -n project1 -t SU_DYNAMIC

--

name | serviceunit | period | limit | last_reported_time | total_consumed

--

project1 | storage | 2022.feb | 25.0 | 2022-02-11 18:58... | 30.0

Example 1-9: Queued job for project1 won't run. Why? Because it is over quota as shown in the report above.

qstat 3269

Job id Name User Time Use S Queue

--------------------- ---------------- ---------------- -------- - -----

3269.testbed workq_test user1 0 Q workq

qstat -f 3269 | grep comment

comment = Not Running: PBS Error: Budgets: Consumption has reached the

limit for a dynamic service unit storage

1.7.2.4 Rules for Using Service Units

• You can change the type of a service unit, but there are restrictions:

• You can change standard to dynamic only when no transactions have taken place for that service unit

• You can change dynamic to standard only when no updates have been made to the usage of that service unit

• In the billing formula file, you can use only standard service units.

• All active dynamic service units must have a limit set in order for jobs to run

• When you create a new child period, it inherits its limits for any dynamic service units from its parent

• If you apply a limit directly to a dynamic service unit for a period, that overrides any inherited limit

• If you apply a limit to a period, all child periods that are not directly limited inherit the limit; similarly, limits on
child periods are inherited by children of those child periods, when no direct limits have been set

• Only administrators can update dynamicvalues

• The maximum amount of each service unit an account can hold is 999999999999.99.
PBS Professional 2022.1 Budgets Guide BG-21

Chapter 1 Introduction to Budgets
1.7.3 Transactions

A transaction is an operation on a service unit, such as a deposit or transfer. We say a transaction is an element in Bud-
gets. Budgets also uses checks on account balances; these are not transactions, but they are also elements in Budgets.

You can get reports on transactions; see section 4.2.5.5, “Getting Job and Transaction Reports”, on page 115.

Table 1-1: Transactions and Checks

Name Operation Format When Purpose

Deposit Deposit service units to user,
project, or group account

Depositing Service Units

Unique float Any
time

Investor funds group.

Group manager funds user or project from
group account.

Withdraw Withdraw service units from
user, project, or group account

Withdrawing Service Units

Unique float Any
time

Investor withdraws funds from group.

Group manager withdraws service units from
user or project and returns them to group
account.

Transfer Move service units from one
investor or user, project, or
group account to another

Transferring Service Units

Unique float Any
time

Administrator transfers service units between
investors, groups, periods, projects, and users.

Useful when period expires leaving unused
funds; these funds can be transferred where
needed.

Refund Refund service units from
group account to user or project
account

Refunding Service Units

Job ID plus date,
time stamp, and
operation
(shown in report)

Any
time

Administrator refunds job owner for costs out
of job owner's control, for example re-run
caused by node failure.

Refunds are strictly per-job.

Acquire Service units from job owner's
account are put in escrow
before running the job

Acquiring Service Units

Job ID plus date,
time stamp, and
operation
(shown in report)

Before
job
runs

Hook moves credit from job owner's account
to escrow.

Can be used as a debug tool by administrator.

Reconcile Service units consumed by job
are removed from escrow.
Returns unused service units in
escrow, or if job consumed
more than requested, debits
more from job owner account

Reconciling Service Units

Job ID plus date,
time stamp, and
operation
(shown in report)

After
job
runs

Hook reconciles accounts after job ends: deb-
its escrow for amount consumed by job and
returns unused credit to job owner, or if job
consumed more than requested, debits more
from the job owner's account.

Can be used as a debug tool by administrator.

Precheck Check job owner account for
sufficient service units; disal-
low queueing job if insufficient

Prechecking Service Unit Bal-
ance

Not a transac-
tion; no ID

Before
queue-
ing job

Hook can optionally disallow queueing of
jobs owned by accounts with insufficient ser-
vice units.

Can be used as a debug tool by administrator.

Checkbal-
ance

Check job owner account for
sufficient service units; do not
run job if insufficient

Checking Service Unit Balance

Not a transac-
tion; no ID

Before
job
runs

Hook checks job owner credit balance before
allowing job to run.
BG-22 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
1.7.3.1 Transaction IDs

Every transaction has a transaction ID.

• Transactions associated with jobs, such as acquiring service units to run the job, consist of the job ID, a date, a times-
tamp, and an operation, shown in the report. For example:
1235.myserver 2022-10-06 17:15:23.760451 ... acquired ...

• Other transactions have a unique floating-point number for their transaction ID. This format has 10 digits before the
point and 7 after the point, for example:
0123456789.1234567

1.7.4 Accounting Policy

You must specify an accounting policy for each user and project when you add them to Budgets. The policy determines
how the entity is charged for its jobs. You can set the accounting policy when you add or update the entity via the -A
<accounting policy> option to the amgr add or amgr update commands. There is no default policy. The
accounting policy is case-sensitive, and it is lowercase. You have the following options:

begin_period
The user or project account is charged when the job begins.

end_period
The user or project account is charged when the job ends.

proportionate
The user or project account is charged during all periods when the job runs, and each period is charged in pro-
portion to the usage during that period.

1.7.5 Clusters

A cluster is a data structure representing a PBS complex. Each cluster is named for its PBS server; the server name is the
value of the PBS_SERVER parameter in the /etc/pbs.conf file. Cluster names (and therefore PBS server names)
must be unique. The cluster formulas must be the same as the formulas at the complex, otherwise jobs won't run. If you
log into a PBS complex and change a formula there, update the cluster data structure at the Budgets host via amgr
update cluster.

When you run amgr add cluster or amgr update cluster, you are also updating the database with the for-
mulas for the cluster.

A cluster has the following:

• Name; this must be the name of the PBS server for the PBS complex, found in the PBS_SERVER parameter in the
/etc/pbs.conf file

• Billing formulas; see section 3.2.3, “Define Billing Formulas”, on page 62

• Is active or inactive

In order for a user or project to be able to run a job at a PBS complex, its representative cluster must be associated with
the user or project.
PBS Professional 2022.1 Budgets Guide BG-23

Chapter 1 Introduction to Budgets
Cluster operations:

• Administrator adds a cluster to Budgets via amgr add cluster; see section 4.2.1.5, “Adding a Cluster”, on page
83

• Administrator updates a cluster via amgr update cluster; see section 4.2.3.5, “Updating Clusters”, on page
96

• Any user lists a cluster via amgr ls cluster; see section 4.2.2.5, “Listing Clusters”, on page 87

• Administrator removes a cluster via amgr rm cluster; see section 4.2.4.5, “Removing a Cluster”, on page 102.
If the cluster has any associated jobs or transactions, the remove operation only makes the cluster inactive.

The difference between an active and an inactive cluster is that an active cluster can run jobs and participate in transac-
tions, but an inactive cluster cannot. Otherwise they are the same.

Figure 1-3 shows the relationship between a cluster and its associated PBS complex.

Figure 1-3: Relationship between cluster and PBS complex

1.8 Summary of Setting Budgets Up for Postpaid or

Prepaid Mode

1.8.1 Summary of Using Postpaid Mode

To set Budgets up to use postpaid mode, you need to create the relevant clusters, an active period, the desired service
unit, and accounts for any job submitters. If you want to use projects, you need to create any relevant project accounts.
You also need to make sure that each job submitter is a member of the relevant cluster.

If job submitters want to pay their balance off early, you need to create a group for the job submitters, a manager for the
group, an investor for the group, an investment to the group, and a grant from the group to each job submitter.
BG-24 PBS Professional 2022.1 Budgets Guide

Introduction to Budgets Chapter 1
1.8.2 Summary of Using Prepaid Mode

To set Budgets up to use prepaid mode, you need to create the relevant clusters, an active period, the desired service unit,
and accounts for any job submitters. You also need to create a group for the job submitters, a manager for the group, an
investor for the group, an investment to the group, and a grant from the group to each job submitter. You also need to
make sure that each job submitter is a member of the relevant cluster.

If you want to use projects, you need to create any relevant project accounts, and add the submitters as members of the
projects.

1.9 Caveats and Restrictions

• The Budgets administrator account must exist and have the admin role at all times. Make sure you never remove
the admin role from your administrator account. If you have no administrator with admin role, you cannot use Bud-
gets. If you do not have another administrator account with the admin role, do not disable your administrator
account as shown in section 2.11, “Changing Budgets Administrator to New Username”, on page 58, step 3, Perma-
nently disable pbsadmin.

• Soft walltime is not supported.

• Shrink-to-fit jobs are not supported.

• If the license server is not reachable, jobs will continue to run for up to 3 hours. After that, jobs cannot start or be
reconciled.

• In postpaid mode, a job that is deleted via qdel -Wforce is not billed, because it has no E record.

• If, in postpaid mode, two groups invest in the same user or project account, but the first group's investment serves
only to bring the account from a negative value up to zero, the second group is given full ownership if you switch to
prepaid mode at a time that is not on a period boundary. You can avoid this by always switching between modes on
a period boundary.

1.10 Troubleshooting

1.10.1 Using Logfiles for Troubleshooting

1.10.1.1 Using Budgets Logfile

Look in the Budgets server log for information about Budgets. Budgets writes its logfile to /var/spool/am/<Budgets
server hostname>_<value of AM_PORT>_server.log.

Each day, Budgets automatically renames old log files to "<original filename>-<year>-<month>-<day of month>". So if
Budgets writes a log file named "/var/spool/am/myserverhost_8000_server.log", and renames it on the 14th of March
2022, the new name is "/var/spool/am/myserverhost_8000_server.log-2022-march-14".

This file lists the requests made to the Budgets server and the resulting actions, and information about problems. Some
typical problems and their indicators:

• License has expired: logfile shows "license unavailable"

• A cluster name is different from its associated PBS server : logfile shows "could not resolve hostname <cluster
name>"

• A request from an unauthenticated user: logfile shows "unable to login. Username or password is incorrect'

• A user tries to use a project they’re not a member of : logfile shows "user <username> is not authorized for <project
name> project"
PBS Professional 2022.1 Budgets Guide BG-25

Chapter 1 Introduction to Budgets
1.10.1.2 Using PBS Server Logfile

Look in the PBS server log for logging by the Budgets hooks am_hook and am_hook_periodic. The default location for
PBS server logs is $PBS_HOME/server_logs. See "Event Logging" on page 428 in the PBS Professional Administrator’s
Guide.

1.10.2 Symptoms

• Symptoms of losing connection with the AMS module:

• If users can no longer log into or out of Budgets, the connection with the AMS module may have been lost.

• If Budgets stops jobs from running, check the Budgets logfile or a job comment. If you see Budgets complain-
ing about "connection refused", that means Budgets can't reach the AMS module.

• If you reinstall the AMS module, that breaks its connection with Budgets.

To reestablish the connection, run this script as root:

/opt/am/libexec/am_auth_register

• Symptom of insufficient credit:

• A job returns an error saying there is not enough credit

1.11 Formats in Budgets

1.11.1 Name Formats

• Name format for projects, groups, periods:

Allowed characters: a-z,A-Z,0-9,_,-,.,$

Max length: 256 characters

• Name format for service units:

Allowed characters: a-z,A-Z,0-9,_,$

Max length: 30 characters

• Name format for usernames is OS-dependent
BG-26 PBS Professional 2022.1 Budgets Guide

2

Installing and Upgrading

Budgets

2.1 Supported Platforms

2.1.1 OpenSSL Requirement

PBS requires OpenSSL 1.1.1. If this is not already present on your platform, you must install it.

2.1.2 PBS Components

PBS Professional is made up of the following components:

• PBS Professional server/scheduler daemon on PBS Professional server/scheduler host/head node

• PBS Professional MoM daemon on execution host/compute node, with the following options:

• On premise

• Burst in cloud via PBS Cloud (optional)

• PBS Professional client commands on PBS submission host/client host

• PBS Professional communication daemon on communication host

• PBS Cloud module on service node (where AMS module runs) (optional)

• Budgets server on Budgets head node (optional)

• Budgets AMS module on service node (where PBS Cloud module runs) (optional)

• Budgets client commands on Budgets client host (optional)

• Simulate module:

• When using PBS Cloud, Simulate must be installed on PBS Professional server/scheduler host

• When not using PBS Cloud, Simulate can be installed on any supported host
PBS Professional 2022.1 Budgets Guide BG-27

Chapter 2 Installing and Upgrading Budgets
2.1.3 Supported Platforms for PBS Components

PBS components are supported on the following platforms. A (d) indicates that support is deprecated:

Table 2-1: Supported Platforms

Maker Version
Chip
set

Components

PBS Professional Cloud + AMS Budgets Simulate

Server
Sched

MoM
on

prem
Comm

Client
cmds

Cloud
module
+ AMS

MoM
burst
node

Head
node +
client
cmds

Head
node

CentOS 7 x86_64 Yes Yes Yes Yes Yes Yes Yes No

7 ARM64 Yes Yes Yes Yes No Yes No No

Red Hat
Enterprise
Linux
RHEL

7 x86_64 Yes Yes Yes Yes Yes Yes Yes Yes

7 ARM64 Yes Yes Yes Yes No Yes No Yes

7 MLS x86_64 Yes Yes Yes Yes No No No No

8 x86_64 Yes Yes Yes Yes Yes Yes Yes Yes

8 ARM64 Yes Yes Yes Yes No Yes No Yes

Rocky
Linux

8 x86_64 Yes Yes Yes Yes No Yes No No

8 ARM64 Yes Yes Yes Yes No Yes No No

SUSE
SLES

12 x86_64 Yes Yes Yes Yes Yes * Yes Yes Yes

12 ARM64 Yes Yes Yes Yes No Yes No No

15 x86_64 Yes Yes Yes Yes No Yes Yes Yes

15 ARM64 Yes Yes Yes Yes No Yes No Yes

Ubuntu 18.04 x86_64 Yes Yes Yes Yes No Yes Yes Yes

18.04 ARM64 Yes Yes Yes Yes No Yes No Yes

20.04 x86_64 Yes Yes Yes Yes No Yes Yes Yes

20.04 ARM64 Yes Yes Yes Yes No Yes No Yes

HPE Cray
Shasta

1.1
SLES 15

x86_64 Yes Yes Yes Yes Yes * No Yes * Yes

1.1 RHEL
7

x86_64 Yes Yes Yes Yes No No No Yes

NEC SX-Aurora TSUBASA Yes Yes Yes Yes No No No Yes

Windows 10 Pro x86_64 No Yes No Yes No Yes No No
BG-28 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.1.3.1 * SLES Restrictions for Cloud and Budgets Nodes

The following restrictions apply when using SLES on service node host for PBS Cloud or head node host for Budgets:

• Each SLES host must be registered with the SUSE Customer Center via SUSEConnect, and have a support contract.
This happens automatically for cloud nodes.

• SLES hosts require Docker Enterprise Edition.

2.1.4 Supported Platforms for Nodes Burst in Cloud

• Linux: any Linux platform that supports both PBS MoM and cloud-init

• Windows: 10, Server 2012

All versions of cloud-init are supported.

2.1.5 Restrictions on Simulate Module Location when Using

PBS Cloud

If you will use the PBS Cloud module, you must install Simulate on the PBS Professional server/scheduler host (the PBS
Professional head node).

2.1.6 Hosts for Budgets Client Commands

Any host where you install just the client commands must be able to reach the Budgets server, and must be a supported
platform for the Budgets client commands.

2.2 Recommended Configurations

Budgets is typically configured with a head node (where the PBS Professional server and the Budgets server run) and a
service node (where PBS Cloud and the AMS module run). We prefer not to run Docker on a heavily loaded PBS server
host, so we typically put the elements requiring Docker on the service node.

11 Pro x86_64 No Yes No Yes No Yes No No

Server
2016

x86_64 No Yes No Yes No Yes No No

Server
2019

x86_64 No Yes No Yes No Yes No No

Table 2-1: Supported Platforms

Maker Version
Chip
set

Components

PBS Professional Cloud + AMS Budgets Simulate

Server
Sched

MoM
on

prem
Comm

Client
cmds

Cloud
module
+ AMS

MoM
burst
node

Head
node +
client
cmds

Head
node
PBS Professional 2022.1 Budgets Guide BG-29

Chapter 2 Installing and Upgrading Budgets
Head node and service node can be one of either:

• Both on premises

• Both in cloud

Do not put one on premises and one in the cloud.

There are no restrictions on client command-only hosts.

2.2.1 Installation Directory

The default location for the Budgets server is /var/spool/am. You can install the Budgets server in the default location
or a non-default location of your choice. The AMS module is always installed in the same location; this location is con-
trolled by the AMS installer.

2.2.2 Recommended Configuration for Larger Installations

For larger installations using on premises hosts with optional cloud bursting:

• Head, service, and first N execution nodes are on premises:

• On head node, PBS server daemon, PBS scheduler daemon, and Budgets server

• On service node, AMS module running in container, and PBS Cloud running in separate container

• Execution hosts running MoM daemons

• Cloud nodes for extra execution nodes

• VPN connection to the cloud you will use

• Client commands go on any Linux host

• All components are mix-and-match (with Docker restriction)

2.2.3 Recommended Configuration for Smaller Installations

For smaller installations and cloud-only installations where the workload is low enough:

• All components can be hosted in the cloud

• All components can run on the same node

• You can run Docker on the same node as the PBS server/scheduler

• You can also run a cloud head node and separate cloud service node:

• Cloud head node, running PBS Professional server/scheduler and Budgets server

• Cloud service node, running AMS module in container, and PBS Cloud in separate container

• Client commands go on any Linux host, but a user must be able to reach the Budgets port on the cloud host

• No VPN is required for this configuration

2.3 Whether or Not to Start with Failover

Consider configuring Budgets for failover. Without failover, the AM_HOME directory is on a local drive, but with failover,
it's on a separate host. We recommend doing a fresh install for failover, which means starting with an empty database.
For failover configuration instructions, see section 2.9, “Configuring Budgets for Failover”, on page 53.
BG-30 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.4 Prerequisites

2.4.1 Altair Software Components

• Budgets server

• Budgets client commands

• Budgets authentication module (AMS)

• PBS Professional 2022.1.0 or later, installed and running

• PBS Professional server/scheduler(s)/comm(s)

• PBS Professional MoM(s)

• PBS Professional client commands

• Altair License Manager 14.5.1 or newer, installed and running

• PBSProNodes 20.0 license features

2.4.2 Third-party Software Components

• docker-ce v19.x or later for most systems

• docker-ee v19.x or later for SLES

• python3

• python3-pip

• openssl

2.4.3 Job Requirements

Each job must request the compute resources that are used in the billing formulas used at that complex. For the default
formula, this means walltime and ncpus. Make sure that every PBS job requests ncpus and walltime when it runs.
Each job can have these set at submission by the job submitter or later via qalter, can inherit a value from the server or
queue, or can be assigned a value by a hook. For ncpus, the server attribute default_chunk.ncpus may take care of the
requirement.

Job walltime:

• If a job's walltime is extended, Budgets takes that into account.

• Soft walltime is not supported.

• Shrink-to-fit jobs are not supported.

2.5 Installation Steps for All Locations

Follow the steps in this section no matter where you are installing PBS Cloud.

Follow the steps in the order they are presented: when it comes up, the Budgets server needs use the passwords and cer-
tificates to communicate with the AMS module, and needs to verify the various accounts.
PBS Professional 2022.1 Budgets Guide BG-31

Chapter 2 Installing and Upgrading Budgets
2.5.1 Create Required User Accounts

2.5.1.1 Budgets Administrator

Budgets requires an administrator. The administrator configures Budgets.

We recommend that the username for the administrator account be pbsadmin (same account used for PBS administra-
tor). You can use any username for the Budgets administrator. Where you see "pbsadmin" in the instructions, substitute
the actual administrator username.

You can install and configure Budgets using pbsadmin for the administrator username, then switch to another username
later. See section 2.11, “Changing Budgets Administrator to New Username”, on page 58.

2.5.1.1.i Requirements for Administrator Account

• This account must exist and have the admin role at all times. Make sure you never remove the admin role from
your administrator account. If you have no administrator with admin role, you cannot use Budgets.

• The administrator account should not be used for the teller.

• The home directory for the administrator should exist on the PBS server host, and on the Budgets host, if it is a sep-
arate machine.

• Administrator account must have an account on the PBS server host, and on the Budgets host, if it is a separate
machine.

• Administrator should be able to ssh to the Budgets server host without a password. Administrator must have pass-
wordless ssh set up from the PBS server host to the Budgets server host. We cover this in section 2.5.3, “Set Up
Passwordless SSH for Administrator and Teller”, on page 35.

2.5.1.2 Teller

Budgets requires a teller user to process its service unit transactions. When the Budgets hook performs transactions, it
does so as the teller.

2.5.1.2.i Requirements for Teller Account

• We recommend that the username for the teller account be amteller

• Teller should be a dedicated account used only for the teller role

• Teller account must have an account on the PBS server host, and on the Budgets host, if it is a separate machine.

• Teller should be able to ssh to the Budgets server host without a password. Teller must have passwordless ssh set
up from the PBS server host to the Budgets server host. We cover this in section 2.5.3, “Set Up Passwordless SSH
for Administrator and Teller”, on page 35.

• The teller account should not be used for pbsadmin

• The teller account does not need to be root or administrator

2.5.1.3 Database User

Budgets requires a database user for its database.

2.5.1.3.i Requirements for Database User Account

• We recommend that the username for the database user account be pbsdata.

• The pbsdata account should have an ID <1000 so that any processes which run under this user are protected from the
Out Of Memory (OOM) killer and run with the correct level of privilege.
BG-32 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.5.1.4 Job Submitters

Users who submit jobs to PBS Professional have to exist on the system where Budgets is installed, but these users can be
added to Budgets after installation.

2.5.1.4.i Requirements for Job Submitters

• Job submitters must already be able to run jobs in a PBS complex.

• Each user you add to Budgets should already have an entry in the password file, with a password set, and a home
directory on the Linux system where Budgets is installed.

2.5.1.5 Configuring Required Accounts for Budgets

• Add pbsadmin as the Budgets administrator, and set a password:
adduser -u 901 pbsadmin

passwd pbsadmin <password>

• Add amteller as the Budgets teller, and set a password:
adduser amteller

passwd amteller <password>

• Add pbsdata as the Budgets database user, and set a password:
adduser -u 900 pbsdata

passwd pbsdata <password>

2.5.2 Allow Interaction with PBS Professional

In order to work on hooks, you have to be root, so we add specific actions to the sudoers file on the Budgets and PBS
server hosts for pbsadmin to work as root when using amgr and qmgr to import and export hook files.

If you will install Budgets in a non-default location, make sure that AM_EXEC is set correctly.
PBS Professional 2022.1 Budgets Guide BG-33

Chapter 2 Installing and Upgrading Budgets
2.5.2.1 Budgets Server and PBS Server on Same Host

On the Budgets/PBS server host, edit /etc/sudoers, and add the following lines. Replace the $AM_EXEC and
$PBS_EXEC variables with the actual paths.

• Allow Budgets administrator to act as root for Budgets commands:
Cmnd_Alias AM_SERVER_CMD = $AM_EXEC/python/bin/python3 $AM_EXEC/hooks/pbs/pbs_set_formula.py*

• Allow Budgets administrator to set the formulas as root:
Defaults!AM_SERVER_CMD !requiretty

• Allow teller to get a security token:
Cmnd_Alias AM_CLIENT_CMD = $AM_EXEC/python/bin/amgr sshlogin

• Allow amgr command to update hook formulas:
Cmnd_Alias BUDGETS_IMPORTS = $PBS_EXEC/bin/qmgr -c i h am_hook application/x-config default

.am/tmp*, $PBS_EXEC/bin/qmgr -c i h am_hook_periodic application/x-config default .am/tmp*,
$PBS_EXEC/bin/qmgr -c export hook am_hook application/x-config default

• Allow the Budgets administrator account to act as root for the qmgr commands listed above:
<budget administrator> ALL=(root) NOPASSWD: BUDGETS_IMPORTS

• Allow hooks to work in the background with no tty interface:
Defaults!AM_CLIENT_CMD !requiretty

• Allow hooks to work in the background with no tty interface:
Defaults!BUDGETS_IMPORTS !requiretty

2.5.2.2 Budgets Server and PBS Server on Separate Hosts

2.5.2.2.i Changes to sudoers on Budgets Server Host

On the Budgets server host, edit /etc/sudoers, and add the following lines. Replace the $AM_EXEC and
$PBS_EXEC variables with the actual paths.

• Allow Budgets administrator to act as root for the qmgr commands listed above:
Cmnd_Alias AM_SERVER_CMD = $AM _EXEC/python/bin/python3 $AM_EXEC/hooks/pbs/pbs_set_formula.py*

• Allow the Budgets administrator to set the formulas as root:
Defaults!AM_SERVER_CMD !requiretty
BG-34 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.5.2.2.ii Changes to sudoers on PBS Server Host

On the PBS server host, edit /etc/sudoers, and add the following lines. Replace the $AM_EXEC and $PBS_EXEC
variables with the actual paths. We give an example showing default paths below:

• Allow teller to get a security token:
Cmnd_Alias AM_CLIENT_CMD = $AM_EXEC/python/bin/amgr sshlogin

• Allow amgr command to update hook formulas:
Cmnd_Alias BUDGETS_IMPORTS = $PBS_EXEC/bin/qmgr -c i h am_hook application/x-config default

.am/tmp*, $PBS_EXEC/bin/qmgr -c i h am_hook_periodic application/x-config default .am/tmp*,
$PBS_EXEC/bin/qmgr -c export hook am_hook application/x-config default

• Allow the Budgets administrator account to act as root for the qmgr commands listed above:
<budget administrator> ALL=(root) NOPASSWD: BUDGETS_IMPORTS

• Allow hooks to work in the background with no tty interface:
Defaults!AM_CLIENT_CMD !requiretty

• Allow hooks to work in the background with no tty interface:
Defaults!BUDGETS_IMPORTS !requiretty

2.5.3 Set Up Passwordless SSH for Administrator and Teller

The administrator needs to have passwordless ssh available from the Budgets server host to the PBS server host. The
teller needs to have passwordless ssh available from the PBS server host to the Budgets server host.

2.5.3.1 Setting Up Passwordless SSH for Administrator

To give the administrator passwordless ssh from the Budgets server host to the PBS server host, generate a public
authentication key at the Budgets server host and append it to the ~/.ssh/authorized_keys file at the PBS server host.
Here are the steps:

1. Log in to the Budgets server host as the administrator

2. Check for an existing SSH key pair:

ls -al ~/.ssh/id_*.pub

3. If you find existing keys, you can use those, or you can back up the old keys and generate a new pair. If you don’t
find existing keys, generate a new SSH key pair:

ssh-keygen

4. Copy the contents of id_rsa.pub

5. Log in to the PBS server as the administrator

6. In the home directory, check for the .ssh directory. If it does not exist, create it:

mkdir -p .ssh

cd .ssh/

7. Create the authorized_keys file in the .ssh directory:

a. Paste the contents of id_rsa.pub that you copied from the Budgets server host

b. Save the file as "authorized_keys"

8. Change the permission of authorized_keys to 600:

chmod 600 authorized_keys
PBS Professional 2022.1 Budgets Guide BG-35

Chapter 2 Installing and Upgrading Budgets
2.5.3.2 Setting Up Passwordless SSH for Teller

To give the teller passwordless ssh from the PBS server host to the Budgets server host, generate a public authentication
key at the PBS server host and append it to the ~/.ssh/authorized_keys file at the Budgets server host. Here are the
steps:

1. Log in to the PBS server host as the teller

2. Check for an existing SSH key pair:

ls -al ~/.ssh/id_*.pub

3. If you find existing keys, you can use those, or you can back up the old keys and generate a new pair. If you don’t
find existing keys, generate a new SSH key pair:

ssh-keygen

4. Copy the contents of id_rsa.pub

5. Log in to the Budgets server as the teller

6. In the home directory, check for the .ssh directory. If it does not exist, create it:

mkdir -p .ssh

cd .ssh/

7. Create the authorized_keys file in the .ssh directory:

a. Paste the contents of id_rsa.pub that you copied from the PBS server host

b. Save the file as "authorized_keys"

8. Change the permission of authorized_keys to 600:

chmod 600 authorized_keys

2.5.4 Set Budgets Paths

Append executable path to PATH environment variable for all users of Budgets (administrator, investors, managers,
teller, job submitters). You can set this in /etc/bashrc:

export PATH=$PATH:$AM_EXEC/python/bin

For the default path, this is:

export PATH=$PATH:/opt/am/python/bin
BG-36 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.6 Installation Steps for Default Location

2.6.1 Install Utilities and Docker

Install utilities and docker on the service node. The directory is not important.

• For CentOS or RedHat:

Log in as root to the service node (the machine where the AMS module is to be installed).

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

yum install python3 python3-pip

yum install openssl

• For SLES12 or 15:

Log in as root to the service node (the machine where the AMS module is to be installed).

For SLES 12:

sudo SUSEConnect -p sle-module-containers/12/x86_64 -r ''

For SLES 15:

sudo SUSEConnect -p sle-module-containers/15.1/x86_64 -r ''

sudo zypper install docker

sudo systemctl enable docker.service

sudo systemctl start docker.service

Configure the firewall to allow forwarding of Docker traffic to the external network:

Set FW_ROUTE="yes" in /etc/sysconfig/SuSEfirewall2

zypper install python3-pip

• For Ubuntu:

Log in as root to the service node (the machine where the AMS module is to be installed).

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-proper-
ties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

The key should match the second line in the output; validate the last 8 characters. Example of second line:

9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

sudo apt-get install python3-pip

This can install a number of required dependencies, and may take a few minutes.

sudo apt-get install openssl

sudo systemctl enable docker.service
PBS Professional 2022.1 Budgets Guide BG-37

Chapter 2 Installing and Upgrading Budgets
sudo systemctl start docker.service

2.6.2 Download Budgets Server and AMS Modules

1. Log in as root to the Budgets server host

2. Go to the default installation location:

cd /var/spool

3. On the Budgets server host, download the main file containing both the Budgets server and the AMS module. The
filename has the following format:

PBSPro-budget-server_<release number>-<OS>_x86_64.tar.gz

For example:

PBSPro-budget-server_2022.1.0-CentOS7_x86_64.tar.gz

4. Untar the main file:

tar xvfz PBSPro-budget-server_<release number>-<OS>_x86_64.tar.gz

For example:

tar xvfz PBSPro-budget-server_2022.1.0-CentOS7_x86_64.tar.gz

This creates the following:

• File named "ams-installer.tar.gz" containing the AMS installer

• Directory named "am" containing the Budgets server module

5. Copy ams_installer.tar.gz over to the service node
BG-38 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.6.3 Install AMS Module on Service Node

Install the AMS module on the service node. You can start in any directory.

1. Untar the AMS installer file:
Tar xvfz ams-installer.tar.gz

This gives a directory named "ams-installer", containing:

• A file named "README.md "

• A package named "ams-installer.zip"

2. Unzip ams-installer.zip:

unzip ams-installer.zip

This gives a directory named "ams-installation", containing:

• Directory named "packages" containing the AMS package of folders and configuration files

• Directory named "pbsworks-packager" containing the Python module that installs AMS

3. Change to ams-installation directory:

cd ams-installation

4. Use the Python module to install AMS:

python3 -m pip install --upgrade --ignore-installed pbsworks-packager/

/usr/local/bin/pkgr (Please stay in the AMS installer directory for this step)

5. Answer the questions in the dialogue:

a. Choose option: 0 (choose the AMS package)

b. Hit Enter until you've seen the whole license agreement, then answer Yes to accept

c. Select Enter to continue

d. Choose Option: 1 (yes, add hostname resolution)

<Budgets server hostname>

<Budgets server IP address>

e. Choose Option: 0 (no, stop adding hostname resolution)

f. Install Location: <Budgets server hostname>

g. Authentication Server: <authentication daemon hostname>

h. Authentication Port (this is the port for the authentication daemon, typically sshd): <port number>

i. Provide administrator username: <administrator username>

j. Install Path: <install path>

6. Once installation completes check the AMS service status:

systemctl status altaircontrol

2.6.4 Enable Passwords in Docker Container Network

To allow administrators and job submitters to use a password to log into Budgets, make it so that Budgets can authenti-
cate users via passwords and ssh. This way users can use their password entry in /etc/passwd to log into Budgets.
PBS Professional 2022.1 Budgets Guide BG-39

Chapter 2 Installing and Upgrading Budgets
On the service node:

1. Edit /etc/ssh/sshd_config and add the following lines:
Match Address 10.5.0.0/24

PasswordAuthentication yes

2. Make sshd reread its configuration file, and restart it:

systemctl daemon-reload

systemctl restart sshd
BG-40 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.6.5 Create Certificates for Budgets Daemon

Communication Encryption

On the Budgets server host, create the certificates required to encrypt communication between the Budgets and database
daemons:

1. Make required directory:
cd /home/pbsadmin/

mkdir budget_certificates

export AM_DBUSER=<database user; default is pbsdata>

2. Create a key pair that will serve as both the root CA and the server key pair. This key pair is for 10 years (3650
days):

openssl req -new -x509 -days 3650 -nodes -out budget_certificates/ca.crt -keyout
budget_certificates/ca.key -subj "/CN=root-ca"

Generating a 2048 bit RSA private key

...

writing new private key to 'budget_certificates/ca.key'

...

3. Create the server key and CSR:

openssl req -new -nodes -out server.csr -keyout budget_certificates/server.key -subj "/CN=local-
host"

Generating a 2048 bit RSA private key

...

writing new private key to 'budget_certificates/server.key'

...

4. Sign the CSR using the root key:

openssl x509 -req -in server.csr -days 3650 -CA budget_certificates/ca.crt -CAkey
budget_certificates/ca.key -CAcreateserial -out budget_certificates/server.crt

Signature ok

subject=/CN=localhost

Getting CA Private Key

5. Create client certificate for database user (typically pbsdata):

openssl req -new -nodes -out client.csr -keyout budget_certificates/client.key -subj
"/CN=${AM_DBUSER}"

Generating a 2048 bit RSA private key

...

writing new private key to 'budget_certificates/client.key'

...

openssl x509 -req -in client.csr -days 3650 -CA budget_certificates/ca.crt -CAkey
budget_certificates/ca.key -CAcreateserial -out budget_certificates/client.crt

Signature ok

subject=/CN=pbsdata

Getting CA Private Key

6. Remove unneeded intermediate files:
PBS Professional 2022.1 Budgets Guide BG-41

Chapter 2 Installing and Upgrading Budgets
rm -f server.csr client.csr

7. Set suitable permissions to protect certificates:

chmod og-rwx budget_certificates/*

8. View files:

cd budget_certificates/

ls -l

total 28

-rw-------. 1 root root 1090 Jan 7 14:45 ca.crt

-rw-------. 1 root root 1704 Jan 7 14:45 ca.key

-rw-------. 1 root root 17 Jan 7 14:56 ca.srl

-rw-------. 1 root root 973 Jan 7 14:56 client.crt

-rw-------. 1 root root 1704 Jan 7 14:55 client.key

-rw-------. 1 root root 973 Jan 7 14:54 server.crt

-rw-------. 1 root root 1704 Jan 7 14:52 server.key

pwd

/home/pbsadmin/budget_certificates
BG-42 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.6.6 Install Budgets Server Module

You can install and configure Budgets using "pbsadmin" as the Budgets administrator username, then switch to a differ-
ent administrator username later; see section 2.11, “Changing Budgets Administrator to New Username”, on page 58.
Install the Budgets server module on the head node (the Budgets server host):

1. Change to new directory created by untarring the main file earlier:
cd /var/spool/am/

2. Run the Budgets installer, and choose the username you want for the Budgets administrator. In our example we use
pbsadmin for the administrator username:

./install -t server -u pbsadmin -c /home/pbsadmin/budget_certificates

Installing Budgets

You have selected server.

AM_EXEC does not exist. Will make it.

AM_HOME does not exist. Will make it.

Installing Budgets server...

**

**

Copying source to /opt/am

**

**

Budgets installed successfully.

sed -i 's/AMADMIN/pbsadmin/g' /opt/am/db/am_database.sql

sed -i 's/AMADMIN/pbsadmin/g' /opt/am/libexec/am_postinstall

sed -i 's|@AM_EXEC@|/opt/am|g' /opt/am/libexec/pbs_budget.service

sed -i 's|@AM_HOME@|/var/spool/am|g' /opt/am/libexec/pbs_budget.service

sed -i 's|@AM_SERVER@|testbed|g' /opt/am/libexec/pbs_budget.service

sed -i 's|@AM_PORT@|8000|g' /opt/am/libexec/pbs_budget.service

cp -rp /opt/am/libexec/pbs_budget.service /usr/lib/systemd/system/pbs_budget.service

2.6.7 Set Configuration Parameters

Budgets relies on configuration parameters in the file /etc/am.conf. We list the parameters in Table 2-2, “Budgets Con-
figuration Parameters,” on page 44. On the Budgets server host and any client hosts, make sure all of the Budgets con-
figuration parameters are set correctly. Especially make sure that AM_MODE is set to the mode you want, because to
change modes you need to restart Budgets. In addition, make sure that AM_AUTH_ENDPOINT and
AM_LICENSE_ENDPOINT are set correctly.
PBS Professional 2022.1 Budgets Guide BG-43

Chapter 2 Installing and Upgrading Budgets
2.6.7.1 Budgets Configuration Parameters

Budgets uses the following configuration parameters:

2.6.7.2 Example Configuration File

Example of /etc/am.conf:

AM_PORT=8000

AM_EXEC=/opt/am

AM_HOME=/var/spool/am

AM_WORKERS=2

AM_DBUSER=pbsdata

AM_DBPORT=9876

AM_AUTH_ENDPOINT=9100@my_ams_host

AM_AUTH_TIMEOUT=30

AM_LICENSE_ENDPOINT=6200@my_alm_host

AM_SERVER=my_budget_host

AM_MODE=postpaid

AM_BALANCE_PRECHECK=False

Table 2-2: Budgets Configuration Parameters

Configuration Parameter Description Default Value

AM_AUTH_ENDPOINT Path to AMS module. Format: <port>@<hostname> 9100@<AMS host>

AM_AUTH_TIMEOUT Optional. Number of seconds to wait when authenticat-
ing. Integer.

Set this to a larger value if you have a problem with
authentication timeout.

10

AM_BALANCE_PRECHECK Boolean. Directs hook to precheck account balance when
job is queued

False

AM_DBPORT Port number for Postgres database 9876

AM_DBUSER Username of database user pbsdata

AM_EXEC Path to Budgets executables /opt/am

AM_HOME Home directory for Budgets /var/spool/am

AM_LICENSE_ENDPOINT Path to license daemon. Format: <port>@<hostname> 6200@<ALM host>

AM_MODE Specifies postpaid or prepaid mode postpaid

AM_PORT Port number on which Budgets listens 8000

AM_SERVER Hostname of Budgets server module host Host where Budgets
server module is
installed

AM_WORKERS Number of workers to spawn. We recommend not chang-
ing this setting. For help, contact Altair support.

2

BG-44 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.6.7.3 Caveats and Advice for Budgets Configuration Parameters

• If you change AM_MODE, you must restart Budgets. For procedures to change AM_MODE, see section 3.5,
“Changing Between Modes”, on page 74.

• Set AM_AUTH_TIMEOUT to a larger value if you have a problem with authentication timeout.

2.6.8 Enable and Start Budgets

• On the Budgets server host, enable and start Budgets:
systemctl enable pbs_budget

systemctl start pbs_budget

• Check the status of Budgets:
systemctl status pbs_budget

2.7 Installation Steps for Non-default Location

You must be root to install Budgets. Log in as root.

2.7.1 Set Configuration Parameters

Budgets relies on configuration parameters in the file /etc/am.conf. When you install Budgets in a non-default loca-
tion, you create the configuration file before you install Budgets. We list the configuration parameters in Table 2-2,
“Budgets Configuration Parameters,” on page 44. Create the configuration file and make sure that:

• All of the configuration parameters are set correctly

• You set AM_HOME and AM_EXEC to your non-default locations

• You set AM_MODE to the mode you want, because to change modes you need to restart Budgets

• You set AM_AUTH_ENDPOINT and AM_LICENSE_ENDPOINT correctly

Example of /etc/am.conf for non-default locations:

AM_PORT=8000

AM_EXEC=/budgets/exec

AM_HOME=/budgets/home

AM_WORKERS=2

AM_DBUSER=pbsdata

AM_DBPORT=9876

AM_AUTH_ENDPOINT=9100@my_ams_host

AM_AUTH_TIMEOUT=30

AM_LICENSE_ENDPOINT=6200@my_alm_host

AM_SERVER=my_budget_host

AM_MODE=postpaid

AM_BALANCE_PRECHECK=False
PBS Professional 2022.1 Budgets Guide BG-45

Chapter 2 Installing and Upgrading Budgets
2.7.2 Install Utilities and Docker

1. Install utilities and docker on the service node:

• For CentOS or RedHat:

Log in as root to the service node (the machine where the AMS module is to be installed).

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

yum install python3 python3-pip

yum install openssl

• For SLES12 or 15:

Log in as root to the service node (the machine where the AMS module is to be installed).

For SLES 12:

sudo SUSEConnect -p sle-module-containers/12/x86_64 -r ''

For SLES 15:

sudo SUSEConnect -p sle-module-containers/15.1/x86_64 -r ''

sudo zypper install docker

sudo systemctl enable docker.service

sudo systemctl start docker.service

Configure the firewall to allow forwarding of Docker traffic to the external network:

Set FW_ROUTE="yes" in /etc/sysconfig/SuSEfirewall2

zypper install python3-pip

• For Ubuntu:

Log in as root to the service node (the machine where the AMS module is to be installed).

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-proper-
ties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

The key should match the second line in the output; validate the last 8 characters. Example of second line:

9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

sudo apt-get install python3-pip

This can install a number of required dependencies, and may take a few minutes.

sudo apt-get install openssl

sudo systemctl enable docker.service

sudo systemctl start docker.service
BG-46 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.7.3 Download Budgets Server and AMS Modules

1. Log in as root to the Budgets server host

2. Go to your selected installation location:

cd <Budgets server installation directory>

3. On the Budgets server host, download the main file containing both the Budgets server and the AMS module. The
filename has the following format:

PBSPro-budget-server_<release number>-<OS>_x86_64.tar.gz

For example:

PBSPro-budget-server_2022.1.0-CentOS7_x86_64.tar.gz

4. Untar the main file:

tar xvfz PBSPro-budget-server_<release number>-<OS>_x86_64.tar.gz

For example:

tar xvfz PBSPro-budget-server_2022.1.0-CentOS7_x86_64.tar.gz

This creates the following:

• File named "ams-installer.tar.gz" containing the AMS installer

• Directory named "am" containing the Budgets server module

5. Copy ams_installer.tar.gz over to the service node
PBS Professional 2022.1 Budgets Guide BG-47

Chapter 2 Installing and Upgrading Budgets
2.7.4 Install AMS Module on Service Node

Install the AMS module on the service node. You can start in any directory.

1. Untar the AMS installer file:
Tar xvfz ams-installer.tar.gz

This gives a directory named "ams-installer", containing:

• A file named "README.md "

• A package named "ams-installer.zip"

2. Unzip ams-installer.zip:

unzip ams-installer.zip

This gives a directory named "ams-installation", containing:

• Directory named "packages" containing the AMS package of folders and configuration files

• Directory named "pbsworks-packager" containing the Python module that installs AMS

3. Change to ams-installation directory:

cd ams-installation

4. Use the Python module to install AMS:

python3 -m pip install --upgrade --ignore-installed pbsworks-packager/

/usr/local/bin/pkgr (Please stay in the AMS installer directory for this step)

5. Answer the questions in the dialogue:

a. Choose option: 0 (choose the AMS package)

b. Hit Enter until you've seen the whole license agreement, then answer Yes to accept

c. Select Enter to continue

d. Choose Option: 1 (yes, add hostname resolution)

<Budgets server hostname>

<Budgets server IP address>

e. Choose Option: 0 (no, stop adding hostname resolution)

f. Install Location: <Budgets server hostname>

g. Authentication Server: <authentication daemon hostname>

h. Authentication Port (this is the port for the authentication daemon, typically sshd): <port number>

i. Provide administrator username: <administrator username>

j. Install Path: <install path>

6. Once installation completes check the AMS service status:

systemctl status altaircontrol

2.7.5 Enable Passwords in Docker Container Network

To allow administrators and job submitters to use a password to log into Budgets, make it so that Budgets can authenti-
cate users via passwords and ssh. This way users can use their password entry in /etc/passwd to log into Budgets.

On the service node:
BG-48 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
Edit /etc/ssh/sshd_config and add the following lines:

Match Address 10.5.0.0/24

PasswordAuthentication yes

Make sshd reread its configuration file, and restart it:

systemctl daemon-reload

systemctl restart sshd
PBS Professional 2022.1 Budgets Guide BG-49

Chapter 2 Installing and Upgrading Budgets
2.7.6 Create Certificates for Budgets Daemon

Communication Encryption

On the Budgets server host, create the certificates required to encrypt communication between the Budgets and database
daemons:

1. Make required directory:
cd /home/pbsadmin/

mkdir budget_certificates

export AM_DBUSER=pbsdata

2. Create a key pair that will serve as both the root CA and the server key pair. This key pair is for 10 years (3650
days):

openssl req -new -x509 -days 3650 -nodes -out budget_certificates/ca.crt -keyout
budget_certificates/ca.key -subj "/CN=root-ca"

Generating a 2048 bit RSA private key

...

writing new private key to 'budget_certificates/ca.key'

...

3. Create the server key and CSR:

openssl req -new -nodes -out server.csr -keyout budget_certificates/server.key -subj "/CN=local-
host"

Generating a 2048 bit RSA private key

...

writing new private key to 'budget_certificates/server.key'

...

4. Sign the CSR using the root key:

openssl x509 -req -in server.csr -days 3650 -CA budget_certificates/ca.crt -CAkey
budget_certificates/ca.key -CAcreateserial -out budget_certificates/server.crt

Signature ok

subject=/CN=localhost

Getting CA Private Key

5. Create client certificate for database user (typically pbsdata):

openssl req -new -nodes -out client.csr -keyout budget_certificates/client.key -subj
"/CN=${AM_DBUSER}"

Generating a 2048 bit RSA private key

...

writing new private key to 'budget_certificates/client.key'

...

openssl x509 -req -in client.csr -days 3650 -CA budget_certificates/ca.crt -CAkey
budget_certificates/ca.key -CAcreateserial -out budget_certificates/client.crt

Signature ok

subject=/CN=pbsdata

Getting CA Private Key

6. Remove unneeded intermediate files:
BG-50 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
rm -f server.csr client.csr

7. Set suitable permissions to protect certificates:

chmod og-rwx budget_certificates/*

8. View files:

cd budget_certificates/

ls -l

total 28

-rw-------. 1 root root 1090 Jan 7 14:45 ca.crt

-rw-------. 1 root root 1704 Jan 7 14:45 ca.key

-rw-------. 1 root root 17 Jan 7 14:56 ca.srl

-rw-------. 1 root root 973 Jan 7 14:56 client.crt

-rw-------. 1 root root 1704 Jan 7 14:55 client.key

-rw-------. 1 root root 973 Jan 7 14:54 server.crt

-rw-------. 1 root root 1704 Jan 7 14:52 server.key

pwd

/home/pbsadmin/budget_certificates
PBS Professional 2022.1 Budgets Guide BG-51

Chapter 2 Installing and Upgrading Budgets
2.7.7 Install Budgets Server Module

You can install and configure Budgets using "pbsadmin" as the Budgets administrator username, then switch to a differ-
ent administrator username later; see section 2.11, “Changing Budgets Administrator to New Username”, on page 58.
Install the Budgets server module on the head node:

1. Change to new directory created by untarring the main file earlier:
cd <selected installation directory>/am/

2. Run the Budgets installer, and choose the username you want for the Budgets administrator. In our example we use
pbsadmin for the administrator username:

./install -t server -u pbsadmin -c /home/pbsadmin/budget_certificates

For example, if you use the example configuration file in section 2.7.1, “Set Configuration Parameters”, on page 45,
you will see the following:

Installing Budgets

You have selected server.

AM_EXEC does not exist. Will make it.

AM_HOME does not exist. Will make it.

Installing Budgets server...

**

**

Copying source to /budgets/exec

**

**

Budgets installed successfully.

sed -i 's/AMADMIN/pbsadmin/g' /budgets/exec/db/am_database.sql

sed -i 's/AMADMIN/pbsadmin/g' /budgets/exec/libexec/am_postinstall

sed -i 's|@AM_EXEC@|/budgets/exec|g' /budgets/exec/libexec/pbs_budget.service

sed -i 's|@AM_HOME@|/budgets/home|g' /budgets/exec/libexec/pbs_budget.service

sed -i 's|@AM_SERVER@|testbed|g' /budgets/exec/libexec/pbs_budget.service

sed -i 's|@AM_PORT@|8000|g' /budgets/exec/libexec/pbs_budget.service

cp -rp /budgets/exec/libexec/pbs_budget.service /usr/lib/systemd/system/pbs_budget.service

2.7.8 Enable and Start Budgets

• On the Budgets server host, enable and start Budgets:
systemctl enable pbs_budget

systemctl start pbs_budget

• Check the status of Budgets:
systemctl status pbs_budget
BG-52 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.8 Validating Budgets

1. Log in as pbsadmin

2. Test authentication:

amgr login

3. List users (pbsadmin and amteller):

amgr ls user -l

2.9 Configuring Budgets for Failover

Budgets uses Pacemaker and Corosync to manage failover for the Budgets and data service daemons. You set up a pri-
mary Budgets server and a secondary Budgets server, and a shared filesystem used by either one and available to both, as
a failover cluster. The primary normally handles all server traffic, but the secondary takes over and becomes active if the
primary becomes unavailable. Failover for the Budgets daemon and the data service daemon happens together. Budgets
starts the data service on the same host where the Budgets daemon runs. Pacemaker and Corosync manage the flow of
traffic so that it goes to the active server and database.

2.9.1 Prerequisites for Configuring Budgets Failover

2.9.1.1 Third-party Software Prerequisites

• Pacemaker 1.1.23

• Corosync 2.4.5 or later

• pcs 0.9.169

2.9.1.2 Budgets Server Host Prerequisites

• Budgets server hosts must be identical

• Both server hosts must have access to shared filesystem

• Each server host should have two network connections:

• Dedicated private ethernet connection that Pacemaker and Corosync use to manage host state

• Public network that Budgets client commands will use for communication traffic with Budgets server

• Each server host should have two hostnames:

• Private hostname for use with private ethernet connection, for example "PrimaryFailover" and "Secondary-
Failover"

• Public hostname for use with client commands, for example "Primary" and "Secondary"

• Same version of Budgets on both servers

• Accounts for administrator, investors, managers, and teller must be identical on both hosts
PBS Professional 2022.1 Budgets Guide BG-53

Chapter 2 Installing and Upgrading Budgets
2.9.1.3 Filesystem Prerequisites

• Shared AM_HOME filesystem on a third host, that is mounted on both Budgets server hosts and always available to both
hosts

• No root squash on shared filesystem

• Hostname resolution must work both ways between Budgets server hosts, and between both servers and any other
hosts involved, for example PBS server hosts

• The AM_HOME directory must be readable and writable from both servers by the Budgets administrator

2.9.1.4 Optional

• STONITH script, if required. The administrator writes this script.

2.9.1.5 Notes

• There are no prerequisites for the service node.

2.9.2 Installing Corosync, Pacemaker, and pcs

On each Budgets server host:

1. Log into each Budgets server host as root.

2. Install Budgets if it is not already installed. See section 2.6, “Installation Steps for Default Location”, on page 37.

3. Install Pacemaker, Corosync, and pcs.

4. When you install Pacemaker, the installation creates the hacluster account, which is the proxy user for Pacemaker.
You need to give hacluster a password on each server host:

passwd hacluster

<password for hacluster account>

5. Create a budget directory in the ocf library:

mkdir /usr/lib/ocf/resource.d/budgetmanager

6. Copy ocf files am_ocf and am_data_ocf from the Budgets package to the budget directory:

cp /root/am/failover/budgetmanager/* /usr/lib/ocf/resource.d/budgetmanager/

7. Set the permissions for the budget directory:

chmod -R +x /usr/lib/ocf/resource.d/budgetmanager
BG-54 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.9.3 Configuring Pacemaker

1. If Budgets is running on any host, stop Budgets:
systemctl disable pbs_budget

systemctl stop pbs_budget

2. Log into the primary Budgets server host as root

3. Authorize Pacemaker to use the server hosts, using their private hostnames:

pcs cluster auth <private primary hostname> <private secondary hostname>

4. Create the failover cluster, name it "am_cluster", and start it, using the private hostnames:

pcs cluster setup --start --name am_cluster <private primary hostname> <private secondary host-
name>

5. Set the quorum policy to ignore:

pcs property set no-quorum-policy=ignore

6. Set whether or not stonith is enabled. If you have a STONITH script and want to use it, you can enable stonith. If
not, disable it:

pcs property set stonith-enabled=false

7. Create the virtual_ip resource to represent a virtual IP address. This IP address should be exclusively allocated for
this purpose and not used by any physical host on your network. This is the IP address that client commands will use
to connect to the active Budgets server over the public network. Pacemaker and Corosync direct traffic from this IP
address to whichever server is active:

pcs resource create virtual_ip ocf:heartbeat:IPaddr2 ip=<virtual IP address> cidr_netmask=32
nic=<nic-name-of-public-network> op monitor interval=10s

8. Create the amserver resource to represent the Budgets daemon. Note that here we are assuming am.conf is in /etc.
Make sure you use the appropriate location:

pcs resource create amserver ocf:budgetmanager:am_ocf conf=/etc/am.conf op monitor interval=15s

9. Add a constraint to Pacemaker so that it always keeps the virtual_ip and amserver resources on the same host.
When one moves, the other goes with it:

pcs constraint colocation add amserver virtual_ip INFINITY

10. Make the primary server host be the preferred server host:

pcs constraint location amserver prefers <primary>

11. Budgets is automatically started on the primary server host. You do not have to start Budgets.

2.9.4 Caveats and Recommendations for Failover

• Make sure only one Budgets server daemon is running at a time. Do not start a second Budgets server. If two
instances of Budgets are active at the same time, the database will become corrupted.

• Make sure that the shared AM_HOME directory is always available on both the primary and secondary server hosts. Do
not prevent either host from reaching AM_HOME.
PBS Professional 2022.1 Budgets Guide BG-55

Chapter 2 Installing and Upgrading Budgets
2.9.5 Starting, Stopping, and Getting Status of Budgets with

Failover Configured

• To start Budgets when failover is configured:

On each Budgets server host, in any order:

pcs cluster start

• To stop Budgets when failover is configured, first stop the secondary, then the primary:
pcs cluster stop <secondary server host>

pcs cluster stop <primary server host>

• To check the status of Budgets when failover is configured:
pcs cluster status
BG-56 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.10 Upgrading Budgets

1. Log in to the Budgets server as root

2. Turn off scheduling in all associated PBS Professional complexes

3. Disable all PBS queues:

qmgr -c 'set queue <queue name> enabled=false'

4. Allow all jobs to finish, or kill them

5. If necessary, reconcile all jobs:

amgr reconcile [options]

See section 4.3.6, “Reconciling Service Units”, on page 130

6. Stop Budgets (ideal for backup, but not essential)

systemctl stop pbs_budget

7. Back up /var/spool/am

8. Make a copy of the formula file used for each cluster. If you don't have these on hand, export them at each PBS
server host:

qmgr -c 'export hook am_hook application/x-config default' > am_hook.json

9. If necessary, create certificates; see Create Certificates for Budgets Daemon Communication Encryption

10. Allow Budgets to work with PBS Professional by updating sudoers file; see section 2.5.2, “Allow Interaction with
PBS Professional”, on page 33

11. Untar the new install package; this creates the am directory

12. Change to the am directory and install Budgets (we include the -c /home/pbsadmin/budget_certificates/
option here so that the installer uses the new certificates; if you have not changed the certificates you can leave this
option out):

cd am

./install -t upgrade -c /home/pbsadmin/budget_certificates/

13. Installer asks whether scheduling is disabled; enter "Y"

Installer actions:

• The installer backs up your database. If this fails, it aborts the upgrade. If the upgrade fails, the installer
restores the backup you just made, and you can reinstall the older version of Budgets to return to operation. You
can install it in place over the existing data, and it will pick up where it left off.

• After backing up the data, the installer uninstalls the old Budgets, installs the new one, updates the database
schema and updates the data. This could take some minutes if there is a lot of data.

• The installer updates am.conf.

14. Make sure that all of the settings in section 2.6.7.1, “Budgets Configuration Parameters”, on page 44 are set cor-
rectly. Note that after an upgrade, the default for AM_MODE is prepaid.

15. For each PBS complex, create and configure the am_finished_job resource:

qmgr -c "c r am_finished_job type=string"

qmgr -c "set server resources_available.am_finished_job=NA"

16. Restart Budgets:

systemctl restart pbs_budget
PBS Professional 2022.1 Budgets Guide BG-57

Chapter 2 Installing and Upgrading Budgets
17. This version of Budgets comes with a new hook in a .py file. Configure the hooks; see section 3.2.4, “Create and
Configure Budgets Hooks”, on page 69

18. Update the formulas for each cluster with the file from its PBS complex:

amgr update cluster -n <PBS server> -f <formula filename>

19. Enable all PBS queues:

qmgr -c 'set queue <queue name> enabled=true'

20. Enable scheduling at each associated PBS complex.

Budgets is ready to track and manage service units.

2.11 Changing Budgets Administrator to New

Username

You can install and configure Budgets using one administrator username, then switch to another later. To switch to a new
administrator username:

1. Make sure the new administrator account meets the criteria in section 2.5.1.1, “Budgets Administrator”, on page 32.

• Create the new administrator username, and set a password:
adduser -u 901 <new administrator username>

passwd <new administrator username> <password>

2. Add the new account to Budgets, and assign it the admin role:

amgr add user -n <new administrator username> -r admin -A <accounting policy> -c <PBS server> -r
<role> [-h <group list>] [-a <active>]

3. Permanently disable pbsadmin.

Optional. This is not recoverable. You can remove admin role from pbsadmin, or deactivate pbsadmin:

amgr update user -n pbsadmin -r <new role>

amgr update user -n pbsadmin -a False

2.12 Installing Budgets Client Module

You can install just the Budgets client commands on other machines besides the Budgets server host.

2.12.1 Prerequisites for Installing Budgets Client Commands

Any host where you install just the client commands must be able to reach the Budgets server, and must be a supported
platform for the Budgets client commands (see the PBS Professional Release Notes).

2.12.2 Caveats and Restrictions for Installing Budgets Client

Commands

When you extract the client command package, you create a directory with the same name as the one created when you
extract the server package. This can overwrite your server directory.
BG-58 PBS Professional 2022.1 Budgets Guide

Installing and Upgrading Budgets Chapter 2
2.12.3 Steps to Install Budgets Client Commands

On any host where you will run only the Budgets client commands:

1. Log in as root

2. Extract the client package:

tar -xzvf PBSPro-budget-client_<release number>-<OS>_<chipset>.tar.gz

For example:

tar -xzvf PBSPro-budget-client_2022.1.0-CentOS7_x86_64.tar.gz

3. Change to the directory you just created:

cd am

4. Install the client commands:

./install -t client

5. Make sure that /etc/am.conf is identical to the one on the Budgets server host. For example:
cat /etc/am.conf

AM_PORT=8000

AM_EXEC=/opt/am

AM_HOME=/var/spool/am

AM_WORKERS=2

AM_DBUSER=pbsdata

AM_DBPORT=9876

AM_AUTH_ENDPOINT=9100@my_ams_host

AM_AUTH_TIMEOUT=30

AM_LICENSE_ENDPOINT=6200@my_alm_host

AM_SERVER=my_budget_host

AM_MODE=postpaid

AM_BALANCE_PRECHECK=False

6. Test the client:

su - pbsadmin

$ amgr login

Password: ******

$ amgr ls user -l
PBS Professional 2022.1 Budgets Guide BG-59

Chapter 2 Installing and Upgrading Budgets
BG-60 PBS Professional 2022.1 Budgets Guide

3

Configuring and Managing

Budgets

3.1 Defining Billing Periods

Choose and define your billing periods. We describe billing periods in section 1.7.1, “Periods, Allocation Periods, Bill-
ing Periods”, on page 18.

Make sure that periods at the same level do not overlap. For example, if Quarter1 ends March 31st, make sure that
Quarter2 does not begin sooner than April 1st.

If you want to create periods with a parent-child relationship, you must create the parent period first. You cannot add a
parent to an existing child. For example, if you want Year as the parent and Quarter1, Quarter2, etc., as children, create
Year first.

If you create child periods, make sure that they fit within the parent period.

Make sure that your period hierarchy is finalized BEFORE doing any transactions or running any jobs; you cannot
update or remove periods once transactions have been performed or jobs have started.

To define each billing period, add it to Budgets:

amgr add period -n <period name> -S <start date> -E <end date> [-p <name of parent period>]

See section 4.2.1.6, “Adding a Period”, on page 83.

3.2 Adding a PBS Complex and Setting its Billing

Model

Budgets interacts with the PBS server via two hooks and hook configuration file containing the billing formulas. Bud-
gets uses two identical hooks, named am_hook and am_hook_periodic; both hooks use the same configuration file. The
formulas define the billing model for that PBS complex. You can set different billing formulas for each PBS complex.

To use a PBS complex with Budgets:

• At the PBS server host, the administrator creates and configures the hooks, and defines the formulas to use when
billing

• At the Budgets server host, the administrator adds a cluster data structure to Budgets that will represent the PBS
complex, and sets the formulas at the cluster to be the same as the one at the PBS complex

3.2.1 Caveats and Advice on Billing Model

For jobs that run on multiple vnodes, the hook uses the sum of the resources used. The hook does not support calculation
of variable rates on multiple vnodes.

In postpaid mode, all transactions are allocated to top-level periods.
PBS Professional 2022.1 Budgets Guide BG-61

Chapter 3 Configuring and Managing Budgets
3.2.2 Steps to Add Complex and Set Billing Model

1. Log into the Budgets server host

2. Optionally modify the formula file as desired; see section 3.2.3, “Define Billing Formulas”, on page 62

3. Log into the PBS server host

4. If the PBS server host is different from the Budgets server host, copy the hook and formula files from your Budgets
installation to the PBS server host

5. At the PBS server host, create and configure the Budgets hooks; see section 3.2.4, “Create and Configure Budgets
Hooks”, on page 69

6. At the Budgets server host, add a cluster data structure that will represent the PBS complex and specify the formulas
you used for the PBS complex:

amgr add cluster -n <PBS server> -f <formula filename>

For example, to add a PBS complex whose server is named HPC1, and use the formulas defined in
formula_hpc1.json:

amgr add cluster -n HPC1 -f formula_hpc1.json

See section 4.2.1.5, “Adding a Cluster”, on page 83.

7. At the PBS server host, specify whether you want to separate on premise and cloud costs. See section 3.2.6, “Sepa-
rating On Premise and Cloud Costs”, on page 71.

3.2.3 Define Billing Formulas

Budgets uses billing formulas, in which you define how service units are calculated. These formulas can be different for
each cluster.

3.2.3.1 Billing Formula File and Format

The billing model is defined in a billing formula file in JSON format. We provide a default billing formula file named
am_hook.json; you can modify it to fit your needs. Name it <formula file>.json.

You can create formulas using Python.

You must include this line:

"auth_user": "amteller",

3.2.3.1.i Constants (Numbers)

To use a constant (a number) in a formula, you have to define a constant for it in the "constants" section. You cannot use
numbers directly in a formula.

Constants must start with the prefix "CONST_". Make sure you define each constant as a floating point number.
BG-62 PBS Professional 2022.1 Budgets Guide

Configuring and Managing Budgets Chapter 3
Example 3-1: Formula with variables and a constant

{

"auth_user": "amteller",

"constants": {

"cpu_count": "job.ncpus",

"time_span": "job.walltime",

"CONST_time": 0.01667

},

"formulas": {

"cpu_hrs": "cpu_count*time_span*CONST_time"

}

}

3.2.3.1.ii PBS Resources and Attributes

If you want to use a PBS resource or attribute as a variable in a formula, you have to define a constant to represent it in
the "constants" section. For example, instead of using the ncpus resource directly, define a constant named
"cpu_count", and set it to the value of the ncpus resource, as we have done in "Formula with variables and a constant".

You cannot use a resource or attribute directly in a formula. If the value of a PBS attribute or resource has not been set,
you cannot access it in a formula.

You can use the following PBS Professional elements:

• Job, server, queue, and node attributes that are of type float or integer

• Built-in or custom resources that are of type float or integer

• Built-in resources that are of type duration: walltime, cput, and eligible_time

• Built-in resources that are of type size: mem and vmem

Note that if the value of an attribute or resource has not been set, you cannot access it.

The syntax for specifying resources in the formula file is different from the syntax you would use in a normal hook:

• Before and while running, job resources are read from the job's Resource_List attribute. After the job runs, job
resources are read from the job's resources_used attribute. The syntax for specifying a job resource in the formula
file is different from other hook operations:

job.<resource name>

For example, to specify what would be job.Resource_List["ncpus"]:

job.ncpus

• Server, queue, and vnode resources are read from the resources_available attribute. The syntax for specifying
resources at the server, queue, or vnode is slightly different from other hook operations (you omit the quotes):

<object>.resources_available[<resource name>]

For example, to use the value of what would be server.resources_available["charge_rate"] in the usual hook
syntax:

server.resources_available[charge_rate]

For jobs that run on multiple vnodes, the hook uses the sum of the resources used across all sister vnodes.
PBS Professional 2022.1 Budgets Guide BG-63

Chapter 3 Configuring and Managing Budgets
Example 3-2: Formula using job resources and a queue attribute:

{

"auth_user": "amteller",

"constants": {

"cpu_count": "job.ncpus",

"gpu_count": "job.ngpus",

"time_span": "job.walltime",

"queue_priority": "queue.Priority",

"CONST_threshold_prio": 1,

"CONST_low": 0.5,

"CONST_high": 1.0

},

"formulas": {

"cpu_hrs": "((cpu_count+gpu_count)*time_span) *

(queue_priority < CONST_threshold_prio and CONST_low or CONST_high)"

}

}

3.2.3.1.iii Operators

• Logical operators (AND and OR)

• Conditional operators (>,>=,<,<=,==,!=).

3.2.3.1.iv Units

The PBS resources walltime, cput, and eligible_time are in duration format (hh:mm:ss). The hook is give the value of
these in seconds when used in the formula for the service unit. For example, if a job's walltime is two minutes, the value
used in the formula is 120.

The PBS resources mem and vmem are in size format (3b, 20kb etc.). The hook converts their values to kb in the service
unit formula.

The following table lists the units you can use in a billing formula:

When Budgets computes cost data for a cloud job, it uses the data you gave to Budgets via amgr update cloud-
data. This data includes cost per unit time, and specifies the time unit for the updated data. However, the units are not
automatically translated when computing formula costs, so you need to make sure that you handle the time units cor-
rectly. For example, if you reported cost data in minutes but your formula produces CPU hours, you need to convert the
time elements explicitly. To find out what units are used for the cloud cost data, you can query Budgets via amgr ls
clouddata; see section 4.2.2.10, “Listing Cloud Data”, on page 90.

Table 3-1: Units in Billing Formulas

Formula Item Units Example

Constants Floating point 12.34

Time-based PBS resources, e.g. walltime, cput, eligible_time Integer seconds 120 (2 minutes)

Memory PBS resources, e.g. mem, vmem kb 1048576kb (1GB)

ncpus, represented as cpu_count Integer 4 (ncpus=4)
BG-64 PBS Professional 2022.1 Budgets Guide

Configuring and Managing Budgets Chapter 3
3.2.3.1.v Distinguishing Cloud Costs from On Premise Costs

Budgets has the following reserved words that you can use in formulas to indicate how cloud or on premise job costs
should be calculated:

IS_CLOUD_JOB
Flag to indicate whether or not this calculation applies to a cloud job. Set internally by Budgets. Used by Bud-
gets when applying this formula to a job. When job's am_job_cache resource contains False, Budgets sets
this to 0.

Values:

0: Job is not a cloud job

1: Job is a cloud job

Default: 0

IS_ONPREMISE_JOB
Flag to indicate whether or not this calculation applies to an on premise job. Set internally by Budgets. Used by
Budgets when applying this formula to a job. When job's am_job_cache resource contains False, Budgets
sets this to 1.

Values:

0: Job is not an on premise job

1: Job is an on premise job

Default: 1

CLOUD_COST
Cloud cost per reported CPU. Set internally by Budgets, using cost information you provide to Budgets via
amgr update clouddata (see section 4.2.3.10, “Updating Cloud Cost Data”, on page 98).

Default: 1

3.2.3.2 Defining Service Units

In order to use a standard service unit, you must define it in the formula file. You define the formula for each service unit
in the "formulas" section. Make sure that the name you use for the service unit in a formula is identical to the name you
use in the amgr add serviceunit command. The service unit name should consist only of alphanumeric and
underscore characters; blank spaces are not allowed.

You do not need to define dynamic service units in the formula file.

See section 1.7.2, “Service Units”, on page 18.

3.2.3.3 Defining Cloud and On Premise Service Units

You can calculate separate costs for cloud and on premise jobs by using the reserved words IS_CLOUD_JOB,
IS_ONPREMISE_JOB, and CLOUD_COST. You can create formulas that handle both cloud and on premise jobs.

Use IS_CLOUD_JOB and IS_ONPREMISE_JOB as on-off switches to control whether a cost contributes to what is
computed. When calculating cloud costs, include IS_CLOUD_JOB in each formula for cloud costs. When calculating
on premise costs, include IS_ONPREMISE_JOB in each formula for on premise costs.

Budgets examines the value of the job's am_job_cache resource to see how the server resource am_cloud_enabled
was set when the job was submitted. The value of the server resource is recorded in the job resource at the time of job
submission.

When the recorded value for am_cloud_enabled is True, and this is a cloud job, Budgets treats this job as a cloud job,
and sets IS_ONPREMISE_JOB to 0, and sets IS_CLOUD_JOB to 1, for this job.
PBS Professional 2022.1 Budgets Guide BG-65

Chapter 3 Configuring and Managing Budgets
When the recorded value for am_cloud_enabled is False, Budgets treats this job as on premise (whether or not it is a
cloud job), and sets IS_ONPREMISE_JOB to 1, and sets IS_CLOUD_JOB to 0, for this job.

For cloud jobs, use CLOUD_COST as the cost per unit time for an instance. Budgets calculates the value of
CLOUD_COST using the cloud cost data you provided via amgr update clouddata. When calculating the cost for a
cloud job, Budgets uses the cost for the instance that the job would use.

3.2.3.3.i Example of Defining Cloud and On Premise Service Units

Example 3-3: Define the following service units:

• onpremise_cpu_hrs: number of CPU hours on premise

• cloud_cpu_hrs: number of CPU hours in the cloud

• onpremise_dollar: on premise CPU hours, multiplied by cost per unit time for those CPUs

• cloud_dollar: cloud CPU hours, multiplied by cost per unit time for those CPUs

• dollar: total cost for on premise and cloud jobs; on premise dollars plus cloud dollars

We also define CONST_onpremise_cpu_cost as the cost per unit time for on premise CPUs.

Formula file:

{

"auth_user": "amteller",

"constants":{

"ncpus" : "job.ncpus",

"walltime" : "job.walltime",

"CONST_onpremise_cpu_cost" : 0.05

},

"formulas":{

"onpremise_cpu_hrs" : "(ncpus*walltime)*IS_ONPREMISE_JOB",

"cloud_cpu_hrs" : "(ncpus*walltime)*IS_CLOUD_JOB",

"onpremise_dollar" : "(ncpus*walltime*CONST_onpremise_cpu_cost)*IS_ONPREMISE_JOB",

"cloud_dollar" : "(ncpus*walltime*CLOUD_COST)*IS_CLOUD_JOB",

"dollar" : "(ncpus*walltime*CONST_onpremise_cpu_cost*IS_ONPREMISE_JOB)

 +(ncpus*walltime*CLOUD_COST*IS_CLOUD_JOB)"

}

}

If we use the formulas in this example, and have a job with:

• ncpus = 2

• walltime = 10

Where

• CONST_onpremise_cost = 0.05

• CLOUD_COST = 0.1
BG-66 PBS Professional 2022.1 Budgets Guide

Configuring and Managing Budgets Chapter 3
Then, for an on premise job:

• IS_CLOUD_JOB = 0

• IS_ONPREMISE_JOB = 1

• onpremise_cpu_hrs = (2*10)*1 = 20

• cloud_cpu_hrs = (2*10)*0 = 0

• onpremise_dollar = (2*10*0.05)*1 = 1

• cloud_dollar = (2*10*0.1)*0 = 0

• dollar = (2*10*0.05)*1 + (2*10*0.1)*0 = 1+0 = 1

And for a cloud job:

• IS_CLOUD_JOB = 1

• IS_ONPREMISE_JOB = 0

• onpremise_cpu_hrs = (2*10)*0 = 0

• cloud_cpu_hrs = (2*10)*1 = 20

• onpremise_dollar = (2*10*0.05)*0 = 0

• cloud_dollar = (2*10*0.1)*1 = 2

• dollar = (2*10*0.05)*0 + (2*10*0.1)*1 = 0+2 = 2

3.2.3.4 Default Billing Formula File Contents

This is the contents of the default am_hook.json configuration file used by the Budgets hook. The default service unit is
cpu_hrs.

{

"auth_user" : "amteller",

"constants":{

"cpu_count": "job.ncpus",

"time_span": "job.walltime"

},

"formulas":{

"cpu_hrs": "cpu_count*time_span"

}

}

PBS Professional 2022.1 Budgets Guide BG-67

Chapter 3 Configuring and Managing Budgets
3.2.3.5 Formula File Examples

Example 3-4: Configuration file using multiple constants and operators. We define the constants CONST_a, CONST_b,
and CONST_prio. We use them in the formulas section with logical operators 'and', 'or', the comparison operator '>',
and the arithmetic operator '*'.

{

"auth_user" : "amteller",

"constants":{

"cpu_count": "job.ncpus",

"time_span": "job.walltime",

"gpu_count": "job.ngpus",

"queue_priority": "queue.Priority",

"node_cpus": "node.resources_available[ncpus]",

"CONST_a": 2.0,

"CONST_b": 1.0,

"CONST_prio": 150

},

"formulas":{

"cost":"(gpu_count and node_cpus or cpu_count)

time_span(queue_priority > CONST_prio and CONST_a or CONST_b)"

}

}

Example 3-5: Formula with three different service units called cpu_hrs, gpu_hrs, and mics_hrs:

{

"auth_user" : "amteller",

"constants":{

"cpu_count" : "job.ncpus",

"time_span" : "job.walltime",

"gpu_count" : "job.ngpus",

"mic_count" : "job.nmics"

},

"formulas":{

"cpu_hrs" : "cpu_count*time_span",

"gpu_hrs" : "gpu_count*time_span",

"mics_hrs" : "mic_count*time_span"

}

}

BG-68 PBS Professional 2022.1 Budgets Guide

Configuring and Managing Budgets Chapter 3
3.2.4 Create and Configure Budgets Hooks

1. Log into the PBS server host.

2. If the PBS server host is different from the Budgets server host, copy the hook and configuration files to the PBS
server host.

3. Create and configure the am_hook and am_hook_periodic hooks:

• For prepaid mode:
qmgr -c "c h am_hook"

qmgr -c "s h am_hook order=1000"

qmgr -c "i h am_hook application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook application/x-config default /opt/am/hooks/pbs/<formula file>.json"

qmgr -c "s h am_hook enabled=true"

qmgr -c "s h am_hook alarm=90"

qmgr -c "c h am_hook_periodic"

qmgr -c "s h am_hook_periodic event=periodic"

qmgr -c "s h am_hook_periodic freq=120"

qmgr -c "i h am_hook_periodic application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook_periodic application/x-config default /opt/am/hooks/pbs/<formula
file>.json"

qmgr -c "s h am_hook_periodic enabled=true"

• For prepaid mode when am_cloud_enabled = False:
qmgr -c "s h am_hook event='queuejob,runjob,modifyjob,movejob'"

• For prepaid mode when am_cloud_enabled = True:
qmgr -c "s h am_hook event='queuejob,runjob,modifyjob,movejob,execjob_epilogue'"

• For postpaid mode:
qmgr -c "c h am_hook"

qmgr -c "s h am_hook event='queuejob,modifyjob,movejob'"

qmgr -c "s h am_hook order=1000"

qmgr -c "i h am_hook application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook application/x-config default /opt/am/hooks/pbs/<formula file>.json"

qmgr -c "s h am_hook enabled=true"

qmgr -c "s h am_hook alarm=90"

qmgr -c "c h am_hook_periodic"

qmgr -c "s h am_hook_periodic event=periodic"

qmgr -c "s h am_hook_periodic freq=120"

qmgr -c "i h am_hook_periodic application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook_periodic application/x-config default /opt/am/hooks/pbs/<formula
file>.json"

qmgr -c "s h am_hook_periodic enabled=true"
PBS Professional 2022.1 Budgets Guide BG-69

Chapter 3 Configuring and Managing Budgets
3.2.4.1 Caveats and Advice on Budgets Hooks

• Do not try to combine the Budgets hooks into one hook.

• The am_hook has to run after all the other hooks for each event. Make sure it has the highest order. For example,
you can set it to a high order value such as 1000:
qmgr -c "s h am_hook order=1000"

• The difference between postpaid and prepaid modes is that am_hook has a runjob event in prepaid mode but not in
postpaid mode.

3.2.5 Configuring Resources for Budgets

3.2.5.1 List of PBS Professional Custom Resources for Budgets

Budgets uses the following custom resources:

am_cloud_enabled
Boolean. Set at server. Value of this resource is recorded in each job's am_job_cache resource at the time of
job submission.

When you set this to True, add the execjob_epilogue event to the am_hook list of trigger events.

Set by administrator.

am_job_amount
String. Set by Budgets. Used for reporting costs.

am_job_cache
String in JSON format. This resource is included in each job's resource request. Value of this string includes the
value for the server am_cloud_enabled resource at the time of job submission. Set and used by Budgets.

am_job_quote
Boolean. Set by job submitter. Indicates that Budgets should calculate cost estimate for a job and return that
estimate to the job submitter. When this boolean is included in a job submission command, the job is not sub-
mitted.

am_finished_job
String. Set by Budgets.

am_node_cache
String. Set by Budgets.

3.2.5.2 Create and Set Resources

qmgr -c "c r am_cloud_enabled type=boolean"

qmgr -c "c r am_job_amount type=string"

qmgr -c "c r am_job_cache type=string,flag=m"

qmgr -c "c r am_job_quote type=boolean"

qmgr -c "c r am_finished_job type=string"

qmgr -c "c r am_node_cache type=string"

qmgr -c "set server resources_available.am_finished_job=NA"
BG-70 PBS Professional 2022.1 Budgets Guide

Configuring and Managing Budgets Chapter 3
3.2.6 Separating On Premise and Cloud Costs

You can use separate cost data and formulas for on premise and cloud jobs, or you can treat all jobs as if they are on
premise jobs. This behavior is controlled by the value of the am_cloud_enabled server resource at the time each job is
submitted. Budgets uses this resource as follows:

• When a job is submitted, the value of the am_cloud_enabled server resource is included in the data captured in the
am_job_cache resource for that job

• When Budgets operates on a job, it uses the value of am_cloud_enabled stored in the job's am_job_cache
resource to decide how to treat the job.

• If the recorded value is True, and the job is a cloud job, costs for the job can be computed using cloud cost data,
and formulas for cloud jobs are applied to this job

• If the recorded value is False, the job is treated like an on premise job regardless of whether or not it is a cloud
job. Costs for the job can be computed using on premise cost data, and formulas for on premise jobs are applied
to this job

3.2.6.1 Behavior When Separating Costs in Prepaid Mode

Budgets examines the value of each job's am_job_cache resource, and acts accordingly.

When Budgets is in prepaid mode and a job's am_job_cache contains True:

• If the job is a cloud job, you can employ formulas specifically for cloud costs

• Budgets automatically sets IS_CLOUD_JOB to 1 for this job

• Budgets can use cloud cost data in formulas

• If the job is a cloud job, the job submitter can get a quote for this job using cloud cost data

• The job can run only when it has sufficient credit

When Budgets is in prepaid mode a job's am_job_cache contains False:

• Budgets behaves as if this is not a cloud job; this job is treated like an on premise job in formulas

• Budgets sets IS_CLOUD_JOB to 0 for this job

• Budgets sets IS_ONPREMISE_JOB to 1 for this job

• The job submitter can get a quote for this job using on premise data only

• The job can run only when it has sufficient credit

3.2.6.2 Behavior When Separating Costs in Postpaid Mode

When Budgets is in postpaid mode and a job's am_job_cache is True:

• You can employ formulas specifically for cloud costs

• If this is a cloud job, Budgets automatically sets IS_CLOUD_JOB to 1 for this job

• The job submitter can get a quote for this job using cloud cost data

• The job can run regardless of credit

When Budgets is in postpaid mode and a job's am_job_cache is False:

• Budgets behaves as if this is not a cloud job; this job is treated like an on premise job in formulas

• Budgets sets IS_CLOUD_JOB to 0 for this job

• Budgets sets IS_ONPREMISE_JOB to 1 for this job

• The job submitter can get a quote for this job using on premise data only

• The job can run regardless of credit
PBS Professional 2022.1 Budgets Guide BG-71

Chapter 3 Configuring and Managing Budgets
3.2.6.3 Steps to Separate On Premise and Cloud Costs

To separate on premise and cloud costs:

• Set the am_cloud_enabled server-level Boolean resource to True:
qmgr -c "set server resources_available.am_cloud_enabled=true"

• Add the execjob_epilogue trigger event to am_hook:
qmgr -c "s h am_hook event='queuejob,runjob,modifyjob,movejob,execjob_epilogue'"

3.2.7 Requiring Sufficient Credit Before Bursting Cloud

Nodes

You can require that job owners have sufficient credit before allowing cloud nodes to be burst for jobs, by setting the
server's am_cloud_enabled resource to True. PBS Cloud examines the value of the server's am_cloud_enabled
resource, and acts accordingly.

3.2.7.1 Behavior When Requiring Credit in Prepaid Mode

When Budgets is in prepaid mode and the server's am_cloud_enabled is True and a job's am_job_cache contains
True, if this is a cloud job, PBS Cloud will burst nodes for this job only if it has sufficient credit, and that credit is calcu-
lated using cloud costs.

When Budgets is in prepaid mode and the server's am_cloud_enabled is True and a job's am_job_cache contains
False, if this is a cloud job, PBS Cloud will burst nodes for this job only if it has sufficient credit, but that credit is calcu-
lated using on premise costs.

3.2.7.2 Behavior When Requiring Credit in Postpaid Mode

When Budgets is in postpaid mode, the value of the server's am_cloud_enabled is True does not affect the behavior of
PBS Cloud. If this is a cloud job, PBS Cloud will burst nodes for this job when it is ready to run, regardless of credit.

3.2.8 Allow Easy Quote Request

We recommend making it easy for job submitters to get job quotes. Provide a wrapper for the quote request, and make it
accessible to all job submitters. Add the following to /etc/bashrc (or the equivalent). The trailing space is important:

alias quote='qsub -l am_job_quote=true '

3.2.9 Changing the Billing Formula File

3.2.9.1 Procedure for Changing Billing Formula File

To change a formula you use at a PBS complex:

1. Drain all jobs from the PBS complex

2. Modify the formula

3. Update the complex and its cluster with the new formula file:
BG-72 PBS Professional 2022.1 Budgets Guide

Configuring and Managing Budgets Chapter 3
amgr update cluster -n <PBS server> -f <formula filename>

For example, to change the formula file for a PBS complex whose server is named HPC1, as well as its associated
cluster, so that they use the formula defined in new_formula_hpc1.json:

amgr update cluster -n HPC1 -f new_formula_hpc1.json

See section 4.2.3.5, “Updating Clusters”, on page 96

3.2.9.2 Caveats and Restrictions on Changing Billing Formula File

• Do not add resources to a formula while jobs are running. If you add new resources to a formula used by a PBS
complex while jobs are running, any running jobs will fail to reconcile because they won't include the required data
in their cache to allow Budgets to bill for the new resources.

• Do not change a formula while jobs are running. If you change a formula while jobs are running, users with running
jobs may be billed for amounts that are different from the credit reservations made for those jobs, and different from
what the users are expecting.

• Do not try to change a formula directly at the PBS complex, either by modifying the configuration file directly or by
importing it. If the formula file for the Budgets hook is changed directly at the PBS complex, and not through the
amgr update command, Budgets will throw an error.

3.3 Setting Budgets Configuration Attributes

Optionally, you can change the setting for the data_lifetime configuration attribute (it's not a parameter in the am.conf
file; it's an attribute you set via amgr update config).

This attribute defines the maximum time allowed between updates to the value of a dynamic service unit. Budgets
checks the update time for each dynamic service unit, for each project by calculating the value of (now - last update time
for this dynamic service unit for this project).

If the value is not updated within the specified amount of time, Budgets logs a warning message in
/var/spool/am/<Budgets server hostname>.log, but jobs can continue to run.

Format: integer seconds

Default: 3600

• To set the value of data_lifetime:

amgr update config -n SU_DYNAMIC -V '{"data_lifetime":<new value>}'

For example:

amgr update config -n SU_DYNAMIC -V '{"data_lifetime":2400}'

See section 4.2.3.8, “Updating Configuration Attributes”, on page 97.

• To see the value of data_lifetime:
amgr ls config -n data_lifetime

See section 4.2.2.8, “Listing Budgets Configuration Attributes”, on page 88.

3.4 Configuring Budgets for Peer Scheduling

In a peer scheduling setup, different PBS complexes are set up to automatically run each others' jobs to dynamically
load-balance jobs across the complexes. Budgets needs to be aware of all the PBS complexes in a peer scheduling envi-
ronment.
PBS Professional 2022.1 Budgets Guide BG-73

Chapter 3 Configuring and Managing Budgets
To use Budgets when running jobs in multiple complexes in a peer scheduling environment:

1. Configure the Budgets hooks and its formula file at all of the PBS complexes involved in peer scheduling, and add
one cluster to represent each PBS complex involved in peer scheduling to Budgets; see section 3.2, “Adding a PBS
Complex and Setting its Billing Model”, on page 61.

2. Add the peer scheduling clusters to the project account or user account that will be running jobs, via amgr update
{user | project} -c <cluster>; see section 4.2.3.3, “Updating Projects”, on page 93 and section 4.2.3.2, “Updat-
ing Users”, on page 93.

3.5 Changing Between Modes

3.5.1 Changing Mode from Postpaid to Prepaid

1. At each PBS complex, stop scheduling

2. Disable all PBS queues:

qmgr -c 'set queue <queue name> enabled=false'

3. Allow all jobs to finish, or kill them

4. If necessary, reconcile all jobs:

amgr reconcile [options]

See section 4.3.6, “Reconciling Service Units”, on page 130

5. Stop Budgets:

systemctl stop pbs_budget

6. Optionally make the balance zero for each account, period, and service unit

7. Change the AM_MODE configuration parameter in am.conf and set it to "prepaid"

8. Add the runjob hook event to am_hook:

qmgr -c "set hook am_hook event += runjob"

9. Make sure that each account has sufficient credit to run their workload

10. Start Budgets

systemctl start pbs_budget

11. Enable all PBS queues:

qmgr -c 'set queue <queue name> enabled=true'

12. At each PBS complex, start scheduling
BG-74 PBS Professional 2022.1 Budgets Guide

Configuring and Managing Budgets Chapter 3
3.5.2 Changing Mode from Prepaid to Postpaid

1. At each PBS complex, stop scheduling

2. Disable all PBS queues:

qmgr -c 'set queue <queue name> enabled=false'

3. Allow all jobs to finish, or kill them

4. If necessary, reconcile all jobs:

amgr reconcile [options]

See section 4.3.6, “Reconciling Service Units”, on page 130

5. Stop Budgets:

systemctl stop pbs_budget

6. Optionally refund the balance for each account.

7. Change the AM_MODE configuration parameter in am.conf and set it to "postpaid"

8. Remove the runjob hook event from am_hook:

qmgr -c "set hook am_hook event -= runjob"

9. Start Budgets

systemctl start pbs_budget

10. Enable all PBS queues:

qmgr -c 'set queue <queue name> enabled=true'

11. At each PBS complex, start scheduling
PBS Professional 2022.1 Budgets Guide BG-75

Chapter 3 Configuring and Managing Budgets
BG-76 PBS Professional 2022.1 Budgets Guide

4

Budgets Commands

4.1 Budgets Commands

4.1.1 Command Path

To run Budgets commands, export the path of the am binaries to the PATH environment variable by using the command:

export PATH=$PATH:/opt/am/python/bin/

4.1.2 Using Budgets Commands

All Budgets commands are prefixed with "amgr ".

To see a list of Budgets subcommands with a single-line description for each command:

amgr <enter>

To get usage information for a command or subcommand:

<command> --help

<command> <subcommand> --help

For example:

amgr add --help provides information on how to use the main amgr add command

amgr add period --help provides information on how to use the period subcommand.

If you enter a command without the required arguments, Budgets will prompt you to enter them.
PBS Professional 2022.1 Budgets Guide BG-77

Chapter 4 Budgets Commands
4.1.3 Tables of Budgets Commands

Table 4-1: Budgets Commands for Managing Elements

Function Command Element Subcommands Required Privilege Link

Adding ele-
ments

amgr add user, project, group,
cluster, period, service-
unit

admin Adding Elements

Listing ele-
ments

amgr ls user, project, group,
cluster, period, service-
unit, configuration,
role, clouddata

user can list periods, clus-
ters, service units, own
account, and roles, and all
groups

Member of project can list
that project

manager can list all ele-
ments

admin can list cloud data

Listing Elements

Updating
elements

amgr
update

user, project, group,
cluster, period, service-
unit, dynamicvalue, con-
figuration, clouddata

admin Updating Elements

Removing
elements

amgr rm user, project, group,
cluster, period, service-
unit

admin Removing Elements

Reporting
elements

amgr
report

user, project, group,
transaction

user can get report on self
and own jobs and transac-
tions

Project member can get
report on that project

manager or investor can
get report on all groups and
projects

Getting Reports on
Elements

Applying
limits to
dynamic
service
units

amgr
limit

user, project Group manager Applying Limits to
Dynamic Service
Units

Syncing
formula file
to cluster

amgr sync cluster admin Syncing Formula
File to PBS Com-
plex
BG-78 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4

4.2 Commands for Managing Budgets Elements

You use these commands to add, remove, update, list, get reports on, apply limits to, and synchronize Budgets elements.

4.2.1 Adding Elements

amgr add {user | project | group | cluster | period | serviceunit}

Table 4-2: Budgets Transaction and Account Checking Commands

Function Command
Element

Subcommands
Required Privilege Link

Depositing
service units

amgr deposit user, project,
group

investor for deposit to
group

Group manager for deposit
to user or project account

Depositing Service
Units

Checking
balance of
service units

amgr check-
balance

user, project,
group

user can check balance for
self

Project member can check
balance for that project

manager or investor can
check balance for all groups
and projects

Checking Service
Unit Balance

Withdrawing
service units

amgr withdraw user, project,
group

investor to withdraw from
group

Group manager to with-
draw from user or project
account

Withdrawing Ser-
vice Units

Transferring
service units

amgr transfer user, project,
group

admin Transferring Ser-
vice Units

Prechecking
service unit
balance

amgr precheck user, project, jobs user can precheck own bal-
ance

admin or teller can check
other balances

Prechecking Service
Unit Balance

Acquiring
service units

amgr acquire user, project admin or teller Acquiring Service
Units

Reconciling
service units

amgr recon-
cile

user, project admin or teller Reconciling Ser-
vice Units

Refunding
service units

amgr refund transaction admin Refunding Service
Units
PBS Professional 2022.1 Budgets Guide BG-79

Chapter 4 Budgets Commands
4.2.1.1 Required Privilege

You must be admin to run this command.

4.2.1.2 Adding a User

4.2.1.2.i Synopsis

amgr add user -n <username> -A <accounting policy> -c <PBS server> -r <role> [-h <group list>] [-a <active>]

4.2.1.2.ii Description

Adds specified user to Budgets.

The specified user must already be a PBS complex user. Each user you add to Budgets should have an entry in the pass-
word file, with a password set, and a home directory on the Linux system where Budgets is installed.

When you add a user, you must assign a role, a cluster, and an accounting policy to that user.

4.2.1.2.iii Options

-n, --name <username>
String. Username to add.

The username and project name cannot be the same.

-A, --accounting-policy <accounting policy>
String. Specifies the accounting policy for the user account. Required.

Valid values: begin_period | end_period | proportionate

• A project with the begin_period accounting policy is charged in the period when the job begins.

• A project with the end_period accounting policy is charged in the period when the job ends.

• A project with the proportionate accounting policy is charged during the periods when the jobs were run.
Each period is charged in proportion to the use in that period.

See section 1.7.4, “Accounting Policy”, on page 23.

-c, --clusters <PBS server>
String. Associates the user with the specified cluster. Required.

Use the -c <PBS server> option once for each cluster.

-r, --role <admin | investor | manager | teller | user>
String. Sets the role of the user. Required.

-h, --groups <group>
String. Associates the user account with specified groups.

Use the -h <group> option once for each group.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Activates or deactivates the user account.

Default: True, user account is active
BG-80 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.2.1.2.iv Command Examples

Example 4-1: Add a user named "joe", setting the accounting policy to "begin_period", associating joe with cluster1 and
group group01, and giving joe the role of user:

amgr add user -n joe -A begin_period -c cluster1 -r user -h group01

Example 4-2: Add a user to Budgets, then add them to group01 as a manager:

amgr add user -n user01 -A begin_period -c user1 -r manager -h group01

amgr update group -n group01 -M + user01

Example 4-3: Add user user1 to Budgets and add them to groups group01 and engineering as an admin, giving them the
begin_period accounting policy, and adding them to the testbed1 and testbed2 PBS complexes:

amgr add user -n user1 -A begin_period -h group1 -h engineering -c testbed1 -c testbed2 -r admin

4.2.1.3 Adding a Project

4.2.1.3.i Synopsis

amgr add project -n <project name> -A <accounting policy> [-S <start date>] [-E <end date>] -c <PBS server>
[-u <user>] [-h <group>] [-a <active>] [-m <metadata>]

4.2.1.3.ii Description

Adds specified project to Budgets.

4.2.1.3.iii Options

-n, --name <project name>
String. Name of project to add.

The project name cannot be the same as a username.

-A, --accounting-policy <accounting policy>
String. Specifies the accounting policy for the project account. Required.

Valid values: begin_period | end_period | proportionate

• A project with the begin_period accounting policy is charged in the period when the job begins.

• A project with the end_period accounting policy is charged in the period when the job ends.

• A project with the proportionate accounting policy is charged during the periods when the jobs were run.
Each period is charged in proportion to the use in that period.

See section 1.7.4, “Accounting Policy”, on page 23.

-S, --start-date <start date>
Date. Start date of the project. Optional.

Format: YYYY-MM-DD

-E, --end-date <end date>
Date. End date of the project. Optional.

Format: YYYY-MM-DD
PBS Professional 2022.1 Budgets Guide BG-81

Chapter 4 Budgets Commands
-c, --clusters <PBS server>
String. Associates the specified cluster with the project account.

Use the -c <PBS server> option once for each cluster. To add multiple clusters:

-c <cluster1> -c <cluster2> ... -c <clusterN>

-u, --users <username>
String. Associates the specified user with the project account.

Use the -u <username> option once for each user. To add multiple users:

-u <user1> -u <user2> ... -u <userN>

-h, --groups <group name>
String. Associates the specified group with the project.

Use the -h <group name> option once for each group. To add multiple groups:

-h <group1> -h <group2> ... -h <groupN>

-a, --active <True|TRUE|true|t|1|False|FALSE|false|f|0>
Boolean. Sets the project to active or inactive.

-m, --metadata <metadata>
String. Modifies metadata attribute for the project.

Format: comma-separated key-value pairs

Syntax:

<key1>:<value1>,<key2>:<value2>...<keyN>:<valueN>
Keys are undefined.

4.2.1.3.iv Example

Example 4-4: Add a project named proj1 and give it metadata consisting of type:weather and region:asia:

amgr add project -n proj1 -A begin_period -S 2022-01-02 -E 2022-28-02 -c cluster1 -m
type:weather,region:asia

4.2.1.4 Adding a Group

4.2.1.4.i Synopsis

amgr add group -n <group name> [-I <investor>] [-M <manager>] [-a <active>]

4.2.1.4.ii Description

Define a group and add it to Budgets.

4.2.1.4.iii Options

-n, --name <group name>
String. Group to add.
BG-82 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-I, --investors <investor username>
String. Associates this investor with the specified group.

This username must already exist in Budgets and have the investor or admin role.

You can associate one investor per -I option, and you can associate multiple investors per command line. To
associate multiple investors:

-I <investor1> -I <investor2> ... -I <investorN>

-M, --managers <manager username>
String. Associates this manager with the specified group.

This username must already exist in Budgets and have the manager, investor, or admin role.

You can associate one manager per -M option, and you can associate multiple managers per command line. To
associate multiple managers:

-M <manager1> -M <manager2> ... -M <managerN>

Group managers can transfer funds from the group to projects and user accounts.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Sets the group active or inactive.

Default: active

4.2.1.5 Adding a Cluster

4.2.1.5.i Synopsis

amgr add cluster -n <PBS server> [-f <billing formula filename>] [-a <active>]

4.2.1.5.ii Description

Adds a cluster data structure to represent the specified PBS complex.

You can specify the billing formulas used for each cluster at the time you add the cluster, or later; although if the formula
file at the cluster does not match the formula file at the complex, jobs cannot run at that complex. When you specify the
billing formulas, this updates the cluster data structure with the formulas.

You can set the cluster to active or inactive.

You can add multiple PBS complexes, but only one per command line.

4.2.1.5.iii Options

-n, --name <PBS server>
String. Name of the PBS server for the PBS complex.

-f, --formula <formula filename>
Sets the formula file at the cluster. Make sure these are the same formulas as the ones at the complex.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Sets cluster active or inactive. When the cluster is active, it can run jobs.

Default: active

4.2.1.6 Adding a Period

4.2.1.6.i Synopsis

amgr add period -n <period name> -S <start date> -E <end date> [-p <name of parent period>]
PBS Professional 2022.1 Budgets Guide BG-83

Chapter 4 Budgets Commands
4.2.1.6.ii Description

Adds the specified period.

Make sure that periods at the same level do not overlap. For example, if Quarter1 ends March 31st, make sure that
Quarter2 does not begin sooner than April 1st.

If you want to create periods with a parent-child relationship, you must create the parent period first. You cannot add a
parent to an existing child. For example, if you want Year as the parent and Quarter1, Quarter2, etc., as children, create
Year first.

If you create child periods, make sure that they fit within the parent period.

Make sure that your period hierarchy is finalized BEFORE doing any transactions or running any jobs; you cannot
update or remove periods once transactions have been performed or jobs have started.

See section 1.7.1, “Periods, Allocation Periods, Billing Periods”, on page 18.

4.2.1.6.iii Options

-n, --name <period name>
String. Period to add.

-S, --start-date <start date>
Date. Start date of the period.

Format: YYYY-MM-DD

-E, --end-date <end date>
Date. End date of the period.

Format: YYYY-MM-DD

-p, --parent <name of parent period>
String. Specifies the parent period. Optional.

4.2.1.7 Adding a Service Unit

4.2.1.7.i Synopsis

amgr add serviceunit -n <service unit name> [-t <type>] [-a <active>] [-d <description>]

4.2.1.7.ii Description

Adds a service unit to Budgets. This service unit is defined in the formula file.

Add a standard service unit to measure consumption of a resource internally tracked by PBS, for example CPU hours.

Add a dynamic service unit to define a quota for an external resource.

Default type is standard service unit (SU_STANDARD).

4.2.1.7.iii Options

-n, --name <service unit name>
String. Name of service unit to add. If this is a standard service unit, name must match name used in formula
file.

Blank spaces are not allowed.

-t, --type {SU_STANDARD | SU_DYNAMIC}
String. Specifies type for this service unit.

Default: SU_STANDARD
BG-84 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Sets service unit active or inactive.

-d, --description <service unit description>
String. Describes the service unit.

Can contain alphanumeric and any special characters except double quotes.

If the description contains anything except alphanumeric, enclose it in double quotes.

4.2.1.7.iv Command Examples

Example 4-5: Adding a standard service unit named cpu_hrs to be used for CPU hours:

amgr add serviceunit -n cpu_hrs -d "CPU hours"

Example 4-6: Adding a dynamic service unit named luster:

amgr add serviceunit -n luster -t SU_DYNAMIC

4.2.2 Listing Elements

amgr ls {user | period | project | cluster | serviceunit | role | clouddata}

Prints out Budgets elements. You can list only elements that have already been added to Budgets via amgr add or
amgr update.

By default, this command lists only active elements. To list active elements:

amgr ls

 To list inactive elements, use the -a False option. For example, to list all the clusters which are inactive:

amgr ls cluster -a False

Use the -l switch for amgr ls commands for more detailed information.

Use the -j switch for amgr ls commands to get the detailed information output in JSON format. This output can be
used by other programs which can process JSON format.

4.2.2.1 Required Privilege

A user can list periods, clusters, service units, own account, own projects, own role, and all groups.

A member of a project can list that project.

A manager can list all elements.

4.2.2.2 Listing Users

4.2.2.2.i Synopsis

amgr ls user [-n <username] [-a <active>] [-h <group name>] [-l | -j] [-r <role>]

4.2.2.2.ii Description

When used with no options, lists all the users that exist in Budgets. When you specify a username, prints information
about that user.

4.2.2.2.iii Options

-n, --name <username>
String. Specifies the name of the user.
PBS Professional 2022.1 Budgets Guide BG-85

Chapter 4 Budgets Commands
-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Filters users by active status. You can list either active or inactive users, but not both.

Default: active

-h, --group <group name>
String. Lists all users in specified group.

-l, --list-info
Display information in list format.

-j, --json-info
Display information in JSON format.

-r, --role <role>
String. Lists all users with specified role.

4.2.2.3 Listing Projects

4.2.2.3.i Synopsis

amgr ls project [-n <project name] [-a <active>] [-h <group name>] [-l | -j] [-u <username>]

4.2.2.3.ii Description

When used with no options, lists all the projects that exist in Budgets. When you specify a project name, prints informa-
tion about that project.

4.2.2.3.iii Options

-n, --name <project name>
String. Specifies the name of the project.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Filters projects by active status. You can list either active or inactive projects, but not both.

Default: active

-h, --group <group name>
String. Lists all projects associated with specified group.

-l, --list-info
Display information in list format.

-j, --json-info
Display information in JSON format.

-u, --user <username>
String. Lists all projects with which specified user is associated.

4.2.2.4 Listing Groups

4.2.2.4.i Synopsis

amgr ls group [-n <group name>] [-a <active>] [-I <investor name>] [-l | -j] [-M <manager name>]

4.2.2.4.ii Description

When used with no options, lists all the groups that exist in Budgets. When you specify a group name, prints information
about that group.
BG-86 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.2.2.4.iii Options

-n, --name <group name>
String. Specifies the name of the group.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Filters groups by active status. You can list either active or inactive groups, but not both.

Default: active

-I, --investor <investor name>
String. Lists all groups associated with specified investor.

-j, --json-info
Display information in JSON format.

-l, --list-info
Display information in list format.

-M, --manager <manager name>
String. Lists all groups associated with specified manager.

4.2.2.5 Listing Clusters

4.2.2.5.i Synopsis

amgr ls cluster [-n <PBS server>] [-a <active>] [-f] [-l | -j]

4.2.2.5.ii Description

By default, lists all active clusters. You can specify whether you want to see active or inactive clusters. To display inac-
tive clusters:

amgr ls cluster -a False

4.2.2.5.iii Options

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Filters clusters by active status. You can list either active or inactive clusters, but not both.

Default: active

-n, --name <PBS server>
String. Name of the cluster to list.

You can list one cluster per command line.

-f, --formula
Prints formula file to /tmp, and prints the path to that file on screen.

-l, --list-info
Display information in list format.

-j, --json-info
Display information in JSON format.

4.2.2.5.iv Examples

Example 4-7: To print the formula file for cluster1:

amgr ls cluster -n cluster1 -f

Output formula file: /tmp/cluster1_formula.json
PBS Professional 2022.1 Budgets Guide BG-87

Chapter 4 Budgets Commands
4.2.2.6 Listing Periods

4.2.2.6.i Synopsis

amgr ls period [-n <period>] [-l | -j]

4.2.2.6.ii Description

Prints out information about periods.

By default, this lists all periods that exist in the hierarchy.

See section 1.7.1, “Periods, Allocation Periods, Billing Periods”, on page 18.

4.2.2.6.iii Options

-n, --name <period name>
String. Name of the period to list.

-l, --list-info
Display information in list format.

-j, --json-info
Display information in JSON format.

4.2.2.7 Listing Service Units

4.2.2.7.i Synopsis

amgr ls serviceunit [-n <service unit name] [-a <active>] [-l | -j]

4.2.2.7.ii Description

When used with no options, lists all the service units that exist in Budgets. When you specify a service unit name, prints
information about that service unit.

4.2.2.7.iii Options

-n, --name <service unit name>
String. Specifies the name of the service unit.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Filters service units by active status. You can list either active or inactive service units, but not both.

Default: active

-l, --list-info
Display information in list format.

-j, --json-info
Display information in JSON format.

4.2.2.8 Listing Budgets Configuration Attributes

4.2.2.8.i Synopsis

amgr ls config [-n <attribute name>] [-l | -j]
BG-88 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.2.2.8.ii Description

Prints a list of the Budgets configuration attributes. See section 3.3, “Setting Budgets Configuration Attributes”, on page
73.

4.2.2.8.iii Options

-n, --name <attribute name>
String. Specifies the name of the configuration attribute.

-l, --list-info
Display information in list format.

-j, --json-info
Display information in JSON format.

4.2.2.8.iv Sample Output

Sample output for amgr ls config:

SU_DYNAMIC

configuration = {'data_lifetime': 3600}

id = 1

created_user_name = root

created_date = 2022-05-12 09:42:53.312722+05:30

last_updated_user_name = root

last_updated_date = 2022-05-14 15:55:54.339+05:30

4.2.2.9 Listing Roles

4.2.2.9.i Synopsis

amgr ls role [-n <role>] [-a <active>] [-l | -j]

4.2.2.9.ii Description

Prints whether the role exists.

Every user in Budgets must have an assigned role. See section 1.4, “Roles”, on page 7.

Roles in Budgets:

admin
Can perform all operations.

investor
Can deposit and withdraw service units to and from groups with which the investor is associated.

manager
Can deposit and withdraw service units to and from projects and users that are associated with groups with
which the manager is associated.

teller
Special role for performing automated acquire and reconcile transactions on behalf of users.

user
Assigned to one or more projects; can run jobs using user budget or project budget.
PBS Professional 2022.1 Budgets Guide BG-89

Chapter 4 Budgets Commands
4.2.2.9.iii Options

-n, --name <role>
String. Name of the role to list.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Filters roles by active status. You can list either active or inactive roles, but not both.

Default: active

-l, --list-info
Display information in list format. Information includes whether the role is active for each user with the role.

-j, --json-info
Display information in JSON format.

4.2.2.9.iv Command Example

Example 4-8: To show information for users with admin role:

amgr ls role -n admin

Example 4-9: To show more information about users with admin role, we use the -l switch:

amgr ls role -n admin -l

Example 4-10: To show information about users with admin role in JSON format, we use the -j switch:

amgr ls role -n admin -j

4.2.2.10 Listing Cloud Data

4.2.2.10.i Synopsis

amgr ls clouddata [-n <cloud account name] [-t <instance type>] [-l | -j]

4.2.2.10.ii Description

To see a list of all cloud accounts and instance types, but not cost data, use no options.

To see a list of all cloud accounts and instance types, along with instance type costs, use either the -l or -j options, and
use neither the -n nor the -t options.

To see a list of instance types associated with a cloud account, use the -n option to specify that account.

To see a list of cloud accounts associated with an instance type, use the -t option to specify that instance type.

4.2.2.10.iii Options

-n, --account-name <cloud account name>
String. Specifies the name of the cloud account.

Lists the instance types associated with this cloud account.

-t, --instance-type <instance type>
String. Specifies the instance type.

Lists the cloud accounts associated with this instance type.
BG-90 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
(neither -n nor -t)
With -l option: lists all cloud accounts and associated instance types, along with cost information.

With -j option: prints all cloud accounts and associated instance types, along with cost information, in JSON
format.

With neither the -l or -j options, lists all cloud accounts and associated instance types, without cost informa-
tion.

-l, --list-info
Displays information in list format.

-j, --json-info
Displays information in JSON format.
PBS Professional 2022.1 Budgets Guide BG-91

Chapter 4 Budgets Commands
4.2.2.10.iv Examples

Example 4-11: List all cloud accounts and their associated instance types:

amgr ls clouddata

xyz-aws:c4.large

xyz-azure:t2.micro

Example 4-12: List the instance types associated with a specific cloud account:

amgr ls clouddata -n xyz-aws

xyz-aws:c4.large

Example 4-13: List the cloud accounts associated with a specific instance type:

amgr ls clouddata -t t2.micro

xyz-azure:t2.micro

Example 4-14: Validate that a particular cloud account is associated with a particular instance type:

amgr ls clouddata -n xyz-aws -t c4.large

xyz-aws:c4.large

Example 4-15: List all cloud accounts and associated instance types along with cost information for each instance type:

amgr ls clouddata -l

xyz-aws

instance_type = c4.large

cost_info = {'cost': 100, 'ncpus': 20, 'overhead': 40, 'unit': 'hour'}

metadata = {'provider': 'aws', 'scenario': 'xyz-aws-poc'}

id = 2

created_user_name = root

created_date = 2022-05-18 17:33:00.310976+05:30

last_updated_user_name = root

last_updated_date = 2022-05-18 17:33:00.310976+05:30

xyz-azure

instance_type = t2.micro

cost_info = {'cost': 80, 'ncpus': 10, 'overhead': 20, 'unit': 'hour'}

metadata = {'provider': 'azure', 'scenario': 'xyz-azure-poc'}

id = 3

created_user_name = root

created_date = 2022-05-18 17:33:00.310976+05:30

last_updated_user_name = root

last_updated_date = 2022-05-18 17:33:00.310976+05:30

4.2.3 Updating Elements

amgr update {user | period | project | group | cluster | serviceunit | clouddata}

Updates the specified element.

You cannot change the name of an element once it is created.
BG-92 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.2.3.1 Required Privilege

You must be admin to run this command.

4.2.3.2 Updating Users

4.2.3.2.i Synopsis

amgr update user -n <username> [-A <accounting policy>] [-c <cluster list>] [-r <roles>] [-h <group list>] [-a
<active>]

4.2.3.2.ii Description

Update information for a user.

4.2.3.2.iii Options

-n, --name <username>
String. Name of user account to update.

-A, --accounting-policy <begin_period | end_period | proportionate>
Specifies the accounting policy for the user account. It can be begin_period, end-period, or proportionate

-c, --clusters <cluster update>
String. Specifies clusters to link to or unlink from the user.

To link or unlink clusters, use the + or - operator followed by a comma-separated list of clusters. Spaces are not
allowed. Use a separate amgr update user -n <username> -c <cluster update> command
for each + or - operation.

For example, to link clusters:

amgr update user -n user1 -c + cluster1,cluster2,cluster3

Or to unlink clusters:

amgr update user -n user1 -c - cluster4,cluster5,cluster6

-r, --roles <role>
Sets the role of the user.

-h, --groups <group update>
String. Specifies groups to link to or unlink from the user.

To link or unlink groups, use the + or - operator followed by a comma-separated list of groups. Spaces are not
allowed. Use a separate amgr update user -n <username> -h <group update> command for
each + or - operation.

For example, to link groups:

amgr update user -n user1 -h + group1,group2,group3

Or to unlink groups:

amgr update user -n user1 -h - group4,group5,group6

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Set the project to active or inactive.

4.2.3.3 Updating Projects

4.2.3.3.i Synopsis

amgr update project -n <project name> [-A <accounting policy>] [-S <start date>] [-E <end date>] [-c <cluster
update>] [-u <user update>] [-h <group update>] [-a <active>] [-m <metadata update>]
PBS Professional 2022.1 Budgets Guide BG-93

Chapter 4 Budgets Commands
4.2.3.3.ii Description

Updates project information. You can set new values for existing elements, add new elements such as users, groups, or
metadata, and you can remove elements. Use the + operator to add or update elements and the - operator to remove ele-
ments.

4.2.3.3.iii Options

-n, --name <project name>
String. Name of the project to update.

-A, --accounting-policy <accounting policy>
String. Specifies the accounting policy for the project.

Value is one of begin_period, end_period, or proportionate.

-S, --start-date <start date>
Start date of the project.

Format: YYYY-MM-DD

-E, --end-date <end date>
End date of the project.

Format: YYYY-MM-DD

-c, --clusters <cluster update>
String. Specifies clusters to link to or unlink from the project.

To link or unlink clusters, use the + or - operator followed by a comma-separated list of clusters. Spaces are not
allowed. Use a separate amgr update project -n <project name> -c <cluster update>
command for each + or - operation.

For example, to link clusters:

amgr update project -n MyProject -c + cluster1,cluster2,cluster3

Or to unlink clusters:

amgr update project -n MyProject -c - cluster4,cluster5,cluster6

-u, --users <user update>
String. Specifies users to link to or unlink from the project.

To link or unlink users, use the + or - operator followed by a comma-separated list of users. Spaces are not
allowed. Use a separate amgr update project -n <project name> -u <user update> com-
mand for each + or - operation.

For example, to link users:

amgr update project -n MyProject -u + user1,user2,user3

Or to unlink users:

amgr update project -n MyProject -u - user4,user5,user6

-h, --groups <group update>
String. Specifies groups to link to or unlink from the project.

To link or unlink groups, use the + or - operator followed by a comma-separated list of groups. Spaces are not
allowed. Use a separate amgr update project -n <project name> -h <group update> com-
mand for each + or - operation.

For example, to link groups:

amgr update project -n MyProject -h + group1,group2,group3

Or to unlink groups:

amgr update project -n MyProject -h - group4,group5,group6
BG-94 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-m, --metadata <metadata update>
Adds, updates, or removes metadata from the project.

To add metadata: + operator followed by a comma-separated list of key-value pairs. Spaces are not allowed.
For example:

amgr update project -n MyProject -m + <key1>:<value>,<key2>:<value2>

To remove metadata: - operator followed by a comma-separated list of keys only. Spaces are not allowed. For
example:

amgr update project -n MyProject -m - <key3>,<key4>

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Sets the project to active or inactive.

4.2.3.3.iv Command Example

Add a new metadata element named "currency", set it to "rupee", and update the existing data region to "america":

amgr update project -n proj1 -m + currency:rupee,region:america

Remove existing metadata elements "type" and "region":

amgr update project -n proj1 -m - type,region

Multiple operations in single command:

amgr update project -n proj1 -m + currency:dollar,"Lead Researcher":"Jane Smith" -m - type,region

4.2.3.4 Updating Groups

4.2.3.4.i Synopsis

amgr update group -n <group name> [-I <investors>] [-M <managers>] [-a <active>]

4.2.3.4.ii Description

Update information for a group.

4.2.3.4.iii Options

-n, --name <group name>
String. Name of the group to update.

-I, --investors <investor update>
String. Specifies investors to link to or unlink from the user.

To link or unlink investors, use the + or - operator followed by a comma-separated list of investors. Spaces are
not allowed. Use a separate amgr update group -n <group name> -I <investor update>
command for each + or - operation.

For example, to link investors:

amgr update group -n group1 -I + investor1,investor2,investor3

Or to unlink investors:

amgr update group -n group1 -I - investor4,investor5,investor6
PBS Professional 2022.1 Budgets Guide BG-95

Chapter 4 Budgets Commands
-M, --managers <manager update>
String. Specifies managers to link to or unlink from the user.

To link or unlink managers, use the + or - operator followed by a comma-separated list of managers. Spaces are
not allowed. Use a separate amgr update group -n <group name> -M <manager update>
command for each + or - operation.

For example, to link managers:

amgr update group -n group1 -M + manager1,manager2,manager3

Or to unlink managers:

amgr update group -n group1 -M - manager4,manager5,manager6

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Sets the group to be active or inactive.

4.2.3.5 Updating Clusters

4.2.3.5.i Synopsis

amgr update cluster -n <PBS server> [-a <active>] [-f <formula filename>]

4.2.3.5.ii Description

Updates the cluster data structure representing a PBS complex with the specified formula file. Pushes the formula file to
the PBS complex. Imports the formula file (the Budgets hook configuration file) into both Budgets hooks at the com-
plex. Updates the database with the new formulas for this cluster.

If the formulas are different in the PBS hook (the .CF file) and the cluster data structure, jobs cannot run.

4.2.3.5.iii Options

-n, --name <PBS server>
String. Name of the cluster to update.

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Sets the cluster active or inactive.

Default: active

-f, --formula <formula filename>
String. Updates the specified formula file at the specified cluster data structure.

4.2.3.6 Updating a Period

4.2.3.6.i Synopsis

amgr update period -n <period name> [-S <start date>] [-E <end date>]

4.2.3.6.ii Description

Updates the specified period.

You cannot update a period that has any associated jobs or transactions.

See section 1.7.1, “Periods, Allocation Periods, Billing Periods”, on page 18.

4.2.3.6.iii Options

-n, --name <period name>
String. Period to update.
BG-96 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-S, --start-date <start date>
Date. Start date of the period.

Format: YYYY-MM-DD

-E, --end-date <end date>
Date. End date of the period.

Format: YYYY-MM-DD

4.2.3.7 Updating a Service Unit

4.2.3.7.i Synopsis

amgr update serviceunit -n <service unit name> [-t <type>] [-a <active>] [-d <description>]

4.2.3.7.ii Description

Updates a service unit.

You can change the type of a service unit, but there are restrictions:

• You can change standard to dynamic only when no transactions have taken place

• You can change dynamic to standard only when no updates have been made to the external dynamicvalue

4.2.3.7.iii Options

-n, --name <service unit name>
String. Name of service unit to update.

Blank spaces are not allowed.

-t, --type {SU_STANDARD | SU_DYNAMIC}
String. Specifies type for this service unit.

Default: SU_STANDARD

-a, --active {True|TRUE|true|t|1|False|FALSE|false|f|0}
Boolean. Sets service unit active or inactive.

-d, --description <service unit description>
String. Describes the service unit.

Can contain alphanumeric and any special characters except double quotes.

If the description contains anything except alphanumeric, enclose it in double quotes.

4.2.3.8 Updating Configuration Attributes

4.2.3.8.i Synopsis

amgr update config -n <attribute name> -V <update string>

4.2.3.8.ii Description

Update Budgets configuration attributes. See section 3.3, “Setting Budgets Configuration Attributes”, on page 73.

Updates one attribute at a time.

4.2.3.8.iii Options

-n, --name <attribute name>
String. Name of the Budgets configuration attribute to update.
PBS Professional 2022.1 Budgets Guide BG-97

Chapter 4 Budgets Commands
-V, --config-value <update string>
JSON formatted string of configuration key-value pairs.

Format:

amgr update config -n SU_DYNAMIC -V '{"<attribute name>": <value>}'
Example:

amgr update config -n SU_DYNAMIC -V '{"data_lifetime": 1000}'

4.2.3.8.iv Examples

amgr update config -n SU_DYNAMIC -V '{"data_lifetime": 3610}'

4.2.3.9 Updating Dynamic Service Unit Usage

4.2.3.9.i Synopsis

amgr update dynamicvalues -v <update specification>

4.2.3.9.ii Description

Reports updated value of the specified dynamic service unit to Budgets. Value is for usage by a project or a user.

At a given point in time, a dynamic service unit is a snapshot of the current usage of a particular external resource such as
scratch. This usage is reported by an external script that you write. The external script is typically a cron job that calls
amgr update dynamicvalues, which updates the value of the dynamic service unit.

Budgets compares the reported value with the specified quotas, and allows jobs to run as long as the usage is below the
quota.

4.2.3.9.iii Required Privilege

You must be admin to run this command.

4.2.3.9.iv Options

-v, --value <update specification>
String in JSON format.

Format to update usage for a user:

'{"<dynamic service unit>": {"<username>":{"total":<total>}}}'
Format to update total usage for a project:

'{"<dynamic service unit>": {"<project>":{"total":<total>}}}'
You must include the keyword "total".

4.2.3.9.v Examples

Example 4-16: Set user user1's consumption of storage to 8:

amgr update dynamicvalues -v '{"storage": {"user1": {"total":8}}}'

Example 4-17: Set project project1's consumption of storage to 30:

amgr update dynamicvalues -v '{"storage": {"project1": {"total":30}}}'

4.2.3.10 Updating Cloud Cost Data

4.2.3.10.i Synopsis

amgr update clouddata [-v <update specification> | -J <input file>]
BG-98 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.2.3.10.ii Description

Updates Budgets with cloud cost data for specified accounts and instances. The administrator gets the cloud cost data
from the vendor, then uses this command to update Budgets. The command transmits the updated cost information via
either a JSON string or a JSON file.

Budgets uses these costs when computing service unit charges.

The cost to use an instance type depends on service provider charges, which may vary according to the instance type.
Spot instances may vary more often than others.

This command is intended to be used in a cron job or a periodic hook.

4.2.3.10.iii Required Privilege

You must be admin to run this command.

4.2.3.10.iv Options

-v, --value <update specification>
String in JSON format. You populate this string with data collected from service provider(s). Format:

'{
"<cloud account 1>":{

"<instance type 1>":{
"cost_info":{

"cost":<cost per unit time>,
"ncpus":<CPUs in one instance>,
"overhead":<cost for overhead>,
"unit":<unit of time>

},
"metadata":{

"key1":"value1",
"key2":"value2",
...

}
}

},
"<cloud_account2>":{

"<instance_type2>":{...}
},
...

}'

Cost information section contains the following:

cost
Float. Instance cost per unit of time.

ncpus
Integer. Total number of CPUs available inside one instance.

overhead
Float. Total overhead cost for one instance.

unit
String. Unit of time for the cost and overhead values.
PBS Professional 2022.1 Budgets Guide BG-99

Chapter 4 Budgets Commands
Allowed values: hour | minute | second

Metadata section is key-value pairs containing metadata for the instance.

Format:

"<key>":"<value>","<key>":"<value>", ...
Maximum of 10 pairs allowed.

Cannot be used with -J option.

-J, --json-file <path to input file>
String. Path to input file containing cost data. Can be absolute or relative to directory where command is run.

Format: same as JSON string argument to -v <update specification> option.

Cannot be used with -v option.

--help
Prints usage information and exits.

4.2.3.10.v Examples

Example 4-18: Update cloud cost data for the cloud account named "CloudAccount1" and the instance type
"Standard_D2s_v3". We show how to update using a JSON string or an input file:

Update via JSON string:

amgr update clouddata -v
'{"CloudAccount1":{"Standard_D2s_v3":{"cost_info":{"cost":0.105,"ncpus":2,"overhead":0.02,"u
nit":"hour"},"metadata":{"provider":"azure","scenario":"azureScenario1"}}}}'

Update via input file:

amgr update clouddata -J /tmp/my_cloud_cost_data.json

Where:

cat /tmp/my_cloud_cost_data.json

{

"CloudAccount1":{

"Standard_D2s_v3":{

"cost_info":{

"cost":0.105,"ncpus":2,"overhead":0.02,"unit":"hour"

},

"metadata":{

"provider":"azure","scenario":"azureScenario1"

}

}

}

}

Example 4-19: Update cloud cost data for two separate cloud accounts, using a file:

amgr update clouddata -J /tmp/cloud_cost_data.json
BG-100 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
Where:

cat /tmp/cloud_data.json

{

"CloudAccount1":{

"Standard_D2s_v3":{

"cost_info":{"cost":0.105,"ncpus":2,"overhead":0.02,"unit":"hour"},

"metadata":{"provider":"azure","scenario":"azureScenario"}

}

}

"CloudAccount2":{

"Standard_D2s_v4":{

"cost_info":{"cost":0.205,"ncpus":2,"overhead":0.05,"unit":"hour"}

}

}

}

4.2.3.10.vi Caveats for Updating Cloud Cost Data

Keep in mind that the units you report to Budgets using this command will affect how you use units in the formula file.
In the formula file, Budgets assumes that cost units are in seconds.

4.2.4 Removing Elements

amgr rm {user | project | group | cluster | period | serviceunit}

4.2.4.1 Required Privilege

You must be admin to run this command.

4.2.4.2 Removing a User

4.2.4.2.i Synopsis

amgr rm user -n <username>

4.2.4.2.ii Description

Removes specified user from Budgets, unless the user has any past or current associated jobs or transactions, in which
case the user is made inactive.

4.2.4.2.iii Options

-n, --name <username>
String. Name of the user to remove.

4.2.4.2.iv Command Examples

Example 4-20: Remove a user named "joe":

amgr rm user -n joe
PBS Professional 2022.1 Budgets Guide BG-101

Chapter 4 Budgets Commands
4.2.4.3 Removing a Project

4.2.4.3.i Synopsis

amgr rm project -n <project name>

4.2.4.3.ii Description

Removes specified project from Budgets, unless the project has any past or current associated jobs or transactions, in
which case the project is made inactive.

4.2.4.3.iii Options

-n, --name <project name>
String. Name of the project to remove.

The project name cannot be the same as a username.

4.2.4.3.iv Example

Example 4-21: Remove a project named proj1:

amgr rm project -n proj1

4.2.4.4 Removing a Group

4.2.4.4.i Synopsis

amgr rm group -n <group name>

4.2.4.4.ii Description

Removes specified group from Budgets, unless the group has any past or current associated transactions, in which case
the group is made inactive.

4.2.4.4.iii Options

-n, --name <group name>
String. Name of the group to remove.

4.2.4.5 Removing a Cluster

4.2.4.5.i Synopsis

amgr rm cluster -n <PBS server>

4.2.4.5.ii Description

Removes the specified cluster from Budgets, unless the cluster has any past or current associated jobs or transactions, in
which case the cluster is made inactive.

4.2.4.5.iii Options

-n, --name <PBS server>
String. Name of the cluster to remove.
BG-102 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.2.4.6 Removing a Period

4.2.4.6.i Synopsis

amgr rm period -n <period name>

4.2.4.6.ii Description

Removes specified period from Budgets, if the period and all parent periods have no associated jobs or transactions. If
either the period or a parent has any associated jobs or transactions, the period is made inactive.

See section 1.7.1, “Periods, Allocation Periods, Billing Periods”, on page 18.

4.2.4.6.iii Options

-n, --name <period name>
String. Name of the period to remove.

4.2.4.7 Removing a Service Unit

4.2.4.7.i Synopsis

amgr rm serviceunit -n <service unit name>

4.2.4.7.ii Description

Removes specified service unit from Budgets, unless the service unit has any past or current associated transactions, in
which case the service unit is made inactive.

4.2.4.7.iii Options

-n, --name <service unit name>
String. Name of service unit to remove.

If this is a standard service unit, the name must match name used in formula file.

Blank spaces are not allowed.

If this is a standard service unit, you must also remove this service unit from all formulas, otherwise jobs will
not run.

4.2.4.7.iv Command Examples

Example 4-22: Removing a standard service unit named cpu_hrs:

amgr rm serviceunit -n cpu_hrs

Example 4-23: Removing a dynamic service unit named luster:

amgr rm serviceunit -n luster

4.2.5 Getting Reports on Elements

The amgr report command allows you to get reports for projects, groups, jobs, transactions, and users.

amgr report {user | project | group | transaction}

Use the -l option to the amgr report commands for more detailed information.
PBS Professional 2022.1 Budgets Guide BG-103

Chapter 4 Budgets Commands
4.2.5.1 Required Privilege

A user can get a report on their own usage, jobs, and transactions, and on any project account with which the user is
associated.

A manager can get reports on users and projects that are associated with any groups with which the manager is associ-
ated.

A member of a project can get a report on that project.

An admin or investor can get a report on any group and project.

4.2.5.2 Getting User Reports

4.2.5.2.i Synopsis

amgr report user -n <username> [-s <service unit name> | -t <service unit type>] [-h] [-p <period>] [-S <start
date>] [-E <end date>] [-l] [-o <output file>] [-r] [-A]

4.2.5.2.ii Description

By default, this prints information for all standard service units for the current period that is lowest in the hierarchy
(shortest time division). You can refine your output by specifying service unit name and type.

By default, this prints the report to the screen in human-readable tables. You can print to a file, and you can print the
report in raw (CSV) format.

4.2.5.2.iii Options

-n, --name <username>
String. Username on which to get report.

-s, --serviceunit <service unit name>
Prints report for specified service unit.

If you do not specify a service unit, the report includes all service units of the specified type. If you do not spec-
ify type, it is SU_STANDARD.

-t, --sunit-type <service unit type>
Use this option to see dynamic service units. By default, this command prints only standard service units.

Cannot be used with -l, -g, or -h options.

Type can be one of SU_STANDARD or SU_DYNAMIC.

Default: SU_STANDARD

-g, --global-view
Lists project details and a summary of all transactions with a detailed listing of each transaction in JSON format.

Cannot be used with -t SU_DYNAMIC.

-h, --stakeholder-info
Lists groups which have invested in the user and their invested amounts.

Cannot be used with -t SU_DYNAMIC.

-p, --period <period name>
Specifies report period.

Cannot be used with -S and -E options.

Default: current period that is lowest in hierarchy (shortest time division)
BG-104 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-S, --start-date <start date>
Reports activity starting at this date. Report includes created and updated transactions.

Requires -l or -g option.

Cannot be used with -p option.

Format: YYYY-MM-DD HH:MM:SS

-E, --end-date <end date>
Reports activity ending at this date. Report includes created and updated transactions.

Requires -l or -g option.

Cannot be used with -p option.

Format: YYYY-MM-DD HH:MM:SS

-l, --list-info
Lists all transactions that have happened for the specified user.

Use the -l switch to get the report in long format, containing the transaction_id, transaction_date,
transaction_time, entity, transaction_type, transaction_user, type, serviceunit, amount, balance, reconciled,
period, am_mode, and comment, in columns.

Cannot be used with -t SU_DYNAMIC.

-o, --out-file <output filename>
Budgets prints the report in a human-readable form to the specified output file.

Without this option, Budgets prints the report to the screen.

-r, --raw-output
Print report in raw (CSV) form with no padding. This form is easier to parse but harder for a human to read.

-A, --allocated-view
For listing investor information. Lists remaining credit allocated from this investor to each group in which the
investor invested.

4.2.5.2.iv Output Format

Output for the report contains the Name, Service Unit, Period, Opening Balance, Total Credits, Total Debits, Total Debits
(Reconciled), Total Debits (Authorized), and Net Balance.

Opening Balance
Opening balance of user account on specified start date

Total Credits
Sum of deposits; does not decrease from transfers or withdrawals or usage. Associated with a period.

Total Debits (Reconciled)
Total consumed amount for a period.

Total Debits (Authorized)
Amount held by running jobs plus amount held by unreconciled finished jobs, for a period.

Current balance
Opening Balance + Total Credits - Total Debits - Total Debits (Reconciled) - Total Debits (Authorized). For
period.
PBS Professional 2022.1 Budgets Guide BG-105

Chapter 4 Budgets Commands
4.2.5.2.v Command Examples in Postpaid Mode

Example 4-24: User report:

amgr report user -n centos

--

name | period | serviceunit | total_outstanding | metadata

--

centos | 2022 | cpu_hrs | 480.0 | None

Example 4-25: User report in long format:

amgr report user -n centos -l

4.2.5.2.vi Command Examples in Prepaid Mode

Example 4-26: User report in long format:

amgr report user -n <username> -s <service unit> -S <start date> -E <end date> -l

Example 4-27: To report user storage usage:

amgr report user -n user1 -t SU_DYNAMIC

name | serviceunit | period | limit | last_reported_time | total_consumed

user1 | storage | 2022.feb| 12.0 | 2022-02-11 18:58:09.48498+00:00| 8.0

Example 4-28: User report showing dynamic service units:

amgr report user -n pbsuser -t SU_DYNAMIC

--

name | serviceunit | period | limit

--

pbsuser | luster | 2022 | 600.0

pbsuser | scratch | 2022 | 800.0

| last_reported_time | total_consumed

| 2022-04-07 12:40:22.470078+05:30 | 40

| 2022-04-07 12:40:22.470078+05:30 | 60

4.2.5.3 Getting Project Reports

4.2.5.3.i Synopsis

amgr report project -n <project name> [-s <service unit> | -t <service unit type>] [-U] [-h] [-p <period>] [-S
<start date>] [-E <end date>] [-l] [-o <output file>] [-r]

4.2.5.3.ii Description

Produces a project report.

By default, this prints information for all standard service units for the current period that is lowest in the hierarchy
(shortest time division). You can refine your output by specifying service unit name and type.
BG-106 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
By default, this prints the report to the screen in human-readable tables. You can print to a file, and you can print the
report in raw (CSV) format.

4.2.5.3.iii Options

-n, --name <project name>
String. Name of project on which to get report.

-s, --serviceunit <service unit name>
Prints report for specified service unit.

If you do not specify a service unit, the report includes all service units of the specified type. If you do not spec-
ify type, it is SU_STANDARD.

-t, --sunit-type <service unit type>
Use this option to see dynamic service units. By default, this command prints only standard service units.

Cannot be used with -l, -g, or -h options.

Type can be one of SU_STANDARD or SU_DYNAMIC.

Default: SU_STANDARD

-U, --user-wise
Prints consumption, one line per consumer, per service unit. Output includes amount of credit, username, and
period.

By default only standard service units are printed; to see dynamic service units, use the -t option.

-g, --global-view
Lists project details and a summary of all transactions with a detailed listing of each transaction in JSON format.

Cannot be used with -t SU_DYNAMIC.

-h, --stakeholder-info
Lists groups which have invested in the project and their invested amounts.

Cannot be used with -t SU_DYNAMIC.

-p, --period <period name>
Specifies report period.

Cannot be used with -S and -E options.

Default: current period that is lowest in hierarchy (shortest time division)

-S, --start-date <start date>
Reports activity starting at this date. Report includes created and updated transactions.

Requires -l or -g option.

Cannot be used with -p option.

Format: YYYY-MM-DD HH:MM:SS

-E, --end-date <end date>
Reports activity ending at this date. Report includes created and updated transactions.

Requires -l or -g option.

Cannot be used with -p option.

Format: YYYY-MM-DD HH:MM:SS
PBS Professional 2022.1 Budgets Guide BG-107

Chapter 4 Budgets Commands
-l, --list-info
Lists all transactions that have happened for the specified project.

Use the -l option to get the report in long format, containing the transaction_id, transaction_date,
transaction_time, entity, transaction_type, transaction_user, type, serviceunit, amount, balance, reconciled,
period, am_mode, and comment, in columns.

Cannot be used with -t SU_DYNAMIC.

-o, --out-file <output filename>
Budgets prints the report in a human-readable form to the specified output file.

Without this option, Budgets prints the report to the screen.

-r, --raw-output
Print report in raw (CSV) form with no padding. This form is easier to parse but harder for a human to read.

4.2.5.3.iv Output Format

The report is printed as a columns, for name, start_date, end_date, opening_balance, total_credits,
total_debits_reconciled, total_debits_authorized, and net_balance.

4.2.5.3.v Command Example for Postpaid Mode

Example 4-29: Project report in postpaid mode:

amgr report project -n project1

Command output:
--

name | period | serviceunit | total_outstanding | metadata

--

project1 | 2022 | cpu_hrs | 1440.0 | {}

4.2.5.3.vi Command Example for Prepaid Mode

Example 4-30: Report for all standard service units and current lowest period:

amgr report project -n p1

Command output:

name | period | serviceunit | opening_balance | total_credits

p1 | DEC-2018 | dollar1 | 0.0 | 3000000.0

--

| total_debits | total_debits_reconciled | total_debits_authorized

--

| 0.0 | 180.0 | 0.0

| net_balance | metadata

| 2999820.0 | {}

Example 4-31: Report for service unit dollar1 for period 2018:

amgr report project -n p1 -s dollar1 -p 2018
BG-108 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
Command output:

name | period | serviceunit | opening_balance | total_credits

p1 | 2018 | dollar1 | 0.0 | 5000000.0

| total_debits | total_debits_reconciled | total_debits_authorized

| 0.0 | 0.0 | 0.0

| net_balance

| 5000000.0

To get raw output for the project:

amgr report project -n p1 -s dollar1 -p 2018 -r

Command output:

name,period,serviceunit,opening_balance,total_credits,total_debits,total_debits_reconciled,total
_debits_authorized,net_balance

p1,2018,dollar1,0.0,5000000.0,0.0,0.0,0.0,5000000.0

Example 4-32: Show individual transactions for the service unit dollar1 for the lowest period:

amgr report project -n p1 -s dollar1 -l

Note that this prints the report in long format, containing the transaction_id, transaction_date, transaction_time,
entity, transaction_type, transaction_user, type, serviceunit, amount, balance, reconciled, period, am_mode, and
comment, in columns.
PBS Professional 2022.1 Budgets Guide BG-109

Chapter 4 Budgets Commands
Command output:

transaction_id | transaction_date | transaction_time | entity

1544096706.291656 | 2018-12-06 | 17:15:06.290064 | manager

2042.cluster1 | 2018-12-06 | 17:15:23.760451 | job

2043.cluster1 | 2018-12-06 | 17:15:24.695462 | job

2044.cluster1 | 2018-12-06 | 17:16:24.058123 | job

| transaction_type | transaction_user | type | serviceunit | amount

| grant | Manager1 | credit | dollar1 | 3000000.0

| acquired | amteller | debit | dollar1 | 60.0

| acquired | amteller | debit | dollar1 | 60.0

| acquired | amteller | debit | dollar1 | 60.0

| reconciled | period | comment

| yes | DEC-2018 | Deposit dollar1 to DEC period

| yes | DEC-2018 |

| yes | DEC-2018 |

| yes | DEC-2018 |

Example 4-33: Print individual transactions for the service unit dollar1 for a date range:

amgr report project -n p1 -s dollar1 -l -S '2018-12-06' -E '2018-12-06'

Note that this prints the report in long format, containing the transaction_id, transaction_date, transaction_time,
entity, transaction_type, transaction_user, type, serviceunit, amount, balance, reconciled, period, am_mode, and
comment, in columns.
BG-110 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
Command output:

--

transaction_id | transaction_date | transaction_time | entity

--

1544096706.100772 | 2018-12-06 | 17:15:06.098180 | manager

1544096706.291656 | 2018-12-06 | 17:15:06.290064 | manager

2042.cluster1 | 2018-12-06 | 17:15:23.760451 | job

2043.cluster1 | 2018-12-06 | 17:15:24.695462 | job

2044.cluster1 | 2018-12-06 | 17:16:24.058123 | job

| transaction_type | transaction_user | type | serviceunit | amount

| grant | Manager1 | credit | dollar1 | 5000000.0

| grant | Manager1 | credit | dollar1 | 3000000.0

| acquired | amteller | debit | dollar1 | 60.0

| acquired | amteller | debit | dollar1 | 60.0

| acquired | amteller | debit | dollar1 | 60.0

--

| reconciled | period | comment

--

| yes | 2018 | Deposit dollar1 to parent period

| yes | DEC-2018 | Deposit dollar1 to DEC period

| yes | DEC-2018 |

| yes | DEC-2018 |

| yes | DEC-2018 |
PBS Professional 2022.1 Budgets Guide BG-111

Chapter 4 Budgets Commands
4.2.5.3.vii Project Reports Showing Dynamic Service Units

Example 4-34: Project report in short format:

amgr report project -n p1 -t SU_DYNAMIC

name | serviceunit | period | limit |last_reported_time | total_consumed

p1 | luster | 2022 | 500.0 |2022-04-07 12:40:22.470078+05:30 | 80

p1 | scratch | 2022 | 800.0 |2022-04-07 12:40:22.470078+05:30 | 100

Example 4-35: Project report in user-wise format:

amgr report project -n p1 -t SU_DYNAMIC -U

--

name | serviceunit | period | limit |last_reported_time | total_consumed | user_consumed

--

p1 | luster | 2022 | 500.0 | 2022-04-07 12:40 | 80 | {"u1": 20.0, "u2": 10.0}

p1 | scratch | 2022 | 800.0 | 2022-04-07 12:40 | 100 | {"u1": 40.0}

Example 4-36: Report project storage data:

amgr report project -n proj1 -t SU_DYNAMIC

Command output:

--

name | serviceunit | period | limit | last_reported_time | total_consumed

--

proj1 | storage | 2022.feb| 25.0 | 2022-02-11 18:58:28.270385+00:00 | 30.0

4.2.5.4 Getting Group Reports

4.2.5.4.i Synopsis

amgr report group -n <group name> [-h] [-A] [-S <start-date>] [-E <end-date>] [-l] [-o <output-file>] [-r] [-p
<period>]

4.2.5.4.ii Description

Produces group report showing deposits and withdrawals.

By default, this prints information for all standard service units for the current period that is lowest in the hierarchy
(shortest time division). You can refine your output by specifying service unit name.

By default, this prints the report to the screen in human-readable tables. You can print to a file, and you can print the file
in raw (CSV) format.

4.2.5.4.iii Options

-n, --name <group name>
String. Name of the group on which to get report.

-h, --stakeholder-info
For each investor in the group, lists remaining balance for that investor, of what they invested.
BG-112 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-A, --allocated-view
Lists remaining credit allocated from this group to users and projects.

Shows for each project, how much this project has remaining of what the group invested.

Shows for each user, how much this user has remaining of what the group invested.

Cannot filter by project or user.

-S, --start-date <start date>
Reports activity starting at this date. Report includes created and updated transactions.

Requires -l or -g option.

Cannot be used with -p option.

Format: YYYY-MM-DD HH:MM:SS

-E, --end-date <end date>
Reports activity ending at this date. Report includes created and updated transactions.

Requires -l or -g option.

Cannot be used with -p option.

Format: YYYY-MM-DD HH:MM:SS

-l, --list-info
Lists all transactions that have happened for the specified group.

Use the -l option to get the report in long format, containing the transaction_id, transaction_date,
transaction_time, entity, transaction_type, transaction_user, type amount and reconciled status in columns.

-o, --out-file <output filename>
Budgets prints the report in a human-readable form to the specified output file.

Without this option, Budgets prints the report to the screen.

-r, --raw-output
Print report in raw (CSV) form with no padding. This form is easier to parse but harder for a human to read.

-p, --period-name <period name>
Specifies report period.

Cannot be used with -S and -E options.

Default: current period that is lowest in hierarchy (shortest time division)

4.2.5.4.iv Group Report Examples

Example 4-37: Default group report:

amgr report group -n h1
PBS Professional 2022.1 Budgets Guide BG-113

Chapter 4 Budgets Commands
Command output:

--

name | serviceunit | opening_balance | total_credits | total_debits

--

h1 | cpu_hrs | 0.0 | 100000.0 | 100.0

| total_allocated | total_accounts_released | net_balance

| 600.0 | 70.0 | 99370.0

Example 4-38: Long format group report:

amgr report group -n h1 -l

Command output:

transaction_id | transaction_date | transaction_time | entity | transaction_type

1570782001.2559264 | 2022-10-11 | 13:50:01.253271 | investor | grant

2470123401.5592132 | 2022-10-11 | 13:50:11.967594 | manager | grant

6470127408.2212197 | 2022-10-11 | 13:50:31.161543 | manager | grant

transaction_user | type | serviceunit | amount | balance | period | account

root | credit | cpu_hrs | 500000.0 | 500000.0 | - | group1

mgr1 | credit | cpu_hrs | 1000.0 | 499996.0 | 2022 | Project1

mgr2 | credit | cpu_hrs | 4.0 | 499992.0 | 2022 | user1

Example 4-39: Report in investor format:

amgr report group -n h1 -h

Command output:

--

investor | serviceunit | balance

--

root | cpu_hrs | 50000.0

rsv | cpu_hrs | 50000.0

Example 4-40: Report for primary group accounts:

amgr report user -n h1 -h

Command output:

--

group | period | serviceunit | balance

--

h1 | 2022 | cpu_hrs | 1500.0

h2 | 2022 | cpu_hrs | 1500.0

Example 4-41: Group report in investor format:
BG-114 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
This report shows where managers have deposited the group's service units.

amgr report group -n h1 -A

Command output:

--

account | period | serviceunit | balance

--

root | 2022 | cpu_hrs | 498976.0

rsv | 2022 | cpu_hrs | 498975.0

4.2.5.5 Getting Job and Transaction Reports

4.2.5.5.i Synopsis

amgr report transaction [-i <job ID or transaction ID>] [-l] [-N <count>] [-o <output-file>] [-r]

4.2.5.5.ii Description

Produces a report for a job or transaction.

The default report for a job ID is the net cost for the job.

The default report for a transaction ID is a summary of that transaction.

By default, this prints the report to the screen in human-readable tables. You can print to a file, and you can print the
report in raw (CSV) format.

4.2.5.5.iii Options

-i, --transaction-id <transaction ID>
String. ID of Job or transaction on which to get report.

-l, --list-info
Lists all transactions that have happened for the specified job or transaction ID.

Use the -l option to get the report in long format, containing the transaction_id, transaction_date,
transaction_time, entity, transaction_type, transaction_user, type amount and reconciled status in columns.

-N, --non-reconcile <count>
For use without job or transaction ID. Show all non-reconciled jobs that have had count or more attempts to
reconcile.

For example, amgr report transaction -N 2 displays all non-reconciled jobs with count >=2.

Budgets attempts to reconcile a job three times; if this doesn't work, Budgets marks the job as non-reconciled.

-o, --out-file <output filename>
Prints the report in a human-readable form to the specified output file.

Without this option, Budgets prints the report to the screen.

-r, --raw-output
Print report in raw (CSV) form with no padding. This form is easier to parse but harder for a human to read.

4.2.5.5.iv Output Format

Output for the report lists columns for transaction_id, project, user_name, and reconciled_service_units.

If a job is not reconciled, it appears only when you use the -l option for a long format report.

Use the -l switch to get the report for the job or transaction in long format, which lists transaction_id, transaction_date,
transaction_time, project, transaction_type, credit or debit, service units, and amounts.
PBS Professional 2022.1 Budgets Guide BG-115

Chapter 4 Budgets Commands
4.2.5.5.v Examples

Example 4-42: Print job report:

amgr report transaction -i 2044.cluster1

Command output:

--

transaction | account | user | reconciled_dollar1 | reconciled_dollar2

--

2044.cluster1 | p1 | pbsuser | 60.0 | 21120.0

Example 4-43: Print long format report for job, showing individual operations:

amgr report transaction -i 2044.cluster1 -l

Command output:

transaction_id | transaction_date | transaction_time | account

2044.cluster1 | 2018-12-06 | 17:17:46.655998 | p1

2044.cluster1 | 2018-12-06 | 17:16:24.058123 | p1

2044.cluster1 | 2018-12-06 | 17:16:24.058123 | p1

--

| transaction_type | type | service_unit

--

| acquired | debit | dollar2

| acquired | debit | dollar2

| acquired | debit | dollar1

| amount | period | comment

| 19920.0 | DEC-2018 | overrun:

| 1200.0 | DEC-2018 |

| 60.0 | DEC-2018 |

4.2.6 Applying Limits to Dynamic Service Units

amgr limit {user | project}

Apply limits on dynamic service units for projects or users.

4.2.6.1 Synopsis

amgr limit user -n <username> -p <period name> -s <service unit name> <limit value>

amgr limit project -n <project name> -p <period name> -s <service unit name> <limit value>
BG-116 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.2.6.2 Description

You establish a quota for an external resource by applying a limit to the dynamic service unit representing that resource.
Usage of the external resource is reported by an external application. Jobs that use this resource can start only while the
job owner has not reached the quota for this period.

Standard service units don't need a limit.

A limit on a dynamic service unit applies to a particular period and for a particular project or user account.

You can apply limits to any period.

All active dynamic service units must have limits set for the current period for jobs to run.

4.2.6.3 Effect of Limits on the Period Hierarchy

• If a parent period has a limit set for a particular dynamic service unit, its children inherit that limit unless the limit is
explicitly set by the group manager.

• If you apply a limit to a period, that value overrides any inherited value.

• The default limit is zero unless the period in question inherits a parent's value.

4.2.6.3.i Rules for LImits on Dynamic Service Units

If a dynamic service unit has no limit set on it, the limit is zero. If there are active dynamic service units, all jobs are
checked against those quotas, and a zero quota will stop any job from running. Make sure that you don't unintentionally
stop non-target users or projects from running jobs:

• Make sure you set the quota for all users and projects

• When you specify the period, make sure you either:

• Set the desired quota at the top level of the period hierarchy

• Set a very high quota at the top level of the period hierarchy, and a more restrictive quota for the period you
need to control

4.2.6.4 Required Privilege

You must be a manager associated with the group funding the user or project to apply limits to a dynamic service unit for
that user or project.

4.2.6.5 Options

-p, --period <period name>
String. Period to which the limit is to be applied.

-s, --serviceunit <service unit name>
String. Service unit to limit.

<limit value>
Float. Budgets reads this as being in the same units as the dynamic service unit.

Default: If a limit is unset, it is zero.
PBS Professional 2022.1 Budgets Guide BG-117

Chapter 4 Budgets Commands
4.2.6.6 Examples

Example 4-44: Set a limit for the project MyProject, for the period named MyQuarter, on the service unit luster, to be
100:

amgr limit project -n MyProject -p MyQuarter -s luster 100

Example 4-45: Set a quota on storage of 12.0 for user user1 for the period of 2022:

amgr limit user -n user1 -s storage 12.0 -p 2022

Example 4-46: Set a quota of 25 for storage for the project project1 for the period of 2022:

amgr limit project -n project1 -s storage 25.0 -p 2022

4.2.7 Syncing Formula File to PBS Complex

4.2.7.1 Synopsis

amgr sync formula -c <cluster>

4.2.7.2 Description

Pulls formula file from the cluster data structure representing the specified PBS complex, pushes it to the specified com-
plex, and imports it into the am_hook and am_hook_periodic hooks at the specified complex.

4.2.7.3 Required Privilege

You must be admin to run this command.

4.2.7.4 Options

-c, --cluster <target PBS complex>
String. Name of PBS complex where formula file is to be updated.
BG-118 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.3 Transaction and Account Checking Commands

The Budgets service units commands and their respective subcommands are listed here:

4.3.1 Depositing Service Units

amgr deposit {user | project | group}

4.3.1.1 Deposit Service Units to User

4.3.1.1.i Synopsis

amgr deposit user -n <username> -s <service unit name> <service unit amount> -p <period> -h <group> [-C
<comment>]

4.3.1.1.ii Description

Deposits service units to a user account.

Table 4-3: Budgets Service Units Commands

Function Command
Element

Subcommands
Required Privilege Link

Depositing
service units

amgr deposit user, project,
group

investor for deposit to
group

Group manager for deposit
to user or project account

Depositing Service
Units

Checking
balance of
service units

amgr check-
balance

user, project,
group

user can check own balance Checking Service
Unit Balance

Withdrawing
service units

amgr withdraw user, project,
group

investor to withdraw from
group

Group manager to with-
draw from user or project
account

Withdrawing Ser-
vice Units

Transferring
service units

amgr transfer user, project,
group

admin Transferring Ser-
vice Units

Prechecking
service unit
balance

amgr precheck user, project user can precheck own bal-
ance

admin or teller to check
other balances

Prechecking Service
Unit Balance

Acquiring
service units

amgr acquire user, project admin or teller Acquiring Service
Units

Reconciling
service units

amgr recon-
cile

user, project admin or teller Reconciling Ser-
vice Units

Refunding
service units

amgr refund transaction admin Refunding Service
Units
PBS Professional 2022.1 Budgets Guide BG-119

Chapter 4 Budgets Commands
4.3.1.1.iii Required Privilege

You must be manager to run this command.

4.3.1.1.iv Options

-n, --name <username>
String. User account to receive service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Specifies the service unit to be deposited and the quantity to deposit.

-p, --period <period>
String. Period during which service units are available.

-h, --group <group name>
String. Name of the group from which service units are to be allocated.

-C, --comment <comment>
String. Comment or reason for the deposit. Optional.

Default: no comment

4.3.1.2 Depositing Service Units to Project

4.3.1.2.i Synopsis

amgr deposit project -n <project name> -s <service unit name> <service unit amount> -p <period> -h <group> [-C
<comment>]

4.3.1.2.ii Description

Deposits service units to a project.

4.3.1.2.iii Required Privilege

You must be manager to run this command.

4.3.1.2.iv Options

-n, --name <project name>
String. Name of project to receive service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Specifies the service unit to be deposited and the quantity to deposit.

-p, --period <period>
String. Period during which service units are available.

-h, --group <group name>
String. Name of the group from which service units are to be allocated.

-C, --comment <comment>
String. Comment or reason for the deposit. Optional.

Default: no comment
BG-120 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.3.1.3 Depositing Service Units to Group

4.3.1.3.i Synopsis

amgr deposit group -n <group name> -s <service unit name> <service unit amount> [-C <comment>]

4.3.1.3.ii Description

Deposits investor service units to a group. This command is run by the investor; the funds invested come from the inves-
tor running the command.

4.3.1.3.iii Required Privilege

This command must be run by an investor.

4.3.1.3.iv Options

-n, --name <group name>
String. Name of group to receive service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Specifies the service unit to be deposited and the quantity to deposit.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-C, --comment <comment>
String. Comment or reason for the deposit. Optional.

Default: no comment

4.3.2 Checking Service Unit Balance

amgr checkbalance {user | project | group}

4.3.2.1 Required Privilege

A user can check their own service unit balance.

A member of a project can check the service unit balance for that project.

An admin, manager, or investor can check the service unit balance for all groups and projects.

4.3.2.2 Output Format

• For amgr checkbalance {user | project}, output is a list of standard service units in name-value pairs
and dynamic service units in name-limit-value triplets, in the order in which the service units were created:
{"<standard unit 1>": <amount available>,

 "<standard unit 2>": <amount available>,

 "<dynamic unit 1>": {"used": <amount used>, "limit": <limit value>},

 "<dynamic unit 2>": {"used": <amount used>, "limit": <limit value>} }

• For amgr checkbalance group, output is a list of standard service units in name-value pairs, in the order in
which the service units were created:
{"<standard unit 1>": <amount available>,

 "<standard unit 2>": <amount available>,}
PBS Professional 2022.1 Budgets Guide BG-121

Chapter 4 Budgets Commands
4.3.2.3 Command Example

Example 4-47: For output from amgr checkbalance {user | project}, dynamic service unit luster, and
standard service units cpu_hrs and gpu_hrs:

{"luster": {"used": 0.0, "limit": 300}, "cpu_hrs":0.0, "gpu_hrs":0.0}

Example 4-48: For output from amgr checkbalance group, standard service units cpu_hrs and gpu_hrs:

{"cpu_hrs":0.0, "gpu_hrs":0.0}

4.3.2.4 Checking Service Unit Balance for User

4.3.2.4.i Synopsis

amgr checkbalance user -n <username> [-p <period>]

4.3.2.4.ii Description

Check available service unit balance for a user account.

4.3.2.4.iii Options

-n, --name <username>
String. User account to check for available service units.

-p, --period <period>
String. Period during which service units are required.

Default: period is the current period that is lowest in the hierarchy, meaning shortest time span.

4.3.2.5 Checking Service Unit Balance for Project

4.3.2.5.i Synopsis

amgr checkbalance project -n <project name> -p <period>

4.3.2.5.ii Description

Checks available service unit balance for a project.

4.3.2.5.iii Options

-n, --name <project name>
String. Name of project to check for available service units.

-p, --period <period>
String. Period during which service units are required.

4.3.2.6 Checking Service Unit Balance for Group

4.3.2.6.i Synopsis

amgr checkbalance group -n <group name>

4.3.2.6.ii Description

Checks available service unit balance for a group.
BG-122 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.3.2.6.iii Options

-n, --name <group name>
String. Name of group to check for available service units.

4.3.3 Withdrawing Service Units

amgr withdraw {user | project | group}

4.3.3.1 Withdrawing Service Units from User

4.3.3.1.i Synopsis

amgr withdraw user -n <username> -s <service unit type> <service unit amount> <-p <period> -h <group> [-C
<comment>]

4.3.3.1.ii Description

Withdraw service units from a user account. You can withdraw only up to the amount you have deposited.

4.3.3.1.iii Required Privilege

You must be manager to run this command.

4.3.3.1.iv Options

-n, --name <username>
String. User account from which to withdraw service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Name of service unit to be withdrawn and the quantity to withdraw.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-p, --period <period>
String. Period from which to withdraw service units.

-h, --group <group name>
String. Group to receive withdrawn service units.

-C, --comment <comment>
String. Comment or reason for the withdrawal. Optional.

Default: no comment

4.3.3.2 Withdrawing Service Units from Project

4.3.3.2.i Synopsis

amgr withdraw project -n <project name> -s <service unit type> <service unit amount> <-p <period> -h <group> [-C
<comment>]

4.3.3.2.ii Description

Withdraws service units from a project.

A manager can withdraw only up to the amount they deposited.
PBS Professional 2022.1 Budgets Guide BG-123

Chapter 4 Budgets Commands
4.3.3.2.iii Required Privilege

You must be manager to run this command.

4.3.3.2.iv Options

-n, --name <project name>
String. Name of project from which to withdraw service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Name of service unit to be withdrawn and the quantity to withdraw.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-p, --period <period>
String. Period from which to withdraw service units.

-h, --group <group name>
String. Group to receive withdrawn service units.

-C, --comment <comment>
String. Comment or reason for the withdrawal. Optional.

Default: no comment

4.3.3.3 Withdrawing Service Units from Group

4.3.3.3.i Synopsis

amgr withdraw group -n <group name> -s <service unit type> <service unit amount> [-C <comment>]

4.3.3.3.ii Description

Withdraw service units from a group. The investor can remove only the amount of service units that the investor depos-
ited.

4.3.3.3.iii Required Privilege

You must be investor to run this command.

4.3.3.3.iv Options

-n, --name <group name>
String. Group from which to withdraw service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Name of service unit to be withdrawn and the quantity to withdraw.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-C, --comment <comment>
String. Comment or reason for the withdrawal. Optional.

Default: no comment

4.3.4 Prechecking Service Unit Balance

amgr precheck {user | project | jobs}
BG-124 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.3.4.1 Prechecking a User or Project

4.3.4.1.i Synopsis

amgr precheck user -n <username> -c <cluster> [-D <transaction date>] -d <duration> -s <service unit name>
<service unit amount> -u <username> -f <formula file>

amgr precheck project -n <project name> -c <cluster> [-D <transaction date>] -d <duration> -s <service unit name>
<service unit amount> -u <username> -f <formula file>

4.3.4.1.ii Description

This command is intended to be used internally for prechecking jobs when they are submitted, and you do not need to run
it in the normal course of events. It is used to check whether the resources needed to run a particular job are available.
Checks whether the project or user has sufficient funds and the specified complex is available to run a job at a specified
date for a specific amount of service units.

If AM_BALANCE_PRECHECK is True and the check fails, the job is not queued. If AM_BALANCE_PRECHECK
is False and the check fails, the job is queued.

4.3.4.1.iii Required Privilege

A user can precheck their own account.

You must be admin or or teller to run this command for any other account.

4.3.4.1.iv Options

-n, --name <project name>
String. Name of the project or user to check for available service units.

-c, --cluster <PBS server>
String. PBS complex to check for availability.

-D, --transaction-date <transaction date>
Date. Transaction date and time.

Format: YYYY-MM-DD HH:MM:SS

-d, --duration <duration>
Integer seconds.

Job duration, in seconds.

-s, --serviceunits <service unit name> <service unit value>
String and float. Name of service unit and required amount.

-u, --user <username>
String. User account for whom to precheck service units.

-f, --formula <formula filename>
String. Formula file for cluster.

4.3.4.1.v Output

If the job owner has sufficient credit to run the specified job, there is no output. If the job owner does not have enough
credit to run the job, this command prints a message to the job submitter's screen indicating the credit shortfall.
PBS Professional 2022.1 Budgets Guide BG-125

Chapter 4 Budgets Commands
4.3.4.2 Prechecking Jobs

4.3.4.2.i Synopsis

amgr precheck jobs [-v <job string> | -J <job file>] -f <formula file>

4.3.4.2.ii Description

Allows the job submitter to make sure that their credit is sufficient to run jobs.

To use this command on a job, you need to know how much of each service unit is required for that job, so you may need
to first get a quote for the job. For job quotes, see "Getting Job Cost Estimate from Budgets", on page 197 of the PBS
Professional User’s Guide.

The command prints a JSON string of key-value pairs. Each key is a job ID and the corresponding value is True or
False. True indicates that the user has sufficient credit to run that job.

You give the command a list of jobs, and the command considers each job in turn. If a job could run, the credit required
for that job is not included in the test for the next job. For example, you have 10 service units and you are testing 4 jobs
needing 20, 4, 4, and 4 units respectively. In this case, the first job cannot run, the second job is tested against 10 service
units and can run, the third job is tested against 6 service units and can run, and the fourth job is tested against 2 service
units and cannot run.

The input job ID does not need to be the identifier of an existing job; it is used only to identify whether that job could run.

4.3.4.2.iii Required Privilege

A user can precheck their own jobs.

You must be admin or or teller to run this command for any other account.

4.3.4.2.iv Options

-v, --value <job string>
String. JSON string listing job(s) to be prechecked.

Format:

'{
"<job ID>":{

"account":<account name>,
"cluster":<cluster name>,
"user":<username>,
"transaction_date":<date>,
"duration":<duration>,
"serviceunits":{

"<service unit1 name>":"<value>","<service unit2 name>":"<value>",...
}

}, ...
}'

Where:

<job ID>
String used to identify job. Can be arbitrary or can be existing job.

account
String. Project or user account name.

cluster
String. Cluster name.
BG-126 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
user
String. Username of job submitter.

transaction_date
Datetime. Transaction date. Format:

'YYYY-MM-DD HH-MM-SS'

duration
Duration. Time required for job to run.

Format: integer seconds

serviceunits
String. List of key-value pairs. Each key is the name of a service unit, and each value is the amount of
that service unit required by the job.

Cannot be used with -J option.

-J, --json-file <JSON file>
Path to JSON input file listing job(s) to be prechecked. Path can be absolute or relative to directory where com-
mand is run.

Format: same as JSON job string argument to -v option.

Cannot be used with -v option.

-f, --formula <formula filename>
String. Path to formula file for cluster. Required. Path can be absolute or relative to directory where command
is run.

4.3.4.2.v Output

The command prints a list of key-value pairs in JSON format. Each key is a job ID, and each value is True or False,
where True indicates that the user has sufficient credit to run that job.

4.3.4.2.vi Examples

Example 4-49: Check a job using a JSON input string:

amgr precheck jobs -v '{"0.myserver":{"account":"project1","cluster":"myser-
ver","user":"myuser","transaction_date":"2021-11-10 14:27:30","duration":100,"service-
units":{"cpu_hrs":200.0,"dollar":5.0}}' -f /opt/am/hooks/pbs/my_formula.json

Response:

{"o.myserver":True}

Example 4-50: Check two jobs using a JSON input file:

amgr precheck jobs -J /tmp/precheck_data.json -f /opt/am/hooks/pbs/my_formula.json

Response:

{"o.myserver":True,"1.myserver":False}
PBS Professional 2022.1 Budgets Guide BG-127

Chapter 4 Budgets Commands
Where:

cat /tmp/precheck_data.json

{

"0.myserver":{

"account":"project1",

"cluster":"myserver",

"user":"myuser",

"transaction_date":"2021-11-10 14:27:30",

"duration":100,

"serviceunits":{

"cpu_hrs":200.0,

"dollar":5.0

}

}

"1.myserver":{

"account":"myuser",

"cluster":"myserver",

"user":"myuser",

"transaction_date":"2021-11-10 14:27:40",

"duration":50,

"serviceunits":{

"cpu_hrs":100.0,

"dollar":2.0

}

}

}

4.3.5 Acquiring Service Units

amgr acquire {user | project}

4.3.5.1 Description

This command is intended to be used for debugging. You do not need to run it in the normal course of events. The Bud-
gets hook performs this operation for normal job processing.

Fetches the service units that are required to run a job from the user or project.

The teller uses this command to acquire service units for a user by taking them from a project or user account.

Run the checkbalance command before running a job to make sure there are enough service units available.

4.3.5.2 Required Privilege

You must be an admin or teller to run this command.
BG-128 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.3.5.3 Acquiring Service Units for User

4.3.5.3.i Synopsis

amgr acquire user -n <username> -c <cluster> -s <service unit name> <service unit amount> [-D <transaction
date>] -i <job ID> -d <duration> -u <username> [-C <comment>] -R <run count> -f <formula file>

4.3.5.3.ii Options

-n, --name <username>
String. User account from which to fetch service units.

-c, --cluster <PBS server>
String. Name of cluster.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Name of service unit and the quantity required.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-D, --transaction-date <date>
Date. Transaction date and time.

Format: YYYY-MM-DD HH:MM:SS

-i, --transaction-id <job ID>
Full PBS job ID.

-d, --duration <duration>
Duration. Job duration, in seconds.

-u, --user <username>
String. User account for whom to acquire service units.

-C, --comment <comment>
String. Comment or reason for the acquisition. Optional.

Default: no comment

-R, --run-count <run count>
Integer. Run count for the job.

-f, --formula <formula filename>
String. Formula file for cluster.

4.3.5.4 Acquiring Service Units for Project

4.3.5.4.i Synopsis

amgr acquire project -n <project name> -c <cluster> -s <service unit name> <service unit amount> -D <transaction
date> -i <job ID > -d <duration> -u <username> [-C <comment>] -R <run count> -f <formula file>

4.3.5.4.ii Options

-n, --name <project name>
String. Project from which to fetch service units.

-c, --cluster <PBS server>
String. Name of cluster.
PBS Professional 2022.1 Budgets Guide BG-129

Chapter 4 Budgets Commands
-s, --serviceunits <service unit name> <service unit amount>
String and float. Name of service unit and the quantity required.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-D, --transaction-date <date>
Date. Transaction date and time.

Format: YYYY-MM-DD HH:MM:SS

-i, --transaction-id <job ID>
Full PBS job ID.

-d, --duration <duration>
Duration. Job duration, in seconds.

-u, --user <username>
String. User account for whom to acquire service units.

-C, --comment <comment>
String. Comment or reason for the acquisition. Optional.

Default: no comment

-R, --run-count <run count>
Integer. Run count for the job.

-f, --formula <formula filename>
String. Formula file for cluster.

4.3.6 Reconciling Service Units

amgr reconcile {user | project}

Reconciles service units charged and consumed for jobs. Removes consumed service units from escrow, and returns
unused service units to the account, or if the job consumed more than requested it debits more from the job owner's
account.

This command is mostly intended to be used for cleanup and debugging. You do not need to run it in the normal course
of events. The Budgets hook performs all reconcile operations during normal job processing.

4.3.6.1 Required Privilege

You must be root and admin or teller to run this command. You must run this command at the PBS server host.

4.3.6.2 Reconciling Service Units for User

4.3.6.2.i Synopsis

amgr reconcile user -n <username> -c <cluster> -d <duration> -f <formula file> -i <job ID> -s <service unit name>
<service unit amount> -u <username> [-D <transaction date>] [-C <comment>]

4.3.6.2.ii Description

Reconciles service units for job charged to a user account.

4.3.6.2.iii Options

-n, --name <username>
String. User for whom to reconcile service units.
BG-130 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-c, --cluster <PBS server>
String. Name of cluster.

-d, --duration <duration>
Integer. Job duration, in seconds.

-f, --formula <formula filename>
String. Formula file for cluster.

-i, --transaction-id <job ID>
Job ID.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Name of service unit and the quantity actually consumed.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-u, --user <username>
String. Job submitter. User account for which service units are to be reconciled. Same as argument to -n
option.

-D, --transaction-date <date>
Date. Transaction date and time.

Format: YYYY-MM-DD HH:MM:SS

-C, --comment <comment>
Comment or reason for the reconciliation. Optional.

Default: no comment

4.3.6.3 Reconciling Service Units for Project

4.3.6.3.i Synopsis

amgr reconcile project -n <project name> -c <cluster> -d <duration> -f <formula file> -i <job ID> -s <service unit
name> <service unit amount> -u <username> [-D <transaction date>] [-C <comment>]

4.3.6.3.ii Description

Reconciles service units for job charged to a project account.

4.3.6.3.iii Options

-n, --name <project name>
String. Project for which to reconcile service units.

-c, --cluster <PBS server>
String. Name of cluster.

-d, --duration <duration>
Integer. Job duration, in seconds.

-f, --formula <formula filename>
String. Formula file for cluster.

-i, --transaction-id <job ID>
Job ID.
PBS Professional 2022.1 Budgets Guide BG-131

Chapter 4 Budgets Commands
-s, --serviceunits <service unit name> <service unit amount>
String and float. Name of service unit and the quantity actually consumed.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-u, --user <username>
String. Job submitter. User account for which service units are to be reconciled.

-D, --transaction-date <date>
Date. Transaction date and time.

Format: YYYY-MM-DD HH:MM:SS

-C, --comment <comment>
Comment or reason for the reconciliation. Optional.

Default: no comment

4.3.7 Refunding Service Units

amgr refund transaction

4.3.7.1 Description

Refunds some or all of the funds charged for a job to the user or project that funded the job.

Budgets knows who paid for the job, so you do not have to specify where the refund goes.

You can choose to provide a refund for situations such as when a job fails or runs multiple times, for reasons which can-
not be attributed to the job owner. You can provide refunds to active and inactive projects and users. You can provide
multiple refunds for the same job, but the total refund cannot exceed the amount consumed by the job.

The refund amount is calculated by multiplying the net job cost by the specified refund percentage by the total consumed
amount. Total consumed amount is the sum of all transaction amounts of all transactions for a job.

Each group is refunded according to the percentage investment by that group. You can override this using the -h option.

4.3.7.2 Required Privilege

You must be admin to provide a refund.

4.3.7.3 Synopsis

amgr refund transaction -i <job ID> -r <refund percentage> -p <period> [-h <group>] [-C <comment>]

4.3.7.4 Options

-i, --transaction-id <job ID>
Job ID. Job for which to give a refund.

-r, --refund-percentage <refund percentage>
Integer between 1 and 100. Percentage of current net charge to refund.

-p, --period <period>
String. Period to refund.

Default: current period
BG-132 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
-h, --group <group name>
String. Name of group which receives the refund. Overrides normal policy of refunding according to the per-
centage investment by each group. For use when you get an error message saying that Budgets cannot associate
the refund to a group.

-C, --comment <comment>
String. Comment or reason for refund. Optional.

Default: no comment

4.3.8 Transferring Service Units

amgr transfer {user | project | group }

4.3.8.1 Description

Transfers service units from specified project, user, or group, to specified project, user, or group. You can transfer from
any of these to any of these.

To transfer between investors, use amgr transfer group.

When an investor is unlinked from a group or a group is unlinked from a project, some service units may remain
unclaimed and become unusable. The administrator can take ownership of these unclaimed amounts and transfer it back
into the budget pool to make it usable again.

A transfer has its own transaction ID.

4.3.8.2 Required Privilege

You must be admin to run this command.

4.3.8.3 Transferring Service Units for User

4.3.8.3.i Synopsis

amgr transfer user -n <divesting username> -s <service unit name> <service unit amount> -p <period> -F <divesting
group> -T <receiving group> [-U <receiving user>] [-C <comment>]

4.3.8.3.ii Description

Transfer service units from one user to another user, within a group or between groups.

4.3.8.3.iii Options

-n, --name <divesting username>
String. User account from which to take service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Service unit name and amount to transfer.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-p, --period <period>
String. Period from which to take service units.

-F, --from-group <divesting group>
String. Group from which to take service units.
PBS Professional 2022.1 Budgets Guide BG-133

Chapter 4 Budgets Commands
-T, --to-group <receiving group>
String. Group to receive service units.

-U, --dest-user <receiving user>
String. User account to receive service units. Do not use when transferring within same user account.

-C, --comment <comment>
String. Comment or reason for the transfer. Optional.

Default: no comment

4.3.8.4 Transferring Service Units for Project

4.3.8.4.i Synopsis

amgr transfer project -n <divesting project> -s <service unit name> <service unit amount> -p <period> -F <divesting
group> -T <receiving group> [-P <receiving project>] [-C <comment>]

4.3.8.4.ii Description

Transfers service units from one project to another, within a group or between groups.

4.3.8.4.iii Options

-n, --name <divesting project>
String. Project from which to take service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Service unit name and amount to transfer.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-p, --period <period>
String. Period from which to take service units.

-F, --from-group <divesting group>
String. Group from which to take service units.

-T, --to-group <receiving group>
String. Group to receive service units.

-P, --dest-project <receiving project>
String. Project to receive service units. Do not use when transferring within the same project.

-C, --comment <comment>
String. Comment or reason for the transfer. Optional.

Default: no comment

4.3.8.5 Transferring Service Units for Investors and Group

4.3.8.5.i Synopsis

amgr transfer group -n <divesting group> -s <service unit name> <service unit amount> -F <divesting investor> -T
<receiving investor> -G <receiving group> [-C <comment>]

4.3.8.5.ii Description

Transfers service units from one investor to another investor, within a group or between groups.
BG-134 PBS Professional 2022.1 Budgets Guide

Budgets Commands Chapter 4
4.3.8.5.iii Options

-n, --name <divesting group>
String. Group from which to take service units.

-s, --serviceunits <service unit name> <service unit amount>
String and float. Service unit and amount to transfer.

Examples: -s cpu_hrs 100 or -s cpu_hrs 100.0

-F, --from-investor <divesting investor>
String. Investor from which to take service units.

-T, --to-investor <receiving investor>
String. Investor to receive service units.

-G, --dest-group <receiving group>
String. Group to receive service units. Do not use when transferring within group.

-C, --comment <comment>
String. Comment or reason for the transfer. Optional.

Default: no comment
PBS Professional 2022.1 Budgets Guide BG-135

Chapter 4 Budgets Commands
BG-136 PBS Professional 2022.1 Budgets Guide

5

Basic Install and Configure

5.1 Basic Install and Configure Instructions

5.1.1 Assumptions

• You install Budgets and AMS on the PBS server host

• You install Budgets in the default locations

• You use the default billing formula file
PBS Professional 2022.1 Budgets Guide BG-137

Chapter 5 Basic Install and Configure
5.1.2 Installation

1. Log in as root.

2. Install utilities and docker:

• For CentOS or RedHat:

Log in as root to the service node (the machine where the AMS module is to be installed).

yum install -y yum-utils

yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo

yum install docker-ce docker-ce-cli containerd.io

systemctl enable docker

systemctl start docker

yum install python3 python3-pip

yum install openssl

• For SLES12 or 15:

Log in to the machine where Budgets is to be installed.

For SLES 12:

sudo SUSEConnect -p sle-module-containers/12/x86_64 -r ''

For SLES 15:

sudo SUSEConnect -p sle-module-containers/15.1/x86_64 -r ''

sudo zypper install docker

sudo systemctl enable docker.service

sudo systemctl start docker.service

Configure the firewall to allow forwarding of Docker traffic to the external network:

Set FW_ROUTE="yes" in /etc/sysconfig/SuSEfirewall2

zypper install python3-pip

• For Ubuntu:

Log in to the machine where Budgets is to be installed.

sudo apt-get update

sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-proper-
ties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

The key should match the second line in the output; validate the last 8 characters. Example of second line:

9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

sudo apt-get install python3-pip

This can install a number of required dependencies, and may take a few minutes.

sudo apt-get install openssl

sudo systemctl enable docker.service

sudo systemctl start docker.service
BG-138 PBS Professional 2022.1 Budgets Guide

Basic Install and Configure Chapter 5
3. On the Budgets server host, download the file containing both the Budgets server and the AMS module. The file-

name has the following format:

PBSPro-budget-server_<release number>-<OS>_x86_64.tar.gz

For example:

PBSPro-budget-server_2022.1.0-CentOS7_x86_64.tar.g

4. Untar the file:
PBS Professional 2022.1 Budgets Guide BG-139

Chapter 5 Basic Install and Configure
tar xvfz PBSPro-budget-server_<release number>-<OS>_x86_64.tar.gz
For example:

tar xvfz PBSPro-budget-server_2022.1.0-CentOS7_x86_64.tar.gz

This creates the zip files for the Budgets server and the AMS module:

budget-manager-server-<OS>-<version>.tar.gz

ams-installer.zip

5. Copy ams_installer.zip over to the service node

6. On the service node, install AMS:

unzip ams-installer.zip

cd ams-installation

python3 -m pip install --upgrade --ignore-installed pbsworks-packager/

/usr/local/bin/pkgr (Please stay in the AMS installer directory for this step)

7. Answer the questions in the dialogue:

• Choose option: 0

• Hit Enter until license agreement complete and then answer Yes to accept.

• Select Enter to continue

• Choose Option 1 (Provide server hostname/IP address)
<hostname>

<IP address>

• Choose Option: 0 (Skips providing any more machine details)

• Install Location: <hostname>

• Authentication Server: <hostname>

• Authentication Port: Accept Default (If alternative to default 22 for sshd is used then provide alternative port
ID)

• Provide admin username: pbsadmin

• Install Path: Accept default

8. On the service node, edit /etc/ssh/sshd_config and add the following lines:

Match Address 10.5.0.0/24

PasswordAuthentication yes

9. On the service node, make sshd reread its configuration file, and restart it:

systemctl daemon-reload

systemctl restart sshd

10. On the Budgets server host, create certificates:

cd /home/pbsadmin/

mkdir budget_certificates

export AM_DBUSER=pbsdata

openssl req -new -x509 -days 3650 -nodes -out budget_certificates/ca.crt -keyout
budget_certificates/ca.key -subj "/CN=root-ca"

openssl req -new -nodes -out server.csr -keyout budget_certificates/server.key -subj "/CN=local-
host"

openssl x509 -req -in server.csr -days 3650 -CA budget_certificates/ca.crt -CAkey
budget_certificates/ca.key -CAcreateserial -out budget_certificates/server.crt
BG-140 PBS Professional 2022.1 Budgets Guide

Basic Install and Configure Chapter 5
openssl req -new -nodes -out client.csr -keyout budget_certificates/client.key -subj
"/CN=${AM_DBUSER}"

openssl x509 -req -in client.csr -days 3650 -CA budget_certificates/ca.crt -CAkey
budget_certificates/ca.key -CAcreateserial -out budget_certificates/client.crt

rm -f server.csr client.csr

chmod og-rwx budget_certificates/*

11. Change to new directory called "am" created by untarring package earlier:

cd am/

12. Run the Budgets installer, and choose the username you want for the Budgets administrator. In our example we use
pbsadmin for the administrator username:

./install -t server -u pbsadmin -c /home/pbsadmin/budget_certificates
PBS Professional 2022.1 Budgets Guide BG-141

Chapter 5 Basic Install and Configure
5.1.3 Configuration

1. On the Budgets server host and any client hosts, edit /etc/am.conf, and set the parameters appropriately. See sec-
tion 2.6.7.1, “Budgets Configuration Parameters”, on page 44

2. Set PATH for all users:

export PATH=/opt/am/python/bin:$PATH

3. On the Budgets/PBS server host, edit /etc/sudoers, and make it look like this:

Cmnd_Alias AM_SERVER_CMD = $AM _EXEC/python/bin/python3 $AM_EXEC/hooks/pbs/pbs_set_formula.py*

Defaults!AM_SERVER_CMD !requiretty

Cmnd_Alias AM_CLIENT_CMD = $AM_EXEC/python/bin/amgr sshlogin

Cmnd_Alias BUDGETS_IMPORTS = $PBS_EXEC/bin/qmgr -c i h am_hook application/x-config default
.am/tmp*, $PBS_EXEC/bin/qmgr -c i h am_hook_periodic application/x-config default .am/tmp*,
$PBS_EXEC/bin/qmgr -c export hook am_hook application/x-config default

pbsadmin ALL=(root) NOPASSWD: BUDGETS_IMPORTS

Defaults!AM_CLIENT_CMD !requiretty

Defaults!BUDGETS_IMPORTS !requiretty

4. Create resources:

qmgr -c "c r am_cloud_enabled type=boolean"

qmgr -c "c r am_job_amount type=string"

qmgr -c "c r am_job_cache type=string,flag=m"

qmgr -c "c r am_job_quote type=boolean"

qmgr -c "c r am_finished_job type=string"

qmgr -c "c r am_node_cache type=string"

qmgr -c "set server resources_available.am_finished_job=NA"

5. Define your billing periods.

6. Set up passwordless ssh for both pbsadmin and amteller. Do these steps once for each one:

a. Log in to the PBS server as the username who needs passwordless ssh

b. Check for an existing SSH key pair:

ls -al ~/.ssh/id_*.pub

If you find existing keys, you can use those or back up the old keys and generate a new one.

To generate a new SSH key pair:

ssh-keygen

c. Copy the contents of id_rsa.pub

d. Log in to the Budgets server as the username who needs passwordless ssh

e. Check for the .ssh directory. If it does not exist, create it:

mkdir -p .ssh

cd .ssh/

f. Create the authorized_keys file in the .ssh directory:

vi authorized_keys

g. Paste the contents of id_rsa.pub that you copied from the PBS server and save the file.

h. Change the permission of authorized_keys to 600:
BG-142 PBS Professional 2022.1 Budgets Guide

Basic Install and Configure Chapter 5
chmod 600 authorized_keys

7. Log into the PBS server host

8. Create and configure the am_hook and am_hook_periodic hooks:

• For prepaid mode:
qmgr -c "c h am_hook"

qmgr -c "s h am_hook event='queuejob,runjob,modifyjob,movejob'"

qmgr -c "s h am_hook order=1000"

qmgr -c "c h am_hook_periodic"

qmgr -c "s h am_hook_periodic event=periodic"

qmgr -c "s h am_hook_periodic freq=120"

qmgr -c "i h am_hook application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook_periodic application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook application/x-config default /opt/am/hooks/pbs/<formula file>.json"

qmgr -c "i h am_hook_periodic application/x-config default /opt/am/hooks/pbs/<formula
file>.json"

qmgr -c "s h am_hook enabled=true"

qmgr -c "s h am_hook_periodic enabled=true"

qmgr -c "s h am_hook alarm=90"

• For postpaid mode:
qmgr -c "c h am_hook"

qmgr -c "s h am_hook event='queuejob,modifyjob,movejob'"

qmgr -c "s h am_hook order=1000"

qmgr -c "c h am_hook_periodic"

qmgr -c "s h am_hook_periodic event=periodic"

qmgr -c "s h am_hook_periodic freq=120"

qmgr -c "i h am_hook application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook_periodic application/x-python default /opt/am/hooks/pbs/am_hook.py"

qmgr -c "i h am_hook application/x-config default /opt/am/hooks/pbs/<formula file>.json"

qmgr -c "i h am_hook_periodic application/x-config default /opt/am/hooks/pbs/<formula
file>.json"

qmgr -c "s h am_hook enabled=true"

qmgr -c "s h am_hook_periodic enabled=true"

qmgr -c "s h am_hook alarm=90"

9. Set configuration parameters:
PBS Professional 2022.1 Budgets Guide BG-143

Chapter 5 Basic Install and Configure
On the Budgets server host, make sure all of the configuration parameters in section 2.6.7.1, “Budgets Configuration
Parameters”, on page 44 are set correctly. Especially make sure that AM_MODE is set to the mode you want,
because to change modes you need to restart Budgets. In addition, make sure that AM_AUTH_ENDPOINT and
AM_LICENSE_ENDPOINT are set correctly.

10. Enable and start Budgets:

• Enable and start Budgets:
systemctl enable pbs_budget

systemctl start pbs_budget

• Check the status of Budgets:
systemctl status pbs_budget

11. Validate Budgets:

a. Log in as pbsadmin

b. Test authentication:

amgr login

c. List users (pbsadmin and amteller):

amgr ls user -l

12. At the Budgets server host, add a cluster to represent the PBS complex with its billing model:

amgr add cluster <PBS server> -f am_hook.json
BG-144 PBS Professional 2022.1 Budgets Guide

6

Using Budgets

6.1 Managing Credit with Budgets

Administrators must log into Budgets to perform any administrative tasks, or to manage credit as an investor or a man-
ager, or to reconcile transactions as the teller.

To log in to Budgets:

amgr login

<local host password>

To log out of Budgets:

amgr logout

6.2 Tutorials

6.2.1 Tutorial on Configuring and Using Budgets in Prepaid

Mode

6.2.1.1 Prerequisites

• A working installation of PBS Professional, with at least two accounts that can submit and run jobs at the complex.
In our example, the cluster is named Cluster1, and the users are User1 and User2. Substitute in your own names for
the cluster and the users when going through the tutorial.

• Install Budgets: follow the instructions in section 2.4, “Prerequisites”, on page 31, choose a configuration from sec-
tion 2.2, “Recommended Configurations”, on page 29, and install Budgets according to section 2.6, “Installation
Steps for Default Location”, on page 37.

• Create test accounts: In addition to an administrator account, you will need investor, manager, and job submitter
accounts. Log in as root:
adduser Investor1

passwd Investor1 <password>

adduser Manager1

passwd Manager1 <password>

adduser User1

passwd User1 <password>

adduser User2

passwd User2 <password>
PBS Professional 2022.1 Budgets Guide BG-145

Chapter 6 Using Budgets
6.2.1.2 Tutorial Steps to Configure Budgets

6.2.1.2.i Create Periods

1. Log in as, or switch user to pbsadmin:
su pbsadmin

2. Log into amgr:

amgr login

3. Create a parent period named "2022" representing the year 2022. See section 1.7.1, “Periods, Allocation Periods,
Billing Periods”, on page 18.

amgr add period -n 2022 -S 2022-01-01 -E 2022-12-31

4. Create a child period named "2022.Q2" that represents the second quarter of the year 2022, and add it to the parent
period:

amgr add period -n 2022.Q2 -S 2022-10-01 -E 2022-12-31 -p 2022

For the purposes of this tutorial, we are somewhere in the second quarter of 2022, so that this is the default period.

6.2.1.2.ii Add PBS Complex to Budgets

5. Add a cluster named Cluster1 to represent your PBS complex:

amgr add cluster -n Cluster1

6. Deactivate Cluster1:

amgr update cluster -n Cluster1 -a False

7. List Cluster1:

amgr ls cluster -a False

8. Activate Cluster1:

amgr update cluster -n Cluster1 -a True

9. List Cluster1 again:

amgr ls cluster

6.2.1.2.iii Create Standard Service Unit

10. Create a standard service unit named "cpu_hrs" to represent CPU hours. See section 1.7.2, “Service Units”, on page
18. The service unit name must be identical to the one that is configured in the formulas section of the
am_hook.json configuration file:

amgr add serviceunit -n cpu_hrs -d "CPU Hours"

6.2.1.2.iv Add Users to Budgets

11. Add a user who will be a group manager, a user who will be an investor, and users User1 and User2 who will submit
jobs. When you add a user, you must assign a role, an accounting policy, and at least one cluster:

amgr add user -n Manager1 -r manager -A begin_period -c Cluster1

amgr add user -n Investor1 -r investor -A begin_period -c Cluster1

amgr add user -n User1 -r user -A begin_period -c Cluster1

amgr add user -n User2 -r user -A begin_period -c Cluster1
BG-146 PBS Professional 2022.1 Budgets Guide

Using Budgets Chapter 6
6.2.1.2.v Create Group

12. Create a group named "test_group" with manager Manager1 and investor Investor1:

amgr add group -n test_group -M Manager1 -I Investor1

6.2.1.2.vi Associate Job Submitters with Group

13. Associate User1 and User2 with the group test_group:

amgr update user -n User1 -h + test_group

amgr update user -n User2 -h + test_group

6.2.1.2.vii Create Project and Give It Cluster and User

14. Create a project named "P1" with accounting policy begin_period, cluster Cluster1, user User1 and group
test_group:

amgr add project -n P1 -A begin_period -c Cluster1 -u User1 -h test_group

6.2.1.2.viii Invest in Group

15. Log in as Investor1:

amgr login

16. Invest 10000 CPU hours in test_group:

amgr deposit group -n test_group -s cpu_hrs 10000

6.2.1.2.ix Deposit Service Units to Project

17. Log in as Manager1:

amgr login

18. Allocate 1200 CPU hours from test_group to project P1 for the period 2022.Q2:

amgr deposit project -n P1 -s cpu_hrs 1200.00 -p 2022.Q2 -h test_group

19. Check the balance of project P1 for the 2022.Q2 period:

amgr checkbalance project -n P1 -p 2022.Q2

20. Withdraw 200 CPU hours from project P1 for the period 2022.Q2:

amgr withdraw project -n P1 -s cpu_hrs 200.00 -p 2022.Q2 -h test_group

6.2.1.2.x Deposit Service Units to Users

21. Allocate 1300 CPU hours from test_group to user User1 for the period 2022.Q2:

amgr deposit user -n User1 -s cpu_hrs 1300.00 -p 2022.Q2 -h test_group

22. Allocate 1400 CPU hours from test_group to user User2 for the period 2022.Q2:

amgr deposit user -n User2 -s cpu_hrs 1400.00 -p 2022.Q2 -h test_group
PBS Professional 2022.1 Budgets Guide BG-147

Chapter 6 Using Budgets
6.2.1.3 Tutorial Steps to Use Budgets

6.2.1.3.i Run User Job

23. Log in as User1.

24. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User1:

qsub -lwalltime=00:02:00 -- /bin/sleep 10

25. Check the credit balance for user User1. It will have decreased:

amgr checkbalance user -n User1 -p 2022.Q2

26. After the job is finished, check the balance again. You should see that the unused amount has been returned:

amgr checkbalance user -n User1 -p 2022.Q2

6.2.1.3.ii Run Project Job

27. Run a sleep job for 36 seconds with a walltime of 1 hour, and charge it to project P1:

qsub -P P1 -lwalltime=01:00:00 -- /bin/sleep 36

28. To see the job running:

qstat -sw

29. Log in as Manager1.

30. Check the credit balance for project P1. It will have decreased:

amgr checkbalance project -n P1 -p 2022.Q2

31. After the job is finished, check the balance again. You should see that the unused amount has been returned:

amgr checkbalance project -n P1 -p 2022.Q2

6.2.1.3.iii Non-project User Tries to Run Project Job

32. Log in as User2.

33. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User2:

qsub -lwalltime=00:02:00 --/bin/sleep 10

34. Check the credit balance for user User2. It will have decreased:

amgr checkbalance user -n User2 -p 2022.Q2

35. After the job is finished, check the balance again. You should see that the unused amount has been returned:

amgr checkbalance user -n User2 -p 2022.Q2

36. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to project P1:

qsub -P P1 -lwalltime=00:02:00 -- /bin/sleep 10

This job cannot run, because User2 is not part of project P1.

Example 6-1: Report for all standard service units and current lowest period:

amgr report project -n p1
BG-148 PBS Professional 2022.1 Budgets Guide

Using Budgets Chapter 6
6.2.1.3.iv Manager Runs Report on Project

37. Log in as Manager1:

amgr login

38. Get report on project P1:

amgr report project -n P1

Command output:

name | period | serviceunit | opening_balance | total_credits

P1 | 2022 | cpu_hrs | 0.0 | 1000.0

--

| total_debits | total_debits_reconciled | total_debits_authorized

--

| 0.01 | 1.99 | 0.0

| net_balance | metadata

| 999.99 | {}

6.2.2 Tutorial on Configuring Budgets in Postpaid Mode

6.2.2.1 Prerequisites

• A working installation of PBS Professional, with at least two accounts that can submit and run jobs at the complex.
In our example, the cluster is named Cluster1, and the users are User1 and User2. Substitute in your own names for
the cluster and the users when going through the tutorial.

• Install Budgets: follow the instructions in section 2.4, “Prerequisites”, on page 31, choose a configuration from sec-
tion 2.2, “Recommended Configurations”, on page 29, and install Budgets according to section 2.6, “Installation
Steps for Default Location”, on page 37.

• Create test accounts: In addition to an administrator account, you will need manager and job submitter accounts.
Log in as root:
adduser Manager1

passwd Manager1 <password>

adduser User1

passwd User1 <password>

adduser User2

passwd User2 <password>
PBS Professional 2022.1 Budgets Guide BG-149

Chapter 6 Using Budgets
6.2.2.2 Tutorial Steps to Configure Budgets

6.2.2.2.i Create Periods

1. Log in as, or switch user to pbsadmin:
su pbsadmin

2. Log into amgr:

amgr login

3. Create a parent period named "2022" representing the year 2022. See section 1.7.1, “Periods, Allocation Periods,
Billing Periods”, on page 18.

amgr add period -n 2022 -S 2022-01-01 -E 2022-12-31

For the purposes of this tutorial, we are somewhere in 2022, so that this is the default period.

6.2.2.2.ii Add PBS Complex to Budgets

4. Add a cluster named Cluster1 to represent your PBS complex:

amgr add cluster -n Cluster1

5. Deactivate Cluster1:

amgr update cluster -n Cluster1 -a False

6. List Cluster1:

amgr ls cluster -a False

7. Activate Cluster1:

amgr update cluster -n Cluster1 -a True

8. List Cluster1 again:

amgr ls cluster

6.2.2.2.iii Create Standard Service Unit

9. Create a standard service unit named "cpu_hrs" to represent CPU hours. See section 1.7.2, “Service Units”, on page
18. The service unit name must be identical to the one that is configured in the formulas section of the
am_hook.json configuration file:

amgr add serviceunit -n cpu_hrs -d "CPU Hours"

6.2.2.2.iv Add Users to Budgets

10. Add a user who will be a group manager, and users User1 and User2 who will submit jobs. When you add a user,
you must assign a role, an accounting policy, and at least one cluster:

amgr add user -n Manager1 -r manager -A begin_period -c Cluster1

amgr add user -n User1 -r user -A begin_period -c Cluster1

amgr add user -n User2 -r user -A begin_period -c Cluster1

6.2.2.2.v Create Group

11. Create a group named "test_group" with manager Manager1:

amgr add group -n test_group -M Manager1
BG-150 PBS Professional 2022.1 Budgets Guide

Using Budgets Chapter 6
6.2.2.2.vi Associate Job Submitters with Group

12. Associate User1 and User2 with the group test_group:

amgr update user -n User1 -h + test_group

amgr update user -n User2 -h + test_group

6.2.2.2.vii Create Project and Give It Cluster and User

13. Create a project named "P1" with accounting policy begin_period, cluster Cluster1, user User1 and group
test_group:

amgr add project -n P1 -A begin_period -c Cluster1 -u User1 -h test_group

6.2.2.3 Tutorial Steps to Use Budgets

6.2.2.3.i Run User Job

14. Log in as User1.

15. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User1:

qsub -lwalltime=00:02:00 -- /bin/sleep 10

16. After the job is finished, check the credit used by user User1. It will have increased:

amgr checkbalance user -n User1 -p 2022

6.2.2.3.ii Run Project Job

17. Run a sleep job for 36 seconds with a walltime of 1 hour, and charge it to project P1:

qsub -P P1 -lwalltime=01:00:00 -- /bin/sleep 36

18. To see the job running:

qstat -sw

19. Log in as Manager1.

20. After the job is finished, check the credit used by project P1. It will have increased:

amgr checkbalance project -n P1 -p 2022

6.2.2.3.iii Non-project User Tries to Run Project Job

21. Log in as User2.

22. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to user User2:

qsub -lwalltime=00:02:00 --/bin/sleep 10

23. After the job is finished, check the credit used by user User2. It will have increased:

amgr checkbalance user -n User2 -p 2022

24. Run a sleep job for 10 seconds with a walltime of 2 minutes, and charge it to project P1:

qsub -P P1 -lwalltime=00:02:00 -- /bin/sleep 10

This job cannot run, because User2 is not part of project P1.
PBS Professional 2022.1 Budgets Guide BG-151

Chapter 6 Using Budgets
6.2.2.3.iv Manager Runs Report on Project

25. Log in as Manager1:

amgr login

26. Get report on project P1:

amgr report project -n P1

Command output:

--

name | period | serviceunit | total_outstanding | metadata

--

P1 | 2022 | cpu_hrs | 000.01 | {}
BG-152 PBS Professional 2022.1 Budgets Guide

Index

A
account BG-5

group BG-12
project BG-14
user BG-16

accounting policy
definition BG-23

accounts
required user accounts BG-32

acquire BG-22
active BG-5
adding cluster BG-62
adding job submitters BG-17
admin

role BG-8
administrator BG-8, BG-32

user account BG-32
allocation BG-6
allocation period BG-18

defining BG-61
Altair License Manager BG-31
am.conf BG-43, BG-44, BG-45
AM_AUTH_ENDPOINT BG-44
AM_AUTH_TIMEOUT BG-44
AM_BALANCE_PRECHECK BG-44
AM_DBPORT BG-44
AM_DBUSER BG-44
AM_EXEC BG-44
AM_HOME BG-44
am_hook BG-61

creating and configuring BG-69, BG-143
am_hook.json BG-62
am_hook_periodic BG-61
AM_LICENSE_ENDPOINT BG-44
AM_MODE BG-44
AM_PORT BG-44
AM_SERVER BG-44
AM_WORKERS BG-44
amgr

help BG-77
amgr acquire BG-128
amgr add BG-79
amgr checkbalance BG-121
amgr deposit BG-119
amgr limit BG-116
amgr ls BG-85

amgr precheck BG-124
amgr reconcile BG-130
amgr refund BG-132
amgr report BG-103
amgr rm BG-101
amgr sync formula BG-118
amgr transfer BG-133
amgr update BG-92
amgr withdraw BG-123
AMS BG-5, BG-6

installing BG-5
attribute

PBS, in billing formula BG-63
project

metadata BG-16

B
billing formula BG-6

constants BG-62
defining BG-62
file BG-62
operators BG-64
PBS attributes BG-63
PBS resources BG-63

billing period BG-18
creating BG-61

Budgets
administrator BG-8, BG-32
basic configuration BG-142
configuration tutorial BG-145, BG-149
enabling BG-45, BG-52, BG-144
entity BG-6
hooks BG-5

configuration file BG-67
creating and configuring BG-69, BG-143

instance BG-5
logging in and out BG-145
requirements

user accounts BG-32
starting BG-45, BG-52, BG-144
teller BG-32
upgrading BG-57

C
CentOS BG-28
certificates
PBS Professional 2022.1 Budgets Guide BG-153

Index
creating BG-41, BG-50
charging for jobs BG-10
checkbalance BG-22
cluster BG-6

adding BG-62
definition BG-23

commands
list BG-78
PATH BG-77

complex BG-6
adding BG-61

configuration
Budgets

file BG-43, BG-45
failover BG-53
parameters

basic configuration BG-142
tutorial BG-145, BG-149

constants
in billing formula BG-62

consuming credit BG-11
Corosync BG-53
creating

certificates for encryption BG-41, BG-50
service units

dynamic BG-20
standard BG-19

credit
consuming BG-11
investing in groups BG-9
investing in users and projects BG-10
reconciling BG-11

cron BG-20
currency BG-1, BG-19

D
data_lifetime BG-20

setting value BG-73
database

user account BG-32
deposit BG-22
Docker

basic installation BG-138
installing BG-37, BG-46

docker-ce BG-31
docker-ee BG-31
dynamic service units

definition BG-19
updating values BG-20

E
element BG-6
enabling Budgets BG-45, BG-52, BG-144

entity BG-6
environment variables

PATH BG-36
escrow BG-2, BG-11, BG-22, BG-130

F
failover BG-53

configuring BG-53
file

billing formula BG-62
Budgets configuration BG-43, BG-45
formula BG-62
hook configuration BG-62
sudoers

modifications for Budgets BG-33
formats

name BG-26
formula BG-6
formula file BG-62

G
group BG-12

account BG-12
definition BG-12

H
hooks BG-5

configuration file BG-62
creating and configuring BG-69, BG-143

I
inactive BG-5
installation

basic BG-137
Docker BG-138
utilities BG-138

installing
AMS BG-5
Docker BG-37, BG-46
utilities BG-37, BG-46

instance
definition BG-6

instance of Budgets BG-5
investing BG-8

in groups BG-9
in projects BG-10
in users BG-10

investor
actions BG-9
role BG-8
BG-154 PBS Professional 2022.1 Budgets Guide

Index
J
job submitters

adding BG-17
user account BG-33

jobs
charging BG-10
reconciling BG-11
requirements BG-31

L
list of commands BG-78
logging into Budgets BG-145
logging out of Budgets BG-145

M
manager

actions BG-10
role BG-8

metadata BG-16
mode BG-6

O
operators

in billing formula BG-64

P
Pacemaker BG-53
passwordless ssh BG-35
PATH

for commands BG-77
setting BG-36

PBS attribute
in billing formula BG-63

PBS complex BG-6
adding BG-61

PBS Professional BG-31
PBS resource

in billing formula BG-63
pcs BG-53
peer scheduling BG-73
period BG-18

defining BG-61
definition BG-18
hierarchy BG-18

Postgres BG-5
postpaid mode BG-6
precheck BG-22
prepaid mode BG-6
project BG-14

account
definition BG-14

attributes

metadata BG-16
definition BG-14

python3 BG-31
python3-pip BG-31

Q
quotas

example BG-20
setting BG-19

R
reconcile BG-22
reconciling

credit BG-11
jobs BG-11

refund BG-22
requirements

for job submitters BG-33
for jobs BG-31

resource
in billing formula BG-63

resources for Budgets BG-70
role BG-7

admin BG-8
investor BG-8

actions BG-9
manager BG-8

actions BG-10
teller BG-8
user BG-8

S
service units

abandoned BG-12
definition BG-18
dynamic

creating BG-20
updating values BG-20
usage BG-19

standard
creating BG-19
usage BG-19

SLES
restrictions BG-29

software
third-party BG-31

ssh
passwordless BG-35

standard service units
definition BG-19

starting Budgets BG-45, BG-52, BG-144
sudoers file

modifications for Budgets BG-33
PBS Professional 2022.1 Budgets Guide BG-155

Index
SuSE BG-28

T
teller BG-32

role BG-8
third-party software BG-31
transaction

definition BG-22
transaction ID BG-23
transfer BG-22
transferring

abandoned service units BG-12
tutorial

configuring Budgets BG-145, BG-149

U
units

in billing formula BG-64
upgrading Budgets BG-57
user

account BG-16
accounts

required BG-32
role BG-8

user account
administrator BG-32
database user BG-32
job submitter BG-33
teller BG-32

utilities
basic installation BG-138
installing BG-37, BG-46

V
VPN BG-30

W
Windows BG-28
withdraw BG-22
worker

definition BG-7
workers BG-5
BG-156 PBS Professional 2022.1 Budgets Guide

Altair®

PBS Professional®

2022.1

Simulate Guide

Altair PBS Professional 2022.1

Simulate Guide

https://secure.altair.com/UserArea/agreement.html
http://www.pbsworks.com
http://www.pbsworks.com

Technical Support

Need technical support? We are available from 8am to 5pm local times:

Location Telephone e-mail

Australia +1 800 174 396 anz-pbssupport@india.altair.com

China +86 (0)21 6117 1666 pbs@altair.com.cn

France +33 (0)1 4133 0992 pbssupport@europe.altair.com

Germany +49 (0)7031 6208 22 pbssupport@europe.altair.com

India +91 80 66 29 4500

+1 800 208 9234 (Toll Free)

pbs-support@india.altair.com

Italy +39 800 905595 pbssupport@europe.altair.com

Japan +81 3 6225 5821 pbs@altairjp.co.jp

Korea +82 70 4050 9200 support@altair.co.kr

Malaysia +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

North America +1 248 614 2425 pbssupport@altair.com

Russia +49 7031 6208 22 pbssupport@europe.altair.com

Scandinavia +46 (0)46 460 2828 pbssupport@europe.altair.com

Singapore +91 80 66 29 4500

+1 800 425 0234 (Toll Free)

pbs-support@india.altair.com

South Africa +27 21 831 1500 pbssupport@europe.altair.com

South America +55 11 3884 0414 br_support@altair.com

UK +44 (0)1926 468 600 pbssupport@europe.altair.com

Contents

About PBS Documentation vii

1 Introduction to Simulate 1
1.1 What is Simulate? . 1
1.2 Simulation Terminology. 3
1.3 Differences between Simulation and Live Complex . 4

2 Installing and Configuring Simulate 5
2.1 Supported Platforms . 5
2.2 Prerequisites . 7
2.3 Where to Install Simulate . 8
2.4 Installation . 8
2.5 Configuration . 8
2.6 Setting Up User Environment . 8

3 Using Simulate 9
3.1 Basics of Using Simulate. 9
3.2 Working with Snapshots . 10
3.3 How to Run Simulations . 18
3.4 How to Examine Workloads . 20
3.5 Using Simulations . 21
3.6 Using the Simulate-Review-Modify-Simulate Cycle . 24

4 Simulate Command Reference 25
4.1 Command Notation . 25
4.2 List of Commands Used with Simulate . 26
4.3 The simsh Wrapper Script. 26
4.4 pbsfs . 28
4.5 pbsnodes. 31
4.6 pbs_rstat . 35
4.7 pbs_rsub . 37
4.8 pbs_snapshot . 44
4.9 pbs_stat. 55
4.10 qdel . 57
4.11 qmgr . 59
4.12 qselect . 76
4.13 qstat. 82
4.14 qsub. 94
4.15 sim. 109
4.16 tracejob . 112

Index 115
PBS Professional 2022.1 Simulate Guide SG-v

Contents
SG-vi PBS Professional 2022.1 Simulate Guide

1

Introduction to Simulate

1.1 What is Simulate?

Simulate allows you to safely replicate and test your site and workload, inside a sandbox. You capture a snapshot of your
actual site and workload, then examine and tune the snapshot, without disturbing your production system. You simulate
how the workload would run under different conditions. Simulate uses the PBS scheduler to run the simulated workload.
You can use Simulate to check whether your configuration meets your business needs, and figure out how to meet your
SLAs, perhaps by adding on-premise or cloud compute resources, by adjusting your scheduling parameters, or by chang-
ing other configuration parameters. You can also test how your site would perform with changes and increases in your
workload, and how you might meet those different needs.

1.1.1 Getting Insight into Workload

You can get insight into your workload, and evaluate whether you are meeting customer requirements and reconciling
your organization's needs. You can examine the order in which jobs would run and check whether a job would ever run,
and you can check whether a job could be allowed to run if you were to change the system configuration and/or the
scheduling policy. You can examine the formula and the contribution from each element in the formula to each job to see
how job priority is calculated. You can also see how jobs fall into equivalence classes, which allows you to tune your site
configuration appropriately.

Simulate gives you visibility into the interaction of workload and policy in complex environments.

1.1.2 Tuning Your Site Configuration

You can safely experiment with tuning your configuration in order to optimize utilization or throughput, or to better meet
your SLAs.

You can take a snapshot of your PBS complex, modify the snapshot to reflect changes you want to test, then simulate
running your workload on the modified snapshot. This allows you to test how your site would perform if you made
changes to resources such as number of CPUs, amount of memory, number of nodes, etc. For example, you can test
whether adding compute hosts would meet your needs, by simulating the addition of on-premise or cloud nodes. You can
also discover whether nodes fall into equivalence classes.

1.1.2.1 Tuning Scheduling Parameters

You can experiment with changing the formula and other scheduling parameters to better meet your needs. You can also
test how reservations would affect your workload; you can create, status, and run jobs in reservations, all inside a simula-
tion.

Your scheduling policy is the combination that you choose of one or more sub-goals. For example, you might need to
meet two particular sub-goals: you might need to prioritize jobs a certain way, and you might need to use resources effi-
ciently. You can choose among various outcomes for each sub-goal. For example, you can choose to prioritize jobs
according to size, owner, owner's usage, time of submission, etc.
PBS Professional 2022.1 Simulate Guide SG-1

Chapter 1 Introduction to Simulate
You can test how changes to site parameters affect how well your site meets each of the following sub-goals:

• Job prioritization and preemption; see "Job Prioritization and Preemption" on page 67 in the PBS Professional
Administrator’s Guide

• Resource allocation & limits; see "Resource Allocation to Users, Projects & Groups" on page 72 in the PBS Profes-
sional Administrator’s Guide

• Time slot allocation; see "Time Slot Allocation" on page 74 in the PBS Professional Administrator’s Guide

• Job placement optimizations; see "Job Placement Optimization" on page 75 in the PBS Professional Administrator’s
Guide

• Resource efficiency optimizations; see "Resource Efficiency Optimizations" on page 78 in the PBS Professional
Administrator’s Guide

Once you have determined the changes you need, you can tune your production system using the fewest, most deliberate
alterations necessary. We recommend the following advice on scheduling:

• How to choose a scheduling policy; see "Choosing a Policy" on page 81 in the PBS Professional Administrator’s
Guide, especially the examples of fitting policy to workload in "Examples of Workload and Policy" on page 90 in
the PBS Professional Administrator’s Guide

Note that routing queues do not apply to Simulate, and hooks are not supported in Simulate.

• How to configure a scheduler; see "Configuring a Scheduler" on page 91 in the PBS Professional Administrator’s
Guide

Note that dynamic resources are not supported in Simulate.

1.1.3 Examples of Using Simulate

1.1.3.1 Meeting Emergency Needs

You may need to prioritize a specific user's workload to meet an emergency. You can use Simulate to make sure that the
site handles the workload correctly, and runs jobs in the desired order so that it meets critical requirements.

1.1.3.2 Handling Special Workloads

For example, you have hosts with GPUs, and you need to make sure that any GPU job that shows up runs right away on
the hosts with GPUs, while also continuing to run other jobs on those hosts between GPU jobs.

Simulate lets you maintain utilization levels and maximize your return on investment while handling big shifts in work-
load and priorities.

1.1.3.3 Handling Weekend Workloads

You may have an unknown number of jobs coming in over the weekend and you want to make sure the weekend jobs run
first. For example, a Formula One car on the track has a wing failure, and the design team needs to show that it's not a
design failure, but instead something like an impact or a manufacturing error. You know that the design team's workload
will need a special policy to expedite their jobs. This lets you ensure that the weekend policy you put in place for the
design team performs correctly, before ever touching your production system.

Importantly, you can test whether complex interactions between the special policy and the expected workload would pre-
vent you from meeting your SLAs. You can catch problems before they happen. For example, to give the design team
the highest priority, they are given an express queue, but a preexisting server limit of 3 simultaneous jobs remains. Using
Simulate, you could quickly see the undesirable behavior and fix the problem. The sandbox environment lets you rapidly
test and tune until you are satisfied with the outcome.
SG-2 PBS Professional 2022.1 Simulate Guide

Introduction to Simulate Chapter 1
1.1.3.4 Planning System Downtime

If you have a large queued workload, and you need to plan for downtime, you can use Simulate to figure out how long it
would take to run all queued jobs (drain the queues). This lets you know when maintenance reservations would not dis-
rupt the workload.

1.2 Simulation Terminology

Snapshot

A directory containing subdirectories and files describing a PBS complex and its workload, including queued
and running jobs. The snapshot directory includes a copy of pbs.conf and the $PBS_HOME/server_priv and
$PBS_HOME/sched_priv directories with their contents, as well as other directories

Primary snapshot

The snapshot on which you run simulations. Typically a snapshot taken from a live PBS complex, either as is or
modified.

Output snapshot

An output snapshot produced by running a simulation.

Job equivalence class

A group of jobs that have identical submitters, resource requests, and final queue placement

Node equivalence class

A group of hosts with identical available resources

Discovery command

Command used to discover information about a job, workload, configuration, etc.
PBS Professional 2022.1 Simulate Guide SG-3

Chapter 1 Introduction to Simulate
1.3 Differences between Simulation and Live

Complex

• The PBS commands that you use with Simulate have slightly different implementations from, and are installed in a
different location from, the standard PBS commands. When you use the simsh wrapper script with a command, the
wrapper script calls the correct implementation of that command. If you don't use the wrapper script, you are oper-
ating on your live PBS complex. The Simulate commands are designed to operate on a snapshot, which is a direc-
tory, rather than on a live PBS complex.

• Some command options do not make sense when you are working with a snapshot. When you are working with a
snapshot, keep in mind that you are operating on files rather than a live instance of PBS. For example, if you try to
use tracejob -p <path>, you are trying to run tracejob with a different path to PBS_HOME, but the implementa-
tion of tracejob for Simulate is designed to use the directories in the snapshot.

• You can use only the commands listed in section 3.2, “List of Commands Used with Simulate”, on page 22 with sim-
ulations; other PBS commands are not supported.

• Hooks do not run in simulations. For example, queuejob hooks do not run, so jobs that were queued before you take
a snapshot have already been modified by any queuejob hooks, but if you submit new jobs in the simulation, those
modifications will not happen. To emulate the behavior of hooks inside the sandbox, you can submit jobs as they
would be after hooks have modified them.

• The Budgets tool does not run in simulations, and you cannot take a snapshot of the Budgets tool.

• The Cloud feature does not run in simulations. You cannot directly simulate cloud bursting, but you can indirectly
simulate cloud bursting by adding simulated on-premise nodes and associating them with their own queue. See sec-
tion 2.5.1, “Simulating Cloud Bursting”, on page 17.

• You can capture snapshots only for Linux systems.

• Simulate ignores job environment variables: it does not use the value of the job's Variable_List attribute.

• You cannot create job-specific ASAP reservations or job-specific now reservations.

• Simulate uses only the default scheduler.

• You cannot include history jobs in simulations. (This feature is available in the Simulate tool that is part of Altair
Control.)

• The method for adding execution hosts in a simulation is different from that for a live complex; see "Creating Simu-
lated Execution Hosts” on page 12.

• Interactive mode (qmgr <return>) is not available for the qmgr command. Use simsh <path to snap-
shot> qmgr -c "..." instead.

• Simulate does not run job executables.

• In a simulation, jobs use the requested walltime, not the actual (simulated) time the job would have taken.

• Routing queues are not used by Simulate. If you capture a snapshot of a live system with jobs in a routing queue, or
submit jobs to a routing queue in a snapshot, those jobs do not run in the simulation.

• Dynamic resources are not available in Simulate.

• Peer scheduling is not supported in Simulate.
SG-4 PBS Professional 2022.1 Simulate Guide

1

Installing and Configuring

Simulate

1.1 Supported Platforms

1.1.1 OpenSSL Requirement

PBS requires OpenSSL 1.1.1. If this is not already present on your platform, you must install it.

1.1.2 PBS Components

PBS Professional is made up of the following components:

• PBS Professional server/scheduler daemon on PBS Professional server/scheduler host/head node

• PBS Professional MoM daemon on execution host/compute node, with the following options:

• On premise

• Burst in cloud via PBS Cloud (optional)

• PBS Professional client commands on PBS submission host/client host

• PBS Professional communication daemon on communication host

• PBS Cloud module on service node (where AMS module runs) (optional)

• Budgets server on Budgets head node (optional)

• Budgets AMS module on service node (where PBS Cloud module runs) (optional)

• Budgets client commands on Budgets client host (optional)

• Simulate module:

• When using PBS Cloud, Simulate must be installed on PBS Professional server/scheduler host

• When not using PBS Cloud, Simulate can be installed on any supported host
PBS Professional 2022.1 Simulate Guide SG-1

Chapter 1 Installing and Configuring Simulate
1.1.3 Supported Platforms for PBS Components

PBS components are supported on the following platforms. A (d) indicates that support is deprecated:

Table 1-1: Supported Platforms

Maker Version
Chip
set

Components

PBS Professional Cloud + AMS Budgets Simulate

Server
Sched

MoM
on

prem
Comm

Client
cmds

Cloud
module
+ AMS

MoM
burst
node

Head
node +
client
cmds

Head
node

CentOS 7 x86_64 Yes Yes Yes Yes Yes Yes Yes No

7 ARM64 Yes Yes Yes Yes No Yes No No

Red Hat
Enterprise
Linux
RHEL

7 x86_64 Yes Yes Yes Yes Yes Yes Yes Yes

7 ARM64 Yes Yes Yes Yes No Yes No Yes

7 MLS x86_64 Yes Yes Yes Yes No No No No

8 x86_64 Yes Yes Yes Yes Yes Yes Yes Yes

8 ARM64 Yes Yes Yes Yes No Yes No Yes

Rocky
Linux

8 x86_64 Yes Yes Yes Yes No Yes No No

8 ARM64 Yes Yes Yes Yes No Yes No No

SUSE
SLES

12 x86_64 Yes Yes Yes Yes Yes * Yes Yes Yes

12 ARM64 Yes Yes Yes Yes No Yes No No

15 x86_64 Yes Yes Yes Yes No Yes Yes Yes

15 ARM64 Yes Yes Yes Yes No Yes No Yes

Ubuntu 18.04 x86_64 Yes Yes Yes Yes No Yes Yes Yes

18.04 ARM64 Yes Yes Yes Yes No Yes No Yes

20.04 x86_64 Yes Yes Yes Yes No Yes Yes Yes

20.04 ARM64 Yes Yes Yes Yes No Yes No Yes

HPE Cray
Shasta

1.1
SLES 15

x86_64 Yes Yes Yes Yes Yes * No Yes * Yes

1.1 RHEL
7

x86_64 Yes Yes Yes Yes No No No Yes

NEC SX-Aurora TSUBASA Yes Yes Yes Yes No No No Yes

Windows 10 Pro x86_64 No Yes No Yes No Yes No No
SG-2 PBS Professional 2022.1 Simulate Guide

Installing and Configuring Simulate Chapter 1
1.1.3.1 * SLES Restrictions for Cloud and Budgets Nodes

The following restrictions apply when using SLES on service node host for PBS Cloud or head node host for Budgets:

• Each SLES host must be registered with the SUSE Customer Center via SUSEConnect, and have a support contract.
This happens automatically for cloud nodes.

• SLES hosts require Docker Enterprise Edition.

1.1.4 Supported Platforms for Nodes Burst in Cloud

• Linux: any Linux platform that supports both PBS MoM and cloud-init

• Windows: 10, Server 2012

All versions of cloud-init are supported.

1.1.5 Restrictions on Simulate Module Location when Using

PBS Cloud

If you will use the PBS Cloud module, you must install Simulate on the PBS Professional server/scheduler host (the PBS
Professional head node).

1.2 Prerequisites

• Altair License Manager 14.5+

• PBSProNodes or PBSProSockets 20.0 License Feature

1.2.1 Required Storage and Processors

• Simulate requires a minimum of 300MB of storage, 1 CPU, and 1GB of RAM to run.

• Memory consumption depends on the size of the snapshot being analyzed. At minimum you'll need 500 MB of
RAM, but typically less than 2 GB.

11 Pro x86_64 No Yes No Yes No Yes No No

Server
2016

x86_64 No Yes No Yes No Yes No No

Server
2019

x86_64 No Yes No Yes No Yes No No

Table 1-1: Supported Platforms

Maker Version
Chip
set

Components

PBS Professional Cloud + AMS Budgets Simulate

Server
Sched

MoM
on

prem
Comm

Client
cmds

Cloud
module
+ AMS

MoM
burst
node

Head
node +
client
cmds

Head
node
PBS Professional 2022.1 Simulate Guide SG-3

Chapter 1 Installing and Configuring Simulate
1.3 Where to Install Simulate

• If you will use the PBS Cloud module, you must install Simulate on the PBS Professional server/scheduler host (the
PBS Professional head node).

• If you will not use the PBS Cloud module, you can install Simulate on any host that can reach the Altair License
Manager.

1.4 Installation

1. Untar the Simulate package:

tar xvfz PBSPro-sim_2022.1.0-<OS><OS version>_x86_64.tar.gz
For example:

tar xvfz PBSPro-sim_2022.1.0-SLES15_x86_64.tar.gz

2. Change directory:

cd PBSPro-sim_2022.1.0

1.5 Configuration

1.5.1 Configure Licensing for Simulate

The Simulate configuration file is named "sim.conf" and is in the installation directory.

In this file, edit the licensing parameter, and set it to <port>@<license server host>:

SIM_LICENSE_LOCATION=6200@<license server>

For example:

SIM_LICENSE_LOCATION=6200@mylicensehost

1.5.2 Set Path to Snapshot Directory

Optionally, if you want to, you can set the PBS_SNAPSHOT_PATH parameter in sim.conf to be the path to the snap-
shot directory. If you are working repeatedly on the same snapshot, this can make your command execution easier.

1.6 Setting Up User Environment

Set up your environment to point to the simsh wrapper command for simulator:

export PATH=/<your install path>/PBSPro-sim_2022.1.0:$PATH
SG-4 PBS Professional 2022.1 Simulate Guide

2

Using Simulate

2.1 Basics of Using Simulate

Simulate operates on a snapshot of your site and workload using the same methods as for a live PBS complex. You use
the sim command to run simulations, and you use PBS commands to modify and examine snapshots. The commands
you can use with Simulate are listed in Chapter 3, "Simulate Command Reference", on page 21. To use one of these
commands on a snapshot, you must call it using the simsh wrapper script.

To inspect or modify a snapshot, you operate on the snapshot the same way you would on a live PBS complex.

By default, when you run a simulation, it runs until all runnable jobs are finished; you can specify the amount of simu-
lated time or number of cycles.

• To capture a snapshot, use the pbs_snapshot command on a live PBS complex. This does not require the wrap-
per script:

pbs_snapshot [options to pbs_snapshot] -o <output path>

See section 2.2.1, “Taking a Snapshot of a Live PBS Complex”, on page 6

• To inspect a snapshot, give the simsh wrapper script a snapshot and a PBS command:

simsh <path to snapshot> <PBS command> [<options to PBS command>]

For example, to get server information about your snapshot:

simsh <path to snapshot> qstat -Bf

See section 2.2.3, “Inspecting Snapshot Contents”, on page 10

• To modify a snapshot, such as changing a resource or attribute or submitting jobs, give simsh a snapshot and the
PBS command:

simsh <path to snapshot> <PBS command> [<options to PBS command>]

For example, to modify the node named Node1 to have 16 cores:

simsh <path to snapshot> qmgr -c "s n Node1 resources_available.ncpus=16"

See section 2.2.4, “Modifying Your Snapshot”, on page 11

• To change a configuration file in a snapshot, you edit the appropriate file in the snapshot.

See section 2.2.4.1, “Editing Files in a Snapshot”, on page 11

• To run a simulation, give the simsh wrapper script a snapshot and the sim command:

simsh <path to snapshot> sim [sim options]

For example, to run a simulation of your workload for 600 seconds:

simsh <path to snapshot> sim -t 600

See section 2.3.2, “Using the sim Command to Run a Simulation”, on page 14
PBS Professional 2022.1 Simulate Guide SG-5

Chapter 2 Using Simulate
2.2 Working with Snapshots

Each snapshot is the basis for a simulated universe. A snapshot is a directory containing subdirectories and files describ-
ing the PBS complex and its workload, including queued and running jobs. You can use a snapshot of your existing
workload, or you can take a snapshot and then modify it in almost any way that you can modify your existing PBS com-
plex. You create snapshots either by taking a snapshot of a live PBS complex, or by running a simulation, which pro-
duces an output snapshot.

2.2.1 Taking a Snapshot of a Live PBS Complex

To take a snapshot of a live PBS complex, run the pbs_snapshot command. You must specify an output path:

pbs_snapshot -o <output_path>
The command creates a tar archive at the specified location.

If you want to be able to examine the behavior of a workload, capture a snapshot of a complex where jobs are queued.

If you want to capture only PBS configuration information and queued and running jobs, use the --basic option:

pbs_snapshot --basic -o <output_path>
To be able to use the snapshot, first unpack the snapshot:

tar xvfz <snapshot name>.tgz
For example:

tar xvfz snapshot_20220708_15_54_57.tgz

2.2.2 What Does a Snapshot Contain?

A snapshot produced by the pbs_snapshot command arrives as a tarball. A snapshot produced as the output of the
sim command is not a tarball.

A snapshot is a directory containing subdirectories and files describing the PBS complex and its workload, including
queued and running jobs. The snapshot directory includes a copy of pbs.conf and the $PBS_HOME/server_priv and
$PBS_HOME/sched_priv directories with their contents, as well as other directories where you might need to examine or
modify parameters.

If you run simsh <path to snapshot> sim -L, the command writes the scheduler logs in the sched_logs directory in
the snapshot.
SG-6 PBS Professional 2022.1 Simulate Guide

Using Simulate Chapter 2
The pbs_snapshot command detects which daemon or daemons are running on the host where it is collecting infor-
mation, and captures daemon and system data accordingly. The pbs_snapshot command captures data from all mul-
tischeds. If no PBS daemons are running, the command collects system information. The output tarball contains
information about the host specified via the -H option, or if that is not specified, the local host. If you specify additional
hosts, the command creates a tarball for each additional host and includes it as a sub-tarball in the output. You can
optionally anonymize the PBS data in a snapshot. The main tarball contains the following directory structure, files, and
tarballs, and lists which of those elements appear in a tarball produced by the --basic and --config-only options:

Table 2-1: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only

server/ qstat_B.out Output of qstat -B

qstat_Bf.out Output of qstat -Bf Yes Yes

qmgr_ps.out Output of qmgr print server

qstat_Q.out Output of qstat -Q

qstat_Qf.out Output of qstat -Qf Yes Yes

qmgr_pr.out Output of qmgr print resource

server_priv/ Copy of the PBS_HOME/server_priv directory.

Core files are captured separately; see core_file_bt/.

resourcedef resourcedef

config

accounting/ Accounting logs from
PBS_HOME/server_priv/accounting/
directory for the number of days specified
via --accounting-logs option

server_logs/ Server logs from the PBS_HOME/server_logs directory for the num-
ber of days specified via --daemon-logs option

job/ qstat.out Output of qstat

qstat_f.out Output of qstat -f Yes

qstat_f_F_json.out Output of qstat -f -F json

qstat_t.out Output of qstat -t

qstat_tf.out Output of qstat -tf

qstat_x.out Output of qstat -x

qstat_xf.out Output of qstat -xf

qstat_ns.out Output of qstat -ns

qstat_fx_F_dsv.out Output of qstat -fx -F dsv

qstat_f_F_dsv.out Output of qstat -f -F dsv
PBS Professional 2022.1 Simulate Guide SG-7

Chapter 2 Using Simulate
node/ pbsnodes_va.out Output of pbsnodes -va Yes

pbsnodes_a.out Output of pbsnodes -a

pbsnodes_avSj.out Output of pbsnodes -avSj

pbsnodes_aSj.out Output of pbsnodes -aSj

pbsnodes_avS.out Output of pbsnodes -avS

pbsnodes_aS.out Output of pbsnodes -aS

pbsnodes_aFdsv.out Output of pbsnodes -aF dsv

pbsnodes_avFdsv.out Output of pbsnodes -avF dsv

pbsnodes_avFjson.out Output of pbsnodes -avF json

qmgr_pn_default.out Output of qmgr print node
@default

mom_priv/ Copy of the PBS_HOME/mom_priv directory.

Core files are captured separately; see core_file_bt/.

mom_priv/con
fig, only from
server host

mom_logs/ MoM logs from the PBS_HOME/mom_logs directory for the number
of days specified via --daemon-logs option

comm_logs/ Comm logs from the PBS_HOME/comm_logs directory for the number
of days specified via --daemon-logs option

sched_priv/ Copy of the PBS_HOME/sched_priv directory, with all files.

Core files are not captured; see core_file_bt/.

Yes

sched_logs/ Scheduler logs from the PBS_HOME/sched_log directory. For a
snapshot of a live PBS complex, this is for the number of days spec-
ified via pbs_snapshot --daemon-logs. For a simulation
output snapshot, this is for the time simulated via simsh <path
to snapshot> sim -L.

sched_priv_<m
ultisched
name>/

Copy of the PBS_HOME/sched_priv_<multisched name> directory,
with all files.

Core files are not captured; see core_file_bt/.

Yes dedicated_ti
me

holidays

resource_gro
up

sched_config

sched_logs_<m
ultisched
name>/

Multisched logs from the PBS_HOME/sched_log_<multisched
name> directory for the number of days specified via --dae-
mon-logs option

reservation/ pbs_rstat_f.out Output of pbs_rstat -f Yes

pbs_rstat.out Output of pbs_rstat

scheduler/ qmgr_lsched.out Output of qmgr list sched Yes Yes

Table 2-1: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
SG-8 PBS Professional 2022.1 Simulate Guide

Using Simulate Chapter 2
hook/ qmgr_ph_default.out Output of qmgr -c 'print hook
@default'

Yes

qmgr_lpbshook.out Output of qmgr -c 'list
pbshook'

Yes Yes

datastore/ pg_log/ Copy of the PBS_HOME/datas-
tore/pg_log directory for the number of
days specified via --daemon-logs
option

core_file_bt/ Stack backtrace from core files

sched_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/sched_priv

sched_priv_<multi-
sched name>

Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/sched_priv_<multisched
name>

server_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/server_priv

mom_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/mom_priv

misc/ Files containing the output of thread
apply all backtrace full on
any other core files found inside
PBS_HOME

Table 2-1: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
PBS Professional 2022.1 Simulate Guide SG-9

Chapter 2 Using Simulate
Snapshot Dates and Times

Bear in mind that jobs and reservations that were created before you took the snapshot keep their dates and times, which
may be in the past.

2.2.3 Inspecting Snapshot Contents

You can use any of the discovery commands listed in section 3.2, “List of Commands Used with Simulate”, on page 22 to
examine your snapshots. Some examples:

• To use qstat to inspect the contents of a snapshot:

system/ pbs_probe_v.out Output of pbs_probe -v

pbs_hostn_v.out Output of pbs_hostn -v $(host-
name)

pbs_environment Copy of PBS_HOME/pbs_environment file Yes

os_info Information about the OS Yes

process_info List of processes running on the system
when the snapshot was taken. Output of
ps -aux | grep [p]bs on Linux
systems, or tasklist /v on Windows
systems

ps_leaf.out Output of ps -leaf. Linux only.

lsof_pbs.out Output of lsof | grep [p]bs.
Linux only.

etc_hosts Copy of /etc/hosts file. Linux only.

etc_nsswitch_conf Copy of /etc/nsswitch.conf file. Linux
only.

vmstat.out Output of the command vmstat. Linux
only.

df_h.out Output of the command df -h. Linux
only.

dmesg.out Output of the dmesg command. Linux
only.

pbs.conf Copy of the pbs.conf file on the server host Yes Yes

ctime Contains the time in seconds since epoch when the snapshot was
taken

Yes Yes

pbs_snapshot.
log

Log messages written by pbs_snapshot Yes Yes

<remote host-
name>.tgz

Tarball of output from running the pbs_snapshot command at a
remote host

Table 2-1: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
SG-10 PBS Professional 2022.1 Simulate Guide

Using Simulate Chapter 2
simsh <path to snapshot> qstat [qstat options]

For example, to display queued and running jobs:

simsh <path to snapshot> qstat -a

Or to get server information:

simsh <path to snapshot> qstat -Bf

• To use qmgr:

simsh <path to snapshot> qmgr -c "[qmgr options]"

For example, to list scheduler attributes:

simsh <path to snapshot> qmgr -c "l sched <scheduler name>"

Or to list all nodes:

simsh <path to snapshot> qmgr -c "list node @default"

You may find it helpful to use "@default" if you do not know the name of the server.

• To use pbsnodes:

simsh <path to snapshot> pbsnodes [pbsnodes options]

For example, to list all vnodes and their attributes:

simsh <path to snapshot> pbsnodes -av

2.2.4 Modifying Your Snapshot

You modify a snapshot the same way you modify a PBS complex, which means that you edit files to change parameters,
but you use qmgr (with simsh) to set resources and change most attributes. You can modify anything in a snapshot that
you can modify in a live PBS complex. For example you can edit pbs.conf and sched_config, you can change the
resources available on hosts, you can create reservations, you can adjust the job sorting formula, etc. You can also submit
more jobs to the snapshot if you need to test a different job mix. While you cannot qalter a job, you can delete it and
submit a replacement.

2.2.4.1 Editing Files in a Snapshot

To edit a file in a snapshot, change directory into the snapshot directory, then go to the appropriate subdirectory. For
example, to edit the default scheduler configuration file:

1. Change directory to the sched_priv directory inside the snapshot directory:
cd <path to snapshot>/sched_priv

2. Edit the configuration file named sched_config

Or to change pbs.conf:

1. Change directory to the snapshot directory:
cd <path to snapshot>

2. Edit pbs.conf

2.2.4.2 Modifying Available Resources on Hosts

You can change the available resources in your snapshot, such as memory, CPUs, etc. You modify available resources
using the exact same tools and methods you use for a live PBS complex, but as arguments to simsh.

For example, to modify a snapshot by giving the host named Test1 32 cores:

simsh <path to snapshot> qmgr -c "s n Test1 resources_available.ncpus=32"
PBS Professional 2022.1 Simulate Guide SG-11

Chapter 2 Using Simulate
2.2.4.3 Modifying Attribute Values

You can change the values of any attributes in a snapshot that you could change in a live PBS complex:

simsh <path to snapshot> qmgr -c "set <object> attribute = <value>"
For example, to add a setting to the max_run server attribute:

simsh <path to snapshot> qmgr -c "set server max_run += [u:PBS_GENERIC=10]"

For a complete list of the attributes in a PBS complex, see “Attributes” on page 277 of the PBS Professional Reference
Guide.

2.2.4.4 Adjusting Formula

You can adjust your job sorting formula:

simsh <path to snapshot> qmgr -c 'set server job_sort_formula = "<formula>"'

See "Using a Formula for Computing Job Execution Priority" on page 150 in the PBS Professional Administrator’s
Guide.

2.2.4.5 Creating Simulated Execution Hosts

You can simulate creating new execution hosts in a snapshot by cloning existing nodes inside that snapshot. A typical
node entry begins with the name of the node, and looks like this:

Node1

last_used_time = Tue Apr 21 15:13:25 2022

last_state_change_time = Fri May 1 17:20:17 2022

license = l

in_multivnode_host = 1

sharing = default_shared

resv_enable = True

resources_assigned.vmem = 0kb

resources_assigned.ncpus = 0

resources_assigned.naccelerators = 0

resources_assigned.mem = 0kb

resources_assigned.hbmem = 0kb

resources_assigned.accelerator_memory = 0kb

resources_available.vnode = testing

resources_available.ncpus = 0

resources_available.mem = 0b

resources_available.host = testing

resources_available.arch = linux

pcpus = 1

state = free

ntype = PBS

pbs_version = 2021.1.1.20210320033812

Port = 15002

Mom = Node1
SG-12 PBS Professional 2022.1 Simulate Guide

Using Simulate Chapter 2
To clone a node in a snapshot:

1. Go to the snapshot directory:
cd <path to snapshot>

2. Go to the subdirectory named "node":

cd node

3. Edit the file named "pbsnodes_va.out"

4. Copy a node similar to the desired new node

5. Append the copy to the file

6. Make sure that the license attribute is set to "l" (lowercase ell)

7. Modify the copy as needed (you can also modify it later via qmgr)

2.2.4.6 Creating Simulated Reservations

You can create advance, standing, job-specific start, and maintenance reservations in a snapshot. You cannot create
job-specific ASAP or now reservations. To create a reservation, use the same method as for a live PBS complex.

• For example, to create an advance reservation for 2 CPUs from 8:00 p.m. to 10:00 p.m.:
simsh <path to snapshot> pbs_rsub -R 2000.00 -E 2200.00 -l select=1:ncpus=2

• For example, to create a standing reservation that runs every day from 8am to 10am, for a total of 10 occurrences:
simsh <path to snapshot> pbs_rsub -R 0800 -E 1000 - r"FREQ=DAILY;COUNT=10"

• To create a job-specific start reservation:
simsh <path to snapshot> qsub -Wcreate_resv_from_job=true

• To create a maintenance reservation:
simsh <path to snapshot> pbs_rsub --hosts <host list>

For more about creating and using reservations, see "Reserving Resources", on page 137 of the PBS Professional User’s
Guide and "Reservations" on page 195 in the PBS Professional Administrator’s Guide.

2.2.4.7 Adding Jobs to a Snapshot

You can add more queued jobs to your snapshot. Job submission is the same as for non-simulated jobs, except that Sim-
ulate does not run job executables:

• If you submit a job using the command line to specify directives, the job script must exist but can be empty

• In the simulated world, each job runs until the end of its requested walltime, instead of the amount of time the job
would actually have run. For example, if a job requests one hour of walltime, but the job would finish in 5 minutes
in the real world, the simulated job runs for one hour.

If you use a job script, Simulate reads job directives from the script. Otherwise it reads them from the qsub command
line or from the here document.

To submit a job:

simsh <path to snapshot> qsub ...

For example:

simsh formula_one qsub -N sim_job -l select=1:ncpus=32:mem=16gb -l walltime=0:10:00 -- /bin/sleep
60

For detailed job submission instructions, see section 3.14, “qsub”, on page 90.
PBS Professional 2022.1 Simulate Guide SG-13

Chapter 2 Using Simulate
2.2.4.8 Obfuscating Sensitive Snapshot Information

You can prevent a snapshot from containing certain sensitive information by obfuscating that information. You can
obfuscate a snapshot when you create it via pbs_snapshot --obfuscate, or you can obfuscate an existing snap-
shot via pbs_snapshot --obf-snap <path to snapshot>. When you obfuscate an existing snapshot you
can operate on the .tgz file, or on the directory created by untarring a snapshot. If the snapshot contains other snapshots
created via pbs_snapshot --additional-hosts, you have to obfuscate each snapshot individually.

2.3 How to Run Simulations

When you run a simulation, you are simulating a PBS complex running a workload. The complex and the workload are
captured in a snapshot, which you use in the simulation.

By default, each simulation runs until all runnable jobs have been run. If there are jobs that can never run, they remain
queued after a simulation finishes.

2.3.1 Prerequisites

Make sure your snapshot contains a valid scheduler formula and the list of queued jobs:

simsh <path to snapshot> qstat -a

To capture the minimum usable snapshot:

pbs_snapshot --basic -o <output path>

2.3.2 Using the sim Command to Run a Simulation

To run a simulation, use the simsh wrapper script to call the sim command, and specify the snapshot:

simsh <path to snapshot> sim [sim options]
Scheduler logs let you use tracejob to find out whether a job ran and why. To capture scheduler logs from the simu-
lation:

simsh <path to snapshot> sim -L
For example, to run a simulation of your workload for 600 seconds and capture scheduler logs:

simsh snapshot_20220708_15_54_57 sim -L -t 600

2.3.3 Running Multiple Simultaneous Simulations

You can run multiple simultaneous simulations, but not on the same snapshot. To run multiple simultaneous simulations,
open a terminal window for each simulation and run a simulation in it:

simsh <path to snapshot> sim [sim options]

2.3.4 Simulation Output

Each simulation creates an output snapshot directory, and writes output statistics to the screen. We describe the output
contents in section 2.2.2, “What Does a Snapshot Contain?”, on page 6.
SG-14 PBS Professional 2022.1 Simulate Guide

Using Simulate Chapter 2
2.3.4.1 Simulation Output Snapshot Name

2.3.4.1.i Initial Output Snapshot Name

By default, the name of the simulation output snapshot is the name of the input snapshot with "_out" appended.

For example, running a simulation on the snapshot named "Snap1" produces the result snapshot named "Snap1_out".

You can specify the name of the output snapshot:

simsh <input snapshot> sim -o <output snapshot name>

For example, if your input snapshot is named "Snap1_new", and you want the output snapshot to be named
"Snap1_test1":

simsh Snap1_new sim -o Snap1_test1

2.3.4.1.ii Naming for Multiple Output Snapshots

Each time you run a simulation without specifying a name for the output snapshot, Simulate names the output snapshot
with the input snapshot name and appends "_out". If a snapshot with that name already exists, Simulate renames it by
appending "_out". For example, if you run a simulation on a snapshot named "Snap1", you get an output snapshot named
"Snap1_out". If you run another simulation on "Snap1", you get a new output snapshot named "Snap1_out", and the old
"Snap1_out" is renamed "Snap1_out_out".

Simulate gives you just two default output snapshots. If you run a third simulation on "Snap1" without specifying an out-
put name, you get a new output snapshot named "Snap1_out", and the old "Snap1_out_out" is overwritten when the old
"Snap1_out" is renamed to "Snap1_out_out"; the old "Snap1_out_out" is not renamed.

2.3.4.2 Simulation Output Contents

Running the sim command with no options creates a snapshot containing accounting log files. If you use the -L option,
the snapshot also contains scheduler log files.

2.3.4.3 Simulation Output Statistics

When you run a simulation, Simulate prints statistics showing how the workload ran through:

• Number of scheduling cycles run: <integer>

• Number of jobs submitted <integer>

• Number of jobs run: <integer>

• Number of jobs left over: <integer>

These are the jobs which could not be run because the job requested an unavailable queue or resource, the job
exceeded a limit, etc.

• Time taken to simulate: <seconds>

Our example snapshot produces this:

Snapshot: snapshot_20220708_15_54_57

Creating usage database for fairshare.

Number of scheduling cycles run: 32

Number of jobs submitted: 0

Number of jobs run: 22

Number of jobs left over: 0

Time taken to simulate: 0
PBS Professional 2022.1 Simulate Guide SG-15

Chapter 2 Using Simulate
2.3.5 Simulating Scheduler Cycles or Duration

By default, each simulation runs until all runnable jobs have been run. If there are jobs that can never run, they remain
queued after a simulation finishes. You can simulate what happens when the scheduler runs a certain number of cycles or
for a certain amount of simulated time. When you specify a time to simulate, this is the time in the simulated universe,
not the actual time. So if you specify for example 600 seconds of simulation, you may have to wait only a few seconds
for the simulation to complete.

To specify number of cycles:

simsh <path to snapshot> sim -n <number of cycles>
To specify amount of simulated time:

simsh <path to snapshot> sim -t <number of seconds>
If you specify both, you get the shorter of the two. So if you specify 5 cycles and 600 seconds, but it only takes 100 sim-
ulated seconds to run the 5 cycles, your simulation runs for just the 100 simulated seconds.

2.3.6 Simulation Errors

If you get a licensing error: "Error: No valid licenses found, quitting", make sure the licensing prerequisites are met.

2.4 How to Examine Workloads

2.4.1 Examining Job Priority Order

You can see the order in which jobs would be considered for execution by the scheduler. The scheduler computes the pri-
ority for each job using the formula. You can examine the formula and the value of each element in the formula for each
job in your simulated universe. You do not need to run a simulation to see job priority order.

Take a snapshot of your workload, and use the simsh wrapper script to run the pbs_stat command on the snapshot:

simsh <path to snapshot> pbs_stat --eval-formula

2.4.2 Examining Job Execution Timing

After a simulation, you can see the order in which jobs ran, along with their start and end times:

simsh <path to snapshot> pbs_stat -S

2.4.3 Finding Out Whether a Job Can Ever Run

To find out whether a job can ever run, simulate running your workload. Take a snapshot of your workload, then use
simsh with the sim command to run the simulation; see section 2.3, “How to Run Simulations”, on page 14. To gener-
ate scheduler logs for your simulation, use the -L option:

simsh <path to snapshot> sim -L [other options to sim]
After you have run the simulation, use simsh with qstat to see jobs that never ran during the simulation:

simsh <path to snapshot> qstat -a
SG-16 PBS Professional 2022.1 Simulate Guide

Using Simulate Chapter 2
2.4.4 Finding Jobs that Did Not Run

You can find jobs that have not yet run in an input snapshot, and jobs that never did run in an output snapshot. If you do
not specify scheduler cycles or simulation duration, the simulation runs until all runnable jobs are finished. Any jobs that
can never run remain queued. You can list them:

simsh <path to snapshot> qstat -a

2.4.5 Figuring Out Why Job Did Not Run

For a specific job, you can see the output of every scheduler cycle for the duration you specify, by examining scheduler
logs in a simulation output snapshot. To create a simulation output snapshot that includes scheduler logs, use the -L
option to the sim command.

To examine the scheduler logs for a specific job:

simsh <snapshot> tracejob -n <days> <job ID>
The tracejob command finds the data for the specified job, and presents it in chronological order. It examines all of
the days from today back to the limit in number of days back you specify in <days>.

If the snapshot was produced on a previous date, take the difference between that date and today into account when you
specify <days>. For example, if the snapshot was taken 200 days ago, and you want 5 days of log information, specify
205 days. Usually you want to cover the entire snapshot log, so you can just make this very large, for example 1000.

2.4.6 Examining Job Equivalence Classes

Examining job equivalence classes (groups of jobs that have identical submitter and resource and queue requests) can
give you insight into your workload. To find job equivalence classes:

simsh <path to snapshot> pbs_stat -j

2.4.7 Examining Scheduler Logs

You can examine scheduler logs from a simulation output snapshot. If you use the -L option, the command writes the
scheduler logs in the sched_logs directory in the snapshot:

simsh <path to snapshot> sim -L
To see all scheduler logs, you can display or edit them via cat, vi, etc. To see scheduler logs for a specific job, use
tracejob.

2.5 Using Simulations

2.5.1 Simulating Cloud Bursting

Cloud bursting might be a quick and easy way to add execution hosts to your PBS complex. You can test the impact of
cloud bursting on your workload by simulating cloud bursting. For example, you can add resources to your snapshot to
see the change that cloud bursting could make in how well your site meets its SLAs, such as the overall delivery time for
a body of jobs.

Currently you cannot directly simulate dynamic cloud bursting; however, you can indirectly simulate cloud bursting by
adding simulated on-premise hosts. Actual cloud nodes require a cloud queue and the cloud bursting hook, but you can
simulate cloud nodes by associating your simulated cloud nodes with a special pseudo-cloud queue.
PBS Professional 2022.1 Simulate Guide SG-17

Chapter 2 Using Simulate
When you simulate cloud bursting, you use a custom resource to associate simulated cloud nodes with a simulated cloud
queue. To simulate multiple bursting scenarios, create one simulated cloud queue and some simulated cloud nodes for
each scenario, and for each scenario, set the value of the resource used to associate its vnodes with their queue to a value
that reflects the scenario, for example, the name of the scenario.

2.5.1.1 Steps to Simulate Cloud Bursting

We'll create one simulated scenario called "Scenario1", and create and use the custom resource named "cloud_link" to
associate the vnodes with the pseudo-cloud queue named "Scenario1_queue". Our example snapshot is named
"formula_one".

1. For each bursting scenario, create a pseudo-cloud queue, and set its type to "execution":
simsh <path to snapshot> qmgr -c "create queue <queue name> queue_type=execution"

For example:

simsh formula_one qmgr -c "create queue Scenario1_queue queue_type=execution"

2. Start and enable the queue:

simsh <path to snapshot> qmgr -c "set queue <queue name> started=true"

simsh <path to snapshot> qmgr -c "set queue <queue name> enabled=true"

For example:

simsh formula_one qmgr -c "set queue Scenario1_queue started=true"

simsh formula_one qmgr -c "set queue Scenario1_queue enabled=true"

3. Create new simulated execution hosts; follow the steps in section 2.2.4.5, “Creating Simulated Execution Hosts”, on
page 12

In our example, we use "Node1", "Node2", and "Node3" for the names of the simulated cloud nodes.
SG-18 PBS Professional 2022.1 Simulate Guide

Using Simulate Chapter 2
4. Associate the new execution hosts with the pseudo-cloud queue:

a. Define a new host-level resource for associating the queue and the new simulated nodes:

simsh <path to snapshot> qmgr -c 'create resource <new resource> type=string_array, flag=h'

For example:

simsh formula_one qmgr -c 'create resource cloud_link type=string_array, flag=h'

b. Instruct the scheduler to honor the resource. Inside the snapshot directory, in the sched_priv directory, edit the
file named "sched_config". Add the new resource to the resources: line:

resources: "ncpus, mem, arch, host, vnode, <new resource>"

For example:

resources: "ncpus, mem, arch, host, vnode, cloud_link"

c. Set the pseudo-cloud queue's default_chunk for the new resource to the value you are using to associate it with
the pseudo-cloud nodes:

simsh <path to snapshot> qmgr -c "set queue <queue name> default_chunk.<new resource> =
<value>"

For example:

simsh formula_one qmgr -c "set queue Scenario1_queue default_chunk.cloud_link = Scenario1"

d. Set the value for the new resource at each new vnode:

simsh <path to snapshot> qmgr -c "set node <new node name> resources_available.<new resource>
= <associating value>"

For example

simsh formula_one qmgr -c "set node Node1 resources_available.cloud_link = Scenario1"

simsh formula_one qmgr -c "set node Node2 resources_available.cloud_link = Scenario1"

simsh formula_one qmgr -c "set node Node3 resources_available.cloud_link = Scenario1"

5. Submit pseudo-cloud jobs to the pseudo-cloud queue:

simsh <path to snapshot> qsub ... -q <pseudo-cloud queue> ... <job script>

For example:

simsh formula_one qsub -q Scenario1_queue -l select=ncpus=2:mem=16gb -l walltime=1:00:00 MyEmp-
tyScript.sh

2.5.2 Using Simulations to Plan Downtime

To find out when your existing workload will be finished:

1. Take a snapshot of your site and workload, and specify an output path:
pbs_snapshot -o <output_path>

2. Unpack the snapshot:

tar xvfz <snapshot name>.tgz

3. Simulate running your workload until all jobs have finished. Create scheduler logs:

simsh <path to snapshot> sim -L

4. Look for the end date of the last job to finish:

simsh <path to snapshot> pbs_stat -S
PBS Professional 2022.1 Simulate Guide SG-19

Chapter 2 Using Simulate
5. Optionally, you can experiment with tuning your configuration so that all jobs are finished sooner. See section 2.4,
“How to Examine Workloads”, on page 16

6. Optionally, you can tune your configuration so that the only jobs left running by a particular date are low enough in
priority that they could be requeued

2.6 Using the Simulate-Review-Modify-Simulate

Cycle

You will probably find that you need to test more than one change to your complex before you reach a satisfactory con-
figuration. You start with a snapshot of your live complex, simulate how the workload runs on it, modify the simulated
complex or the workload or both, try it again, and so on. Here's the general idea:

• Get a primary snapshot from a live PBS Professional complex; see section 2.2.1, “Taking a Snapshot of a Live PBS
Complex”, on page 6

• Examine the contents of the primary snapshot; see section 2.2.3, “Inspecting Snapshot Contents”, on page 10

• Examine the order in which jobs would run; see section 2.4.1, “Examining Job Priority Order”, on page 16

• Run a simulation on the primary snapshot; see section 2.3.2, “Using the sim Command to Run a Simulation”, on
page 14

• Review your output snapshot; see section 2.4, “How to Examine Workloads”, on page 16

• See the order and timing with which jobs ran; see section 2.4.2, “Examining Job Execution Timing”, on page 16

• Modify your primary snapshot; see section 2.2.4, “Modifying Your Snapshot”, on page 11

• Examine the order in which jobs would run; see section 2.4.1, “Examining Job Priority Order”, on page 16

• Run a simulation on your modified primary snapshot; see section 2.3.2, “Using the sim Command to Run a Simula-
tion”, on page 14

• Review your new output snapshot; see section 2.4, “How to Examine Workloads”, on page 16

• See the order and timing with which jobs ran; see section 2.4.2, “Examining Job Execution Timing”, on page 16
SG-20 PBS Professional 2022.1 Simulate Guide

3

Simulate Command Reference

The commands described in this chapter have been implemented specifically for use with simulations; you cannot use
these implementations in a live PBS complex. To use a simulation command, call The simsh Wrapper Script with a snap-
shot and the command:

simsh <path to snapshot> <command> <command arguments>

3.1 Command Notation

Optional Arguments

Optional arguments are enclosed in square brackets. For example, in the qstat man page, the -E option is shown this
way:

qstat [-E]

To use this option, you would type:

qstat -E

Variable Arguments

Variable arguments (where you fill in the variable with the actual value) such as a job ID or vnode name are enclosed in
angle brackets. Here's an example from the pbsnodes man page:

pbsnodes -v <vnode>

To use this command on a vnode named "my_vnode", you'd type:

pbsnodes -v my_vnode

Optional Variables

Optional variables are enclosed in angle brackets inside square brackets. In this example from the qstat man page, the
job ID is optional:

qstat [<job ID>]

To query the job named "1234@my_server", you would type this:

qstat 1234@my_server

Literal Terms

Literal terms appear exactly as they should be used. For example, to get the version for a command, you type the com-
mand, then "--version". Here's the syntax:

qstat --version

And here's how you would use it:

qstat --version

Multiple Alternative Choices

When there are multiple options and you should choose one, the options are enclosed in curly braces. For example, if
you can use either "-n" or "--name":

{-n | --name}
PBS Professional 2022.1 Simulate Guide SG-21

Chapter 3 Simulate Command Reference
3.2 List of Commands Used with Simulate

3.3 The simsh Wrapper Script

3.3.1 Synopsis

simsh <path to snapshot> <PBS command> [<options to PBS command>]

3.3.2 Description

The simsh wrapper script operates on a snapshot using PBS commands. You can modify a snapshot, run a simulation
using a snapshot, and analyze your workload.

To operate on a snapshot, give the simsh wrapper script a snapshot and a PBS command:

simsh <path to snapshot> <PBS command> [<options to PBS command>]
For example, to get server information about your snapshot:

simsh <path to snapshot> qstat -Bf

To run a simulation, use simsh to call the sim command:

Table 3-1: List of Commands

Command Description

pbsfs Show or manipulate PBS fairshare usage data

pbsnodes Query PBS host or vnode status, mark hosts free or offline, change the comment for a host, or
output vnode information

pbs_rstat Shows status of PBS reservations

pbs_rsub Creates a PBS reservation

pbs_snapshot Linux only. Captures PBS workload and configuration data. Not for use with simsh.

pbs_rstat Displays information about workload and complex

qdel Deletes PBS jobs

qmgr Administrator's command interface for managing PBS

Caveats Selects specified PBS jobs

qstat Displays status of PBS jobs, queues, or servers

qsub Submits a job to PBS

sim For use with snapshots of all-Linux PBS complexes only. Simulates behavior of workload at a
PBS complex

tracejob Extracts and prints log messages for a PBS job
SG-22 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
simsh <path to snapshot> sim [<sim options>]
Available commands are listed in Table 3-1, “List of Commands,” on page 22. Note that you cannot use simsh with
pbs_snapshot.

3.3.3 Options to simsh

--help
Prints usage and exits. This option can only be used alone.

--version
Prints version information and exits. This option can only be used alone.

3.3.4 Arguments to simsh

<path to snapshot>
Snapshot of workload you want to operate on.

<PBS command>
Operation to perform on workload, for example run a simulation on it via the sim command, analyze it via the
qstat command, or modify it via the qmgr command.

[<options to PBS command>]
Options to the wrapped command. For example, if the wrapped command is qstat, the command options can
be any valid options to qstat.
PBS Professional 2022.1 Simulate Guide SG-23

Chapter 3 Simulate Command Reference
3.4 pbsfs

Show or manipulate PBS fairshare usage data

3.4.1 Synopsis

Showing usage data:

pbsfs [-c <entity1> <entity2>] [-g <entity>] [-I <scheduler name>] [-p] [-t]

Manipulating usage data:

pbsfs [-d] [-e] [-I <scheduler name>] [-s <entity> <usage value>]

Printing version:

pbsfs --version

3.4.2 Description

You can use the pbsfs command to print or manipulate a PBS scheduler's fairshare usage data. You can print the usage
data in various formats, described below.

3.4.2.1 Permissions

You must be root to run the pbsfs command; if not, it will print the error message, "Unable to access fair-
share data".

3.4.3 Options to pbsfs

You can safely use the following options while jobs are being scheduled:

(no options)
Same as pbsfs -p.

-c <entity1> <entity2>
Compares two fairshare entities.

-g <entity>
Prints a detailed listing for the specified entity, including the path from the root of the tree to the entity.

-I <scheduler name>
Specifies name of scheduler whose data is to be manipulated or shown. Required for multischeds; optional for
default scheduler. Name of default scheduler is "default". If not specified, pbsfs operates on default sched-
uler.

-p
Prints the fairshare tree as a table, showing for each internal and leaf vertex the group ID of the vertex's parent,
group ID of the vertex, vertex shares, vertex usage, and percent of shares allotted to the vertex.

-t
Prints the fairshare tree in a hierarchical format.

--version
The pbsfs command returns its PBS version information and exits. This option can only be used alone.

It is not recommended to be scheduling jobs when you use the following options:
SG-24 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
-d
Decays the fairshare tree by the amount specified in the fairshare_decay_factor scheduler parameter.

-e
Trims fairshare tree to just the entities in the resource_group file. Unknown entities and their usage are
deleted; as a result the unknown group has no usage and no children.

-s <entity> <usage value>
Sets entity's usage value to usage value. Editing a non-leaf entity is ignored. All non-leaf entity usage values
are calculated each time you use the pbsfs command to make changes.

3.4.3.1 Output Formats for pbsfs

The pbsfs command can print output in three different formats:

pbsfs -g <entity>

Prints a detailed listing for the specified entity. Example:

pbsfs –g pbsuser3

fairshare entity: pbsuser3

Resgroup: 20

cresgroup: 22

Shares: 40

Percentage: 24.000000%

fairshare_tree_usage: 0.832973

usage: 1000 (cput)

usage/perc: 4167

Path from root:

TREEROOT : 0 1201 / 1.000 = 1201

group2 : 20 1001 / 0.600 = 1668

pbsuser3 : 22 1000 / 0.240 = 4167

pbsfs,

pbsfs -p

Prints the entire tree as a table, with data in columns. Example:

pbsfs

Fairshare usage units are in: cput

TREEROOT : Grp: -1 cgrp: 0 Shares: -1 Usage: 1201 Perc: 100.000%

group2 : Grp: 0 cgrp: 20 Shares: 60 Usage: 1001 Perc: 60.000%

pbsuser3 : Grp: 20 cgrp: 22 Shares: 40 Usage: 1000 Perc: 24.000%

pbsuser2 : Grp: 20 cgrp: 21 Shares: 60 Usage: 1 Perc: 36.000%

group1 : Grp: 0 cgrp: 10 Shares: 40 Usage: 201 Perc: 40.000%

pbsuser1 : Grp: 10 cgrp: 12 Shares: 50 Usage: 100 Perc: 20.000%

pbsuser : Grp: 10 cgrp: 11 Shares: 50 Usage: 100 Perc: 20.000%

unknown : Grp: 0 cgrp: 1 Shares: 0 Usage: 1 Perc: 0.000%
PBS Professional 2022.1 Simulate Guide SG-25

Chapter 3 Simulate Command Reference
pbsfs -t

Prints the entire tree as a tree, showing group-child relationships. Example:

pbsfs –t

 TREEROOT(0)

 group2(20)

 pbsuser3(22)

 pbsuser2(21)

 group1(10)

 pbsuser1(12)

 pbsuser(11)

 unknown(1)

3.4.3.2 Data Output by pbsfs

cresgroup, cgrp
Group ID of the entity

fairshare entity
The specified fairshare tree entity

fairshare usage units
The resource for which a scheduler accumulates usage for fairshare calculations. This defaults to cput (CPU
seconds) but can be set in a scheduler's configuration file.

fairshare_tree_usage
The entity's effective usage. See "Computing Effective Usage (fairshare_tree_usage)" on page 144 in the PBS
Professional Administrator’s Guide.

Path from root
The path from the root of the tree to the entity. A scheduler follows this path when comparing priority between
two entities.

Percentage, perc
The percentage of the shares in the tree allotted to the entity, computed as fairshare_perc. See "Computing
Target Usage for Each Vertex (fairshare_perc)" on page 144 in the PBS Professional Administrator’s Guide.

Resgroup, Grp
Group ID of the entity's parent group

Shares
The number of shares allotted to the entity

usage
The amount of usage by the entity

usage/perc
The value a scheduler uses to the pick which entity has priority over another. The smaller the number the higher
the priority.

3.4.4 See Also

"Using Fairshare" on page 138 in the PBS Professional Administrator’s Guide.
SG-26 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.5 pbsnodes

Query PBS host or vnode status, mark hosts free or offline, change the comment for a host, or output vnode information

3.5.1 Synopsis

pbsnodes [-o | -r] [-s <server name>] [-C <comment>] <hostname> [<hostname> ...]

pbsnodes [-l] [-s <server name>]

pbsnodes -v <vnode> [<vnode> ...] [-s <server name>]

pbsnodes -a[v] [-S[j][L]] [-F json|dsv [-D <delimiter>]] [- s <server name>]

pbsnodes [-H] [-S[j][L]] [-F json|dsv [-D <delimiter>]] <hostname> [<hostname> ...]

pbsnodes --version

3.5.2 Description

The pbsnodes command is used to query the status of hosts or vnodes, to mark hosts FREE or OFFLINE, to edit a
host's comment attribute, or to output vnode information.

3.5.2.1 Using pbsnodes

To list all vnodes:

pbsnodes -av

To print the status of the specified host or hosts, run pbsnodes with no options (except the -s option) and with a list of
hosts.

To print the command usage, run pbsnodes with no options and without a list of hosts.

To offline a single vnode in a multi-vnoded system, use:

qmgr -c "set node <vnode name> state=offline"

3.5.2.2 Output

The order in which hosts or vnodes are listed in the output of the pbsnodes command is undefined. Do not rely on out-
put being ordered.

If you print attributes, pbsnodes prints out only those attributes which are not at default values.

3.5.3 Options to pbsnodes

(no options)

If neither options nor a host list is given, the pbsnodes command prints usage syntax.

-a
Lists all hosts and all their attributes (available and used.)

When used with the -v option, lists all vnodes.

When listing a host with multiple vnodes:

The output for the jobs attribute lists all the jobs on all the vnodes on that host. Jobs that run on more than
one vnode will appear once for each vnode they run on.
PBS Professional 2022.1 Simulate Guide SG-27

Chapter 3 Simulate Command Reference
For consumable resources, the output for each resource is the sum of that resource across all vnodes on that
host.

For all other resources, e.g. string and Boolean, if the value of that resource is the same on all vnodes on
that host, the value is returned. Otherwise the output is the literal string "<various>".

-C <comment>
Sets the comment attribute for the specified host(s) to the value of comment. Comments containing spaces
must be quoted. The comment string is limited to 80 characters. Usage:

pbsnodes -C <comment> <hostname> [<hostname> ...]

To set the comment for a vnode:

qmgr -c "s n <vnode name> comment=<comment>"

-F dsv [-D <delimiter>]
Prints output in delimiter-separated value format. Optional delimiter specification. Default delimiter is vertical
bar ("|").

-F json
Prints output in JSON format.

-H <hostname> [<hostname> ...]
Prints all non-default-valued attributes for specified hosts and all vnodes on specified hosts.

-j
Displays the following job-related headers for specified vnodes:

Note that nmics is a custom resource that must be created by the administrator if you want it displayed here.

Each subjob is treated as a unique job.

-L
Displays output with no restrictions on column width.

Table 3-2: Output for -j Option

Header Width Description

vnode 15 Vnode name

state 15 Vnode state

njobs 6 Number of jobs on vnode

run 5 Number of running jobs at vnode

susp 6 Number of suspended jobs at vnode

mem f/t 12 Vnode memory free/total

ncpus f/t 7 Number of CPUs at vnode free/total

nmics f/t 7 Number of MICs free/total

ngpus f/t 7 Number of GPUs at vnode free/total

jobs No restriction List of job IDs on vnode
SG-28 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
-l
Lists all hosts marked as DOWN or OFFLINE. Each such host's state and comment attribute (if set) is listed.
If a host also has state STATE-UNKNOWN, it is listed. For hosts with multiple vnodes, only hosts where all
vnodes are marked as DOWN or OFFLINE are listed.

-o <hostname> [<hostname> ...]
Marks listed hosts as OFFLINE even if currently in use. This is different from being marked DOWN. A host
that is marked OFFLINE continues to execute the jobs already on it, but is removed from the scheduling pool
(no more jobs are scheduled on it.)

For hosts with multiple vnodes, pbsnodes operates on a host and all of its vnodes, where the hostname is
resources_available.host, which is the name of the parent vnode.

To offline all vnodes on a multi-vnoded machine:

pbsnodes -o <name of parent vnode>

To offline a single vnode on a multi-vnoded system, use:

Qmgr: qmgr -c "set node <vnode name> state=offline"

Requires PBS Manager or Operator privilege.

-r <hostname> [<hostname> ...]
Clears OFFLINE from listed hosts.

-S
Displays the following vnode information:

Note that nmics and OS are custom resources that must be created by the administrator if you want their values
displayed here.

-s <server name>
Specifies the PBS server to which to connect.

Table 3-3: Output for -S Option

Header Width Description

name 15 Vnode name

state 15 Vnode state

OS 8 Value of OS custom resource, if any

hardware 8 Value of hardware custom resource, if any

host 15 Hostname

queue 10 Value of vnode's queue attribute

ncpus 7 Number of CPUs at vnode

nmics 7 Number of MICs at vnode

mem 8 Vnode memory

ngpus 7 Number of GPUs at vnode

comment No restriction Vnode comment
PBS Professional 2022.1 Simulate Guide SG-29

Chapter 3 Simulate Command Reference
-v [<vnode> [<vnode> ...]]
Lists all non-default-valued attributes for each specified vnode.

With no arguments, prints one entry for each vnode in the PBS complex.

With one or more vnodes specified, prints one entry for each specified vnode.

When used with -a, lists all vnodes.

--version
The pbsnodes command returns its PBS version information and exits. This option can only be used alone.

3.5.4 Operands

<server name>
Specifies the server to which to connect. Default: default server.

<hostname> [<hostname> ...]
Specifies the host(s) to be queried or operated on.

<vnode> [<vnode> ...]
Specifies the vnode(s) to be queried or operated on.

3.5.5 Exit Status

Zero
Success

Greater than zero
• Incorrect operands are given

• pbsnodes cannot connect to the server

• There is an error querying the server for the vnodes

3.5.6 See Also

The PBS Professional Administrator's Guide, "qmgr” on page 152
SG-30 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.6 pbs_rstat

Shows status of PBS reservations

3.6.1 Synopsis

pbs_rstat [-B] [-f|-F] [-S] [<reservation ID>...]

pbs_rstat --version

3.6.2 Description

The pbs_rstat command shows the status of all reservations at the PBS server. Denied reservations are not dis-
played.

3.6.2.1 Required Privilege

This command can be run by a user with any level of PBS privilege. For full output, users without manager or operator
privilege cannot print custom resources which were created to be invisible to users.

3.6.3 Output

The pbs_rstat command displays output in any of brief, short, or full formats.

See section 6.8, “Reservation Attributes”, on page 303 and section 8.6, “Reservation States”, on page 367.

3.6.4 Options to pbs_rstat

-B
Brief output. Displays each reservation identifier only.

-f, -F
Full output. Displays all reservation attributes that are not set to the default value. Users without manager or
operator privilege cannot print custom resources which were created to be invisible to users.

-S
Short output. Displays a table showing the name, queue, owner, state, start time, duration, and end time of each
reservation.

--version
The pbs_rstat command returns its PBS version information and exits. This option can only be used alone.

(no options)
Short output. Same behavior as -S option.

3.6.5 Operands

The pbs_rstat command accepts one or more reservation ID operands.

Format for an advance or job-specific reservation:

R<sequence number>[.<server name>][@<remote server>]
PBS Professional 2022.1 Simulate Guide SG-31

Chapter 3 Simulate Command Reference
Format for a standing reservation:

S<sequence number>[.<server name>][@<remote server>]

Format for a maintenance reservation:

M<sequence number>[.<server name>][@<remote server>]

@<remote server> specifies a reservation at a server other than the default server.

3.6.6 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "Reservation Attributes” on page 303
SG-32 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.7 pbs_rsub

Creates a PBS reservation

3.7.1 Synopsis

For advance and standing reservations:

pbs_rsub [-D <duration>] [-E <end time>] [-g <group list>] [-G <auth group list>] [-H <auth host list>] [-I <block
time>] [-l <placement>] [-l <resource request>] [-N <reservation name>] [-q <destination>] [-r <recurrence
rule>] [-R <start time>] [-u <user list>] [-U <auth user list>] [-W <attribute value list>]

For job-specific now reservations:

pbs_rsub [-I <block time>] --job <job ID>

For maintenance reservations:

pbs_rsub [-D <duration>] [-E <end time>] [-g <group list>] [-G <auth group list>] [-H <auth host list>] [-N
<reservation name>] [-q <destination>] [-R <start time>] [-u <user list>] [-U <auth user list>] --hosts <host
list>

For version information:

pbs_rsub --version

3.7.2 Description

The pbs_rsub command is used to create advance, standing, or maintenance reservations. For creating job-specific
start reservations, see “qsub” on page 216 of the PBS Professional Reference Guide.

• An advance reservation reserves specific resources for the requested time period.

• A standing reservation reserves specific resources for recurring time periods.

• A job-specific start reservation is created immediately using a running job's resources, and the job is moved into the
reservation. You create job-specific start reservations using qsub -Wcreate_resv_from_job=true on a
running job or when you qalter a job to set the job's create_resv_from_job attribute to True. See the qsub
command.

• A maintenance reservation reserves the specified hosts for the specified time regardless of other circumstances.

Advance, standing, and job-specific reservations are "job reservations", to distinguish them from maintenance reserva-
tions. When a reservation is created, it has an associated queue.

To get information about a reservation, use the pbs_rstat command.

To delete a reservation, use the pbs_rdel command. Do not use the qdel command.

3.7.2.1 Reservation Timing

Bear in mind that jobs and reservations that were created before you took the snapshot keep their dates and times, which
may be in the past.

3.7.2.2 Job Reservations

After an advance or standing reservation is requested, it is either confirmed or denied. Once the reservation has been
confirmed, authorized users submit jobs to the reservation's queue via qsub and qmove.
PBS Professional 2022.1 Simulate Guide SG-33

Chapter 3 Simulate Command Reference
A confirmed job reservation will accept jobs at any time. The jobs in its queue can run only during the reservation
period. Jobs in a single advance reservation or job-specific reservation can run only during the reservation's time slot,
and jobs in a standing reservation can run only during the time slots of occurrences of the standing reservation.

When an advance reservation ends, all of its jobs are deleted, whether running or queued. When an occurrence of a
standing reservation ends, only its running jobs are deleted; those jobs still in the queue are not deleted.

3.7.2.3 Maintenance Reservations

You can create maintenance reservations using pbs_rsub --hosts <host list>. Maintenance reservations are
designed to make the specified hosts available for the specified amount of time, regardless of what else is happening:

• You can create a maintenance reservation that includes or is made up of vnodes that are down or offline.

• Maintenance reservations ignore the value of a vnode's resv_enable attribute.

• PBS immediately confirms any maintenance reservation.

• Maintenance reservations take precedence over other reservations; if you create a maintenance reservation that over-
laps an advance or standing job reservation, the overlapping vnodes become unavailable to the job reservation, and
the job reservation is in conflict with the maintenance reservation. PBS looks for replacement vnodes; see "Reserva-
tion Fault Tolerance" on page 401 in the PBS Professional Administrator’s Guide.

PBS will not start any new jobs on vnodes overlapping or in a maintenance reservation. However, jobs that were already
running on overlapping vnodes continue to run; you can let them run or requeue them.

You cannot specify place or select for a maintenance reservation; these are created by PBS:

• PBS creates the reservation's placement specification so that hosts are assigned exclusively to the reservation. The
placement specification is always the following:

-lplace=exclhost
• PBS sets the reservation's resv_nodes attribute value so that all CPUs on the reserved hosts are assigned to the

maintenance reservation. The select specification is always the following:

-lselect=host=<host1>:ncpus=<number of CPUs at host1>+host=<host2>:ncpus=<number of CPUs at
host2>+...

Maintenance reservations are prefixed with M. A maintenance reservation ID has the format:

M<sequence number>.<server name>

You cannot create a recurring maintenance reservation.

Creating a maintenance reservation does not trigger a scheduling cycle.

You must have manager or operator privilege to create a maintenance reservation.

3.7.2.4 Requirements

When using pbs_rsub to request a standing, advance, or maintenance reservation, you must specify two of the follow-
ing options: -R, -E, and -D. The resource request -l walltime can be used instead of the -D option.

If you want to run jobs in a reservation that will request exclusive placement, you must create the reservation with exclu-
sive placement via -l place=excl.

3.7.3 Options to pbs_rsub

-D <duration>
Specifies reservation duration. If the start time and end time are the only times specified, this duration time is
calculated.
SG-34 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
Format: Duration

Default: none

-E <end time>
Specifies the reservation end time. If start time and duration are the only times specified, the end time value is
calculated.

Format: Datetime.

Default: none

-g <group_list>
The group list is a comma-separated list of group names. The server uses entries in this list, along with an
ordered set of rules, to associate a group name with the reservation. The reservation creator's primary group is
automatically added to this list.

Format: <group>@<hostname>[,<group>@<hostname> ...]

-G <auth group list>
Comma-separated list of names of groups who can or cannot submit jobs to this reservation. Sets reservation's
Authorized_Groups attribute to auth group list.

This list becomes the acl_groups list for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

Group names are interpreted in the context of the server host, not the context of the host from which the job is
submitted.

See the Authorized_Groups reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Syntax:

[+|-]<group name>[,[+|-]<group name> ...]
Default: No groups are authorized to submit jobs

--hosts <host list>
Space-separated list of hosts to be included in maintenance reservation. PBS creates placement and resource
requests. Placement is always exclhost, and all CPUs of requested hosts are assigned to maintenance reserva-
tion. Cannot be used with the -l <placement>, -l <resource request>, or -I <block time>
options.

-H <auth host list>
Comma-separated list of hosts from which jobs can and cannot be submitted to this reservation. This list
becomes the acl_hosts list for the reservation's queue. More specific entries should be listed before more gen-
eral, because the list is read left-to-right, and the first match determines access. If the reservation creator speci-
fies this list, the creator's host is not automatically added to the list.

See the Authorized_Hosts reservation attribute in section 6.8, “Reservation Attributes”, on page 303.

Format: [+|-]<hostname>[,[+|-]<hostname> ...]

Default: All hosts are authorized to submit jobs
PBS Professional 2022.1 Simulate Guide SG-35

Chapter 3 Simulate Command Reference
--job <job ID>
Immediately creates and confirms a job-specific now reservation on the same resources as the job (including
resources inherited by the job), and places the job in the job-specific now reservation queue. Sets the job's
create_resv_from_job attribute to True. Sets the now reservation's reserve_job attribute to the ID of the job
from which the reservation was created, sets the reservation's Reserve_Owner attribute to the value of the
job's Job_Owner attribute, sets the reservation's resv_nodes attribute to the job's exec_vnode attribute, sets
the reservation's resources to match the job's schedselect attribute, and sets the reservation's Resource_List
attribute to the job's Resource_List attribute.

The now reservation's duration and start time are the same as the job's walltime and start time. If the job is peer
scheduled, the now reservation is created in the pulling complex.

Format: Boolean

Default: no default

Example:

pbs_rsub --job 1234.myserver

Can be used on running jobs only (jobs in the R state, with substate 42).

Cannot be used with job arrays, jobs already in reservations, or other users' jobs.

-l <placement>
The placement specifies how vnodes are reserved. The place statement can contain the following elements, in
any order:

-l place=[<arrangement>][:[<sharing>]][:[<grouping>]]

where

arrangement
Whether this reservation chunk is willing to share this vnode or host with other chunks from this reserva-
tion. One of free | pack | scatter | vscatter

sharing
Whether this reservation chunk is willing to share this vnode or host with other reservations or jobs. One of
excl | shared | exclhost

grouping
Whether the chunks from this reservation should be placed on vnodes that all have the same value for a
resource. Can have only one instance of group=<resource name>

free
Place reservation on any vnode(s).

pack
All chunks are taken from one host.

scatter
Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be
taken from the same vnode as another chunk.

vscatter
Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl
Only this reservation uses the vnodes chosen.

shared
This reservation can share the vnodes chosen.

exclhost
The entire host is allocated to the reservation.
SG-36 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
group=<resource name>
Chunks are grouped according to the specified resource. All vnodes in the group must have a common
value for resource, which can be either the built-in resource host or a custom vnode-level resource.

Resource name must be a string or a string array.

If you want to run jobs in the reservation that will request exclusive placement, you must create the reservation
with exclusive placement via -l place=excl.

The place statement cannot start with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override reservation placement requests.

See section 6.10, “Vnode Attributes”, on page 320.

Cannot be used with --hosts option.

-l <resource request>
The resource request specifies the resources required for the reservation. These resources are used for the limits
on the queue that is dynamically created for the reservation. The aggregate amount of resources for currently
running jobs from this queue will not exceed these resource limits. Jobs in the queue that request more of a
resource than the queue limit for that resource are not allowed to run. Also, the queue inherits the value of any
resource limit set on the server, and these are used for the job if the reservation request itself is silent about that
resource. A non-privileged user cannot submit a reservation requesting a custom resource which has been cre-
ated to be invisible or read-only for users.

Resources are requested by using the -l option, either in chunks inside of selection statements, or in job-wide
requests using <resource name>=<value> pairs.

Requesting resources in chunks:

-l select=[N:]<chunk>[+[N:]<chunk> ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

Requesting job-wide resources:

-l <resource name>=<value>[,<resource name>=<value> ...]

Default: One chunk containing one CPU.

Cannot be used with --hosts option.

-N <reservation name>
Specifies a name for the reservation.

Format: Reservation Name. See "Reservation Name” on page 358.

Default: None.

-q <server>
Specifies the server at which to create the reservation.

Default: Default server

-r <recurrence rule>
Specifies rule for recurrence of standing reservations. Rule must conform to iCalendar syntax, and is specified
using a subset of parameters from RFC 2445.

Valid syntax for recurrence rule takes one of two forms:

FREQ=<freq spec>;COUNT=<count spec>;<interval spec>

or

FREQ=<freq spec>;UNTIL=<until spec>;<interval spec>

where
PBS Professional 2022.1 Simulate Guide SG-37

Chapter 3 Simulate Command Reference
freq spec
Frequency with which the standing reservation repeats. Valid values are:

WEEKLY|DAILY|HOURLY

count spec
The exact number of occurrences. Number up to 4 digits in length.

Format: Integer.

interval spec
Specifies interval. Format is one or both of:

BYDAY=MO|TU|WE|TH|FR|SA|SU

or

BYHOUR=0|1|2|...|23

When using both, separate them with a semicolon.

Elements specified in the recurrence rule override those specified in the arguments to the -R and -E options.
For example, the BYHOUR specification overrides the hourly part of the -R option. For example, -R
0730 -E 0830 ... BYHOUR=9 results in a reservation that starts at 9:30 and runs for 1 hour.

until spec
Occurrences will start up to but not after date and time specified. Format:

<YYYYMMDD>[T<HHMMSS>]

Note that the year-month-day section is separated from the hour-minute-second section by a capital T.

Requirements:

• The recurrence rule must be on one unbroken line and must be enclosed in double quotes.

• A start and end date must be used when specifying a recurrence rule. See the R and E options.

• The PBS_TZID environment variable must be set at the submission host. The format for PBS_TZID is a
timezone location. Examples: America/Los_Angeles, America/Detroit, Europe/Berlin,
Asia/Calcutta. See the PBS Professional User's Guide.

• Spaces are not allowed.

Examples of Standing Reservations

For a reservation that runs every day from 8am to 10am, for a total of 10 occurrences:

pbs_rsub -R 0800 -E 1000 -r "FREQ=DAILY;COUNT=10"

Every weekday from 6am to 6pm until December 10 2008

pbs_rsub -R 0600 -E 1800 -r "FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR;UNTIL=20081210"

Every week from 3pm to 5pm on Monday, Wednesday, and Friday, for 9 occurrences, i.e., for three weeks:

pbs_rsub -R 1500 -E 1700 -r "FREQ=WEEKLY;BYDAY=MO,WE,FR;COUNT=3"

-R <start time>
Specifies reservation starting time. If the reservation's end time and duration are the only times specified, this
start time is calculated.

If the day, DD, is not specified, it defaults to today if the time hhmm is in the future. Otherwise, the day is set to
tomorrow. For example, if you submit a reservation with the specification -R 1110 at 11:15 a.m., it is inter-
preted as being for 11:10am tomorrow. If the month portion, MM, is not specified, it defaults to the current
month, provided that the specified day DD, is in the future. Otherwise, the month is set to next month. Similar
rules apply to the two other optional, left-side components.

Format: Datetime

-u <user list>
Not used. Comma-separated list of user names.
SG-38 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
Format: <username>[@<hostname>][,<username>[@<hostname>] ...]

Default: None.

-U <auth user list>
Comma-separated list of users who are and are not allowed to submit jobs to this reservation. Sets reservation's
Authorized_Users attribute to auth user list.

This list becomes the acl_users attribute for the reservation's queue.

More specific entries should be listed before more general, because the list is read left-to-right, and the first
match determines access. The reservation creator's username is automatically added to this list, whether or not
the reservation creator specifies this list.

If both the Authorized_Users and Authorized_Groups reservation attributes are set, a user must belong to both
in order to be able to submit jobs to this reservation.

See the Authorized_Users reservation attribute in “Reservation Attributes” on page 303 of the PBS Profes-
sional Reference Guide.

Syntax:

[+|-]<username>[@<hostname>][,[+|-]<username>[@<hostname>]...]
Default: Job owner only.

-W <extended options>
This allows you to define other attributes for the reservation or perform other actions.

delete_idle_time=<allowed idle time>
Deletes the reservation after the specified amount of idle time. Applies to each instance of a standing reser-
vation.

--version
The pbs_rsub command returns its PBS version information and exits. This option can only be used alone.

3.7.4 Output

The pbs_rsub command returns the reservation identifier.

Format for an advance or job-specific reservation:

R<sequence number>.<server name>

The associated queue's name is the prefix, R<sequence number>.

Format for a standing reservation:

S<sequence number>.<server name>

The associated queue's name is the prefix, S<sequence number>.

Format for a maintenance reservation:

M<sequence number>.<server name>

3.7.5 See Also

"Reserving Resources", on page 137 of the PBS Professional User’s Guide, "Reservations" on page 195 in the PBS Pro-
fessional Administrator’s Guide, and “Reservation Attributes” on page 303 of the PBS Professional Reference Guide
PBS Professional 2022.1 Simulate Guide SG-39

Chapter 3 Simulate Command Reference
3.8 pbs_snapshot

Linux only. Captures PBS workload and configuration data

3.8.1 Synopsis

pbs_snapshot -h, --help

pbs_snapshot -o <output directory path> [--accounting-logs=<number of days>] [--additional-hosts=<hostname
list>] [--basic] [--config-only] [--daemon-logs=<number of days>] [-H <server host>] [-l <log level>]
[--map=<file path>] [--obfuscate] [--with-sudo]

pbs_snapshot [--obf-snap <path to snapshot>]

pbs_snapshot --version

3.8.2 Description

You use pbs_snapshot to capture PBS workload and configuration data. This tool is written in Python and uses PTL
libraries, including PBSSnapUtils, to extract the data. You can optionally anonymize the PBS data during or after captur-
ing it. The pbs_snapshot command captures data from all multischeds. The command detects which daemon or dae-
mons are running on the host where it is collecting information, and captures daemon and system data accordingly. If no
PBS daemons are running, the command collects system information. The output tarball contains information about the
host specified via the -H option, or if that is not specified, the local host. If you specify additional hosts, the command
creates a tarball for each additional host and includes it as a sub-tarball in the output.

• To supply information for simulation that you will use to tune your site, capture standard PBS configuration and
node information via the --basic option.

• To supply information to PBS Cloud, capture PBS configuration file information via the --config-only option.

• For debugging your site, capture everything via the default behavior (do not specify --basic or --con-
fig-only).

3.8.2.1 Required Privilege

The pbs_snapshot command allows you to use the sudo infrastructure provided by the PTL framework to capture
root-owned information via --with-sudo. All other information is collected as a normal user. If you need to run
pbs_snapshot as a non-privileged user, and without using the PTL --with-sudo infrastructure, you must be root
if you want root-owned information to be collected.

3.8.2.2 Restrictions

The pbs_snapshot command is not available on Windows.
SG-40 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.8.3 Options to pbs_snapshot

--accounting-logs=<number of days>
Specifies number of days of accounting logs to be collected; this count includes the current day.

Value of number of days must be >=0:

• If number of days is 0, no logs are captured.

• If number of days is 1, only the logs for the current day are captured.

Default: pbs_snapshot collects 30 days of accounting logs

--additional-hosts=<hostname list>
Specifies that pbs_snapshot should gather data from the specified list of additional hosts. Launches the
pbs_snapshot command on each specified host, creates a tarball there named <hostname>_snapshot.tgz,
and includes it as a sub-tarball in the output for the main output. If you use the --with-sudo option, each
launched copy uses that option as well.

The command does not query the server when it runs at a non-server host.

The command collects a full snapshot, including the following information:

• Daemon logs, for the number of days of logs being captured, specified via the --daemon-logs=<num-
ber of days> option

• The PBS_HOME/<daemon>_priv directory

• Accounting logs if server daemon runs on host

• System information

Format for hostname list is a comma-separated list of one or more hostnames:

<hostname>[, <hostname> ...]
PBS Professional 2022.1 Simulate Guide SG-41

Chapter 3 Simulate Command Reference
--basic
Captures basic PBS configuration and node information only. Captures the following:

Can be combined with other options such as --accounting-logs and --daemon-logs in order to cap-
ture additional information.

We also list the contents in section 3.8.4.2, “Output Contents”, on page 45.

Table 3-4: PBS Configuration Information Captured with --basic Option

Directory or
File

Output File Description of Captured Information

pbs.conf Copy of /etc/pbs.conf on server host

server qstat_Bf.out Output of qstat -Bf

qstat_Qf.out Output of qstat -Qf

server_priv resourcedef Copy of server_priv/resourcedef file

config Copy of server_priv/config file

scheduler qmgr_lsched.out Output of qmgr -c 'list sched'

sched_priv for
each scheduler
instance

sched_priv Copy of each scheduler's sched_priv directory

hook qmgr_lpbshook.out Output of qmgr -c 'list pbshook'

qmgr_ph_default.out Output of qmgr -c 'print hook @default'

mom_priv on
server host only, if
it exists

config on server host
only, if it exists

Copy of mom_priv/config file

node pbsnodes_va.out Output of pbsnodes -va

reservation pbs_rstat_f.out Output of pbs_rstat -f

job qstat_f.out Output of qstat -f

system os_info OS information

pbs_environment Copy of pbs_environment file

pbs_snapshot.log Log of pbs_snapshot execution

ctime Timestamp of when the snapshot was taken
SG-42 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
--config-only
Captures PBS configuration file information only. Captures the following:

Can be combined with other options such as --accounting-logs and --daemon-logs in order to cap-
ture additional information.

We also list the contents in section 3.8.4.2, “Output Contents”, on page 45.

--daemon-logs=<number of days>
Specifies number of days of daemon logs to be collected; this count includes the current day.

Value of number of days must be >=0:

• If number of days is 0, no logs are captured.

• If number of days is 1, only the logs for the current day are captured.

Default: pbs_snapshot collects 5 days of daemon logs

-h, --help
Prints usage and exits.

Table 3-5: PBS Configuration Information Captured with --config-only Option

Directory or
File

Output File Description of Captured Information

pbs.conf Copy of /etc/pbs.conf on server host

server qstat_Bf.out Output of qstat -Bf

qstat_Qf.out Output of qstat -Qf

server_priv resourcedef Copy of server_priv/resourcedef file

config Copy of server_priv/config file

scheduler qmgr_lsched.out Output of qmgr -c 'list sched'

sched_priv for
each scheduler
instance

dedicated_time Copy of dedicated_time file

holidays Copy of holidays file

resource_group Copy of resource_group file

sched_config Copy of sched_config file

hook qmgr_lpbshook.out Output of qmgr -c 'list pbshook'

qmgr_ph_default.out Output of qmgr -c 'print hook @default'

mom_priv only
for server host, if
it exists

config on server host
only, if it exists

Copy of mom_priv/config file

system os_info OS information

pbs_environment Copy of pbs_environment file

pbs_snapshot.log Log of pbs_snapshot execution

ctime Timestamp of when the snapshot was taken
PBS Professional 2022.1 Simulate Guide SG-43

Chapter 3 Simulate Command Reference
-H <hostname>
Specifies hostname for host whose retrieved data is to be at the top level in the output tarball. If not specified,
pbs_snapshot puts data for the local host at the top level in the output tarball.

-l <log level>
Specifies level at which pbs_snapshot writes its log. The log file is pbs_snapshot.log, in the output
directory path specified using the -o <output directory path> option.

Valid values, from most comprehensive to least: DEBUG2, DEBUG, INFOCLI2, INFOCLI, INFO, WARN-
ING, ERROR, FATAL

Default: INFOCLI2

--map=<file path>
Specifies path for file containing obfuscation map, which is a <key>:<value> pair-mapping of obfuscated data.
Path can be absolute or relative to current working directory.

Default: pbs_snapshot writes its obfuscation map in a file called "obfuscate.map" in the location specified
via the -o <output directory path> option.

Can only be used with the --obfuscate option.

-o <output directory path>
Path to directory where pbs_snapshot writes its output tarball. Required. Path can be absolute or relative to
current working directory.

For example, if you specify "-o /tmp", pbs_snapshot writes "/tmp/snapshot_<timestamp>.tgz".

The output directory path must already exist.

--obfuscate
Obfuscates (anonymizes) or deletes sensitive PBS data being captured by pbs_snapshot.

• Obfuscates the following data: euser, egroup, project, Account_Name, operators, managers,
group_list, Mail_Users, User_List, server_host, acl_groups, acl_users, acl_resv_groups,
acl_resv_users, sched_host, acl_resv_hosts, acl_hosts, Job_Owner, exec_host, Host, Mom,
resources_available.host, resources_available.vnode

• Deletes the following data: Variable_List, Error_Path, Output_Path, mail_from, Mail_Points,
Job_Name, jobdir, Submit_arguments, Shell_Path_List

--obf-snap <path to snapshot>
Obfuscates (anonymizes) or deletes sensitive PBS data already captured in an existing snapshot. Path can be a
snapshot .tar file previously generated by pbs_snapshot, or a directory created by untarring a snapshot.
Obfuscated snapshot is created with the name "<directory or original snapshot>_obf.tgz".

• Obfuscates the following data: euser, egroup, project, Account_Name, operators, managers,
group_list, Mail_Users, User_List, server_host, acl_groups, acl_users, acl_resv_groups,
acl_resv_users, sched_host, acl_resv_hosts, acl_hosts, Job_Owner, exec_host, Host, Mom,
resources_available.host, resources_available.vnode

• Deletes the following data: Variable_List, Error_Path, Output_Path, mail_from, Mail_Points,
Job_Name, jobdir, Submit_arguments, Shell_Path_List

If the snapshot contains snapshots of multiple hosts, each snapshot must be obfuscated individually.

--version
The pbs_snapshot command prints its PBS version information and exits. Can only be used alone.

--with-sudo
Uses the PTL sudo infrastructure in order capture root-owned information via sudo. (Information not owned
by root is captured using normal privilege, not root privilege.) With this option, you do not need to prefix your
pbs_snapshot command with sudo, and you do not need root privilege.
SG-44 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.8.4 Output

3.8.4.1 Output Location

You must use the -o <output directory path> option to specify the directory where pbs_snapshot writes
its output. The path can be absolute or relative to current working directory. The output directory must already exist. As
an example, if you specify "-o /tmp", pbs_snapshot writes "/tmp/snapshot_<timestamp>.tgz".

3.8.4.2 Output Contents

The pbs_snapshot command writes the output for the local host and each specified remote host as a tarball. Tarballs
for remote hosts are included in the main tarball.

The command captures JSON output from qstat-f -F json and pbsnodes -av -F json.

The main tarball contains the following directory structure, files, and tarballs, and lists which of those elements appear in
a tarball produced by the --basic and --config-only options:

Table 3-6: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only

server/ qstat_B.out Output of qstat -B

qstat_Bf.out Output of qstat -Bf Yes Yes

qmgr_ps.out Output of qmgr print server

qstat_Q.out Output of qstat -Q

qstat_Qf.out Output of qstat -Qf Yes Yes

qmgr_pr.out Output of qmgr print resource

server_priv/ Copy of the PBS_HOME/server_priv directory.

Core files are captured separately; see core_file_bt/.

resourcedef resourcedef

config

accounting/ Accounting logs from
PBS_HOME/server_priv/accounting/
directory for the number of days specified
via --accounting-logs option

server_logs/ Server logs from the PBS_HOME/server_logs directory for the num-
ber of days specified via --daemon-logs option
PBS Professional 2022.1 Simulate Guide SG-45

Chapter 3 Simulate Command Reference
job/ qstat.out Output of qstat

qstat_f.out Output of qstat -f Yes

qstat_f_F_json.out Output of qstat -f -F json

qstat_t.out Output of qstat -t

qstat_tf.out Output of qstat -tf

qstat_x.out Output of qstat -x

qstat_xf.out Output of qstat -xf

qstat_ns.out Output of qstat -ns

qstat_fx_F_dsv.out Output of qstat -fx -F dsv

qstat_f_F_dsv.out Output of qstat -f -F dsv

node/ pbsnodes_va.out Output of pbsnodes -va Yes

pbsnodes_a.out Output of pbsnodes -a

pbsnodes_avSj.out Output of pbsnodes -avSj

pbsnodes_aSj.out Output of pbsnodes -aSj

pbsnodes_avS.out Output of pbsnodes -avS

pbsnodes_aS.out Output of pbsnodes -aS

pbsnodes_aFdsv.out Output of pbsnodes -aF dsv

pbsnodes_avFdsv.out Output of pbsnodes -avF dsv

pbsnodes_avFjson.out Output of pbsnodes -avF json

qmgr_pn_default.out Output of qmgr print node
@default

mom_priv/ Copy of the PBS_HOME/mom_priv directory.

Core files are captured separately; see core_file_bt/.

mom_priv/con
fig, only from
server host

mom_logs/ MoM logs from the PBS_HOME/mom_logs directory for the number
of days specified via --daemon-logs option

comm_logs/ Comm logs from the PBS_HOME/comm_logs directory for the number
of days specified via --daemon-logs option

sched_priv/ Copy of the PBS_HOME/sched_priv directory, with all files.

Core files are not captured; see core_file_bt/.

Yes

sched_logs/ Scheduler logs from the PBS_HOME/sched_log directory. For a
snapshot of a live PBS complex, this is for the number of days spec-
ified via pbs_snapshot --daemon-logs. For a simulation
output snapshot, this is for the time simulated via simsh <path
to snapshot> sim -L.

Table 3-6: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
SG-46 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
sched_priv_<m
ultisched
name>/

Copy of the PBS_HOME/sched_priv_<multisched name> directory,
with all files.

Core files are not captured; see core_file_bt/.

Yes dedicated_ti
me

holidays

resource_gro
up

sched_config

sched_logs_<m
ultisched
name>/

Multisched logs from the PBS_HOME/sched_log_<multisched
name> directory for the number of days specified via --dae-
mon-logs option

reservation/ pbs_rstat_f.out Output of pbs_rstat -f Yes

pbs_rstat.out Output of pbs_rstat

scheduler/ qmgr_lsched.out Output of qmgr list sched Yes Yes

hook/ qmgr_ph_default.out Output of qmgr -c 'print hook
@default'

Yes

qmgr_lpbshook.out Output of qmgr -c 'list
pbshook'

Yes Yes

datastore/ pg_log/ Copy of the PBS_HOME/datas-
tore/pg_log directory for the number of
days specified via --daemon-logs
option

Table 3-6: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
PBS Professional 2022.1 Simulate Guide SG-47

Chapter 3 Simulate Command Reference
core_file_bt/ Stack backtrace from core files

sched_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/sched_priv

sched_priv_<multi-
sched name>

Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/sched_priv_<multisched
name>

server_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/server_priv

mom_priv/ Files containing the output of thread
apply all backtrace full on all
core files captured from
PBS_HOME/mom_priv

misc/ Files containing the output of thread
apply all backtrace full on
any other core files found inside
PBS_HOME

Table 3-6: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
SG-48 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.8.5 Examples

pbs_snapshot -o /tmp

Writes a snapshot to /tmp/snapshot_<timestamp>.tgz that includes 30 days of accounting logs and 5 days of
daemon logs from the server host.

pbs_snapshot --daemon-logs=1 --accounting-logs=1 -o /tmp --obfuscate --map=mapfile.txt

system/ pbs_probe_v.out Output of pbs_probe -v

pbs_hostn_v.out Output of pbs_hostn -v $(host-
name)

pbs_environment Copy of PBS_HOME/pbs_environment file Yes

os_info Information about the OS Yes

process_info List of processes running on the system
when the snapshot was taken. Output of
ps -aux | grep [p]bs on Linux
systems, or tasklist /v on Windows
systems

ps_leaf.out Output of ps -leaf. Linux only.

lsof_pbs.out Output of lsof | grep [p]bs.
Linux only.

etc_hosts Copy of /etc/hosts file. Linux only.

etc_nsswitch_conf Copy of /etc/nsswitch.conf file. Linux
only.

vmstat.out Output of the command vmstat. Linux
only.

df_h.out Output of the command df -h. Linux
only.

dmesg.out Output of the dmesg command. Linux
only.

pbs.conf Copy of the pbs.conf file on the server host Yes Yes

ctime Contains the time in seconds since epoch when the snapshot was
taken

Yes Yes

pbs_snapshot.
log

Log messages written by pbs_snapshot Yes Yes

<remote host-
name>.tgz

Tarball of output from running the pbs_snapshot command at a
remote host

Table 3-6: Contents of Snapshot

Directory or
File

Directory
Contents

Description In Basic
In Config

Only
PBS Professional 2022.1 Simulate Guide SG-49

Chapter 3 Simulate Command Reference
Writes a snapshot to /tmp/snapshot_<timestamp>.tgz that includes 1 day of accounting and daemon logs. Obfuscates
the data and stores the data mapping in the map file named "mapfile.txt".
SG-50 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.9 pbs_stat

Displays information about workload and complex

3.9.1 Synopsis

pbs_stat --eval-formula

pbs_stat [-j] [-n] [-S]

pbs_stat [-r <resource list>] -U

3.9.2 Description

The pbs_stat command shows information about your workload and your complex.

3.9.3 Options to pbs_stat

--eval-formula
Compute the execution priority for each job, and display the jobs in priority order along with their priorities and
the contribution made by each element in the formula. To see the order in which jobs would run:

simsh <path to snapshot> pbs_stat --eval-formula
See "Using a Formula for Computing Job Execution Priority" on page 150 in the PBS Professional Administra-
tor’s Guide.

-j
Report job equivalence classes. Lists the number of jobs in each class, and the resources and queue that define
the class.

To look for job equivalence classes in your workload:

pbs_stat -j

-n
Report node equivalence classes. Lists the number of nodes in each class, and the resources available on each
class of node.

To look for node equivalence classes in your complex in order to check whether jobs can run:

pbs_stat -n

-r <resource list>
Used with the -U option. Specify which resources are listed when showing utilization via the -U option.
Replaces default resource listing.

Format: comma-separated list of resource names

Default: ncpus, mem, and count of nodes allocated to the job

-S
List jobs in the order in which they ran, with start and end times for each job. Also shows which jobs never ran.

To see the order in which jobs ran, along with their start and end times:

pbs_stat -S
PBS Professional 2022.1 Simulate Guide SG-51

Chapter 3 Simulate Command Reference
-U
Show current utilization of resources.

Default resources listed are ncpus, mem, and count of nodes allocated to jobs.

To change which resources are listed, use the -r option to specify a comma-separated list of resources to dis-
play.

--version
The command returns its version information and exits. This option can only be used alone.
SG-52 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.10 qdel

Deletes PBS jobs

3.10.1 Synopsis

qdel [-x] <job ID> [<job ID> ...]

qdel --version

3.10.2 Description

The qdel command deletes jobs in the order given, whether they are at the local server or at a remote server.

3.10.2.1 Usage

The qdel command is used without options to delete queued, running, held, or suspended jobs, while the -x option
gives it the additional capacity to delete finished or moved jobs. With the -x option, this command can be used on fin-
ished and moved jobs, in addition to queued, running, held, or suspended jobs.

When this command is used without the -x option, if job history is enabled, the deleted job's history is retained. The -x
option is used to additionally remove the history of the job being deleted.

3.10.2.2 Sequence of Events

1. The job's running processes are killed.

2. The epilogue runs.

3. Files that were staged in are staged out. This includes standard out (.o) and standard error (.e) files.

4. Files that were staged in or out are deleted.

5. The job's temp directory is removed.

6. The job is removed from the MoM(s) and the server.

3.10.3 Options to qdel

(no options)
Can delete queued, running, held, or suspended jobs. Does not delete job history for specified job(s).

-x
Can delete running, queued, suspended, held, finished, or moved jobs. Deletes job history for the specified
job(s).

--version
The qdel command returns its PBS version information and exits. This option can only be used alone.

3.10.4 Operands

The qdel command accepts one or more space-separated job ID operands. These operands can be job identifiers, job
array identifiers, subjob identifiers, or subjob range identifiers.
PBS Professional 2022.1 Simulate Guide SG-53

Chapter 3 Simulate Command Reference
Job IDs have the form:

<sequence number>[.<server name>][@<server name>]

Job arrays have the form:

<sequence number>[][.<server name>][@<server name>]

Subjobs have the form:

<sequence number>[<index>][.<server name>][@<server name>]

Ranges of subjobs have the form:

<sequence number>[<first>-<last>][.<server name>][@<server name>]

Job array identifiers must be enclosed in double quotes for some shells.

3.10.5 Standard Error

The qdel command writes a diagnostic message to standard error for each error occurrence.

3.10.6 Exit Status

Zero
Upon successful processing of input

Greater than zero
Upon error

3.10.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide
SG-54 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.11 qmgr

Administrator's command interface for managing PBS

3.11.1 Synopsis

At shell command line:

qmgr -c '<directive> [-a] [-e] [-n] [-z]'

qmgr -c 'help [<help option>]'

qmgr --version

3.11.2 Description

The PBS manager command, qmgr, provides a command-line interface to parts of PBS. The qmgr command is used to
create or delete queues, vnodes, and resources, to set or change vnode, queue, server, or scheduler attributes and
resources, and to view information about queues, vnodes, resource definitions, the server, and schedulers.

For a list of quick summaries of information about syntax, commands, attributes, operators, names, and values, type
"help" or "?" at the qmgr prompt. See section 3.11.9, “Printing Usage Information”, on page 70.

3.11.2.1 Mode of Operation

When you type qmgr -c '<directive>', qmgr performs its task and then exits.

3.11.3 Options to qmgr

The following table lists the options to qmgr:

Table 3-7: qmgr Options

Option Action

-a Aborts qmgr on any syntax errors or any requests rejected by a server.

-c '<direc-
tive>'

Executes a single command (directive) and exit qmgr. The directive must be enclosed in sin-
gle or double quote marks, for example:

qmgr -c "print server"

-c 'help [<help
option>]'

Prints out usage information. See "Printing Usage Information” on page 70

-e Echoes all commands to standard output

-n No commands are executed; syntax checking only is performed

-z No errors are written to standard error

--version The qmgr command returns its PBS version information and exits. This option can only be
used alone
PBS Professional 2022.1 Simulate Guide SG-55

Chapter 3 Simulate Command Reference
3.11.4 Directives

A qmgr directive is a command together with the object(s) to be operated on, the attribute(s) belonging to the object that
is to be changed, the operator, and the value(s) the attribute(s) will take. In the case of resources, you can set the type
and/or flag(s).

3.11.4.1 Directive Syntax

A directive is terminated by a newline or a semicolon (";"). Multiple directives may be entered on a single line. A direc-
tive may extend across lines by escaping the newline with a backslash ("\").

Comments begin with the "#" character and continue to the end of the line. Comments and blank lines are ignored by
qmgr.

3.11.4.1.i Server, Scheduler, Queue, Vnode Directives

Syntax for operating on servers, schedulers, queues, and vnodes:

<command> <object type> [<object name(s)>] [<attribute> <operator> <value>[,<attribute> <operator>
<value>,...]]

For information about attributes, see Chapter 6, "Attributes", on page 277.

3.11.4.1.ii Resource Directives

Syntax for operating on resources:

<command> <resource name> [<resource name> ...] [type = <type>][,flag = <flag(s)>]

For information about resources, see "Using PBS Resources" on page 227 in the PBS Professional Administrator’s Guide
and Chapter 5, "List of Built-in Resources", on page 259.

3.11.4.2 Using Directives

To use a directive from the command line, enclose the command and its arguments in single or double quotes.

qmgr -c '<command> <command arguments>'
For example, to have qmgr print server information and exit:

qmgr -c "print server"

3.11.4.3 Commands Used in Directives

Commands can be abbreviated to their minimum unambiguous form. Commands apply to all target objects unless
explicitly limited. The following table lists the commands, briefly tells what they do, and gives a link to a full descrip-
tion:

Table 3-8: qmgr Commands Used in Directives

Command
Abbr

.
Effect Description

active a Specifies active objects See section 3.11.6.1, “Making Objects Active”, on page 59

create c Creates object See section 3.11.6.2, “Creating Objects (Server, Scheduler,
Vnode, Queue)”, on page 60

delete d Deletes object See section 3.11.6.3, “Deleting Objects”, on page 61
SG-56 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.11.5 Arguments to Directive Commands

3.11.5.1 Object Arguments to Directive Commands

The qmgr command can operate on objects (servers, schedulers, queues, vnodes, and resources). Each of these can be
abbreviated inside a directive. The following table lists the objects and their abbreviations:

3.11.5.1.i Specifying Active Server

The qmgr command operates on objects (queues, vnodes, etc.) at the active server. There is always at least one active
server; the default server is the active server unless other servers have been made active. The default server is the server
managing the host where the qmgr command runs, meaning it is the server specified in that host's pbs.conf file.
Server names have the following format:

<hostname>[:<port number>]

exit Exits (quits) the qmgr ses-
sion

help or ? h, ? Prints usage to stdout See section 3.11.9, “Printing Usage Information”, on page 70

list l Lists object attributes and
their values

See section 3.11.8.1, “Listing Objects and Their Attributes”, on
page 68

print p Prints creation and config-
uration commands

See section 3.11.8.3, “Printing Creation and Configuration Com-
mands”, on page 69

quit q Quits (exits) the qmgr ses-
sion

set s Sets value of attribute See section 3.11.7.1, “Setting Attribute and Resource Values”, on
page 62

unset u Unsets value of attribute See section 3.11.7.2, “Unsetting Attribute and Resource Values”,
on page 62

Table 3-9: qmgr Objects

Object
Name

Abbr. Object Can Be Created/Deleted By: Can Be Modified By:

server s server No one (created at installation) Administrator, Operator, Manager

sched sc default scheduler No one (created at installation) Administrator, Operator, Manager

multisched Administrator, Manager Administrator, Operator, Manager

queue q queue Administrator, Operator, Manager Administrator, Operator, Manager

node n vnode Administrator, Operator, Manager Administrator, Operator, Manager

resource r resource Administrator, Manager Administrator, Manager

Table 3-8: qmgr Commands Used in Directives

Command
Abbr

.
Effect Description
PBS Professional 2022.1 Simulate Guide SG-57

Chapter 3 Simulate Command Reference
where hostname is the fully-qualified domain name of the host on which the server is running and port number is the port
number to which to connect. If port number is not specified, the default port number, 15001, is used.

• To specify the default server:

@default
• To specify a named server:

@<server name>
• To specify all active servers:

@active

3.11.5.1.ii Using Lists of Object Names

In a qmgr directive, object name(s) is a list of one or more names of specific objects. The administrator specifies the
name of an object when creating the object. The name list is in the form:

<object name>[@<server>][,<object name>[@<server>] ...]

where server is replaced in the directive with "default", "active", or the name of the server. The name list must conform
to the following:

• There must be no space between the object name and the @ sign.

• Name lists must not contain white space between entries.

• All objects in a list must be of the same type.

• Node attributes cannot be used as vnode names.

3.11.5.1.iii Specifying Object Type and Name

You can specify objects in the following ways:

• To act on the active objects of the named type, at the active server:

<object type>

For example, to list all active vnodes, along with their attributes, at the active server:

Qmgr: list node

• To act on the active objects of the named type, at a specified server:

<object type> @<server name> (note space before @ sign)

For example, to list all active vnodes at the default server, along with their attributes:

Qmgr: list node @default

For example, to print out all queues at the default server, along with their attributes:

qmgr -c "print queue @default"

• To act on a specific named object:

<object type> <object name>

For example, to list Node1 and its attributes:

Qmgr: list node Node1

To list queues workq, slowq, and fastq at the active server:

Qmgr: list queue workq,slowq,fastq

• To act on the named object at the specified server:

<object type> <object name>@<server name>

For example, to list Node1 at the default server, along with the attributes of Node1:

Qmgr: list node Node1@default
SG-58 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
To list queues Queue1 at the default server, Queue2 at Server2, and Queue3 at the active server:

Qmgr: list queue Queue1@default,Queue2@Server2,Queue3@active

3.11.5.2 Operators in Directive Commands

In a qmgr directive, operator is the operation to be performed with the attribute and its value. Operators are listed here:

Example 3-1: Set ACL for queue Queue1 to be Group1:

qmgr -c "set queue acl_groups = Group1"

Example 3-2: Add new group to ACL for queue Queue1:

qmgr -c "set queue acl_groups += Group2"

Example 3-3: Remove new group for queue Queue1:

qmgr -c "set queue acl_groups -= Group2"

When setting numerical resource values, you can use only the equal sign ("=").

3.11.5.3 Windows Requirements For Directive Arguments

Under Windows, use double quotes when specifying arguments to qmgr.

3.11.6 Operating on Objects (Server, Scheduler, Vnode, Queue)

3.11.6.1 Making Objects Active

Making objects active is a way to set up a list of objects, all of the same type, on which you can then use a single com-
mand. For example, if you are going to set the same attribute to the same value on several vnodes, you can make all of
the target vnodes active before using a single command to set the attribute value, instead of having to give the command
once for each vnode. You can make any type of object active except for resources.

When an object is active, it is acted upon when you specify its type but do not specify names. When you specify any
object names in a directive, active objects are not operated on unless they are named in the directive.

You can specify a list of active objects for each type of object. You can have active objects of multiple types at the same
time. The active objects of one type have no effect on whether objects of another type are active.

Objects are active only until the qmgr command is exited, so this feature can be used only at the qmgr prompt.

Each time you make any objects active at a given server, that list of objects replaces any active objects of the same kind
at that server. For example, if you have four queues at a particular server, and you make Q1 and Q2 active, then later
make Q3 and Q4 active, the result is that Q3 and Q4 are the only active queues.

Table 3-10: Operators in Directive Commands

Operator Effect

= Sets the value of the attribute or resource. If the attribute or resource has an existing value, the current
value is replaced with the new value.

+= Increases the current value of the attribute or resource by the amount in the new value. When used for a
string array, adds the new value as another string after a comma.

-= Decreases the current value of the attribute or resource by the specified amount. When used for a string
array, removes the first matching string.
PBS Professional 2022.1 Simulate Guide SG-59

Chapter 3 Simulate Command Reference
You can make different objects be active at different servers simultaneously. For example, you can set vnodes N1 and N2
at the default server, and vnodes N3 and N4 at server Server2 to be active at the same time.

To make all objects inactive, quit qmgr. When you quit qmgr, any object that was active is no longer active.

3.11.6.1.i Using the active Command

• To make the named object(s) of the specified type active:

active <object type> [<object name>[,<object name> ...]]

Example: To make queue Queue1 active:

qmgr -c "active queue Queue1"

Example: To make queues Queue1 and Queue2 at the active server be active, then enable them:

qmgr -c "active queue Queue1,Queue2"

qmgr -c "set queue enabled=True"

Example: To make queue Queue1 at the default server and queue Queue2 at Server2 be active:

qmgr -c "active queue Queue1@default,Queue2@Server2"

Example: To make vnodes N1, N2, N3, and N4 active, and then give them all the same value for their max_running
attribute:

qmgr -c "active node N1,N2,N3,N4"

qmgr -c "set node max_running = 2"

• To make all object(s) of the specified type at the specified server active:

active <object type> @<server name> (note space before @ sign)

Example: To make all queues at the default server active:

qmgr -c "active queue @default"

Example: To make all vnodes at server Server2 active:

qmgr -c "active node @Server2"

• To report which objects of the specified type are active:

active <object type>

The qmgr command prints a list of names of active objects of the specified type to stdout.

3.11.6.2 Creating Objects (Server, Scheduler, Vnode, Queue)

• To create one new object of the specified type for each name, and give it the specified name:

create <object type> <object name>[,<object name> ...] [[<attribute> = <value>] [,<attribute> = <value>] ...]

Can be used only with multischeds, queues, vnodes, and resources.

For example, to create a multisched named multisched_1 at the active server:

qmgr -c "create sched multisched_1"

For example, to create a queue named Q1 at the active server:

qmgr -c "create queue Q1"

For example, to create a vnode named N1 and a vnode named N2:

qmgr -c "create node N1,N2"

For example, to create queue Queue1 at the default server and queue Queue2 at Server2:

qmgr -c "create queue Queue1@default,Queue2@Server2"
SG-60 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
For example, to create vnodes named N1, N2, N3, and N4 at the active server, and to set their Mom attribute to
Host1 and their max_running attribute to 1:

qmgr -c "create node N1,N2,N3,N4 Mom=Host1, max_running = 1"

All objects of the same type at a server must have unique names. For example, each queue at server Server1 must have a
unique name. Objects at one server can have the same name as objects at another server.

You can create multiple objects of the same type with a single command. You cannot create multiple types of objects in
a single command.

To create multiple resources of the same type and flag, separate each resource name with a comma:

qmgr -c "create resource <resource>[,<resource> ...] type=<type>,flag=<flag(s)>"

3.11.6.2.i Examples of Creating Objects

Example 3-4: Create queue:

create queue fast priority=10,queue_type=e,enabled = true,max_running=0

Example 3-5: Create queue, set resources:

qmgr -c "create queue little"

qmgr -c "set queue little resources_max.mem=8mw,resources_max.cput=10"

3.11.6.3 Deleting Objects

• To delete the named object(s):

delete <object type> <object name>[,<object name> ...]

When you delete more than one object, do not put a space after a comma.

Can be used only with queues, vnodes, and resources.

For example, to delete queue Q1 at the active server:

qmgr -c "delete queue Q1"

For example, to delete vnodes N1 and N2 at the active server:

qmgr -c "delete node N1,N2"

For example, to delete queue Queue1 at the default server and queue Queue2 at Server2:

qmgr -c "delete queue Queue1@default,Queue2@Server2"

For example, to delete resource "foo" at the active server:

qmgr -c "delete resource foo"

• To delete the active objects of the specified type:

delete <object type>

For example, to delete the active queues:

qmgr -c "delete queue"

• To delete the active objects of the specified type at the specified server:

delete <object type> @<server name>

For example, to delete the active queues at server Server2:

qmgr -c "delete queue @Server2"

You can delete multiple objects of the same type with a single command. You cannot delete multiple types of objects in
a single command. To delete multiple resources, separate the resource names with commas.
PBS Professional 2022.1 Simulate Guide SG-61

Chapter 3 Simulate Command Reference
For example:

qmgr -c "delete resource r1,r2"

You cannot delete a resource that is requested by a job or reservation, or that is set on a server, queue, or vnode.

3.11.7 Operating on Attributes and Resources

You can specify attributes and resources for named objects or for all objects of a type.

3.11.7.1 Setting Attribute and Resource Values

• To set the value of the specified attribute(s) for the named object(s):

set <object type> <object name>[,<object name> ...] <attribute> = <value> [,<attribute> = <value> ...]

Each specified attribute is set for each named object, so if you specify three attributes and two objects, both objects
get all three attributes set.

• To set the attribute value for all active objects when there are active objects of the type specified:

set <object type> <attribute> = <value>
• To set the attribute value for all active objects at the specified server when there are active objects of the type speci-

fied:

set <object type> @<server name> <attribute> = <value>

For example, to set the amount of memory on a vnode:

qmgr -c "set node Vnode1 resources_available.mem = 2mb"

If the attribute is one which describes a set of resources such as resources_available, resources_default,
resources_max, resources_used, etc., the attribute is specified in the form:

<attribute name>.<resource name>

You can have spaces between attribute=value pairs.

3.11.7.1.i Examples of Setting Attribute Values

Example 3-6: Increase limit on queue:

qmgr -c "set queue fast max_running +=2"

Example 3-7: Set software resource on mynode:

qmgr -c'set node mynode resources_available.software = "myapp=/tmp/foo"'

Example 3-8: Set limit on queue:

qmgr -c "set queue max_running = 10"

Example 3-9: Set vnode offline:

qmgr -c 'set node state = "offline"'

3.11.7.2 Unsetting Attribute and Resource Values

You can use the qmgr command to unset attributes of any object.

• To unset the value of the specified attributes of the named object(s):

unset <object type> <object name>[,<object name> ...] <attribute>[,<attribute>...]
• To unset the value of specified attributes of active objects:

unset <object type> <attribute>[,<attribute>...]
• To unset the value of specified attributes of the named object:
SG-62 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
unset <object type> <object name> <attribute>[,<attribute>...]
• To unset the value of specified attributes of the named object:

unset <object type> @<server name> <attribute>[,<attribute>...]

3.11.7.2.i Example of Unsetting Attribute Value

Example 3-10: Unset limit on queue

qmgr -c "unset queue fast max_running"

3.11.7.3 Caveats and Restrictions for Setting Attribute and Resource

Values

• If the value includes whitespace, commas or other special characters, such as the # character, the value string must
be enclosed in single or double quotes. For example:
qmgr -c 'set node Vnode1 comment="Node will be taken offline Friday at 1:00 for memory upgrade."'

• You can set or unset attribute values for only one type of object in each command.

• You can use the qmgr command to set attributes of any object.

• You can have spaces between attribute names.

• Attribute and resource values must conform to the format for the attribute or resource type. Each attribute's type is
listed in Chapter 6, "Attributes", on page 277. Each format is described in Chapter 7, "Formats", on page 353.

• Most of a vnode's attributes may be set using qmgr. However, some must be set on the individual execution host in
Version 2 vnode configuration files, NOT by using qmgr. See "Configuring Vnodes" on page 45 in the PBS Profes-
sional Administrator’s Guide.

3.11.7.4 Setting Custom Resource Type

You can use the qmgr command to set or unset the type for custom resources.

Resource types can be the following; see section 7.2, “Resource Formats”, on page 359:

string

boolean

string_array

long

size

float

• To set a custom resource type:

set resource <resource name> type = <type>

Sets the type of the named resource to the specified type. For example:

Qmgr: qmgr -c "set resource foo type=string_array"

3.11.7.5 Setting Custom Resource Level and Consumability

When you define a custom resource, you specify whether it is server-level or host-level, and whether it is consumable or
not by setting resource accumulation flags via qmgr. A consumable resource is tracked, or accumulated, in the server,
queue or vnode resources_assigned attribute. The resource accumulation flags determine where the value of
resources_assigned.<resource name> is incremented.
PBS Professional 2022.1 Simulate Guide SG-63

Chapter 3 Simulate Command Reference
3.11.7.5.i Allowable Values for Resource Accumulation Flags

The value of <resource flags>, which is the resource accumulation flag for a resource can be one of the following:

Table 3-11: Resource Accumulation Flags

Flag Meaning

(no flags) Indicates a queue-level or server-level resource that is not consumable.

fh The amount is consumable at the host level for only the first vnode allocated to the job (vnode with first
task.) Must be consumable or time-based. Cannot be used with Boolean or string resources. .

This flag specifies that the resource is accumulated at the first vnode, meaning that the value of
resources_assigned.<resource> is incremented only at the first vnode when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

h Indicates a host-level resource. Used alone, means that the resource is not consumable. Required for any
resource that will be used inside a select statement. This flag selects hardware. This flag indicates that the
resource must be requested inside of a select statement.

Example: for a Boolean resource named "green":

Qmgr: create resource green type=boolean, flag=h

nh The amount is consumable at the host level, for all vnodes assigned to the job. Must be consumable or
time-based. Cannot be used with Boolean or string resources.

This flag specifies that the resource is accumulated at the vnode level, meaning that the value of
resources_assigned.<resource> is incremented at relevant vnodes when a job is allocated this
resource or when a reservation requesting this resource on this vnode starts.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.

q The amount is consumable at the queue and server level. When a job is assigned one unit of a resource
with this flag, the resources_assigned.<resource> attribute at the server and any queue is incre-
mented by one. Must be consumable or time-based.

This flag specifies that the resource is accumulated at the queue and server level, meaning that the value
of resources_assigned.<resource> is incremented at each queue and at the server when a job is allo-
cated this resource. When a reservation starts, allocated resources are added to the server's
resources_assigned attribute.

This flag is not used with dynamic consumable resources. The scheduler will not oversubscribe dynamic
consumable resources.
SG-64 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.11.7.5.ii When to Use Accumulation Flags

The following table shows when to use accumulation flags.

3.11.7.5.iii Example of Resource Accumulation Flags

When defining a static consumable host-level resource, such as a node-locked application license, you would use the "n"
and "h" flags.

When defining a dynamic resource such as a floating license, you would use no flags.

3.11.7.5.iv Resource Accumulation Flag Restrictions and Caveats

Numeric dynamic resources cannot have the q or n flags set. This would cause these resources to be under-used. These
resources are tracked automatically by the scheduler.

3.11.7.6 Setting Custom Resource Visibility

When you define a custom resource, you can specify whether unprivileged users have permission to view or request the
resource, and whether users can qalter a request for that resource. This is done by setting a resource permission flag
via qmgr.

3.11.7.6.i Allowable Values for Resource Permission Flags

The permission flag for a resource can be one of the following:

Table 3-12: When to Use Accumulation Flags

Resource
Category

Server Queue Host

Static, consumable flag = q flag = q flag = nh or fh

Static, not consumable flag = (none of h, n, q or f) flag = (none of h, n, q or f) flag = h

Dynamic server_dyn_res line in
sched_config,

flag = (none of h, n, q or f)

(cannot be used) Tracked using an
exechost_periodic hook

flag = h

Table 3-13: Resource Permission Flags

Flag Meaning

(no flag) Users can view and request the resource, and qalter a resource request for this resource.

i "Invisible". Users cannot view or request the resource. Users cannot qalter a resource request for this
resource.

r "Read only". Users can view the resource, but cannot request it or qalter a resource request for this
resource.
PBS Professional 2022.1 Simulate Guide SG-65

Chapter 3 Simulate Command Reference
3.11.7.6.ii Effect of Resource Permission Flags

• PBS Operators and Managers can view and request a resource, and qalter a resource request for that resource,
regardless of the i and r flags.

• Users, operators and managers cannot submit a job which requests a restricted resource. Any job requesting a
restricted resource will be rejected. If a manager needs to run a job which has a restricted resource with a different
value from the default value, the manager must submit the job without requesting the resource, then qalter the
resource value.

• While users cannot request these resources, their jobs can inherit default resources from
resources_default.<resource name> and default_chunk.<resource name>.

If a user tries to request a resource or modify a resource request which has a resource permission flag, they will get
an error message from the command and the request will be rejected. For example, if they try to qalter a job's
resource request, they will see an error message similar to the following:

"qalter: Cannot set attribute, read only or insufficient permission Resource_List.hps 173.mars"

3.11.7.6.iii Resource Permission Flag Restrictions and Caveats

• You can specify only one of the i or r flags per resource. If both are specified, the resource is treated as if only the i
flag were specified, and an error message is logged at the default log level and printed to standard error.

• Resources assigned from the default_qsub_arguments server attribute are treated as if the user requested them. A
job will be rejected if it requests a resource that has a resource permission flag whether that resource was requested
by the user or came from default_qsub_arguments.

• The behavior of several command-line interfaces is dependent on resource permission flags. These interfaces are
those which view or request resources or modify resource requests:

pbsnodes

Users cannot view restricted host-level custom resources.

pbs_rstat

Users cannot view restricted reservation resources.

pbs_rsub

Users cannot request restricted custom resources for reservations.

qalter

Users cannot alter a restricted resource.

qmgr

Users cannot print or list a restricted resource.

qselect

Users cannot specify restricted resources via -l Resource_List.

qsub

Users cannot request a restricted resource.

qstat

Users cannot view a restricted resource.
SG-66 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.11.7.7 Specifying Whether Custom Resource is Cached at MoM

You can make it faster for execution hooks to read custom job resources. Execution hooks cannot read custom job
resources via the event, only via the server. However, you can cache a copy of a custom job resource at the MoMs for
faster local reading by execution hooks, by setting the m flag for the resource. The job resources that can be cached are
found in the following job attributes:

exec_vnode
Resource_List
resources_used

To create a resource with the m flag set, include the flag. For example, to create two host-level consumable resources r1
and r2 of type long that will be cached at MoMs:

qmgr -c "create resource r1,r2 type=long,flag=mnh"

To unset this flag for r1:

qmgr -c "set resource r1 flag=nh"

You can combine this flag with any other resource flag. Job resources created in an exechost_startup hook have the m
flag set automatically.

3.11.7.7.i Caveats for Caching Custom Job Resources

Large numbers of job resources that are cached at MoMs can slow things down. If you don't need execution hooks to be
able to read a custom job resource often, don't cache the resource at the MoMs.

3.11.7.7.ii Examples of Defining Custom Resources and Setting Flags via qmgr

To set the type for a resource:

set resource <resource name> type = <type>

For example:

qmgr -c "set resource foo type=string_array"

To set the flags for a resource:

set resource <resource name> flag=<flag(s)>

For example:

qmgr -c "set resource foo flag=nh"

To set the type and flags for a resource:

set resource <resource name> type=<type>, flag=<flag(s)>

For example:

qmgr -c "set resource foo type=long,flag=nhi"

You can set multiple resources by separating the names with commas. For example:

qmgr -c "set resource r1, r2 type=long"

You cannot set the nh, fh, or q flag for a resource of type string, string_array, or Boolean.

You cannot set both the n and the f flags on one resource.

You cannot have the n or f flags without the h flag.

You cannot set both the i and r flags on one resource.

You cannot unset the type for a resource.
PBS Professional 2022.1 Simulate Guide SG-67

Chapter 3 Simulate Command Reference
You cannot set the type for a resource that is requested by a current or history job or reservation, or set on a server, queue,
or vnode.

You cannot set the flag(s) to h, nh, fh, or q for a resource that is currently requested by a current or history job or reser-
vation.

You cannot unset the flag(s) for a resource that is currently requested by a current or history job or a reservation, or set on
any server, queue, or vnode.

You cannot alter a built-in resource.

You can unset custom resource flags, but not their type.

3.11.8 Viewing Object, Attribute, and Resource Information

3.11.8.1 Listing Objects and Their Attributes

You can use the qmgr command to list attributes of any object, including attributes at their default values.

• To list the attributes, with associated values, of the named object(s):

list <object type> <object name>[,<object name> ...]
• To list values of the specified attributes of the named object:

list <object type> <object name> <attribute name>[, <attribute name>]...
• To list attributes, with associated values, of active objects of the specified type at the active server:

list <object type>
• To list all objects of the specified type at the specified server, with their attributes and the values associated with the

attributes:

list <object type> @<server name>
• To list attributes of the active server:

list server

 If no server other than the default server has been made active, lists attributes of the default server (it is the active
server).

• To list attributes of the specified server:

list server <server name>
• To list attributes of all schedulers:

list sched
• To list attributes of the specified scheduler:

list sched <scheduler name>
SG-68 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.11.8.1.i Examples of Listing Objects and Their Attributes

Example 3-11: List serverA's schedulers' attributes:

list sched @serverA

Example 3-12: List attributes for default server's scheduler(s):

l sched @default

Example 3-13: List PBS version for default server's scheduler(s):

l sched @default pbs_version

Example 3-14: List queues at a specified server:

list queue @server1

3.11.8.2 Listing Resource Definitions

You can use the qmgr list and print commands to list resource definitions showing resource name, type, and
flag(s).

• To list the name, type, and flag(s) of the named resource(s):

list resource <resource name>[,<resource name> ...]

or

print resource <resource name>[,<resource name> ...]
• To list name, type, and flag(s) of custom resources only:

list resource

or

print resource

or

print server (note that this also prints information for the active server)
• To list all custom resources at the specified server, with their names, types, and flags:

list resource @<server name>

or

print resource @<server name>
When used by a non-privileged user, qmgr prints only resource definitions for resources that are visible to non-privi-
leged users (those that do not have the i flag set).

3.11.8.3 Printing Creation and Configuration Commands

For printing the creation commands for any object.

• To print out the commands to create the named object(s) and set their attributes to their current values:

print <object type> <object name>[,<object name> ...]

where object name follows the name rules in section 3.11.5.1.ii, “Using Lists of Object Names”, on page 58.

• To print out the commands to create the named object and set its attributes to their current values:

print <object type> <object name> [<attribute name>[, <attribute name>]...]

where object name follows the name rules in section 3.11.5.1.ii, “Using Lists of Object Names”, on page 58.

• To print out the commands to create and configure the active objects of the named type:

print <object type>
• To print out the commands to create and configure all of the objects of the specified type at the specified server:
PBS Professional 2022.1 Simulate Guide SG-69

Chapter 3 Simulate Command Reference
print <object type> @<server name>
• To print out the commands to create each queue, set the attributes of each queue to their current values, and set the

attributes of the server to their current values:

print server
This is used for the server and queues.

Prints information for the active server. If there is no active server, prints information for the default server.

• To print out the creation commands for all schedulers:

print sched
• To print out the creation commands for the specified scheduler:

print sched <scheduler name>

3.11.8.4 Caveats for Viewing Information

Some attributes whose values are unset do not appear in the output of the qmgr command.

Definitions for built-in resources do not appear in the output of the qmgr command.

When a non-privileged user prints resource definitions, qmgr prints only resource definitions for resources that are visi-
ble to non-privileged users (those that do not have the i flag set).

3.11.9 Printing Usage Information

You use the help command or a question mark ("?") to invoke the qmgr built-in help function. You can request usage
information for any of the qmgr commands, and for topics including attributes, operators, names, and values.

• To print out usage information for the specified command or topic:

qmgr -c "help [<command or topic>]"

For example, to print usage information for the set command:

qmgr -c "help set"

Syntax: set object [name][,name...] attribute[.resource] OP value

3.11.10 Standard Input

When you start a qmgr session, the qmgr command reads standard input for directives until it reaches end-of-file, or it
reads the exit or quit command.

3.11.11 Standard Output

When you start a qmgr session, and standard output is connected to a terminal, qmgr writes a command prompt to stan-
dard output.

If you specify the -e option, qmgr echoes the directives it reads from standard input to standard output.

3.11.12 Standard Error

If you do not specify the -z option, the qmgr command writes a diagnostic message to standard error for each error
occurrence.
SG-70 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.11.13 Exit Status

0
Success

1
Error in parsing

2
Error in execution

3
Error connecting to server

4
Error making object active

5
Memory allocation error

3.11.14 See Also

The PBS Professional Administrator's Guide, “Attributes” on page 277 of the PBS Professional Reference Guide, “List
of Built-in Resources” on page 259 of the PBS Professional Reference Guide
PBS Professional 2022.1 Simulate Guide SG-71

Chapter 3 Simulate Command Reference
3.12 qselect

Selects specified PBS jobs

3.12.1 Synopsis

qselect [-a [<op>] <date and time>] [-A <account string>] [-c [<op>] <interval>] [-h <hold list>] [-H] [-J] [-l
<resource list>] [-N <name>] [-p [<op>] <priority>] [-P <project>] [-q <destination>] [-r <rerun>] [-s
<states>] [-t <time option> [<comparison>] <specified time>] [-T] [-u <user list>] [-x]

qselect --version

3.12.2 Description

The qselect command lists those jobs that meet the specified selection criteria. You can compare certain job attribute
values to specified values using a comparison operator shown as op in the option description.

You can select jobs, job arrays, or subjobs. You can select jobs from one server per call to the command.

Each option acts as a filter restricting which jobs are listed.

You can select jobs according to the values of some of the resources in the Resource_List job attribute. You can also
select jobs according the selection directive (although because this is a string, you can only check for equality or inequal-
ity.)

Jobs that are finished or moved are listed only when the -x or -H options are used. Otherwise, job selection is limited to
queued and running jobs.

3.12.2.1 Comparison Operations

You can select jobs by comparing the values of certain job attributes to values you specify. The following table lists the
comparison operations you can use:

For example, to select jobs whose Priority attribute has a value greater than 5:

qselect -p.gt.5

Where an optional comparison is not specified, the comparison operation defaults to .eq, meaning PBS checks whether
the value of the attribute is equal to the option argument.

Table 3-14: Comparison Operations

Operation Type of Comparison

.eq. The value of the job attribute is equal to the value of the option argument.

.ne. The value of the job attribute is not equal to the value of the option argument.

.ge. The value of the job attribute is greater than or equal to the value of the option argument.

.gt. The value of the job attribute is greater than the value of the option argument.

.le. The value of the job attribute is less than or equal to the value of the option argument.

.lt. The value of the job attribute is less than the value of the option argument.
SG-72 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.12.2.2 Required Permissions

When selecting jobs according to resource values, users without operator or manager privilege cannot specify custom
resources which were created to be invisible to unprivileged users.

3.12.3 Options to qselect

(no options)
Lists all jobs at the server which the user is authorized to list (query status of).

-a [<op>] <date and time>
Deprecated. Restricts selection to those jobs whose Execution_Time attribute qualifies when compared to the
date and time argument. You can select a range of execution times by using this option twice, to compare to a
minimum time and a maximum time.

The date and time argument has the format:

[[CC]YY]MMDDhhmm[.SS]
where MM is the two digits for the month, DD is the day of the month, hh is the hour, mm is the minute, and the
optional SS is the seconds. CC is the century and YY the year.

-A <account string>
Restricts selection to jobs whose Account_Name attribute matches the specified account string .

-c [<op>] <interval>
Restricts selection to jobs whose Checkpoint interval attribute meets the comparison criteria.

The interval argument can take one of the following values:

c

c=<minutes>

n

s

w

w=<minutes>

We give the range of interval values for the Checkpoint attribute the following ordered relationship:

n > s > c=<minutes> > c > u
(Information about w and w=<minutes> is not available.)

For an interval value of "u", only ".eq." and ".ne." are valid.
PBS Professional 2022.1 Simulate Guide SG-73

Chapter 3 Simulate Command Reference
-h <hold list>
Restricts the selection of jobs to those with a specific set of hold types. The holds in the Hold_Types job
attribute must be the same as those in the hold list argument, but can be in a different order.

The hold list argument is a string consisting of the single letter n, or one or more of the letters u, o, p, or s in
any combination. If letters are duplicated, they are treated as if they occurred once. The letters represent the
hold types:

-H
Restricts selection to finished and moved jobs.

-J
Limits selection to job arrays only.

-l <resource list>
Restricts selection of jobs to those with specified resource amounts. Resource must be job-wide, or be mem,
ncpus, or vmem.

The resource list is in the following format:

<resource name> <op> <value>[,<resource name> <op> <value> ...]

You must specify op, and you can use any of the comparison operators.

Because resource specifications for chunks using the select statement, and placement using the place statement,
are stored as strings, the only useful operators for these are .eq. and .ne.

Unprivileged users cannot specify custom resources which were created to be invisible to unprivileged users.

-N <name>
Restricts selection of jobs to those with the specified value for the Job_Name attribute.

-p [<op>]<priority>
Restricts selection of jobs to those with the specified Priority value(s).

-P <project>
Restricts selection of jobs to those matching the specified value for the project attribute.

Format: Project Name; see "Project Name” on page 357

-q <destination>
Restricts selection to those jobs at the specified destination.

The destination may take of one of the following forms:

<queue name>

Restricts selection to the specified queue at the default server.

@<server name>

Table 3-15: Hold Types

Letter Hold Type

n None

u User

o Other

p Bad password

s System
SG-74 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
Restricts selection to the specified server.

<queue name>@<server name>

Restricts selection to the specified queue at the specified server.

If the -q option is not specified, jobs are selected from the default server.

-r <rerun>
Restricts selection of jobs to those with the specified value for the Rerunable attribute . The option argument
rerun must be a single character, either y or n .

-s <states>
Restricts job selection to those whose job_state attribute has the specified value(s).

The states argument is a character string consisting of any combination of these characters: B, E, F, H, M, Q,
R, S, T, U, W, and X. (A repeated character is accepted, but no additional meaning is assigned to it.)

Jobs in any of the specified states are selected.

Job arrays are never in states R, S, T, or U. Subjobs may be in those states.

Table 3-16: Job States

State Meaning

B Job array has started execution

E The Exiting state

F The Finished state

H The Held state

M The Moved state

Q The Queued state

R The Running state

S The Suspended state

T The Transiting state

U Job suspended due to workstation user activity

W The Waiting state

X The eXited state. Subjobs only
PBS Professional 2022.1 Simulate Guide SG-75

Chapter 3 Simulate Command Reference
-t <time option> [<op>] <specified time>
Jobs are selected according to one of their time-based attributes. The time option specifies which time-based
attribute is tested. You give the specified time in datetime format. See Chapter 7, "Formats", on page 353.

The time option is one of the following:

To bracket a time period, use the -t option twice. For example, to select jobs using stime between noon and 3
p.m.:

qselect -ts.gt.09251200 -ts.lt.09251500

-T
Limits selection to jobs and subjobs.

Table 3-17: Sub-options to the -t Option

Time
Option

Time Attribute Option Format(s) Attribute Description

a Execution_Time Timestamp

Use datetime format to specify.

Time at which the job is eligible
for execution.

c ctime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time at which the job was created.

e etime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time when job became eligible to
run, i.e. was enqueued in an exe-
cution queue and was in the "Q"
state. Reset when a job moves
queues, or is held then released.
Not affected by qaltering.

g eligible_time Use duration format to specify. Amount of eligible time job
accrued waiting to run.

m mtime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time that the job was last modified,
changed state, or changed locations.

q qtime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Time that the job entered the current
queue.

s stime Timestamp

Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch

Time the job started. Updated when
job is restarted. .

t estimated.start_time Use datetime format to specify.
Printed by qstat in human-read-
able Date format. Output in
hooks as seconds since epoch.

Job's estimated start time.
SG-76 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
-u <user list>
Restricts selection to jobs owned by the specified usernames.

Syntax of user list:

<username>[@<hostname>][,<username>[@<hostname>],...]

Selects jobs which are owned by the listed users at the corresponding hosts. Hostnames may be wildcarded on
the left end, e.g. "*.nasa.gov". A username without a "@<hostname>" is equivalent to "<username>@*",
meaning that it is valid at any host.

-x
Selects finished and moved jobs in addition to queued and running jobs.

--version
The qselect command returns its PBS version information and exits. This option can only be used alone.

3.12.4 Standard Output

PBS writes a list of the selected job IDs to standard output. Each job ID is separated by white space. A job ID can repre-
sent a job, a job array, or a subjob. Each job ID has one of the forms:

<sequence number>.<server name>[@<server name>]

<sequence number>[].<server name>[@<server name>]

<sequence number>[<index>].<server name>[@<server name>]

@<server name> identifies the server which currently owns the job.

3.12.5 Standard Error

The qselect command writes a diagnostic message to standard error for each error occurrence.

3.12.6 Exit Status

Zero
Upon successful processing of all options presented to the qselect command

Greater than zero
If the qselect command fails to process any option

3.12.7 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, section 6.11, “Job Attributes”, on page
327, Chapter 5, "List of Built-in Resources", on page 259

3.12.8 Caveats

You cannot use qselect with rerunnable jobs; you cannot specify qselect -r y.
PBS Professional 2022.1 Simulate Guide SG-77

Chapter 3 Simulate Command Reference
3.13 qstat

Displays status of PBS jobs, queues, or servers

3.13.1 Synopsis

3.13.1.1 Displaying Job Status

Default format:

qstat [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

Long format:

qstat -f [-F json|dsv [-D <delimiter>]] [-E] [-J] [-p] [-t] [-w] [-x] [[<job ID> | <destination>] ...]

Alternate format:

qstat [-a | -H | -i | -r] [-E] [-G | -M] [-J] [-n [-1]] [-s [-1]] [-t] [-T] [-u <user list>] [-w] [[<job ID> | <destination>]
...]

3.13.1.2 Displaying Queue Status

Default format:

qstat -Q [<destination> ...]

Long format:

qstat -Q -f [-F json|dsv [-D <delimiter>]] [-w] [<destination> ...]

Alternate format:

qstat -q [-G | -M] [<destination> ...]

3.13.1.3 Displaying Server Status

Default format:

qstat -B [<server name> ...]

Long format:

qstat -B -f [-F json|dsv [-D <delimiter>]] [-w] [<server name> ...]

3.13.1.4 Displaying Version Information

qstat --version

3.13.2 Description

The qstat command displays the status of jobs, queues, or servers, writing the status information to standard output.

When displaying job status information, the qstat command displays status information about all specified jobs, job
arrays, and subjobs. You can specify jobs by ID, or by destination, for example all jobs at a specified queue or server.
SG-78 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.13.2.1 Display Formats

You can use particular options to display status information in a default format, an alternate format, or a long format.
Default and alternate formats display all status information for a job, queue, or server with one line per object, in col-
umns. Long formats display status information showing all attributes, one attribute to a line.

3.13.2.2 Displaying Truncated Data

When the number of characters required would exceed the space available, qstat truncates the output and puts an aster-
isk ("*") in the last position. For example, in default job display format, there are three characters allowed for the num-
ber of cores. If the actual output were 1234, the value displayed would be 12* instead.

3.13.2.3 Required Privilege

Users without Manager or Operator privilege cannot view resources or attributes that are invisible to unprivileged users.

3.13.3 Displaying Job Status

3.13.3.1 Job Status in Default Format

Triggers: no options, or any of the -J, -p, -t, or -x options.

The qstat command displays job status in default format when you specify no options, or any of the -J, -p, -t, or -x
options. Jobs are displayed one to a line, with these column headers:

Job id Name User Time Use S Queue

-------- ---------- --------- -------- - -----

Description of columns:

Table 3-18: Description of Default Job Status Columns

Column Width without -w
Width

with -w
Description

Job ID 17 (22 when
max_job_sequence_id
> 10 million

30 Job ID assigned by PBS

Name 16 15 Job name specified by submitter

User 16 15 Username of job owner
PBS Professional 2022.1 Simulate Guide SG-79

Chapter 3 Simulate Command Reference
3.13.3.2 Job Status in Long Format

Trigger: the -f option.

Time Use

or

Percent
Complete

8 8 The CPU time used by the job. Before the application has actually
started running, for example during stage-in, this field is "0". At
the point where the application starts accumulating cput, this field
changes to "00:00:00". After that, every time the MoM polls for
resource usage, the field is updated.

The MoM on each execution host polls for the usage of all pro-
cesses on her host belonging to the job. Usage is summed. The
polling interval is short when a job first starts running and length-
ens to a maximum of 2 minutes. See "Configuring MoM Polling
Cycle" on page 38 in the PBS Professional Administrator’s Guide.

If you specify -p, the Time Use column is replaced with the per-
centage completed for the job. For a job array this is the percent-
age of subjobs completed. For a normal job, it is the percentage of
allocated CPU time used.

S 1 1 The job's state. See section 8.1, “Job States”, on page 361

B Array job has at least one subjob running

E Job is exiting after having run

F Job is finished

H Job is held

M Job was moved to another server

Q Job is queued

R Job is running

S Job is suspended

T Job is being moved to new location

U Cycle-harvesting job is suspended due to keyboard
activity

W Job is waiting for its submitter-assigned start time to be
reached

X Subjob has completed execution or has been deleted

Queue 16 15 The queue in which the job resides

Table 3-18: Description of Default Job Status Columns

Column Width without -w
Width

with -w
Description
SG-80 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
If you specify the -f (full) option, full job status information for each job is displayed in this order:

• The job ID

• Each job attribute, one to a line

• The job's submission arguments

• The job's executable, in JSDL format

• The executable's argument list, in JSDL format

The job attributes are listed as <name> = <value> pairs. This includes the exec_host and exec_vnode strings. The full
output can be very large.

The exec_host string has this format:

<host1>/<T1>*<P1>[+<host2>/<T2>*<P2>+...]

where

T1 is the task slot number (the index) of the job on host1.

P1 is the number of processors allocated to the job from host1. The number of processors allocated does not appear if it
is 1.

The exec_vnode string has the format:

(<vnode1>:ncpus=<N1>:mem=<M1>)[+(<vnode2>:ncpus=<N2>:mem=<M2>)+...]

where

N1 is the number of CPUs allocated to that job on vnode1.

M1 is the amount of memory allocated to that job on vnode1.

3.13.3.3 Job Status in Alternate Format

Triggers: any of the -a, -i, -G, -H, -M, -n, -r, -s, -T, or -u <user list> options.

The qstat command displays job status in alternate format if you specify any of the -a, -i, -G, -H, -M, -n,
-r, -s, -T, or -u <user list> options. Jobs are displayed one to a line. If jobs are running and the -n option is
specified, or if jobs are finished or moved and the -H and -n options are specified, there is a second line for the
exec_host string.

3.13.3.3.i Job Status Alternate Format Output Columns

Alternate format job status output contains the following columns:

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

------ -------- ----- ------- ------ --- --- ------ ----- - ----
PBS Professional 2022.1 Simulate Guide SG-81

Chapter 3 Simulate Command Reference
Description of columns:

3.13.3.4 Grouping Jobs and Sorting by ID

Trigger: the -E option.

You can use the -E option to sort and group jobs in the output of qstat. The -E option groups jobs by server and dis-
plays each group by ascending ID. This option also improves qstat performance. The following table shows how the
-E option affects the behavior of qstat:

Table 3-19: Description of Alternate Format Job Status Columns

Column Width without -w
Width

with -w
Description

Job ID 15 (20 when
max_job_sequence_id
> 10 million)

30 The job ID assigned by PBS

Username 8 15 Username of job owner

Queue 8 15 Queue in which the job resides

Jobname 10 15 Job name specified by submitter

SessID 6 8 Session ID. Appears only if the job is running

NDS 3 4 Number of chunks or vnodes requested by the job

TSK 3 5 Number of CPUs requested by the job

Req'd Memory 6 6 Amount of memory requested by the job

Req'd Time 5 5 If CPU time is requested, shows CPU time. Otherwise,
shows walltime

S 1 1 The job's state; see "States” on page 361 for states

Elap Time

or

Est Start Time

5 5 If CPU time is requested, shows CPU time. Otherwise,
shows walltime.

If you use the -P option, displays estimated start time for
queued jobs, replacing the Elap Time field with the Est
Start Time field.

Table 3-20: How -E Option Affects qstat Output

How qstat is Used Result Without -E Result With -E

qstat (no job ID specified) Queries the default server and displays
result

No change in behavior; same as with-
out -E option

qstat <list of job IDs
from single server>

Displays results in the order specified Displays results in ascending ID order

qstat <job IDs at multiple
servers>

Displays results in the order they are
specified

Groups jobs by server. Displays each
group in ascending order
SG-82 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.13.4 Displaying Queue Status

3.13.4.1 Queue Status in Default Format

Trigger: the -Q option by itself.

The qstat command displays queue status in default format if the only option is -Q. Queue status is displayed one
queue to a line, with these column headers:

Queue Max Tot Ena Str Que Run Hld Wat Trn Ext Type

----------- ---- ---- ---- --- ---- ---- ---- ---- ---- ---- ----

Description of columns:

3.13.4.2 Queue Status in Long Format

Trigger: the -q and -f options together.

If you specify the -f (full) option with the -q option, full queue status information for each queue is displayed starting
with the queue name, followed by each attribute, one to a line, as <name> = <value> pairs.

3.13.4.2.i Queue Status: Alternate Format

Triggers: any of the -q, -G, or -M options.

 The qstat command displays queue status in the alternate format if you specify any of the -q, -G, or -M options. Queue
status is displayed one queue to a line, and the lowest line contains totals for some columns.

These are the alternate format queue status column headers:

Queue Memory CPU Time Walltime Node Run Que Lm State

------- ------ -------- -------- ---- --- --- -- -----

Table 3-21: Description of Default Queue Status Columns

Column Description

Queue Queue name

Max Maximum number of jobs allowed to run concurrently in this queue

Tot Total number of jobs in the queue

Ena Whether the queue is enabled or disabled

Str Whether the queue is started or stopped

Que Number of queued jobs

Run Number of running jobs

Hld Number of held jobs

Wat Number of waiting jobs

Trn Number of jobs being moved (transiting)

Ext Number of exiting jobs

Type Type of queue: execution or routing
PBS Professional 2022.1 Simulate Guide SG-83

Chapter 3 Simulate Command Reference
Description of columns:

3.13.5 Displaying Server Status

3.13.5.1 Server Status in Default Format:

Trigger: the -B option.

The qstat command displays server status if the only option given is -B.

Column headers for default server status output:

Server Max Tot Que Run Hld Wat Trn Ext Status

-------- ----- ----- ----- ----- ----- ----- ----- ----- ------

Description of columns:

Table 3-22: Description of Queue Alternate Status Columns

Column Description

Queue Queue name

Memory Maximum amount of memory that can be requested by a job in this queue

CPU Time Maximum amount of CPU time that can be requested by a job in this queue

Walltime Maximum amount of walltime that can be requested by a job in this queue

Node Maximum number of vnodes that can be requested by a job in this queue

Run Number of running and suspended jobs. Lowest row is total number of running and suspended
jobs in all the queues shown

Que Number of queued, waiting, and held jobs. Lowest row is total number of queued, waiting, and
held jobs in all the queues shown

Lm Maximum number of jobs allowed to run concurrently in this queue

State State of this queue: E (enabled) or D (disabled), and R (running) or S (stopped)

Table 3-23: Description of Server Status Default Display Columns

Column Description

Server Name of server

Max Maximum number of jobs allowed to be running concurrently on the server

Tot Total number of jobs currently managed by the server

Que Number of queued jobs

Run Number of running jobs

Hld Number of held jobs

Wat Number of waiting jobs
SG-84 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.13.5.2 Server Status in Long Format

Trigger: the -f option.

If you specify the -f (full) option, displays full server status information starting with the server name, followed by each
server attribute, one to a line, as <name> = <value> pairs. Includes PBS version information.

3.13.6 Options to qstat

3.13.6.1 Generic Job Status Options

-E
Groups jobs by server and displays jobs sorted by ascending ID. When qstat is presented with a list of jobs,
jobs are grouped by server and each group is displayed by ascending ID. This option also improves qstat per-
formance. See section 3.13.3.4, “Grouping Jobs and Sorting by ID”, on page 82.

3.13.6.2 Default Job Status Options

The following options cause job status information to be displayed in default format:

-J
Displays status information for job arrays (not subjobs).

-t
Displays status information for jobs, job arrays, and subjobs. When used with -J option, displays status infor-
mation for subjobs only.

-p
The Time Use column is replaced with the percentage completed for the job. For a job array this is the percent-
age of subjobs completed. For a normal job, it is the percentage of allocated CPU time used.

-x
Displays status information for finished and moved jobs in addition to queued and running jobs.

3.13.6.3 Alternate Job Status Options

The following options cause job status information to be displayed in alternate format:

-a
All queued and running jobs are displayed. If a destination is specified, information for all jobs at that destina-
tion is displayed. If a job ID is specified, information about that job is displayed. Always specify this option
before the -n or -s options, otherwise they will not take effect.

Trn Number of transiting jobs

Ext Number of exiting jobs

Status Status of the server

Table 3-23: Description of Server Status Default Display Columns

Column Description
PBS Professional 2022.1 Simulate Guide SG-85

Chapter 3 Simulate Command Reference
-H
Without a job identifier, displays information for all finished or moved jobs. If a job ID is given, displays infor-
mation for that job regardless of its state. If a destination is specified, displays information for finished or
moved jobs, or specified job(s), at destination.

-i
If a destination is given, information for queued, held or waiting jobs at that destination is displayed. If a job ID
is given, information about that job is displayed regardless of its state.

-n
The exec_host string is listed on the line below the basic information. If the -1 option is given, the exec_host
string is listed on the end of the same line. If using the -a option, always specify the -n option after -a, other-
wise the -n option does not take effect.

-r
If a destination is given, information for running or suspended jobs at that destination is displayed. If a job ID
is given, information about that job is displayed regardless of its state.

-s
Any comment added by the administrator or scheduler is shown on the line below the basic information. If the
-1 option is given, the comment string is listed on the end of the same line. If using the -a option, always spec-
ify the -s option after -a, otherwise the -s option does not take effect.

-u <user list>
If a destination is given, status for jobs at that destination owned by users in user list is displayed. If a job ID is
given, status information for that job is displayed regardless of the job's ownership.

Format: <username>[@<hostname>][, <username>[@<hostname>], ...] in comma-separated list.

Hostnames may be wildcarded, but not domain names. When no hostname is specified, username is for any
host.

-w
Can be used with job status in default and alternate formats. Allows display of wider fields up to 120 characters.
See section 3.13.3.1, “Job Status in Default Format”, on page 79 and section 3.13.3.3, “Job Status in Alternate
Format”, on page 81 for column widths.

This option is different from the -w option used with the -f long-format option.

-1 (hyphen one)
Reformats qstat output to a single line. Can be used only in conjunction with the -n and/or -s options.

3.13.6.4 Queue Status Options

-Q
Displays queue status in default format. Operands must be destinations.

-q
Displays queue status in alternate format. Operands must be destinations.

3.13.6.5 Server Status Options

-B
Display server status. Operands must be names of servers.
SG-86 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.13.6.6 Job, Queue, and Server Status Options

-f [-w]
Full display for long format. Job, subjob, queue, or server attributes displayed one to a line.

JSON output:

If MoM returns a JSON object (a Python dictionary), PBS reports the value as a string in single quotes:

resources_used.<resource_name> = '{ <MoM JSON item value>, <MoM JSON item value>, <MoM JSON item
value>, ...}'

Example: MoM returns { "a":1, "b":2, "c":1,"d": 4} for resources_used.foo_str. We get:

resources_used.foo_str='{"a": 1, "b": 2, "c":1,"d": 4}'

If MoM returns a value that is not a valid JSON object, the value is reported verbatim.

Example: MoM returns "hello" for resources_used.foo_str. We get:

resources_used.foo_str="hello"
Optional -w prints each attribute on one unbroken line. Feed characters are converted:

• Newline is converted to backslash concatenated with "n", resulting in "\n"

• Form feed is converted to backslash concatenated with "f", resulting in "\f"

This -w is independent of the -w job output option used with default and alternate formats.

-F dsv [-D <delimiter>]
Prints output in delimiter-separated value format. The default delimiter is a pipe ("|"). You can specify a char-
acter or a string delimiter using the -D argument to the -F dsv option. For example, to use a comma as the
delimiter:

qstat -f -F dsv -D,

If the delimiter itself appears in a value, it is escaped:

• On Linux, the delimiter is escaped with a backslash ("\").

• On Windows, the delimiter is escaped with a caret ("^").

Feed characters are converted:

• Newline is converted to backslash concatenated with "n", resulting in "\n"

• Form feed is converted to backslash concatenated with "f", resulting in "\f"

A newline separates each job from the next. Using newline as the delimiter leads to undefined behavior.

Example of getting output in delimiter-separated value format:

qstat -f -Fdsv

Job Id: 1.vbox|Job_Name = STDIN|Job_Owner = root@vbox|job_state = Q|queue = workq|server =
vbox|Checkpoint = u|ctime = Fri Nov 11 17:57:05 2016|Error_Path = ...
PBS Professional 2022.1 Simulate Guide SG-87

Chapter 3 Simulate Command Reference
-F json
Prints output in JSON format (http://www.json.org/).

Attribute output is preceded by timestamp, PBS version, and PBS server hostname.

Example:

qstat -f -F json

{

"timestamp":1479277336,

"pbs_version":"14.1",

"pbs_server":"vbox",

"Jobs":{

"1.vbox":{

"Job_Name":"STDIN",

"Job_Owner":"root@vbox",

"job_state":"Q",

...

-G
Shows size in gigabytes. Triggers alternate format.

-M
Shows size in megawords. A word is considered to be 8 bytes. Triggers alternate format.

3.13.6.7 Version Information

--version
The qstat command returns its PBS version information and exits. This option can only be used alone.

3.13.7 Operands

3.13.7.1 Job Identifier Operands

The job ID is assigned by PBS at submission. Job IDs are used only with job status requests. Status information for
specified job(s) is displayed. Formats:

Job ID:
<sequence number>[.<server name>][@<server name>]

Job array ID:
<sequence number>[][.<server name>][@<server name>]

Subjob ID:
<sequence number>[<index>][.<server name>][@<server name>]

Range of subjobs:
<sequence number>[<index start>-<index end>][.<server name>][@<server name>]
Note that some shells require that you enclose a job array identifier in double quotes.

3.13.7.2 Destination Operands

Name of queue, name of server, or name of queue at a specific server. Formats:
SG-88 PBS Professional 2022.1 Simulate Guide

http://www.json.org/

Simulate Command Reference Chapter 3
queue name
Specifies name of queue for job or queue display.

• When displaying job status, PBS displays status for all jobs in the specified queue at the default server.

• When displaying queue status, PBS displays status for the specified queue at the default server.

queue name@server name
Specifies name of queue at server for job or queue display.

• When displaying job status, PBS displays status for all jobs in the specified queue at the specified server.

• When displaying queue status, PBS displays status for the specified queue at the specified server.

@server name
Specifies server name for job or queue display.

• When displaying job status, PBS displays status for all jobs at all queues at the specified server.

• When displaying queue status, PBS displays status for all queues at the specified server.

server name
Specifies server name for server display.

• When displaying server status (with the -B option) PBS displays status for the specified server.

3.13.8 Standard Error

The qstat command writes a diagnostic message to standard error for each error occurrence.

3.13.9 Exit Status

Zero
Upon successful processing of all operands

Greater than zero
If any operands could not be processed

3.13.10 See Also

The PBS Professional User's Guide, the PBS Professional Administrator's Guide, "Attributes” on page 277

3.13.11 Caveats

This version of qstat displays finished jobs first.
PBS Professional 2022.1 Simulate Guide SG-89

Chapter 3 Simulate Command Reference
3.14 qsub

Submits a job to PBS

3.14.1 Synopsis

simsh <path to snapshot> qsub [-a <date and time>] [-A <account string>] [-c <checkpoint spec>] [-C <directive
prefix>] [-e <path>] [-f] [-h] [-j <join>] [-J <range> [%<max subjobs]] [-k <discard>] [-l <resource list>] [-N
<name>] [-o <path>] [-p <priority>] [-P <project>] [-q <destination>] [-r <y | n>] [-R <remove options>] [-S
<path list>] [-u <user list>] [-W <additional attributes>] [-z] [- | <script> | -- <executable> [<arguments to
executable>]]

simsh <path to snapshot> qsub --version

3.14.2 Description

You use the qsub command to submit a batch job to a snapshot. Submitting a PBS job requests resources and sets job
attributes.

The qsub command can read from a job script, from standard input, or from the command line.

• To use a job script:

simsh <path to snapshot> qsub [<options>] <job script containing directives and executable>
simsh <path to snapshot> qsub [<options>] <directives> <job script containing other directives and executable>

• To submit from the command line:

simsh <path to snapshot> qsub [<options>] <directives> -- <executable> <arguments to executable>
• To submit from standard input:

simsh <path to snapshot> qsub <return>
<directives>
<executable>
<CTRL-D>

When you have submitted the job, Simulate returns the job identifier for that job. For a job, this is of the form:

<sequence number>.<server name>

For an array job, this is of the form:

<sequence number>[].<server name>

3.14.2.1 Differences Between Simulation and Live Execution

• In a simulation, directives are processed but the job executable does not run. You can use a normal job script; just be
awarethat everything but the directives is ignored.

• Simulate ignores job environment variables: it does not use the value of the job's Variable_List attribute.

• In a simulation, each job runs until the end of its requested walltime, instead of the amount of time the job would
actually have run. For example, if a job requests one hour of walltime, but the job would finish in 5 minutes in the
real world, the simulated job runs for one hour.
SG-90 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.14.2.2 Submitting Jobs By Using Job Scripts

If you use a job script to specify job directives, Simulate reads the directives from the script. The script can contain an
executable, but does not require an executable. If you use the command line to specify directives, the job script must
exist but can be empty.

Job scripts can be written in Python, Linux shells such as csh and sh, the Windows command batch language, Perl, etc.

A PBS job script consists of the following:

• Optional shell specification

• Any PBS directives

• Optional comments

Under Windows, comments can contain only ASCII characters. See the PBS Professional User's Guide.

3.14.2.2.i Using Shells and Interpreters

You can optionally specify a different shell or interpreter to run your script (but the shell or interpreter does not run in the
simulation):

• Via the -S option to qsub:

simsh <path to snapshot> qsub -S <path to shell> <script name>

For example:

simsh <path to snapshot> qsub -S /bin/bash myscript.sh

• In the first line of your script. For example:
cat myscript.sh

#!/bin/sh

#PBS -N MyHelloJob

print "Hello"

3.14.2.2.ii Python Job Scripts

You can use the same Python script under Linux or under Windows, if the script is written to be portable. The simulator
does not run the Python commands. PBS includes a Python package, allowing Python job scripts to run; you do not need
to install Python. You can include PBS directives in a Python job script as you would in a Linux shell script. Python job
scripts can access Win32 APIs, including the following modules:

Win32api

Win32con

Pywintypes

Example 3-15: We have a Python job script that includes PBS directives:

cat myjob.py

#!/usr/bin/python

#PBS -l select=1:ncpus=3:mem=1gb

#PBS -N HelloJob

print "Hello"

To run a Python job script under Linux, use the Python path on the execution host:

simsh <path to snapshot> qsub -S <Python path on execution host> <script name>

For example,

simsh <path to snapshot> qsub -S $PBS_EXEC/bin/pbs_python <script name>

To run a Python job script under Windows, use the Python path on the execution host:
PBS Professional 2022.1 Simulate Guide SG-91

Chapter 3 Simulate Command Reference
simsh <path to snapshot> qsub -S <Python path on execution host> <script name>

For example:

simsh <path to snapshot> qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

If the script pathname contains spaces, it must be quoted, for example:

simsh <path to snapshot> qsub -S "C:\Program Files\PBS\bin\pbs_python.exe" <script name>

3.14.2.2.iii Linux Shell Job Scripts

Example 3-16: We have a Linux job script named "weatherscript" for a job named "Weather1" on Linux:

#!/bin/sh

#PBS -N Weather1

#PBS -l walltime=1:00:00

To submit the job, the user types:

simsh <path to snapshot> qsub weatherscript <return>

3.14.2.2.iv Windows Command Job Scripts

Example 3-17: We have a script named "weather.exe" for a job named "Weather1" which runs under Windows:

#PBS -N Weather1

#PBS -l walltime=1:00:00

To submit the job, the user types:

simsh <path to snapshot> qsub weather.exe <return>

In Windows, if you use notepad to create a job script, the last line does not automatically get newline-terminated. Be
sure to put one explicitly, otherwise, PBS job will get the following error message:

More?

when the Windows command interpreter tries to execute that last line.

3.14.2.3 Submitting Jobs From Standard Input

When you submit a job from standard input, you do not need to specify an executable. To submit a PBS job by typing
job specifications at the command line, you type:

simsh <path to snapshot> qsub [<options>] [-] <return>

then type any directives, followed by:

• Linux: CTRL-D on a line by itself

• Windows: CTRL-Z <return>

to terminate the input.

The qsub command behaves the same both with and without the dash operand.

For example, on Linux:

simsh <path to snapshot> qsub <return>

#PBS -N StdInJob

#PBS -l walltime=1:00:00

<CTRL-D>
SG-92 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.14.2.4 Submitting Job Directly by Specifying Executable on

Command Line

To submit a job directly, you specify the executable on the command line:

simsh <path to snapshot> qsub [<options>] -- <executable> [<arguments to executable>] <return>

When you run qsub this way, it does not start a shell, so no shell initialization scripts are run, and execution paths and
other environment variables are not set. There is not an easy way to specify your command in a different directory. You
will usually have to specify the full path to the command.

Example 3-18: To specify myprog with the arguments a and b, naming the job "JobA":

simsh <path to snapshot> qsub -N JobA -- myprog a b <return>

Example 3-19: To submit a job to the snapshot named "formula_one":

simsh formula_one qsub -N sim_job -l select=1:ncpus=32:mem=16gb -l walltime=0:10:00 -- /bin/sleep
60

3.14.2.5 Requesting Resources and Placing Jobs

Requesting resources includes setting limits on resource usage and controlling how the job is placed on vnodes.

Resources are requested by using the -l option, either in job-wide requests using <resource name>=<value> pairs, or in
chunks inside of selection statements. See Chapter 5, "List of Built-in Resources", on page 259.

Job-wide <resource name>=<value> requests are of the form:

-l <resource name>=<value>[,<resource name>=<value> ...]

The selection statement is of the form:

-l select=[<N>:]<chunk>[+[<N>:]<chunk> ...]

where N specifies how many of that chunk, and a chunk is of the form:

<resource name>=<value>[:<resource name>=<value> ...]

You choose how your chunks are placed using the place statement. The place statement can contain the following ele-
ments, in any order:

-l place=[<arrangement>][: <sharing>][: <grouping>]

where

arrangement

Whether this chunk is willing to share this vnode or host with other chunks from the same job. One of free |
pack | scatter | vscatter

sharing

Whether this this chunk is willing to share this vnode or host with other jobs. One of excl | shared | exclhost

grouping

Whether the chunks from this job should be placed on vnodes that all have the same value for a resource. Can
have only one instance of group=<resource name>

free

Place job on any vnode(s).

pack

All chunks are taken from one host.
PBS Professional 2022.1 Simulate Guide SG-93

Chapter 3 Simulate Command Reference
scatter

Only one chunk with any MPI processes is taken from a host. A chunk with no MPI processes may be taken
from the same vnode as another chunk.

vscatter

Only one chunk is taken from any vnode. Each chunk must fit on a vnode.

excl

Only this job uses the vnodes chosen.

shared

This job can share the vnodes chosen.

exclhost

The entire host is allocated to the job.

group=<resource name>

Chunks are grouped according to a resource. All vnodes in the group must have a common value for resource,
which can be either the built-in resource host or a custom vnode-level resource.

resource name must be a string or a string array.

The place statement cannot begin with a colon. Colons are delimiters; use them only to separate parts of a place
statement, unless they are quoted inside resource values.

Note that vnodes can have sharing attributes that override job placement requests. See section 6.10, “Vnode Attributes”,
on page 320.

For more on resources, resource requests, usage limits, and job placement, see "Using PBS Resources" on page 227 in
the PBS Professional Administrator’s Guide and "Allocating Resources & Placing Jobs", on page 51 of the PBS Profes-
sional User’s Guide.

3.14.2.5.i Caveats for Requesting Resources

Do not mix old-style resource or vnode specifications with the new select and place statements. Do not use one in a job
script and the other on the command line. Mixing the two will result in an error.

You cannot submit a job requesting a custom resource which has been created to be invisible or read-only for unprivi-
leged users, regardless of your privilege. A Manager or Operator can use the qalter command to change a job's
request for this kind of custom resource.

3.14.2.6 Setting Attributes

The job submitter sets job attributes by giving options to the qsub command or by using PBS directives. Most qsub
options set a job attribute, and have a corresponding PBS directive with the same syntax as the option. Attributes set via
command-line options take precedence over those set using PBS directives. See the PBS Professional User's Guide, or
section 6.11, “Job Attributes”, on page 327.

3.14.2.7 Running Your Job on First Available Resources

You may want to run a job on whichever resources become available first, even if the job could run on other sets of
resources. You may want to start a flexible job as soon as possible on a smaller set of resources rather than waiting
longer for a larger set of resources, or you may prefer certain resources but be able to use others (for example, you might
prefer a specific processor, but still be able to run on another if that is all that's available).

If you submit a set of jobs where each job has a "runone" dependency on the others, PBS runs only one of the jobs in the
"runone set". PBS automatically groups the jobs into a runone set. The jobs in a runone set can run different scripts.
SG-94 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
When any of the jobs in the set starts, PBS applies a system hold to the others. The hold on the other jobs is released
when the running job is requeued:

• Via qrerun

• When node fail requeue is triggered

The other jobs in the set are deleted:

• When a job ends, regardless of its exit status

• When the running job is deleted

To identify a job as a member of the set, give it a "runone" dependency on the previously-submitted member of the set.
For example, we have three jobs, each of which runs on different resources. To submit these three jobs as a runone set:

simsh <path to snapshot> qsub -lselect=200:ncpus=16 -lwalltime=1:00:00 myscript.sh

10.myserver

simsh <path to snapshot> qsub -lselect=100:ncpus=16 -lwalltime=2:00:00 -Wdepend=runone:10
myscript.sh

11.myserver

simsh <path to snapshot> qsub -lselect=50:ncpus=16 -lwalltime=4:00:00 -Wdepend=runone:10
myscript.sh

12.myserver

3.14.2.8 Changing qsub Behavior

The behavior of the qsub command may be affected by the server's default_qsub_arguments attribute. This attribute
can set the default for any job attribute. The default_qsub_arguments server attribute is settable by the administrator,
and is overridden by command-line arguments and script directives. See section 6.6, “Server Attributes”, on page 281.

3.14.3 Options to qsub

-a <date and time>
Point in simulated time after which the job is eligible for execution. Given in pairs of digits. Sets job's
Execution_Time attribute to date and time.

Format: datetime, expressed as [[[[CC]YY]MM]DD]hhmm[.SS]

where CC is the century, YY is the year, MM is the month, DD is the day of the month, hh is the hour, mm is the
minute, and SS is the seconds.

Each portion of the date defaults to the current date, as long as the next-smaller portion is in the future. For
example, if today is the 3rd of the month and the specified day DD is the 5th, the month MM is set to the current
month.

If a specified portion has already passed, the next-larger portion is set to one after the current date. For example,
if the day DD is not specified, but the hour hh is specified to be 10:00 a.m. and the current time is 11:00 a.m.,
the day DD is set to tomorrow.

-A <account string>
Accounting string associated with the job. Used for labeling accounting data. Sets job's Account_Name
attribute to account string.

Format: String
PBS Professional 2022.1 Simulate Guide SG-95

Chapter 3 Simulate Command Reference
-c <checkpoint spec>
Determines when the job will be checkpointed. Sets job's Checkpoint attribute to checkpoint spec. An $action
script is required to checkpoint the job.

See "Using Checkpointing", on page 115 of the PBS Professional User’s Guide.

The argument checkpoint spec can take one of the following values:

c
Checkpoint at intervals, measured in CPU time, set on job's execution queue. If there is no interval set at
the queue, the job is not checkpointed

c=<minutes of CPU time>
Checkpoint at intervals of specified number of minutes of job CPU time. This value must be greater than
zero. If the interval specified is less than that set on the job's execution queue, the queue's interval is used.

Format: Integer

w
Checkpoint at intervals, measured in walltime, set on job's execution queue. If there is no interval set at the
queue, the job is not checkpointed.

w=<minutes of walltime>
Checkpoint at intervals of the specified number of minutes of job walltime. This value must be greater
than zero. If the interval specified is less than that set on the job's execution queue, the queue's interval is
used.

Format: Integer

n
No checkpointing.

s
Checkpoint only when the server is shut down.

u
Unset. Defaults to behavior when interval argument is set to s.

Default: u

Format: String

-C <directive prefix>
Defines the prefix identifying a PBS directive. Default prefix is "#PBS".

If the directive prefix argument is a null string, qsub does not scan the script file for directives. Overrides the
PBS_DPREFIX environment variable and the default. The string "PBS_DPREFIX" cannot be used as a PBS
directive. Length limit: 4096 characters.

-e <path>
Path to be used for the job's standard error stream. Sets job's Error_Path attribute to path. The path argument
is of the form:

[<hostname>:]<path>
The path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the qsub command, where it
is executing on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the qsub command is exe-
cuting.

hostname:path
If path is relative, it is taken to be relative to the user's home directory on the host named hostname.
SG-96 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
If path is absolute, it is an absolute path on the host named hostname.

If path does not include a filename, the default filename has the form <job ID>.ER

If the -e option is not specified, PBS copies the standard error to the current working directory where the qsub
command was executed, and writes standard error to the default filename, which has this form:

<job name>.e<sequence number>
If you use a UNC path for output or error files, the hostname is optional. If you use a non-UNC path, the host-
name is required.

This option is overridden by the -k option.

-f
Prevents qsub from spawning a background process. By default, qsub spawns a background process to man-
age communication with the PBS server. When this option is specified, the qsub process connects directly to
the server and no background process is created.

NOTE: Use of this option degrades performance of qsub when calls to qsub are made in rapid succession.

-h
Applies a User hold to the job. Sets the job's Hold_Types attribute to "u".

-j <join>
Specifies whether and how to join the job's standard error and standard output streams. Sets job's Join_Path
attribute to join.

Default: n; not merged

The join argument can take the following values:

-J <range> [%<max subjobs>]
Makes this job an array job. Sets job's array attribute to True.

Use the range argument to specify the indices of the subjobs of the array. range is specified in the form X-Y[:Z]
where X is the first index, Y is the upper bound on the indices, and Z is the stepping factor. For example, 2-7:2
will produce indices of 2, 4, and 6. If Z is not specified, it is taken to be 1. Indices must be greater than or equal
to zero.

Use the optional %max subjobs argument to set a limit on the number of subjobs that can be running at one time.
This sets the value of the max_run_subjobs job attribute to the specified maximum.

Job arrays are always rerunnable.

-k <discard>
Specifies whether and which of the standard output and standard error streams is left behind on the execution
host, or written to their final destination. Sets the job's Keep_Files attribute to discard.

k {e | o | eo | oe | n}
For the e, o, eo, oe, or n suboptions, overrides -o <output path> and -e <error path> options.

Table 3-24: Sub-options to -j Option

Suboption Meaning

oe Standard error and standard output are merged into standard output.

eo Standard error and standard output are merged into standard error.

n Standard error and standard output are not merged.
PBS Professional 2022.1 Simulate Guide SG-97

Chapter 3 Simulate Command Reference
kd {e | o | eo | oe}
When used with the -d suboption, specifies that output and/or error files are written directly to the final des-
tination. Requires e and/or o suboptions.

Default: n; neither is retained, and files are not written directly to final destinations.

In the case where output and/or error is retained on the execution host in a job-specific staging and execution
directory created by PBS, these files are deleted when PBS deletes the directory.

The discard argument can take the following values:

-l <resource list>
Allows the user to request resources and specify job placement. Sets job's Resource_list attribute to resource
list. Requesting a resource places a limit on its usage.

For how to request resources and place jobs, see section 3.14.2.5, “Requesting Resources and Placing Jobs”, on
page 93.

-N <name>
Sets job's Job_Name attribute and name to name.

Format: Job Name; see "Job Name, Job Array Name” on page 355

Default: if a script is used to submit the job, the job's name is the name of the script. If no script is used, the
job's name is "STDIN".

-o <path>
Path to be used for the job's standard output stream. Sets job's Output_Path attribute to path. The path argu-
ment has the form:

[<hostname>:]<path>
The path is interpreted as follows:

path
If path is relative, it is taken to be relative to the current working directory of the command, where it is exe-
cuting on the current host.

If path is absolute, it is taken to be an absolute path on the current host where the command is executing.

hostname:path
If path is relative, it is taken to be relative to the user's home directory on the host named hostname.

Table 3-25: Sub-options to discard Option

Suboption Meaning

e The standard error stream is retained on the execution host, in the job's staging and execu-
tion directory. The filename is <job name>.e<sequence number>

o The standard output stream is retained on the execution host, in the job's staging and execu-
tion directory. The filename is <job name>.o<sequence number>

eo, oe Both standard output and standard error streams are retained on the execution host, in the
job's staging and execution directory.

d<e and/or o> Output and/or error are written directly to their final destination. Overrides action of leav-
ing files on execution host. Requires e and/or o suboptions.

n Neither stream is retained.
SG-98 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
If path is absolute, it is an absolute path on the host named hostname.

If path does not include a filename, the default filename has the form <job ID>.OU

If the -o option is not specified, PBS copies the standard output to the current working directory where the
qsub command was executed, and writes standard output to the default filename, which has this form:

<job name>.o<sequence number>
If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

This option is overridden by the -k option.

-p <priority>
Priority of the job. Sets job's Priority attribute to priority.

Format: Host-dependent integer

Range: [-1024, +1023] inclusive

Default: Zero

-P <project>
Specifies a project for the job. Sets job's project attribute to project.

Format: Project Name; see "Project Name” on page 357

Default value: "_pbs_project_default".

-q <destination>
Where the job is sent upon submission.

Specifies a queue, a server, or a queue at a server. The destination argument can have one of these formats:

<queue name>
Job is submitted to the specified queue at the default server.

@<server name>
Job is submitted to the default queue at the specified server.

<queue name>@<server name>
Job is submitted to the specified queue at the specified server.

Default: Default queue at default server

-r <y|n>
Declares whether the job is rerunnable. Sets job's Rerunable attribute to the argument value. Does not affect
how the job is handled in the case where the job was unable to begin execution.

Format: Single character, "y" or "n"

Default: "y"

Job arrays are always rerunnable. See "qrerun” on page 181.

Table 3-26: Sub-options to r Option

Suboption Meaning

y Job is rerunnable.

n Job is not rerunnable.
PBS Professional 2022.1 Simulate Guide SG-99

Chapter 3 Simulate Command Reference
-R <remove options>
Specifies whether standard output and/or standard error files are automatically removed (deleted) upon job com-
pletion.

Sets the job's Remove_Files attribute to remove options. Overrides default path names for these streams.
Overrides -o and -e options.

This attribute cannot be altered once the job has begun execution.

Default: Unset; neither is removed

The remove options argument can take the following values:

-S <path list>
Specifies the interpreter or shell path for the job script. Sets job's Shell_Path_List attribute to path list.

The path list argument is the full path to the interpreter or shell including the executable name.

Only one path may be specified without a hostname. Only one path may be specified per named host. The path
selected is the one whose hostname is that of the server on which the job resides.

Format: <path>[@<hostname>][,<path>@<hostname> ...]

Default: User's login shell on execution host

Example of using bash via a directive:

#PBS -S /bin/bash@mars,/usr/bin/bash@jupiter

Example of running a Python script from the command line on Linux:

simsh <path to snapshot> qsub -S $PBS_EXEC/bin/pbs_python <script name>

Example of running a Python script from the command line on Windows:

simsh <path to snapshot> qsub -S %PBS_EXEC%\bin\pbs_python.exe <script name>

-u <user list>
List of usernames. Job is run under a username from this list. Sets job's User_List attribute to user list.

Only one username may be specified without a hostname. Only one username may be specified per named host.
The server on which the job resides will select first the username whose hostname is the same as the server
name. Failing that, the next selection is the username with no specified hostname. The usernames on the server
and execution hosts must be the same. The job owner must have authorization to run as the specified user.

Format of user list: <username>[@<hostname>][,<username>@<hostname> ...]

Default: Job owner (username on submission host)

-W <additional attributes>
The -W option allows specification of some job attributes. Some job attributes must be specified using this
option. Those attributes are listed below. Format:

Table 3-27: discard Argument Values

Option Meaning

e The standard error stream is removed (deleted) upon job completion

o The standard output stream is removed (deleted) upon job completion

eo, oe Both standard output and standard error streams are removed (deleted) upon job completion

unset Neither stream is removed.
SG-100 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
-W <attribute name>=<value>[,<attribute name>=<value>...]
If white space occurs within the additional attributes argument, or the equal sign "=" occurs within a value
string, it must be enclosed with single quotes or double quotes.

The following attributes can be set using the -W option only:

create_resv_from_job=<value>
When this job starts, immediately creates and confirms a job-specific start reservation on the same
resources as the job (including resources inherited by the job), and places the job in the job-specific reserva-
tion queue. Sets the job's create_resv_from_job attribute to True. Sets the job-specific reservation's
reserve_job attribute to the ID of the job from which the reservation was created. The new reservation's
duration and start time are the same as the job's walltime and start time. If the job is peer scheduled, the
job-specific reservation is created in the pulling complex.

Format: Boolean

Example:

simsh <path to snapshot> qsub -Wcreate_resv_from_job=1 myscript.sh

Cannot be used with job arrays or jobs being submitted into a reservation.

group_list=<group list>
List of group names. Job is run under a group name from this list. Sets job's group_list attribute to group
list.

Only one group name may be specified without a hostname. Only one group name may be specified per
named host. The server on which the job resides will select first the group name whose hostname is the
same as the server name. Failing that, the next selection is the group name with no specified hostname.
The group names on the server and execution hosts must be the same. The job submitter's primary group is
automatically added to the list.

Under Windows, the primary group is the first group found for the user by PBS when it queries the
accounts database.

Format of group list: <group name>[@<hostname>][,<group name>@<hostname> ...]

Default: Login group name of job owner

pwd
pwd=’’
pwd=""

These forms prompt the user for a password. A space between W and pwd is optional. Spaces between the
quotes are optional. Examples:

simsh <path to snapshot> qsub ... -Wpwd <return>

simsh <path to snapshot> qsub ... -W pwd='' <return>

simsh <path to snapshot> qsub ... -W pwd=" " <return>

Available on supported Linux platforms only.

release_nodes_on_stageout=<value>
When set to True, all of the job's vnodes not on the primary execution host are released when stageout
begins.

Cannot be used with vnodes tied to Cray X* series systems.

When cgroups is enabled and this is used with some but not all vnodes from one MoM, resources on those
vnodes that are part of a cgroup are not released until the entire cgroup is released.

The job's stageout attribute must be set for the release_nodes_on_stageout attribute to take effect.

Format: Boolean

Default: False
PBS Professional 2022.1 Simulate Guide SG-101

Chapter 3 Simulate Command Reference
 run_count=<value>
Sets the number of times the server thinks it has run the job. Sets the value of the job's run_count attribute
to value.

Format: Integer greater than or equal to zero

sandbox=<sandbox spec>
Determines which directory PBS uses for the job's staging and execution. Sets job's sandbox attribute to
the value of sandbox spec.

Allowed values for sandbox spec:

PRIVATE
PBS creates a job-specific directory for staging and execution.

HOME or unset
PBS uses the user's home directory for staging and execution.

Format: String

stagein=<path list>
stageout=<path list>

Specifies files or directories to be staged in before execution or staged out after execution is complete. Sets
the job's stagein and stageout attributes to the specified path lists. On completion of the job, all staged-in
and staged-out files and directories are removed from the execution host(s). The path list has the form:

<file spec>[,<file spec>]
where <file spec> is

<execution path>@<hostname>:<storage path>
regardless of the direction of the copy. The name execution path is the name of the file or directory on the
primary execution host. It can be relative to the staging and execution directory on the execution host, or it
can be an absolute path.

The "@" character separates execution path from storage path.

The name storage path is the path on hostname. The name can be relative to the staging and execution
directory on the primary execution host, or it can be an absolute path.

If path list has more than one file spec, i.e. it contains commas, it must be enclosed in double quotes.

If you use a UNC path, the hostname is optional. If you use a non-UNC path, the hostname is required.

umask=<mask value>
The umask with which the job is started. Sets job's mask attribute to mask value. Controls umask of job's
standard output and standard error.

The following example allows group and world read of the job's output and error:

-W umask=33

Format: one to four digits; typically two

Default: system default

-z
Job identifier is not written to standard output.

--version
The qsub command returns its PBS version information and exits. This option can only be used alone.

3.14.4 Operands

The qsub command accepts as operands one of the following:
SG-102 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
(no operands)
Same as with a dash. Any PBS directives and user tasks are read from the command line.

<script>
Path to script. Can be absolute or relative to current directory where qsub is run.

-
When you use a dash, any PBS directives and user tasks are read from the command line.

-- <executable> [<arguments to executable>]
A single executable (preceded by two dashes) and its arguments

The executable, and any arguments to the executable, are given on the qsub command line. The executable is
preceded by two dashes, "--".

If a script or executable is specified, it must be the last argument to qsub. The arguments to an executable must
follow the name of the executable.

When you run qsub this way, it runs the executable directly. It does not start a shell, so no shell initialization
scripts are run, and execution paths and other environment variables are not set. You should make sure that
environment variables are set correctly.

3.14.5 Standard Output

Job ID for submitted job
If the job is successfully created

(No output)
If the -z option is set

3.14.6 Standard Error

The qsub command writes a diagnostic message to standard error for each error occurrence.

3.14.7 Exit Status

For non-blocking jobs:

Zero
Upon successful processing of input

Greater than zero
Upon failure of qsub

For blocking jobs:

Exit value of job
When job runs successfully

3
If the job is deleted without being run

3.14.7.1 Warning About Exit Status with csh

If a job is run in csh and a .logout file exists in the home directory in which the job executes, the exit status of the job is
that of the .logout script, not the job script. This may impact any inter-job dependencies.
PBS Professional 2022.1 Simulate Guide SG-103

Chapter 3 Simulate Command Reference
3.14.8 See Also

"Submitting a PBS Job", on page 11 of the PBS Professional User’s Guide, "Job Attributes” on page 327, "Resources
Built Into PBS” on page 265, and "Requesting Resources", on page 53 of the PBS Professional User’s Guide.
SG-104 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
3.15 sim

Simulates behavior of workload at a PBS complex

3.15.1 Synopsis

sim [-h] [-l] [-L] [--monitor=<duration>] [-n <cycles> | -t <duration>] [-o <output path>] [-O <0 | 1>]

sim --version

3.15.2 Description

Simulate all of the behavior of the workload at a PBS complex except for hooks. In simulation, the default scheduler
runs jobs, writes log files, etc. You can find out how your workload will behave in the next days, weeks, or months by
running a simulation that takes only a short amount of actual time.

By default, each simulation runs until all runnable jobs have been run. If there are jobs that can never run, they remain
queued after a simulation finishes.

3.15.2.1 Caveats

• This command runs only default scheduler; it does not run multischeds.

• This command ignores job environment variables: it does not use the value of the job's Variable_List attribute.

• Hooks do not run in simulations. For example, queuejob hooks do not run, so jobs that were queued before you take
a snapshot have already been modified by any queuejob hooks, but if you submit new jobs in the simulation, those
modifications will not happen. To emulate the behavior of hooks inside the sandbox, you can submit jobs as they
would be after hooks have modified them.

• This command does not run job executables.

3.15.2.2 Options to the sim Command

-h, --help
Display this help message

-l
(Lowercase L) Generate simulation log

-L
Write scheduling logs to the sched_logs directory in the snapshot

--monitor=<duration>
Update the snapshot after every period specified by duration

-n <cycles>
Number of scheduling cycles to run. When used with the -t <duration> option, simulation runs for the
shorter time. For example, if you specify "-t 600 -n 2" and it only takes 30 seconds to run two scheduling
cycles, the simulation ends after 30 seconds.

Cannot be used with the -t option.

-o <output path>
Path to output snapshot.

Default: <path to input snapshot>_out
PBS Professional 2022.1 Simulate Guide SG-105

Chapter 3 Simulate Command Reference
--O <0 | 1>
Turn optimizations off or on

Default: on

-t <duration>
Time in seconds to to run simulated universe. Actual time required is much shorter. When used with the -n
<cycles> option, simulation runs for the shorter time. For example, if you specify "-t 600 -n 2" and it only
takes 30 seconds to run two scheduling cycles, the simulation ends after 30 seconds.

Default: simulation runs until all runnable jobs are finished. Any jobs that can never run remain queued.

Cannot be used with the -n option.

--version
This command returns its version information and exits. This option can only be used alone.

3.15.3 Output of sim Command

Each simulation creates an output snapshot directory, and writes output statistics to the screen.

3.15.3.1 Simulation Output Snapshot Name

3.15.3.1.i Initial Output Snapshot Name

By default, the name of the simulation output snapshot is the name of the input snapshot with "_out" appended.

For example, running a simulation on the snapshot named "Snap1" produces the result snapshot named "Snap1_out".

You can specify the name of the output snapshot:

simsh <input snapshot> sim -o <output snapshot name>

For example, if your input snapshot is named "Snap1_new", and you want the output snapshot to be named
"Snap1_test1":

simsh Snap1_new sim -o Snap1_test1

3.15.3.1.ii Naming for Multiple Output Snapshots

Each time you run a simulation without specifying a name for the output snapshot, Simulate names the output snapshot
with the input snapshot name and appends "_out". If a snapshot with that name already exists, Simulate renames it by
appending "_out". For example, if you run a simulation on a snapshot named "Snap1", you get an output snapshot named
"Snap1_out". If you run another simulation on "Snap1", you get a new output snapshot named "Snap1_out", and the old
"Snap1_out" is renamed "Snap1_out_out".

3.15.3.2 Simulation Output Contents

Running the sim command with no options creates a snapshot containing accounting log files. If you use the -L option,
the snapshot also contains scheduler log files.

3.15.3.3 Simulation Output Statistics

When you run a simulation, Simulate prints statistics showing how the workload ran through:

• Number of scheduling cycles run: <integer>

• Number of jobs submitted <integer>

• Number of jobs run: <integer>

• Number of jobs left over: <integer>
SG-106 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
These are the jobs which could not be run because the job requested an unavailable queue or resource, the job
exceeded a limit, etc.

• Time taken to simulate: <seconds>
PBS Professional 2022.1 Simulate Guide SG-107

Chapter 3 Simulate Command Reference
3.16 tracejob

Extracts and prints log messages for a PBS job

3.16.1 Synopsis

tracejob [-a] [-c <count>] [-f <filter>] [-l] [-m] [-n <days>] [-p <path>] [-s] [-v] [-w <cols>] [-z] <job ID>

tracejob --version

3.16.2 Description

The tracejob command extracts log messages for a given job ID and prints them in chronological order.

The tracejob command extracts information from server, default scheduler, accounting, and MoM logs. Server logs
contain information such as when a job was queued or modified. Scheduler logs contain clues as to why a job is not run-
ning. Accounting logs contain accounting records for when a job was queued, started, ended, or deleted. MoM logs con-
tain information about what happened to a job while it was running.

To get MoM log messages for a job, tracejob must be run on the machine on which the job ran. If the job ran on mul-
tiple hosts, you must run tracejob on each of those hosts.

Some log messages appear many times. In order to make the output of tracejob more readable, messages that appear
over a certain number of times (see option -c below) are restricted to only the most recent message.

3.16.3 Using tracejob on Job Arrays

If tracejob is run on a job array, the information returned is about the job array itself, and not its subjobs. Job arrays
do not have associated MoM log messages. If tracejob is run on a subjob, the same types of log messages are avail-
able as for a job. Certain log messages that occur for a regular job will not occur for a subjob.

3.16.4 Required Privilege

All users have access to server, scheduler, and MoM information. Only Administrator or root can access accounting
information.

3.16.5 Options to tracejob

-a
Do not report accounting information.

-c <count>
Set excessive message limit to count. If a message is logged at least count times, only the most recent message
is printed.

The default for count is 15.
SG-108 PBS Professional 2022.1 Simulate Guide

Simulate Command Reference Chapter 3
-f <filter>
Do not include log events of type filter. The -f option can be used more than once on the command line. The
following table shows each filter with its hex value and category:

-l
Do not report scheduler information.

-m
Do not report MoM information.

-n <days>
Report information from up to days days in the past.

Default number of days: 1 = today

-p <path>
Use path as path to PBS_HOME on machine being queried.

-s
Do not report server information.

-w <cols>
Width of current terminal. If cols is not specified, tracejob queries OS to get terminal width. If OS doesn't
return anything, defaults to 80.

-v
Verbose. Report more of tracejob's errors than default.

-z
Suppresses printing of duplicate messages.

--version
The tracejob command returns its PBS version information and exits. This option can only be used alone.

Table 3-28: tracejob Filters

Filter Hex Value Message Category

error 0x0001 Internal errors

system 0x0002 System errors

admin 0x0004 Administrative events

job 0x0008 Job-related events

job_usage 0x0010 Job accounting info

security 0x0020 Security violations

sched 0x0040 Scheduler events

debug 0x0080 Common debug messages

debug2 0x0100 Uncommon debug messages

resv 0x0200 Reservation debug messages

debug3 0x0400 Less common than debug2

debug4 0x0800 Less common than debug3
PBS Professional 2022.1 Simulate Guide SG-109

Chapter 3 Simulate Command Reference
3.16.6 Operands

The tracejob command accepts one job ID operand.

For a job, this has the form:

<sequence number>[.<server name>][@<server name>]

For a job array, the form is:

<sequence number>[][.<server name>][@<server name>]

For a subjob, the form is:

<sequence number>[<index>][.<server name>][@<server name>]

Note that some shells require that you enclose a job array identifier in double quotes.

3.16.7 Exit Status

Zero
Upon successful processing of all options

Greater than zero
If tracejob is unable to process any options

3.16.8 See Also

The PBS Professional Administrator's Guide

3.16.9 Caveats

Do not try to use the -p option. This causes the command to look some place other than the snapshot, and the command
returns an error.
SG-110 PBS Professional 2022.1 Simulate Guide

Index

A
adjusting SG-16
adjusting formula SG-16
advance reservations SG-17
Altair License Manager SG-7
attribute values in a snapshot

inspecting SG-14
modifying SG-16

B
Budgets tool SG-4

C
CentOS SG-6
checking snapshot contents SG-14
cloud bursting SG-21

simulating SG-21
Cloud feature SG-4
configuration file SG-8
contents of snapshot SG-10

inspecting SG-14
creating a snapshot SG-10
creating simulated execution hosts SG-16

D
discovery command SG-3
duration in simulation SG-20

E
editing snapshot files SG-15
environment variables SG-4, SG-94

F
files in a snapshot

editing SG-15
finding whether job can ever run SG-20
formula

adjusting SG-16
examining resulting priorities SG-20
output SG-20

H
history jobs SG-4
hooks SG-4, SG-109

I
inspecting snapshot contents SG-14

J
job equivalence class SG-3
job execution timing SG-20
job ordering SG-20
job priorities SG-20
job that did not run

why SG-21
jobs that did not run

finding SG-21
job-specific ASAP reservations SG-4
job-specific now reservations SG-4
job-specific start reservations SG-17

M
maintenance reservations SG-17
modifying attribute values in a snapshot SG-16
modifying files in a snapshot SG-15
modifying formula SG-16
modifying snapshot resources SG-15

N
name of output snapshot SG-19, SG-110
node equivalence class SG-3

O
output of simulation SG-18
output snapshot SG-18

definition SG-3

P
pbs_rstat SG-35
pbs_rsub SG-37
pbs_snapshot SG-44
PBS_SNAPSHOT_PATH SG-8
pbs_stat SG-55
pbsfs SG-28
pbsnodes SG-31
primary snapshot

definition SG-3
PBS Professional 2022.1 Simulate Guide SG-111

Index
Q
qdel SG-57
qmgr SG-59
qselect SG-76
qstat SG-82
qsub SG-94

R
reservations SG-17

advance SG-17
job-specific start SG-17
maintenance SG-17
standing SG-17

resources in a snapshot
modifying SG-15

run_count SG-106
running a simulation SG-18

S
sandbox SG-106
scheduler cycles in simulation SG-20
sim SG-109
SIM_LICENSE_LOCATION SG-8
simsh SG-26
Simulate configuration file SG-8
simulated execution hosts SG-16
simulating cloud bursting SG-21
simulation SG-18

duration SG-20
output SG-18
scheduler cycles SG-20

simulation statistics SG-19, SG-110
SLES

restrictions SG-7
snapshot SG-3

attribute values
modifying SG-16

checking contents SG-14
contents

description SG-10
inspecting SG-14

creating SG-10
creating reservations SG-17
creating simulated execution hosts SG-16
editing files SG-15
files

editing SG-15
formula SG-16
modifying attribute values SG-16
naming for output SG-19, SG-110
output SG-3, SG-18
primary SG-3
resources

modifying SG-15
standing reservations SG-17
sub-goals SG-1
SuSE SG-6

T
timing of job execution SG-20
tracejob SG-112

why job did not run SG-21

U
user environment SG-8

W
Windows SG-6
wrapper script SG-26
SG-112 PBS Professional 2022.1 Simulate Guide

Main Index

$action RG-244
$checkpoint_path RG-244
$clienthost RG-244
$cputmult RG-245
$dce_refresh_delta RG-245
$enforce RG-245
$job_launch_delay RG-247
$jobdir_root RG-246
$logevent RG-247
$logevent MoM parameter AG-430
$max_check_poll RG-247
$max_load RG-248
$max_poll_downtime RG-248
$min_check_poll RG-248
$prologalarm RG-248
$reject_root_scripts RG-248
$restart_background RG-249
$restart_transmogrify RG-249
$restrict_user AG-521, RG-249
$restrict_user_exceptions AG-521, RG-249
$restrict_user_maxsysid AG-521, RG-249
$restricted RG-249
$sister_join_job_alarm RG-250
$suspendsig RG-250
$tmpdir RG-250
$usecp RG-250
$wallmult RG-250
.rhosts AG-507
_NEC_HCA_LIST_IO UG-213
_NEC_HCA_LIST_MPI UG-214
_NECMPI_VE_NODELIST UG-213
_NECMPI_VE_NUM_NODES UG-213
_VENODELIST UG-213

A
accept an action HG-5, RG-1
access

by group AG-492, RG-7
by user AG-492, RG-20

effect of flatuid AG-506
control lists AG-492
from host AG-492, RG-8
to a queue AG-492, RG-1
to a reservation AG-492, RG-1
to server AG-492
to the server RG-1

access control list RG-1
account BG-5

group BG-12
installation IG-13
PBS service IG-13
project BG-14
user BG-16

account string RG-1
Account_Name

job attribute RG-327
accounting UG-225

account AG-534, AG-538, AG-539
account string RG-1
alt_id AG-534, AG-539
authorized_hosts AG-532
authorized_users AG-532
ctime AG-532, AG-533, AG-534, AG-536, AG-539,

AG-541, AG-542
duration AG-532
end AG-532, AG-534, AG-540
etime AG-533, AG-534, AG-536, AG-539, AG-540,

AG-541, AG-542
exec_host AG-535
exec_vnode AG-535
Exit_status AG-535, AG-540
group AG-533, AG-535, AG-536, AG-539, AG-540,

AG-541, AG-543
jobname AG-533, AG-535, AG-539, AG-540, AG-

541, AG-543
jobobit AG-535, AG-540
name AG-532
owner AG-532
qtime AG-533, AG-535, AG-536, AG-539, AG-540,

AG-541, AG-543
queue AG-532, AG-533, AG-535, AG-536, AG-539,

AG-540, AG-541, AG-543
Resource_List AG-532, AG-533, AG-535, AG-536,

AG-539, AG-540, AG-541, AG-543
session AG-533, AG-535, AG-536, AG-540, AG-

542, AG-543
start AG-532, AG-533, AG-535, AG-536, AG-540,

AG-542, AG-543
user AG-533, AG-535, AG-536, AG-539, AG-540,

AG-542, AG-543
accounting log entry

format RG-353
PBS Professional 2022.1 Big Book Main-1

Main Index
accounting policy
definition BG-23

accounting_id AG-534, AG-538
job attribute RG-327

accounts
required user accounts BG-32

accrue_type
job attribute RG-327

ACCT_TMPDIR UG-225
ACL RG-1, RG-379, RG-382, RG-383, RG-384
acl_group_enable

queue attribute AG-500, RG-311
acl_groups

queue attribute AG-500, RG-311
acl_host_enable RG-281

queue attribute AG-500, RG-311
server attribute AG-500

acl_host_moms_enable RG-281
acl_hosts

queue attribute AG-500, RG-311
server attribute AG-500, RG-281

acl_resv_group_enable
server attribute RG-281

acl_resv_groups
server attribute RG-281

acl_resv_host_enable
server attribute RG-281

acl_resv_hosts
server attribute RG-282

acl_resv_user_enable
server attribute RG-282

acl_resv_users
server attribute RG-282

acl_roots AG-524
server attribute RG-282

acl_user_enable
queue attribute AG-500, RG-311
server attribute AG-500, RG-282

acl_users
queue attribute AG-500, RG-311
server attribute AG-500, RG-282

ACLs AG-492
default behavior AG-493
format AG-493
group AG-494
host AG-494
matching entry AG-495
modifying behavior AG-493
overrides AG-506
removing entity AG-497
rules for creating AG-497
user AG-494
who can create AG-498

acquire BG-22

action HG-5, RG-1
accept RG-1
reject RG-16

activate a power profile AG-586
active BG-5
active (failover) RG-1
Active Directory IG-13, RG-1
activereq PG-102
adding cluster BG-62
adding job submitters BG-17
addreq PG-102
adjusting SG-12
adjusting formula SG-12
Admin IG-13, RG-1
admin

role BG-8
administrator RG-2, BG-8, BG-32

user account BG-32
Administrators RG-2
administrators IG-13
advance reservation AG-196, AG-532, RG-2, RG-390,

UG-137
creation UG-139

advance reservations SG-13
aggressive_provision AG-593, RG-256
alarm

hook attribute RG-349
allocation BG-6
allocation period BG-18

defining BG-61
allreq PG-102
ALM license server RG-2
alt_id

job attribute RG-327
Altair License Manager BG-31, SG-3
Altair License Server CG-9
am.conf BG-43, BG-44, BG-45
AM_AUTH_ENDPOINT BG-44
AM_AUTH_TIMEOUT BG-44
AM_BALANCE_PRECHECK BG-44
AM_DBPORT BG-44
AM_DBUSER BG-44
AM_EXEC BG-44
AM_HOME BG-44
am_hook BG-61

creating and configuring BG-69, BG-143
am_hook.json BG-62
am_hook_periodic BG-61
AM_LICENSE_ENDPOINT BG-44
AM_MODE BG-44
AM_PORT BG-44
AM_SERVER BG-44
AM_WORKERS BG-44
Amazon Web Services CG-8
Main-2 PBS Professional 2022.1 Big Book

Main Index
Ames Research Center RG-409
amgr

help BG-197, BG-77
amgr acquire BG-128
amgr add BG-79
amgr checkbalance BG-121
amgr deposit BG-119
amgr limit BG-116
amgr ls BG-85
amgr precheck BG-124
amgr reconcile BG-130
amgr refund BG-132
amgr report BG-103
amgr rm BG-101
amgr sync formula BG-118
amgr transfer BG-133
amgr update BG-92
amgr withdraw BG-123
AMS BG-5, BG-6

installing BG-5
AOE AG-591, RG-2, UG-219

using UG-220
aoe RG-265
aoe resource

defining AG-600
API RG-2
application checkpoint RG-2
application license

floating AG-272
definition AG-229

floating externally-managed AG-272
application licenses AG-270

floating UG-56
floating license PBS-managed AG-273
license units and features AG-271
node-locked

per-CPU UG-57
overview AG-254
per-host node-locked example AG-275
types AG-270

application operating environment RG-2
arch RG-266
argument_list

job attribute RG-328
array

job attribute RG-328
array job RG-2, RG-9
array_id

job attribute RG-328
array_index

job attribute RG-328
array_indices_remaining

job attribute RG-328

array_indices_submitted
job attribute RG-328

array_state_count
job attribute RG-329

ASAP reservation AG-196, RG-2, RG-10
attribute

definition RG-2
log_events RG-298
PBS, in billing formula BG-63
project

metadata BG-16
rerunnable RG-16

attribute name
format RG-353

attribute values in a snapshot
inspecting SG-10
modifying SG-12

attributes in hooks
reservation attributes HG-63
vnode attributes HG-61

authentication AG-577
authorization IG-12, AG-577
Authorized_Groups

reservation attribute RG-303
Authorized_Groups reservation attribute AG-501
Authorized_Hosts

reservation attribute RG-303
Authorized_Hosts reservation attribute AG-501
Authorized_Users

reservation attribute RG-304
Authorized_Users reservation attribute AG-501
average CPU usage enforcement AG-303
average_cpufactor AG-303
average_percent_over AG-303
average_trialperiod AG-303
avoid_provision AG-593, RG-256
AWS CG-8
Azure cloud head node CG-173

B
backfill RG-252
backfill_depth

queue attribute RG-311
server attribute RG-282

backfill_prime AG-193, RG-252
backfilling RG-2
backup directory

overlay upgrade IG-72, IG-73, IG-83, IG-85, IG-96
Windows upgrade IG-111, IG-126, IG-127

basic fairshare AG-139
batch job RG-9
batch processing RG-3
batch requests AG-430
PBS Professional 2022.1 Big Book Main-3

Main Index
billing formula BG-6
constants BG-62
defining BG-62
file BG-62
operators BG-64
PBS attributes BG-63
PBS resources BG-63

billing period BG-18
creating BG-61

block
job attribute RG-329

blocking jobs UG-122
Boolean

format AG-234, RG-259, RG-359, UG-51
borrowing vnode AG-228, AG-266, RG-3
Budgets

administrator BG-8, BG-32
basic configuration BG-142
configuration tutorial BG-201, BG-203, BG-145,

BG-149
enabling BG-45, BG-52, BG-144
entity BG-6
hooks BG-5

configuration file BG-67
creating and configuring BG-69, BG-143

instance BG-5
logging in and out BG-145
requirements

user accounts BG-32
starting BG-45, BG-52, BG-144
teller BG-32
upgrading BG-57

Budgets tool SG-4
built-in hook HG-5, RG-3
built-in resource AG-228, RG-3
burst CG-1
burst_by_hook CG-24
busy RG-365
by_queue RG-252

C
CentOS IG-23, CG-6, BG-28, SG-2
certificates

creating BG-41, BG-50
changing order of jobs UG-172
charging for jobs BG-10
checkbalance BG-22
checking snapshot contents SG-10
Checkpoint

job attribute RG-329

checkpoint AG-532, AG-637, RG-244, RG-388, RG-407
preemption via AG-186
restart RG-16
restart file RG-17
restart script RG-17

checkpoint and abort RG-3
checkpoint and restart RG-3
checkpoint/restart RG-3
checkpoint_abort RG-3, RG-244
checkpoint_min

queue attribute RG-312
child vnode RG-3
chunk AG-229, RG-3, UG-53, UG-55
chunk set RG-3
chunk-level resource RG-3, UG-53
client commands IG-4
clienthost AG-521
closerm PG-102
cloud bursting SG-17

simulating SG-17
cloud bursting hook CG-1
Cloud feature SG-4
cloud head node in Azure CG-173
cloud node CG-1
cloud queue CG-1
cloud queues CG-29
cloud_account CG-24
cloud_instance_type CG-24
cloud_max_instances CG-24
cloud_max_jobs_check_per_queue CG-24
cloud_min_instances CG-24
cloud_network CG-24
cloud_node_image CG-25
cloud_node_instance_type CG-25
cloud_provisioned_time CG-25
cloud_queue CG-25
cloud_scenario CG-25
cloud-init CG-155
cluster RG-4, BG-6

adding BG-62
definition BG-23

comm RG-4
commands IG-4, RG-4, UG-2, PG-4

and provisioning UG-222
list BG-78
PATH BG-197, BG-77

comment UG-185
job attribute RG-330
scheduler attribute RG-298
server attribute RG-283
vnode attribute RG-320

communication daemon RG-4, UG-3
Main-4 PBS Professional 2022.1 Big Book

Main Index
complex RG-4, BG-6
adding BG-61
Linux-Windows RG-11
mixed-mode RG-12
Windows-Linux RG-20

configrm PG-102
configuration

Budgets
file BG-43, BG-45

failover BG-53
file staging AG-581
parameters

basic configuration BG-142
rsync AG-581
server AG-21
tutorial BG-201, BG-203, BG-145, BG-149

configuration file HG-6, SG-4
hook HG-6
version 1 RG-20
version 2 RG-20

configuring PBS for cloud bursting CG-24
constants

in billing formula BG-62
consumable resource AG-229, RG-4
consuming credit BG-11
contents of snapshot SG-6

inspecting SG-10
Corosync BG-53
count_spec UG-140
CPU AG-229, RG-4
cpuaverage AG-303
cput AG-142, RG-266
creating HG-5

certificates for encryption BG-41, BG-50
service units

dynamic BG-20
standard BG-19

creating a hook HG-5, RG-4
creating a snapshot SG-6
creating empty hooks HG-31
creating queues AG-25
creating simulated execution hosts SG-12
creation of provisioning hooks AG-602
credential PG-21
credit

consuming BG-11
investing in groups BG-9
investing in users and projects BG-10
reconciling BG-11

cron BG-20
CSA UG-225
ctime

job attribute RG-330
reservation attribute RG-304

currency BG-1, BG-19
current_aoe AG-600

vnode attribute RG-320
current_eoe AG-587, RG-320
custom resource AG-229, RG-4
custom resources

application licenses AG-270
floating managed by PBS AG-273
overview AG-254
per-host node-locked AG-275
types AG-270

how to use AG-252
scratch space

overview AG-254
static host-level AG-265
static server-level AG-264

custom resources for cloud bursting CG-26
cycle harvesting

ideal_load AG-125
max_load AG-125

cygwin UG-16

D
daemon

communication UG-3
data service account RG-4
data service management account RG-4
data_lifetime BG-20

setting value BG-73
database

user account BG-32
date

format RG-353
datetime

format RG-354
deactivate a power profile AG-586
debug

hook attribute RG-349
debuginfo AG-635
decay AG-142
dedicated time AG-127
dedicated_prefix RG-252
default server RG-5
default_chunk

queue attribute RG-312
server attribute RG-283

default_qdel_arguments
server attribute RG-283

default_qsub_arguments
server attribute RG-283

default_queue
server attribute RG-283

defining aoe resource AG-600
PBS Professional 2022.1 Big Book Main-5

Main Index
defining provisioning policy AG-603
defining resources

multi-vnode machines AG-268
degraded reservation AG-196, RG-16
delegation IG-13, RG-5
delete_idle_time RG-304
deleting hooks HG-31
deleting jobs UG-170
department AG-140
depend

job attribute RG-331
deposit BG-22
destination

definition RG-5
destination identifier RG-5

format RG-354
destination queue RG-5
destination server RG-5
Deutsche Telekom CG-8
directive RG-6
directory

staging and execution RG-19
DIS IG-59, AG-422, HG-160, RG-369
discovery command SG-3
DNS IG-38, AG-644
do_not_span_psets

scheduler attribute RG-298
Docker

basic installation BG-138
installing CG-11, BG-37, BG-46

docker-ce CG-9, BG-31
docker-ee CG-9, BG-31
documentation

PBS Professional UG-217
SELinux UG-217

Domain Admin Account IG-13, RG-6
Domain Admins IG-13, RG-6
Domain User Account IG-13, RG-6
Domain Users IG-13, RG-6
domains

mixed IG-17
down RG-365
downrm PG-102
duration in simulation SG-16
dynamic fit AG-168
dynamic resource AG-229
dynamic service units

definition BG-19
updating values BG-20

E
editing snapshot files SG-11

egroup AG-140
euser AG-140
job attribute RG-331

element BG-6
eligible wait time AG-128
eligible_time AG-128, AG-130, AG-534, AG-539

job attribute RG-332
eligible_time_enable

server attribute RG-283
empty queue, node configurations

migration under Linux IG-100, IG-115, IG-116, IG-
130

enabled
hook attribute RG-349
queue attribute RG-312

enabling and disabling hooks HG-38
enabling Budgets BG-45, BG-52, BG-144
endpoint RG-6
energy AG-587, RG-266
enforcement AG-578
Enterprise Admins IG-13, RG-6
entity RG-6, BG-6
entity share RG-6
environment variables RG-397, SG-4, SG-90

PATH BG-36
eoe AG-583, AG-587, RG-266
error codes RG-387
Error_Path

job attribute RG-332
errors

fgetfilecon UG-217
filecon UG-217
malloc UG-217

escrow BG-200, BG-2, BG-11, BG-22, BG-130
est_start_time_freq

server attribute RG-284
estimated

job attribute RG-333
etime

job attribute RG-333
euser AG-140

job attribute RG-333
event HG-5, RG-6

execution HG-6
hook attribute RG-350
non-job HG-6
pre-execution HG-6
types HG-15

event types HG-15
events

exechost_periodic HG-97, HG-101, HG-114, HG-
Main-6 PBS Professional 2022.1 Big Book

Main Index
115
execjob_begin HG-103, HG-106
execjob_end HG-111, HG-113
execjob_epilogue HG-111
execjob_preterm HG-110
execjob_prologue HG-104
modifyjob HG-94
movejob HG-93
queuejob HG-92, HG-93
resvsub HG-98, HG-99, HG-100, HG-102
runjob HG-97

exclhost UG-67
exclusive UG-67
exec_host AG-532

job attribute RG-334
exec_vnode RG-266

job attribute RG-334
exechost_periodic HG-89
exechost_periodic events HG-97, HG-101, HG-114, HG-

115
exechost_startup HG-89
execjob_attach HG-89
execjob_begin HG-88
execjob_begin events HG-103, HG-106
execjob_end HG-88
execjob_end events HG-111, HG-113
execjob_epilogue HG-88
execjob_launch HG-89
execjob_postsuspend HG-90
execjob_preresume HG-90
execjob_preterm HG-89
execjob_preterm events HG-110
execjob_prologue HG-88
execjob_prologue events HG-104
executable

job attribute RG-333
execution event HG-6
execution event hooks HG-6, RG-6
execution host RG-6
execution queue RG-6
Execution_Time

job attribute RG-334
executor PG-4
exit status

job arrays UG-160
Exit_status

job attribute RG-335
exiting AG-128
exporting hooks HG-36
express_queue AG-183, RG-300
extract_state_ints() HG-103, HG-147
extract_state_strs() HG-103, HG-147

F
fail_action

hook attribute RG-351
failover RG-6, BG-53

configuring BG-53
idle RG-8
migration IG-73, IG-85, IG-97, IG-112, IG-128
primary scheduler RG-15
primary server RG-15
secondary scheduler RG-17
secondary server RG-17

failover and hooks HG-22
failure action HG-6, RG-7
fair_share RG-252

scheduler parameter AG-139
fairshare AG-138, AG-183, RG-7, RG-300
fairshare entities AG-140
fairshare ID AG-140
fairshare_decay_factor RG-252
fairshare_decay_time RG-253
fairshare_enforce_no_shares RG-253
fairshare_entity RG-253
fairshare_perc AG-152, RG-254
fairshare_usage_res RG-253
fgetfilecon error UG-217
file RG-267

.rhosts IG-12

.shosts IG-12
billing formula BG-62
Budgets configuration BG-43, BG-45
formula BG-62
hook configuration HG-6, BG-62
hosts.equiv IG-15, IG-39
pbs.conf IG-43
services IG-59
stage in RG-18
stage out RG-18
staging UG-33
sudoers

modifications for Budgets BG-33
vnodedefs RG-20

file staging RG-7
configuration AG-581

filecon error UG-217
files

nodes RG-380
pbs.conf AG-644
policy AG-578

location AG-578
files in a snapshot

editing SG-11
finding whether job can ever run SG-16
finished jobs AG-479, RG-7
firewalld CG-174
PBS Professional 2022.1 Big Book Main-7

Main Index
flatuid
server attribute RG-284

flatuid server attribute AG-506
FLicenses

server attribute RG-284
float

format AG-234, RG-259, RG-359, UG-52
floating license RG-7

definition AG-229
example AG-272
example of externally-managed AG-272

floating licenses UG-56
flushreq PG-102
format

accounting log entry RG-353
attribute name RG-353
Boolean AG-234, RG-259, RG-359, UG-51
date RG-353
datetime RG-354
destination identifier RG-354
float AG-234, RG-259, RG-359, UG-52
host name RG-354
job array identifier RG-354
job array name RG-355
job array range RG-355
job identifier RG-355, RG-357
job name RG-355
limit specification RG-356
logfile-date-time RG-356
pathname RG-357
PBS NAME RG-357
PBS password RG-357
project name RG-357
queue identifier RG-357
queue name RG-357
reservation name RG-358
size AG-235, RG-260, RG-360, UG-52
string resource value AG-235, AG-240, RG-260,

RG-360, UG-52
string_array AG-235, AG-240, RG-260, RG-360,

UG-53
subjob identifier RG-358
username RG-358

Windows RG-358
vnode name RG-358

formats
name BG-26

formula BG-6
adjusting SG-12
examining resulting priorities SG-16
output SG-16

formula file BG-62
forward_x11_cookie

job attribute RG-335

forward_x11_port
job attribute RG-335

free RG-365, UG-67
freq

hook attribute RG-351
freq_spec UG-140
from_route_only

queue attribute RG-312
fullresp PG-102
furnishing queue RG-7

G
GCP CG-8
gethostbyaddr IG-58
gethostname AG-521
getreq PG-102
Globus AG-21
Google Cloud Platform CG-8
group RG-7, BG-12

access AG-492, RG-7
account BG-12
ACLs AG-494
definition BG-12
ID (GID) RG-7
limit AG-229, AG-285

generic AG-285
individual AG-285

group limit RG-8
group=resource UG-67
group_list

job attribute RG-335

H
half_life RG-253
hasnodes

queue attribute RG-312
hbmem RG-267
HCA AG-627, UG-205
head node CG-1
headnode IG-21
help, getting AG-647
here document UG-22
history jobs AG-479, RG-8, SG-4
hold RG-8
Hold_Types

job attribute RG-335
hook RG-8

cloud bursting CG-1
creating RG-4
importing RG-8
provisioning RG-15

hook configuration file HG-6
Main-8 PBS Professional 2022.1 Big Book

Main Index
hooks BG-5, SG-4, SG-105
configuration file BG-62
creating and configuring BG-69, BG-143
creation of provisioning AG-602
execution event RG-6
non-job event RG-12
pre-execution event RG-15
provisioning AG-591
reject action RG-16

host RG-8, RG-267
access AG-492, RG-8
ACLs AG-494

host channel adapter AG-627, UG-205
host name

format RG-354
hostname RG-8
hosts.equiv AG-507
Hot_Start

server state RG-364
HTT RG-8
HUAWEI Cloud CG-8

I
ideal_load

cycle harvesting AG-125
identifier UG-12
Idle

server state RG-364
idle (failover) RG-8
IETF IG-9, IG-58
importing HG-6
importing a hook HG-6, RG-8
importing hooks HG-35
in_multivnode_host

vnode attribute RG-320
inactive BG-5
index

subjob RG-19
indirect resource AG-229, AG-266, RG-8
ineligible_time AG-128
InfiniBand AG-573, RG-49, RG-50, UG-99, UG-100
initial_time AG-129
inspecting snapshot contents SG-10
installation

basic BG-137
Docker BG-138
utilities BG-138

Windows MoMs IG-37
installation account IG-13, RG-9
installation script CG-12

installing
AMS BG-5
Docker BG-37, BG-46
utilities BG-37, BG-46

instance AG-196, RG-13, UG-137
definition BG-6

instance of a standing reservation AG-196, UG-137
instance of Budgets BG-5
instance type CG-2, CG-43
instantiation AG-578
instructions

for job submitters BG-197
Intel MPI

examples UG-88
interactive

job attribute RG-336
reservation attribute RG-305

interactive job RG-9
interval_spec UG-140
investing BG-8

in groups BG-9
in projects BG-10
in users BG-10

investor
actions BG-9
role BG-8

J
ja

CSA command UG-225
job

attribute RG-16
attributes in hooks HG-56
batch RG-9
comment UG-185
definition UG-2
dependencies UG-109
executor (MoM) PG-4
identifier RG-9, UG-12
identifier syntax UG-154
interactive RG-9
kill RG-11
owner RG-13
rerunnable RG-16
route RG-17
shrink-to-fit RG-18
state RG-10
states RG-361
submission options UG-24
substates RG-361
PBS Professional 2022.1 Big Book Main-9

Main Index
job array RG-9
identifier RG-9, UG-153
range RG-9, UG-153
states UG-155
subjob RG-19
subjob index RG-19

job array identifier
format RG-354

job array name RG-10
format RG-355

job array range
format RG-355

job arrays UG-153
exit status UG-160
prologues and epilogues UG-156

job attributes
setting UG-16

job equivalence class SG-3
job execution timing SG-16
job history AG-479

changing settings AG-481
configuring AG-480
enabling AG-480
setting duration AG-480

job ID RG-9
job identifier

format RG-355, RG-357
job name RG-10

format RG-355
job ordering SG-16
job priorities SG-16
Job Submission Description Language RG-10
job submitters

adding BG-17
instructions BG-197
user account BG-33

job that can never run AG-637
job that did not run

why SG-17
job.accrue_type HG-134
job.array_indices_submitted HG-134
job.Checkpoint HG-134
job.delete() HG-140
job.depend HG-134
job.exec_host HG-134
job.exec_vnode HG-135
job.Execution_Time HG-134
job.group_list HG-135
job.Hold_Types HG-135
job.id HG-133
job.in_ms_mom() HG-140
job.is_checkpointed() HG-140
job.job_state HG-135
job.Mail_Points HG-138

job.Mail_Users HG-138
job.rerun() HG-141
job.resources_used HG-139
job.resv HG-139
job.stagein HG-139
job.stageout HG-139
job.substate HG-136
job.User_List HG-139
job_history_duration

server attribute RG-284
job_history_enable

server attribute RG-284
Job_Name

job attribute RG-336
Job_Owner

job attribute RG-336
job_priority RG-254
job_requeue_timeout

server attribute RG-285
job_sort_formula

server attribute RG-285
job_sort_formula_threshold

scheduler attribute RG-298
job_sort_key RG-253
job_state

job attribute RG-337
job-busy RG-365
jobdir

job attribute RG-336
job-exclusive RG-365
jobobit HG-90, HG-97
jobs

changing order UG-172
charging BG-10
deleting UG-170
moved RG-12
moving between queues UG-173
reconciling BG-11
requirements BG-31
sending messages to UG-171
sending signals to UG-172
submitting BG-197
vnode attribute RG-320

jobs that did not run
finding SG-17

jobscript_max_size
server attribute RG-285

job-specific ASAP reservation AG-196, RG-2, RG-10,
UG-137

job-specific ASAP reservations SG-4
job-specific now reservation AG-196, RG-10, RG-12,

UG-137
job-specific now reservations SG-4
job-specific reservation AG-196, RG-10, UG-137
Main-10 PBS Professional 2022.1 Big Book

Main Index
Job-specific start reservation RG-10
job-specific start reservation AG-196, RG-19, UG-137
job-specific start reservations SG-13
job-wide resource RG-10, UG-53, UG-54
Join_Path

job attribute RG-338
JSDL RG-10

K
Keep_Files

job attribute RG-338
kill job RG-11
kill_delay

queue attribute RG-313

L
last_state_change_time RG-320

vnode attribute AG-587
last_used_time RG-321

vnode attribute AG-587
leaf RG-11
lic_signature CG-25
license

application
floating AG-272

external RG-383
floating

definition AG-229
vnode attribute RG-321

license server RG-11
ALM RG-2

license server configuration
redundant RG-16

License Server List Configuration RG-11
license_info

vnode attribute RG-321

limit AG-230, AG-284, RG-11
attributes AG-290
cput AG-301
file size AG-301
generic group limit AG-229, AG-285, RG-7
generic project limit AG-285, RG-7
generic user limit AG-229, AG-285, RG-7
group limit AG-229, AG-285, RG-8
individual group limit AG-229, AG-285, RG-8
individual project limit AG-285, RG-9
individual user limit AG-230, AG-285, RG-9
overall AG-230, AG-285, RG-13
pcput AG-301
pmem AG-301
project RG-15
project limit AG-285
pvmem AG-301
user limit AG-230, AG-285, RG-20
walltime AG-301

limit specification
format RG-356

limits
generic and individual AG-288
group AG-283
overall limits AG-288
project AG-283
resource usage AG-283, UG-63
scope AG-286
setting limits AG-292
user AG-283

Linux-Windows complex RG-11
list of commands BG-78
load balance RG-11
load_balancing RG-254
load_balancing_rr RG-254
location

policy files AG-578
log events

MoM AG-430
scheduler AG-430
server AG-430

log level objects HG-177
log levels AG-429
log_events

scheduler attribute RG-298
server attribute AG-430, RG-285

log_filter RG-254
logfile-date-time

format RG-356
logging

hooks log level objects HG-177
logging into Budgets BG-145
logging out of Budgets BG-145
PBS Professional 2022.1 Big Book Main-11

Main Index
logs
permissions AG-580

M
mail_from

server attribute RG-286
Mail_Points

job attribute RG-338
reservation attribute RG-305

Mail_Users
job attribute RG-338
reservation attribute RG-305

mailer AG-21, RG-285
maintenance RG-365
maintenance reservation AG-196
maintenance reservations SG-13
maintenance_jobs RG-321
malloc error UG-217
management HG-90
management.cmd HG-152
management.objname HG-153
management.objtype HG-153
management.reply_auxcode HG-154
management.reply_choice HG-155
management.reply_code HG-156
management.reply_text HG-156
management.request_time HG-156
Manager RG-11

privilege AG-491
manager

actions BG-10
role BG-8

managers
server attribute RG-286

managers server attribute AG-491
managing vnode AG-230, AG-266, RG-11
master provisioning script AG-591, AG-601, RG-11
master script AG-591, AG-601, RG-11
matching ACL entry AG-495
max_array_size

queue attribute RG-313
server attribute RG-286

max_concurrent_provision AG-603
server attribute RG-286

max_group_res AG-299
queue attribute RG-313

max_group_res_soft
queue attribute RG-313

max_group_run AG-299
queue attribute RG-313

max_group_run_soft AG-299
queue attribute RG-313

max_job_sequence_id RG-287

max_load
cycle harvesting AG-125

max_queuable AG-299
queue attribute RG-314

max_queued AG-291
queue attribute RG-314

max_queued_res AG-291
queue attribute RG-314

max_run AG-290
queue attribute RG-314

max_run_res AG-291
queue attribute RG-314

max_run_res_soft AG-291
queue attribute RG-315

max_run_soft AG-290
queue attribute RG-315

max_run_subjobs RG-339
max_running AG-299

queue attribute RG-315
max_user_res AG-299

queue attribute RG-315
max_user_res_soft AG-299

queue attribute RG-315
max_user_run AG-299

queue attribute RG-316
max_user_run_soft AG-299

queue attribute RG-316
max_walltime AG-215, RG-267, UG-115
mem RG-267
memory-only vnode AG-230, RG-11
memreserved RG-248
metadata BG-16
Microsoft Azure CG-8
migration upgrade IG-65

Linux IG-93
Windows IG-109, IG-125

min_walltime AG-215, RG-268, UG-115
mixed domains IG-17
mixed-mode complex RG-12
mode BG-6
modifying attribute values in a snapshot SG-12
modifying files in a snapshot SG-11
modifying formula SG-12
modifying snapshot resources SG-11
modifyjob HG-87
modifyjob events HG-94
modifyresv HG-91
modifyvnode HG-90
MoM IG-4, RG-12, UG-2, PG-3, PG-4

log events AG-430
subordinate RG-19

Mom
vnode attribute RG-321

MoM hook HG-6
Main-12 PBS Professional 2022.1 Big Book

Main Index
MoM hooks HG-6
mom_resources RG-254
monitoring RG-12, UG-1
Mother Superior RG-12
moved jobs RG-12
movejob HG-88
movejob events HG-93
moving jobs

migration upgrade under Linux IG-107, IG-123
moving jobs between queues UG-173
MPI

Intel MPI
examples UG-88

MPICH2
examples UG-101

MPICH-MX
MPD

examples UG-94
rsh/ssh

examples UG-95
MVAPICH1 UG-99

examples UG-99
MPI_USE_IB AG-573
MPICH UG-90
MPICH2

examples UG-101
MPICH-MX

MPD
examples UG-94

rsh/ssh
examples UG-95

mpiexec AG-571, RG-27
MPI-OpenMP UG-106
mpiprocs RG-268
MRJ Technology Solutions RG-409
mtime

job attribute RG-339
reservation attribute RG-306

multihost placement sets AG-169
multinodebusy RG-244
multi-vnode complex RG-380
MUNGE AG-509
MVAPICH1 UG-99

examples UG-99

N
name

vnode attribute RG-321
name of output snapshot SG-15, SG-106
NASA

and PBS RG-409
natural vnode AG-42
nchunk RG-269

NCPUS RG-397
ncpus RG-269
NEC SX-Aurora process swapping AG-630
NEC SX-Aurora TSUBASA AG-627, UG-205
NEC_PROCESS_DIST UG-208
network

ports IG-58
services IG-58

nhcas AG-628, UG-206
nice RG-269
no_multinode_jobs

vnode attribute RG-322
no_stdio_sockets

job attribute RG-339
node

definition RG-13
head CG-1
service CG-2

node equivalence class SG-3
node_group_key

queue attribute RG-316
server attribute RG-290

node_idle_limit
server attribute AG-588

node_location CG-25
node_sort_key RG-254
nodect RG-269
nodes RG-269
non-consumable resource AG-230, RG-12
non-job event HG-6
non-job event hooks HG-6, RG-12
non-primetime RG-15
nonprimetime_prefix AG-193, RG-255
normal_jobs AG-183, RG-300
now reservation RG-10, RG-12
NTFS IG-41
ntype

vnode attribute RG-322
nves AG-628, UG-206

O
obittime RG-339
object RG-12
occurrence of a standing reservation RG-13
offline RG-365
OMP_NUM_THREADS RG-397
ompthreads RG-270
only_explicit_psets

scheduler attribute RG-298
Open Telekom Cloud CG-8
OpenMP UG-104
openrm PG-102
OpenStack CG-8
PBS Professional 2022.1 Big Book Main-13

Main Index
Operator RG-13
privilege AG-490

operators
in billing formula BG-64
server attribute RG-291

operators server attribute AG-491
opt_backfill_fuzzy AG-111

scheduler attribute RG-299
Oracle Cloud Platform CG-8
Orange Cloud Flexible Engine CG-8
order

hook attribute RG-351
OTC CG-8
output files IG-12
output of simulation SG-14
output snapshot SG-14

definition SG-3
Output_Path

job attribute RG-340
overall limit AG-230, AG-285, RG-13
overlay upgrade IG-65

backup directory IG-72, IG-73, IG-83, IG-85, IG-96
Linux IG-70

overview of creating hooks HG-30
owner RG-13

P
Pacemaker BG-53
pack UG-67
Parallel Virtual Machine (PVM) UG-103
parameter RG-13
parent vnode RG-13
partial process swapping AG-630
partition RG-316, RG-322

scheduler attribute RG-299
password

invalid AG-636
passwordless ssh BG-35
PATH

for commands BG-197, BG-77
setting BG-36

pathname
format RG-357

PBS RG-398
configuring for cloud bursting CG-24

pbs RG-29, RG-92
PBS Administrator RG-14
PBS attribute

in billing formula BG-63
PBS complex BG-6

adding BG-61
PBS entity RG-6, RG-13
PBS environmental variables UG-155

pbs module HG-6, RG-13
PBS NAME

format RG-357
PBS object RG-12, RG-14
PBS password

format RG-357
PBS Professional RG-14, BG-31
PBS resource

in billing formula BG-63
PBS service account IG-13
pbs.acl() HG-168
pbs.args() HG-168
pbs.checkpoint() HG-168
pbs.conf AG-581, AG-586, AG-644
pbs.depend() HG-169
pbs.duration() HG-169
pbs.email_list() HG-169
pbs.event().accept() HG-125
pbs.event().alarm HG-118
pbs.event().fail_action HG-120
pbs.event().freq HG-120
pbs.event().hook_name HG-120
pbs.event().hook_type HG-120
pbs.event().order HG-121
pbs.event().pid HG-121
pbs.event().reject() HG-126
pbs.event().requestor HG-122
pbs.event().requestor_host HG-122
pbs.event().type HG-122
pbs.event().user HG-122
pbs.event().vnode HG-123
pbs.event().vnode_o HG-123
pbs.exec_host() HG-169
pbs.exec_vnode HG-142
pbs.exec_vnode() HG-170
pbs.get_local_nodename() HG-176
pbs.group_list() HG-170
pbs.hold_types() HG-170
pbs.job HG-132
pbs.job_sort_formula() HG-170
pbs.join_path() HG-170
pbs.keep_files() HG-171
pbs.license_count() HG-171
pbs.logmsg() HG-177
pbs.mail_points() HG-171
pbs.management HG-150
pbs.node_group_key() HG-171
pbs.path_list() HG-171
pbs.pbs_env() HG-171
pbs.place() HG-172
pbs.queue HG-131
pbs.queue.job() HG-132
pbs.range() HG-173
pbs.reboot() HG-178
Main-14 PBS Professional 2022.1 Big Book

Main Index
pbs.resv HG-144
pbs.route_destinations() HG-173
pbs.select() HG-173
pbs.server HG-128
pbs.server(). HG-128
pbs.server().job() HG-129
pbs.server().jobs() HG-129
pbs.server().name HG-128
pbs.server().queue() HG-129
pbs.server().queues() HG-130
pbs.server().resv() HG-130
pbs.server().resvs() HG-130
pbs.server().scheduler_restart_cycle() HG-130
pbs.server().vnode() HG-130
pbs.server().vnodes() HG-130
pbs.server_attribute HG-156
pbs.size() HG-175
pbs.software() HG-175
pbs.staging_list() HG-175
pbs.state_count() HG-176
pbs.user_list() HG-176
pbs.vchunk HG-143
pbs.version() HG-176
pbs.vnode HG-146
pbs_account RG-54
pbs_alterjob PG-24
PBS_ARRAY_ID RG-397, UG-155
PBS_ARRAY_INDEX RG-397, UG-155
pbs_asyrunjob PG-26, PG-58
pbs_attach RG-56
pbs_auth_create_ctx PG-125
pbs_auth_decrypt_data PG-133
pbs_auth_destroy_ctx PG-127
pbs_auth_encrypt_data PG-132
pbs_auth_get_userinfo PG-128
PBS_AUTH_METHOD AG-422, HG-160, RG-369
pbs_auth_process_handshake_data PG-130
pbs_auth_set_config PG-124
PBS_BATCH_SERVICE_PORT IG-59, AG-422, HG-

160, RG-369
PBS_BATCH_SERVICE_PORT_DIS IG-59, AG-422,

HG-160, RG-369
pbs_comm RG-4, RG-58
PBS_COMM_LOG_EVENTS AG-422, HG-160, RG-

369
PBS_COMM_ROUTERS AG-422, HG-160, RG-369
PBS_COMM_THREADS AG-422, HG-160, RG-369
PBS_CONF_FILE RG-397
PBS_CONF_SYSLOG AG-426, AG-435, HG-164, RG-

373
PBS_CONF_SYSLOGSEVR AG-426, AG-435, HG-

164, RG-373
pbs_connect PG-21, PG-30
PBS_CORE_LIMIT AG-423, HG-160, RG-370

PBS_CP AG-423, HG-160, RG-370
PBS_DAEMON_SERVICE_USER AG-423, HG-160,

RG-370
PBS_DATA_SERVICE_PORT IG-59, AG-423, HG-

160, RG-370
pbs_dataservice RG-61
pbs_default PG-32
pbs_deljob PG-33
pbs_delresv PG-35
pbs_disconnect PG-36
pbs_ds_password RG-62
PBS_ENCRYPT_METHOD AG-423, HG-161, RG-370
PBS_ENVIRONMENT AG-423, HG-161, RG-370, RG-

397
PBS_EXEC IG-21, IG-43, AG-379, AG-423, HG-161,

RG-14, RG-370
PBS_EXEC/pbs_sched_config

overlay upgrade IG-76, IG-88, IG-101, IG-117, IG-
131

PBS_EXEC/share AG-578
pbs_geterrmsg PG-37
pbs_holdjob PG-38
PBS_HOME IG-21, IG-43, AG-379, AG-423, HG-161,

RG-14, RG-370
pbs_hostn RG-64
pbs_idled RG-65
pbs_iff AG-644, RG-67, UG-217, PG-21
pbs_interactive RG-68
PBS_JOBCOOKIE RG-397
PBS_JOBID RG-397, UG-155
PBS_JOBNAME RG-397
PBS_LEAF_NAME IG-61, AG-423, HG-161, RG-370
PBS_LEAF_ROUTERS AG-423, HG-161, RG-370
pbs_license_info

server attribute RG-291
pbs_license_linger_time

server attribute RG-291
pbs_license_max

server attribute RG-291
pbs_license_min

server attribute RG-292
PBS_LOCALLOG AG-423, AG-435, HG-161, RG-370
pbs_locjob PG-39
PBS_LOG_HIGHRES_TIMESTAMP AG-423, HG-161,

RG-370, RG-398
pbs_login RG-69
PBS_MAIL_HOST_NAME IG-61, AG-23, AG-424,

HG-161, RG-371
pbs_manager PG-41
PBS_MANAGER_SERVICE_PORT IG-59, AG-424,

HG-161, RG-371
pbs_mkdirs AG-636, RG-70
pbs_module PG-113
PBS Professional 2022.1 Big Book Main-15

Main Index
pbs_mom IG-4, RG-71, PG-3, PG-4
starting during overlay IG-78

PBS_MOM_HOME AG-379, AG-424, HG-161, RG-371
PBS_MOM_HOST_NAME IG-61
PBS_MOM_NODE_NAME AG-424, HG-162, RG-371
PBS_MOM_SERVICE_PORT IG-59, AG-424, HG-162,

RG-371
PBS_MOMPORT RG-398
pbs_movejob PG-47
PBS_MPI_DEBUG AG-573
pbs_mpihp RG-76
pbs_mpirun RG-78
pbs_msgjob PG-49
PBS_NODENUM RG-398
PBS_O_HOME RG-398
PBS_O_HOST RG-398
PBS_O_LANG RG-398
PBS_O_LOGNAME RG-398
PBS_O_MAIL RG-398
PBS_O_PATH RG-398
PBS_O_QUEUE RG-398
PBS_O_SHELL RG-398
PBS_O_SYSTEM RG-398
PBS_O_TZ RG-398
PBS_O_WORKDIR RG-398
pbs_orderjob PG-51
PBS_OUTPUT_HOST_NAME IG-61, AG-424, HG-

162, RG-371
pbs_preempt_jobs PG-52
PBS_PRIMARY IG-61, AG-379, AG-424, HG-162, RG-

371
pbs_probe IG-63, AG-636, RG-80
pbs_python RG-82
PBS_QUEUE RG-398
pbs_ralter RG-85
PBS_RCP AG-424, AG-581, HG-162, RG-371
pbs_rdel RG-90
pbs_release_nodes RG-92
pbs_relnodesjob PG-54
PBS_REMOTE_VIEWER AG-424, HG-162, RG-371
pbs_rerunjob PG-56
pbs_rlsjob PG-57
pbs_rstat RG-94, SG-31
pbs_rsub AG-501, RG-96, SG-33
pbs_runjob PG-26, PG-58
pbs_sched IG-3, IG-4, RG-105, PG-2, PG-3
PBS_SCHED_THREADS AG-425, HG-162, RG-372
PBS_SCP AG-425, AG-581, HG-163, RG-372
PBS_SECONDARY IG-62, AG-379, AG-425, HG-163,

RG-372
pbs_selectjob PG-60
pbs_selstat PG-63
PBS_SERVER IG-62, AG-379, AG-425, HG-163, RG-

372, RG-398

pbs_server IG-3, IG-4, RG-107, PG-2, PG-3
PBS_SERVER_HOST_NAME IG-62, AG-425, HG-163,

RG-372
PBS_SID RG-398
pbs_sigjob PG-67
pbs_snapshot RG-111, SG-40
PBS_SNAPSHOT_PATH SG-4
PBS_START_COMM IG-141, AG-425, HG-163, RG-

372
PBS_START_MOM IG-141, AG-379, AG-425, HG-

163, RG-372
PBS_START_SCHED IG-141, AG-379, AG-425, HG-

163, RG-372
PBS_START_SERVER IG-141, AG-379, AG-425, HG-

163, RG-372
pbs_stat SG-51
pbs_statfree PG-69
pbs_stathook(3B) PG-119
pbs_stathost PG-70
pbs_statjob PG-72
pbs_statnode PG-75
pbs_statque PG-77
pbs_statresv PG-79
pbs_statrsc PG-81
pbs_statsched PG-83
pbs_statserver PG-85
pbs_statvnode PG-87
pbs_submit PG-89
pbs_submit_resv PG-91
PBS_SUPPORTED_AUTH_METHODS AG-425, HG-

163, RG-372
PBS_TASKNUM RG-399
pbs_tclapi PG-106
pbs_tclsh RG-122, PG-105
pbs_terminate PG-93
PBS_TMPDIR AG-426, HG-164, RG-373, RG-399
pbs_tmrsh RG-123
pbs_version

scheduler attribute RG-299
server attribute RG-292
vnode attribute RG-322

pbs_wish RG-125, RG-127, PG-105
pbsadmin RG-14
pbsdsh RG-30
pbsfs AG-143, RG-32, SG-24
pbshook HG-6, RG-13
pbsnodes RG-36, SG-27
pbsrun RG-41
pbsrun_unwrap RG-51
pbsrun_wrap RG-52
pcap_accelerator AG-535, AG-539, AG-541, AG-588,

RG-340
pcap_node AG-535, AG-539, AG-541, AG-588, RG-340
PCIe AG-627, UG-205
Main-16 PBS Professional 2022.1 Big Book

Main Index
pcpus
vnode attribute RG-322

pcput RG-270
pcs BG-53
peer scheduling RG-14, BG-73
per-CPU node-locked licenses UG-57
period BG-18

defining BG-61
definition BG-18
hierarchy BG-18

periodic HG-89
permissions

logs AG-580
pgov AG-535, AG-539, AG-541, AG-588, RG-340
p-governor AG-585, AG-588, RG-340
pkr CG-12, CG-17

sample output CG-185
placement

task AG-167
placement pool AG-168, RG-14
placement set AG-168, RG-14
placement set series RG-14
placement sets

multihost AG-169
pmem RG-270
pnames

vnode attribute RG-322
policy RG-14

defining provisioning AG-603
files AG-578

location AG-578
scheduling RG-17

Port
vnode attribute RG-322

POSIX RG-14
Postgres BG-5
postpaid mode BG-6
postqueuejob HG-91
power profile

activate AG-586
deactivate AG-586

power profiles AG-583
power_off_iteration

server attribute AG-589
power_provisioning AG-587

server attribute AG-587, AG-589, RG-292
vnode attribute AG-589, RG-322

poweroff_eligible AG-589
vnode attribute RG-322

PPS AG-630
precheck BG-22
preempt RG-15
preempt_order AG-179, RG-255
preempt_prio AG-180, RG-255

preempt_queue_prio AG-180, RG-255
preempt_sort AG-180, RG-255
preempt_targets RG-271
preemption AG-179

level RG-15
method RG-15
target RG-15

preemption via checkpoint AG-186
preemptive scheduling AG-179
preemptive_sched AG-179, RG-255
pre-execution event HG-6
pre-execution event hooks HG-6, RG-15
prepaid mode BG-6
primary execution host RG-15
primary scheduler RG-15
primary server IG-61, AG-424, HG-162, RG-15, RG-371
primary snapshot

definition SG-3
prime_spill AG-194, RG-256
primetime RG-15
primetime_prefix AG-193, RG-255
printjob RG-128
Priority

job attribute RG-341
queue attribute RG-316
vnode attribute RG-323

privilege
Manager AG-491
Operator AG-490
user AG-490

project AG-285, AG-533, AG-535, AG-536, AG-539,
AG-540, AG-541, AG-543, RG-15, BG-14

account
definition BG-14

attributes
metadata BG-16

definition BG-14
job attribute RG-341

project limit AG-285, RG-15
generic AG-285
individual AG-285

project limits AG-283
project name

format RG-357
prologue AG-586
prologues and epilogues

job arrays UG-156
provision HG-88, RG-15, UG-219
provision_enable

vnode attribute RG-323
provision_policy AG-593, RG-256
provisioned vnode RG-15, UG-219
PBS Professional 2022.1 Big Book Main-17

Main Index
provisioning RG-366, UG-220
allowing time UG-223
and commands UG-222
AOE restrictions UG-221
creation of hooks AG-602
defining policy AG-603
hook RG-15
hooks AG-591
host restrictions UG-220
master script AG-601

writing AG-601
overview AG-592
policy AG-593
rebooting AG-592
requesting UG-222
reservations AG-595
using AOE UG-220
vnode selection AG-593
vnode states AG-596
vnodes UG-219

provisioning tool RG-16
proximate node group CG-2
pstate AG-588, RG-341
pulling queue RG-16
PVM (Parallel Virtual Machine) UG-103
pvmem RG-271
python_restart_max_hooks

server attribute RG-292
python_restart_max_objects

server attribute RG-292
python_restart_min_interval

server attribute RG-292
python3 BG-31
python3-pip BG-31

Q
qalter IG-16, RG-130
qdel AG-637, RG-143, SG-53
qdisable RG-146
qenable RG-148
qhold RG-150, UG-120
qmgr AG-21, AG-644, RG-152, RG-380, SG-55
qmove RG-175, UG-173
qmsg RG-177, UG-171
qorder RG-179, UG-172, UG-173
qrerun AG-637, RG-181
qrls RG-183, UG-120
qrun RG-185
qselect RG-189, RG-195, SG-72
qsig RG-195
qstart RG-198
qstat AG-644, RG-200, UG-120, UG-170, UG-173, UG-

178, UG-186, SG-78

qstop RG-214
qsub IG-16, AG-637, RG-216, SG-90
qterm RG-236
qtime

job attribute RG-341
query_other_jobs AG-580

server attribute RG-292
queue AG-33

access to a AG-492, RG-1
ACL AG-493
attribute

acl_group_enable AG-500
acl_groups AG-500
acl_host_enable AG-500
acl_hosts AG-500
acl_user_enable AG-500
acl_users AG-500

definition RG-16
execution RG-6
furnishing RG-7
job attribute RG-341
pulling RG-16
reservation attribute RG-306
routing RG-17
vnode attribute RG-323

queue identifier
format RG-357

queue name
format RG-357

queue. HG-131
queue.job() HG-132
queue.jobs() HG-132
queue.name HG-131
queue_rank

job attribute RG-341
queue_softlimits AG-183, RG-300
queue_type

job attribute RG-342
queue attribute RG-317

queued jobs AG-285
queued_jobs_threshold AG-291

queue attribute RG-316
queued_jobs_threshold_res AG-291

queue attribute RG-317
server attribute RG-293

queuejob HG-87
queuejob events HG-92, HG-93
queuejob hook events HG-92
queues

creating AG-25
queuing RG-16, UG-1
quotas

example BG-20
setting BG-19
Main-18 PBS Professional 2022.1 Big Book

Main Index
R
rcp AG-424, HG-162, RG-371
rebooting

provisioning AG-592
reconcile BG-22
reconciling

credit BG-11
jobs BG-11

recurrence rule UG-140
Red Hat Enterprise Linux IG-23
redundant license server configuration RG-16
refund BG-22
reject an action HG-6, RG-16
Release Notes

upgrade recommendations IG-65, IG-93
release_nodes_on_stageout RG-342
report UG-225
requesting provisioning UG-222
requeue RG-16
require_cred

queue attribute RG-317
require_cred_enable

queue attribute RG-317
requirements

for job submitters BG-33
for jobs BG-31

Rerunable
job attribute RG-342

reservation AG-532
access to a AG-492, RG-1
ACL AG-493
advance AG-196, RG-2, UG-137, UG-139
ASAP AG-196, RG-2, RG-10
attribute

Authorized_Groups AG-501
Authorized_Hosts AG-501
Authorized_Users AG-501

attributes in hooks HG-63
control of creation AG-493
degradation RG-16
degraded AG-196, RG-5, UG-137
deleting UG-146
instance AG-196, RG-13, UG-137
job-specific AG-196, RG-10, UG-137

ASAP AG-196, RG-2, RG-10, UG-137
now AG-196, RG-10, RG-12, UG-137
start AG-196, RG-10, RG-19, UG-137

maintenance AG-196
now AG-196, RG-10, RG-12
occurrence RG-13
reservation ID AG-197
setting start time & duration UG-140
soonest occurrence AG-196, RG-18, UG-138
standing AG-196, RG-19, UG-138

instance AG-196, RG-13, UG-137
soonest occurrence AG-196, RG-18, UG-138

standing reservation UG-140
start RG-10
submitting jobs UG-149

reservation degradation RG-16
Reservation hook HG-6
reservation ID RG-16
reservation identifier RG-16
reservation name

format RG-358
reservations AG-195, SG-13

advance SG-13
job-specific start SG-13
maintenance SG-13
provisioning AG-595
standing SG-13
time for provisioning UG-223

reserve_count
reservation attribute RG-306

reserve_duration
reservation attribute RG-306

reserve_end
reservation attribute RG-306

reserve_ID
reservation attribute RG-306

reserve_index
reservation attribute RG-307
PBS Professional 2022.1 Big Book Main-19

Main Index
reserve_job RG-307
Reserve_Name

reservation attribute RG-307
Reserve_Owner

reservation attribute RG-307
reserve_retry

reservation attribute RG-307
reserve_retry_cutoff

server attribute RG-293
reserve_retry_init

server attribute RG-293
reserve_retry_time

server attribute RG-293
reserve_rrule

reservation attribute RG-308
reserve_start

reservation attribute RG-308
reserve_state

reservation attribute RG-309
reserve_substate

reservation attribute RG-309
resource AG-230, RG-16

built-in AG-228, RG-3
consumable AG-229, RG-4
custom AG-229, RG-4
dynamic AG-229
in billing formula BG-63
indirect AG-229, AG-266, RG-8
job-wide RG-10, UG-53, UG-54
non-consumable AG-230, RG-12
shared AG-230, AG-266, RG-18

resource limits AG-283
resource usage limits AG-283
Resource_List AG-532, AG-533, AG-535, AG-536, AG-

539, AG-540, AG-541, AG-543, UG-24
job attribute RG-343
reservation attribute RG-310

Resource_List.eoe AG-587, RG-266
resource_unset_infinite RG-257
resources RG-257

in hooks HG-48
unset AG-159

resources for Budgets BG-70
resources in a snapshot

modifying SG-11
resources_assigned AG-541

queue attribute RG-317
server attribute RG-294
vnode attribute RG-323

resources_available
queue attribute RG-318
server attribute RG-294
vnode attribute RG-323

resources_available.eoe AG-587, RG-266

resources_default
queue attribute RG-318
server attribute RG-294

resources_max
queue attribute RG-318
server attribute RG-295

resources_min
queue attribute RG-318

resources_released RG-343
resources_released_list RG-343
resources_used

job attribute RG-343
resources_used.energy AG-586, AG-587
restart RG-16, RG-244
restart file RG-17
restart script RG-17
restrict_res_to_release_on_suspend RG-295
restrict_user AG-521
restrict_user_exceptions AG-521
restrict_user_maxsysid AG-522
restrictions

AOE UG-221
provisioning hosts UG-220

resv
vnode attribute RG-324

resv. HG-144
resv.resvid HG-144
resv_begin HG-90
RESV_BEING_DELETED RG-367
resv_confirm HG-91
RESV_CONFIRMED RG-367
RESV_DEGRADED RG-367
RESV_DELETED RG-367
RESV_DELETING_JOBS RG-367
resv_enable AG-501

vnode attribute RG-324
resv_enable server attribute AG-493
RESV_FINISHED RG-367
RESV_IN_CONFLICT RG-367
resv_nodes UG-137

reservation attribute RG-310
RESV_NONE RG-367
resv_post_processing_time

server attribute RG-295
RESV_RUNNING RG-367
RESV_TIME_TO_RUN RG-367
RESV_UNCONFIRMED RG-367
RESV_WAIT RG-367
resv-exclusive RG-366
resvsub HG-87, HG-89
resvsub events HG-98, HG-99, HG-100, HG-102
Main-20 PBS Professional 2022.1 Big Book

Main Index
role BG-7
admin BG-8
investor BG-8

actions BG-9
manager BG-8

actions BG-10
teller BG-8
user BG-8

roles AG-489
round_robin RG-257
route RG-17
route queue RG-379, RG-381
route_destinations

queue attribute RG-319
route_held_jobs

queue attribute RG-319
route_lifetime

queue attribute RG-319
route_retry_time

queue attribute RG-319
route_waiting_jobs

queue attribute RG-319
routing queue RG-17
RPM

debuginfo AG-635
rpp_highwater

server attribute RG-295
rpp_max_pkt_check RG-295
rpp_retry

server attribute RG-295
rsync

configuration AG-581
run_count AG-533, AG-536, AG-543, RG-140, RG-231,

UG-25, UG-121, SG-102
job attribute RG-344

run_time AG-128
run_version

job attribute RG-344
runjob HG-88
runjob events HG-97
running a simulation SG-14

S
sandbox RG-231, SG-102

job attribute RG-344
scatter UG-67
scenario CG-2
sched_cycle_length

scheduler attribute RG-301
sched_host

scheduler attribute RG-301
sched_log

scheduler attribute RG-301

sched_preempt_enforce_resumption AG-181
scheduler attribute RG-301

sched_priv
scheduler attribute RG-301

schedselect
job attribute RG-344

scheduler IG-4, RG-17, UG-2, PG-3
log events AG-430

scheduler cycles in simulation SG-16
scheduler_iteration

scheduler attribute RG-300
server attribute RG-296

Scheduling
server state RG-364

scheduling UG-1
policy RG-14, RG-17
scheduler attribute RG-300
server attribute RG-296

scheduling jobs RG-17
Schema Admins IG-13, RG-17
scp IG-12, AG-425, HG-163, RG-372
scratch CG-156
scratch space AG-254

dynamic
host-level AG-270
server-level AG-269

static
host-level AG-270
server-level AG-270

script
master provisioning AG-601
writing provisioning AG-601

secondary scheduler RG-17
secondary server IG-62, AG-425, HG-163, RG-17, RG-

372
secure copy IG-12
security_context job attribute AG-578
SELinux CG-9, CG-174
sequence number RG-17, UG-153
PBS Professional 2022.1 Big Book Main-21

Main Index
server IG-4, RG-18, UG-2, PG-3
access to AG-492
access to the RG-1
ACL AG-493
attribute

acl_host_enable AG-500
acl_hosts AG-500
acl_user_enable AG-500
acl_users AG-500
flatuid AG-506
log_events AG-430
managers AG-491
operators AG-491
resv_enable AG-493

default RG-5
job attribute RG-345
log events AG-430
name RG-18
parameters AG-20
primary IG-61, AG-424, HG-162, RG-371
recording configuration AG-21
reservation attribute RG-310
secondary IG-62, AG-425, HG-163, RG-372

server attributes
node_idle_limit AG-588
power_off_iteration AG-589
power_provisioning AG-587

server hook HG-6
server_attribute.flags HG-158
server_attribute.name HG-157
server_attribute.op HG-157
server_attribute.resource HG-157
server_attribute.sisters HG-159
server_attribute.value HG-157
server_dyn_res RG-257
server_dyn_res_alarm RG-301
server_softlimits AG-183, RG-300
server_state

server attribute RG-297
service account

PBS IG-13
service node CG-2
service units

abandoned BG-12
definition BG-18
dynamic

creating BG-20
updating values BG-20
usage BG-19

standard
creating BG-19
usage BG-19

session_id
job attribute RG-345

set_power_cap AG-588, RG-340
setting hook timeout HG-39
setting hook trigger events HG-31
setting job attributes UG-16
setting limits AG-292
setting order of hook execution HG-39
setting trigger events HG-31
share UG-67
shared resource AG-230, AG-266, RG-18
shares AG-139
sharing

vnode attribute RG-324
Shell_Path_List

job attribute RG-345
shrink-to-fit job RG-18
SIGKILL UG-172
SIGNULL UG-172
SIGTERM UG-172
sim SG-105
SIM_LICENSE_LOCATION SG-4
simsh SG-22
Simulate configuration file SG-4
simulated execution hosts SG-12
simulating cloud bursting SG-17
simulation SG-14

duration SG-16
output SG-14
scheduler cycles SG-16

simulation statistics SG-15, SG-106
single_signon_password_enable

server attribute RG-297
sister RG-18
sisterhood RG-18
site RG-271

definition RG-18
size

format AG-235, RG-260, RG-360, UG-52
sleep

vnode state AG-589
SLES

restrictions CG-7, BG-29, SG-3
smp_cluster_dist RG-257
Main-22 PBS Professional 2022.1 Big Book

Main Index
snapshot SG-3
attribute values

modifying SG-12
checking contents SG-10
contents

description SG-6
inspecting SG-10

creating SG-6
creating reservations SG-13
creating simulated execution hosts SG-12
editing files SG-11
files

editing SG-11
formula SG-12
modifying attribute values SG-12
naming for output SG-15, SG-106
output SG-3, SG-14
primary SG-3
resources

modifying SG-11
snapshot checkpoint RG-18
soft_walltime RG-272
software RG-271

third-party BG-31
soonest occurrence AG-196, RG-18, UG-138
sort key AG-146
sort_priority RG-254
ssh IG-12

passwordless BG-35
sshd AG-351
stage

in RG-18
out RG-18

stagein UG-25
job attribute RG-345

stageout UG-25
job attribute RG-345

Stageout_status
job attribute RG-346

staging and execution directory RG-19
stale RG-366
standard service units

definition BG-19
standing reservation AG-196, RG-19, UG-138, UG-140
standing reservations SG-13
start reservation AG-196, RG-10, RG-19, UG-137
start_time RG-272
started

queue attribute RG-319
starting

MoM IG-149
starting Budgets BG-45, BG-52, BG-144

state RG-19
scheduler attribute RG-301
server

Hot_Start RG-364
Idle RG-364
Scheduling RG-364
Terminating RG-364
Terminating_Delayed RG-364

vnode attribute RG-326
state_count

queue attribute RG-319
server attribute RG-297

states
job array UG-155
vnodes and provisioning AG-596

state-unknown, down RG-366
static fit AG-168
stime

job attribute RG-346
strict ordering RG-19
strict_fifo RG-258
strict_ordering RG-258
strict_ordering and backfilling AG-222
string AG-240
string resource value

format AG-235, AG-240, RG-260, RG-360, UG-52
string_array AG-240

format AG-235, AG-240, RG-260, RG-360, UG-53
sub-goals SG-1
subject RG-19
subjob RG-19, UG-153
subjob identifier

format RG-358
subjob index RG-19, UG-153
Submit_arguments

job attribute RG-346
submitting a PBS job UG-11
submitting jobs BG-197
subordinate MoM RG-19
substate

job attribute RG-346
sudoers file

modifications for Budgets BG-33
support team AG-647
SuSE IG-23, CG-6, BG-28, SG-2
sw_index

job attribute RG-346
SX-Aurora AG-627, UG-205
syntax

identifier UG-154
syslog AG-434
PBS Professional 2022.1 Big Book Main-23

Main Index
T
tar file

overlay upgrade IG-73, IG-85
task RG-19
task placement AG-167, RG-19
TCL PG-105
teller BG-32

role BG-8
terminate RG-244
Terminating

server state RG-364
Terminating_Delayed

server state RG-364
third-party software BG-31
three-server configuration RG-19
throughput_mode

scheduler attribute RG-302
time between reservations UG-150
time-sharing RG-379, RG-380
timing of job execution SG-16
tm_atnode PG-96
tm_attach PG-96
tm_finalize PG-96
tm_init PG-96
tm_kill PG-96
tm_nodeinfo PG-96
tm_notify PG-96
tm_obit PG-96
tm_poll PG-96
tm_publish PG-96
tm_rescinfo PG-96
tm_spawn PG-96
tm_subscribe PG-96
tm_taskinfo PG-96
TMPDIR RG-399
tolerate_node_failures RG-347
topjob_ineligible

job attribute RG-347
topology_info

vnode attribute RG-326
total_jobs

queue attribute RG-319
server attribute RG-297

TPP RG-20
tracejob RG-238, SG-108

why job did not run SG-17
transaction

definition BG-22
transaction ID BG-23
transfer BG-22
transferring

abandoned service units BG-12
TSUBASA AG-627, UG-205

tutorial
configuring Budgets BG-201, BG-203, BG-145, BG-

149
type

hook attribute RG-351
type codes AG-430

U
UID RG-20
umask

job attribute RG-347
unburst CG-2
units

in billing formula BG-64
unknown node AG-139
unknown_shares AG-139, RG-258
unset resources AG-159
until_spec UG-140
upgrade

migration IG-65
migration under Linux IG-93
migration under Windows IG-109, IG-125
overlay IG-65

upgrading
Linux IG-70
Windows IG-109, IG-125

upgrading Budgets BG-57
usage limits AG-283
user

access AG-492, RG-20
account BG-16
accounts

required BG-32
ACLs AG-494
definition RG-20
hook attribute RG-351
ID RG-20
privilege AG-490
role BG-8
roles AG-489

user account
administrator BG-32
database user BG-32
job submitter BG-33
teller BG-32

user environment SG-4
user job accounting UG-225
user limit AG-230, AG-285, RG-20

generic AG-285
individual AG-285

user limits AG-283
User_List

job attribute RG-348
Main-24 PBS Professional 2022.1 Big Book

Main Index
username
format RG-358
Windows

format RG-358
utilities

basic installation BG-138
installing BG-37, BG-46

V
Variable_List

job attribute RG-348
vchunk RG-20
vchunk.chunk_resources.keys() HG-143, HG-144
vchunk.vnode_name HG-143
VE AG-627, UG-205
VE offloading AG-627, UG-205
ve_cput AG-628, AG-630, UG-206, UG-213
ve_mem AG-628, AG-630, UG-206, UG-213
VE_NODE_NUMBER UG-213
vector engine AG-627, UG-205
vector host AG-627, UG-205
version 1 configuration file RG-20
version 2 configuration file RG-20
version information AG-635
VH AG-627, UG-205
virtual nodes AG-41
vmem RG-272
vnode AG-41, RG-20, RG-272

attributes in hooks HG-61
borrowing AG-228, AG-266, RG-3
managing AG-230, AG-266, RG-11
memory-only AG-230, RG-11
natural AG-42
selection for provisioning AG-593
states and provisioning AG-596

vnode attributes
last_state_change_time AG-587
last_used_time AG-587

vnode name
format RG-358

vnode types UG-51
vnode.topology_info HG-147
vnodedefs file RG-20
vnodes

provisioning UG-219
vntype RG-272
vp RG-20
VPN CG-9, BG-30
vscatter UG-67

W
waiting for job completion UG-122
wait-provisioning RG-366

walltime RG-272
win_postinstall.py RG-241
Windows IG-15, IG-17, IG-23, CG-6, BG-28, SG-2

mixed-mode complex RG-12
password AG-636

Windows-Linux complex RG-20
withdraw BG-22
worker

definition BG-7
workers BG-5
workflow CG-2, CG-168
wrapper script SG-22
writing hooks

simple how-to HG-11
writing provisioning script AG-601

X
X forwarding IG-63, AG-427
xauth IG-63, AG-427
PBS Professional 2022.1 Big Book Main-25

Main Index
Main-26 PBS Professional 2022.1 Big Book

	About PBS Documentation
	Main Table of Contents
	Installation & Upgrade Guide (IG)
	Contents
	PBS Architecture
	1.1 What is PBS?
	1.2 PBS Daemons
	1.2.1 Server
	1.2.2 Schedulers
	1.2.3 MoM
	1.2.4 Communication Daemon
	1.2.5 Typical Daemon Placements
	1.2.5.1 Linux Layouts
	1.2.5.2 Windows Layouts
	1.2.5.2.i Linux-Windows Complex
	1.2.5.2.ii Mixed-mode Complex

	1.2.6 Daemon Permissions
	1.2.7 Single Execution System
	1.2.8 Single Execution System with Front End
	1.2.9 Multiple Execution Systems

	1.3 PBS Commands
	1.4 Scheduling Jobs

	Pre-Installation Steps
	2.1 Prerequisites for Running PBS
	2.1.1 Run Same Version Within Complex
	2.1.2 Resources Required by PBS
	2.1.2.1 Memory Required By Server Running Hooks
	2.1.2.2 Memory Required for Job History
	2.1.2.3 Amount of Memory in Complex
	2.1.2.4 Adequate Space for Logfiles
	2.1.2.5 Installation Disk Space
	2.1.2.6 Disk and Memory for Communication Daemon
	2.1.2.7 Memory for Data Store

	2.1.3 Name Resolution and Network Configuration
	2.1.3.1 Firewalls
	2.1.3.2 Network Tuning
	2.1.3.3 Planning for Number of Machines Connected to Complex
	2.1.3.4 Required Name Resolution
	2.1.3.5 Required Network Configuration
	2.1.3.6 Recommendations for Name Resolution and Network Configuration
	2.1.3.6.i Recommendations for Name Resolution and Network Configuration on Windows

	2.1.3.7 Order of Operations for Name Resolution and Network Configuration
	2.1.3.8 Server Hostname
	2.1.3.9 Sockets
	2.1.3.10 Mounting NFS File Systems
	2.1.3.11 Making Ports Available

	2.1.4 HPE Prerequisites
	2.1.4.1 HPE MPI Recommendation
	2.1.4.2 Power File Requirement

	2.1.5 License Server Requirement
	2.1.6 System Clocks in Sync
	2.1.7 User Requirements on Linux
	2.1.7.1 User Accounts
	2.1.7.2 Linux User Authorization

	2.2 Important Considerations
	2.2.1 Avoiding Datastore Corruption from Job Spool Files
	2.2.2 Using noexec on /tmp

	2.3 PBS Configurations for Windows
	2.3.1 Definitions
	2.3.2 Domained Environment Required
	2.3.3 Permission Requirement
	2.3.4 Daemon Layout for Windows
	2.3.5 Windows Configuration in a Domained Environment
	2.3.5.1 Machines
	2.3.5.2 User Accounts
	2.3.5.3 User Jobs

	2.3.6 User Authorization Under Windows
	2.3.6.1 Requirements for Non-admin Users
	2.3.6.2 Requirements for Admin Users

	2.3.7 Windows User HOMEDIR
	2.3.7.1 Configuring User HOMEDIR
	2.3.7.2 Directory Must Exist Already
	2.3.7.3 Default Directory

	2.3.8 Windows Caveats
	2.3.8.1 Installation of Microsoft Redistributable Pack
	2.3.8.2 Make Sure ComSpec Environment Variable Is Set
	2.3.8.3 Unsupported Windows Configurations

	Installation
	3.1 Overview of Installation
	3.1.1 Prerequisite Reading
	3.1.2 Replacing an Older Version of PBS
	3.1.3 Package Naming

	3.2 Licenses
	3.2.1 Licensing Caveats

	3.3 Major Steps for Installing PBS Professional
	3.4 All Installations
	3.4.1 Automatic Installation of Database
	3.4.2 Choosing Installation Sub-package
	3.4.2.1 Pathname Conventions

	3.4.3 Installing Additional Communication Daemons
	3.4.4 Deciding to Run a MoM After Installation
	3.4.5 Installation Method and Instructions by Platform

	3.5 Installing via RPM on Linux Systems
	3.5.1 Prerequisites for Installing on Linux Systems
	3.5.1.1 Prerequisite Reading
	3.5.1.2 Permissions
	3.5.1.3 Create PBS Data Service Management Account
	3.5.1.4 Unset PBS_EXEC Environment Variable

	3.5.2 Generic Installation on Linux
	3.5.2.1 Downloading PBS
	3.5.2.2 Setting Installation Parameters
	3.5.2.2.i Caveats for Installation Parameters

	3.5.2.3 Installing on a Standalone Linux Machine
	3.5.2.4 Installing on a Linux Cluster
	3.5.2.4.i Install PBS on Execution Hosts
	3.5.2.4.ii Install PBS on Server Host
	3.5.2.4.iii Start PBS on Server Host
	3.5.2.4.iv Configure Licensing
	3.5.2.4.v Install PBS on Client Hosts
	3.5.2.4.vi Define Vnodes
	3.5.2.4.vii Check User Paths

	3.5.3 Installing on MC990X or Superdome Flex
	3.5.3.1 Prerequisites for Installing on a MC990X or Superdome Flex
	3.5.3.2 Download and Install the New PBS
	3.5.3.3 Start PBS
	3.5.3.4 Configure Licensing
	3.5.3.5 Test the New PBS
	3.5.3.6 Configure Cgroups to Manage Cpusets
	3.5.3.7 Restart MoMs

	3.5.4 Installing PBS on the HPE 8600
	3.5.4.1 HPE 8600 Components
	3.5.4.2 Requirements for the HPE 8600 with HPE MPI
	3.5.4.3 Choosing Whether PBS Will Manage Cpusets with HPE 8600 Running HPE MPI
	3.5.4.4 Installation of the PBS Server, Scheduler, and Communication Daemons
	3.5.4.5 Installation of the PBS MoM
	3.5.4.6 Start PBS Server
	3.5.4.7 Configure Licensing
	3.5.4.8 Add Compute Nodes
	3.5.4.9 Configuring Placement Sets on the HPE 8600
	3.5.4.10 Configure Cgroups to Manage Cpusets

	3.5.5 Making User Paths Work
	3.5.5.1 Setting User Paths to Location of Commands
	3.5.5.2 Making Existing User Paths Work with New Location
	3.5.5.3 Testing User Paths

	3.5.6 Caveats for Uninstalling on Linux

	3.6 Installing via dpkg on Ubuntu
	3.7 Installing PBS on Windows Hosts
	3.7.1 Daemon Layout
	3.7.2 Prerequisites
	3.7.3 Default Installation Locations
	3.7.4 Where to Run Daemons (Services)
	3.7.5 PBS Requirements on Windows
	3.7.6 Make Sure Hostnames Resolve Correctly
	3.7.7 Create Job Submission Accounts
	3.7.8 Create Installation and Service Accounts
	3.7.8.1 Creating Installation Account in Domained Environment
	3.7.8.2 Creating PBS Service Account in Domained Environment
	3.7.8.2.i Delegating Read Access to PBS Service Account in Domained Environment
	3.7.8.2.ii Service Account Caveats

	3.7.9 Installation Notes for Domained Environment
	3.7.9.1 Installation Path
	3.7.9.2 Notes on Installation

	3.7.10 Steps to Install PBS on Windows
	3.7.11 Post-installation Steps
	3.7.11.1 Configuring MoMs
	3.7.11.2 Configuring Client Hosts
	3.7.11.3 Defining Vnodes
	3.7.11.4 Configuring Remote File Copy

	3.7.12 Post-installation Considerations on Windows
	3.7.12.1 File Creation
	3.7.12.2 File Access on Windows

	3.7.13 Startup on Windows
	3.7.13.1 Setting Up User Accounts and Directories

	3.7.14 Uninstalling PBS Professional on Windows

	Communication
	4.1 Communication Within a PBS Complex
	4.2 Terminology
	4.3 Prerequisites
	4.4 Communication Parameters
	4.4.1 Location of Communication Daemon for Endpoint
	4.4.2 Location of Other Communication Daemons
	4.4.3 Number of Threads for Communication Daemon
	4.4.4 Daemon Log Mask
	4.4.5 Name of Endpoint Host
	4.4.6 Whether Host Runs Communication Daemon
	4.4.7 Scheduler Throughput Mode
	4.4.8 Managing Communication Behavior

	4.5 Inter-daemon Communication Using TPP
	4.5.1 Inter-daemon Connection Behavior Using TPP
	4.5.1.1 Sending and Receiving
	4.5.1.2 Data Compression

	4.5.2 Communication Daemon Syntax
	4.5.2.1 Usage on Linux

	4.5.3 Adding Communication Daemons
	4.5.3.1 Installation Location of Communication Daemons
	4.5.3.2 Configuring Communication Daemons
	4.5.3.2.i Caveats for Configuring Communication Daemons

	4.5.4 Recommendations for Maximizing Communication Performance
	4.5.5 Robust Communication with TPP
	4.5.5.1 Failover and Communication Daemons
	4.5.5.2 Fault Tolerance

	4.5.6 Extending Your Complex
	4.5.7 Changing IP Address of pbs_comm Host
	4.5.8 Configuring Communication for Internal and External Networks
	4.5.9 Troubleshooting Communication with TPP
	4.5.10 Logging and Errors with TPP
	4.5.10.1 Communication Daemon Logfiles
	4.5.10.2 Messages from Endpoints
	4.5.10.3 Messages from Communication Daemons
	4.5.10.4 Important Messages from Communication or Other Daemons
	4.5.10.5 Informational Messages from Communication or Other Daemons

	4.6 Ports Used by PBS
	4.6.1 Ports Used by PBS in TPP Mode
	4.6.2 Port Settings in pbs.conf

	4.7 PBS with Multihomed Systems
	4.7.1 Contacting the Server
	4.7.2 Delivering Output and Error Files
	4.7.3 When Installing and Upgrading
	4.7.4 Hostname Parameters in pbs.conf

	Initial Configuration
	5.1 Validate the Installation
	5.2 Support PBS Features

	Upgrading
	6.1 Types of Upgrades
	6.1.1 Choosing Upgrade Type on Linux
	6.1.2 Upgrading Existing All-Windows Complex
	6.1.3 Upgrading from Windows/Linux Combination to Windows/Linux Combination

	6.2 Differences from Previous Versions
	6.2.1 New Way to Manage Vnode Attributes
	6.2.2 New Scheduler Attributes
	6.2.3 Option to Run Scheduler as Non-Root User
	6.2.4 Using RPM Instead of INSTALL (14.2)
	6.2.5 Using systemd Instead of Start/stop Script (14.2)
	6.2.6 Automatic Upgrade of Database (13.0)
	6.2.7 Installing Communication Daemon (13.0)
	6.2.8 Default Location of PBS_EXEC and PBS_HOME
	6.2.9 Use PBS Start Script or systemd During Overlay Upgrade

	6.3 Caveats and Advice
	6.3.1 Licensing
	6.3.2 Making Time to Upgrade
	6.3.3 Upgrading Database
	6.3.4 Data Service Account Must Be Same as When Installed
	6.3.5 Updating Hooks for New Python Version
	6.3.6 New Server Requires New MoMs
	6.3.7 Do Not Unset default_chunk.ncpus
	6.3.8 Unset PBS_EXEC Environment Variable
	6.3.9 Saving and Re-creating Vnode Configuration
	6.3.10 Upgrading with Failover

	6.4 Introduction to Upgrading Under Linux
	6.4.1 Directories
	6.4.2 Upgrading on Multiple Machines
	6.4.3 Upgrading on a Machine Running the Cpuset MoM

	6.5 Overlay Upgrade Under Linux
	6.5.1 Prevent Jobs From Being Started
	6.5.2 Allow Running Jobs to Finish, or Requeue Them
	6.5.3 Disable Cloud Bursting
	6.5.4 Disable STONITH Script
	6.5.5 Unwrap Any Wrapped MPIs
	6.5.6 Save Execution Host Configuration Information
	6.5.7 Save Hooks and Hook Configuration Files
	6.5.8 Update Hooks and Hook Configuration Files for New Python
	6.5.9 Shut Down Your Existing PBS
	6.5.10 Back Up Existing PBS Files
	6.5.11 Install the New Version of PBS
	6.5.11.1 Install New PBS Server(s)
	6.5.11.2 Install New PBS MoMs
	6.5.11.3 Install New PBS Client Commands
	6.5.11.4 Install New PBS Communication Daemons

	6.5.12 Prepare Configuration File for New Scheduler(s)
	6.5.13 Update Holidays File
	6.5.14 Modify the New PBS Configuration File
	6.5.15 Configure Communication Daemons
	6.5.16 Start Then Stop New PBS Servers (If Using Failover)
	6.5.16.1 Start New Servers
	6.5.16.2 Stop the Servers

	6.5.17 Start New PBS MoMs, Schedulers, Servers, and Comms
	6.5.17.1 Start PBS on Execution Hosts
	6.5.17.2 Start PBS on Server Hosts
	6.5.17.3 Restart Multischeds
	6.5.17.4 Start PBS on Communication-only Hosts

	6.5.18 Import and Configure Hooks
	6.5.18.1 Import Old Hooks Except for Cgroups Hook
	6.5.18.2 Modify Cgroups Hook Configuration File
	6.5.18.3 Enable Cgroups Hook
	6.5.18.4 Write and Deploy New Hooks
	6.5.18.5 Restart MoMs

	6.5.19 Set License Location Server Attribute
	6.5.20 Configure Sharing and Placement Sets
	6.5.20.1 Configuration with Cgroups Hook
	6.5.20.2 Configuration without Cgroups Hook

	6.5.21 Set New Scheduler Attributes
	6.5.22 Re-wrap Any MPIs
	6.5.23 Enable STONITH Script
	6.5.24 Enable Cloud Bursting
	6.5.25 Enable Scheduling
	6.5.26 Shut Down and Restart Servers
	6.5.27 Removing Old PBS

	6.6 Overlay Upgrade on One or More Machines Running Cpuset MoM
	6.6.1 Prevent Jobs From Being Started
	6.6.2 Allow Running Jobs to Finish, or Requeue Them
	6.6.3 Disable Cloud Bursting
	6.6.4 Disable STONITH Script
	6.6.5 Unwrap Any Wrapped MPIs
	6.6.6 Save Execution Host Configuration Information
	6.6.7 Save Hooks and Hook Configuration Files
	6.6.8 Update Hooks and Hook Configuration Files for New Python
	6.6.9 Remove Old PBS Configuration and Resource Conflicts
	6.6.10 Shut Down Your Existing PBS
	6.6.11 Back Up Existing PBS Files
	6.6.12 Install the New Version of PBS
	6.6.12.1 Installing MoM on non-HPE 8600
	6.6.12.2 Installing MoM on HPE 8600

	6.6.13 Prepare Configuration File for New Scheduler(s)
	6.6.14 Update Holidays File
	6.6.15 Modify the New PBS Configuration File
	6.6.16 Configure Communication Daemons
	6.6.17 Start Then Stop New PBS Servers (If Using Failover)
	6.6.17.1 Start New Servers
	6.6.17.2 Stop the Servers

	6.6.18 Start New PBS MoMs, Schedulers, Servers, and Comms
	6.6.18.1 Start PBS on Execution Hosts
	6.6.18.2 Start PBS on Server Hosts
	6.6.18.3 Restart Multischeds
	6.6.18.4 Start PBS on Communication-only Hosts

	6.6.19 Import and Configure Hooks
	6.6.19.1 Import Old Hooks Except for Cgroups Hook
	6.6.19.2 Modify Cgroups Hook Configuration File
	6.6.19.3 Enable Cgroups Hook
	6.6.19.4 Write and Deploy New Hooks
	6.6.19.5 Restart MoMs

	6.6.20 Set License Location Server Attribute
	6.6.21 Configure Sharing and Placement Sets
	6.6.22 Re-Wrap Any MPIs
	6.6.23 Shut Down and Restart Servers
	6.6.24 Set New Scheduler Attributes
	6.6.25 Enable STONITH Script
	6.6.26 Enable Cloud Bursting
	6.6.27 Enable Scheduling
	6.6.28 Removing Old PBS

	6.7 Migration Upgrade Under Linux
	6.7.1 Set Paths for Old PBS
	6.7.2 Prevent Jobs From Being Enqueued or Started
	6.7.3 Allow Running Jobs to Finish, or Requeue Them
	6.7.4 Disable Cloud Bursting
	6.7.5 Disable STONITH Script
	6.7.6 Unwrap Any Wrapped MPIs
	6.7.7 Save Server Host Information To Be Used for New PBS
	6.7.8 Save Execution Host Configuration Files
	6.7.9 Save Hooks and Hook Configuration Files
	6.7.10 Update Hooks and Hook Configuration Files for New Python
	6.7.11 Shut Down Your Existing PBS
	6.7.12 Back Everything Up to Transfer Location
	6.7.12.1 Back Up Server/scheduler/communication Host
	6.7.12.2 Back Up Execution Host Information

	6.7.13 Install the New Version of PBS
	6.7.13.1 Install New PBS Server
	6.7.13.2 Install New PBS MoMs
	6.7.13.3 Install New PBS Client Commands
	6.7.13.4 Install New PBS Communication Daemons

	6.7.14 Switch To New PBS_EXEC Path
	6.7.15 Create PBS_HOME
	6.7.16 Start and Stop the New Server (If Using Failover)
	6.7.17 Start the New Server Without Defined Queues or Vnodes
	6.7.18 Re-wrap Any MPIs
	6.7.19 Set License Location Server Attribute
	6.7.20 Clean Up Configuration Information
	6.7.20.1 Clean Up Scheduler Configuration Files
	6.7.20.2 Clean Up Scheduler Attributes
	6.7.20.3 Clean Up Server Configuration
	6.7.20.4 Copy User Credentials to New Server
	6.7.20.5 Clean up Vnode Configuration
	6.7.20.5.i Prepare Configuration Information for Parent Vnodes

	6.7.21 Create and Configure New Multischeds
	6.7.22 Start New Server and New Schedulers
	6.7.23 Replicate Queue, Server, Scheduler, and Vnode Configurations
	6.7.23.1 Replicate Server and Queue Attributes
	6.7.23.2 Replicate Scheduler Attributes
	6.7.23.3 Replicate Vnode Attributes

	6.7.24 Import and Configure Hooks
	6.7.24.1 Import Old Hooks Except for Cgroups Hook
	6.7.24.2 Modify Cgroups Hook Configuration File
	6.7.24.3 Enable Cgroups Hook
	6.7.24.4 Write and Deploy New Hooks

	6.7.25 Start New MoMs
	6.7.26 Configure Sharing and Placement Sets
	6.7.26.1 Configuration with Cgroups Hook
	6.7.26.2 Configuration without Cgroups Hook

	6.7.27 Start New Communication Daemons
	6.7.28 Verify Communication Between Server and MoMs
	6.7.29 Re-create Reservations
	6.7.30 Change Ports and PBS_EXEC Path in pbs.conf for Old PBS
	6.7.31 Start the Old Server
	6.7.32 Verify Old Server is Running on Alternate Ports
	6.7.33 Move Existing Jobs to the New Server
	6.7.34 Shut Down Old Server
	6.7.35 Enable STONITH Script
	6.7.36 Enable Cloud Bursting
	6.7.37 Enable Scheduling
	6.7.38 Removing Old PBS

	6.8 Upgrading a Windows/Linux Complex
	6.8.1 Set Paths for Old PBS
	6.8.2 Prevent Jobs From Being Enqueued or Started
	6.8.3 Allow Running Jobs to Finish, or Requeue Them
	6.8.4 Disable Cloud Bursting
	6.8.5 Disable STONITH Script
	6.8.6 Save Server Host Information To Be Used for New PBS
	6.8.7 Save Execution Host Configuration Files
	6.8.8 Save Hooks and Hook Configuration Files
	6.8.9 Update Hooks and Hook Configuration Files for New Python
	6.8.10 Shut Down Your Existing PBS
	6.8.11 Back Everything Up to Transfer Location
	6.8.11.1 Back Up Server/scheduler/communication Host
	6.8.11.2 Back Up Execution Host Information

	6.8.12 Install the New Version of PBS
	6.8.12.1 Install New PBS Server
	6.8.12.2 Install New PBS Communication Daemons
	6.8.12.3 Switch To New PBS_EXEC Path
	6.8.12.4 Create PBS_HOME
	6.8.12.5 Install New PBS MoMs and Client Commands
	6.8.12.6 Configure New PBS MoMs and Client Hosts

	6.8.13 Start and Stop the New Server (If Using Failover)
	6.8.14 Start the New Server Without Defined Queues or Vnodes
	6.8.15 Set License Location Server Attribute
	6.8.16 Clean Up Configuration Information
	6.8.16.1 Clean Up Scheduler Configuration Files
	6.8.16.2 Clean Up Scheduler Attributes
	6.8.16.3 Clean Up Server Configuration
	6.8.16.4 Copy User Credentials to New Server
	6.8.16.5 Clean up Vnode Configuration
	6.8.16.5.i Prepare Configuration Information for Parent Vnodes

	6.8.17 Create and Configure New Multischeds
	6.8.18 Start New Server and New Schedulers
	6.8.19 Replicate Queue, Server, Scheduler, and Vnode Configurations
	6.8.19.1 Replicate Server and Queue Attributes
	6.8.19.2 Replicate Scheduler Attributes
	6.8.19.3 Replicate Vnode Attributes

	6.8.20 Import and Configure Hooks
	6.8.20.1 Import Old Hooks Except for Cgroups Hook
	6.8.20.2 Modify Cgroups Hook Configuration File
	6.8.20.3 Enable Cgroups Hook
	6.8.20.4 Write and Deploy New Hooks
	6.8.20.5 Start MoMs

	6.8.21 Configure Sharing and Placement Sets
	6.8.21.1 Configuration with Cgroups Hook
	6.8.21.2 Configuration without Cgroups Hook

	6.8.22 Start New Communication Daemons
	6.8.23 Verify Communication Between Server and MoMs
	6.8.24 Re-create Reservations
	6.8.25 Change Ports and PBS_EXEC Path in pbs.conf for Old PBS
	6.8.26 Start the Old Server
	6.8.27 Verify Old Server is Running on Alternate Ports
	6.8.28 Move Existing Jobs to the New Server
	6.8.29 Shut Down Old Server
	6.8.30 Enable STONITH Script
	6.8.31 Enable Cloud Bursting
	6.8.32 Enable Scheduling
	6.8.33 Removing Old PBS

	6.9 Upgrading from an All-Windows Complex
	6.9.1 Prevent Jobs From Being Enqueued or Started
	6.9.2 Allow Running Jobs to Finish, or Kill Them
	6.9.3 Disable Cloud Bursting
	6.9.4 Disable STONITH Script
	6.9.5 Save Server Host Information To Be Used for New PBS
	6.9.6 Save Execution Host Configuration Files
	6.9.7 Save Hooks and Hook Configuration Files
	6.9.8 Update Hooks and Hook Configuration Files for New Python
	6.9.9 Shut Down Your Existing PBS
	6.9.10 Install the New Version of PBS
	6.9.10.1 Install New PBS Server
	6.9.10.2 Install New PBS Communication Daemons
	6.9.10.3 Create PBS_HOME
	6.9.10.4 Install New PBS MoMs and Client Commands
	6.9.10.5 Configure New PBS MoMs and Client Hosts

	6.9.11 Start the New Server Without Defined Queues or Vnodes
	6.9.12 Set License Location Server Attribute
	6.9.13 Clean Up Configuration Information
	6.9.13.1 Clean Up Scheduler Configuration Files
	6.9.13.2 Clean Up Scheduler Attributes
	6.9.13.3 Clean Up Server Configuration
	6.9.13.4 Clean up Vnode Configuration
	6.9.13.4.i Prepare Configuration Information for Parent Vnodes

	6.9.14 Create and Configure New Multischeds
	6.9.15 Start New Server and New Schedulers
	6.9.16 Replicate Queue, Server, Scheduler, and Vnode Configurations
	6.9.16.1 Replicate Server and Queue Attributes
	6.9.16.2 Replicate Scheduler Attributes
	6.9.16.3 Replicate Vnode Attributes

	6.9.17 Import and Configure Hooks
	6.9.17.1 Import Old Hooks Except for Cgroups Hook
	6.9.17.2 Modify Cgroups Hook Configuration File
	6.9.17.3 Enable Cgroups Hook
	6.9.17.4 Write and Deploy New Hooks
	6.9.17.5 Start MoMs

	6.9.18 Configure Sharing and Placement Sets
	6.9.18.1 Configuration with Cgroups Hook
	6.9.18.2 Configuration without Cgroups Hook

	6.9.19 Start New Communication Daemons
	6.9.20 Verify Communication Between Server and MoMs
	6.9.21 Re-create Reservations
	6.9.22 Enable STONITH Script
	6.9.23 Enable Cloud Bursting
	6.9.24 Enable Scheduling

	6.10 After Upgrading
	6.10.1 Making Upgrade Transparent for Users

	Installing and Upgrading on Cray
	7.1 Installing PBS with Shasta
	7.1.1 Prerequisites for PBS on Shasta

	Starting & Stopping PBS on Linux
	8.1 Platform Change
	8.2 Automatic Start on Bootup
	8.2.1 Shutting Down Host

	8.3 When to Restart PBS Daemons
	8.4 Methods for Starting, Stopping, or Restarting PBS
	8.4.1 Using systemd
	8.4.1.1 Required Privilege
	8.4.1.2 Effect of systemctl on Jobs
	8.4.1.3 Caveats for Using systemctl

	8.4.2 Using init with PBS Start/Stop Script
	8.4.2.1 Required Privilege
	8.4.2.2 Using Start/Stop Script to Check Status of Daemons
	8.4.2.3 Location of the PBS Start/Stop Script
	8.4.2.4 Effect of Start/Stop Script on Jobs
	8.4.2.5 Start/Stop Script Caveats

	8.4.3 Using the qterm Command to Stop PBS
	8.4.3.0.i qterm Caveats

	8.5 Starting, Stopping, and Restarting PBS Daemons
	8.5.1 Daemon Execution Requirements
	8.5.2 Required Privilege
	8.5.3 Recommendation for Daemon Start Order
	8.5.4 Creation of MoM Home Directory
	8.5.5 Server: Starting, Stopping, Restarting
	8.5.5.1 Starting Server Without Failover
	8.5.5.2 Starting Servers With Failover
	8.5.5.3 Stopping Server Without Failover
	8.5.5.3.i Stopping Server via Signals

	8.5.5.4 Stopping Servers With Failover
	8.5.5.5 Restarting Server Without Failover
	8.5.5.6 Restarting Servers with Failover
	8.5.5.6.i Stopping Servers
	8.5.5.6.ii Starting Servers
	8.5.5.6.iii Network Outage

	8.5.5.7 Restarting Server To Resume Previously-running Jobs

	8.5.6 Scheduler(s): Starting, Stopping, Restarting
	8.5.6.1 Starting Default Scheduler
	8.5.6.2 Starting Multisched
	8.5.6.3 Stopping Scheduler or Multisched
	8.5.6.4 Stopping Scheduler(s) via Signals
	8.5.6.5 Restarting and Reinitializing Scheduler or Multisched
	8.5.6.5.i When to Restart or Reinitialize Scheduler or Multisched
	8.5.6.5.ii Restarting Scheduler or Multisched
	8.5.6.5.iii Reinitializing Scheduler or Multisched

	8.5.7 MoMs: Starting, Stopping, Restarting
	8.5.7.1 Starting MoM
	8.5.7.2 Stopping MoM
	8.5.7.2.i Stopping MoM via Signals
	8.5.7.2.ii Recommendation to Offline Vnodes Before Stopping MoM

	8.5.7.3 Restarting and Reinitializing MoM
	8.5.7.4 Whether to Restart or Reinitialize MoM
	8.5.7.5 Restarting MoM
	8.5.7.5.i Preserving Existing Jobs When Restarting MoM
	8.5.7.5.ii Caveats for Restarting MoM After a Reboot
	8.5.7.5.iii Killing Existing Jobs When Restarting MoM
	8.5.7.5.iv Starting MoM on the HPE MC990X, HPE Superdome Flex, or HPE 8600
	8.5.7.5.v Using Existing CPU and Memory for cpusets
	8.5.7.5.vi Effect of Stopping Sister MoM on Multihost Jobs

	8.5.7.6 Reinitializing MoM

	8.5.8 Comms: Starting, Stopping, Restarting
	8.5.8.1 Starting Communication Daemon
	8.5.8.2 Stopping Communication Daemon via Signals

	8.6 Impact of Stop-Restart on Running Linux Jobs
	8.6.1 Whether to Use Script, Command, or Signal for Shutdown and Restart
	8.6.2 Scenarios for Stopping Then Restarting Daemons

	Starting & Stopping MoM on Windows
	9.1 Automatic Start on Bootup
	9.2 When to Restart PBS MoMs
	9.3 Starting, Stopping, and Restarting PBS
	9.3.1 Required Privilege
	9.3.2 Recommendation for Service Start Order
	9.3.3 Creation of MoM Home Directory
	9.3.4 Windows-specific Service Options
	9.3.5 Configuring Startup Options to MoM
	9.3.5.1 Saving Startup Options

	9.3.6 MoMs: Starting, Stopping, Restarting
	9.3.6.1 Starting MoM as a Service
	9.3.6.2 Starting MoM in Standalone Mode
	9.3.6.3 Stopping MoMs
	9.3.6.3.i Effect of Stopping Sister MoM on Multihost Jobs
	9.3.6.3.ii Recommendation: Offline Vnodes Before Stopping MoM

	9.3.6.4 Restarting MoMs
	9.3.6.4.i Preserving Existing Jobs When Restarting MoM
	9.3.6.4.ii Caveats for Preserving Existing Jobs When Restarting MoM

	9.4 Stopping PBS Using the qterm Command
	9.4.0.0.i qterm Caveats

	9.5 Impact of Stop-Restart on Running Windows Jobs
	9.5.1 Scenarios for Stopping Then Restarting Services

	Index

	Administrator's Guide (AG)
	Contents
	New Features
	1.1 New Features in This Release
	1.2 Changes in Previous Releases
	1.2.1 New Scheduling Features
	1.2.2 New Hooks Features
	1.2.3 Other New Features

	1.3 Commercial-only Features
	1.4 Backward Compatibility
	1.4.1 New and Old Resource Usage Limits Incompatible
	1.4.2 Job Dependencies Affected By Job History
	1.4.3 PBS path information no longer saved in AUTOEXEC.BAT
	1.4.4 OS-level Checkpointing Not Supported
	1.4.5 Scheduler Parameters Changed to Scheduler Attributes (19.4.1)
	1.4.6 Old -l nodes Syntax Incompatible with Cgroups

	Configuring the Server and Queues
	2.1 The Server
	2.1.1 Configuring the Server
	2.1.2 Default Server Configuration
	2.1.3 The PBS Node File
	2.1.4 Server Configuration Attributes
	2.1.5 Recording Server Configuration
	2.1.6 Support for Globus
	2.1.7 Configuring the Server for Licensing

	2.2 How PBS Uses Mail
	2.2.1 Configuring Choice of Mailer
	2.2.1.1 Requirements for Mailer

	2.2.2 Configuring Server Mail Address
	2.2.3 Specifying Mail Delivery Domain
	2.2.3.1 Delivering Mail to Administrator
	2.2.3.2 Delivering Mail to Job Submitter or Reservation Creator

	2.2.4 Attributes, Parameters Etc. Affecting Mail

	2.3 Queues
	2.3.1 Kinds of Queues
	2.3.1.1 Execution and Routing Queues
	2.3.1.2 Available Kinds of Queues

	2.3.2 Basic Queue Use
	2.3.3 Creating Queues
	2.3.4 Enabling, Disabling, Starting, and Stopping Queues
	2.3.5 Execution Queues
	2.3.5.1 Where Execution Queues Get Their Jobs
	2.3.5.2 Execution Queues for Specific Time Periods
	2.3.5.2.i Dedicated Time Queues
	2.3.5.2.ii Primetime and Non-Primetime Queues
	2.3.5.2.iii Anytime Queues
	2.3.5.2.iv Reservation Queues

	2.3.5.3 Prioritizing Execution Queues
	2.3.5.3.i Express Queues

	2.3.6 Routing Queues
	2.3.6.1 How Routing Works
	2.3.6.2 Requirements for Routing Queues
	2.3.6.3 Caveats and Advice for Routing Queues
	2.3.6.4 Using Resources to Route Jobs Between Queues
	2.3.6.4.i How Queue and Server Limits Are Applied, Except Running Time
	2.3.6.4.ii How Queue and Server Running Time Limits are Applied
	2.3.6.4.iii Resources Used for Routing and Admittance
	2.3.6.4.iv Using String, String Array, and Boolean Values for Routing and Admittance
	2.3.6.4.v Examples of Routing Jobs
	2.3.6.4.vi Caveats for Queue Resource Limits

	2.3.6.5 Using Access Control to Route Jobs
	2.3.6.6 Allowing Routing of Held or Waiting Jobs
	2.3.6.7 Setting Routing Retry Time
	2.3.6.8 Specifying Job Lifetime in Routing Queue

	2.3.7 Queue Requirements
	2.3.8 Queue Configuration Attributes
	2.3.9 Viewing Queue Status
	2.3.10 Deleting Queues
	2.3.10.1 Caveats for Deleting Queues

	2.3.11 Defining Queue Resources
	2.3.12 Setting Queue Resource Defaults
	2.3.13 How Default Server and Queue Resources Are Applied When Jobs Move
	2.3.14 Specifying Default Queue
	2.3.15 Associating Queues and Vnodes
	2.3.16 Configuring Access to Queues
	2.3.17 Setting Limits on Usage at Queues
	2.3.18 Queues and Failover
	2.3.19 Additional Queue Information

	Configuring MoMs and Vnodes
	3.1 About MoMs
	3.1.1 Configuring MoMs
	3.1.1.1 MoM Configuration File
	3.1.1.2 Editing Version 1 Files
	3.1.1.3 Caveats and Restrictions for Configuration Files
	3.1.1.4 When MoM Reads Configuration Files

	3.1.2 Configuring MoM Polling Cycle
	3.1.2.1 Cgroups Hook Can Replace Polling
	3.1.2.2 Polling on Linux
	3.1.2.2.i Linux Polling Caveats

	3.1.2.3 Polling on Windows
	3.1.2.4 How Polling is Used
	3.1.2.5 Polling for Multi-host Jobs
	3.1.2.6 Recommendations for Polling Interval

	3.1.3 Files and Directories Used by MoM
	3.1.3.1 Linux Files and Directories Used by MoM
	3.1.3.2 Linux Files and Directories Used by MoM

	3.2 About Vnodes: Virtual Nodes
	3.2.1 Parent Vnodes and Child Vnodes

	3.3 Creating Vnodes
	3.3.1 Overview of Creating Vnodes
	3.3.2 How to Choose Vnode Names
	3.3.2.1 Names of Child Vnodes
	3.3.2.2 Caveats for Vnode Names
	3.3.2.3 Errors and Logging for Vnode Names

	3.3.3 Creating the Parent Vnode
	3.3.4 Creating Child Vnodes for Multi-vnode Machines
	3.3.4.1 Creating Child Vnodes via Cgroups Hook
	3.3.4.2 Creating Child Vnodes via Version 2 Configuration File

	3.3.5 Caveats for Creating Vnodes

	3.4 Configuring Vnodes
	3.4.1 Methods for Configuring Vnodes
	3.4.2 Rules for Configuring Vnodes
	3.4.3 Version 2 Vnode Configuration Files
	3.4.3.1 Creating Version 2 Configuration Files
	3.4.3.1.i Syntax of Version 2 Configuration Files
	3.4.3.1.ii Example of Creating Version 2 Configuration File

	3.4.3.2 Listing and Viewing Version 2 Configuration Files
	3.4.3.3 Moving Version 2 Configuration Files
	3.4.3.4 Removing Version 2 Configuration Files
	3.4.3.5 Caveats for Version 2 Configuration Files
	3.4.3.6 PBS Reserved Configuration Files

	3.4.4 Configuring the Vnode Sharing Attribute
	3.4.4.1 Sharing on a Multi-vnode Machine
	3.4.4.2 Setting the sharing Vnode Attribute
	3.4.4.3 Viewing Sharing Information
	3.4.4.4 Sharing Caveats

	3.4.5 Configuring Vnode Resources
	3.4.5.1 Configuring Global Static Vnode Resources
	3.4.5.2 Configuring Local Dynamic Vnode Resources
	3.4.5.3 Rules for Configuring Vnode Resources

	3.4.6 Configuring Vnodes via the qmgr Command
	3.4.6.1 Caveats for Setting Values via qmgr Command

	3.4.7 Configuring Vnodes via the pbsnodes Command
	3.4.7.1 Caveats for pbsnodes Command

	3.5 Deleting Vnodes
	3.5.1 Deleting the Vnode on a Single-vnode Machine
	3.5.2 Deleting Vnodes on a Multi-vnode Machine
	3.5.2.1 Deleting Vnodes When Not Using Version 2 Configuration File
	3.5.2.2 Deleting Vnodes When Using Version 2 Configuration File

	Scheduling
	4.1 Chapter Contents
	4.2 Scheduling Each Partition Separately
	4.2.1 Creating and Configuring a Multisched
	4.2.1.1 Prerequisites for Creating a Multisched
	4.2.1.2 Creating a Multisched
	4.2.1.3 Configuring a Multisched
	4.2.1.4 Enabling a Multisched

	4.2.2 Starting a Multisched
	4.2.2.1 Starting a Multisched on Linux

	4.2.3 Configuring Your Partitions for Multischeds
	4.2.4 Using the Default Scheduler with Multischeds
	4.2.4.1 Configuring the Default Scheduler

	4.2.5 Multisched Caveats and Restrictions
	4.2.6 Attributes Used with Multischeds
	4.2.6.1 Behavior of Attributes Shared by Server and Scheduler

	4.2.7 Multisched Errors and Logging
	4.2.7.1 Multisched Error Messages Appearing in Scheduler Comment
	4.2.7.2 Multisched Error Messages Appearing in Scheduler Logs
	4.2.7.3 Multisched Error Messages Appearing in Server Logs
	4.2.7.4 Multisched Errors Returned by qmgr Command

	4.2.8 Multisched Deprecations

	4.3 Scheduling Policy Basics
	4.3.1 How Scheduling Can Be Used
	4.3.2 What Is Scheduling Policy?
	4.3.3 Basic PBS Scheduling Behavior
	4.3.4 Sub-goals
	4.3.5 Job Prioritization and Preemption
	4.3.5.1 Where PBS Uses Job Priority
	4.3.5.2 Overview of Prioritizing Jobs
	4.3.5.3 Using Queue-based Tools to Prioritize Jobs
	4.3.5.3.i Using Queue Order to Affect Order of Consideration
	4.3.5.3.ii Using Express Queues in Job Priority Calculation
	4.3.5.3.iii Routing Jobs into Queues
	4.3.5.3.iv Using Queue Priority when Computing Job Priority

	4.3.5.4 Using Job Sorting Tools to Prioritize Jobs
	4.3.5.5 Prioritizing Jobs by Wait Time
	4.3.5.6 Calculating Preemption Priority
	4.3.5.7 Making Preempted Jobs Top Jobs
	4.3.5.8 Preventing Jobs from Being Preempted
	4.3.5.9 Meta-priority: Running Jobs Exactly in Priority Order
	4.3.5.10 Using Different Calculations for Different Time Periods
	4.3.5.11 When Priority Is Not Enough: Overrides
	4.3.5.12 Elements to Consider when Prioritizing Jobs
	4.3.5.13 List of Job Sorting Tools
	4.3.5.13.i Queue-based Tools for Organizing Jobs
	4.3.5.13.ii Job Sorting Tools
	4.3.5.13.iii Other Job Prioritization Tools

	4.3.6 Resource Allocation to Users, Projects & Groups
	4.3.6.1 Limiting Amount of Resources Used
	4.3.6.1.i Allocation Using Resource Limits
	4.3.6.1.ii Allocation Using Fairshare
	4.3.6.1.iii Allocation Using Routing

	4.3.6.2 Limiting Jobs
	4.3.6.2.i Limiting Number of Jobs per Project, User, or Group
	4.3.6.2.ii Allocation Using Round-robin Queue Selection
	4.3.6.2.iii Limiting Resource Usage per Job

	4.3.6.3 Resource Allocation Tools

	4.3.7 Time Slot Allocation
	4.3.7.1 Why Allocate Time Slots
	4.3.7.2 How to Allocate Time Slots
	4.3.7.2.i Allocation Using Primetime and Holidays
	4.3.7.2.ii Allocation Using Dedicated Time
	4.3.7.2.iii Allocation Using Reservations
	4.3.7.2.iv Allocation Using cron Jobs

	4.3.7.3 Time Slot Allocation Tools

	4.3.8 Job Placement Optimization
	4.3.8.1 Why Optimize Placement
	4.3.8.2 Matching Jobs to Resources
	4.3.8.3 Organizing and Selecting Vnodes
	4.3.8.4 Distributing Jobs
	4.3.8.4.i Filtering Jobs to Specific Vnodes
	4.3.8.4.ii Running Jobs at Least-loaded Partition or Complex
	4.3.8.4.iii Using Idle Workstations
	4.3.8.4.iv Avoiding Highly-loaded Vnodes
	4.3.8.4.v Placing Job Chunks on Desired Hosts

	4.3.8.5 Shared or Exclusive Resources and Vnodes
	4.3.8.6 Tools for Organizing Vnodes
	4.3.8.7 Tools for Distributing Jobs

	4.3.9 Resource Efficiency Optimizations
	4.3.9.1 Why Optimize Use of Resources
	4.3.9.2 How to Optimize Resource Use
	4.3.9.2.i Backfilling Around Top Jobs
	4.3.9.2.ii Using Dependencies
	4.3.9.2.iii Estimating Start Time for Jobs
	4.3.9.2.iv Provisioning Vnodes with Required Environments
	4.3.9.2.v Tracking Dynamic Resources

	4.3.9.3 Optimizing Resource Use by Job Placement
	4.3.9.3.i Sending Jobs to Partition or Complex Having Lightest Workload
	4.3.9.3.ii Using Idle Workstations
	4.3.9.3.iii Avoiding Highly-loaded Vnodes

	4.3.9.4 Resource Efficiency Optimization Tools

	4.3.10 Overrides
	4.3.10.1 Why and How to Override Scheduling

	4.4 Choosing a Policy
	4.4.1 Overview of Kinds of Policies
	4.4.2 FIFO: Submission Order
	4.4.3 Prioritizing Jobs by User, Project or Group
	4.4.4 Allocating Resources by User, Project or Group
	4.4.4.1 Allocating Portions of Partition Or Complex
	4.4.4.1.i Allocating Specific Amounts
	4.4.4.1.ii Allocating Percentages

	4.4.4.2 Allocating Portions of Machines or Clusters
	4.4.4.3 Locking Entities into Specific Hardware

	4.4.5 Scheduling Jobs According to Size Etc.
	4.4.5.1 Special Treatment via Routing
	4.4.5.1.i Routing via Queues
	4.4.5.1.ii Using Hooks to Route Jobs
	4.4.5.1.iii Giving Routed Jobs Special Priority
	4.4.5.1.iv Running Jobs on Special Vnodes
	4.4.5.1.v Running Jobs in Special Time Slots

	4.4.5.2 Special Treatment via Hooks
	4.4.5.2.i Setting Job Priority Via Hook
	4.4.5.2.ii Routing Jobs to Hardware via Hooks

	4.4.6 Scheduling Jobs into Time Slots
	4.4.6.1 Setting Aside Time Slots for Entities
	4.4.6.1.i Reservations
	4.4.6.1.ii Dedicated Time
	4.4.6.1.iii Non-primetime

	4.4.6.2 Locking Entities into Time Slots
	4.4.6.2.i Locking Entities into Reservations
	4.4.6.2.ii Locking Entities into Dedicated Time
	4.4.6.2.iii Locking Entities into Non-primetime

	4.4.7 Default Scheduling Policy
	4.4.8 Examples of Workload and Policy

	4.5 About Schedulers
	4.5.1 Configuring a Scheduler
	4.5.1.1 Where a Scheduler Gets Its Information
	4.5.1.2 Reference Copies of Files

	4.5.2 Making a Scheduler Read its Configuration
	4.5.3 Scheduling on Resources
	4.5.4 Specifying Scheduler Username
	4.5.5 Starting, Stopping, and Restarting a Scheduler
	4.5.5.1 When and How to Start a Scheduler
	4.5.5.2 When and How to Stop a Scheduler
	4.5.5.3 When and How to Restart a Scheduler

	4.5.6 The Scheduling Cycle
	4.5.6.1 Triggers for Scheduling Cycle
	4.5.6.1.i Logging Scheduling Triggers

	4.5.6.2 Actions During Scheduling Cycle

	4.5.7 How Available Consumable Resources are Counted
	4.5.8 Improving Scheduler Performance
	4.5.8.1 Improving Throughput of Jobs
	4.5.8.2 Limiting Number of Jobs Queued in Execution Queues
	4.5.8.3 Setting Number of Scheduler Threads

	4.6 Using Queues in Scheduling
	4.7 Scheduling Restrictions and Caveats
	4.7.1 One Policy Per Scheduler
	4.7.2 Jobs that Cannot Run on Current Resources
	4.7.3 Resources Not Controlled by PBS
	4.7.4 No Pinning of Processes to Cores

	4.8 Errors and Logging
	4.8.1 Logfile for scheduler

	4.9 Scheduling Tools
	4.9.1 Anti-Express Queues
	4.9.1.1 Configuring Anti-express Queues via Priority
	4.9.1.2 Configuring Anti-express Queues via Preemption Targets
	4.9.1.3 Anti-express Queue Caveats

	4.9.2 Associating Vnodes with Queues
	4.9.2.1 Procedure to Associate Vnodes with Queues
	4.9.2.2 Example of Associating Multiple Vnodes with Multiple Queues

	4.9.3 Using Backfilling
	4.9.3.1 Glossary
	4.9.3.2 Backfilling Separately at the Server and Queues
	4.9.3.3 How Backfilling Works
	4.9.3.4 Backfilling Around N Jobs
	4.9.3.5 Backfilling Around Preempted Jobs
	4.9.3.6 Configuring Backfilling
	4.9.3.7 Backfilling and Strict Ordering
	4.9.3.8 Backfilling and Scheduler Cycle Speed
	4.9.3.9 Attributes and Parameters Affecting Backfilling
	4.9.3.10 Backfilling Recommendations and Caveats
	4.9.3.10.i Ensure Jobs Are Eligible for Backfilling
	4.9.3.10.ii Number of Jobs to Backfill Around
	4.9.3.10.iii Dynamic Resources and Backfilling
	4.9.3.10.iv Avoid Using Strict Ordering, Backfilling, and Fairshare
	4.9.3.10.v Using Preemption, Strict Ordering, and Backfilling
	4.9.3.10.vi Warning About Backfilling and Provisioning
	4.9.3.10.vii Backfilling and Estimating Job Start Time
	4.9.3.10.viii Using Strict Ordering and Backfilling with Only One of Primetime or Non-primetime

	4.9.4 Examining Jobs Queue by Queue
	4.9.4.1 Configuring PBS to Consider Jobs Queue by Queue
	4.9.4.2 Parameters and Attributes Affecting Queue by Queue
	4.9.4.3 Caveats and Advice for Queue by Queue

	4.9.5 Checkpointing
	4.9.5.1 Checkpointing as a Preemption Method
	4.9.5.2 Checkpointing as a Way to Capture Progress and Help Recover Work
	4.9.5.3 Checkpointing When Using the qhold Command

	4.9.6 Organizing Job Chunks
	4.9.6.1 Caveats for Organizing Job Chunks

	4.9.7 cron Jobs
	4.9.7.1 Caveats for cron Jobs

	4.9.8 Using Custom and Default Resources
	4.9.8.1 Techniques for Allocating Custom Resources to Jobs
	4.9.8.2 Using Custom Resources to Route Jobs
	4.9.8.3 Using Custom Resources to Assign Job Execution Priority
	4.9.8.4 Using Custom Resources to Track and Control Resource Allocation
	4.9.8.5 Using Custom Resources to Represent GPUs, FPGAs, Switches, Etc.

	4.9.9 Using Idle Workstation Cycle Harvesting
	4.9.9.1 Platforms Supporting Cycle Harvesting
	4.9.9.2 The $kbd_idle MoM Configuration Parameter
	4.9.9.3 Cycle Harvesting Based on Keyboard/Mouse Activity
	4.9.9.3.i Configuring Cycle Harvesting Using Keyboard/Mouse Activity
	4.9.9.3.ii Example of Cycle Harvesting Using Keyboard/Mouse Activity
	4.9.9.3.iii Caveats for Cycle Harvesting Using Keyboard/Mouse Activity

	4.9.9.4 Cycle Harvesting on Windows
	4.9.9.4.i Configuring Cycle Harvesting on Windows
	4.9.9.4.ii Configuring pbs_idled in Log On Script in Domain Environment
	4.9.9.4.iii Configuring pbs_idled in Log Off Script in Domain Environment
	4.9.9.4.iv The PBS_INTERACTIVE Service
	4.9.9.4.v Errors and Logging
	4.9.9.4.vi Caveats for Cycle Harvesting on Windows

	4.9.9.5 Cycle Harvesting by Monitoring X-Windows
	4.9.9.6 Cycle Harvesting Based on Load Average
	4.9.9.6.i Attributes and Parameters Affecting Cycle Harvesting Based on Load Average
	4.9.9.6.ii How Cycle Harvesting Based on Load Average Works
	4.9.9.6.iii Configuring Cycle Harvesting Based on Load Average
	4.9.9.6.iv Viewing Load Average Information
	4.9.9.6.v Caveats for Cycle Harvesting Based on Load Average

	4.9.9.7 Cycle Harvesting and File Transfers
	4.9.9.8 Parallel Jobs With Cycle Harvesting
	4.9.9.8.i General Advice: Parallel Jobs Not Recommended
	4.9.9.8.ii How to Use Cycle Harvesting with Multi-host Jobs

	4.9.9.9 Cycle Harvesting Caveats and Restrictions
	4.9.9.9.i Cycle Harvesting and Multi-host Jobs
	4.9.9.9.ii Cycle Harvesting and Reservations
	4.9.9.9.iii File Transfers with Cycle Harvesting
	4.9.9.9.iv Cycle Harvesting on Windows

	4.9.10 Dedicated Time
	4.9.10.1 Dedicated Time File
	4.9.10.2 Steps in Defining Dedicated Time
	4.9.10.3 Recommendations for Dedicated Time

	4.9.11 Dependencies
	4.9.12 Dynamic Resources
	4.9.13 Eligible Wait Time for Jobs
	4.9.13.1 Types of Time Accrued
	4.9.13.2 How Eligible Wait Time Works
	4.9.13.3 Configuring Eligible Wait Time
	4.9.13.4 How Eligible Wait Time Is Used
	4.9.13.5 Altering Eligible Time
	4.9.13.6 Attributes Affecting Eligible Time
	4.9.13.7 Logging
	4.9.13.8 Accounting
	4.9.13.9 Caveats for Eligible Time

	4.9.14 Sorting Jobs by Entity Shares (Was Strict Priority)
	4.9.14.1 Configuring Entity Shares
	4.9.14.2 Viewing Entity Shares

	4.9.15 Estimating Job Start Time
	4.9.15.1 Configuring Start Time Estimation
	4.9.15.2 Controlling User Access to Start Times and Vnode List
	4.9.15.2.i Making Start Time or Vnodes Invisible
	4.9.15.2.ii Allowing Users to See Only Their Own Job Start Times

	4.9.15.3 Attributes and Parameters Affecting Job Start Time Estimation
	4.9.15.4 Viewing Estimated Start Times
	4.9.15.5 Selecting Jobs By Estimated Start Time
	4.9.15.6 Logging
	4.9.15.7 Caveats and Advice

	4.9.16 Calculating Job Execution Priority
	4.9.16.1 Dividing Jobs Into Classes
	4.9.16.2 Selecting Job Execution Class
	4.9.16.3 Sorting Jobs Within Classes
	4.9.16.3.i Precedence of Sort Method Used Within Class

	4.9.16.4 Execution Priority Caveats

	4.9.17 Calendaring Jobs
	4.9.17.1 Making Jobs Ineligible to be Top Jobs
	4.9.17.1.i Caveats for Making Jobs Ineligible to be Top Jobs

	4.9.18 Express Queues
	4.9.19 Using Fairshare
	4.9.19.1 One Fairshare System Per Scheduler
	4.9.19.2 Outline of How Fairshare Works
	4.9.19.3 Enabling Basic Fairshare
	4.9.19.4 Configuring the Fairshare Tree
	4.9.19.4.i Allotting Shares in the Tree
	4.9.19.4.ii Shares Among Unknown Entities
	4.9.19.4.iii Format for Describing the Tree
	4.9.19.4.iv Moving Entities within Fairshare Tree
	4.9.19.4.v Removing Entities from Fairshare Tree

	4.9.19.5 Resource Usage for Fairshare
	4.9.19.5.i Tracking Resource Usage
	4.9.19.5.ii Adding Usage
	4.9.19.5.iii Decaying Usage
	4.9.19.5.iv Setting Decay Interval and Factor
	4.9.19.5.v Examples of Setting Fairshare Usage
	4.9.19.5.vi Fairshare Resource Advice
	4.9.19.5.vii Viewing and Managing Fairshare Usage Data

	4.9.19.6 Computing Fairshare Values
	4.9.19.6.i Computing Target Usage for Each Vertex (fairshare_perc)
	4.9.19.6.ii Computing Effective Usage (fairshare_tree_usage)
	4.9.19.6.iii Computing Relative Usage (fairshare_factor)
	4.9.19.6.iv Example of Computing Fairshare Values

	4.9.19.7 Choosing Which Job to Run
	4.9.19.7.i Finding the Most Deserving Entity
	4.9.19.7.ii Sorting and Selecting Jobs to Run

	4.9.19.8 Files and Parameters Used in Fairshare
	4.9.19.9 Ways to Use Fairshare
	4.9.19.9.i Fairshare for Partition Or Complex or Within Queues
	4.9.19.9.ii Altering Fairshare According to Queue
	4.9.19.9.iii Using Fairshare in Job Execution Priority
	4.9.19.9.iv Using Fairshare in Job Preemption Priority

	4.9.19.10 Fairshare Restrictions
	4.9.19.11 Fairshare Caveats and Advice

	4.9.20 FIFO Scheduling
	4.9.20.1 Configuring Basic FIFO Scheduling
	4.9.20.2 FIFO for Entire Partition Or Complex
	4.9.20.3 Queue by Queue FIFO
	4.9.20.4 FIFO with Strict Ordering
	4.9.20.5 FIFO with Strict Ordering and Backfilling

	4.9.21 Using a Formula for Computing Job Execution Priority
	4.9.21.1 When the Formula is Applied
	4.9.21.2 Configuring the Job Sorting Formula
	4.9.21.3 Requirements for Creating Formula
	4.9.21.4 Format of Formula
	4.9.21.5 Units in Formula
	4.9.21.6 Resources in Formula
	4.9.21.7 Using Fairshare in the Formula
	4.9.21.8 Terms in Formula
	4.9.21.9 Modifying Coefficients For a Specific Job
	4.9.21.10 Setting Minimum Job Priority Value for Job Execution
	4.9.21.11 Examples of Using the Job Sorting Formula
	4.9.21.12 Examples of Using Resource Permissions in Job Sorting Formula
	4.9.21.13 Supporting Starving via the Formula
	4.9.21.13.i Prerequisites for Starving Support via Formula
	4.9.21.13.ii Examples of Starving Support in Formula

	4.9.21.14 Caveats and Error Messages
	4.9.21.15 Logging

	4.9.22 Gating Jobs at Server or Queue
	4.9.22.1 Gating Caveats

	4.9.23 Managing Application Licenses
	4.9.24 Limits on Per-job Resource Usage
	4.9.25 Limits on Project, User, and Group Jobs
	4.9.26 Limits on Project, User, and Group Resource Usage
	4.9.27 Using Load Balancing
	4.9.28 Matching Jobs to Resources
	4.9.28.1 Scheduling on Consumable Resources
	4.9.28.2 Scheduling on Non-Consumable Resources
	4.9.28.3 Scheduling on Dynamic Resources
	4.9.28.4 Scheduling on the walltime Resource
	4.9.28.4.i Caveats for Scheduling on walltime

	4.9.28.5 Unrequestable or Invisible Resources
	4.9.28.6 Enforcing Scheduling on Resources
	4.9.28.7 Matching Unset Resources
	4.9.28.7.i When Dynamic Resource Script Fails
	4.9.28.7.ii Backward Compatibility of Unset Resources

	4.9.28.8 Resource Scheduling Caveats

	4.9.29 Node Grouping
	4.9.29.1 Configuring Old-style Node Grouping

	4.9.30 Overrides
	4.9.30.1 Run a Job Manually
	4.9.30.1.i Using qrun Without -H Option on Shrink-to-fit Jobs
	4.9.30.1.ii Using qrun With -H Option on Shrink-to-fit Jobs
	4.9.30.1.iii qrun Caveats

	4.9.30.2 Hold a Job Manually
	4.9.30.3 Suspend a Job Manually
	4.9.30.4 Set Special Resource Value Used in Formula
	4.9.30.5 Change Formula On the Fly
	4.9.30.6 Using Dedicated Time
	4.9.30.7 Using cron Jobs
	4.9.30.8 Using Hooks
	4.9.30.9 Preventing Jobs from Being Calendared

	4.9.31 Peer Scheduling
	4.9.31.1 How Peer Scheduling Works
	4.9.31.2 Prerequisites for Peer Scheduling
	4.9.31.3 Configuring Peer Scheduling
	4.9.31.3.i Defining a Flat User Namespace
	4.9.31.3.ii Mapping Pulling Queues to Furnishing Queues
	4.9.31.3.iii Specifying Ports
	4.9.31.3.iv Granting Manager Access to Pulling Servers
	4.9.31.3.v Making User-to-group Mappings Consistent Across Complexes
	4.9.31.3.vi Configuring Peer Scheduling with Failover

	4.9.31.4 Peer Scheduling Advice
	4.9.31.4.i Selective Peer Scheduling
	4.9.31.4.ii Setting Priority for Pulled Jobs

	4.9.31.5 How Peer Scheduling Affects Jobs
	4.9.31.5.i How Peer Scheduling Affects Inherited Resources
	4.9.31.5.ii How Peer Scheduling Affects Policy Applied to Job
	4.9.31.5.iii How Peer Scheduling Affects Job Eligible Time
	4.9.31.5.iv Viewing Jobs That Have Been Moved to Another Server
	4.9.31.5.v Peer Scheduling and Hooks

	4.9.31.6 Peer Scheduling Caveats

	4.9.32 Placement Sets
	4.9.32.1 Definitions
	4.9.32.2 Requirements for Placement Sets
	4.9.32.3 Description of Placement Sets
	4.9.32.3.i What Defines a Placement Set, Series, or Pool
	4.9.32.3.ii Vnode Participation in Placement Sets, Series, and Pools
	4.9.32.3.iii Multihost Placement Sets
	4.9.32.3.iv Machines with Multiple Vnodes
	4.9.32.3.v Placement Sets Defined by Unset Resources
	4.9.32.3.vi Placement Sets and Node Grouping

	4.9.32.4 How Placement Sets Are Used
	4.9.32.4.i Order of Placement Pool Selection
	4.9.32.4.ii Order of Placement Set Consideration Within Pool
	4.9.32.4.iii Determining Whether Job Can Run
	4.9.32.4.iv Order of Vnode Selection Within Set

	4.9.32.5 Summary of Placement Set Requirements
	4.9.32.6 How to Configure Placement Sets
	4.9.32.7 Examples of Creating Placement Sets
	4.9.32.7.i Cluster with Four Switches
	4.9.32.7.ii Example of Configuring Placement Sets on a Multi-vnode Machine
	4.9.32.7.iii Example of Placement Sets Using Colors
	4.9.32.7.iv Simple Switch Placement Set Example

	4.9.32.8 Placement Sets and Reservations
	4.9.32.9 Placement Sets and Load Balancing
	4.9.32.10 Viewing Placement Set Information
	4.9.32.11 Placement Set Caveats and Advice
	4.9.32.11.i Non-backward-compatible Change in Node Grouping

	4.9.32.12 Attributes and Parameters Affecting Placement Sets
	4.9.32.13 Errors and Logging

	4.9.33 Using Preemption
	4.9.33.1 Glossary
	4.9.33.2 Preemption Parameters and Attributes
	4.9.33.3 How Preemption Works
	4.9.33.4 Using Preemption Targets
	4.9.33.4.i Setting Job Preemption Targets
	4.9.33.4.ii Setting Queue Preemption Targets
	4.9.33.4.iii Setting Default Server Preemption Targets

	4.9.33.5 Preemption and Job Execution Priority
	4.9.33.6 Triggers for Preemption
	4.9.33.7 Preemption Levels
	4.9.33.7.i The Soft Limits Preemption Level
	4.9.33.7.ii The Express Queues Preemption Level
	4.9.33.7.iii The Fairshare Preemption Level
	4.9.33.7.iv The Normal Jobs Preemption Level

	4.9.33.8 Selecting Preemption Level
	4.9.33.9 Sorting Within Preemption Level
	4.9.33.10 Preemption Methods
	4.9.33.10.i Preemption Via Checkpoint
	4.9.33.10.ii Preemption Via Suspension
	4.9.33.10.iii Suspended Jobs and Resources
	4.9.33.10.iv Preemption Via Requeue
	4.9.33.10.v Preemption via Deletion

	4.9.33.11 Enabling Preemption
	4.9.33.12 Preemption Example
	4.9.33.13 Preemption Caveats and Recommendations

	4.9.34 Using Primetime and Holidays
	4.9.34.1 How Primetime and Holidays Work
	4.9.34.2 Configuring Primetime and Non-primetime
	4.9.34.3 Configuring Holidays
	4.9.34.4 Example of holidays File
	4.9.34.5 Reference Copy of holidays File
	4.9.34.6 Defining Primetime and Non-primetime Queues
	4.9.34.7 Controlling Whether Jobs Cross Primetime Boundaries
	4.9.34.8 Logging
	4.9.34.9 Scheduling Parameters Affecting Primetime
	4.9.34.10 Caveats for Primetime and Holidays

	4.9.35 Provisioning
	4.9.36 Queue Priority
	4.9.36.1 Configuring Queue Priority
	4.9.36.2 Using Queue Priority
	4.9.36.3 Queue Priority Caveats

	4.9.37 Reservations
	4.9.37.1 Definitions
	4.9.37.2 Job Reservations
	4.9.37.2.i Creating Advance and Standing Reservations
	4.9.37.2.ii Job-Specific Reservations
	4.9.37.2.iii Creating Job-specific Start Reservations
	4.9.37.2.iv Creating Job-specific ASAP Reservations
	4.9.37.2.v Creating Job-specific Now Reservations
	4.9.37.2.vi Job Reservations and Placement Sets
	4.9.37.2.vii Requesting Resources for Job Reservations
	4.9.37.2.viii Job Reservations and Provisioning
	4.9.37.2.ix Job Reservation Priority
	4.9.37.2.x Querying Reservations
	4.9.37.2.xi Controlling Access to Job Reservations
	4.9.37.2.xii Job Reservation Fault Tolerance
	4.9.37.2.xiii Logging Standing Reservation Information
	4.9.37.2.xiv Accounting

	4.9.37.3 Maintenance Reservations
	4.9.37.4 Modifying Reservations
	4.9.37.4.i Examples of Modifying Reservations

	4.9.37.5 Attributes Affecting Reservations
	4.9.37.6 Reservation Advice and Caveats

	4.9.38 Round Robin Queue Selection
	4.9.38.1 Round-robin Caveats

	4.9.39 Routing Jobs
	4.9.39.1 Mechanisms for Collecting Jobs
	4.9.39.1.i Default Queue as Mechanism to Collect Jobs
	4.9.39.1.ii Grabbing Jobs Upon Submission
	4.9.39.1.iii Disallowing Direct Submission as Mechanism to Collect Jobs
	4.9.39.1.iv Examining Jobs Upon Submission

	4.9.39.2 Mechanisms for Moving Jobs
	4.9.39.2.i Routing Queues as Mechanism to Move Jobs
	4.9.39.2.ii Hooks as Mechanism to Move Jobs
	4.9.39.2.iii Peer Scheduling as Mechanism to Move Jobs
	4.9.39.2.iv The qmove Command as Mechanism to Move Jobs

	4.9.39.3 Mechanisms for Filtering Jobs
	4.9.39.3.i Resource Limits as Filtering Mechanism
	4.9.39.3.ii Access Controls as Filtering Mechanism
	4.9.39.3.iii Hooks as Filtering Mechanism

	4.9.39.4 Mechanisms for Tagging Jobs
	4.9.39.4.i Using Hooks to Tag Jobs
	4.9.39.4.ii Using the qalter Command to Tag Jobs

	4.9.40 Scheduler Cycle Speedup
	4.9.40.1 Top Job Calculation Speedup
	4.9.40.1.i Configuring Top Job Calculation Speedup
	4.9.40.1.ii What Changing Calculation Speed Affects
	4.9.40.1.iii Caveats and Restrictions for Top Job Calculation Speedup

	4.9.41 Shared vs. Exclusive Use of Resources by Jobs
	4.9.41.1 Sharing on a Multi-vnode Machine
	4.9.41.2 Setting the sharing Vnode Attribute
	4.9.41.3 Viewing Sharing Information
	4.9.41.4 Sharing Caveats

	4.9.42 Using Shrink-to-fit Jobs
	4.9.42.1 Shrink-to-fit Jobs
	4.9.42.1.i Requirements for a Shrink-to-fit Job
	4.9.42.1.ii Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

	4.9.42.2 Where to Use Shrink-to-fit Jobs
	4.9.42.3 Running Time of a Shrink-to-fit Job
	4.9.42.3.i Setting Running Time Range for Shrink-to-fit Jobs
	4.9.42.3.ii Inheriting Values for min_walltime and max_walltime
	4.9.42.3.iii Setting walltime for Shrink-to-fit Jobs

	4.9.42.4 How PBS Places Shrink-to-fit Jobs
	4.9.42.5 Shrink-to-fit Jobs and Time Boundaries
	4.9.42.5.i Shrink-to-fit Jobs and Prime Time

	4.9.42.6 Shrink-to-fit Jobs and Resource Limits
	4.9.42.6.i Shrink-to-fit Jobs and Gating at Server or Queue
	4.9.42.6.ii Gating Restrictions

	4.9.42.7 Shrink-to-fit Jobs and Preemption
	4.9.42.8 Using qrun on Shrink-to-fit Jobs
	4.9.42.8.i Using qrun Without -H Option
	4.9.42.8.ii Using qrun With -H Option

	4.9.42.9 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs
	4.9.42.9.i Modifying min_walltime and max_walltime
	4.9.42.9.ii Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs
	4.9.42.9.iii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs
	4.9.42.9.iv Hooks for Running Time Limits

	4.9.42.10 Viewing Running Time for a Shrink-to-fit Job
	4.9.42.10.i Viewing min_walltime and max_walltime
	4.9.42.10.ii Viewing walltime for a Shrink-to-fit Job

	4.9.42.11 Lifecycle of a Shrink-to-fit Job
	4.9.42.11.i Execution of Shrink-to-fit Jobs
	4.9.42.11.ii Termination of Shrink-to-fit Jobs

	4.9.42.12 The min_walltime and max_walltime Resources
	4.9.42.13 Accounting and Logging for Shrink-to-fit Jobs
	4.9.42.13.i Accounting Log Entries for min_walltime and max_walltime
	4.9.42.13.ii Logging

	4.9.42.14 Caveats and Restrictions for Shrink-to-fit Jobs

	4.9.43 SMP Cluster Distribution
	4.9.43.1 How to Use SMP Cluster Distribution
	4.9.43.2 How To Disable SMP Cluster Distribution
	4.9.43.3 SMP Cluster Distribution Caveats and Advice

	4.9.44 Using Soft Walltime
	4.9.44.1 Assigning Soft Walltime to Jobs
	4.9.44.2 How Soft and Hard Walltimes Are Used
	4.9.44.3 Examples of Using Soft Walltime
	4.9.44.4 Allowing Job Submitters to Set Soft Walltime
	4.9.44.5 Caveats and Restrictions for Soft Walltime

	4.9.45 Sorting Jobs on a Key
	4.9.45.1 job_sort_key Syntax
	4.9.45.2 Configuring Sorting Jobs on a Key
	4.9.45.3 Examples of Sorting Jobs on Key
	4.9.45.4 Caveats and Advice for Sorting Jobs on Key

	4.9.46 Sorting Jobs by Requested Priority
	4.9.47 Sorting Queues into Priority Order
	4.9.47.1 Caveats and Advice when Sorting Queues

	4.9.48 Using Strict Ordering
	4.9.48.1 Configuring Strict Ordering
	4.9.48.2 How Strict Ordering Works
	4.9.48.3 Combining Strict Ordering and Backfilling
	4.9.48.4 Strict Ordering and Calendaring
	4.9.48.5 Strict Ordering Caveats

	4.9.49 Sorting Vnodes on a Key
	4.9.49.1 node_sort_key Syntax
	4.9.49.2 Configuring Sorting Vnodes on a Key
	4.9.49.3 Sorting Vnodes According to Load Average
	4.9.49.4 Examples of Sorting Vnodes
	4.9.49.5 Caveats for Sorting Vnodes

	Using PBS Resources
	5.1 Chapter Contents
	5.2 Introduction to PBS Resources
	5.3 Glossary
	5.4 Categories of Resources
	5.4.1 Built-in vs. Custom Resources
	5.4.2 Server vs. Queue vs. Vnode Resources
	5.4.2.1 Server Resources
	5.4.2.2 Queue Resources
	5.4.2.3 Resources Defined at Both Server and Queue
	5.4.2.4 Vnode Resources

	5.4.3 Consumable vs. Non-consumable Resources
	5.4.4 Static vs. Dynamic Resources
	5.4.4.1 Dynamic Resource Caveats

	5.4.5 Requested vs. Default Resources
	5.4.6 Shared vs. Non-shared Vnode Resources
	5.4.6.1 Non-shared Vnode Resources
	5.4.6.2 Shared Vnode Resources

	5.4.7 Platform-specific vs. Generally Available Resources
	5.4.8 Job-wide vs. Chunk Resources
	5.4.8.1 Job-wide Resources
	5.4.8.2 Chunk Resources

	5.5 Resource Types
	5.6 Resource Formats
	5.6.1 Resource Names

	5.7 Setting Values for Resources
	5.7.1 How Resource Values are Set
	5.7.1.1 How Vnode Available Resource Values are Set
	5.7.1.1.i Vnode Resources Set by PBS
	5.7.1.1.ii Setting Vnode Resources Manually

	5.7.1.2 Setting Server and Queue Resource Values
	5.7.1.3 Setting Job Resources
	5.7.1.3.i Setting Requested Resource Values
	5.7.1.3.ii Setting Used Resource Values
	5.7.1.3.iii Setting Estimated Values

	5.7.2 Setting Values for Static Resources
	5.7.2.1 Restrictions on Setting Values for Static Resources

	5.7.3 Setting Values for String Arrays
	5.7.4 When Resource Changes Take Effect
	5.7.5 Caveats for Setting Resource Values
	5.7.5.1 Caveats for Setting Resource Values at Multi-vnode Machines

	5.8 Overview of Ways Resources Are Used
	5.8.1 How the Scheduler Uses Resources
	5.8.2 Advice on Using string and string_array Resources
	5.8.2.1 Using string Resources
	5.8.2.2 Using string_array Resources

	5.9 Resources Allocated to Jobs and Reservations
	5.9.1 Allocating Chunks
	5.9.2 Resources Requested by Job
	5.9.3 Specifying Job Default Resources
	5.9.3.1 Specifying Job-wide Default Resources at Server
	5.9.3.2 Setting Server and Queue Default Job Chunk Resource Values
	5.9.3.2.i Specifying Chunk Default Resources at Server
	5.9.3.2.ii Specifying Chunk Default Resources at Queue

	5.9.3.3 Specifying Job-wide Default Resources at Queue
	5.9.3.4 Specifying Default qsub Arguments
	5.9.3.5 Specifying Default Job Placement
	5.9.3.6 Using Gating Values As Defaults
	5.9.3.7 Default Resource Caveats

	5.9.4 Allocating Default Resources to Jobs
	5.9.4.1 Default Resource Allocation for min_walltime and max_walltime
	5.9.4.2 Default Resource Allocation Caveats
	5.9.4.3 Moving Jobs Between Queues or Servers Changes Defaults

	5.9.5 Dynamic Resource Allocation Caveats
	5.9.6 Period When Resource is Used by Job
	5.9.6.1 Exiting Job Keeps Resource
	5.9.6.2 Job Suspension and Resource Usage
	5.9.6.2.i Resource Usage on Suspension
	5.9.6.2.ii Releasing Resources on Suspension
	5.9.6.2.iii Suspension/resumption Resource Caveats

	5.9.6.3 Shrink-to-fit Jobs Get walltime When Executed

	5.10 Using Resources to Track and Control Allocation
	5.11 Using Resources for Topology and Job Placement
	5.11.1 Restrictions on Using Resources for Job Placement

	5.12 Using Resources to Prioritize Jobs
	5.13 Using Resources to Restrict Server or Queue Access
	5.13.1 Admittance Limits for walltime, min_walltime, and max_walltime
	5.13.2 Restrictions on Resources Used for Admittance

	5.14 Custom Resources
	5.14.1 How to Use Custom Resources
	5.14.1.1 Choosing the Resource Category
	5.14.1.1.i Examples of Configuring a Custom Resource

	5.14.1.2 Dynamic Custom Resources
	5.14.1.2.i Dynamic Server-level Custom Resources
	5.14.1.2.ii Dynamic Host-level Custom Resources

	5.14.1.3 Static Custom Resources
	5.14.1.3.i Static Custom Resources

	5.14.1.4 Shared Vnode Resources
	5.14.1.5 Using Custom Resources for Application Licenses
	5.14.1.6 Using Custom Resources for Scratch Space

	5.14.2 Defining New Custom Resources
	5.14.2.1 Defining and Setting Static and Dynamic Custom Resources
	5.14.2.2 Custom Resource Values
	5.14.2.3 Specifying Resource Level and Consumability
	5.14.2.3.i Allowable Values for Resource Accumulation Flags
	5.14.2.3.ii When to Use Accumulation Flags
	5.14.2.3.iii Example of Resource Accumulation Flags
	5.14.2.3.iv Resource Accumulation Flag Restrictions and Caveats

	5.14.2.4 Specifying Resource Visibility
	5.14.2.4.i Allowable Values for Resource Permission Flags
	5.14.2.4.ii Effect of Resource Permission Flags
	5.14.2.4.iii Resource Permission Flag Restrictions and Caveats

	5.14.2.5 Specifying Whether Resource is Cached at MoM
	5.14.2.5.i Caveats for Caching Custom Job Resources

	5.14.2.6 Defining Custom Resources via qmgr
	5.14.2.6.i Creating Custom Resources via qmgr
	5.14.2.6.ii Examples of Defining Custom Resources and Setting Flags via qmgr
	5.14.2.6.iii Caveats for Defining Host-level Custom Resources via qmgr
	5.14.2.6.iv Deleting Custom Resources

	5.14.2.7 Defining Custom Resources via Hooks
	5.14.2.8 Allowing Jobs to Use a Resource
	5.14.2.9 Editing Configuration Files Under Windows
	5.14.2.10 Example of Defining Each Type of Custom Resource

	5.14.3 Creating Server-level Custom Resources
	5.14.3.1 Creating Server Dynamic Resource Scripts
	5.14.3.1.i Requirements for Scripts that Update Dynamic Resources
	5.14.3.1.ii Caveats and Restrictions for Server Dynamic Resources
	5.14.3.1.iii Example of Configuring Dynamic Server-level Resource

	5.14.3.2 Static Server-level Resources
	5.14.3.2.i Example of Configuring Static Server-level Resource

	5.14.4 Configuring Host-level Custom Resources
	5.14.4.1 Dynamic Host-level Resources
	5.14.4.1.i Example of Configuring Dynamic Host-level Resource

	5.14.4.2 Static Host-level Resources
	5.14.4.2.i Example of Configuring Static Host-level Resource

	5.14.4.3 Shared Host-level Resources
	5.14.4.3.i Shared Resource Glossary
	5.14.4.3.ii Configuring Shared Host-level Resources
	5.14.4.3.iii Configuring Shared Static Resources
	5.14.4.3.iv Configuring Shared Dynamic Resources
	5.14.4.3.v Restrictions on Shared Host-level Resources
	5.14.4.3.vi Defining Shared and Non-shared Resources for Multi-vnode Machines
	5.14.4.3.vii Shared Resource Restrictions for Multi-vnode Machines

	5.14.5 Using Scratch Space
	5.14.5.1 Dynamic Server-level (Shared) Scratch Space
	5.14.5.2 Dynamic Host-level Scratch Space
	5.14.5.3 Static Server-level Scratch Space
	5.14.5.4 Static Host-level Scratch Space
	5.14.5.5 Caveats for Scratch Space and Jobs

	5.14.6 Supplying Application Licenses
	5.14.6.1 Types of Licenses
	5.14.6.1.i Externally-managed Licenses
	5.14.6.1.ii Preventing Oversubscription of Externally-managed Licenses
	5.14.6.1.iii PBS-managed Licenses

	5.14.6.2 License Units and Features
	5.14.6.3 Server-level (Floating) Licenses
	5.14.6.3.i Example of Floating, Externally-managed License
	5.14.6.3.ii Example of Floating, Externally-managed License with Features
	5.14.6.3.iii Example of Floating License Managed by PBS

	5.14.6.4 Host-level (Node-locked) Licenses
	5.14.6.4.i Per-host Node-locked Licenses
	5.14.6.4.ii Per-CPU Node-locked Licenses
	5.14.6.4.iii Per-use Node-locked License
	5.14.6.4.iv Example of Per-host Node-locked Licensing
	5.14.6.4.v Example of Per-use Node-locked Licensing
	5.14.6.4.vi Example of Per-CPU Node-locked Licensing

	5.14.7 Using GPUs
	5.14.7.1 Managing GPUs Via Cgroups Hook
	5.14.7.2 Managing GPUs Manually While Using Cgroups Hook
	5.14.7.3 Basic GPU Scheduling
	5.14.7.3.i Configuring PBS for Basic GPU Scheduling
	5.14.7.3.ii Example of Configuring PBS for Basic GPU Scheduling

	5.14.7.4 Advanced GPU Scheduling
	5.14.7.4.i Configuring PBS for Advanced GPU Scheduling
	5.14.7.4.ii Example of Configuring PBS for Advanced GPU Scheduling

	5.14.8 Using FPGAs
	5.14.9 Defining Host-level Resource for Applications
	5.14.10 Custom Resource Caveats

	5.15 Managing Resource Usage
	5.15.1 Managing Resource Usage By Users, Groups, and Projects, at Server & Queues
	5.15.1.1 Examples of Managing Resource Usage at Server and Queues
	5.15.1.2 Glossary
	5.15.1.3 Difference Between PBS_ALL and PBS_GENERIC
	5.15.1.4 Hard and Soft Limits
	5.15.1.5 Scope of Limits at Server and Queues
	5.15.1.6 Ways To Limit Resource Usage at Server and Queues
	5.15.1.6.i Limits at Queues
	5.15.1.6.ii Generic and Individual Limits
	5.15.1.6.iii Overall Limits

	5.15.1.7 Precedence of Limits at Server and Queues
	5.15.1.7.i Interactions Between Limits Within One Scope
	5.15.1.7.ii Interactions Between Queue and Server Limits

	5.15.1.8 Resource Usage Limit Attributes for Server and Queues
	5.15.1.9 How to Set Limits at Server and Queues
	5.15.1.9.i Syntax
	5.15.1.9.ii Examples of Setting Server and Queue Limits
	5.15.1.9.iii Examples of Adding Server and Queue Limits
	5.15.1.9.iv Examples of Removing Server and Queue Limits

	5.15.1.10 Who Can Set Limits at Server and Queues
	5.15.1.11 Viewing Server and Queue Limit Attributes
	5.15.1.11.i Printing Server and Queue Limit Attributes
	5.15.1.11.ii Listing Server and Queue Limit Attributes
	5.15.1.11.iii Using the qstat Command to View Queue Limit Attributes

	5.15.1.12 How Server and Queue Limits Work
	5.15.1.13 Caveats and Advice for Server and Queue Limits
	5.15.1.13.i Avoiding Overflow
	5.15.1.13.ii Ensuring That Limits Are Effective
	5.15.1.13.iii Array Jobs
	5.15.1.13.iv Avoiding Job Rejection
	5.15.1.13.v Do Not Mix Old And New Limits
	5.15.1.13.vi Do Not Limit Running Time

	5.15.1.14 Errors and Logging for Server and Queue Limits
	5.15.1.14.i Error When Setting Limit Attributes
	5.15.1.14.ii Logging Events
	5.15.1.14.iii Queued Limit Error Messages
	5.15.1.14.iv Run Limit Error Messages

	5.15.1.15 Old Limit Attributes: Server and Queue Resource Usage Limit Attributes Existing Before Version 10.1
	5.15.1.15.i Precedence of Old Limits
	5.15.1.15.ii Old Server Limits
	5.15.1.15.iii Old Queue Limits

	5.15.2 Placing Resource Limits on Jobs
	5.15.2.1 How Limits Are Derived
	5.15.2.2 Configuring Per-job Limits at Server and Queue
	5.15.2.2.i Running Time Limits at Server and Queues

	5.15.2.3 Configuring Per-job Resource Limit Enforcement at Vnodes
	5.15.2.4 Job Memory Limit Enforcement
	5.15.2.4.i Job Memory Limit Enforcement on Linux
	5.15.2.4.ii Memory Enforcement on cpusets

	5.15.2.5 Job ncpus Limit Enforcement
	5.15.2.5.i Average CPU Usage Enforcement
	5.15.2.5.ii CPU Burst Usage Enforcement
	5.15.2.5.iii Job Memory Limit Restrictions

	5.15.2.6 Changing Job Limits

	5.15.3 Limiting the Number of Jobs in Queues

	5.16 Where Resource Information Is Kept
	5.16.1 Files
	5.16.2 MoM Configuration Parameters
	5.16.3 Attributes

	5.17 Viewing Resource Information
	5.17.1 Resource Information in Accounting Logs
	5.17.2 Resource Information in Daemon Logs
	5.17.3 Finding Current Value
	5.17.4 Restrictions on Viewing Resources

	5.18 Resource Recommendations and Caveats

	Configuring and Using PBS with Cgroups
	6.1 Chapter Contents
	6.2 Introduction to Cgroups
	6.3 Why Use Cgroups?
	6.3.1 What PBS Can Do With Cgroups
	6.3.2 Examples of Using Cgroups

	6.4 How PBS Uses Cgroups
	6.4.1 Vnode Creation via Cgroups Hook
	6.4.1.1 Caveats for Vnode Creation

	6.4.2 Job Life Cycle with Cgroups
	6.4.2.1 Running Single-host Jobs with Cgroups
	6.4.2.2 Running Multi-host Jobs with Cgroups

	6.4.3 Cgroup Subsystems
	6.4.3.1 Cgroup Subsystems Managed by the Cgroups Hook
	6.4.3.2 Cgroup Subsystems Not Managed by Cgroups Hook

	6.5 Configuring Cgroups
	6.5.1 Prerequisites for Cgroups Hook
	6.5.1.1 Ensure that Cgroups v1 are Available
	6.5.1.2 Ensure that PBS Is Already Installed and Started

	6.5.2 Enabling and Tuning Hook According to Host and/or Vnode Type
	6.5.2.1 Vnode Types for Cgroups Hook
	6.5.2.1.i Vnode Type File and vntype Resource

	6.5.2.2 Tuning Where Hook, Subsystems, and Parameters are Enabled
	6.5.2.2.i Enabling the Hook and Subsystems
	6.5.2.2.ii exclude_vntypes
	6.5.2.2.iii exclude_hosts
	6.5.2.2.iv include_hosts
	6.5.2.2.v run_only_on_hosts
	6.5.2.2.vi Hook and Subsystem Enablement Tuning Parameters

	6.5.3 Cgroups Hook Configuration Parameters
	6.5.3.1 Global Parameters for Cgroups Hook
	6.5.3.2 Setting vnode_per_numa_node
	6.5.3.3 Configuring Hyperthreading Support
	6.5.3.3.i Mixing Hyperthreading Models in a Complex

	6.5.3.4 Automatic Onlining of Fixed Vnodes
	6.5.3.5 cpuacct Subsystem
	6.5.3.6 cpuset Subsystem
	6.5.3.6.i Using Memory Fences for Job Memory Requests
	6.5.3.6.ii Using Memory Fences for OS File Caching
	6.5.3.6.iii Memory Spreading for OS File Caching
	6.5.3.6.iv Allowing Zero CPU Jobs
	6.5.3.6.v Excluding CPUs
	6.5.3.6.vi cpuset Subsystem Configuration Parameters

	6.5.3.7 cpu Subsystem
	6.5.3.7.i cpu Subsystem Caveats
	6.5.3.7.ii cpu Subsystem Configuration Parameters

	6.5.3.8 devices Subsystem
	6.5.3.8.i Allowing Access to Devices
	6.5.3.8.ii devices Subsystem Configuration Parameters

	6.5.3.9 memory Subsystem
	6.5.3.9.i Reserving Memory
	6.5.3.9.ii Effect of Cgroups Hook on the mem Resource
	6.5.3.9.iii Assigning a Default Amount of Memory to Jobs
	6.5.3.9.iv Managing Use of Swap by Jobs
	6.5.3.9.v Setting Memory Soft Limits
	6.5.3.9.vi Setting Aside Memory for Kernel Drivers
	6.5.3.9.vii Using Configuration File Defaults for Memory
	6.5.3.9.viii Allowing Whole-host Jobs to Use Available Memory
	6.5.3.9.ix memory Subsystem Configuration Parameters

	6.5.3.10 memsw Subsystem
	6.5.3.10.i Effect of memsw Subsystem on the vmem Resource
	6.5.3.10.ii Reserving Swap
	6.5.3.10.iii Computing Requested Swap
	6.5.3.10.iv Using Configuration File Defaults for Swap
	6.5.3.10.v Allowing Whole-host Jobs to Use Available Swap
	6.5.3.10.vi memsw Subsystem Configuration Parameters
	6.5.3.10.vii Scheduling on the vmem Resource
	6.5.3.10.viii Caveat for Swap Limits
	6.5.3.10.ix Caveat for Jobs that Use Swap

	6.5.3.11 hugetlb Subsystem
	6.5.3.11.i Reserving Huge Page Memory
	6.5.3.11.ii Caveat for hugetlb Subsystem
	6.5.3.11.iii Using Configuration File Defaults for Huge Pages
	6.5.3.11.iv Allowing Whole-host Jobs to Use Available Huge Pages
	6.5.3.11.v hugetlb Subsystem Configuration Parameters

	6.5.3.12 Sample Cgroups Hook Configuration File

	6.5.4 Finish Up
	6.5.4.1 Enable cgroups hook
	6.5.4.2 HUP or Restart MoM
	6.5.4.3 Enable Use of Resources by the Scheduler

	6.5.5 Managing GPUs or Xeon Phi via Cgroups
	6.5.5.1 Managing GPUs via Cgroups
	6.5.5.2 Using NVIDIA Multi-Instance GPUs (MIGs)
	6.5.5.3 Configuration Steps
	6.5.5.4 Isolating NVIDIA GPUs
	6.5.5.5 Environment Variables for CUDA and Xeon Phi
	6.5.5.5.i Using CUDA_VISIBLE_DEVICES with Multihost Jobs

	6.5.5.6 Not Using Cgroups to Manage GPUs
	6.5.5.6.i Caveats and Restrictions for Managing GPUs Externally to Cgroups Hook

	6.6 Configuring MPI for Cgroups
	6.6.1 Steps to Integrate MPI with PBS via ssh

	6.7 Managing Jobs with Cgroups
	6.7.1 Requesting Memory
	6.7.2 Limit Enforcement
	6.7.3 Examples of Requesting Cores and Hyperthreads
	6.7.4 Spawning Job Processes

	6.8 Caveats and Errors
	6.8.1 Interactions Between Suspend/resume and the cpuset Subsystem
	6.8.2 Caveats for Shrinking a Job on a Host
	6.8.3 Caveats for Using CUDA
	6.8.4 Do Not Change ncpus When cpuset Subsystem is Enabled
	6.8.5 Cgroups Hook Prevents Epilogue from Running
	6.8.6 Errors

	Configuring PBS for Containers
	7.1 Introduction
	7.1.1 Container Engines Used by PBS
	7.1.1.1 Using nvidia-docker
	7.1.1.2 Caching Singularity Images

	7.1.2 Container Ports
	7.1.3 Managing How Files and Directories are Mounted in Containers
	7.1.3.1 Setting Permissions on Mounted Files
	7.1.3.2 Allowing or Disallowing Job Work Directory Inside Container

	7.1.4 How PBS Uses Container Registries
	7.1.5 Registry Credential File
	7.1.5.1 Registry Credential Filename
	7.1.5.2 Registry Credential File Format
	7.1.5.3 Registry Credential File Default Values
	7.1.5.4 Registry Credential File Location
	7.1.5.5 Docker Examples
	7.1.5.6 Singularity Examples

	7.2 The PBS Container Hook
	7.3 Prerequisites
	7.4 Configuring PBS for Containers
	7.4.1 Create Container Resources
	7.4.2 Configure PBS Container Hook
	7.4.2.1 Default Configuration File

	7.4.3 Install and Start Container Engines
	7.4.4 Configure Security Enhancement for Docker

	7.5 Caveats and Restrictions
	7.6 Errors and Logging

	Making Your Site More Robust
	8.1 Robustness
	8.2 Failover
	8.2.1 Glossary
	8.2.2 How Failover Works
	8.2.2.1 Primary and Secondary Schedulers
	8.2.2.2 Primary and Secondary Data Services
	8.2.2.3 Normal Post-configuration Behavior
	8.2.2.4 Behavior During Failover
	8.2.2.5 Delay During Failover Transition
	8.2.2.6 Behavior When Primary Resumes Control
	8.2.2.7 Server Name and Job IDs During Failover
	8.2.2.8 Information Used by Primary and Secondary Servers
	8.2.2.9 Impact on Users
	8.2.2.10 Determining Which Server Is Active
	8.2.2.11 Delay Between Primary Failure and Secondary Becoming Active
	8.2.2.12 Communication
	8.2.2.12.i Communication with MoMs

	8.2.3 Windows Locations
	8.2.4 Prerequisites for Failover
	8.2.4.1 Checklist of Prerequisites for Failover
	8.2.4.2 Server Host Requirements
	8.2.4.3 Requirements for MoMs on Server Hosts
	8.2.4.4 Ensuring Communication Between Hosts
	8.2.4.5 Hostname Resolution
	8.2.4.6 Shared Filesystem
	8.2.4.6.i Using NFS Filesystems
	8.2.4.6.ii Setting Up the Shared Filesystem

	8.2.4.7 Prevent Automatic Daemon Restart by systemd
	8.2.4.8 Permission Requirements
	8.2.4.9 Same PBS Versions Everywhere
	8.2.4.10 Requirement for Scheduler
	8.2.4.11 Same Data Service Account on Both Server Hosts
	8.2.4.12 Data Service Host Configuration Requirement
	8.2.4.13 Consistent Usernames
	8.2.4.14 Monitor Server Mail

	8.2.5 Configuring Failover
	8.2.5.1 Overview of Configuring Failover
	8.2.5.2 Configuring the pbs.conf File for Failover
	8.2.5.2.i Editing Configuration Files Under Windows

	8.2.5.3 Host Configuration for Failover on Linux
	8.2.5.3.i Configuring Failover For the Primary Server on Linux
	8.2.5.3.ii Configuring Failover For the Secondary Server on Linux
	8.2.5.3.iii Configuring STONITH Script for Use by Secondary Server
	8.2.5.3.iv Configuring Failover For Execution and Client Hosts on Linux

	8.2.5.4 Host Configuration for Failover on Windows
	8.2.5.4.i Configuring Failover for Execution and Client Hosts on Windows

	8.2.6 Configuring Failover with Other PBS Features
	8.2.6.1 Configuring Failover to Work with Routing Queues
	8.2.6.2 Configuring Failover to Work With Peer Scheduling
	8.2.6.3 Configuring Failover to Work With Access Controls

	8.2.7 Using PBS with Failover Configured
	8.2.7.1 Stopping Servers
	8.2.7.2 Starting Servers

	8.2.8 Recommendations and Caveats
	8.2.9 Troubleshooting Failover
	8.2.9.1 PBS Does Not Start
	8.2.9.2 Primary and Secondary Servers Both Running
	8.2.9.3 Primary or Secondary Server Fails to Start
	8.2.9.4 Primary Server Periodically Restarting
	8.2.9.5 Cannot Connect to Host

	8.3 Checkpoint and Restart
	8.3.1 Glossary
	8.3.2 How Checkpointing Works
	8.3.2.1 Types of Checkpointing
	8.3.2.1.i Checkpoint and Abort
	8.3.2.1.ii Snapshot Checkpoint
	8.3.2.1.iii Application Checkpoint

	8.3.2.2 Events That Trigger Checkpointing
	8.3.2.3 Effect of Checkpointing on Jobs
	8.3.2.4 Effect of Checkpointing on Job Resources
	8.3.2.5 Restarting a Job

	8.3.3 Prerequisites for Checkpointing Jobs
	8.3.3.1 Restrictions on Checkpointing

	8.3.4 Configuring Checkpointing
	8.3.4.1 Overview of Configuring Checkpointing
	8.3.4.1.i Editing Configuration Files Under Windows

	8.3.4.2 Specifying Checkpoint and Restart Parameters
	8.3.4.2.i Examples of Checkpoint and Restart Parameters

	8.3.4.3 Setting $restart_transmogrify MoM Parameter

	8.3.5 Parameters and Attributes Affecting Checkpointing
	8.3.5.1 MoM Configuration Parameters Affecting Checkpointing
	8.3.5.2 Options to pbs_mom Affecting Checkpointing
	8.3.5.3 Job Attribute Affecting Checkpointing
	8.3.5.4 Queue Attribute Affecting Checkpointing
	8.3.5.5 Environment Variable Affecting Checkpointing
	8.3.5.6 The Epilogue

	8.3.6 Checkpoint and Restart Scripts
	8.3.6.1 Environment Variables for Scripts
	8.3.6.2 The Checkpoint Script
	8.3.6.2.i Requirements for Checkpoint Script

	8.3.6.3 The Restart Script
	8.3.6.3.i Caveats for Restart Script
	8.3.6.3.ii Requirements for Restart Script
	8.3.6.3.iii Return Values for Restart Script

	8.3.6.4 Scripts for Application Checkpointing
	8.3.6.5 Specifying Checkpoint Path
	8.3.6.5.i Checkpoint Path Caveats

	8.3.7 Using Checkpointing
	8.3.7.1 Periodic Job Checkpointing
	8.3.7.2 Checkpointing During Shutdown
	8.3.7.3 Requeueing via Epilogue
	8.3.7.3.i Requirements for Requeueing via Epilogue

	8.3.7.4 Checkpointed Jobs and Server Restart
	8.3.7.5 Preemption Using Checkpoint
	8.3.7.6 Holding a Job
	8.3.7.6.i Restrictions on Holding a Job

	8.3.7.7 Periodic Application Checkpoint
	8.3.7.8 Manual Application Checkpoint

	8.3.8 Advice and Caveats
	8.3.8.1 PBS_NODEFILE Required
	8.3.8.2 Sockets and Checkpointing

	8.3.9 Accounting

	8.4 Reservation Fault Tolerance
	8.4.1 States for Degraded and In-conflict Reservations
	8.4.2 Finding Replacement Vnodes for Degraded and In-conflict Reservations
	8.4.2.1 Attributes Affecting Reservation Reconfirmation

	8.4.3 Allocating New Vnodes
	8.4.4 Restarting the Server

	8.5 Vnode Fault Tolerance for Job Start and Run
	8.5.1 Overview of Padding and Trimming Vnode Requests
	8.5.2 Saving Job Initial Vnode Request
	8.5.3 Configuring Primary MoMs to Wait for Sister MoMs
	8.5.4 Configuring MoMs to Wait for Hooks
	8.5.4.1 Caveats for Configuring MoMs to Wait for Hooks

	8.5.5 Padding Vnode Request
	8.5.5.1 Specifying Whether and When to Pad Vnode Request
	8.5.5.1.i Setting the tolerate_node_failures Job Attribute

	8.5.5.2 Specifying How Chunks Are Padded
	8.5.5.2.i Example of Padding Chunks

	8.5.5.3 Caveats for Padding Vnode Requests

	8.5.6 Trimming Vnode Request
	8.5.6.1 Example of Trimming Job Vnode Request
	8.5.6.2 Offlining Vnodes that Have Gone Bad During Start or Run

	8.5.7 Checking Vnodes and Marking Them as Failed
	8.5.8 Example of Reliable Job Startup and Run
	8.5.8.1 Example Queuejob Hook for Setup and Padding
	8.5.8.2 Example Hook for Trimming
	8.5.8.3 Example Job
	8.5.8.4 Example of Job Vnode Assignment Padding and Trimming

	8.6 Preventing Communication and Timing Problems
	8.6.1 Introduction
	8.6.2 Node Fail Requeue: Jobs on Failed Vnodes
	8.6.2.1 How Node Fail Requeue Works
	8.6.2.2 Effect Of Requeueing On Jobs
	8.6.2.3 The node_fail_requeue Server Attribute
	8.6.2.3.i Allowable Values
	8.6.2.3.ii Default Value

	8.6.2.4 Where node_fail_requeue Applies
	8.6.2.5 Jobs Eligible to be Requeued
	8.6.2.6 Using node_fail_requeue
	8.6.2.7 Advice and Caveats

	8.6.3 Setting Job Requeue Timeout
	8.6.4 Setting MoM Reconnection Timeout
	8.6.5 Managing Load Levels on Vnodes
	8.6.5.1 Techniques for Managing Load
	8.6.5.1.i Types of Workload
	8.6.5.1.ii How Not To Share CPUs
	8.6.5.1.iii How To Share CPUs
	8.6.5.1.iv Suspending Jobs on Overloaded Vnodes

	8.6.5.2 Caveats and Recommendations
	8.6.5.2.i Allowing Non-job Processes on Execution Host

	8.6.5.3 Load Configuration Parameters

	8.6.6 Prologue & Epilogue Running Time
	8.6.6.1 Prologue Timeout Configuration Parameter

	8.6.7 Time Between Routing Retries
	8.6.7.1 Routing Retry Attribute

	8.7 Preventing File System Problems
	8.7.1 Avoid Filling Location of Temp Files for PBS Components
	8.7.2 Avoid Filling Filesystem with Log Files

	8.8 OOM Killer Protection

	Administration
	9.1 Specifying Scheduler Username
	9.1.1 Steps for Changing Scheduler Username

	9.2 The PBS Configuration File
	9.2.1 Location of Configuration File
	9.2.2 Format of Configuration File
	9.2.2.1 Specifying Parameters
	9.2.2.2 Comment Lines in Configuration File

	9.2.3 Example of Configuration File
	9.2.4 Contents of Configuration File
	9.2.5 Configuration File Caveats and Recommendations

	9.3 Environment Variables
	9.3.1 Environment Variables For Daemons, Commands, and Jobs
	9.3.1.1 Contents of Environment File
	9.3.1.2 Location of Environment File
	9.3.1.3 Environment File Requirements
	9.3.1.4 Editing Configuration Files Under Windows

	9.3.2 Job-specific Environment Variables

	9.4 Event Logging
	9.4.1 PBS Events
	9.4.2 Event Logfiles
	9.4.3 Log Levels
	9.4.3.1 Specifying Log Levels
	9.4.3.1.i Specifying Server Log Events
	9.4.3.1.ii Specifying MoM Log Events
	9.4.3.1.iii Specifying Scheduler Log Events
	9.4.3.1.iv Specifying Communication Daemon Log Events

	9.4.4 Event Logfile Format and Contents
	9.4.4.1 Event Logfile Format
	9.4.4.2 Scheduler Commands

	9.4.5 Logging Job Usage
	9.4.6 Managing Log Files
	9.4.6.1 Disk Space for Log Files
	9.4.6.2 Dividing Up Log Files
	9.4.6.2.i Dividing Log Files on Linux
	9.4.6.2.ii Dividing Log Files on Windows

	9.4.6.3 Specifying Log File Path

	9.4.7 Extracting Logged Information
	9.4.8 Using the Linux syslog Facility
	9.4.8.1 Caveats

	9.5 Managing Machines
	9.5.1 Offlining Hosts and Vnodes
	9.5.1.1 Caveats of Offlining

	9.5.2 Performing Maintenance on Powered-up Vnodes
	9.5.2.1 Reserving Vnodes for Maintenance
	9.5.2.2 Putting Vnodes into Maintenance State
	9.5.2.2.i Resource Release on Suspension
	9.5.2.2.ii Caveats for admin-suspend and admin-resume

	9.5.3 Changing Hostnames or IP Addresses
	9.5.4 Discovering Last Reboot Time of Server
	9.5.5 Changing Network Configuration
	9.5.6 Replacing or Reimaging Nodes
	9.5.7 Restricting User Access to Execution Hosts
	9.5.7.1 Windows Restriction

	9.6 Managing the Data Service
	9.6.1 PBS Monitors Data Service
	9.6.2 Data Service Accounts
	9.6.3 Data Service Account Password
	9.6.3.1 Setting Data Service Account Name and Password
	9.6.3.2 Caveats

	9.6.4 Starting and Stopping the Data Service
	9.6.4.1 Caveats for Starting and Stopping Data Service

	9.6.5 Changing Data Service Port
	9.6.5.1 Caveats

	9.6.6 File Ownership

	9.7 Setting File Transfer Mechanism
	9.7.1 Letting MoM Know Whether Transfer is Local or Remote
	9.7.1.1 Configuring the $usecp MoM Parameter
	9.7.1.1.i Linux and $usecp
	9.7.1.1.ii Windows and $usecp

	9.7.2 Specifying Local File Transfer Mechanism
	9.7.2.0.i How MoM Calls Local Copy Command

	9.7.3 Specifying Remote File Transfer Mechanism
	9.7.3.1 How MoM Chooses Remote File Copy Mechanism
	9.7.3.2 Configuring MoM to use scp or PBS_SCP Parameter
	9.7.3.2.i How MoM Calls scp Command

	9.7.3.3 Configuring MoM to use rcp, pbs_rcp or PBS_RCP Entry
	9.7.3.3.i How MoM Calls rcp Command

	9.7.4 Options Passed to File Transfer Commands
	9.7.4.1 Options Passed on Linux
	9.7.4.2 Options Passed on Windows

	9.7.5 Using Custom File Transfer Mechanism
	9.7.5.1 Using Custom Local File Transfer Mechanism
	9.7.5.2 Using Custom Remote File Transfer Mechanism

	9.7.6 When Multiple Attempts Are Required
	9.7.7 Allowing Direct Write of Standard Output and Error to /dev/null
	9.7.8 Troubleshooting File Transfer
	9.7.8.1 Problems with rcp
	9.7.8.2 Problems with Directory Access

	9.7.9 Advice on Improving File Transfer Performance
	9.7.9.1 Avoiding Server Host Overload
	9.7.9.2 Avoiding Remote Transfers in Large Complexes
	9.7.9.3 Improving Performance for ssh
	9.7.9.4 Improving Performance when Staging Similar Files
	9.7.9.5 Avoiding Limits on ssh Connections
	9.7.9.6 Alternatives to Changing ssh Limits
	9.7.9.7 Getting Around Bandwidth Limits

	9.7.10 General Advice on File Transfer
	9.7.10.1 Enabling Passwordless Authentication
	9.7.10.2 Using scp for Security
	9.7.10.3 Avoiding Asynchronous Writes to NFS
	9.7.10.4 Returning Output
	9.7.10.5 Editing the pbs.conf File Under Windows
	9.7.10.6 The pbs_rcp Command
	9.7.10.6.i Exit Values for pbs_rcp

	9.7.10.7 Caveats

	9.8 Some Performance Tips
	9.8.1 Improving Scheduling Performance
	9.8.2 Improving Communication Performance
	9.8.3 Improving Hook Speed

	9.9 Temporary File Location for PBS Components
	9.9.1 Default Location for Temporary Files
	9.9.2 Configuring Temporary File Location for PBS Components
	9.9.3 Requirements
	9.9.4 Advice and Recommendations for Temporary File Location

	9.10 Administration Caveats
	9.10.1 General Caveats
	9.10.2 Windows Caveats

	9.11 Support for Globus
	9.12 Support for Hyperthreading
	9.12.1 Linux Machines with HTT
	9.12.2 Windows Machines with HTT
	9.12.3 Using Number of Physical CPUs
	9.12.4 Hyperthreading Caveats

	9.13 How To...
	9.13.1 How to Drain Jobs
	9.13.2 How to Find Out Which Daemons Should Be Running

	Managing Jobs
	10.1 Routing Jobs
	10.2 Limiting Number of Jobs Considered in Scheduling Cycle
	10.3 Allocating Resources to Jobs
	10.3.1 Viewing Resources Allocated to a Job
	10.3.1.1 The exec_vnode Attribute
	10.3.1.2 The schedselect Attribute
	10.3.1.3 Resources for Requeued Jobs

	10.4 Grouping Jobs By Project
	10.4.1 PBS Projects
	10.4.2 Assigning Projects to Jobs
	10.4.3 Managing Resource Use by Project
	10.4.4 Managing Jobs by Project
	10.4.5 Viewing Project Information
	10.4.6 Selecting Jobs by Project
	10.4.7 Default Project Value
	10.4.8 Error Messages

	10.5 Job Prologue and Epilogue
	10.5.1 Using Shell Scripts for Prologue and Epilogue
	10.5.1.1 When Shell Prologue and Epilogue Run
	10.5.1.2 Where Shell Prologue and Epilogue Run
	10.5.1.3 Shell Prologue and Epilogue Location
	10.5.1.4 Shell Prologue and Epilogue Requirements
	10.5.1.5 Shell Prologue and Epilogue Environment Variables
	10.5.1.6 Shell Prologue and Epilogue Permissions
	10.5.1.7 Shell Prologue and Epilogue Arguments
	10.5.1.8 Shell Epilogue Argument Caveats
	10.5.1.9 Standard Input to Shell Prologue and Epilogue
	10.5.1.10 Standard Output and Error for Shell Prologue and Epilogue
	10.5.1.11 Shell Prologue and Epilogue Timeout
	10.5.1.12 Shell Prologue and Epilogue Exit Codes
	10.5.1.13 Shell Prologue and Epilogue Limitations and Caveats

	10.5.2 Using Hooks for Prologue and Epilogue
	10.5.2.1 Installing Prologue and Epilogue Hooks

	10.6 Linux Shell Invocation
	10.6.1 Advantages
	10.6.2 Disadvantages

	10.7 When Job Attributes are Set
	10.7.1 Job Attributes Set By qsub Command
	10.7.2 Job Attributes Set at Server
	10.7.3 Attributes Changed by Operations on Jobs
	10.7.3.1 Comment Set When Running Job
	10.7.3.2 Attributes Changed When Moving Job
	10.7.3.3 Attributes Changed When Altering Job
	10.7.3.4 Attributes Changed When Requeueing or Rerunning a Job
	10.7.3.5 Attributes Changed by Holding or Releasing a Job
	10.7.3.6 Attributes Changed by Suspending or Resuming a Job

	10.8 Job Termination
	10.8.1 Normal Job Termination
	10.8.2 Using the qdel Command to Terminate a Job
	10.8.3 Killing Job Processes
	10.8.4 Hooks and Job Termination
	10.8.5 Configuring Site-specific Job Termination
	10.8.5.1 Requirements for Termination Script
	10.8.5.2 Examples of Configuring Termination
	10.8.5.3 Caveats and Restrictions on Termination

	10.8.6 Killing Jobs with a Signal

	10.9 Job Exit Status Codes
	10.9.1 Job Exit Status Between 0 and 128 (or 256)
	10.9.2 Job Exit Status >= 128 (or 256)
	10.9.3 Logging Job Exit Status
	10.9.4 Exit Status of Interactive Jobs

	10.10 Rerunning or Requeueing a Job
	10.10.1 Requeueing a Job on a Dead Node
	10.10.2 Output from a Re-run Job
	10.10.3 Requeueing Caveats
	10.10.4 Caveats for Jobs Started by PBS

	10.11 Job IDs
	10.11.1 Format of Job IDs
	10.11.2 Range of IDs
	10.11.3 Job IDs and Moving Jobs
	10.11.4 Job IDs and Requeueing and Checkpoint/Restart

	10.12 Where to Find Job Information
	10.12.1 Deleted Jobs
	10.12.2 Failed Jobs
	10.12.3 Job Information When Server is Down
	10.12.4 Job Information on Execution Host

	10.13 Job Directories
	10.13.1 Staging and Execution Directories for Job
	10.13.1.1 Using Job-specific Staging and Execution Directories
	10.13.1.2 Using Shared Directories for Staging and Execution
	10.13.1.3 Examples of Setting Location for Creation of Staging and Execution Directories
	10.13.1.4 Options, Attributes and Environment Variables Affecting Staging
	10.13.1.5 Getting Information About the Job Staging and Execution Directory
	10.13.1.6 Staging and Execution Directory Caveats

	10.14 The Job Lifecycle
	10.14.1 Sequence of Events for Start of Job
	10.14.2 Sequence of Events for End of Job

	10.15 Managing Job History
	10.15.1 Introduction
	10.15.2 Definitions
	10.15.3 Job History Information Preserved by PBS
	10.15.4 Period When PBS Preserves Job History
	10.15.5 Configuring Job History Management
	10.15.5.1 Enabling Job History
	10.15.5.2 Setting Job History Duration

	10.15.6 Changing Job History Settings
	10.15.6.1 Disabling Job History
	10.15.6.2 Enabling Job History
	10.15.6.3 Modifying Job History Duration

	10.15.7 Backward Compatibility
	10.15.8 Logging Moved Jobs
	10.15.9 Deleting Moved Jobs and Job Histories
	10.15.10 Job History Caveats

	10.16 Environment Variables
	10.17 Adjusting Job Running Time
	10.17.1 Shrink-to-fit Jobs

	10.18 Managing Number of Run Attempts
	10.19 Managing Amount of Memory for Job Scripts
	10.20 Allowing Interactive Jobs on Windows
	10.20.1 Configuring PBS for Remote Viewer on Windows
	10.20.2 Specifying Remote Viewer at Submission Hosts
	10.20.3 Configuring MoM to Run in LocalSystem Account on Windows
	10.20.4 Configuring Single Sign-on for Remote Desktop on Windows
	10.20.4.1 Configuring Submission Hosts for Single Sign-on
	10.20.4.2 Configuring Execution Hosts for Single Sign-on

	10.21 Releasing Unneeded Vnodes from Jobs
	10.21.1 Caveats and Restrictions for Releasing Vnodes

	10.22 Tolerating Vnode Faults
	10.23 Managing Job Array Behavior
	10.24 Recommendations

	Security
	11.1 Configurable Features
	11.2 User Roles and Required Privilege
	11.2.1 Root Privilege
	11.2.2 User Roles
	11.2.2.1 User
	11.2.2.1.i Definition of User
	11.2.2.1.ii Defining List of Users

	11.2.2.2 Operator
	11.2.2.2.i Definition of Operator
	11.2.2.2.ii Defining List of Operators

	11.2.2.3 Manager
	11.2.2.3.i Definition of Manager
	11.2.2.3.ii Defining List of Managers

	11.2.2.4 PBS Administrator
	11.2.2.4.i Definition of PBS Administrator

	11.3 Using Access Control Lists
	11.3.1 Access Definitions
	11.3.1.1 Access to a PBS Object
	11.3.1.2 Access by a PBS Entity

	11.3.2 Requirement for Access
	11.3.3 Managing Access via Lists
	11.3.4 ACLs
	11.3.4.1 Format of ACLs
	11.3.4.2 Default ACL Behavior
	11.3.4.3 Modifying ACL Behavior
	11.3.4.4 Contents of User ACLs
	11.3.4.5 Contents of Group ACLs
	11.3.4.6 Contents of Host ACLs
	11.3.4.7 Wildcards In ACLs
	11.3.4.8 Restrictions on ACL Contents

	11.3.5 Enabling Access Control
	11.3.5.1 Table of ACLs and Switches

	11.3.6 Creating and Modifying ACLs
	11.3.6.1 Rules for Creating and Modifying Server and Queue ACLs
	11.3.6.2 Examples of Creating and Modifying Server and Queue ACLs
	11.3.6.3 Who Can Create, Modify, Enable, or Disable ACLs
	11.3.6.4 Who Can Operate on Server ACLs
	11.3.6.5 Who Can Operate on Queue ACLs
	11.3.6.6 Who Can Operate on Reservation ACLs
	11.3.6.7 Who Can Operate on Reservation Queue ACLs

	11.3.7 Server and Queue ACLs
	11.3.7.1 Server ACLs
	11.3.7.2 Queue ACLs
	11.3.7.3 Access to Server for MoMs
	11.3.7.4 Examples of Setting Server and Queue Access

	11.3.8 Reservation Access
	11.3.8.1 Meaning of Reservation Access
	11.3.8.2 Reservation Access Attributes
	11.3.8.3 Setting and Changing Reservation Access
	11.3.8.3.i Examples of Setting and Changing Reservation Access

	11.3.8.4 Reservation Queues
	11.3.8.4.i Reservation Queue ACLs

	11.3.9 Scope of Access Control
	11.3.10 Operations Controlled by ACLs
	11.3.10.1 Server Operations Controlled by ACLs
	11.3.10.1.i Server Host ACL
	11.3.10.1.ii Server User ACL

	11.3.10.2 Queue Operations Controlled by ACLs
	11.3.10.2.i Queue Host ACL
	11.3.10.2.ii Queue User and Group ACLs

	11.3.10.3 Reservation Operations Controlled by ACLs
	11.3.10.4 Table of Operations Controlled by ACLs and Overrides

	11.3.11 Avoiding Problems
	11.3.11.1 Using Group Lists

	11.3.12 Flatuid and Access
	11.3.12.1 How flatuid Controls When Users Can Operate On Jobs
	11.3.12.2 How flatuid Affects Users Without Server Accounts
	11.3.12.2.i Linux and flatuid
	11.3.12.2.ii Windows and flatuid

	11.4 Authentication for Daemons & Users
	11.4.1 Specifying Allowed Authentication Methods
	11.4.1.1 Supported Authentication Methods

	11.4.2 Specifying Authentication Method Used by Authentication Client
	11.4.3 Authentication via Reserved Ports
	11.4.4 Authentication via MUNGE
	11.4.4.1 Steps to Integrate MUNGE with PBS

	11.4.5 Configuring SSSD
	11.4.5.1 Configuring SSSD on RHEL 7 and CentOS 7
	11.4.5.2 Configuring SSSD on RHEL8
	11.4.5.3 Configuring SSSD on Ubuntu 16
	11.4.5.4 Configuring SSSD on Ubuntu 18
	11.4.5.5 Configuring SSSD on SUSE 15

	11.5 Encrypting PBS Communication
	11.5.1 Supported Encryption Methods
	11.5.2 Using Transport Layer Security (TLS) for Client-Server Communication
	11.5.2.1 Overview of Configuring PBS for TLS Encryption
	11.5.2.2 Example of Configuring PBS for TLS Encryption

	11.6 Restricting Execution Host Access
	11.6.1 MoM Access Configuration Parameters
	11.6.2 Examples of Restricting Access

	11.7 Changing the PBS Service Account Password
	11.8 Paths and Environment Variables
	11.8.1 Path Caveats

	11.9 File and Directory Permissions
	11.10 Root-owned Jobs
	11.10.1 Caveats for Root-owned Jobs

	11.11 Passwords
	11.11.1 Windows User Passwords
	11.11.2 Changing the PBS Service Account Password
	11.11.2.1 Caveats for Changing Service Account Password

	11.12 Windows Firewall
	11.13 Logging Security Events
	11.13.1 Events Logged at Event Class 32 (0x0020)
	11.13.1.1 Events Logged at Event Class 128 (0x0080)
	11.13.1.2 Events Logged at Event Class 1
	11.13.1.3 Events Not Logged

	11.14 Securing Containers

	Accounting
	12.1 The Accounting Log File
	12.1.1 Name and Location of Accounting Log File
	12.1.2 Managing the Accounting Log File
	12.1.3 Permissions for Accounting Log

	12.2 Viewing Accounting Information
	12.2.1 Using the tracejob Command
	12.2.1.1 Permissions for the tracejob Command

	12.3 Format of Accounting Log Messages
	12.3.1 Log Entry Format
	12.3.2 Space Characters in String Entries
	12.3.2.1 Replacing Space Characters in String Entries

	12.4 Types of Accounting Log Records
	12.4.1 Accounting Records for Job Arrays

	12.5 Timeline for Accounting Messages
	12.5.1 Timeline for Job Accounting Messages
	12.5.2 Where Job Attributes are Recorded
	12.5.3 Timeline for Reservation Accounting Messages
	12.5.4 Where Reservation Attributes and Info are Recorded
	12.5.4.1 Jobs in Reservations

	12.5.5 How MoM Polling Affects Accounting

	12.6 Resource Accounting
	12.6.1 Accounting Log Resource Entry Formats
	12.6.2 Job Resource Accounting
	12.6.2.0.i Accounting Log Entries for min_walltime and max_walltime
	12.6.2.1 Reporting Resources Assigned to Job
	12.6.2.2 Reporting Resources Used by Job
	12.6.2.3 Freeing Resources
	12.6.2.4 Releasing Vnodes

	12.6.3 Reservation Resource Accounting
	12.6.4 Changing Resource Values Reported in Accounting Logs

	12.7 Options, Attributes, and Parameters Affecting Accounting
	12.7.1 Options to pbs_server Command
	12.7.2 Options to qsub Command
	12.7.3 Options to qalter Command
	12.7.4 Job Attributes
	12.7.5 MoM Parameters

	12.8 Accounting Caveats and Advice
	12.8.1 Integrate MPIs for Accurate Accounting
	12.8.2 MPI Integration under Windows
	12.8.3 Using Hooks for Accounting
	12.8.3.1 Use Hooks to Record Job Information
	12.8.3.2 Use Hooks to Manage Job Accounting String

	Using MPI with PBS
	13.1 Integration with MPI
	13.2 Prerequisites
	13.3 Types of Integration
	13.4 Transparency to the User
	13.5 Integrating Intel MPI 4.0.3 On Linux Using Environment Variables
	13.5.1 Restrictions for Intel MPI 4.0.3

	13.6 Integrating Intel MPI 4.0.3 on Windows Using Wrapper Script
	13.7 Integrating MPICH2 1.4.1p1 on Windows Using Wrapper Script
	13.8 Integration Using the TM Interface
	13.9 Integration on the Fly using the pbs_tmrsh Command
	13.9.1 Caveats for the pbs_tmrsh Command

	13.10 Integration by Wrapping
	13.10.1 Wrap the Correct Instance

	13.11 Wrapping an MPI Using the pbsrun_wrap Script
	13.11.1 Passing Arguments
	13.11.2 Restricting MPI Use to PBS Jobs
	13.11.3 Format of pbsrun_wrap Command
	13.11.4 Actions During Wrapping
	13.11.5 Requirements
	13.11.6 Caveats and Restrictions
	13.11.7 Links to Wrapper Script Information
	13.11.8 Wrapping Multiple MPIs with the Same Name
	13.11.9 See Also

	13.12 Unwrapping MPIs Using the pbsrun_unwrap Script
	13.13 Integration By Hand
	13.13.1 Integrating HP MPI and Platform MPI
	13.13.2 Steps to Integrate HP MPI or Platform MPI
	13.13.2.1 Setting Up rsh and ssh Commands
	13.13.2.2 Restrictions and Caveats for HP MPI and Platform MPI

	13.13.3 Integrating Open MPI
	13.13.3.1 Compiling Open MPI with the TM Module
	13.13.3.2 Verifying Use of TM Interface
	13.13.3.3 See Also

	13.13.4 Integrating MPICH-P4
	13.13.4.1 Restrictions
	13.13.4.2 Options for pbs_mpirun
	13.13.4.3 Steps to Integrate MPICH-P4
	13.13.4.4 Setting Up Environment Variables and Paths

	13.13.5 Integrating HPE MPI
	13.13.5.1 Supported Platforms
	13.13.5.2 Steps to Integrate HPE MPI
	13.13.5.3 Invoking HPE MPI
	13.13.5.4 Using HPE MPI Over InfiniBand
	13.13.5.5 Using CSA with HPE MPI
	13.13.5.6 Prerequisites
	13.13.5.7 Environment Variables

	13.14 How Processes are Started Using MPI and PBS
	13.14.1 Starting Processes under Non-integrated MPIs
	13.14.2 Starting Processes under Wrapped MPIs
	13.14.3 Starting Processes Under MPIs Employing the TM Interface

	13.15 Limit Enforcement with MPI
	13.16 Restrictions and Caveats for MPI Integration

	Configuring PBS for SELinux
	14.1 Overview of PBS Support for MLScompliant SELinux
	14.2 Terminology
	14.3 How Support for SELinux Works
	14.3.1 Security Context
	14.3.2 Authorization
	14.3.3 Authentication
	14.3.4 Instantiation

	14.4 Enforcement of Permissions
	14.4.1 Policy Files
	14.4.2 Location of pbs_mom.pamd File

	14.5 Special Attributes and Directories
	14.6 Prerequisites
	14.7 Caveats and Restrictions
	14.8 Installing PBS For Use With SELinux
	14.8.1 Pre-installation Requirements
	14.8.2 Installing in Non-default Location
	14.8.3 Installation Steps
	14.8.4 Starting SELinux PBS
	14.8.5 Post-installation Steps
	14.8.5.1 Configure Job Privacy
	14.8.5.2 Set Privacy for PBS Logs

	14.8.6 Configuring Ports Used by PBS

	14.9 Configuring PBS for SELinux
	14.9.1 Configure File Staging Utilities
	14.9.1.1 Steps to Configure Utility

	14.10 Managing an SELinux System
	14.10.1 Checking Security Context

	Managing Power Usage
	15.1 Monitoring and Controlling Job Power Usage
	15.1.1 Power Provisioning: Monitoring and Controlling Job Power Usage
	15.1.1.1 Monitoring Power Use by Jobs

	15.1.2 Platforms Supporting Power Provisioning
	15.1.3 Power Provisioning on HPE
	15.1.3.1 Overview of Power Provisioning on HPE
	15.1.3.2 Setting Power Profiles on HPE
	15.1.3.3 Enabling Power Provisioning on HPE
	15.1.3.4 Setting Job Power Resource Requests
	15.1.3.4.i Writing Power Profile Hook for Cray

	15.1.3.5 Enabling Power Provisioning on Cray
	15.1.3.6 Caveats for Power Provisioning on Cray

	15.1.4 Terminology for Power Provisioning
	15.1.5 Caveats and Restrictions for Using Power Profiles

	15.2 Power Management Attributes, Resources, Etc.
	15.3 Caveats and Restrictions for Power Management

	Provisioning
	16.1 Introduction
	16.2 Definitions
	16.3 How Provisioning Can Be Used
	16.4 How Provisioning Works
	16.4.1 Overview of Provisioning
	16.4.1.1 Rebooting When Provisioning

	16.4.2 How Vnodes Are Selected for Provisioning
	16.4.2.1 Provisioning Policy
	16.4.2.2 Examples of Vnode Selection
	16.4.2.3 Rules for Vnode Selection for Provisioning
	16.4.2.4 Triggering Provisioning

	16.4.3 Provisioning And Reservations
	16.4.3.1 Creating Reservations that Request AOEs
	16.4.3.2 Submitting Jobs to a Reservation
	16.4.3.3 Running a Job in a Reservation Having a Requested AOE

	16.4.4 How Provisioning Affects Jobs
	16.4.4.1 Preemption and Provisioning
	16.4.4.2 Backfilling and Provisioning
	16.4.4.3 Walltime and Provisioning
	16.4.4.4 Using qrun

	16.4.5 Vnode States and Provisioning
	16.4.5.1 States Associated With Provisioning
	16.4.5.2 Provisioning Process
	16.4.5.3 Vnode State When Provisioning Fails
	16.4.5.4 Using the qmgr Command on Vnodes In Process of Provisioning

	16.4.6 Attributes, Resources, and Parameters Affecting Provisioning
	16.4.6.1 Host-level Resources
	16.4.6.2 Vnode Attributes
	16.4.6.3 Server Attributes
	16.4.6.4 Hook Attributes
	16.4.6.5 Scheduler Configuration Parameters

	16.5 Configuring Provisioning
	16.5.1 Overview of Configuring Provisioning
	16.5.1.1 Steps in Configuring Provisioning

	16.5.2 Provide a Provisioning Tool
	16.5.3 Prepare Images
	16.5.4 Define aoe Resources
	16.5.5 Inform Scheduler of Current AOE
	16.5.6 Write the Provisioning Script
	16.5.6.1 Arguments to Master Script
	16.5.6.2 Return Values
	16.5.6.2.i Success
	16.5.6.2.ii Failure

	16.5.6.3 Master Script Calls Subscript

	16.5.7 Create and Configure the Provisioning Hook
	16.5.7.1 Create the Hook
	16.5.7.2 Import the Hook Script
	16.5.7.3 Configure the Hook Script
	16.5.7.3.i Set Event Type
	16.5.7.3.ii Set Alarm Time

	16.5.8 Configure Provisioning Policy
	16.5.8.1 Set Maximum Number of Concurrently Provisioning Vnodes
	16.5.8.1.i Considerations

	16.5.8.2 Set Scheduling Policy

	16.5.9 Enable Provisioning on Vnodes
	16.5.10 Enable Provisioning Hook

	16.6 Viewing Provisioning Information
	16.6.1 Viewing Provisioning Hook Contents
	16.6.2 Viewing Provisioning Hook Attributes
	16.6.3 Printing Provisioning Hook Creation Commands
	16.6.4 Viewing Attributes and Resources Affecting Provisioning
	16.6.4.1 Server Attributes
	16.6.4.2 Viewing Vnode Attributes and Resources

	16.7 Requirements and Restrictions
	16.7.1 Site Requirements
	16.7.1.1 Single-vnode Hosts Only
	16.7.1.2 Provisioning Tool Required
	16.7.1.3 Single Provisioning Hook Allowed
	16.7.1.4 Provisioning Hook Cannot Have Multiple Event Types
	16.7.1.5 AOE Names Consistent Across Complex

	16.7.2 Usage Requirements
	16.7.2.1 Restriction on Concurrent AOEs on Vnode
	16.7.2.2 Vnode Job Restrictions
	16.7.2.3 Vnode Reservation Restrictions
	16.7.2.4 Hook Script and AOE Must Be Compatible
	16.7.2.5 Provisioning Hook Must Be Ready
	16.7.2.6 Server Host Cannot Be Provisioned
	16.7.2.7 PBS Attributes Not Available to Provisioning Hook
	16.7.2.8 avoid_provision Incompatible with smp_cluster_dist

	16.8 Defaults and Backward Compatibility
	16.9 Example Scripts
	16.9.1 Sample Master Provisioning Hook Script With Explanation
	16.9.1.1 Sample Master Provisioning Hook Script
	16.9.1.2 Explanation of Sample Provisioning Hook Script

	16.9.2 Sample Master Provisioning Hook Script Calling Performance Cluster Manager
	16.9.3 Sample Script Set
	16.9.3.1 Provisioning Hook Script
	16.9.3.2 Master Provisioning Script
	16.9.3.3 Grub Update Shell Script

	16.10 Advice and Caveats
	16.10.1 Using Provisioning Wisely
	16.10.1.1 Preventing Provisioning

	16.10.2 Allow Enough Time in Reservations

	16.11 Errors and Logging
	16.11.1 Errors
	16.11.1.1 Errors Resulting in Marking Vnodes Offline
	16.11.1.2 Errors Resulting in Requeueing Job

	16.11.2 Logging
	16.11.2.1 Accounting Logs
	16.11.2.2 Server Logs
	16.11.2.2.i Messages Printed at Log Level 0x0080
	16.11.2.2.ii Messages Printed at Log Level 0x0100
	16.11.2.2.iii Messages Printed at Log Level 0x0002
	16.11.2.2.iv Messages Printed at Log Level 0x0001

	16.11.2.3 Scheduler Logs
	16.11.2.3.i Messages Printed at Log Level 0x0400
	16.11.2.3.ii Messages Printed at Log Level 0x0100

	16.11.3 Error Messages

	Support for HPE
	17.1 Support for HPE with Cpusets
	17.1.1 Briefly, How PBS Manages Cpusets
	17.1.2 Cpusets and Vnodes
	17.1.3 Requirements for Managing Cpusets
	17.1.4 Where to Use Cpusets
	17.1.5 Settings for sharing Attribute
	17.1.5.1 Creating Vnodes
	17.1.5.1.i Caveats for Creating Vnodes

	17.1.5.2 Configuring Vnodes

	17.1.6 Comprehensive System Accounting

	17.2 Support for HPE Cray Shasta
	17.2.1 HPE Cray Shasta Is Different from XC
	17.2.1.1 Not Supported on HPE Cray Shasta

	17.2.2 Hook for PBS on HPE Cray Shasta
	17.2.2.1 HPE Cray Shasta Hook Configuration File
	17.2.2.1.i Configuration File Parameters

	17.2.3 Responding to Node Health

	Support for NEC SX-Aurora TSUBASA
	18.1 Vnodes for NEC SX-Aurora TSUBASA
	18.2 Terminology
	18.3 Resources for SX-Aurora TSUBASA
	18.4 Configuring PBS for NEC SX-Aurora TSUBASA
	18.5 Debugging on NEC SX-Aurora TSUBASA
	18.6 Suspending and Resuming Jobs
	18.7 Job Accounting on NEC SX-Aurora TSUBASA

	Mixed Linux-Windows Operation
	19.1 Introduction to Mixed Linux-Windows Operation
	19.1.1 Caveats for Mixed Linux-Windows Operation

	19.2 Configuration
	19.2.1 Configure Authentication
	19.2.2 Windows Hosts and Users in Active Directory Domain
	19.2.3 Allow Linux Authentication of Windows Active Domain Users
	19.2.4 Configure User Authorization
	19.2.5 Install PBS on Windows Hosts
	19.2.6 Set Up TLS Encryption

	19.3 Troubleshooting Mixed Linux-Windows Complex

	Problem Solving
	20.1 Debugging Tools
	20.1.1 Debugging Commands
	20.1.2 Setting Corefile Size
	20.1.3 Using the debuginfo RPM Package
	20.1.4 Finding PBS Version Information
	20.1.5 Troubleshooting and Hooks

	20.2 Security and Permissions Problems
	20.2.1 Directory Permission Problems
	20.2.1.1 Correcting Permissions Problems on Linux
	20.2.1.2 Correcting Permissions Problems on Windows

	20.3 Troubleshooting Jobs
	20.3.1 Job Held Due to Invalid Password
	20.3.2 Requeueing a Job "Stuck" on a Down Vnode
	20.3.3 Job Cannot be Executed
	20.3.4 Running Jobs with No Active Processes
	20.3.5 Jobs that Can Never Run
	20.3.6 Job Comments for Problem Jobs
	20.3.7 Bad UID for Job Execution
	20.3.8 Windows: Bad UID for Job Execution
	20.3.9 New Jobs Not Running
	20.3.10 Job Stuck in Exiting State
	20.3.10.1 qdel -Wforce <job ID>

	20.4 Troubleshooting Daemons
	20.4.1 Server Host Bogs Down After Startup
	20.4.1.1 Symptoms
	20.4.1.2 Problem
	20.4.1.3 Treatment

	20.4.2 Server Does Not Start
	20.4.3 Primary Server Periodically Restarting
	20.4.4 PBS Data Service Does Not Start
	20.4.5 Server Dies Inexplicably
	20.4.6 Data Service Running When PBS Server is Down
	20.4.7 Scheduler Cannot Reliably Contact Server
	20.4.8 PBS Daemon Will Not Start
	20.4.9 Troubleshooting Windows Daemon Problems
	20.4.9.1 Windows: MoMs Do Not Start

	20.5 Troubleshooting Vnodes
	20.5.1 Vnodes Down
	20.5.2 Bad Vnode on Startup

	20.6 Troubleshooting Client Commands
	20.6.1 Windows: Client Commands Slow
	20.6.1.1 Scenario: Wireless Router, DHCP Enabled

	20.6.2 Windows: qstat Errors
	20.6.3 Clients Unable to Contact Server

	20.7 Troubleshooting PBS Licenses
	20.7.1 Wrong License Server: Out of Memory
	20.7.2 Unable to Connect to License Server
	20.7.3 Insufficient Minimum Licenses
	20.7.4 Wrong Type of License

	20.8 Crash Recovery
	20.8.1 Recovery When Host Machine Stops
	20.8.1.1 Execution Host Stops
	20.8.1.2 Server/scheduler/communication Host Stops

	20.8.2 Recovery When Daemon Stops

	20.9 Other Troubleshooting
	20.9.1 Problem With Dynamic Resource
	20.9.2 Cannot Create Formula or Hook
	20.9.3 Windows: PBS Cannot Locate Configuration File
	20.9.4 Filesystem Runs Out of Space
	20.9.5 Unrecognized Timezone Variable

	20.10 Getting Help

	Index

	Hooks Guide (HG)
	Contents
	New Hook Features
	1.1 New Hook Features
	1.2 Changes in Previous Releases
	1.3 Deprecations and Removals

	Introduction to Hooks
	2.1 Introduction to Hooks
	2.1.1 Built-in Hooks

	2.2 Glossary
	2.3 Prerequisites and Requirements for Hooks
	2.4 Uses for Hooks
	2.4.1 Routing Jobs
	2.4.2 Managing Resource Requests and Usage
	2.4.3 Ensuring that Jobs Run Properly
	2.4.4 Managing Job Output
	2.4.5 Controlling Interactive Jobs
	2.4.6 Helping Schedule Jobs
	2.4.7 Communicating Information to Users
	2.4.8 Managing User Activity
	2.4.9 Enabling Accounting and Validation
	2.4.10 Allocation Management (Budgeting)
	2.4.11 Managing Job Execution
	2.4.12 Configuring Vnodes
	2.4.13 Provisioning Vnodes
	2.4.14 Accepting or Rejecting Job Task Attachment
	2.4.15 Tracking Vnode State Changes

	Quick Start with Hooks
	3.1 Simple How-to for Writing Hooks
	3.2 Writing Hooks: Basic Hook Structure
	3.3 Example of Simple Hook
	3.4 Importing Hook Configuration File
	3.5 Creating and Importing Your Hook
	3.6 Setting Attributes for Your Hook

	Hook Basics
	4.1 Hook Basics
	4.1.1 Accepting or Rejecting Actions
	4.1.1.1 Examples of Accepting and Rejecting Actions

	4.1.2 When and Where Hooks Run
	4.1.2.1 Job-related Hooks that Run at Server Before Job Execution (Server Job Hooks)
	4.1.2.2 Job-related Hooks that Run at Execution Host (MoM Job Hooks)
	4.1.2.3 Reservation Hooks Run at Server
	4.1.2.4 Non-job Server Hooks
	4.1.2.5 Non-job MoM Hooks
	4.1.2.6 Each Triggering Event Runs One Hook Instance
	4.1.2.7 Hooks for Peer Scheduling
	4.1.2.8 Execution Event Hook Triggers in Lifecycle of Job

	4.1.3 Account Under Which Hooks Run
	4.1.4 Permissions and Location for Hook Creation and Modification
	4.1.5 Failover
	4.1.6 What Hooks Cannot Access or Do
	4.1.7 What Hooks Should Not Do

	4.2 Viewing Hook Information
	4.2.1 Listing Hooks
	4.2.2 Viewing Hook Contents
	4.2.3 Printing Hook Creation Commands
	4.2.4 Re-creating Hooks

	4.3 Restarting the Python Interpreter
	4.4 Attributes and Parameters Affecting Hooks
	4.5 Python Modules and PBS
	4.5.1 Python Module Caveats
	4.5.2 Modifying Python Modules
	4.5.2.1 Caveats for Modifying Python Modules

	4.5.3 Listing Modules in pbs_python

	4.6 See Also

	Creating and Configuring Hooks
	5.1 Creating and Configuring Site-defined Hooks
	5.1.1 Introduction to Creating and Configuring Hooks
	5.1.1.1 Hook Name Restrictions

	5.1.2 Overview of Creating and Configuring a Hook
	5.1.2.1 Example of Creating and Configuring a Hook

	5.1.3 Creating Empty Hooks
	5.1.3.1 Example of Creating an Empty Hook

	5.1.4 Deleting Hooks
	5.1.4.1 Example of Deleting a Hook

	5.1.5 Setting Hook Trigger Events
	5.1.5.1 Example of Setting Hook Trigger Events

	5.1.6 Using Hook Configuration Files
	5.1.6.1 Format of Configuration File
	5.1.6.2 Importing Configuration File
	5.1.6.2.i Examples of Importing Configuration Files

	5.1.6.3 Exporting Configuration Files
	5.1.6.4 How Hooks Find Configuration Files
	5.1.6.5 Changing a Hook Configuration File
	5.1.6.6 Validation and Errors

	5.1.7 Importing Hooks
	5.1.7.1 Examples of Importing Hooks

	5.1.8 Exporting Hooks
	5.1.8.1 Examples of Exporting Hooks

	5.1.9 Setting and Unsetting Hook Attributes
	5.1.9.1 Caveats for Setting Hook Attributes
	5.1.9.2 Using the fail_action Hook Attribute
	5.1.9.3 List of Hook Attributes

	5.1.10 Enabling and Disabling Hooks
	5.1.10.1 Example of Enabling and Disabling Hooks

	5.1.11 Setting the Relative Order of Hook Execution
	5.1.11.1 Example of Setting Relative Order of Hook Execution
	5.1.11.2 Caveats for Setting Relative Order of Hooks

	5.1.12 Setting Hook Timeout
	5.1.12.1 Example of Setting Hook Timeout

	5.1.13 Setting Hook Interval (Frequency)
	5.1.13.1 Example of Setting Hook Interval (Frequency)

	5.1.14 Setting Hook User Account
	5.1.14.1 Example of Setting Hook User Account

	5.2 Writing Hook Scripts to Operate on PBS Elements
	5.2.1 How We Define and Refer to Objects and Methods
	5.2.1.1 Scope of Object or Method
	5.2.1.2 Referring to Objects
	5.2.1.3 How to Retrieve Objects: Event vs. Server
	5.2.1.3.i Retrieving Jobs
	5.2.1.3.ii Retrieving Vnodes
	5.2.1.3.iii Retrieving Queues
	5.2.1.3.iv Retrieving Reservations

	5.2.2 Recommended Hook Script Structure
	5.2.2.1 Catch Exceptions
	5.2.2.1.i Example of Catching Exceptions
	5.2.2.1.ii Table of Exceptions

	5.2.3 Hook Alarm Calls and Unhandled Exceptions
	5.2.4 Using Attributes and Resources in Hooks
	5.2.4.1 Using Built-in vs. Custom Resources in Hooks
	5.2.4.2 Creating and Setting Custom Resources in Hooks
	5.2.4.3 Determining Whether to Use Creation Method to Set Attribute or Resource
	5.2.4.3.i Caveat for Objects Requiring Creation Method
	5.2.4.3.ii Python Types not Requiring Creation Method

	5.2.4.4 How to Unset an Attribute or Resource
	5.2.4.4.i How to Unset an Attribute or Resource Requiring Creation Method

	5.2.4.5 Using Attributes in Hooks: Reading vs. Setting
	5.2.4.6 Setting Time Attributes
	5.2.4.7 Special Characters in Variable_List Job Attribute
	5.2.4.8 Using string_array Attributes and Resources
	5.2.4.8.i Handling Literal Values and Special Characters in string_array Format

	5.2.4.9 Using Resources in Hooks: Reading vs. Setting
	5.2.4.10 Reading Resources in Hooks
	5.2.4.10.i Converting walltime to Seconds

	5.2.4.11 Setting and Unsetting Vnode Resources and Attributes
	5.2.4.12 Setting Job Resources in Hooks
	5.2.4.12.i Steps for Setting Job Resources in Hooks
	5.2.4.12.ii String Resource Format for Python
	5.2.4.12.iii Setting String Job Resources in Hooks
	5.2.4.12.iv Example of Setting Resources in Hooks
	5.2.4.12.v Setting Built-in Job Resource in Hook Prevents MoM from Updating Resource

	5.2.4.13 Overview of Readable & Settable Resources
	5.2.4.14 Caveats for Setting and Unsetting Attributes and Resources
	5.2.4.14.i When to Change Reservation Attributes
	5.2.4.14.ii Caution About Unsetting Reservation walltime Resource
	5.2.4.14.iii Changing Job Attributes for a Running Job
	5.2.4.14.iv Do Not Unset Array Job Indices
	5.2.4.14.v Do Not Create Job or Reservation Variable List
	5.2.4.14.vi Changing Vnode state Attribute
	5.2.4.14.vii Attribute Change Failure is Silent
	5.2.4.14.viii Lengthened walltime Can Interfere with Reservations
	5.2.4.14.ix Setting Vnode Resources in Hooks Overwrites Previous Value
	5.2.4.14.x Changing Resources in Accounting Logs
	5.2.4.14.xi When Setting Resources Has No Effect
	5.2.4.14.xii Changes to Vnodes via execjob_end Hook Can Be Lost on Rerun

	5.2.4.15 Tables: Reading & Setting Job Attributes in Hooks
	5.2.4.16 Tables: Reading & Setting Vnode Attributes in Hooks
	5.2.4.17 Table: Reading & Setting Reservation Attributes in Reservation Hooks
	5.2.4.18 Tables: Reading & Setting Built-in Job Resources in Hooks
	5.2.4.19 Tables: Reading & Setting Vnode Resources in Hooks

	5.2.5 Using select and place in Hooks
	5.2.5.1 How to Set select and place in Hooks
	5.2.5.2 Caveats for Using select and place in Hooks

	5.2.6 Restarting Scheduler Cycle After Hook Failure
	5.2.7 Adding Custom Host-level Resources
	5.2.8 Printing And Logging Messages
	5.2.9 Capturing Return Code
	5.2.10 When You Need Persistent Data
	5.2.11 Setting Up Job Environment on Sisters
	5.2.12 Offlining Bad Vnodes
	5.2.12.1 General Method for Offlining Bad Vnodes
	5.2.12.2 Offlining Vnodes Associated with an Event
	5.2.12.3 Using List of Failed Vnodes to Offline Vnodes that Have Gone Bad During Start or Run
	5.2.12.4 Offlining and Clearing Vnodes Using the fail_action Hook Attribute
	5.2.12.4.i Offlining Vnodes Using the fail_action Hook Attribute
	5.2.12.4.ii Clearing Vnodes Using the fail_action Hook Attribute

	5.3 Advice and Caveats for Writing Hooks
	5.3.1 Rules for Hook Access and Behavior
	5.3.2 Check for Parameter Validity
	5.3.2.1 Resource Requests and queuejob Hooks
	5.3.2.2 Example of Checking Validity

	5.3.3 Make Changes Only On Acceptance
	5.3.4 Offline Vnodes when exechost_startup Hook Rejects
	5.3.5 Minimize Unnecessary Steps
	5.3.6 Use Fast Operations
	5.3.7 Avoiding Interference with Normal Operation
	5.3.7.1 Treat SystemExit as a Normal Occurrence
	5.3.7.2 Allow the Server to Modify Jobs
	5.3.7.3 Stay Within the Scheduler Alarm Time

	5.3.8 Avoiding Problems
	5.3.8.1 Avoid Hook File I/O
	5.3.8.2 Avoid Contacting Bad Host
	5.3.8.3 Avoid os._exit() Python Function
	5.3.8.4 Avoid Attempting to Log Message Using Bad Job ID
	5.3.8.5 Avoid Taking Up Lots of Memory
	5.3.8.6 Testing Vnode State

	5.3.9 Restrictions
	5.3.9.1 Local Server Only
	5.3.9.2 Dictionary Data Type Restriction

	5.3.10 Scheduling Impact of Hooks
	5.3.10.1 Effect of runjob Hooks on Preemption
	5.3.10.2 Effect of runjob Hooks with Strict Ordering
	5.3.10.3 Effect of runjob Hooks with round_robin and by_queue
	5.3.10.4 Peer Scheduling and Hooks
	5.3.10.5 Performance Considerations
	5.3.10.5.i Cost of Accessing Data
	5.3.10.5.ii Cost of Different Hooks

	5.3.10.6 Effect of Hooks on Job Eligible Time

	5.3.11 Windows Caveats
	5.3.11.1 Special Characters in Pathnames
	5.3.11.2 Importing and Exporting Hooks
	5.3.11.3 Modifying Events
	5.3.11.4 Using Sleep in a Hook Script

	Hook Objects and Methods
	6.1 The pbs Module
	6.2 PBS Interface Objects
	6.2.1 Maps of Members and Methods for Events and Entities

	6.3 Events
	6.3.1 Event Types
	6.3.1.1 Getting Human-readable Names for Hook Event Types
	6.3.1.1.i Syntax
	6.3.1.1.ii Example

	6.3.1.2 queuejob: Event when Job is Queued
	6.3.1.2.i Modifying Job Submission (qsub)
	6.3.1.2.ii The queuejob Hook Interface
	6.3.1.2.iii Caveats for queuejob Hook

	6.3.1.3 postqueuejob: Event after Job is Queued
	6.3.1.3.i Calculating Budget Required to Run Job
	6.3.1.3.ii The postqueuejob Hook Interface

	6.3.1.4 movejob: Event when Job is Moved
	6.3.1.4.i Modifying Job Move (qmove)
	6.3.1.4.ii The movejob Hook Interface

	6.3.1.5 modifyjob: Event when Job is Altered
	6.3.1.5.i Modifying Job Change (qalter)
	6.3.1.5.ii The modifyjob Hook Interface

	6.3.1.6 runjob: Event Before Job is Received by MoM
	6.3.1.6.i Changes Before Job is Sent to MoM (qrun)
	6.3.1.6.ii The runjob Hook Interface

	6.3.1.7 jobobit: Event when Server Receives Job or Subjob Obit
	6.3.1.7.i The jobobit Hook Interface

	6.3.1.8 resvsub: Event when Reservation is Created
	6.3.1.8.i Modifying Reservation Creation (pbs_rsub)
	6.3.1.8.ii The resvsub Hook Interface

	6.3.1.9 resv_confirm: Event when Reservation is Confirmed
	6.3.1.9.i Reservation Confirmation
	6.3.1.9.ii The resv_confirm Hook Interface

	6.3.1.10 modifyresv: Event when Reservation is Altered
	6.3.1.10.i Modifying Reservation Changes (pbs_ralter)
	6.3.1.10.ii The modifyresv Hook Interface

	6.3.1.11 resv_begin: Event when Reservation Starts
	6.3.1.11.i Reservation Start
	6.3.1.11.ii The resv_begin Hook Interface

	6.3.1.12 resv_end: Event when Reservation Ends
	6.3.1.12.i The resv_end Hook Interface

	6.3.1.13 management: qmgr Operation Event at Server Host
	6.3.1.13.i qmgr Operation Events at Server Host
	6.3.1.13.ii The management Hook Interface

	6.3.1.14 periodic: Periodic Event at Server Host
	6.3.1.14.i Periodic Events at Server Host
	6.3.1.14.ii The periodic Hook Interface
	6.3.1.14.iii Caveats for periodic Event Hooks

	6.3.1.15 modifyvnode: Event after Vnode Changes State
	6.3.1.15.i Vnode State Change
	6.3.1.15.ii The modifyvnode Hook Interface
	6.3.1.15.iii Caveats for modifyvnode Hooks

	6.3.1.16 execjob_begin: Event when Execution Host Receives Job
	6.3.1.16.i Changes When Job is Received by MoM
	6.3.1.16.ii The execjob_begin Hook Interface

	6.3.1.17 execjob_prologue: Event Just Before Execution of Top-level Job Process
	6.3.1.17.i Changes Before Job Shell is Executed
	6.3.1.17.ii The execjob_prologue Hook Interface

	6.3.1.18 execjob_launch: Event when Execution Host Receives Job
	6.3.1.18.i Changes Before User Program is Executed
	6.3.1.18.ii The execjob_launch Hook Interface

	6.3.1.19 execjob_attach: Event when pbs_attach() runs
	6.3.1.19.i Event when pbs_attach() Runs
	6.3.1.19.ii The execjob_attach Hook Interface
	6.3.1.19.iii Caveats for execjob_attach Hooks

	6.3.1.20 execjob_postsuspend: Event Just After Suspending Job
	6.3.1.20.i The execjob_postsuspend Hook Interface

	6.3.1.21 execjob_preresume: Event Just Before Resuming Job
	6.3.1.21.i The execjob_preresume Hook Interface

	6.3.1.22 execjob_preterm: Event Just Before Killing Job Tasks
	6.3.1.22.i Changes Before Job is Killed
	6.3.1.22.ii The execjob_preterm Hook Interface

	6.3.1.23 execjob_epilogue: Event Just After Killing Job Tasks
	6.3.1.23.i Changes After Job is Executed
	6.3.1.23.ii The execjob_epilogue Hook Interface

	6.3.1.24 execjob_end: Event After Job Cleanup
	6.3.1.24.i Changes After Job Finishes or is Killed
	6.3.1.24.ii The execjob_end Hook Interface

	6.3.1.25 exechost_startup: Event When Execution Host Starts Up
	6.3.1.25.i Event when Execution Host Starts or Receives HUP
	6.3.1.25.ii The exechost_startup Hook Interface
	6.3.1.25.iii Advice on Using exechost_startup Hooks

	6.3.1.26 exechost_periodic: Periodic Events on All Execution Hosts
	6.3.1.26.i Periodic Events at Execution Hosts
	6.3.1.26.ii The exechost_periodic Hook Interface
	6.3.1.26.iii Caveats for exechost_periodic Event Hooks

	6.3.1.27 provision: Hook for Provisioning Vnodes

	6.3.2 Event Object Members
	6.3.2.1 Hook Alarm Event Member
	6.3.2.2 Job Program Arguments Event Member
	6.3.2.3 Hook Debug Behavior Indicator Event Member
	6.3.2.4 Hook Enable or Disable Event Member
	6.3.2.5 Job Environment Event Member
	6.3.2.6 Failure Action Event Member
	6.3.2.7 Frequency Event Member
	6.3.2.8 Hook Name Event Member
	6.3.2.9 Hook Type Event Member
	6.3.2.10 Job Event Member
	6.3.2.11 Job List Event Member
	6.3.2.12 Original Job Event Member
	6.3.2.13 Order Event Member
	6.3.2.14 Process ID Event Member
	6.3.2.15 Job Executable Event Member
	6.3.2.16 Requestor Event Member
	6.3.2.17 Requestor Host Event Member
	6.3.2.18 Reservation Event Member
	6.3.2.19 Reservation, Before Changes, Event Member
	6.3.2.20 Source Queue Event Member
	6.3.2.21 Event Type Event Member
	6.3.2.22 Event User Event Member
	6.3.2.23 The Current and Original Vnode Event Members
	6.3.2.24 The Vnode List Event Member
	6.3.2.25 The Failed Vnode List Event Member

	6.3.3 Event Object Member Caveats
	6.3.3.1 Modifying progname or argv[] Under Windows

	6.3.4 Event-only Methods
	6.3.4.1 Event Method for Accepting Event
	6.3.4.2 Event Method for Rejecting Event

	6.3.5 Event Object Method Caveats
	6.3.6 Examples of Using Event Objects

	6.4 Server Objects
	6.4.1 Server Object Members
	6.4.1.1 Server Name Member
	6.4.1.2 Server Attribute Members
	6.4.1.2.i Server State Attribute Member

	6.4.2 Setting Server Object Members
	6.4.3 Examples of Using Server Object Members
	6.4.4 Server Object Methods
	6.4.4.1 Method to Return Job
	6.4.4.2 Method to Return Job Iterator
	6.4.4.3 Method to Return Queue
	6.4.4.4 Method to Return Queue Iterator
	6.4.4.5 Method to Return Reservation
	6.4.4.6 Method to Return Reservation Iterator
	6.4.4.7 Method to Restart Scheduler Cycle
	6.4.4.8 Method to Return Named Vnode
	6.4.4.9 Method to Return Vnode List

	6.5 Queue Objects
	6.5.1 Queue Object Members
	6.5.1.1 Queue Object Name Member
	6.5.1.2 Queue Object Attribute Members
	6.5.1.3 Setting Queue Object Attributes

	6.5.2 Queue Object Methods
	6.5.2.1 Method to Return Job
	6.5.2.2 Method to Return Job Iterator

	6.5.3 Queue Type Constant Objects

	6.6 Job Objects
	6.6.1 Job Object Members
	6.6.1.1 Job ID Member
	6.6.1.2 Job Attribute Members
	6.6.1.2.i Job accrue_type Attribute Member
	6.6.1.2.ii Job array_indices_submitted Attribute Member
	6.6.1.2.iii Job Checkpoint Attribute Member
	6.6.1.2.iv Job depend Attribute Member
	6.6.1.2.v Job Execution_Time Attribute Member
	6.6.1.2.vi Job exec_host Attribute Member
	6.6.1.2.vii Job exec_vnode Attribute Member
	6.6.1.2.viii Job group_list Attribute Member
	6.6.1.2.ix Job Hold_Types Attribute Member
	6.6.1.2.x Job job_state and substate Attribute Members
	6.6.1.2.xi Getting Human-readable Names for Job State and Substate Types
	6.6.1.2.xii Job Join_Path Attribute Member
	6.6.1.2.xiii Job Keep_Files Attribute Member
	6.6.1.2.xiv Job Mail_Points Attribute Member
	6.6.1.2.xv Job Mail_Users Attribute Member
	6.6.1.2.xvi Job Queue Attribute Member
	6.6.1.2.xvii Job Resource_List Attribute Member
	6.6.1.2.xviii Job resources_used Attribute Member
	6.6.1.2.xix Job resv Member
	6.6.1.2.xx Job run_count Attribute Member
	6.6.1.2.xxi Job stagein and stageout Attribute Members
	6.6.1.2.xxii Job User_List Attribute Member
	6.6.1.2.xxiii Job Variable_List Attribute Member

	6.6.1.3 Setting Job Attributes
	6.6.1.4 Examples of Using Job Object Members

	6.6.2 Job Object Methods for Execution Hooks
	6.6.2.1 Job Object Method to Report Checkpoint
	6.6.2.2 Job Object Method to Report Execution Host Role
	6.6.2.3 Job Object Method to Delete Job
	6.6.2.4 Job Object Method to Release Vnodes
	6.6.2.4.i Advice and Recommendations for Using release_nodes Method
	6.6.2.4.ii Side Effects of Using release_nodes() Method

	6.6.2.5 Job Object Method to Re-run Job

	6.7 The exec_vnode Object
	6.7.1 The exec_vnode Object Members
	6.7.1.1 The exec_vnode Chunks Member

	6.7.2 Using pbs.vchunk Objects in exec_vnode
	6.7.3 Restrictions on exec_vnode Objects

	6.8 Chunk Objects
	6.8.1 Chunk Object Members and Methods
	6.8.1.1 Chunk Object Vnode Name Member
	6.8.1.2 Chunk Object Chunk Resources Member
	6.8.1.3 Chunk Object Method to Return chunk_resources Keys

	6.9 Reservation Objects
	6.9.1 Reservation Object Members
	6.9.1.1 Reservation ID Member
	6.9.1.2 Reservation Attribute Members
	6.9.1.3 Setting Reservation Object Attribute Values
	6.9.1.4 Examples of Using Reservation Object Attributes

	6.9.2 Using Reservation States
	6.9.2.1 Reservation State Constant Objects
	6.9.2.2 Getting Human-readable Names for Reservation State Values
	6.9.2.2.i Syntax
	6.9.2.2.ii Example

	6.10 Vnode Objects
	6.10.1 Vnode Object Members
	6.10.1.1 The topology_info Attribute Member
	6.10.1.2 Vnode Attribute Restrictions

	6.10.2 Vnode Object Methods
	6.10.2.1 Vnode Object Members to Retrieve Vnode States

	6.10.3 Vnode Type Constant Objects
	6.10.4 Vnode Sharing Constant Objects
	6.10.5 Using Vnode States
	6.10.5.1 Vnode State Constant Objects
	6.10.5.2 Getting Human-readable Names for Vnode State
	6.10.5.2.i Syntax
	6.10.5.2.ii Example

	6.11 Management Objects
	6.11.1 Example Management Object
	6.11.2 Management Object Members
	6.11.2.1 Management Member: List of Targets and Alterations
	6.11.2.2 Management Member: Command
	6.11.2.2.i Getting Human-readable Names for Commands

	6.11.2.3 Management Member: Entity Name
	6.11.2.4 Management Member: Entity Type
	6.11.2.4.i Getting Human-readable Names for Object Types
	6.11.2.4.ii Syntax
	6.11.2.4.iii Example of Getting Human-readable Name for Object Type

	6.11.2.5 Management Member: Reply Auxiliary Error Code
	6.11.2.6 Management Member: Reply Choice
	6.11.2.6.i Getting Human-readable Names for Reply Choice Types

	6.11.2.7 Management Member: Reply Code
	6.11.2.8 Management Member: Reply Text
	6.11.2.9 Management Member: Request Time

	6.12 server_attribute Objects
	6.12.1 server_attribute Object Members
	6.12.1.1 server_attribute Object Member: Name
	6.12.1.2 server_attribute Object Member: Resource
	6.12.1.3 server_attribute Object Member: Value
	6.12.1.4 server_attribute Object Member: Operator
	6.12.1.4.i Getting Human-readable Names for Operators

	6.12.1.5 server_attribute Object Member: Flags
	6.12.1.5.i Getting Human-readable Names for Flags

	6.12.1.6 server_attribute Object Member: Co-resources

	6.13 Configuration File Python Elements
	6.13.1 Variable Containing Hook Configuration File Path
	6.13.2 Dictionary of PBS Configuration File Entries

	6.14 Constant Objects
	6.15 Object Members and Methods
	6.15.1 PBS Objects and Object Members
	6.15.2 Methods Available in Events
	6.15.3 PBS Types and Their Methods
	6.15.3.1 Method to Create or Set ACL
	6.15.3.2 Method to Create or Set Command Argument List
	6.15.3.3 Method to Create or Set Checkpoint String
	6.15.3.4 Method to Create or Set Dependency Object
	6.15.3.5 Method to Create or Set Duration from Time String or Integer
	6.15.3.6 Method to Create or Set Email List
	6.15.3.7 Method to Create or Set exec_host Object
	6.15.3.8 Method to Create or Set exec_vnode Object
	6.15.3.9 Method to Create or Set group_list Object
	6.15.3.10 Method to Create or Set hold_types Object
	6.15.3.11 Method to Create or Set job_sort_formula Object
	6.15.3.12 Method to Create or Set join_path Object
	6.15.3.13 Method to Create or Set keep_files Object
	6.15.3.14 Method to Create or Set license_count Object
	6.15.3.15 Method to Create or Set mail_points Object
	6.15.3.16 Method to Create or Set node_group_key Object
	6.15.3.17 Method to Create or Set path_list Object
	6.15.3.18 Method to Create or Set Job Environment Object
	6.15.3.19 Method to Create or Set Resource List
	6.15.3.20 Method to Create or Set place Object
	6.15.3.21 Method to Create or Set range Object
	6.15.3.22 Method to Create or Set route_destinations Object
	6.15.3.23 Method to Create or Set select Object
	6.15.3.24 Method to Increment select Object Chunks
	6.15.3.24.i Example of Padding Chunks

	6.15.3.25 Method to Create or Set size Object
	6.15.3.26 Method to Create or Set Software Resource Object
	6.15.3.27 Method to Create or Set staging_list Object
	6.15.3.28 Method to Create or Set state_count Object
	6.15.3.29 Method to Create or Set user_list Object
	6.15.3.30 Method to Create or Set PBS Version Object

	6.15.4 Global Methods
	6.15.4.1 Method to Get Local Vnode Name
	6.15.4.2 Method to Log Job-related String
	6.15.4.3 Method to Log String
	6.15.4.4 Message Log Level Objects
	6.15.4.5 Method to Reboot Host

	Built-in Hooks
	7.1 Managing Built-in Hooks
	7.2 Prerequisites
	7.3 Allowed Operations
	7.4 Viewing Built-in Hooks
	7.5 Setting Attributes of Built-in Hooks
	7.6 Editing and Importing Configuration Files for Built-in Hooks
	7.7 Restrictions
	7.8 Replacing a Built-in Hook with Your Own Hook
	7.9 Errors and Logging when Operating on Built-in Hooks

	Debugging Hooks
	8.1 The pbs_python Hook Debugging Tool
	8.2 Files for Debugging
	8.2.1 Producing Files for Debugging
	8.2.2 Locations for Debugging Files
	8.2.3 Format for Debugging Files
	8.2.4 Time Limit for Debugging Files
	8.2.5 Event File
	8.2.5.1 Caveats

	8.2.6 Site Data File
	8.2.7 Hook Execution Record File

	8.3 Steps to Debug a Hook Using pbs_python
	8.4 Caveats and Restrictions for pbs_python
	8.5 Examples of Using pbs_python to Debug Hooks
	8.6 Using Log Messages to Debug Hook Scripts
	8.7 Checking Hook Syntax using Python
	8.8 Examples of Debugging Files
	8.9 Interactive Debugging using pbs_python
	8.10 Error Reporting and Logging
	8.10.1 Errors During Creation and Deployment
	8.10.1.1 Hook Name Matches Existing Hook
	8.10.1.2 Using a Hook Name that Starts with "PBS"
	8.10.1.3 Deleting a Non-Existent Hook
	8.10.1.4 Specifying a Non-Existent Event Type
	8.10.1.5 Using a Bad Hook Value
	8.10.1.6 Unauthorized User
	8.10.1.7 Setting a Bad Hook Type
	8.10.1.8 Setting a Bad Alarm Value
	8.10.1.9 Exporting To Non-Writable File
	8.10.1.10 Setting Bad Hook user Attribute
	8.10.1.11 Importing From Non-Readable File
	8.10.1.12 Importing or Exporting with Wrong Content Type
	8.10.1.13 Setting Vnode State to Invalid Value
	8.10.1.14 Creating a Hook with Same Name as Existing Hook

	8.10.2 Errors And Messages During Hook Execution
	8.10.2.1 Successful Operation of runjob Hook
	8.10.2.2 Unsuccessful Operation for runjob Hook
	8.10.2.3 Rejecting an Action
	8.10.2.4 Triggering an Alarm
	8.10.2.5 Encountering an Unhandled Exception
	8.10.2.6 Starting and Finishing Hook Execution
	8.10.2.7 Hook Timeout
	8.10.2.8 Hooks Attempting I/O
	8.10.2.9 Bad Value for debug Attribute
	8.10.2.10 Commands Fail Inside Hooks
	8.10.2.11 runjob Hook Errors
	8.10.2.11.i Modifying Hold, Execution Time, Dependency, or Project of Accepted Job
	8.10.2.11.ii Modifying Disallowed Attributes of Rejected Job
	8.10.2.11.iii Modifying Vnode
	8.10.2.11.iv runjob Hook Referencing Wrong Parameter
	8.10.2.11.v Attempting to Set Restricted Resource

	8.10.2.12 Special Errors Requiring Support

	8.10.3 Errors During Startup
	8.10.4 Errors in Hook Updates
	8.10.5 Hook-related Error Codes
	8.10.6 Troubleshooting
	8.10.6.1 Bad Interpreter Path
	8.10.6.2 Viewing Hook Propagation

	Hook Examples
	9.1 queuejob Hook Examples
	9.2 modifyjob Hook Examples
	9.3 jobobit Hook Examples
	9.4 execjob_launch Hook Examples
	9.5 execjob_prologue and execjob_epilogue Hook Examples
	9.6 exechost_startup Hook Examples
	9.7 exechost_periodic Hook Examples
	9.8 resvsub Hook Examples
	9.9 periodic Hook Examples
	9.10 modifyvnode Hook Example
	9.11 Multi-event Hooks

	Index

	Reference Guide (RG)
	Contents
	Glossary of Terms
	PBS Commands
	2.1 Our Command Notation
	2.2 List of Commands
	2.2.1 Requirements for Commands
	2.2.2 Windows Requirements

	2.3 mpiexec
	2.3.1 Synopsis
	2.3.2 Description
	2.3.3 Usage
	2.3.4 Options
	2.3.5 Requirements
	2.3.6 Environment Variables
	2.3.7 Path
	2.3.8 See Also

	2.4 pbs
	2.4.1 Synopsis
	2.4.2 Description
	2.4.2.1 Caveats
	2.4.2.2 Required Privilege

	2.4.3 Arguments
	2.4.4 See Also

	2.5 pbsdsh
	2.5.1 Synopsis
	2.5.2 Description of pbsdsh Command
	2.5.2.1 Example

	2.5.3 Options to pbsdsh Command
	2.5.4 Operands
	2.5.5 Standard Error
	2.5.6 Caveats
	2.5.7 See Also

	2.6 pbsfs
	2.6.1 Synopsis
	2.6.2 Description
	2.6.2.1 Prerequisites
	2.6.2.2 Permissions

	2.6.3 Options to pbsfs
	2.6.3.1 Output Formats for pbsfs
	2.6.3.2 Data Output by pbsfs

	2.6.4 See Also

	2.7 pbsnodes
	2.7.1 Synopsis
	2.7.2 Description
	2.7.2.1 Using pbsnodes
	2.7.2.2 Output
	2.7.2.3 Permissions

	2.7.3 Options to pbsnodes
	2.7.4 Operands
	2.7.5 Exit Status
	2.7.6 See Also

	2.8 pbsrun
	2.8.1 Synopsis
	2.8.2 Description
	2.8.3 Options
	2.8.4 Initialization Script
	2.8.4.1 Initialization Script Options
	2.8.4.2 Modifying *.init Scripts

	2.8.5 Versions/Flavors of mpirun
	2.8.5.1 MPICH-GM mpirun (mpirun.ch_gm) with rsh/ssh: pbsrun.ch_gm
	2.8.5.1.i Syntax
	2.8.5.1.ii Options Handling
	2.8.5.1.iii Wrap/Unwrap

	2.8.5.2 MPICH-MX mpirun (mpirun.ch_mx) with rsh/ssh: pbsrun.ch_mx
	2.8.5.2.i Syntax
	2.8.5.2.ii Options Handling
	2.8.5.2.iii Wrap/Unwrap

	2.8.5.3 MPICH-GM mpirun (mpirun.mpd) with MPD: pbsrun.gm_mpd
	2.8.5.3.i Syntax
	2.8.5.3.ii Options Handling
	2.8.5.3.iii Startup/Shutdown
	2.8.5.3.iv Wrap/Unwrap

	2.8.5.4 MPICH-MX mpirun (mpirun.mpd) with MPD: pbsrun.mx_mpd
	2.8.5.4.i Syntax
	2.8.5.4.ii Options Handling
	2.8.5.4.iii Startup/Shutdown
	2.8.5.4.iv Wrap/Unwrap

	2.8.5.5 MPICH2 mpirun: pbsrun.mpich2
	2.8.5.5.i Syntax
	2.8.5.5.ii Options Handling
	2.8.5.5.iii Startup/Shutdown
	2.8.5.5.iv Wrap/Unwrap

	2.8.5.6 Intel MPI mpirun: pbsrun.intelmpi
	2.8.5.6.i Syntax
	2.8.5.6.ii Options Handling
	2.8.5.6.iii Startup/Shutdown
	2.8.5.6.iv Wrap/Unwrap

	2.8.5.7 MVAPICH1 mpirun: pbsrun.mvapich1
	2.8.5.7.i Syntax
	2.8.5.7.ii Options Handling
	2.8.5.7.iii Wrap/Unwrap

	2.8.5.8 MVAPICH2 mpiexec: pbsrun.mvapich2
	2.8.5.8.i Syntax
	2.8.5.8.ii Options Handling
	2.8.5.8.iii Wrap/Unwrap

	2.8.6 Requirements
	2.8.7 Errors
	2.8.8 See Also

	2.9 pbsrun_unwrap
	2.9.1 Synopsis
	2.9.2 Description
	2.9.2.1 Syntax

	2.9.3 Options
	2.9.4 See Also

	2.10 pbsrun_wrap
	2.10.1 Synopsis
	2.10.2 Description
	2.10.2.1 Syntax

	2.10.3 Options
	2.10.4 Requirements
	2.10.5 See Also

	2.11 pbs_account
	2.11.1 Synopsis
	2.11.2 Description
	2.11.2.1 Permissions
	2.11.2.2 Platforms
	2.11.2.3 Caveats

	2.11.3 Options
	2.11.4 Examples
	2.11.5 Exit Value

	2.12 pbs_attach
	2.12.1 Synopsis
	2.12.2 Description
	2.12.3 Options to pbs_attach
	2.12.4 Operands
	2.12.5 Exit Status
	2.12.6 See Also

	2.13 pbs_comm
	2.13.1 Synopsis
	2.13.2 Description
	2.13.3 Options to pbs_comm
	2.13.4 Configuration Parameters
	2.13.5 Communication Daemon Logfiles
	2.13.6 Signal Handling by Communication Daemon

	2.14 pbs_dataservice
	2.14.1 Synopsis
	2.14.2 Description
	2.14.2.1 Permission

	2.14.3 Arguments
	2.14.4 Exit Status

	2.15 pbs_ds_password
	2.15.1 Synopsis
	2.15.2 Description
	2.15.2.1 Passwords
	2.15.2.2 Permissions
	2.15.2.3 Restrictions

	2.15.3 Options to pbs_ds_password
	2.15.4 Exit Status

	2.16 pbs_hostn
	2.16.1 Synopsis
	2.16.2 Description
	2.16.3 Options
	2.16.4 Operands
	2.16.5 Standard Error
	2.16.6 Exit Status

	2.17 pbs_idled
	2.17.1 Linux Synopsis
	2.17.2 Windows Synopsis
	2.17.3 Linux Description
	2.17.4 Windows Description
	2.17.5 Linux Options to pbs_idled
	2.17.6 Windows Options to pbs_idled
	2.17.7 See Also

	2.18 pbs_iff
	2.18.1 Usage
	2.18.2 Description
	2.18.2.1 Required Privilege

	2.18.3 Options to pbs_iff
	2.18.4 Arguments to pbs_iff
	2.18.5 Exit Status

	2.19 pbs_interactive
	2.19.1 Synopsis
	2.19.2 Description
	2.19.2.1 Required Privilege

	2.19.3 Arguments

	2.20 pbs_login
	2.20.1 Usage
	2.20.2 Description
	2.20.3 Required Privilege
	2.20.4 Options to pbs_login

	2.21 pbs_mkdirs
	2.21.1 Synopsis
	2.21.2 Description
	2.21.2.1 Required Privilege

	2.21.3 Options
	2.21.4 See Also

	2.22 pbs_mom
	2.22.1 Synopsis
	2.22.2 Description
	2.22.2.1 Logging
	2.22.2.2 Required Permission
	2.22.2.2.i HPE Systems Running Supported Versions of HPE MPI

	2.22.2.3 Effect on Jobs of Starting MoM

	2.22.3 Options to pbs_mom
	2.22.4 Files and Directories
	2.22.5 Signal Handling
	2.22.6 Exit Status
	2.22.7 See Also

	2.23 pbs_mpihp
	2.23.1 Synopsis
	2.23.2 Description
	2.23.2.1 Configuration
	2.23.2.2 Usage

	2.23.3 Options to pbs_mpihp
	2.23.4 Exit Values
	2.23.5 See Also

	2.24 pbs_mpirun
	2.24.1 Synopsis
	2.24.2 Description
	2.24.2.1 Prerequisite
	2.24.2.2 Usage

	2.24.3 Options to pbs_mpirun
	2.24.4 Environment Variables
	2.24.5 See Also

	2.25 pbs_probe
	2.25.1 Synopsis
	2.25.2 Description
	2.25.2.1 Information Sources
	2.25.2.2 Required Privilege

	2.25.3 Options to pbs_probe
	2.25.4 Standard Error
	2.25.5 Exit Status
	2.25.6 See Also

	2.26 pbs_python
	2.26.1 Synopsis
	2.26.2 Description
	2.26.2.1 Debugging Hooks

	2.26.3 Options to pbs_python
	2.26.4 Arguments

	2.27 pbs_ralter
	2.27.1 Summary
	2.27.2 Synopsis
	2.27.3 Description
	2.27.3.1 Caveats and Restrictions
	2.27.3.2 Required Privilege

	2.27.4 Options to pbs_ralter
	2.27.5 Operands

	2.28 pbs_rdel
	2.28.1 Synopsis
	2.28.2 Description
	2.28.3 Required Privilege
	2.28.4 Options
	2.28.5 Operands
	2.28.6 Exit Status
	2.28.7 See Also

	2.29 pbs_release_nodes
	2.29.1 Synopsis
	2.29.2 Description
	2.29.2.1 Caveats and Restrictions
	2.29.2.2 Required Privilege

	2.29.3 Options to pbs_release_nodes
	2.29.4 Operands for pbs_release_nodes
	2.29.5 Usage

	2.30 pbs_rstat
	2.30.1 Synopsis
	2.30.2 Description
	2.30.2.1 Required Privilege

	2.30.3 Output
	2.30.4 Options to pbs_rstat
	2.30.5 Operands
	2.30.6 See Also

	2.31 pbs_rsub
	2.31.1 Synopsis
	2.31.2 Description
	2.31.2.1 Job Reservations
	2.31.2.2 Maintenance Reservations
	2.31.2.3 Requirements

	2.31.3 Options to pbs_rsub
	2.31.4 Output
	2.31.5 See Also

	2.32 pbs_sched
	2.32.1 Synopsis
	2.32.2 Description
	2.32.2.1 Required Permission

	2.32.3 Options to pbs_sched
	2.32.4 Signal Handling
	2.32.5 Exit Status
	2.32.6 See Also

	2.33 pbs_server
	2.33.1 Synopsis
	2.33.2 Description
	2.33.2.1 Required Permission

	2.33.3 Options to pbs_server
	2.33.4 Files
	2.33.5 Signal Handling for pbs_server
	2.33.6 Diagnostic Messages
	2.33.7 Stopping the PBS Server
	2.33.7.1 Stopping the Server on Linux

	2.33.8 Exit Status
	2.33.9 See Also

	2.34 pbs_snapshot
	2.34.1 Synopsis
	2.34.2 Description
	2.34.2.1 Required Privilege
	2.34.2.2 Restrictions

	2.34.3 Options to pbs_snapshot
	2.34.4 Output
	2.34.4.1 Output Location
	2.34.4.2 Output Contents

	2.34.5 Examples

	2.35 pbs_tclsh
	2.35.1 Synopsis
	2.35.2 Description
	2.35.2.1 Required Permission

	2.35.3 Options
	2.35.4 Standard Error
	2.35.5 See Also

	2.36 pbs_tmrsh
	2.36.1 Synopsis
	2.36.2 Description
	2.36.2.1 Requirements for Environment Variables

	2.36.3 Options
	2.36.4 Operands
	2.36.5 Output and Error
	2.36.6 Exit Status
	2.36.7 See Also

	2.37 pbs_topologyinfo
	2.37.1 Synopsis
	2.37.2 Description
	2.37.2.1 Usage
	2.37.2.2 Prerequisites
	2.37.2.3 Required Privilege for pbs_topologyinfo

	2.37.3 Options for pbs_topologyinfo
	2.37.4 Errors
	2.37.5 Operands
	2.37.6 Exit Status
	2.37.7 Standard Error
	2.37.8 See Also

	2.38 pbs_wish
	2.38.1 Synopsis
	2.38.2 Description
	2.38.3 Options
	2.38.4 Standard Error
	2.38.5 See Also

	2.39 printjob
	2.39.1 Synopsis
	2.39.2 Description
	2.39.2.1 Usage
	2.39.2.2 Permissions

	2.39.3 Options to printjob
	2.39.4 Operands for printjob
	2.39.5 Standard Error
	2.39.6 Exit Status
	2.39.7 See Also

	2.40 qalter
	2.40.1 Synopsis
	2.40.2 Description
	2.40.2.1 Required Privilege
	2.40.2.2 Modifying Resources and Job Placement
	2.40.2.2.i Syntax for Modifying Resources and Job Placement
	2.40.2.2.ii The Place Statement

	2.40.2.3 Modifying Attributes
	2.40.2.4 Caveats and Restrictions for Altering Jobs

	2.40.3 Options to qalter
	2.40.4 Operands
	2.40.5 Standard Error
	2.40.6 Exit Status
	2.40.6.1 Warning About Exit Status with csh

	2.40.7 See Also

	2.41 qdel
	2.41.1 Synopsis
	2.41.2 Description
	2.41.2.1 Usage
	2.41.2.2 How Behavior of qdel Command Can Be Affected
	2.41.2.3 Sequence of Events
	2.41.2.4 Required Privilege

	2.41.3 Options to qdel
	2.41.4 Operands
	2.41.5 Standard Error
	2.41.6 Exit Status
	2.41.7 See Also

	2.42 qdisable
	2.42.1 Synopsis
	2.42.2 Description
	2.42.2.1 Required Permission

	2.42.3 Options
	2.42.4 Operands
	2.42.5 Standard Error
	2.42.6 Exit Status
	2.42.7 See Also

	2.43 qenable
	2.43.1 Synopsis
	2.43.2 Description
	2.43.2.1 Required Privilege

	2.43.3 Options
	2.43.4 Operands
	2.43.5 Standard Error
	2.43.6 Exit Status
	2.43.7 See Also

	2.44 qhold
	2.44.1 Synopsis
	2.44.2 Description
	2.44.2.1 Effect of Privilege on Behavior

	2.44.3 Options to qhold
	2.44.4 Operands
	2.44.5 Standard Error
	2.44.6 Exit Status
	2.44.7 See Also

	2.45 qmgr
	2.45.1 Synopsis
	2.45.2 Description
	2.45.2.1 Modes of Operation
	2.45.2.2 Required Privilege
	2.45.2.3 When To Run qmgr At Server Host
	2.45.2.4 Reusing and Editing the qmgr Command Line
	2.45.2.4.i The qmgr History File

	2.45.3 Options to qmgr
	2.45.4 Directives
	2.45.4.1 Directive Syntax
	2.45.4.1.i Server, Scheduler, Queue, Vnode Directives
	2.45.4.1.ii Resource Directives
	2.45.4.1.iii Hook-only Directives

	2.45.4.2 Using Directives
	2.45.4.3 Commands Used in Directives

	2.45.5 Arguments to Directive Commands
	2.45.5.1 Object Arguments to Directive Commands
	2.45.5.1.i Specifying Active Server
	2.45.5.1.ii Using Lists of Object Names
	2.45.5.1.iii Specifying Object Type and Name

	2.45.5.2 Operators in Directive Commands
	2.45.5.3 Windows Requirements For Directive Arguments

	2.45.6 Operating on Objects (Server, Scheduler, Vnode, Queue, Hook)
	2.45.6.1 Making Objects Active
	2.45.6.1.i Using the active Command

	2.45.6.2 Creating Objects (Server, Scheduler, Vnode, Queue, Hook)
	2.45.6.2.i Examples of Creating Objects

	2.45.6.3 Deleting Objects

	2.45.7 Operating on Attributes and Resources
	2.45.7.1 Setting Attribute and Resource Values
	2.45.7.1.i Examples of Setting Attribute Values

	2.45.7.2 Unsetting Attribute and Resource Values
	2.45.7.2.i Example of Unsetting Attribute Value

	2.45.7.3 Caveats and Restrictions for Setting Attribute and Resource Values
	2.45.7.4 Setting Custom Resource Type
	2.45.7.5 Setting Custom Resource Level and Consumability
	2.45.7.5.i Allowable Values for Resource Accumulation Flags
	2.45.7.5.ii When to Use Accumulation Flags
	2.45.7.5.iii Example of Resource Accumulation Flags
	2.45.7.5.iv Resource Accumulation Flag Restrictions and Caveats

	2.45.7.6 Setting Custom Resource Visibility
	2.45.7.6.i Allowable Values for Resource Permission Flags
	2.45.7.6.ii Effect of Resource Permission Flags
	2.45.7.6.iii Resource Permission Flag Restrictions and Caveats

	2.45.7.7 Specifying Whether Custom Resource is Cached at MoM
	2.45.7.7.i Caveats for Caching Custom Job Resources
	2.45.7.7.ii Examples of Defining Custom Resources and Setting Flags via qmgr

	2.45.8 Viewing Object, Attribute, and Resource Information
	2.45.8.1 Listing Objects and Their Attributes
	2.45.8.1.i Examples of Listing Objects and Their Attributes

	2.45.8.2 Listing Resource Definitions
	2.45.8.3 Printing Creation and Configuration Commands
	2.45.8.4 Caveats for Viewing Information

	2.45.9 Saving and Re-creating Server and Queue Information
	2.45.10 Operating on Hooks
	2.45.10.1 Creating Hooks
	2.45.10.2 Deleting Hooks
	2.45.10.3 Setting and Unsetting Hook Attributes
	2.45.10.4 Importing Hooks
	2.45.10.4.i Examples of Importing Hooks

	2.45.10.5 Importing and Exporting Hook Configuration Files
	2.45.10.5.i Importing Configuration Files
	2.45.10.5.ii Exporting Configuration Files
	2.45.10.5.iii Hook Configuration File Format

	2.45.10.6 Exporting Hooks
	2.45.10.6.i Examples of Exporting Hooks

	2.45.10.7 Printing Hook Information
	2.45.10.8 Saving and Re-creating Hook Information
	2.45.10.9 Restrictions on Built-in Hooks

	2.45.11 Printing Usage Information
	2.45.12 Standard Input
	2.45.13 Standard Output
	2.45.14 Standard Error
	2.45.15 Exit Status
	2.45.16 See Also

	2.46 qmove
	2.46.1 Synopsis
	2.46.2 Description
	2.46.2.1 Restrictions
	2.46.2.2 Effect of Privilege on Behavior

	2.46.3 Options
	2.46.4 Operands
	2.46.5 Standard Error
	2.46.6 Exit Status
	2.46.7 See Also

	2.47 qmsg
	2.47.1 Synopsis
	2.47.2 Description
	2.47.3 Options
	2.47.4 Operands
	2.47.5 Standard Error
	2.47.6 Exit Status
	2.47.7 See Also

	2.48 qorder
	2.48.1 Synopsis
	2.48.2 Description
	2.48.2.1 Restrictions
	2.48.2.2 Effect of Privilege on Behavior

	2.48.3 Options
	2.48.4 Operands
	2.48.5 Standard Error
	2.48.6 Exit Status
	2.48.7 See Also

	2.49 qrerun
	2.49.1 Synopsis
	2.49.2 Description
	2.49.2.1 Restrictions
	2.49.2.2 Required Privilege

	2.49.3 Options
	2.49.4 Operands
	2.49.5 Standard Error
	2.49.6 Exit Status
	2.49.7 See Also

	2.50 qrls
	2.50.1 Synopsis
	2.50.2 Description
	2.50.2.1 Effect of Privilege on Behavior

	2.50.3 Options
	2.50.4 Operands
	2.50.5 Standard Error
	2.50.6 Exit Status
	2.50.7 See Also

	2.51 qrun
	2.51.1 Synopsis
	2.51.2 Description
	2.51.2.1 Required Privilege
	2.51.2.2 Caveats for qrun

	2.51.3 Options to qrun
	2.51.4 Operands
	2.51.5 Standard Error
	2.51.6 Exit Status
	2.51.7 See Also

	2.52 qselect
	2.52.1 Synopsis
	2.52.2 Description
	2.52.2.1 Comparison Operations
	2.52.2.2 Required Permissions

	2.52.3 Options to qselect
	2.52.4 Standard Output
	2.52.5 Standard Error
	2.52.6 Exit Status
	2.52.7 See Also

	2.53 qsig
	2.53.1 Synopsis
	2.53.2 Description
	2.53.2.1 Using admin-suspend and admin-resume
	2.53.2.2 Restrictions
	2.53.2.3 Required Privilege

	2.53.3 Options to qsig
	2.53.3.1 Signals
	2.53.3.1.i Special Signals

	2.53.4 Operands
	2.53.5 Standard Error
	2.53.6 Exit Status
	2.53.7 See Also

	2.54 qstart
	2.54.1 Synopsis
	2.54.2 Description
	2.54.2.1 Required Privilege

	2.54.3 Options
	2.54.4 Operands
	2.54.5 Standard Error
	2.54.6 Exit Status
	2.54.7 See Also

	2.55 qstat
	2.55.1 Synopsis
	2.55.1.1 Displaying Job Status
	2.55.1.2 Displaying Queue Status
	2.55.1.3 Displaying Server Status
	2.55.1.4 Displaying Version Information

	2.55.2 Description
	2.55.2.1 Display Formats
	2.55.2.2 Displaying Information for Finished and Moved Jobs
	2.55.2.3 Displaying Truncated Data
	2.55.2.4 Required Privilege

	2.55.3 Displaying Job Status
	2.55.3.1 Job Status in Default Format
	2.55.3.2 Job Status in Long Format
	2.55.3.3 Job Status in Alternate Format
	2.55.3.3.i Job Status Alternate Format Output Columns

	2.55.3.4 Grouping Jobs and Sorting by ID

	2.55.4 Displaying Queue Status
	2.55.4.1 Queue Status in Default Format
	2.55.4.2 Queue Status in Long Format
	2.55.4.2.i Queue Status: Alternate Format

	2.55.5 Displaying Server Status
	2.55.5.1 Server Status in Default Format:
	2.55.5.2 Server Status in Long Format

	2.55.6 Options to qstat
	2.55.6.1 Generic Job Status Options
	2.55.6.2 Default Job Status Options
	2.55.6.3 Alternate Job Status Options
	2.55.6.4 Queue Status Options
	2.55.6.5 Server Status Options
	2.55.6.6 Job, Queue, and Server Status Options
	2.55.6.7 Version Information

	2.55.7 Operands
	2.55.7.1 Job Identifier Operands
	2.55.7.2 Destination Operands

	2.55.8 Standard Error
	2.55.9 Exit Status
	2.55.10 See Also

	2.56 qstop
	2.56.1 Synopsis
	2.56.2 Description
	2.56.2.1 Required Privilege

	2.56.3 Options
	2.56.4 Operands
	2.56.5 Standard Error
	2.56.6 Exit Status
	2.56.7 See Also

	2.57 qsub
	2.57.1 Synopsis
	2.57.2 Description
	2.57.2.1 Background Process
	2.57.2.2 Where PBS Puts Job Files
	2.57.2.3 Submitting Jobs By Using Job Scripts
	2.57.2.3.i Using Shells and Interpreters
	2.57.2.3.ii Python Job Scripts
	2.57.2.3.iii Linux Shell Job Scripts
	2.57.2.3.iv Windows Command Job Scripts

	2.57.2.4 Submitting Jobs From Standard Input
	2.57.2.5 Submitting Job Directly by Specifying Executable on Command Line
	2.57.2.6 Requesting Resources and Placing Jobs
	2.57.2.6.i Caveats for Requesting Resources

	2.57.2.7 Setting Attributes
	2.57.2.8 Running Your Job on First Available Resources
	2.57.2.9 Changing qsub Behavior

	2.57.3 Options to qsub
	2.57.4 Operands
	2.57.5 Standard Output
	2.57.6 Standard Error
	2.57.7 Environment Variables
	2.57.8 Exit Status
	2.57.8.1 Warning About Exit Status with csh

	2.57.9 See Also

	2.58 qterm
	2.58.1 Synopsis
	2.58.2 Description
	2.58.2.1 Required Privilege

	2.58.3 Options to qterm
	2.58.4 Operands
	2.58.4.1 Standard Error
	2.58.4.2 Exit Status
	2.58.4.3 See Also

	2.59 tracejob
	2.59.1 Synopsis
	2.59.2 Description
	2.59.3 Using tracejob on Job Arrays
	2.59.4 Required Privilege
	2.59.5 Options to tracejob
	2.59.6 Operands
	2.59.7 Exit Status
	2.59.8 See Also

	2.60 win_postinstall.py
	2.60.1 Synopsis
	2.60.2 Description
	2.60.2.1 Required Privilege

	2.60.3 Options to win_postinstall.py

	MoM Parameters
	3.1 Syntax of MoM Configuration File
	3.1.1 Windows Notes

	3.2 Contents of MoM Configuration File
	3.2.1 Replacing Actions
	3.2.2 MoM Parameters

	Scheduler Parameters
	4.1 Format of Scheduler Configuration File
	4.1.1 Parameters with Separate Primetime and Non-primetime Specification
	4.1.2 Parameters without Separate Primetime and Non-primetime Specification
	4.1.3 Format Details

	4.2 Configuration Parameters

	List of Built-in Resources
	5.1 Resource Data Types
	5.2 Viewing Resource Information
	5.3 Resource Flags
	5.4 Attributes where Resources Are Tracked
	5.5 Resource Table Format
	5.6 Resources Built Into PBS

	Attributes
	6.1 Attribute Behavior
	6.2 How To Set Attributes
	6.3 Viewing Attribute Values
	6.4 Attribute Table Format
	6.5 Caveats
	6.6 Server Attributes
	6.7 Scheduler Attributes
	6.8 Reservation Attributes
	6.9 Queue Attributes
	6.10 Vnode Attributes
	6.11 Job Attributes
	6.12 Hook Attributes

	Formats
	7.1 Non-resource Formats
	7.2 Resource Formats

	States
	8.1 Job States
	8.1.1 Job Substates

	8.2 Job Array States
	8.3 Subjob States
	8.4 Server States
	8.5 Vnode States
	8.6 Reservation States
	8.6.1 Degraded Reservation Substates

	The PBS Configuration File
	9.1 Format of Configuration File
	9.1.1 Specifying Parameters
	9.1.2 Comment Lines in Configuration File

	9.2 Contents of Configuration File

	Log Levels
	10.1 Log Levels

	Job Exit Status
	11.1 Job Exit Status

	Example Configurations
	12.1 Single Vnode System
	12.2 Separate Server and Execution Host
	12.3 Multiple Execution Hosts
	12.4 Multi-level Route Queues
	12.5 External Software License Management
	12.6 Multiple User ACL Example

	Run Limit Error Messages
	13.1 Run Limit Error Messages

	Error Codes
	Request Codes
	PBS Environment Variables
	File Listing
	Introduction to PBS
	18.1 Acknowledgements

	Index

	User's Guide (UG)
	Contents
	Getting Started with PBS
	1.1 Why Use PBS?
	1.2 PBS Tasks and Components
	1.2.1 PBS Tasks
	1.2.2 PBS Components and Process

	1.3 Interfaces to PBS
	1.3.1 PBS Commands

	1.4 Setting Up Your Environment
	1.4.1 Prerequisites for Account
	1.4.2 Setting Up Your Linux Environment
	1.4.2.1 Set Paths to PBS Commands
	1.4.2.2 Set Paths to PBS Man Pages
	1.4.2.3 Make Login and Logout Files Behave Properly for Jobs
	1.4.2.4 Capture Correct Job Exit Status
	1.4.2.5 Avoid Background Processes Inside Jobs
	1.4.2.6 Provide bash Functions to Jobs
	1.4.2.7 User Authorization Under Linux
	1.4.2.8 Submitting Linux Jobs from Linux Clients

	1.4.3 Setting Up Your Windows Environment
	1.4.3.1 HOMEDIR for Windows Users
	1.4.3.2 Requirements for Windows Username
	1.4.3.3 Requirements for Windows User Account
	1.4.3.4 User Authorization under Windows
	1.4.3.5 Set up Paths
	1.4.3.6 Password for Job Submission Authentication
	1.4.3.6.i Setting Password at Windows Clients
	1.4.3.6.ii Setting Password at Linux Clients

	1.4.3.7 Authentication for Client Commands

	1.4.4 Setting Time Zone for Submission Host

	Submitting a PBS Job
	2.1 Introduction to the PBS Job
	2.1.1 Lifecycle of a PBS Job, Briefly
	2.1.2 Where and How Your PBS Job Runs
	2.1.3 The Job Identifier
	2.1.4 Shell Script(s) for Your Job
	2.1.5 Scratch Space for Jobs
	2.1.5.1 Temporary Scratch Space Location Under Linux
	2.1.5.2 Temporary Scratch Space Location Under Windows

	2.1.6 Types of Jobs
	2.1.7 Job Input and Output Files

	2.2 The PBS Job Script
	2.2.1 Overview of a Job Script
	2.2.2 Types of Job Scripts
	2.2.2.1 Linux Shell Scripts
	2.2.2.2 Python Job Scripts
	2.2.2.2.i Debugging Python Job Scripts
	2.2.2.2.ii Python Windows Caveats

	2.2.2.3 Windows Job Scripts
	2.2.2.3.i Requirements for Windows Command Scripts
	2.2.2.3.ii Windows Advice and Caveats

	2.2.3 Setting Job Characteristics
	2.2.3.1 Job Attributes
	2.2.3.2 Job Resources
	2.2.3.3 Setting Job Attributes
	2.2.3.4 Using PBS Directives
	2.2.3.4.i Changing the Directive Prefix
	2.2.3.4.ii Caveats and Restrictions for PBS Directives

	2.2.4 Job Tasks
	2.2.5 Job Script Names
	2.2.5.1 How PBS Parses a Job Script
	2.2.5.1.i Comparison Between Equivalent Linux and Windows Job Scripts

	2.3 Submitting a PBS Job
	2.3.1 Prerequisites for Submitting Jobs
	2.3.2 Ways to Submit a PBS Job
	2.3.3 Submitting a Job Using a Script
	2.3.3.1 Specifying the Top Shell for Your Job
	2.3.3.1.i Specifying Job Top Shell Under Linux
	2.3.3.1.ii Specifying Job Top Shell Under Windows
	2.3.3.1.iii Caveats for Specifying Job Top Shell

	2.3.3.2 Specifying Job Script Shell or Interpreter
	2.3.3.2.i Specifying Job Script Shell or Interpreter Under Linux
	2.3.3.2.ii Specifying Job Script Shell or Interpreter Under Windows

	2.3.3.3 Examples of Submitting Jobs Using Scripts
	2.3.3.4 Passing Arguments to Jobs

	2.3.4 Submitting Jobs by Specifying Executable on Command Line
	2.3.5 Submitting Jobs Using Keyboard Input
	2.3.6 Submitting Windows Jobs
	2.3.6.1 Submitting Windows Jobs from Windows Clients
	2.3.6.2 Submitting Windows Jobs from Linux Clients
	2.3.6.3 Submitting Windows and Linux Jobs from Linux Clients

	2.4 Job Submission Recommendations and Advice
	2.4.1 Trapping Signals in Script

	2.5 Job Submission Options
	2.5.1 Specifying Email Notification
	2.5.1.1 Specifying Job Lifecycle Email Points
	2.5.1.2 Setting Email Recipient List
	2.5.1.3 Restricting Number of Job Deletion Emails

	2.5.2 Specifying Job Name
	2.5.3 Specifying a Project for a Job
	2.5.4 Specifying Job Username
	2.5.4.1 Caveats for Changing Job Username

	2.5.5 Specifying Job Group ID
	2.5.5.1 Group Names Under Windows

	2.5.6 Specifying Accounting String
	2.5.7 Specifying Server and/or Queue
	2.5.7.1 Using or Avoiding Dedicated Time

	2.5.8 Suppressing Printing Job Identifier to stdout
	2.5.9 Running qsub in the Foreground

	2.6 PBS Jobs on Cray HPE Cray System Management
	2.7 Job Submission Caveats
	2.7.1 Caveats for Mixed Linux-Windows Operation

	Job Input & Output Files
	3.1 Introduction to Job File I/O in PBS
	3.2 Input/Output File Staging
	3.2.1 Staging and Execution Directory: User Home vs. Job-specific
	3.2.2 Using Job-specific Staging and Execution Directories
	3.2.2.1 Setting the Job Staging and Execution Directory
	3.2.2.2 Where to Find the Staging and Execution Directory

	3.2.3 Attributes and Environment Variables Affecting Staging
	3.2.4 Specifying Files To Be Staged In or Staged Out
	3.2.5 Caveats and Requirements for Staging
	3.2.5.1 Linux: Staging and Special Characters
	3.2.5.2 Windows: Staging and Special Characters or Paths
	3.2.5.2.i Special Characters
	3.2.5.2.ii Using UNC Paths

	3.2.5.3 Path Names for Staging
	3.2.5.4 Required Permissions
	3.2.5.5 Warning About Ampersand
	3.2.5.6 Interactive Jobs and File I/O
	3.2.5.7 Copying Directories Into and Out Of the Staging and Execution Directory
	3.2.5.8 Wildcards In File Staging

	3.2.6 Examples of File Staging
	3.2.6.1 Example of Using Job-specific Staging and Execution Directories

	3.2.7 Summary of the Job Lifecycle
	3.2.8 Detailed Description of Job Lifecycle
	3.2.8.1 Creation of TMPDIR
	3.2.8.2 Choice of Staging and Execution Directories
	3.2.8.2.i Job-specific Staging and Execution Directories
	3.2.8.2.ii User Home Directory as Staging and Execution Directory

	3.2.8.3 Setting Environment Variables and Attributes
	3.2.8.4 Staging Files Into Staging and Execution Directories
	3.2.8.5 Running the Prologue
	3.2.8.6 Job Execution
	3.2.8.7 Standard Out and Standard Error
	3.2.8.7.i Job-specific Staging and Execution Directories
	3.2.8.7.ii User Home Directory as Staging and Execution Directory

	3.2.8.8 Running the Epilogue
	3.2.8.9 Staging Files Out and Removing Execution Directory
	3.2.8.9.i Job-specific Staging and Execution Directories

	3.2.8.10 Removing TMPDIRs and Files

	3.2.9 Staging with Job Arrays
	3.2.10 Stagein and Stageout Failure
	3.2.10.1 File Stagein Failure
	3.2.10.2 File Stageout Failure

	3.3 Managing Output and Error Files
	3.3.1 Default Behavior For Output and Error Files
	3.3.2 Paths for Output and Error Files
	3.3.2.1 Default Paths for Output and Error Files
	3.3.2.2 Specifying Paths
	3.3.2.3 Specifying Paths from Windows Hosts
	3.3.2.3.i Using Special Characters in Paths
	3.3.2.3.ii Using UNC Paths

	3.3.2.4 Caveats for Paths

	3.3.3 Avoiding Creation of stdout and/or stderr
	3.3.4 Merging Output and Error Files
	3.3.5 Keeping Output and Error Files on Execution Host
	3.3.5.1 Caveats for Keeping Files on Execution Host

	3.3.6 Writing Files Directly to Final Destination
	3.3.7 Changing Linux Job umask
	3.3.7.1 Caveats

	3.3.8 Troubleshooting File Delivery
	3.3.8.1 Non-delivery of Output

	3.3.9 Caveats for Output and Error Files
	3.3.9.1 Retaining Files on Execution Host
	3.3.9.2 Standard Output and Error Appended When Job is Rerun
	3.3.9.3 Windows Mapped Drives and PBS
	3.3.9.4 Harmless csh Error Message
	3.3.9.5 Interactive Jobs and File I/O
	3.3.9.6 Write Permissions Required

	Allocating Resources & Placing Jobs
	4.1 What is a Vnode?
	4.1.1 Deprecated Vnode Types

	4.2 PBS Resources
	4.2.1 Introduction to PBS Resources
	4.2.2 Glossary

	4.3 Requesting Resources
	4.3.1 Quick Summary of Requesting Resources
	4.3.2 Requesting Job-wide Resources
	4.3.3 Requesting Resources in Chunks
	4.3.4 Requesting Boolean Resources
	4.3.5 Requesting Application Licenses
	4.3.5.1 Requesting Floating Application Licenses
	4.3.5.2 Requesting Node-locked Application Licenses
	4.3.5.2.i Requesting Per-host Node-locked Application Licenses
	4.3.5.2.ii Requesting Per-use Node-locked Application Licenses
	4.3.5.2.iii Requesting Per-CPU Node-locked Application Licenses

	4.3.6 Requesting Scratch Space
	4.3.7 Requesting GPUs
	4.3.7.1 Requesting GPUs Managed via Cgroups
	4.3.7.2 Requesting GPUs Not Managed via Cgroups
	4.3.7.2.i Binding to GPUs
	4.3.7.2.ii Requesting Non-specific GPUs and Exclusive Use of Node
	4.3.7.2.iii Requesting Non-specific GPUs and Shared Use of Node
	4.3.7.2.iv Requesting Specific GPUs

	4.3.7.3 Viewing GPU Information for Nodes

	4.3.8 Caveats and Restrictions on Requesting Resources
	4.3.8.1 Caveats and Restrictions for Specifying Resource Values
	4.3.8.2 Warning About NOT Requesting walltime
	4.3.8.3 Caveats for Jobs Requesting Undefined Resources
	4.3.8.4 Matching Resource Requests with Unset Resources
	4.3.8.5 Caveat for Invisible or Unrequestable Resources
	4.3.8.6 Warning About Requesting Tiny Amounts of Memory
	4.3.8.7 Maximum Length of Job Submission Command Line
	4.3.8.8 Only One select Statement Per Job
	4.3.8.9 The software Resource is Job-wide
	4.3.8.10 Do Not Mix Old and New Syntax

	4.4 How Resources are Allocated to Jobs
	4.4.1 Applying Default Resources
	4.4.1.1 Applying Job-wide Default Resources
	4.4.1.2 Applying Per-chunk Default Resources
	4.4.1.3 Caveat for Moving Jobs From One Queue to Another

	4.5 Limits on Resource Usage
	4.5.1 Enforceable Resource Limits
	4.5.2 Origins of Resource Limits
	4.5.3 Job-wide Resource Limits
	4.5.4 Per-chunk Resource Limits
	4.5.4.1 Effects of Limits

	4.5.5 Examples of Memory Limits

	4.6 Viewing Resources
	4.6.1 Viewing Server, Queue, and Vnode Resources
	4.6.2 Viewing Job Resources
	4.6.2.1 Resources Shown in Resource_List Job Attribute

	4.7 Specifying Job Placement
	4.7.1 Using the place Statement
	4.7.1.1 Specifying Arrangement of Chunks
	4.7.1.1.i Caveats and Restrictions for Arrangement

	4.7.1.2 Specifying Shared or Exclusive Use of Vnodes
	4.7.1.3 Grouping on a Resource
	4.7.1.3.i Grouping vs. Placement Sets

	4.7.2 How the Job Gets its Place Statement
	4.7.3 Caveats and Restrictions for Specifying Placement
	4.7.4 Examples of Specifying Placement

	4.8 Backward Compatibility
	4.8.1 Old-style Resource Specifications
	4.8.2 Old-style Node Specifications
	4.8.3 Conversion of Old Style to New
	4.8.3.1 Conversion of Resource Specifications
	4.8.3.2 Conversion of Node Specifications
	4.8.3.3 Examples of Converting Old Syntax to New

	4.8.4 Caveats for Using Old Syntax
	4.8.4.1 Changes in Behavior
	4.8.4.2 Do Not Mix Old and New Styles
	4.8.4.3 Resource Request Conversion Dependent on Where Resources are Defined
	4.8.4.4 Properties are Deprecated
	4.8.4.5 Replace cpp with ncpus
	4.8.4.6 Environment Variables Set During Conversion
	4.8.4.7 Old -l nodes Syntax Incompatible with Cgroups

	Multiprocessor Jobs
	5.1 Submitting Multiprocessor Jobs
	5.1.1 Assigning the Chunks You Want
	5.1.1.1 Specifying Primary Execution Host
	5.1.1.2 Request Most Specific Chunks First

	5.1.2 The Job Node File
	5.1.2.1 Node File Format and Contents
	5.1.2.2 Name and Location of Node File
	5.1.2.3 Node File for Old-style Requests
	5.1.2.4 Using and Modifying the Node File
	5.1.2.5 Node File Caveats
	5.1.2.6 Viewing Execution Hosts

	5.1.3 Specifying Number of MPI Processes Per Chunk
	5.1.3.1 Chunks With No MPI Processes

	5.1.4 Caveats and Advice for Multiprocessor Jobs
	5.1.4.1 Requesting Uniform Processors
	5.1.4.2 Requesting Storage on NFS Server

	5.1.5 File Staging for Multiprocessor Jobs
	5.1.6 Prologue and Epilogue
	5.1.7 MPI Environment Variables
	5.1.8 Examples of Multiprocessor Jobs
	5.1.9 Submitting SMP Jobs

	5.2 Using MPI with PBS
	5.2.1 Using an Integrated MPI
	5.2.1.1 Integration Caveats
	5.2.1.2 Integrating an MPI on the Fly
	5.2.1.2.i Integrating an MPI on the Fly using the pbs_tmrsh Command
	5.2.1.2.ii Caveats for the pbs_tmrsh Command

	5.2.2 Prerequisites to Using MPI with PBS
	5.2.3 Caveats for Using MPIs
	5.2.4 HP MPI with PBS
	5.2.4.1 Setting up Your Environment for HP MPI
	5.2.4.2 Using HP MPI with PBS
	5.2.4.3 Options
	5.2.4.4 Caveats for HP MPI with PBS

	5.2.5 Intel MPI 4.0.3 On Linux with PBS
	5.2.6 Intel MPI 4.0.3 On Windows with PBS
	5.2.6.1 Integrating Intel MPI 4.0.3 on the Fly

	5.2.7 Intel MPI 2.0.022, 3, and 4 with PBS
	5.2.7.1 Using Intel MPI 2.0.022, 3, or 4 Integrated with PBS
	5.2.7.2 Options to Integrated Intel MPI 2.0.022, 3, or 4
	5.2.7.3 MPD Startup and Shutdown
	5.2.7.4 Examples
	5.2.7.5 Restrictions

	5.2.8 MPICH-P4 with PBS
	5.2.8.1 Options for MPICH-P4 with PBS
	5.2.8.2 Example of Using MPICH-P4 with PBS
	5.2.8.3 MPICH Under Windows
	5.2.8.3.i Caveats for MPICH Under Windows

	5.2.9 MPICH-GM with PBS
	5.2.9.1 Using MPICH-GM and MPD with PBS
	5.2.9.1.i Options
	5.2.9.1.ii MPD Startup and Shutdown
	5.2.9.1.iii Examples

	5.2.9.2 Using MPICH-GM and rsh/ssh with PBS
	5.2.9.2.i Options
	5.2.9.2.ii Examples

	5.2.9.3 Restrictions

	5.2.10 MPICH-MX with PBS
	5.2.10.1 Using MPICH-MX and MPD with PBS
	5.2.10.1.i Options
	5.2.10.1.ii MPD Startup and Shutdown
	5.2.10.1.iii Examples

	5.2.10.2 Using MPICH-MX and rsh/ssh with PBS
	5.2.10.2.i Options
	5.2.10.2.ii Examples

	5.2.10.3 Restrictions

	5.2.11 MPICH2 with PBS on Linux
	5.2.11.1 Options
	5.2.11.2 MPD Startup and Shutdown
	5.2.11.3 Examples
	5.2.11.4 Restrictions

	5.2.12 MPICH2 1.4.1p1 On Windows with PBS
	5.2.13 MVAPICH with PBS
	5.2.13.1 Interface to MVAPICH mpirun Command
	5.2.13.2 Examples
	5.2.13.3 Restrictions

	5.2.14 MVAPICH2 with PBS
	5.2.14.1 Interface to MVAPICH2 mpiexec Command
	5.2.14.2 MPD Startup and Shutdown
	5.2.14.3 Examples
	5.2.14.4 Restrictions

	5.2.15 Open MPI with PBS
	5.2.15.1 Using Open MPI with PBS

	5.2.16 Platform MPI with PBS
	5.2.16.1 Using Platform MPI with PBS
	5.2.16.2 Setting up Your Environment

	5.2.17 HPE MPI with PBS
	5.2.17.1 Using HPE MPI with PBS
	5.2.17.2 Prerequisites
	5.2.17.3 Fitting Jobs onto Nodeboards
	5.2.17.4 Checkpointing and Suspending Jobs
	5.2.17.5 Using CSA

	5.3 Using PVM with PBS
	5.3.1 Arguments to pvmexec Command
	5.3.2 Using PVM Daemons
	5.3.3 Submitting a PVM Job
	5.3.4 Examples

	5.4 Using OpenMP with PBS
	5.4.1 Running Fewer Threads than CPUs
	5.4.2 Running More Threads than CPUs
	5.4.3 Caveats for Using OpenMP with PBS

	5.5 Hybrid MPI-OpenMP Jobs
	5.5.1 Examples

	Controlling How Your Job Runs
	6.1 Using Job Exit Status
	6.1.1 Caveats for Exit Status

	6.2 Using Job Dependencies
	6.2.1 Syntax for Job Dependencies
	6.2.1.1 Running Your Job on First Available Resources

	6.2.2 Job Dependency Examples
	6.2.3 Job Array Dependencies
	6.2.4 Caveats and Advice for Job Dependencies
	6.2.4.1 Correct Exit Status Required
	6.2.4.2 Permission Required for Dependencies
	6.2.4.3 Warning About Job History
	6.2.4.4 Error Reporting

	6.3 Adjusting Job Running Time
	6.3.1 Shrink-to-fit Jobs
	6.3.1.1 Requirements for a Shrink-to-fit Job
	6.3.1.2 Comparison Between Shrink-to-fit and Non-shrink-to-fit Jobs

	6.3.2 Using Shrink-to-fit Jobs
	6.3.3 Running Time of a Shrink-to-fit Job
	6.3.3.1 Setting Running Time Range for Shrink-to-fit Jobs
	6.3.3.2 Setting walltime for Shrink-to-fit Jobs

	6.3.4 Modifying Shrink-to-fit and Non-shrink-to-fit Jobs
	6.3.4.1 Modifying min_walltime and max_walltime
	6.3.4.1.i Making Non-shrink-to-fit Jobs into Shrink-to-fit Jobs
	6.3.4.1.ii Making Shrink-to-fit Jobs into Non-shrink-to-fit Jobs

	6.3.5 Viewing Running Time for a Job
	6.3.5.1 Viewing min_walltime and max_walltime
	6.3.5.2 Viewing walltime for a Shrink-to-fit Job

	6.3.6 Lifecycle of a Shrink-to-fit Job
	6.3.6.1 Execution of Shrink-to-fit Jobs
	6.3.6.2 Termination of Shrink-to-fit Jobs

	6.3.7 The min_walltime and max_walltime Resources
	6.3.8 Caveats and Restrictions for Shrink-to-fit Jobs

	6.4 Using Checkpointing
	6.4.1 Prerequisites for Checkpointing
	6.4.2 Minimum Checkpoint Interval
	6.4.3 Syntax for Specifying Checkpoint Interval
	6.4.4 Using Checkpointing for Preempting or Holding Jobs
	6.4.5 Caveats and Restrictions for Checkpointing

	6.5 Holding and Releasing Jobs
	6.5.1 Types of Holds
	6.5.2 Requirements for Holding or Releasing a Job
	6.5.3 Holding a Job Before Execution
	6.5.4 Holding a Job During Execution
	6.5.4.1 Checkpointing and Requeueing the Job
	6.5.4.2 Setting Hold Type for a Running Job

	6.5.5 Releasing a Job
	6.5.6 Caveats and Restrictions for Holding and Releasing Jobs
	6.5.7 Why is Your Job Held?
	6.5.8 Examples of Holding and Releasing Jobs

	6.6 Allowing Your Job to be Re-run
	6.6.1 Caveats and Restrictions for Marking Jobs as Rerunnable

	6.7 Controlling Number of Times Job is Re-run
	6.7.1 Caveats for Raising Value of run_count Attribute

	6.8 Deferring Execution
	6.8.1 Syntax for Deferring Execution

	6.9 Setting Priority for Your Job
	6.10 Making qsub Wait Until Job Ends
	6.10.1 Signal Handling and Error Processing for Blocking Jobs
	6.10.2 Caveats for Blocking Jobs

	6.11 Running Your Job Interactively
	6.11.1 Input and Output for Interactive Jobs
	6.11.2 Running Your Interactive Job
	6.11.3 Lifecycle of an Interactive Job
	6.11.3.1 Terminating Interactive Jobs

	6.11.4 Interactive Jobs and Exit Codes
	6.11.5 Tracking Progress for Interactive Jobs
	6.11.6 Special Sequences for Interactive Jobs
	6.11.7 Caveats and Restrictions for Interactive Jobs
	6.11.8 Errors and Logging
	6.11.9 Receiving X Output from Interactive Linux Jobs
	6.11.9.1 How to Receive X Output Under Linux
	6.11.9.1.i Receiving X Output on Non-submission Host

	6.11.9.2 Requirements for Receiving X Output
	6.11.9.3 Viewing X Output Job Attributes
	6.11.9.4 Caveats and Advice for Receiving X Output
	6.11.9.5 X Forwarding Errors

	6.11.10 Submitting Interactive GUI Jobs on Windows

	6.12 Using Environment Variables
	6.12.1 Exporting All Environment Variables
	6.12.2 Exporting Specific Environment Variables
	6.12.3 Caveat for Environment Variables and Shell Functions
	6.12.4 Forwarding Exported Shell Functions

	6.13 Specifying Which Jobs to Preempt
	6.14 Releasing Unneeded Vnodes from Your Job
	6.14.1 Caveats and Restrictions for Releasing Vnodes
	6.14.2 What Happens When You Release Vnodes
	6.14.3 Examples of Releasing Unneeded Vnodes From Job

	6.15 Running Your Job in a Container
	6.15.1 Requesting a Container Engine
	6.15.2 Requesting a Container Image
	6.15.2.1 Specifying a Registry
	6.15.2.2 Pulling from a Private Registry
	6.15.2.2.i Registry Credential Filename
	6.15.2.2.ii Registry Credential File Format
	6.15.2.2.iii Registry Credential File Default Values
	6.15.2.2.iv Registry Credential File Location

	6.15.2.3 Specifying Image Namespace

	6.15.3 Specifying Ports with Docker Containers
	6.15.4 Specifying Additional Arguments to Container Engine
	6.15.5 Passing Environment Variables Into Containers
	6.15.6 Adding Job Owner to Secondary Groups in Docker Containers
	6.15.7 Running Single-vnode Single-host Jobs in Singularity Containers
	6.15.8 Specifying Shell in Container
	6.15.9 Caveats and Restrictions
	6.15.10 Restrictions and Caveats for Cloud Bursting with PBS

	6.16 Allowing Your Job to Tolerate Vnode Failures

	Reserving Resources
	7.1 Glossary
	7.2 Quick Explanation of Reservations for Jobs
	7.3 Prerequisites for Reserving Resources
	7.4 Advance and Standing Reservations
	7.4.1 Introduction to Creating and Using Advance and Standing Reservations
	7.4.2 Creating Advance Reservations
	7.4.2.1 Setting Time Zone for Advance Reservations
	7.4.2.2 Examples of Creating Advance Reservations

	7.4.3 Creating Standing Reservations
	7.4.3.1 Setting Reservation Start Time and Duration
	7.4.3.2 Requirements for Creating Standing Reservations
	7.4.3.3 Examples of Creating Standing Reservations

	7.5 Job-specific Reservations
	7.5.1 Job-specific Start Reservations
	7.5.2 Job-specific ASAP Reservations
	7.5.3 Job-specific Now Reservations

	7.6 Getting Confirmation of a Reservation
	7.7 Modifying Reservations
	7.7.0.0.i Examples of Modifying Reservations

	7.8 Deleting Reservations
	7.9 Viewing the Status of a Reservation
	7.9.1 Examples of Viewing Reservation Status Using pbs_rstat

	7.10 Submitting a Job to a Reservation
	7.10.1 Who Can Use Your Reservation
	7.10.2 Viewing Status of a Job Submitted to a Reservation
	7.10.3 How Reservations Treat Jobs
	7.10.3.1 Caveats for How Reservations Treat Jobs

	7.11 Reservation Caveats and Errors
	7.11.1 Time Zone Must be Correct
	7.11.2 Time Required Between Reservations
	7.11.3 Reservation Information in the Accounting Log
	7.11.4 Reservation Fault Tolerance
	7.11.5 Job and Reservation Exclusivity Must Match

	Job Arrays
	8.1 Advantages of Job Arrays
	8.2 Glossary
	8.3 Description of Job Arrays
	8.3.1 Job Script for Job Arrays
	8.3.2 Attributes and Resources for Job Arrays
	8.3.3 Scheduling Job Arrays and Subjobs
	8.3.4 Identifier Syntax
	8.3.4.1 Examples of Using Identifier Syntax
	8.3.4.2 Shells and Array Identifiers

	8.3.5 Special Attributes for Job Arrays
	8.3.6 Job Array States
	8.3.7 PBS Environmental Variables for Job Arrays
	8.3.8 Accounting
	8.3.9 Prologues and Epilogues
	8.3.10 The "Rerunnable" Flag and Job Arrays

	8.4 Submitting a Job Array
	8.4.1 Job Array Submission Syntax
	8.4.1.1 Limiting Number of Simultaneously Running Subjobs

	8.4.2 Examples of Submitting Job Arrays
	8.4.3 File Staging for Job Arrays
	8.4.3.1 File Staging Syntax for Job Arrays
	8.4.3.2 Job Array Staging Syntax on Windows
	8.4.3.3 Job Array File Staging Caveats
	8.4.3.4 Examples of Staging for Job Arrays

	8.4.4 Filenames for Standard Output and Standard Error
	8.4.5 Job Array Dependencies
	8.4.5.1 Caveats for Job Array Dependencies

	8.4.6 Job Array Exit Status
	8.4.6.1 Making qsub Wait Until Job Array Finishes
	8.4.6.2 Caveats for Job Array Exit Status

	8.4.7 Caveats for Submitting Job Arrays
	8.4.7.1 No Interactive Job Submission of Job Arrays

	8.5 Viewing Status of a Job Array
	8.5.1 Example of Viewing Job Array Status

	8.6 Using PBS Commands with Job Arrays
	8.6.1 Deleting a Job Array
	8.6.2 Altering a Job Array
	8.6.3 Moving a Job Array
	8.6.4 Holding a Job Array
	8.6.5 Releasing a Job Array
	8.6.6 Selecting Job Arrays
	8.6.7 Ordering Job Arrays in the Queue
	8.6.8 Requeueing a Job Array
	8.6.9 Signaling a Job Array
	8.6.10 Sending Messages to Job Arrays
	8.6.11 Getting Log Data on Job Arrays
	8.6.12 Caveats for Using PBS Commands with Job Arrays
	8.6.12.1 Shells and PBS Commands with Job Arrays

	8.7 Job Array Caveats
	8.7.1 Job Arrays Required to be Rerunnable
	8.7.2 Resources Same for All Subjobs
	8.7.3 Checkpointing Not Supported for Job Arrays
	8.7.4 Caveats for Job Array Exit Status

	Working with PBS Jobs
	9.1 Using Job History
	9.1.1 Definitions
	9.1.2 Job History Information
	9.1.2.1 Working With Moved Jobs
	9.1.2.2 PBS Commands and Finished Jobs

	9.2 Modifying Job Attributes
	9.2.1 Changing the Selection Directive
	9.2.2 Changing the Job-wide Limit
	9.2.2.1 Caveats

	9.3 Deleting Jobs
	9.3.1 Deleting Jobs with Force
	9.3.2 Deleting Finished Jobs
	9.3.3 Deleting Moved Jobs
	9.3.4 Restricting Number of Emails

	9.4 Sending Messages to Jobs
	9.5 Sending Signals to Jobs
	9.6 Changing Order of Jobs
	9.6.1 Restrictions

	9.7 Moving Jobs Between Queues

	Checking Job & System Status
	10.1 Selecting Jobs to Examine
	10.1.1 Selecting Jobs via qselect
	10.1.1.1 Selecting Jobs by Resource and Attribute Value
	10.1.1.2 Selecting Jobs by Time Criteria
	10.1.1.3 Selecting Finished and Moved Jobs
	10.1.1.4 Passing List of Selected Jobs to qstat
	10.1.1.5 Passing List of Finished and Moved jobs to qstat
	10.1.1.6 Restrictions and Caveats for Selecting Jobs via qselect

	10.1.2 Filtering Jobs via qstat
	10.1.2.1 Expanding and Filtering Job ID List
	10.1.2.2 Specifying Destination
	10.1.2.3 Filtering Jobs by User
	10.1.2.4 Looking for Running and Suspended Jobs
	10.1.2.5 Looking for Non-Running Jobs
	10.1.2.6 Looking for Finished and Moved Jobs (History Jobs)
	10.1.2.6.i Looking for Jobs Moved to Another Server
	10.1.2.6.ii Including Finished and Moved Jobs
	10.1.2.6.iii Restricting to Finished and Moved Jobs

	10.1.2.7 Grouping Jobs and Sorting by ID

	10.2 Examining Jobs
	10.2.1 How to See Job Information (Output Formats)
	10.2.1.1 Basic Job List: Job Status in Default Format
	10.2.1.2 Extended Job List: Job Status in Alternate Format
	10.2.1.3 Complete Job Information: Job Status in Long Format
	10.2.1.4 Showing Additional Job Information for Default and Alternate Formats
	10.2.1.4.i Listing Hosts Assigned to Jobs
	10.2.1.4.ii Displaying Job Comments
	10.2.1.4.iii Printing Job Array Percentage Completed
	10.2.1.4.iv Viewing Job Start Time
	10.2.1.4.v Viewing Estimated Start Times For Jobs
	10.2.1.4.vi Why Does Estimated Start Time Change?

	10.2.1.5 Changing Output Format Characteristics
	10.2.1.5.i Displaying Size in Gigabytes or Megawords
	10.2.1.5.ii Viewing Job Status in Wider Columns
	10.2.1.5.iii Path Display under Windows

	10.2.2 Examining Job Resource Usage
	10.2.2.1 Examining Resource Usage by Running and Queued Jobs
	10.2.2.2 Examining Resources Used by Finished and Moved Jobs
	10.2.2.2.i Examining Resource Usage by Finished and Moved Jobs and Job Arrays
	10.2.2.2.ii Examining Resource Usage by Finished and Moved Subjobs

	10.2.3 Caveats for Job Information

	10.3 Checking Server Status
	10.3.0.1 Specifying Destination
	10.3.1 Viewing Server Information in Default Format
	10.3.2 Viewing Server Information in Long Format

	10.4 Checking Queue Status
	10.4.1 Specifying Destination
	10.4.2 Viewing Queue Information in Default Format
	10.4.3 Displaying Queue Limits in Alternate Format
	10.4.4 Viewing Queue Information in Long Format
	10.4.5 Caveats for the qstat Command

	10.5 Checking License Availability

	Running Jobs in the Cloud
	11.1 Introduction
	11.2 Running Your Job in the Cloud
	11.2.1 Requesting Instance Type
	11.2.1.1 Requesting Preemptable and Spot Instances

	11.2.2 Requesting OS Image
	11.2.3 Running Your Job on Cloud Nodes Connected by a High Speed Network
	11.2.3.1 Running Your Job on Cloud Instances Connected by a High Speed Network and Burst on Bare Metal
	11.2.3.2 Caveats and Restrictions for Jobs on High Speed Networks
	11.2.3.3 How to Run a Job on Cloud Nodes on a High Speed Network

	11.2.4 Running Jobs Requiring Application Licenses

	11.3 Sample Job Scripts for Cloud Jobs
	11.3.1 Example of Simple Sleep Job Script
	11.3.2 Example of Radioss Cloud Job Script
	11.3.3 Viewing Job Output

	Using Budgets
	12.1 Budgets Commands
	12.1.1 Command Path
	12.1.2 Using Budgets Commands

	12.2 Submitting Jobs with Budgets
	12.2.1 Getting Job Cost Estimate from Budgets
	12.2.1.1 Requesting Cost Estimate via quote Command
	12.2.1.1.i Examples of Requesting Estimate of Costs via quote Command

	12.2.1.2 Requesting Cost Estimate via qsub Command
	12.2.1.3 Estimate Format
	12.2.1.3.i Examples of Requesting Estimate of Costs via qsub Command

	12.2.1.4 Caveats and Restrictions for Getting Job Cost Estimate

	12.2.2 Checking Whether You Have Enough Credit to Run Job
	12.2.3 Charging Jobs to User or Project Account
	12.2.4 Credit
	12.2.5 Submitting Jobs in Postpaid Mode
	12.2.6 Submitting Jobs in Prepaid Mode
	12.2.7 Resource Requirements for Jobs
	12.2.8 Accounting Policy
	12.2.9 Allocation Periods
	12.2.10 Checking Your Credit Balance
	12.2.11 Listing Clusters
	12.2.12 Quotas on External Resources
	12.2.13 Getting Reports on Usage and Transactions

	12.3 Tutorials
	12.3.1 Tutorial on Using Budgets in Prepaid Mode
	12.3.1.1 Prerequisites
	12.3.1.2 Tutorial Steps to Use Budgets
	12.3.1.2.i Run User Job
	12.3.1.2.ii Run Project Job
	12.3.1.2.iii Non-project User Tries to Run Project Job
	12.3.1.2.iv Manager Runs Report on Project

	12.3.2 Tutorial on Using Budgets in Postpaid Mode
	12.3.2.1 Prerequisites
	12.3.2.2 Tutorial Steps to Use Budgets
	12.3.2.2.i Run User Job
	12.3.2.2.ii Run Project Job
	12.3.2.2.iii Non-project User Tries to Run Project Job
	12.3.2.2.iv Manager Runs Report on Project

	Submitting Jobs to NEC SX-Aurora TSUBASA
	13.1 Vnodes for NEC SX-Aurora TSUBASA
	13.2 Terminology
	13.3 Resources for SX-Aurora TSUBASA
	13.4 Running Your Job on NEC SX-Aurora TSUBASA
	13.4.1 Requesting Resources on NEC SX-Aurora TSUBASA
	13.4.1.1 Restrictions for Requesting HCAs

	13.4.2 Default Process Distribution
	13.4.2.1 Letting PBS Distribute VE Processes in a Chunk
	13.4.2.1.i Perfect Distribution
	13.4.2.1.ii Imperfect Distribution

	13.4.3 Specifying Process Distribution
	13.4.3.1 Specifying Process Placement for All VEs in a Chunk
	13.4.3.1.i Restrictions and Caveats for Process Placement for All VEs in Chunk

	13.4.3.2 Replicating Process Distribution Across VEs in a Chunk
	13.4.3.2.i Implying Perfect Distribution
	13.4.3.2.ii Implying Imperfect Distribution

	13.4.3.3 Placing Processes on VHs
	13.4.3.3.i Restrictions and Caveats for Placing Processes on VHs

	13.4.3.4 Using VE Offloading
	13.4.3.4.i Restrictions and Caveats for VE Offloading

	13.4.3.5 Replicating the Same Process Distribution Across Multiple Chunks
	13.4.3.6 Examples of Specifying Process Distribution
	13.4.3.7 Restrictions and Caveats for Specifying Process Distribution

	13.5 Job Accounting on NEC SX-Aurora TSUBASA
	13.6 Environment Variables for NEC MPI

	Using MLS with PBS Professional
	14.1 About SELinux PBS Professional
	14.2 Requirement for Submitting Jobs
	14.3 Viewing and Operating on Jobs
	14.3.1 Checking Security Context

	14.4 Credentials of Deleted Jobs
	14.5 Caveats
	14.6 Errors and Logging
	14.6.1 Logging
	14.6.2 Errors

	14.7 SELinux Documentation

	Using Provisioning
	15.1 Definitions
	15.2 How Provisioning Works
	15.2.1 Causing Vnodes To Be Provisioned
	15.2.2 Using an AOE
	15.2.3 Job Substates and Provisioning

	15.3 Requirements and Restrictions
	15.3.1 Host Restrictions
	15.3.1.1 Single-vnode Hosts Only
	15.3.1.2 Server Host Cannot Be Provisioned

	15.3.2 AOE Restrictions
	15.3.2.1 Vnode Job Restrictions
	15.3.2.2 Provisioning Job Restrictions
	15.3.2.3 Vnode Reservation Restrictions

	15.3.3 Requirements for Jobs
	15.3.3.1 If AOE is Requested, All Chunks Must Use Same AOE

	15.4 Using Provisioning
	15.4.1 Requesting Provisioning
	15.4.2 Commands and Provisioning
	15.4.3 How Provisioning Affects Jobs

	15.5 Caveats and Errors
	15.5.1 Requested Job AOE and Reservation AOE Should Match
	15.5.2 Allow Enough Time in Reservations
	15.5.3 Requesting Multiple AOEs For a Job or Reservation
	15.5.4 Held and Requeued Jobs
	15.5.5 Conflicting Resource Requests
	15.5.6 Job Submission and Alteration Have Same Requirements

	Using Accounting
	16.1 Using Accounting
	16.1.1 Specifying Accounting String
	16.1.2 Using Comprehensive System Accounting
	16.1.3 Using Dependencies with Accounting
	16.1.4 Advice and Caveats for Using Accounting
	16.1.4.1 Use an Integrated MPI

	Index

	Programmer's Guide (PG)
	Contents
	List of APIs
	PBS Architecture
	21.1 PBS Components
	21.1.1 Single Execution System
	21.1.2 Single Execution System with Front End
	21.1.3 Multiple Execution Systems
	21.1.4 Server
	21.1.5 Job Executor (MoM)
	21.1.6 Schedulers
	21.1.7 Communication Daemon
	21.1.8 Privilege
	21.1.9 Commands

	Server Functions
	22.1 Roles and Required Privilege
	22.2 Batch Server Functions
	22.3 Server Management
	22.3.1 Manage Request
	22.3.2 Server Status Request
	22.3.3 Starting the PBS Server
	22.3.4 Stopping the PBS Server

	22.4 Queue Management
	22.4.1 Queue Status Request

	22.5 Vnode Management
	22.5.1 Modify Vnode Request

	22.6 Job Management
	22.6.1 Queue Job Request
	22.6.2 Job Credential Request
	22.6.3 Job Script Request
	22.6.4 Commit Request
	22.6.5 Message Job Request
	22.6.6 Locate Job Request
	22.6.7 Delete Job Request
	22.6.8 Modify Job Request
	22.6.9 Run Job Request
	22.6.10 Rerun Job Request
	22.6.11 Hold Job Request
	22.6.12 Release Job Request
	22.6.13 Move Job Request
	22.6.14 Select Jobs Request
	22.6.15 Signal Job Request
	22.6.16 Status Job Request

	22.7 Server to Server Requests
	22.7.1 Track Job Request
	22.7.2 Job Dependency

	22.8 Deferred Services
	22.8.1 Job Scheduling
	22.8.1.1 Connection Between Scheduler and Server
	22.8.1.1.i Process for Server to Accept Scheduler Connection Request

	22.8.1.2 Scheduling Cycle
	22.8.1.3 Triggers for Scheduling Cycle

	22.8.2 File Staging
	22.8.3 Job Start
	22.8.4 Job Routing
	22.8.5 Job Exit
	22.8.6 Aborting Job
	22.8.7 Timed Events
	22.8.8 Event Logging
	22.8.9 Accounting

	22.9 Resource Management
	22.9.1 Resource Limits
	22.9.2 Resource Names

	22.10 Network Protocol
	22.10.1 General DIS Data Encoding

	Developer Headers and Libraries
	23.1 Location of API Libraries
	23.2 Location of Header Files
	23.3 Developer Package
	23.4 Batch Interface Library
	23.4.1 Error Codes
	23.4.2 Windows Requirement

	23.5 Example Compilation Line

	Batch Interface Library (IFL)
	24.1 Interface Library Overview
	24.1.1 Connection to Server
	24.1.2 Authentication
	24.1.3 Windows Requirement

	24.2 Batch Library Routines
	24.3 pbs_alterjob
	24.3.1 Synopsis
	24.3.2 Description
	24.3.3 Arguments
	24.3.3.1 Members of attropl Structure

	24.3.4 Return Value
	24.3.5 See Also

	24.4 pbs_asyrunjob
	24.4.1 Synopsis
	24.4.2 Description
	24.4.3 Required Privilege
	24.4.4 Arguments
	24.4.5 Return Value
	24.4.6 See Also

	24.5 pbs_confirmresv
	24.5.1 Synopsis
	24.5.2 Description
	24.5.3 Arguments
	24.5.4 Return Value
	24.5.5 See Also

	24.6 pbs_connect
	24.6.1 Synopsis
	24.6.2 Description
	24.6.3 Arguments
	24.6.4 Usage
	24.6.5 Cleanup
	24.6.6 Side Effects
	24.6.7 Windows Requirement
	24.6.8 Return Value
	24.6.9 See Also

	24.7 pbs_default
	24.7.1 Synopsis
	24.7.2 Description
	24.7.3 Return Value

	24.8 pbs_deljob
	24.8.1 Synopsis
	24.8.2 Description
	24.8.3 Arguments
	24.8.4 Return Value
	24.8.5 See Also

	24.9 pbs_delresv
	24.9.1 Synopsis
	24.9.2 Description
	24.9.3 Arguments
	24.9.4 Return Value
	24.9.5 See Also

	24.10 pbs_disconnect
	24.10.1 Synopsis
	24.10.2 Description
	24.10.3 Arguments
	24.10.4 Return Value
	24.10.5 See Also

	24.11 pbs_geterrmsg
	24.11.1 Synopsis
	24.11.2 Description
	24.11.3 Arguments
	24.11.4 Return Value
	24.11.5 See Also

	24.12 pbs_holdjob
	24.12.1 Synopsis
	24.12.2 Description
	24.12.3 Arguments
	24.12.4 Return Value
	24.12.5 See Also

	24.13 pbs_locjob
	24.13.1 Synopsis
	24.13.2 Description
	24.13.3 Arguments
	24.13.4 Cleanup
	24.13.5 Return Value
	24.13.6 See Also

	24.14 pbs_manager
	24.14.1 Synopsis
	24.14.2 Description
	24.14.3 Required Privilege
	24.14.4 Arguments
	24.14.4.1 Members of attropl Structure

	24.14.5 Usage for Hooks
	24.14.6 Return Value
	24.14.7 See Also

	24.15 pbs_modify_resv
	24.15.1 Synopsis
	24.15.2 Description
	24.15.3 Arguments
	24.15.3.1 Members of attropl Structure

	24.15.4 Return Value
	24.15.5 Cleanup
	24.15.6 See Also

	24.16 pbs_movejob
	24.16.1 Synopsis
	24.16.2 Description
	24.16.3 Arguments
	24.16.4 Return Value
	24.16.5 See Also

	24.17 pbs_msgjob
	24.17.1 Synopsis
	24.17.2 Description
	24.17.3 Arguments
	24.17.4 Return Value
	24.17.5 See Also

	24.18 pbs_orderjob
	24.18.1 Synopsis
	24.18.2 Description
	24.18.3 Arguments
	24.18.4 Return Value
	24.18.5 See Also

	24.19 pbs_preempt_jobs
	24.19.1 Synopsis
	24.19.2 Description
	24.19.3 Arguments
	24.19.4 Return Value
	24.19.5 Cleanup

	24.20 pbs_relnodesjob
	24.20.1 Synopsis
	24.20.2 Description
	24.20.3 Arguments
	24.20.4 Return Value
	24.20.5 See Also

	24.21 pbs_rerunjob
	24.21.1 Synopsis
	24.21.2 Description
	24.21.3 Arguments
	24.21.4 Return Value
	24.21.5 See Also

	24.22 pbs_rlsjob
	24.22.1 Synopsis
	24.22.2 Description
	24.22.3 Arguments
	24.22.4 Return Value
	24.22.5 See Also

	24.23 pbs_runjob
	24.23.1 Synopsis
	24.23.2 Description
	24.23.3 Required Privilege
	24.23.4 Arguments
	24.23.5 Return Value
	24.23.6 See Also

	24.24 pbs_selectjob
	24.24.1 Synopsis
	24.24.2 Description
	24.24.3 Arguments
	24.24.3.1 Members of attropl Structure

	24.24.4 Querying States
	24.24.5 Extending Your Query
	24.24.5.1 Querying Finished and Moved Jobs
	24.24.5.2 Querying Job Arrays and Subjobs

	24.24.6 Return Value
	24.24.7 Cleanup Required
	24.24.8 See Also

	24.25 pbs_selstat
	24.25.1 Synopsis
	24.25.2 Description
	24.25.3 Arguments
	24.25.3.1 Members of attropl Structure
	24.25.3.2 Members of attrl Structure

	24.25.4 Querying States
	24.25.5 Extending Your Query
	24.25.5.1 Querying Finished and Moved Jobs
	24.25.5.2 Querying Job Arrays and Subjobs

	24.25.6 Return Value
	24.25.6.1 The batch_status Structure

	24.25.7 Cleanup
	24.25.8 See Also

	24.26 pbs_sigjob
	24.26.1 Synopsis
	24.26.2 Description
	24.26.3 Arguments
	24.26.4 Return Value
	24.26.5 See Also

	24.27 pbs_statfree
	24.27.1 Synopsis
	24.27.2 Description
	24.27.3 Arguments
	24.27.3.1 The batch_status Structure

	24.27.4 Return Value

	24.28 pbs_stathost
	24.28.1 Synopsis
	24.28.2 Description
	24.28.3 Arguments
	24.28.3.1 Members of attrl Structure

	24.28.4 Return Value
	24.28.4.1 The batch_status Structure

	24.28.5 Cleanup
	24.28.6 See Also

	24.29 pbs_statjob
	24.29.1 Synopsis
	24.29.2 Description
	24.29.3 Arguments
	24.29.3.1 Members of attrl Structure

	24.29.4 Querying Job Arrays and Subjobs
	24.29.5 Querying the Jobs at a Queue or Server
	24.29.6 Extending Your Query
	24.29.6.1 Querying Finished and Moved Jobs

	24.29.7 Return Values
	24.29.7.1 The batch_status Structure

	24.29.8 Cleanup
	24.29.9 See Also

	24.30 pbs_statnode
	24.30.1 Synopsis
	24.30.2 Description
	24.30.3 Arguments
	24.30.3.1 Members of attrl Structure

	24.30.4 Return Value
	24.30.4.1 The batch_status Structure

	24.30.5 Cleanup
	24.30.6 See Also

	24.31 pbs_statque
	24.31.1 Synopsis
	24.31.2 Description
	24.31.3 Arguments
	24.31.3.1 Members of attrl Structure

	24.31.4 Return Value
	24.31.4.1 The batch_status Structure

	24.31.5 Cleanup
	24.31.6 See Also

	24.32 pbs_statresv
	24.32.1 Synopsis
	24.32.2 Description
	24.32.3 Arguments
	24.32.3.1 Members of attrl Structure

	24.32.4 Return Value
	24.32.4.1 The batch_status Structure

	24.32.5 Cleanup
	24.32.6 See Also

	24.33 pbs_statrsc
	24.33.1 Synopsis
	24.33.2 Description
	24.33.3 Arguments
	24.33.3.1 Members of attrl Structure

	24.33.4 Querying Resources at Server
	24.33.5 Return Value
	24.33.5.1 The batch_status Structure

	24.33.6 Cleanup
	24.33.7 See Also

	24.34 pbs_statsched
	24.34.1 Synopsis
	24.34.2 Description
	24.34.3 Arguments
	24.34.3.1 Members of attrl Structure

	24.34.4 Return Value
	24.34.4.1 The batch_status Structure

	24.34.5 Cleanup
	24.34.6 See Also

	24.35 pbs_statserver
	24.35.1 Synopsis
	24.35.2 Description
	24.35.3 Arguments
	24.35.3.1 Members of attrl Structure

	24.35.4 Return Value
	24.35.4.1 The batch_status Structure

	24.35.5 Cleanup
	24.35.6 See Also

	24.36 pbs_statvnode
	24.36.1 Synopsis
	24.36.2 Description
	24.36.3 Arguments
	24.36.3.1 Members of attrl Structure

	24.36.4 Return Value
	24.36.4.1 The batch_status Structure

	24.36.5 Cleanup
	24.36.6 See Also

	24.37 pbs_submit
	24.37.1 Synopsis
	24.37.2 Description
	24.37.3 Arguments
	24.37.3.1 Members of attropl Structure

	24.37.4 Return Value
	24.37.5 Cleanup
	24.37.6 See Also

	24.38 pbs_submit_resv
	24.38.1 Synopsis
	24.38.2 Description
	24.38.3 Arguments
	24.38.3.1 Members of attropl Structure

	24.38.4 Return Value
	24.38.5 Cleanup
	24.38.6 See Also

	24.39 pbs_terminate
	24.39.1 Synopsis
	24.39.2 Description
	24.39.3 Required Privilege
	24.39.4 Arguments
	24.39.5 Return Value
	24.39.6 See Also

	TM Library
	25.1 TM Library Routines
	25.2 tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit, tm_taskinfo, tm_atnode, tm_rescinfo, tm_publish, tm_subscribe, tm_finalize, tm_attach
	25.2.1 Synopsis
	25.2.2 Description
	25.2.3 See Also

	RM Library
	26.1 RM Library Routines
	26.2 openrm, closerm, downrm, configrm, addreq, allreq, getreq, flushreq, activereq, fullresp
	26.2.1 Synopsis
	26.2.2 Description
	26.2.3 See Also

	TCL/tk Interface
	27.1 TCL/tk API Functions
	27.2 pbs_tclapi
	27.2.1 Description
	27.2.2 Usage
	27.2.3 See Also

	Hooks
	28.1 Introduction
	28.2 How Hooks Work
	28.2.1 Hook Contents and Permissions
	28.2.2 Accepting and Rejecting Actions
	28.2.3 Exceptions
	28.2.4 Unsupported Interfaces and Uses

	28.3 Interface to Hooks
	28.3.1 The pbs Module
	28.3.1.1 Description of pbs Module

	28.4 pbs_module
	28.4.0.1 pbs Module Objects
	28.4.0.2 pbs Module Global Attribute Creation Methods
	28.4.0.3 Attributes and Resources
	28.4.0.4 Exceptions
	28.4.0.5 See Also
	28.4.1 The pbs_manager() API
	28.4.1.1 Troubleshooting
	28.4.1.2 Privilege for Hooks
	28.4.1.3 Examples of Using pbs_manager()

	28.4.2 The pbs_stathook() API
	28.4.2.1 Example of Using pbs_stathook()

	28.5 pbs_stathook(3B)
	28.5.1 Synopsis
	28.5.2 Description
	28.5.2.1 Required Privilege

	28.5.3 Arguments
	28.5.3.1 Members of attrl Structure

	28.5.4 Return Value
	28.5.4.1 The batch_status Structure

	28.5.5 Cleanup
	28.5.6 Error Messages
	28.5.7 See Also

	Custom Authentication and Encryption Library APIs
	29.1 pbs_auth_set_config
	29.1.1 Synopsis
	29.1.2 Description
	29.1.3 Arguments
	29.1.4 Configuration Structure
	29.1.5 Return Value

	29.2 pbs_auth_create_ctx
	29.2.1 Synopsis
	29.2.2 Description
	29.2.3 Arguments
	29.2.4 Return Value
	29.2.5 Cleanup

	29.3 pbs_auth_destroy_ctx
	29.3.1 Synopsis
	29.3.2 Description
	29.3.3 Arguments
	29.3.4 Return Value

	29.4 pbs_auth_get_userinfo
	29.4.1 Synopsis
	29.4.2 Description
	29.4.3 Arguments
	29.4.4 Return Value
	29.4.5 Cleanup
	29.4.6 Example

	29.5 pbs_auth_process_handshake_data
	29.5.1 Synopsis
	29.5.2 Description
	29.5.3 Arguments
	29.5.4 Return Value
	29.5.5 Cleanup

	29.6 pbs_auth_encrypt_data
	29.6.1 Synopsis
	29.6.2 Description
	29.6.3 Arguments
	29.6.4 Return Value
	29.6.5 Cleanup

	29.7 pbs_auth_decrypt_data
	29.7.1 Synopsis
	29.7.2 Description
	29.7.3 Arguments
	29.7.4 Return Value
	29.7.5 Cleanup

	Index

	Cloud Guide (CG)
	Contents
	Introduction to PBS Cloud
	1.1 Introduction to Cloud Bursting
	1.2 Cloud Bursting Terminology
	1.3 How PBS Cloud Bursting Works
	1.3.1 How Node Bursting Works
	1.3.1.1 OS Image and Instance Type Assignment to Job
	1.3.1.2 Main Cloud Bursting Hook and Extension Cloud Bursting Hook

	1.3.2 Tracking Application Licenses

	1.4 Distributing Jobs to Cloud and On Premise Nodes
	1.5 Licensing PBS Cloud Nodes
	1.6 Caveats and Restrictions for PBS Cloud

	Installing PBS Cloud
	2.1 Supported Platforms
	2.1.1 OpenSSL Requirement
	2.1.2 PBS Components
	2.1.3 Supported Platforms for PBS Components
	2.1.3.1 * SLES Restrictions for Cloud and Budgets Nodes

	2.1.4 Supported Platforms for Nodes Burst in Cloud
	2.1.5 Restrictions on Simulate Module Location when Using PBS Cloud
	2.1.6 Supported Cloud Providers
	2.1.7 Minimum Hardware Requirements for PBS Cloud Host (Service Node)
	2.1.7.1 Requirements for Connected Host
	2.1.7.2 Requirements for Offline Host

	2.2 Prerequisites
	2.2.1 Software and Accounts
	2.2.2 Licensing
	2.2.3 Required Accounts

	2.3 Recommended Configurations
	2.3.1 Recommended Configuration for Larger Installations
	2.3.2 Recommended Configuration for Smaller Installations

	2.4 Installation Steps
	2.4.1 Installing on an Internet-connected Host
	2.4.1.1 Install Docker
	2.4.1.2 Install the PBS Cloud Module
	2.4.1.3 Allow Easy PBS Cloud Status Check
	2.4.1.4 Configure PBS Cloud to Use SSL Connections
	2.4.1.5 Test the Installation

	2.4.2 Installing on an Offline Host
	2.4.2.1 Install Docker on Connected Host
	2.4.2.2 Download Installation Tarball to Connected Host
	2.4.2.3 Copy Tarball to Offline Host
	2.4.2.4 Install Docker on Offline Host
	2.4.2.5 Extract Tarball to Offline Host
	2.4.2.6 Allow Easy PBS Cloud Status Check
	2.4.2.7 Configure PBS Cloud to Use SSL Connections
	2.4.2.8 Test the Installation

	2.5 Create Extension Cloud Bursting Hook
	2.6 Install and Configure Simulate

	Configuring PBS Cloud
	3.1 Overview of Configuring PBS Cloud
	3.1.1 Overview of Creating Bursting Scenarios

	3.2 Configuring PBS Professional for Cloud Bursting
	3.2.1 List of PBS Professional Custom Resources for Cloud Bursting
	3.2.2 Create Custom Resources for Cloud Bursting
	3.2.3 Configure PBS Server and Scheduler for Cloud Bursting
	3.2.4 Manage Application Licenses for Cloud Jobs
	3.2.4.1 Create cron Script and Static Resource
	3.2.4.2 Create Dynamic Server-level Resource for Each Application License
	3.2.4.3 Include Licenses in Scenarios

	3.2.5 Create and Configure Cloud Queues
	3.2.6 Configure Non-cloud Queues and Nodes
	3.2.7 Use Authentication and Encryption
	3.2.8 Running Cloud Queue Jobs On Premises
	3.2.9 Running Non-Cloud Queue Jobs in the Cloud

	3.3 Configuring PBS Cloud
	3.3.1 Log Into PBS Cloud
	3.3.2 Create Your Cloud Provider Account
	3.3.3 Add Your Provider Account to PBS Cloud
	3.3.3.1 Example of Adding Azure Account to PBS Cloud

	3.3.4 Create a Bursting Scenario
	3.3.4.1 Adding Hostname Prefix
	3.3.4.2 Temporarily Adding Public IP for Debugging
	3.3.4.3 Specifying the Cloud Node Startup Script
	3.3.4.3.i Startup Script Prerequisites
	3.3.4.3.ii Steps to Add Startup Script to Scenario

	3.3.4.4 Adding SSH Key for Access to Burst Nodes
	3.3.4.5 Setting Idle Time
	3.3.4.6 Adding Tags (Labels) to Scenario
	3.3.4.7 Managing Instances
	3.3.4.7.i Cloud Provider Instance Types
	3.3.4.7.ii Steps to Choose Instance Types
	3.3.4.7.iii Managing Hyperthreading for an Instance Type

	3.3.4.8 Adding Quotas and Alerts
	3.3.4.9 Example of Creating a Scenario
	3.3.4.10 Editing a Bursting Scenario
	3.3.4.11 Creating API Key for Cloud Hook to Use

	3.3.5 Using Spot or Preemptable Pricing
	3.3.5.1 When to Use Spot or Preemptable Instances
	3.3.5.2 How Spot and Preemptable Instances Work
	3.3.5.3 Setting Max for Spot Pricing
	3.3.5.4 Preemptable Pricing
	3.3.5.5 Specifying Spot Pricing
	3.3.5.6 Example of Choosing Instances for Spot Pricing

	3.3.6 Managing Node Licenses

	3.4 Providing Nodes Grouped on High Speed Network
	3.4.1 Requirements for Providing Nodes on High Speed Networks

	3.5 Providing Bare-metal Instances
	3.5.1 Requirements for Providing Bare Metal Instances

	3.6 Testing Cloud Bursting
	3.6.1 Test Each Scenario using Manual Bursting
	3.6.1.1 Troubleshooting Prerequisites
	3.6.1.2 Testing and Refining a Scenario
	3.6.1.3 Disabling Public IP Address

	Configuring the Cloud Bursting Hook
	4.1 The Cloud Bursting Hooks
	4.1.1 Default Cloud Bursting Hook Configuration File

	4.2 Configuring the Cloud Bursting Hooks
	4.2.1 Main Configuration Parameters for Cloud Hooks
	4.2.2 Scenario Configuration Parameters for Cloud Hooks
	4.2.3 Steps to Configure Cloud Bursting Hooks
	4.2.4 Defining a Scenario in a Cloud Bursting Hook Configuration File
	4.2.4.1 Put All Bare Metal Scenarios in Extension Cloud Bursting Hook
	4.2.4.2 Prerequisites for Defining a Scenario in a Hook Configuration File
	4.2.4.3 Steps to Define a Scenario in a Hook Configuration File

	4.2.5 Modifying a Cloud Bursting Hook Configuration File
	4.2.6 Creating a Scenario for a Preemptable or Spot Instance
	4.2.7 Deleting a Scenario from the Cloud Bursting Hook Configuration File
	4.2.8 Changing PBS Cloud Host or Port
	4.2.9 Using Custom Snapshots
	4.2.9.1 Creating Custom Snapshots
	4.2.9.2 Caveats and Restrictions for Using Custom Snapshots

	4.3 Testing Automated Cloud Bursting
	4.3.1 Prerequisites for Testing Cloud Bursting Hook
	4.3.2 Steps to Test Automate Cloud Bursting

	Using Cloud Provider Services
	5.1 Configuring Amazon Web Service Cloud Bursting
	5.1.1 Types of Amazon Accounts
	5.1.2 Creating and Activating AWS Owner Account
	5.1.3 Creating an AWS IAM User Account
	5.1.4 Multi-Availability Zone Management on AWS
	5.1.5 Create a Virtual Private Cloud Network
	5.1.5.1 Choose a Region
	5.1.5.2 Create a VPC
	5.1.5.3 Create Subnets for the VPC

	5.1.6 Create an Internet Gateway
	5.1.7 Update the VPC Route Table
	5.1.8 Add Inbound Rules to VPC Security Groups
	5.1.9 Create a Virtual Machine
	5.1.10 Install a PBS MoM on the VM
	5.1.10.1 Installing a PBS MoM on a Linux VM
	5.1.10.2 Installing the PBS MoM on the Windows VM

	5.1.11 Add Authentication and Encryption
	5.1.11.1 Add Authentication via MUNGE
	5.1.11.2 Add Encryption via TLS

	5.1.12 Create an OS Image
	5.1.13 Collect Information for an AWS Cloud Bursting Scenario
	5.1.13.1 Scenario Parameters to Collect at Vendor Interface
	5.1.13.2 Steps to Collect Information

	5.2 Configuring Microsoft Azure Cloud Bursting
	5.2.1 Prerequisites
	5.2.2 Register PBS Cloud with Azure
	5.2.3 Create a Resource Group
	5.2.4 Create a Virtual Network
	5.2.5 Create a Virtual Machine
	5.2.6 Install a PBS MoM on the VM
	5.2.6.1 Install a PBS MoM on a Linux VM
	5.2.6.2 Install a PBS MoM on a Windows VM

	5.2.7 Add Authentication and Encryption
	5.2.7.1 Add Authentication via MUNGE
	5.2.7.2 Add Encryption via TLS

	5.2.8 Create an OS Image
	5.2.8.1 Create a Linux OS Image
	5.2.8.2 Create a Windows OS Image

	5.2.9 Collect Information for an Azure Cloud Bursting Scenario
	5.2.9.1 Scenario Parameters to Collect at Vendor Interface
	5.2.9.2 Steps to Collect Information

	5.3 Configuring Google Cloud Platform Cloud Bursting
	5.3.1 Sign Up for a GCP Account
	5.3.2 Create a Project
	5.3.3 Create a Service Account
	5.3.4 Create a Virtual Private Cloud Network
	5.3.5 Create a Virtual Machine
	5.3.6 Install and Configure a PBS MoM on the VM
	5.3.7 Add Authentication and Encryption
	5.3.7.1 Add Authentication via MUNGE
	5.3.7.2 Add Encryption via TLS

	5.3.8 Create an OS Image
	5.3.9 Collect Information for GCP Cloud Bursting Scenario
	5.3.9.1 Scenario Parameters to Collect at Vendor Interface
	5.3.9.2 Steps to Collect Information

	5.4 Configuring Oracle Cloud Platform Cloud Bursting
	5.4.1 Sign Up for an Oracle Cloud Account
	5.4.2 Create Oracle Cloud User Account
	5.4.3 Generating an SSH Public Key for the Oracle Cloud User
	5.4.4 Obtain the Root Compartment Identifier
	5.4.5 Obtain the Tenancy Identifier
	5.4.6 Create a Virtual Cloud Network
	5.4.7 Check Tenancy Service Limits
	5.4.8 Creating a Virtual Machine
	5.4.9 Installing and Configuring a PBS MoM on the VM
	5.4.10 Add Authentication and Encryption
	5.4.10.1 Add Authentication via MUNGE
	5.4.10.2 Add Encryption via TLS

	5.4.11 Create an OS Image
	5.4.12 Collect Information for Oracle Cloud Bursting Scenario
	5.4.12.1 Scenario Parameters to Collect at Vendor Interface
	5.4.12.2 Steps to Collect Information

	5.5 Configuring Orange Cloud Flexible Engine for Cloud Bursting
	5.5.1 Purchase an Orange Business Services Account
	5.5.2 Create an Orange Cloud Flexible Engine User Account
	5.5.3 Select a Region
	5.5.4 Check Orange Cloud Flexible Engine Account Service Quota
	5.5.5 Create a Virtual Private Cloud
	5.5.6 Creating a Virtual Machine
	5.5.7 Installing and Configuring a PBS MoM on the VM
	5.5.8 Add Authentication and Encryption
	5.5.8.1 Add Authentication via MUNGE
	5.5.8.2 Add Encryption via TLS

	5.5.9 Create an OS Image
	5.5.9.1 Prerequisites
	5.5.9.2 Steps to Create OS Image

	5.5.10 Create Orange Cloud Cloud Bursting Scenario
	5.5.10.1 Scenario Parameters to Collect at Vendor Interface
	5.5.10.2 Steps to Collect Information

	5.6 Configuring HUAWEI Cloud for Cloud Bursting
	5.6.1 Create and Activate HUAWEI Account
	5.6.2 Get the HUAWEI Cloud Administrator Credentials
	5.6.2.1 Choose Administrative User
	5.6.2.2 Get Credentials

	5.6.3 Check HUAWEI Cloud Account Service Quotas
	5.6.4 Create a Virtual Private Cloud
	5.6.5 Creating a Virtual Machine
	5.6.6 Installing and Configuring a PBS MoM on the VM
	5.6.7 Add Authentication and Encryption
	5.6.7.1 Add Authentication via MUNGE
	5.6.7.2 Add Encryption via TLS

	5.6.8 Create an OS Image
	5.6.9 Collect HUAWEI Cloud Bursting Scenario Information
	5.6.9.1 Scenario Parameters to Collect at Vendor Interface
	5.6.9.2 Steps to Collect Information

	5.7 Configuring Open Telekom Cloud for Cloud Bursting
	5.7.1 Create and Activate OTC Cloud Account
	5.7.2 Obtain the OTC Administrator Credentials
	5.7.2.1 Choose Administrative User
	5.7.2.2 Get Credentials

	5.7.3 Check OTC Account Service Quotas
	5.7.4 Create a Virtual Private Cloud
	5.7.5 Creating a Virtual Machine
	5.7.6 Installing and Configuring a PBS MoM on the VM
	5.7.7 Add Authentication and Encryption
	5.7.7.1 Add Authentication via MUNGE
	5.7.7.2 Add Encryption via TLS

	5.7.8 Create an OS Image
	5.7.9 Create an OTC Cloud Bursting Scenario
	5.7.9.1 Scenario Parameters to Collect at Vendor Interface
	5.7.9.2 Steps to Collect Information

	5.8 Configuring OpenStack Cloud Bursting
	5.8.1 Get OpenStack Administrator Credentials
	5.8.2 Create Virtual Private Cloud and OS Image
	5.8.2.1 Create a Virtual Private Cloud
	5.8.2.2 Create a Virtual Machine
	5.8.2.3 Install and Configure a PBS MoM on the Virtual Machine
	5.8.2.4 Add Authentication and Encryption
	5.8.2.4.i Add Authentication via MUNGE
	5.8.2.4.ii Add Encryption via TLS

	5.8.2.5 Create OS Image from VM

	5.9 Configuring Alibaba Cloud Bursting
	5.9.1 Create Alibaba Cloud Account
	5.9.1.1 Steps for Creating Alibaba Cloud Account

	5.9.2 Create a Virtual Private Cloud and a vSwitch (Subnet)
	5.9.3 Create a Virtual Machine
	5.9.4 Install a PBS MoM on the VM
	5.9.5 Create a Custom OS Image
	5.9.6 Collect Information for an Alibaba Cloud Bursting Scenario
	5.9.6.1 Scenario Parameters to Collect at Vendor Interface
	5.9.6.2 Steps to Collect Information

	5.9.7 Alibaba Cloud Regions and Zones
	5.9.7.1 Zone IDs for Specific Regions

	5.10 Windows Bursting on AWS and Azure
	5.10.1 OS Image Name
	5.10.2 Inbound Security Rule for RDP
	5.10.3 Startup Script
	5.10.4 See Also

	The Cloud Node Startup Script
	6.1 Introduction
	6.1.1 Making cloud-init Tool Available in OS Image
	6.1.2 Adding a cloud-init Script to a Scenario
	6.1.3 Startup Script Prerequisites
	6.1.4 Startup Script Recommendations

	6.2 Customizing Your Startup Script
	6.2.1 Mounting /home Directory
	6.2.2 Configuring MoM for Local Copy
	6.2.3 Creating Local Scratch Space
	6.2.3.1 Creating Job-specific Staging and Execution Directories
	6.2.3.2 Using Shared Directories for Staging and Execution

	6.2.4 Example cloud-init Startup Script for Linux

	6.3 Developing the Startup Script
	6.3.1 Prerequisites for Developing a Startup Script
	6.3.2 What to Test For
	6.3.3 Steps to Develop the Startup Script
	6.3.4 Example of Developing a cloud-init Script
	6.3.5 Caveats for Testing Startup Script

	Managing Cloud Bursting
	7.1 Logging into PBS Cloud
	7.2 Managing Cloud Bursting
	7.2.1 Viewing Cloud Account Details
	7.2.2 Manually Bursting Cloud Nodes
	7.2.2.1 Tagging Burst Nodes
	7.2.2.2 Caveats for Manually Burst Nodes

	7.2.3 Viewing Burst Cloud Nodes
	7.2.4 Enabling or Disabling a Bursting Scenario in PBS Cloud
	7.2.5 Disabling Bursting for a Scenario and Queue
	7.2.6 Re-enabling Bursting for a Scenario and Queue

	7.3 Starting, Stopping, Restarting, and Statusing PBS Cloud
	7.3.1 Start PBS Cloud
	7.3.2 Stop PBS Cloud
	7.3.3 Restart PBS Cloud
	7.3.4 Determine the Status of PBS Cloud

	7.4 Monitoring Logs and Workflows
	7.5 Updating PBS Cloud Administrator Password
	7.6 Troubleshooting Cloud Bursting
	7.6.1 PBS MoM is Stopped or Down
	7.6.2 Loki Logs
	7.6.3 Examining Node Bursting Workflows

	Managing Cloud Jobs
	8.1 Managing Job Distribution to Cloud and On-premise Nodes
	8.1.1 Running Cloud Jobs On-Premise When Possible
	8.1.1.1 Steps to Run Cloud Jobs On-premise When Possible

	8.1.2 Job Distribution Examples and Solutions
	8.1.2.1 Send Small Jobs to the Cloud
	8.1.2.2 Send Specific Jobs Only to the Cloud
	8.1.2.3 Charge Departments for Resources Used

	8.2 Allowing Easy Assignment of Jobs to On-premise or Cloud Nodes
	8.2.1 Assigning Resources to Jobs Via Queue Defaults
	8.2.1.1 Specifying Chunk Default Resources at Queue
	8.2.1.2 Specifying Job-wide Default Resources at Queue

	Example Azure Head/Service Node
	9.1 Example Configuration of Cloud Head/Service Node in Azure

	Command Reference
	10.1 PBS Cloud PCLM Command-line Interface
	10.1.1 Introduction
	10.1.1.1 Bursting Scenarios
	10.1.1.2 Bursting Scenario States
	10.1.1.3 PBS Cloud Account States
	10.1.1.4 Cloud Node States
	10.1.1.5 Some Outputs of PCLM Commands
	10.1.1.6 Options to the pclm Command

	10.1.2 CLI Scenario Commands
	10.1.2.1 Enabling a Bursting Scenario
	10.1.2.2 Disabling a Bursting Scenario
	10.1.2.3 Displaying a List of Bursting Scenarios
	10.1.2.4 Displaying Bursting Scenario Details
	10.1.2.5 Setting Minimum Time Before Unbursting Idle Node

	10.1.3 CLI Node Commands
	10.1.3.1 Bursting Cloud Nodes
	10.1.3.2 Unbursting Cloud Nodes
	10.1.3.3 Displaying Cloud Node Details
	10.1.3.4 Defining Network Disk Size for Cloud Node Root System
	10.1.3.5 Specifying Image to Use when Bursting
	10.1.3.6 Providing Nodes on High Speed Networks
	10.1.3.7 Bursting Asynchronously
	10.1.3.8 Querying Bursting Activity
	10.1.3.9 Bursting Preemptable Instances

	10.2 PBS Cloud pkr Interface
	10.2.1 Using pkr with PBS Cloud
	10.2.2 Sample pkr Output on Startup
	10.2.3 Sample pkr Output on Stop
	10.2.4 Sample pkr Output while Running
	10.2.5 Sample pkr Output while Stopped

	Index

	Budgets Guide (BG)
	Contents
	Introduction to Budgets
	1.1 Using Budgets to Track, Reveal, and Manage Resource Use
	1.1.1 Two Modes: Postpaid and Prepaid
	1.1.2 Using Postpaid Mode to Validate Jobs and Understand Resource Usage
	1.1.2.1 Job Flow in Postpaid Mode

	1.1.3 Using Prepaid Mode to Validate Jobs and Manage Credit and Costs
	1.1.3.1 Managing Job Submission and Execution in Prepaid Mode
	1.1.3.2 Job Flow in Prepaid Mode

	1.1.4 Tracking Cloud Costs and On Premise Costs Separately
	1.1.5 Recommendation: Start Using Budgets in Postpaid Mode

	1.2 Some Nuts and Bolts
	1.2.1 The AMS Module
	1.2.2 Number of Instances and Workers
	1.2.3 Hooks and Formulas
	1.2.4 Database
	1.2.5 Budgets and PBS Cloud

	1.3 Budgets Terminology
	1.4 Roles
	1.5 Investing and Consuming Service Units
	1.5.1 Investing in Groups (Cost Centers)
	1.5.2 Investing in Users and Projects
	1.5.3 Charging Jobs to User or Project Account
	1.5.4 Job and Credit Lifecycle
	1.5.4.1 Job and Credit Lifecycle in Postpaid Mode
	1.5.4.2 Job and Credit Lifecycle in Prepaid Mode

	1.5.5 Reconciling Jobs
	1.5.6 Refunding Users and Projects
	1.5.7 Retrieving Abandoned Service Units

	1.6 Accounts in Budgets
	1.6.1 Group, Group Account
	1.6.2 Project, Project Account
	1.6.2.1 Project Attributes

	1.6.3 User, User Account
	1.6.3.1 Requirements for Adding Job Submitters

	1.7 Accounting Tools
	1.7.1 Periods, Allocation Periods, Billing Periods
	1.7.1.1 Caveats for Creating Periods

	1.7.2 Service Units
	1.7.2.1 Standard Service Units
	1.7.2.1.i Adding and Removing Standard Service Units

	1.7.2.2 Dynamic Service Units
	1.7.2.2.i Caveats for Dynamic Service Units
	1.7.2.2.ii Attributes for Dynamic Service Units
	1.7.2.2.iii Adding and Removing Dynamic Service Units
	1.7.2.2.iv Checking Quotas (Limits on Dynamic Service Units)

	1.7.2.3 Examples of Storage Quotas via Dynamic Service Units
	1.7.2.4 Rules for Using Service Units

	1.7.3 Transactions
	1.7.3.1 Transaction IDs

	1.7.4 Accounting Policy
	1.7.5 Clusters

	1.8 Summary of Setting Budgets Up for Postpaid or Prepaid Mode
	1.8.1 Summary of Using Postpaid Mode
	1.8.2 Summary of Using Prepaid Mode

	1.9 Caveats and Restrictions
	1.10 Troubleshooting
	1.10.1 Using Logfiles for Troubleshooting
	1.10.1.1 Using Budgets Logfile
	1.10.1.2 Using PBS Server Logfile

	1.10.2 Symptoms

	1.11 Formats in Budgets
	1.11.1 Name Formats

	Installing and Upgrading Budgets
	2.1 Supported Platforms
	2.1.1 OpenSSL Requirement
	2.1.2 PBS Components
	2.1.3 Supported Platforms for PBS Components
	2.1.3.1 * SLES Restrictions for Cloud and Budgets Nodes

	2.1.4 Supported Platforms for Nodes Burst in Cloud
	2.1.5 Restrictions on Simulate Module Location when Using PBS Cloud
	2.1.6 Hosts for Budgets Client Commands

	2.2 Recommended Configurations
	2.2.1 Installation Directory
	2.2.2 Recommended Configuration for Larger Installations
	2.2.3 Recommended Configuration for Smaller Installations

	2.3 Whether or Not to Start with Failover
	2.4 Prerequisites
	2.4.1 Altair Software Components
	2.4.2 Third-party Software Components
	2.4.3 Job Requirements

	2.5 Installation Steps for All Locations
	2.5.1 Create Required User Accounts
	2.5.1.1 Budgets Administrator
	2.5.1.1.i Requirements for Administrator Account

	2.5.1.2 Teller
	2.5.1.2.i Requirements for Teller Account

	2.5.1.3 Database User
	2.5.1.3.i Requirements for Database User Account

	2.5.1.4 Job Submitters
	2.5.1.4.i Requirements for Job Submitters

	2.5.1.5 Configuring Required Accounts for Budgets

	2.5.2 Allow Interaction with PBS Professional
	2.5.2.1 Budgets Server and PBS Server on Same Host
	2.5.2.2 Budgets Server and PBS Server on Separate Hosts
	2.5.2.2.i Changes to sudoers on Budgets Server Host
	2.5.2.2.ii Changes to sudoers on PBS Server Host

	2.5.3 Set Up Passwordless SSH for Administrator and Teller
	2.5.3.1 Setting Up Passwordless SSH for Administrator
	2.5.3.2 Setting Up Passwordless SSH for Teller

	2.5.4 Set Budgets Paths

	2.6 Installation Steps for Default Location
	2.6.1 Install Utilities and Docker
	2.6.2 Download Budgets Server and AMS Modules
	2.6.3 Install AMS Module on Service Node
	2.6.4 Enable Passwords in Docker Container Network
	2.6.5 Create Certificates for Budgets Daemon Communication Encryption
	2.6.6 Install Budgets Server Module
	2.6.7 Set Configuration Parameters
	2.6.7.1 Budgets Configuration Parameters
	2.6.7.2 Example Configuration File
	2.6.7.3 Caveats and Advice for Budgets Configuration Parameters

	2.6.8 Enable and Start Budgets

	2.7 Installation Steps for Non-default Location
	2.7.1 Set Configuration Parameters
	2.7.2 Install Utilities and Docker
	2.7.3 Download Budgets Server and AMS Modules
	2.7.4 Install AMS Module on Service Node
	2.7.5 Enable Passwords in Docker Container Network
	2.7.6 Create Certificates for Budgets Daemon Communication Encryption
	2.7.7 Install Budgets Server Module
	2.7.8 Enable and Start Budgets

	2.8 Validating Budgets
	2.9 Configuring Budgets for Failover
	2.9.1 Prerequisites for Configuring Budgets Failover
	2.9.1.1 Third-party Software Prerequisites
	2.9.1.2 Budgets Server Host Prerequisites
	2.9.1.3 Filesystem Prerequisites
	2.9.1.4 Optional
	2.9.1.5 Notes

	2.9.2 Installing Corosync, Pacemaker, and pcs
	2.9.3 Configuring Pacemaker
	2.9.4 Caveats and Recommendations for Failover
	2.9.5 Starting, Stopping, and Getting Status of Budgets with Failover Configured

	2.10 Upgrading Budgets
	2.11 Changing Budgets Administrator to New Username
	2.12 Installing Budgets Client Module
	2.12.1 Prerequisites for Installing Budgets Client Commands
	2.12.2 Caveats and Restrictions for Installing Budgets Client Commands
	2.12.3 Steps to Install Budgets Client Commands

	Configuring and Managing Budgets
	3.1 Defining Billing Periods
	3.2 Adding a PBS Complex and Setting its Billing Model
	3.2.1 Caveats and Advice on Billing Model
	3.2.2 Steps to Add Complex and Set Billing Model
	3.2.3 Define Billing Formulas
	3.2.3.1 Billing Formula File and Format
	3.2.3.1.i Constants (Numbers)
	3.2.3.1.ii PBS Resources and Attributes
	3.2.3.1.iii Operators
	3.2.3.1.iv Units
	3.2.3.1.v Distinguishing Cloud Costs from On Premise Costs

	3.2.3.2 Defining Service Units
	3.2.3.3 Defining Cloud and On Premise Service Units
	3.2.3.3.i Example of Defining Cloud and On Premise Service Units

	3.2.3.4 Default Billing Formula File Contents
	3.2.3.5 Formula File Examples

	3.2.4 Create and Configure Budgets Hooks
	3.2.4.1 Caveats and Advice on Budgets Hooks

	3.2.5 Configuring Resources for Budgets
	3.2.5.1 List of PBS Professional Custom Resources for Budgets
	3.2.5.2 Create and Set Resources

	3.2.6 Separating On Premise and Cloud Costs
	3.2.6.1 Behavior When Separating Costs in Prepaid Mode
	3.2.6.2 Behavior When Separating Costs in Postpaid Mode
	3.2.6.3 Steps to Separate On Premise and Cloud Costs

	3.2.7 Requiring Sufficient Credit Before Bursting Cloud Nodes
	3.2.7.1 Behavior When Requiring Credit in Prepaid Mode
	3.2.7.2 Behavior When Requiring Credit in Postpaid Mode

	3.2.8 Allow Easy Quote Request
	3.2.9 Changing the Billing Formula File
	3.2.9.1 Procedure for Changing Billing Formula File
	3.2.9.2 Caveats and Restrictions on Changing Billing Formula File

	3.3 Setting Budgets Configuration Attributes
	3.4 Configuring Budgets for Peer Scheduling
	3.5 Changing Between Modes
	3.5.1 Changing Mode from Postpaid to Prepaid
	3.5.2 Changing Mode from Prepaid to Postpaid

	Budgets Commands
	4.1 Budgets Commands
	4.1.1 Command Path
	4.1.2 Using Budgets Commands
	4.1.3 Tables of Budgets Commands

	4.2 Commands for Managing Budgets Elements
	4.2.1 Adding Elements
	4.2.1.1 Required Privilege
	4.2.1.2 Adding a User
	4.2.1.2.i Synopsis
	4.2.1.2.ii Description
	4.2.1.2.iii Options
	4.2.1.2.iv Command Examples

	4.2.1.3 Adding a Project
	4.2.1.3.i Synopsis
	4.2.1.3.ii Description
	4.2.1.3.iii Options
	4.2.1.3.iv Example

	4.2.1.4 Adding a Group
	4.2.1.4.i Synopsis
	4.2.1.4.ii Description
	4.2.1.4.iii Options

	4.2.1.5 Adding a Cluster
	4.2.1.5.i Synopsis
	4.2.1.5.ii Description
	4.2.1.5.iii Options

	4.2.1.6 Adding a Period
	4.2.1.6.i Synopsis
	4.2.1.6.ii Description
	4.2.1.6.iii Options

	4.2.1.7 Adding a Service Unit
	4.2.1.7.i Synopsis
	4.2.1.7.ii Description
	4.2.1.7.iii Options
	4.2.1.7.iv Command Examples

	4.2.2 Listing Elements
	4.2.2.1 Required Privilege
	4.2.2.2 Listing Users
	4.2.2.2.i Synopsis
	4.2.2.2.ii Description
	4.2.2.2.iii Options

	4.2.2.3 Listing Projects
	4.2.2.3.i Synopsis
	4.2.2.3.ii Description
	4.2.2.3.iii Options

	4.2.2.4 Listing Groups
	4.2.2.4.i Synopsis
	4.2.2.4.ii Description
	4.2.2.4.iii Options

	4.2.2.5 Listing Clusters
	4.2.2.5.i Synopsis
	4.2.2.5.ii Description
	4.2.2.5.iii Options
	4.2.2.5.iv Examples

	4.2.2.6 Listing Periods
	4.2.2.6.i Synopsis
	4.2.2.6.ii Description
	4.2.2.6.iii Options

	4.2.2.7 Listing Service Units
	4.2.2.7.i Synopsis
	4.2.2.7.ii Description
	4.2.2.7.iii Options

	4.2.2.8 Listing Budgets Configuration Attributes
	4.2.2.8.i Synopsis
	4.2.2.8.ii Description
	4.2.2.8.iii Options
	4.2.2.8.iv Sample Output

	4.2.2.9 Listing Roles
	4.2.2.9.i Synopsis
	4.2.2.9.ii Description
	4.2.2.9.iii Options
	4.2.2.9.iv Command Example

	4.2.2.10 Listing Cloud Data
	4.2.2.10.i Synopsis
	4.2.2.10.ii Description
	4.2.2.10.iii Options
	4.2.2.10.iv Examples

	4.2.3 Updating Elements
	4.2.3.1 Required Privilege
	4.2.3.2 Updating Users
	4.2.3.2.i Synopsis
	4.2.3.2.ii Description
	4.2.3.2.iii Options

	4.2.3.3 Updating Projects
	4.2.3.3.i Synopsis
	4.2.3.3.ii Description
	4.2.3.3.iii Options
	4.2.3.3.iv Command Example

	4.2.3.4 Updating Groups
	4.2.3.4.i Synopsis
	4.2.3.4.ii Description
	4.2.3.4.iii Options

	4.2.3.5 Updating Clusters
	4.2.3.5.i Synopsis
	4.2.3.5.ii Description
	4.2.3.5.iii Options

	4.2.3.6 Updating a Period
	4.2.3.6.i Synopsis
	4.2.3.6.ii Description
	4.2.3.6.iii Options

	4.2.3.7 Updating a Service Unit
	4.2.3.7.i Synopsis
	4.2.3.7.ii Description
	4.2.3.7.iii Options

	4.2.3.8 Updating Configuration Attributes
	4.2.3.8.i Synopsis
	4.2.3.8.ii Description
	4.2.3.8.iii Options
	4.2.3.8.iv Examples

	4.2.3.9 Updating Dynamic Service Unit Usage
	4.2.3.9.i Synopsis
	4.2.3.9.ii Description
	4.2.3.9.iii Required Privilege
	4.2.3.9.iv Options
	4.2.3.9.v Examples

	4.2.3.10 Updating Cloud Cost Data
	4.2.3.10.i Synopsis
	4.2.3.10.ii Description
	4.2.3.10.iii Required Privilege
	4.2.3.10.iv Options
	4.2.3.10.v Examples
	4.2.3.10.vi Caveats for Updating Cloud Cost Data

	4.2.4 Removing Elements
	4.2.4.1 Required Privilege
	4.2.4.2 Removing a User
	4.2.4.2.i Synopsis
	4.2.4.2.ii Description
	4.2.4.2.iii Options
	4.2.4.2.iv Command Examples

	4.2.4.3 Removing a Project
	4.2.4.3.i Synopsis
	4.2.4.3.ii Description
	4.2.4.3.iii Options
	4.2.4.3.iv Example

	4.2.4.4 Removing a Group
	4.2.4.4.i Synopsis
	4.2.4.4.ii Description
	4.2.4.4.iii Options

	4.2.4.5 Removing a Cluster
	4.2.4.5.i Synopsis
	4.2.4.5.ii Description
	4.2.4.5.iii Options

	4.2.4.6 Removing a Period
	4.2.4.6.i Synopsis
	4.2.4.6.ii Description
	4.2.4.6.iii Options

	4.2.4.7 Removing a Service Unit
	4.2.4.7.i Synopsis
	4.2.4.7.ii Description
	4.2.4.7.iii Options
	4.2.4.7.iv Command Examples

	4.2.5 Getting Reports on Elements
	4.2.5.1 Required Privilege
	4.2.5.2 Getting User Reports
	4.2.5.2.i Synopsis
	4.2.5.2.ii Description
	4.2.5.2.iii Options
	4.2.5.2.iv Output Format
	4.2.5.2.v Command Examples in Postpaid Mode
	4.2.5.2.vi Command Examples in Prepaid Mode

	4.2.5.3 Getting Project Reports
	4.2.5.3.i Synopsis
	4.2.5.3.ii Description
	4.2.5.3.iii Options
	4.2.5.3.iv Output Format
	4.2.5.3.v Command Example for Postpaid Mode
	4.2.5.3.vi Command Example for Prepaid Mode
	4.2.5.3.vii Project Reports Showing Dynamic Service Units

	4.2.5.4 Getting Group Reports
	4.2.5.4.i Synopsis
	4.2.5.4.ii Description
	4.2.5.4.iii Options
	4.2.5.4.iv Group Report Examples

	4.2.5.5 Getting Job and Transaction Reports
	4.2.5.5.i Synopsis
	4.2.5.5.ii Description
	4.2.5.5.iii Options
	4.2.5.5.iv Output Format
	4.2.5.5.v Examples

	4.2.6 Applying Limits to Dynamic Service Units
	4.2.6.1 Synopsis
	4.2.6.2 Description
	4.2.6.3 Effect of Limits on the Period Hierarchy
	4.2.6.3.i Rules for LImits on Dynamic Service Units

	4.2.6.4 Required Privilege
	4.2.6.5 Options
	4.2.6.6 Examples

	4.2.7 Syncing Formula File to PBS Complex
	4.2.7.1 Synopsis
	4.2.7.2 Description
	4.2.7.3 Required Privilege
	4.2.7.4 Options

	4.3 Transaction and Account Checking Commands
	4.3.1 Depositing Service Units
	4.3.1.1 Deposit Service Units to User
	4.3.1.1.i Synopsis
	4.3.1.1.ii Description
	4.3.1.1.iii Required Privilege
	4.3.1.1.iv Options

	4.3.1.2 Depositing Service Units to Project
	4.3.1.2.i Synopsis
	4.3.1.2.ii Description
	4.3.1.2.iii Required Privilege
	4.3.1.2.iv Options

	4.3.1.3 Depositing Service Units to Group
	4.3.1.3.i Synopsis
	4.3.1.3.ii Description
	4.3.1.3.iii Required Privilege
	4.3.1.3.iv Options

	4.3.2 Checking Service Unit Balance
	4.3.2.1 Required Privilege
	4.3.2.2 Output Format
	4.3.2.3 Command Example
	4.3.2.4 Checking Service Unit Balance for User
	4.3.2.4.i Synopsis
	4.3.2.4.ii Description
	4.3.2.4.iii Options

	4.3.2.5 Checking Service Unit Balance for Project
	4.3.2.5.i Synopsis
	4.3.2.5.ii Description
	4.3.2.5.iii Options

	4.3.2.6 Checking Service Unit Balance for Group
	4.3.2.6.i Synopsis
	4.3.2.6.ii Description
	4.3.2.6.iii Options

	4.3.3 Withdrawing Service Units
	4.3.3.1 Withdrawing Service Units from User
	4.3.3.1.i Synopsis
	4.3.3.1.ii Description
	4.3.3.1.iii Required Privilege
	4.3.3.1.iv Options

	4.3.3.2 Withdrawing Service Units from Project
	4.3.3.2.i Synopsis
	4.3.3.2.ii Description
	4.3.3.2.iii Required Privilege
	4.3.3.2.iv Options

	4.3.3.3 Withdrawing Service Units from Group
	4.3.3.3.i Synopsis
	4.3.3.3.ii Description
	4.3.3.3.iii Required Privilege
	4.3.3.3.iv Options

	4.3.4 Prechecking Service Unit Balance
	4.3.4.1 Prechecking a User or Project
	4.3.4.1.i Synopsis
	4.3.4.1.ii Description
	4.3.4.1.iii Required Privilege
	4.3.4.1.iv Options
	4.3.4.1.v Output

	4.3.4.2 Prechecking Jobs
	4.3.4.2.i Synopsis
	4.3.4.2.ii Description
	4.3.4.2.iii Required Privilege
	4.3.4.2.iv Options
	4.3.4.2.v Output
	4.3.4.2.vi Examples

	4.3.5 Acquiring Service Units
	4.3.5.1 Description
	4.3.5.2 Required Privilege
	4.3.5.3 Acquiring Service Units for User
	4.3.5.3.i Synopsis
	4.3.5.3.ii Options

	4.3.5.4 Acquiring Service Units for Project
	4.3.5.4.i Synopsis
	4.3.5.4.ii Options

	4.3.6 Reconciling Service Units
	4.3.6.1 Required Privilege
	4.3.6.2 Reconciling Service Units for User
	4.3.6.2.i Synopsis
	4.3.6.2.ii Description
	4.3.6.2.iii Options

	4.3.6.3 Reconciling Service Units for Project
	4.3.6.3.i Synopsis
	4.3.6.3.ii Description
	4.3.6.3.iii Options

	4.3.7 Refunding Service Units
	4.3.7.1 Description
	4.3.7.2 Required Privilege
	4.3.7.3 Synopsis
	4.3.7.4 Options

	4.3.8 Transferring Service Units
	4.3.8.1 Description
	4.3.8.2 Required Privilege
	4.3.8.3 Transferring Service Units for User
	4.3.8.3.i Synopsis
	4.3.8.3.ii Description
	4.3.8.3.iii Options

	4.3.8.4 Transferring Service Units for Project
	4.3.8.4.i Synopsis
	4.3.8.4.ii Description
	4.3.8.4.iii Options

	4.3.8.5 Transferring Service Units for Investors and Group
	4.3.8.5.i Synopsis
	4.3.8.5.ii Description
	4.3.8.5.iii Options

	Basic Install and Configure
	5.1 Basic Install and Configure Instructions
	5.1.1 Assumptions
	5.1.2 Installation
	5.1.3 Configuration

	Using Budgets
	6.1 Managing Credit with Budgets
	6.2 Tutorials
	6.2.1 Tutorial on Configuring and Using Budgets in Prepaid Mode
	6.2.1.1 Prerequisites
	6.2.1.2 Tutorial Steps to Configure Budgets
	6.2.1.2.i Create Periods
	6.2.1.2.ii Add PBS Complex to Budgets
	6.2.1.2.iii Create Standard Service Unit
	6.2.1.2.iv Add Users to Budgets
	6.2.1.2.v Create Group
	6.2.1.2.vi Associate Job Submitters with Group
	6.2.1.2.vii Create Project and Give It Cluster and User
	6.2.1.2.viii Invest in Group
	6.2.1.2.ix Deposit Service Units to Project
	6.2.1.2.x Deposit Service Units to Users

	6.2.1.3 Tutorial Steps to Use Budgets
	6.2.1.3.i Run User Job
	6.2.1.3.ii Run Project Job
	6.2.1.3.iii Non-project User Tries to Run Project Job
	6.2.1.3.iv Manager Runs Report on Project

	6.2.2 Tutorial on Configuring Budgets in Postpaid Mode
	6.2.2.1 Prerequisites
	6.2.2.2 Tutorial Steps to Configure Budgets
	6.2.2.2.i Create Periods
	6.2.2.2.ii Add PBS Complex to Budgets
	6.2.2.2.iii Create Standard Service Unit
	6.2.2.2.iv Add Users to Budgets
	6.2.2.2.v Create Group
	6.2.2.2.vi Associate Job Submitters with Group
	6.2.2.2.vii Create Project and Give It Cluster and User

	6.2.2.3 Tutorial Steps to Use Budgets
	6.2.2.3.i Run User Job
	6.2.2.3.ii Run Project Job
	6.2.2.3.iii Non-project User Tries to Run Project Job
	6.2.2.3.iv Manager Runs Report on Project

	Index

	Simulate Guide (SG)
	Contents
	Introduction to Simulate
	1.1 What is Simulate?
	1.1.1 Getting Insight into Workload
	1.1.2 Tuning Your Site Configuration
	1.1.2.1 Tuning Scheduling Parameters

	1.1.3 Examples of Using Simulate
	1.1.3.1 Meeting Emergency Needs
	1.1.3.2 Handling Special Workloads
	1.1.3.3 Handling Weekend Workloads
	1.1.3.4 Planning System Downtime

	1.2 Simulation Terminology
	1.3 Differences between Simulation and Live Complex

	Installing and Configuring Simulate
	1.1 Supported Platforms
	1.1.1 OpenSSL Requirement
	1.1.2 PBS Components
	1.1.3 Supported Platforms for PBS Components
	1.1.3.1 * SLES Restrictions for Cloud and Budgets Nodes

	1.1.4 Supported Platforms for Nodes Burst in Cloud
	1.1.5 Restrictions on Simulate Module Location when Using PBS Cloud

	1.2 Prerequisites
	1.2.1 Required Storage and Processors

	1.3 Where to Install Simulate
	1.4 Installation
	1.5 Configuration
	1.5.1 Configure Licensing for Simulate
	1.5.2 Set Path to Snapshot Directory

	1.6 Setting Up User Environment

	Using Simulate
	2.1 Basics of Using Simulate
	2.2 Working with Snapshots
	2.2.1 Taking a Snapshot of a Live PBS Complex
	2.2.2 What Does a Snapshot Contain?
	2.2.3 Inspecting Snapshot Contents
	2.2.4 Modifying Your Snapshot
	2.2.4.1 Editing Files in a Snapshot
	2.2.4.2 Modifying Available Resources on Hosts
	2.2.4.3 Modifying Attribute Values
	2.2.4.4 Adjusting Formula
	2.2.4.5 Creating Simulated Execution Hosts
	2.2.4.6 Creating Simulated Reservations
	2.2.4.7 Adding Jobs to a Snapshot
	2.2.4.8 Obfuscating Sensitive Snapshot Information

	2.3 How to Run Simulations
	2.3.1 Prerequisites
	2.3.2 Using the sim Command to Run a Simulation
	2.3.3 Running Multiple Simultaneous Simulations
	2.3.4 Simulation Output
	2.3.4.1 Simulation Output Snapshot Name
	2.3.4.1.i Initial Output Snapshot Name
	2.3.4.1.ii Naming for Multiple Output Snapshots

	2.3.4.2 Simulation Output Contents
	2.3.4.3 Simulation Output Statistics

	2.3.5 Simulating Scheduler Cycles or Duration
	2.3.6 Simulation Errors

	2.4 How to Examine Workloads
	2.4.1 Examining Job Priority Order
	2.4.2 Examining Job Execution Timing
	2.4.3 Finding Out Whether a Job Can Ever Run
	2.4.4 Finding Jobs that Did Not Run
	2.4.5 Figuring Out Why Job Did Not Run
	2.4.6 Examining Job Equivalence Classes
	2.4.7 Examining Scheduler Logs

	2.5 Using Simulations
	2.5.1 Simulating Cloud Bursting
	2.5.1.1 Steps to Simulate Cloud Bursting

	2.5.2 Using Simulations to Plan Downtime

	2.6 Using the Simulate-Review-Modify-Simulate Cycle

	Simulate Command Reference
	3.1 Command Notation
	3.2 List of Commands Used with Simulate
	3.3 The simsh Wrapper Script
	3.3.1 Synopsis
	3.3.2 Description
	3.3.3 Options to simsh
	3.3.4 Arguments to simsh

	3.4 pbsfs
	3.4.1 Synopsis
	3.4.2 Description
	3.4.2.1 Permissions

	3.4.3 Options to pbsfs
	3.4.3.1 Output Formats for pbsfs
	3.4.3.2 Data Output by pbsfs

	3.4.4 See Also

	3.5 pbsnodes
	3.5.1 Synopsis
	3.5.2 Description
	3.5.2.1 Using pbsnodes
	3.5.2.2 Output

	3.5.3 Options to pbsnodes
	3.5.4 Operands
	3.5.5 Exit Status
	3.5.6 See Also

	3.6 pbs_rstat
	3.6.1 Synopsis
	3.6.2 Description
	3.6.2.1 Required Privilege

	3.6.3 Output
	3.6.4 Options to pbs_rstat
	3.6.5 Operands
	3.6.6 See Also

	3.7 pbs_rsub
	3.7.1 Synopsis
	3.7.2 Description
	3.7.2.1 Reservation Timing
	3.7.2.2 Job Reservations
	3.7.2.3 Maintenance Reservations
	3.7.2.4 Requirements

	3.7.3 Options to pbs_rsub
	3.7.4 Output
	3.7.5 See Also

	3.8 pbs_snapshot
	3.8.1 Synopsis
	3.8.2 Description
	3.8.2.1 Required Privilege
	3.8.2.2 Restrictions

	3.8.3 Options to pbs_snapshot
	3.8.4 Output
	3.8.4.1 Output Location
	3.8.4.2 Output Contents

	3.8.5 Examples

	3.9 pbs_stat
	3.9.1 Synopsis
	3.9.2 Description
	3.9.3 Options to pbs_stat

	3.10 qdel
	3.10.1 Synopsis
	3.10.2 Description
	3.10.2.1 Usage
	3.10.2.2 Sequence of Events

	3.10.3 Options to qdel
	3.10.4 Operands
	3.10.5 Standard Error
	3.10.6 Exit Status
	3.10.7 See Also

	3.11 qmgr
	3.11.1 Synopsis
	3.11.2 Description
	3.11.2.1 Mode of Operation

	3.11.3 Options to qmgr
	3.11.4 Directives
	3.11.4.1 Directive Syntax
	3.11.4.1.i Server, Scheduler, Queue, Vnode Directives
	3.11.4.1.ii Resource Directives

	3.11.4.2 Using Directives
	3.11.4.3 Commands Used in Directives

	3.11.5 Arguments to Directive Commands
	3.11.5.1 Object Arguments to Directive Commands
	3.11.5.1.i Specifying Active Server
	3.11.5.1.ii Using Lists of Object Names
	3.11.5.1.iii Specifying Object Type and Name

	3.11.5.2 Operators in Directive Commands
	3.11.5.3 Windows Requirements For Directive Arguments

	3.11.6 Operating on Objects (Server, Scheduler, Vnode, Queue)
	3.11.6.1 Making Objects Active
	3.11.6.1.i Using the active Command

	3.11.6.2 Creating Objects (Server, Scheduler, Vnode, Queue)
	3.11.6.2.i Examples of Creating Objects

	3.11.6.3 Deleting Objects

	3.11.7 Operating on Attributes and Resources
	3.11.7.1 Setting Attribute and Resource Values
	3.11.7.1.i Examples of Setting Attribute Values

	3.11.7.2 Unsetting Attribute and Resource Values
	3.11.7.2.i Example of Unsetting Attribute Value

	3.11.7.3 Caveats and Restrictions for Setting Attribute and Resource Values
	3.11.7.4 Setting Custom Resource Type
	3.11.7.5 Setting Custom Resource Level and Consumability
	3.11.7.5.i Allowable Values for Resource Accumulation Flags
	3.11.7.5.ii When to Use Accumulation Flags
	3.11.7.5.iii Example of Resource Accumulation Flags
	3.11.7.5.iv Resource Accumulation Flag Restrictions and Caveats

	3.11.7.6 Setting Custom Resource Visibility
	3.11.7.6.i Allowable Values for Resource Permission Flags
	3.11.7.6.ii Effect of Resource Permission Flags
	3.11.7.6.iii Resource Permission Flag Restrictions and Caveats

	3.11.7.7 Specifying Whether Custom Resource is Cached at MoM
	3.11.7.7.i Caveats for Caching Custom Job Resources
	3.11.7.7.ii Examples of Defining Custom Resources and Setting Flags via qmgr

	3.11.8 Viewing Object, Attribute, and Resource Information
	3.11.8.1 Listing Objects and Their Attributes
	3.11.8.1.i Examples of Listing Objects and Their Attributes

	3.11.8.2 Listing Resource Definitions
	3.11.8.3 Printing Creation and Configuration Commands
	3.11.8.4 Caveats for Viewing Information

	3.11.9 Printing Usage Information
	3.11.10 Standard Input
	3.11.11 Standard Output
	3.11.12 Standard Error
	3.11.13 Exit Status
	3.11.14 See Also

	3.12 qselect
	3.12.1 Synopsis
	3.12.2 Description
	3.12.2.1 Comparison Operations
	3.12.2.2 Required Permissions

	3.12.3 Options to qselect
	3.12.4 Standard Output
	3.12.5 Standard Error
	3.12.6 Exit Status
	3.12.7 See Also
	3.12.8 Caveats

	3.13 qstat
	3.13.1 Synopsis
	3.13.1.1 Displaying Job Status
	3.13.1.2 Displaying Queue Status
	3.13.1.3 Displaying Server Status
	3.13.1.4 Displaying Version Information

	3.13.2 Description
	3.13.2.1 Display Formats
	3.13.2.2 Displaying Truncated Data
	3.13.2.3 Required Privilege

	3.13.3 Displaying Job Status
	3.13.3.1 Job Status in Default Format
	3.13.3.2 Job Status in Long Format
	3.13.3.3 Job Status in Alternate Format
	3.13.3.3.i Job Status Alternate Format Output Columns

	3.13.3.4 Grouping Jobs and Sorting by ID

	3.13.4 Displaying Queue Status
	3.13.4.1 Queue Status in Default Format
	3.13.4.2 Queue Status in Long Format
	3.13.4.2.i Queue Status: Alternate Format

	3.13.5 Displaying Server Status
	3.13.5.1 Server Status in Default Format:
	3.13.5.2 Server Status in Long Format

	3.13.6 Options to qstat
	3.13.6.1 Generic Job Status Options
	3.13.6.2 Default Job Status Options
	3.13.6.3 Alternate Job Status Options
	3.13.6.4 Queue Status Options
	3.13.6.5 Server Status Options
	3.13.6.6 Job, Queue, and Server Status Options
	3.13.6.7 Version Information

	3.13.7 Operands
	3.13.7.1 Job Identifier Operands
	3.13.7.2 Destination Operands

	3.13.8 Standard Error
	3.13.9 Exit Status
	3.13.10 See Also
	3.13.11 Caveats

	3.14 qsub
	3.14.1 Synopsis
	3.14.2 Description
	3.14.2.1 Differences Between Simulation and Live Execution
	3.14.2.2 Submitting Jobs By Using Job Scripts
	3.14.2.2.i Using Shells and Interpreters
	3.14.2.2.ii Python Job Scripts
	3.14.2.2.iii Linux Shell Job Scripts
	3.14.2.2.iv Windows Command Job Scripts

	3.14.2.3 Submitting Jobs From Standard Input
	3.14.2.4 Submitting Job Directly by Specifying Executable on Command Line
	3.14.2.5 Requesting Resources and Placing Jobs
	3.14.2.5.i Caveats for Requesting Resources

	3.14.2.6 Setting Attributes
	3.14.2.7 Running Your Job on First Available Resources
	3.14.2.8 Changing qsub Behavior

	3.14.3 Options to qsub
	3.14.4 Operands
	3.14.5 Standard Output
	3.14.6 Standard Error
	3.14.7 Exit Status
	3.14.7.1 Warning About Exit Status with csh

	3.14.8 See Also

	3.15 sim
	3.15.1 Synopsis
	3.15.2 Description
	3.15.2.1 Caveats
	3.15.2.2 Options to the sim Command

	3.15.3 Output of sim Command
	3.15.3.1 Simulation Output Snapshot Name
	3.15.3.1.i Initial Output Snapshot Name
	3.15.3.1.ii Naming for Multiple Output Snapshots

	3.15.3.2 Simulation Output Contents
	3.15.3.3 Simulation Output Statistics

	3.16 tracejob
	3.16.1 Synopsis
	3.16.2 Description
	3.16.3 Using tracejob on Job Arrays
	3.16.4 Required Privilege
	3.16.5 Options to tracejob
	3.16.6 Operands
	3.16.7 Exit Status
	3.16.8 See Also
	3.16.9 Caveats

	Index

	Main Index

